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ASSESSMENT OF WAVELET-BASED REPRESENTATION TECHNIQUES 

FOR THE CHARACTERIZATION OF STOCHASTIC PROCESSES 

MODELLING PULSE-LIKE STRONG GROUND MOTIONS 
 

A. Giaralis, City University London, UK 

A. Lungu, City University London, UK  
 

ABSTRACT 
 

Recently, the Meyer wavelet packets transform (MWPT), the harmonic wavelet transform (HWT), and 

the S-transform have been used to process recorded earthquake induced strong ground motions (GMs) in 

various earthquake engineering and engineering seismology applications. In this paper, the potential of 

these three wavelet-based time-frequency representation (TFR) techniques to identify and to characterize 

low-frequency pulse-like content in GMs is assessed. This is achieved by processing ensembles of 

simulated non-stationary time-histories with known energy content upon appropriately fine-tuning the 

considered TFRs. Next, the ensemble average wavelet transform is used to characterize the energy 

distribution of the time-histories on the time-frequency plane, within a Monte-Carlo analysis framework. 

Specifically, the considered time-histories are realizations of sums of uncorrelated uniformly modulated 

stochastic processes characterized by analytically known evolutionary power spectra (EPSDs). These 

EPSDs are judicially defined to model the frequency content of pulse-like GMs. Pertinent numerical 

results considering EPSDs compatible with the elastic design spectrum of the current European (EC8) 

aseismic code provisions are included, in which pre-specified pulse-type frequency content is introduced 

by adding low-frequency "patches of energy". The reported numerical data indicate that the HWT 

provides for smoother estimates of the considered EPSDs than the MWPT. Further, the S-transform is 

more accurate than both the HWT and the MWPT in identifying the time location and central frequency 

of the low frequency components contained in the considered artificial pulse-like accelerograms. Overall, 

this study sheds light into the challenges of detecting low frequency content “corrupted” by higher 

frequency components in artificial signals modelling pulse-like accelerograms in an effort to inform best 

practices in the application of TFR techniques to characterize low frequency pulses in recorded GMs. 

 

1. INTRODUCTION 

Strong ground motions (GMs) recorded in the 

proximity of the seismic faults during an 

earthquake event may exhibit forward directivity 

or fling effects. These effects are characterized by 

one or more long-period, high amplitude pulses 

which may not be readily distinguishable in the 

acceleration time-history traces of the GMs (e.g. 

[1, 2]). In many cases, such long period pulses 

carry a large fraction of the total energy contained 

in the ground motion. Consequently, consideration 

of resonance phenomena suggests that flexible 

structures located in the proximity of seismic 

faults and/or structures designed to yield during a 

major earthquake, may be vulnerable to "pulse-

like" GMs.  

In this respect, the identification and 

characterization of low-frequency pulses in field 

recorded GMs has attracted the interest of the 

earthquake engineering research community in 

recent decades. In this context, several researchers 

employed various wavelet-based signal processing 

techniques to detect long period pulses in near-

fault GMs [2-5]. These techniques rely on the 

decomposition of a given time-history on a family 

of finite energy oscillatory functions (wavelets), 

which are localized in time and in frequency [6, 7]. 

In this manner, a representation of the signal 

energy distribution on the time-frequency (TF) 

plane is achieved. However, the thus obtained 

energy distribution depends heavily on the 

analytical expression of the adopted wavelets and 

on the discretization of the TF plane both 

governed by the uncertainty principle (resolution 

trade-off between time and frequency) [6]. 

Consequently, addressing the issue of which 

wavelet family better captures/characterizes 

salient features of recorded GMs, such as the 

potential presence of long period, high amplitude 

pulses is an area of open research (e.g. [4]). 

In this context, this paper assesses the potential 

of three wavelet-based time-frequency signal 

representation techniques (TFRs), namely, the 

Meyer wavelet packets transform (MWPT) [6], the 

generalized harmonic wavelet transform (HWT) 

[8] and the S-transform [9], to detect/characterize 

low-frequency pulses in earthquake accelerograms 



in a Monte Carlo-based framework. This study is 

motivated by the fact that all three considered 

TFRs have been successfully employed in the 

open literature to process field recorded GMs for 

various purposes [5, 10, 11]. 

