
              

City, University of London Institutional Repository

Citation: Giaralis, A. ORCID: 0000-0002-2952-1171 and Taflanidis, A. A. (2016). Robust 
reliability-based design of seismically excited tuned mass-damper-inerter (TMDI) equipped 
MDOF structures with uncertain properties. Paper presented at the 6th European 
Conference on Structural Control - EACS2016, 11-13 Jul 2016, Sheffield, England. 

This is the accepted version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/19269/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 
University of London available to a wider audience. Copyright and Moral 
Rights remain with the author(s) and/or copyright holders. URLs from 
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 
educational, or not-for-profit purposes without prior permission or 
charge. Provided that the authors, title and full bibliographic details are 
credited, a hyperlink and/or URL is given for the original metadata page 
and the content is not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


EACS 2016 – 6th European Conference on Structural Control                                    Sheffield, England: 11-13 July 2016 

                  

Paper No. 150 

1 
* Corresponding author 

 
Robust reliability-based design of seismically excited tuned mass-damper-

inerter (TMDI) equipped MDOF structures with uncertain properties 

 
Agathoklis Giaralis1*, Alexandros Taflanidis2 

1Dept. of Civil Eng., City University London, London, UK 
2Dept. of Civil and Environmental Eng. and Earth Sciences, University of Notre Dame, Notre Dame, IN,USA 

ABSTRACT 

This paper considers a reliability-based approach for the optimal design of the tuned mass-damper-inerter 

(TMDI) in linear building frames with uncertain structural properties subject to seismic excitations defined 

as stationary colored random processes with uncertain parameters. The TMDI is a recently introduced 

generalization of the classical linear passive tuned mass-damper (TMD) comprising an additional mass 

attached to the primary structure whose oscillations are to be suppressed via a linear spring and dashpot in 

parallel. The TMDI benefits from the mass amplification property, the so-called inertance, of an inerter 

device that links the additional mass to a different floor from the one it is attached to which improves the 

vibration suppression capabilities of the TMD. Herein, the structural seismic performance is quantified 

through the probability of occurrence of different failure modes, related to the floor acceleration, the inter-

storey drifts, and the attached mass displacement exceeding acceptable thresholds. The overall design 

objective is taken as a linear combination of these probabilities whereas the TMDI linear spring constant, 

viscous damping constant, and inertance properties are taken as the design variables. The parametric 

structural and excitation uncertainty is efficiently addressed through a two-stage approach combining a 

Taylor series approximation and Monte Carlo simulation. Numerical data for a 10-storey shear frame 

structure equipped with a TMDI with different values of attached mass and arranged in 8 different topologies 

are furnished indicating the enhanced performance of the TMDI over the classical TMD for relatively small 

attached masses. The reported numerical results evidence that the performance of optimally designed TMDIs 

is less affected by the parametric uncertainties as the total inertia TMDI properties (attached mass and 

inertance) increases, indicating that the inclusion of the inerter leads to more robust passive vibration control. 
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1 INTRODUCTION 

Over the past several decades, the concept of the passive tuned mass-damper (TMD) has been 

extensively considered to mitigate earthquake-induced vibrations in building structures (e.g., [1-4]). 

The TMD comprises a mass attached towards the top of the structure whose vibration motion is to 

be controlled (primary structure) via optimally designed/”tuned” linear spring and dashpot 

elements. Although closed-form expressions for optimum TMD properties do exist (e.g., [5]), 

numerical optimization routines are commonly employed for TMD design. No matter what 

performance criteria are adopted in this design, it is widely recognized that the TMD effectiveness 

for the seismic protection of structures depends heavily on its inertia properties [2-4]. Practically 

speaking, the larger the attached TMD mass that can be accommodated, subject to structural design 

and architectural constraints, the more effective the TMD will be to suppress the primary structure 

oscillations and the more robust it will be in terms of detuning effects. The latter is a well-
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recognized in the literature drawback of the TMD related to deviations of the dynamic properties of 

the primary structure and/or of the properties of the input excitation assumed in the TMD design 

which reduce the effectiveness of the TMD to mitigate vibrations.  

To this end, recently, a generalization of the classical TMD has been proposed by Marian and 

Giaralis [6,7] incorporating an “inerter” device: the tuned mass-damper-inerter (TMDI). The inerter 

is a two-terminal mechanical device developing a resisting force proportional to the relative 

acceleration of its terminals [8]. The underlying constant of proportionality (“inertance”) can be 

orders of magnitude larger than the physical mass of the device. In this regard, it was shown 

analytically and numerically that optimally designed TMDI, treating the attached mass and 

inertance as fixed quantities, outperforms the classical TMD in terms of relative displacement 

variance of linear primary structures under broad-band and narrow-band stochastic base excitations 

by exploiting the “mass amplification” property of the inerter [8]. Moreover, Giaralis and Taflanidis 

[9] employed a reliability-based optimum design approach to study the effectiveness of several 

different TMDI topologies for vibration suppression in linear multi-storey building structures 

excited by stochastic seismic excitation, while Giaralis and Marian [10] demonstrated that the 

TMDI can achieve the same seismic structural performance level for significantly smaller attached 

mass compared to the classical TMD.  

In all the aforementioned studies on the optimum TMDI design, both the primary structure 

and the parametrically defined stochastic excitation were assumed to be deterministically known. 

Herein, the influence of the uncertainty in both the structural properties of the primary structure and 

frequency content of the seismic excitation to the seismic performance of TMDI equipped multi-

storey buildings is examined. To this aim, a reliability-based optimum design approach is adopted 

in which the structural seismic performance is quantified through the probability of occurrence of 

different failure modes, related to the floor acceleration, the inter-storey drifts, and the attached 

mass displacement exceeding acceptable thresholds. The seismic excitation is modelled as a 

stationary colored Gaussian stochastic process with uncertain properties and, therefore, the above 

probability corresponds to the first-passage failure probability associated with different failure 

modes. The overall design objective is taken as a linear combination of these probabilities: this is a 

different objective function than the one considered in [9] and in previous relevant studies in the 

literature (e.g. [11]). It is purposely tailored to conform to the current trends in performance based 

earthquake engineering applications [12]. The TMDI linear spring constant, viscous damping 

constant, and inertance properties are taken as the design variables. The parametric structural and 

excitation uncertainty is efficiently addressed through a two-stage approach combining a Taylor 

series expansion approximation and Monte Carlo simulation. Numerical data pertaining to a 10-

storey shear frame structure equipped with a TMDI with different values of attached mass and 

arranged in 8 different topologies are furnished to assess the seismic performance of TMDI 

equipped multi-storey structures and to quantify the robustness of optimally designed TMDIs vis-à-

vis the classical TMD to structural and seismic input uncertainty. 

The governing equations of motion for TMDI equipped linear multi-degree-of-freedom 

structures are reviewed in the next section, followed (Section 3) by a description of the adopted 

reliability-based optimal design approach. Section 4 presents a case study for a 10-