Herein, artificial records generated as 

realizations of non-stationary processes 

characterized by an analytically known 

evolutionary power spectrum (EPSD) on the TF 

plane are considered [12]. In particular, a special 

class of non-separable stochastic processes defined 

as the sum of uniformly modulated non-stationary 

processes [13, 14] is adopted to model pulse-like 

accelerograms. The considered records are 

analyzed using the aforementioned TFR 

techniques to obtain their average energy 

distribution on the TF plane. These distributions 

are compared with the underlying EPSDs to gauge 

the effectiveness of the considered TFR 

techniques to capture the frequency content of the 

artificial records. 

It is emphasized that this work does not aim to 

a rigorous treatment of the problem of wavelet-

based spectral estimation of non-stationary 

processes (see e.g. [15-17]). Rather, it aims to 

shed light on the limitations of various commonly 

used TFR techniques to detect low frequency 

content “corrupted” by higher frequency 

components in artificial signals modelling pulse-

like accelerograms, in an effort to inform best 

practices in the application of these techniques to 

characterize low frequency pulses in recorded 

GMs. 

2. THEORETICAL BACKGROUND 

2.1 WAVELET-BASED TIME-FREQUENCY 

REPRESENTATION TECHNIQUES 

Consider a family of “wavelet” functions 

defined by scaling via the parameter α (α>0) and 

by translating in time t via the parameter b a zero-

mean finite-energy waveform ψ(t) according to the 

equation 

  ,

1
b a

t b
t

aa
 

 
  

 
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The factor 1/ a  in the above equation ensures 

that all scaled copies of the “mother wavelet” 

function ψ(t) have the same energy. Further, let 

f(t) be a real finite-energy signal. The continuous 

wavelet transform (WT) given by the convolution 

integral [6, 7] 

      ,, b aWT f b a f t t dt 




   (2) 

projects the signal f on the wavelet family ψb,a(t) to 

yield a representation in two variables: the scale α 

and the time translation b. Given the oscillatory 

nature of function ψ(t) (see Figure 2 below), it can 

be recognized that by reducing the scale parameter 

α the corresponding analyzing wavelets are 

“compressed” in time and, thus, their frequency 

content increases. Further, consideration of higher 

values of α, yields wavelets characterized by lower 

frequency content. In this regard, the scale 

parameter α can be interpreted as being inversely 

proportional to an effective “central frequency” 

characterizing the frequency content of the 

wavelet ψb,a(t). The associated constant of 

proportionality depends on the particular 

analytical form of the mother wavelet [7]. Thus, 

for a given scale α, the WT in Eq. (2) “scans” the 

signal f for frequency components close to a 

certain central frequency along the time axis by 

varying the time translation parameter b. 

In this context, the WT can be viewed as a 

representation of the signal f on the time-

frequency plane. The quality of resolution of this 

representation depends on the specific set of 

values of α and b chosen to “discretize” the time-

frequency plane in a practical numerical context. 

Furthermore, this resolution depends also on the 

time and frequency localization properties of the 

wavelet analyzing functions considered in Eq. (2) 

governed by the uncertainty principle [7]: better 

localization in time yields wavelets with a wider 

frequency band and vice versa. In this work, three 

different wavelet families briefly reviewed in the 

remainder of this sub-section are considered.  

2.1 (a) Meyer wavelet packets transform (MWPT) 

Consider a “dyadic” discretization scheme of 

the time-frequency plane based on the set of scale 

parameters αj= 2
j
 (j=0,1,2,…) and translation 

parameters bk= αjk (k=0,1,2,...) at each scale level j. 

Following this discretization scheme, the WT 

yields a non-redundant decomposition of the 

frequency content of the signal f in “octaves” 

termed the “discrete wavelet transform” (DWT) [6, 

7]. From the numerical implementation viewpoint, 

it can be shown that the DWT of a sampled 

discrete-time signal/array can be computed by 

successively applying a pair of conjugate mirror 

filters (a low-pass (LP) and a high-pass (HP)) 



followed by downsampling (↓2) [6,7]. Specifically, 

the LP filter produces “approximation coefficients” 

(Aji arrays) of the input signal/array at j level, 

while the output of the HP filter are “detail 

coefficients” (Dji arrays) containing the high 

frequency components at each scale. At the next 

level j+1 the aforementioned pair of filters is 

applied only to the approximation coefficients 

associated with the low frequency content of the j
th

 

scale/octave.  

For the purpose of time-frequency signal 

representation, a more balanced resolution over 

the whole time-frequency plane than what the 

DWT offers is desirable. This may be achieved by 

means of the “wavelet packet transform” (WPT) 

[7]. In particular, at each scale level WPT 

considers the processing of both the Aji and the Dji 

arrays as illustrated in Figure 1. In this manner, a 

“wavelet packet tree” is defined. This is still a 

non-redundant decomposition with the maximum 

scale level achieved being dependant on the length 

of the original signal/array to be processed. Note 

that the WPT may not be performed to the same 

scale for the entire frequency bandwidth of the 

signal. If a more detailed discretization at certain 

frequency bands is desired, the corresponding 

“nodes” of the decomposition tree can be further 

filtered at will as shown in Figure 1. Clearly, this 

offers a certain degree of flexibility for signal 

time-frequency representation purposes. 

 

Figure 1. Illustration of a wavelet packet tree decomposition 

In this work, Meyer wavelets are used within a 

wavelet packet decomposition context (MWPT), 

considered in [5] to process field recorded 

accelerograms. Meyer wavelets are orthogonal 

compactly supported in the frequency domain (see 

Figure 2) resulting in DWT filter banks with some 

overlapping in the frequency domain between 

adjacent scales [18]. The Fourier transform of the 

Meyer mother wavelet is defined by [7] 
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where the function ν satisfies the conditions 
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Figure 2. Mother wavelets (left panels) and their Fourier 

transform modulus (right panels). 

2.1 (b) Harmonic wavelet transform (HWT) 

A flexible and straightforward discretization of 

the time-frequency plane can be achieved by 

considering the generalized harmonic wavelet 

transform (HWT) introduced in [8]. Generalized 

harmonic wavelets are complex waveforms 

defined in the frequency domain by a band-limited 

box-like function (Figure 2). Two parameters (m,n, 

with n>m) are used to control the frequency 

content of the wavelet instead of a single scale 

parameter α. Specifically, the Fourier transform of 

a generalized harmonic wavelet at scale (m,n) and 

k position in time is defined by  [8] 
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where T is the total length (duration) of the signal f, 

Δω= 2π/T  and m,n,k are positive integers. It can 

be shown that a collection of harmonic wavelets 

spanning adjacent non-overlapping bands at 

different scales along the frequency axis, as shown 

schematically in Figure 3, forms an orthogonal 

basis. Focusing on the last figure, it is evident that 

a set of mj and nj parameters can be readily chosen 

to achieve better frequency resolution (at the 

expense of a poor time resolution due to the 

uncertainty principle) at any band desired. For N 

length discrete-time signals, a rather efficient FFT 

based algorithm exist to compute redundant 

versions of the underlying HWT where at each 

scale N wavelet coefficients equally spaced along 

the time axis are computed [8] yielding a rather 

smooth time-frequency representation of field 

recorded strong ground motions [10]. 

 

Figure 3. Illustration of an orthogonal generalized harmonic 

wavelet basis. 

2.1 (c) S-transform 

Introduced in [9], the S-transform can be 

viewed as a wavelet-based technique for signal 

time-frequency representation [19] which has been 

used to process recorded seismic data [20]. The S-

transform is defined in terms of the WT by the 

equation   

    
2

, ,
b

i
aST b a e WT f b a







 , (6) 

where the following Morlet analyzing wavelet is 

incorporated in the WT [19] 
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Comparing the last equation with Eq. (1) it can be 

seen that the S-transform uses a different type of 

normalization which preserves the amplitude of 

the wavelet upon “scaling” (i.e. change of the 

frequency content), rather than the energy.  

2.2 A CLASS OF NON-STATIONARY 

RANDOM PROCESSES FOR STRONG 

GROUND MOTION REPRESENTATION 

For the purposes of this work, the 

aforementioned TFR techniques are applied to 

process realizations (acceleration time-histories) 

belonging to random processes with a predefined 

evolutionary (time-varying) frequency content. 

Specifically, the class of non-separable non-

stationary random processes x(t) defined as the 

sum of R separable (uniformly modulated) 

processes xr(t); r= 1,2,…,R, is considered, that is, 

    
1

R

r

r

x t x t


 , (8) 

in which 

 
     r r rx t A t g t . (9) 

In the last equation gr(t) is a stationary process 

multiplied by a deterministic “envelope” function 

Ar(t). For sufficiently slowly varying in time 

functions Ar, it can be shown that the energy 

distribution of the process x on the time-frequency 

plane can be represented by the concept of the 

evolutionary power spectrum (EPSD) given by the 

expression [12,14] 

    
2

1

, ( ) r

R

r

r
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
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In the above equation Gr(ω) is the power spectrum 

of the stationary process gr(t). In this regard, it can 

be seen that the frequency content of the process x 

is controlled by the R power spectra Gr 

contributing to the EPSD of Eq. (10). Further, the 

intensity and the time variation of each “frequency 

contribution” Gr is defined by the corresponding 

Ar function. 

Stochastic processes of the form of Eq. (8) with 

various analytically defined expressions for the 

envelope function Ar and the power spectrum Gr 

have been used in the literature to model the 

earthquake induced strong ground motion in terms 

of acceleration for various earthquake engineering 

applications. For instance, Spanos and Vargas Loli 

[13] have considered the stochastic model of Eq. 

(8) for the generation of artificial spectrum 

compatible accelerograms in a stochastic 

framework. Further, Conte and Peng [14] have 



used the aforementioned model for the 

characterization and representation of certain field 

recorded accelerograms associated with specific 

historic seismic events. 

In the ensuing numerical applications the bell-

shaped envelope function given by [21] 

   2

rb t

r rA t C te


 , (11) 

is adopted to account for the commonly observed 

time-varying pattern in the intensity of recorded 

earthquake accelerograms (see also [22]). The 

values of the constant parameters Cr and br 

determine the “height” and the “width” of the 

adopted bell-shaped function [23]. Consequently, 

these parameters control the amplitude and the 

time-domain characteristics (i.e. location of peak 

amplitude in time and effective duration) of the r
th

 

spectral contribution in the EPSD of Eq. (10). 

Further, the Clough-Penzien (CP) spectral form 

is considered to define the two-sided power 

spectrum of the stationary process gr with cut-off 

frequency ωc,r given as [24] 
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The above spectrum is a high-pass filtered version 

of the Kanai-Tajimi filter [25]: arguably the 

phenomenological model most extensively used in 

the literature to represent the frequency content of 

the strong ground motion due to earthquakes. In 

Eq. (12) the parameters ωg,r and ζg,r are related to 

the site conditions and represent the “stiffness” 

and “damping” of the surface soil layers, while ωf,r 

and ζf,r define the frequency response function 

properties of the incorporated filter (see also [22] 

and references therein).  

In this junction, it is important to note for the 

purposes of this work that the stochastic 

representation of the ground motion expressed by 

Eq. (8) allows for the use of power spectrum 

compatible simulation techniques for stationary 

processes to generate samples of the non-

stationary non-separable process characterized by 

the EPSD of Eq. (10). An efficient technique for 

this task is briefly discussed in the following 

section.  

2.3 AN ARMA FILTERING METHOD FOR 

GENERATING NON-STATIONARY NON-

SEPARABLE STRONG GROUND MOTIONS 

Realizations of the non-stationary non-

separable acceleration strong ground motion 

process x of Eq. (8) can be numerically generated 

by first considering stationary discrete-time 

signals sampled at an interval  ,/ maxs c r
r

T    

from the continuous-time stochastic processes gr(t) 

appearing in Eq. (9). That is, 

     , 0,1,...,r r sg s g sT s N  . (13) 

In practice, the total duration T=NTs should be 

defined such that   max r
r

A T attains a negligible 

non-zero value. Next, these stationary signals from 

each process gr are multiplied individually by the 

corresponding discrete/sampled version of the 

envelope function Ar of Eq. (11) to produce 

discrete-time signals xr[s];s=0,1,…,N with non-

stationary intensity as Eq. (9) suggests. Finally, 

one such signal from each of the R processes is 

chosen; the R chosen signals are summed up to 

produce one realization x[s] of the process x 

according to Eq. (8). Irrespectively of the random 

field simulation algorithm used to produce 

numerically the stationary signals compatible with 

the Gr spectra it is important to ensure that these 

signals are statistically independent [14]. 

In this study, stationary discrete-time signals 

 rg s are synthesized by filtering arrays of 

discrete-time Gaussian white noise w[s] with a 

two-sided unit-intensity power spectrum band-

limited to ωc,r through an auto-regressive-moving-

average (ARMA) filter of order (P,Q). In a 

practical numerical implementation setting these 

arrays comprise pseudo-random numbers 

belonging to a Gaussian distribution with zero 

mean and variance equal to ,2 c r . In this 

context, the white noise arrays are statistically 

independent and so are their ARMA-filtered 

versions. In particular, the aforementioned 



filtering operation is governed by the difference 

equation 

      
1 0

QP

r p r q

p q

g s d g s p c w s q
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       (14) 

in which cq (q=0,1,…,Q) and dp (p= 1,…,P) are 

the ARMA filter coefficients. Herein, the 

auto/cross-correlation matching (ACM) method is 

adopted to determine these coefficients so that the 

power spectrum of the process  rg s  matches the 

CP spectrum Gr of the process gr[s]. In this 

manner, the process  rg s  can reliably model the 

process gr[s]. The mathematical details of the 

ACM method can be found in [26] . 

2.4 WAVELET-BASED CHARACTERIZATION 

OF STOCHASTIC PROCESSES 

Let the time-frequency plane be discretized by a 

set of dilation and translation parameters (αi and bi, 

i=0,1,2,…, respectively) within a wavelet-based 

analysis incorporating an orthogonal family of 

wavelets. Consider the value of an EPSD 

characterizing a non-stationary stochastic process 

at a “central frequency” corresponding to the αj 

scale and “time instant” corresponding to the bj 

location in time. It can be shown theoretically that 

for slowly varying EPSDs the mean square 

modulus of the wavelet transform of the process is 

proportional to the local value of the EPSD, that is, 

[16,17,27,28] 

     
2

, , ,j j j jS b a E WT x b a  (15) 

where E{∙} is the operator of the mathematical 

expectation (i.e. the ensemble average). The above 

equation is related to a Parseval’s theorem of 

energy preservation in applying the wavelet 

transform, which will always hold for orthogonal 

wavelets. The constant of proportionality depends 

on the analyzing wavelet used. For example, for 

harmonic wavelets at scale (mj, nj) it can be shown 

that this constant is equal to (Δω(nj-mj))
-1

 with αj= 

(mj+nj)/2 [29]. The quality of the estimation 

depends on the “smoothness” of the considered 

EPSD and is associated with the concept of locally 

stationary processes (e.g. [15,17]). 

Equation (15) justifies the idea of evaluating 

numerically the ensemble average of the square 

modulus of wavelet coefficients by applying the 

wavelet transform to a large number of 

realizations compatible with a specific EPSD in a 

Monte Carlo based context. In case the 

aforementioned assumptions are satisfied this 

average value should compare well with the 

considered EPSD. Therefore, one can use this 

numerical experiment to gauge the effectiveness 

of various wavelet-based analysis techniques to 

capture the energy distribution on the time-

frequency plane of processes with specific 

evolutionary frequency content. Several such 

numerical studies have been reported in the 

literature [16,17,27,28]. The ensuing sections 

report novel results probing into the detection of 

low-frequency content in processes modelling 

pulse-like strong ground motions acceleration 

traces using the stochastic model discussed in 

section 2.2.  

3. NUMERICAL APPLICATIONS 

3.1 SIMULATION OF PULSE-LIKE STRONG 

GROUND MOTION PROCESSES 

Two uniformly modulated CP processes 

defined by Eqs. (9), (11), and (12) are considered 

to represent the “high-frequency” (HF) and the 

“low-frequency” (LF) content in generating 

artificial acceleration traces of pulse-like strong 

ground motions. The parameters for the definition 

of the underlying EPSDs of these two processes 

are reported in Table 1. The considered HF EPSD 

is compatible with the elastic spectrum of the 

European aseismic code provisions (EC8) [30] for 

0.36g peak ground acceleration and soil type B (as 

classified in EC8) derived in Giaralis and Spanos 

[31]. Further, the parameters of the LF EPSD are 

judicially chosen to represent the time and 

frequency attributes of typical pulses extracted 

from field recorded accelerograms associated with 

historic seismic events as reported in the literature 

([1,32]). 

Table 1. EPSD definition of CP spectral forms 

Parameters HF EPSD LF EPSD 

ωf      (rad/s) 2.33 2.33 

ζf 0.90 0.20 

ωg     (rad/s) 10.73 1.60 

ζg 0.78 0.25 

C (m/s
2.5

) 17.76 0.65 

b (1/s) 0.58 0.32 

    

In the ensuing sections, realizations of two 

different non-stationary random processes are 

considered as a “test-bed” to assess the potential 



of the TFR methods discussed in section 2.1 to 

characterize the frequency content of pulse-like 

strong ground motions. The first process is the 

aforementioned HF EC8 compatible separable 

process (R=1 in Eq.(8)) [31]. The second process 

considered is non-separable (R=2 in Eq.(8)) 

defined as a weighted sum of the HF and the LF 

EPSDs of Table 1. The “combination rule” applied 

is 0.30HF+LF which achieves an average energy 

ratio of the HF over the LF frequency content 

equal to 0.20. In this manner, a non-separable non-

stationary process with a prominent low-frequency 

“patch” of energy is defined to model the near-

fault pulse-like strong ground motion. Contour 

plots of the EPSDs of the two considered 

processes are shown in Figure 4  Figure 5. In the 

last figures the location of the peak value of these 

EPSD in time and in frequency is also identified. 

 

Figure 4. EPSD of the EC8 compatible seismic process. 

 

Figure 5. EPSD of the pulse-like seismic process. 

Two ensembles of 200 realizations each 

compatible with the processes of Figure 4 and 

Figure 5 are generated using the simulation 

approach described in section 2.3. A cut-off 

frequency ωc= 300rad/s is adopted for the CP 

spectra considered and the duration of each 

realization is set to 60s with a sampling step equal 

to π/ωc to avoid aliasing. 

3.2 EPSD ESTIMATION VIA THE MWPT AND 

THE HWT 

Both ensembles of realizations/signals 

belonging to the EC8 compatible process and to 

the pulse- like process defined in the previous sub-

section are processed using the MWPT and the 

HWT. Prior to processing, the signals are zero-

padded up to the next power of 2 to expedite the 

numerical implementation and to reduce end-

effects [33]. By relying on Eq. (15) and assuming 

that the considered number of realizations is 

sufficiently large, the ensemble average of the 

squared modulus of MWPT and HWT of these 

signals should compare reasonably well with the 

corresponding (target) EPSDs of Figure 4 and 

Figure 5. By “inversion” of the above argument, 

the herein considered numerical experiment is 

used to assess the potential of the MWPT and 

HWT to capture the frequency content of artificial 

signals with a known frequency content modelling 

far-field (EC8 compatible process) and near-field 

(pulse-like compatible process) strong ground 

motion.     

Figures 6 and 7 show contour plots of the 

MWPT and the HWT estimates of the EC8 

compatible EPSD, respectively, obtained as 

detailed above. In applying the MWPT to the EC8 

compatible signals, a wavelet packet tree with a 

depth of j= 7 has been considered. In applying the 

HWT to the same signals, an orthogonal 

generalized harmonic wavelet basis with constant 

frequency bandwidth of (n-m)Δω=2rad/s spanning 

the interval [0, ωc] on the frequency axis was used. 

The aforementioned algorithmic parameters have 

been selected upon extensive numerical 

experimentation considering the quality of 

approximation in Eq. (15) in terms of energy 

leakage, EPSD peak location on the time-

frequency plane, “ridge” (locus of maxima) of the 

transform and other pertinent criteria. By 

comparing the estimated EPSDs of Figures 6 and 

7 with the “target” EPSD of Figure 4 it can be 

argued that a reasonable estimation has been 

obtained for the selected parameters. A more 

widespread energy leakage towards higher 

frequencies is observed in the case of the MWPT 
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compared to the HWT. However, a more eminent 

shift of the predominant frequencies towards 

higher values is observed in the HWT case. 

Overall, the redundant HWT does offer a 

smoother estimator compared to the non-

redundant MWPT. These are qualitative 

observations indicating the challenges in applying 

any wavelet-based method for signal energy 

characterization on the time-frequency plane. 

 Figure 6. EC8 compatible EPSD estimation via MWPT. 

 Figure 7. EC8 compatible EPSD estimation via HWT. 

Further, the ridge of the EC8 compatible EPSD 

estimated via the MWPT and HWT is shown in 

Figure 8 and compared with the “target value” of 9 

rad/s (see also Figure 4). The ridge obtained by the 

MWPT attains a large variance, although its 

temporal mean value is satisfactory close to the 

target one. The ridge obtained by the HWT is 

shifted on average towards a higher frequency 

than the target, but it has a much smaller variance 

around the mean value. Figure 9 plots the time-

varying ensemble average energy normalized by 

its peak value obtained by the MWPT and the 

HWT together with the “target” curve obtained 

from the EC8 compatible EPSD. Clearly, the 

HWT approximates well the target curve and lies 

much closer than the estimate obtained by the 

MWPT. In view of the herein reported numerical 

data obtained upon calibration of the parameters 

involved in performing the MWPT and the HWT, 

it can be argued that the HWT is more accurate in 

capturing the non-stationary intensity and the 

constant frequency content of the considered 

uniformly modulated EC8 compatible process.  

 
Figure 8. “Ridge” of the EC8 compatible EPSD. 

 
Figure 9. Mean energy estimation of the EC8 compatible 

process. 

 Figures 10 and 11 show contour plots of the 

ensemble average of the square modulus of the 

MWPT and the HWT for the case of the pulse-like 

process possessing a dominant low-frequency 

patch of energy centered at 2.20rad/s (Figure 5). In 

this case, both the MWPT and the HWT have been 

tuned to achieve higher resolution in the frequency 

range where the low frequency pulses “live”. 

Specifically, in applying the MWPT to the 

artificial pulse-like accelerograms considered, a 

wavelet packet tree up to the level j=9 has been 

used for the “terminal nodes” corresponding to the 

frequency band [0,5] (rad/s), while the highest 

level considered outside this interval has been set 

to j=7. Further, in applying the HWT, adjacent 

non-overlapping scales of 0.5rad/s and of 2rad/s 
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have been considered within and outside the 

frequency band [0,5] (rad/s), respectively.  

It can be readily seen in Figures 10 and 11 that 

the position of the dominant low-frequency 

content on the frequency axis is captured very well 

by both the MWPT and the HWT. However, there 

is rather poor time localization due to the 

uncertainty principle in conjunction with the fact 

that wavelet analysis aiming for higher frequency 

resolution in low frequencies, as one would 

intuitively use to detect low frequency pulses in 

recorded accelerograms, has been employed. 

Indeed, the value of the dominant (low) frequency 

content is accurately estimated, as it is confirmed 

by the ridge of the modulus squared of the MWPT 

and HWT shown in Figure 12, while its position in 

time is not identified. In this respect, the herein 

considered wavelet-based signal processing tools 

may not be appropriate to locate accurately low-

frequency pulses in acceleration traces on the 

frequency and the time axis simultaneously. 

 

Figure 10. Pulse-like EPSD estimation via MWPT. 

 

Figure 11. Pulse-like EPSD estimation via HWT. 

 

Figure 12. “Ridge” of the pulse-like EPSD. 

3.3 ASSESMENT OF THE S-TRANSFORM 

FOR LOW FREQUENCY CONTENT 

IDENTIFICATION 

The S-transform is not energy preserving and, 

thus, it cannot be used for EPSD estimation as has 

been the case for the MWPT and the HWT. 

However, it is herein considered to characterize 

the energy content of the pulse-like process. To 

this end, the ensemble of the signals belonging to 

the latter process is processed via the S-transform. 

The contour plot of the ensemble average of the 

modulus of the S-transform of these signals is 

shown in Figure 13. It can be seen that the S-

transform performs better in localizing the low 

frequency patch of energy in the pulse-like process 

on the time-frequency plane compared to the 

MWPT and the HWT. Furthermore, the high 

frequency content is also well identified. These 

observations are further confirmed by the ridge of 

the S-transform included in Figure 12. In this 

respect, it can be argued that the S-transform may 

be a potent signal processing tool for identifying 

low frequency pulse-like content in strong ground 

motions recorded in the near-fault field. 

 

Figure 13. S-Transform of the pulse-like process. 
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5. CONCLUDING REMARKS 

The potential of three wavelet-based signal 

processing techniques has been assessed for 

seismic signal time frequency representation by 

considering realizations of two non-stationary 

random processes characterized by analytically 

known evolutionary power spectra (EPSDs). 

Specifically, the Meyer wavelet packets transform 

(MWPT), the generalized harmonic wavelet 

transform (HWT) and the S-transform have been 

considered, motivated by the fact that they have 

been used in the published literature to process 

field recorded strong ground motions. Special 

attention has been focused in gauging the 

performance of these techniques to 

detect/characterize a low-frequency high-

amplitude “patch of energy” in high-frequency 

“noise” which is observed in certain “pulse-like” 

near-fault recorded strong ground motions. To this 

aim, a non-separable non-stationary stochastic 

process model defined as the superposition of 

uncorrelated uniformly modulated stochastic 

processes is used to model the frequency content 

of pulse-like strong ground motions.  

The herein reported numerical data 

demonstrates that the redundant HWT performs 

better than MWPT in obtaining smooth estimates 

of the considered EPSDs as the ensemble average 

of the squared modulus of transformed EPSD 

compatible signals. Furthermore, the S-transform 

is more accurate than the HWT and the MWPT in 

identifying the time location and central frequency 

of the low frequency components contained in the 

considered artificial pulse-like accelerograms. In 

this respect, the S-transform might be a promising 

tool for pulse characterization and extraction in 

near-fault field recorded accelerograms, if used in 

tandem with an adaptive signal processing 

technique such as the empirical mode 

decomposition [34,35]. 

As a final remark, it is noted that the herein 

considered model for simulation of pulse-like 

artificial accelerograms may be a viable 

alternative to other stochastic models proposed in 

the literature [1,32] as it furnishes certain 

advantages. These include simplicity in 

representing the low frequency component and 

versatility in the representation of the high 

frequency component which can be chosen to be 

compatible with specific response/design spectra 

[31]: a desirable consideration for the earthquake 

resistant design of structures located close to 

active seismic faults.  
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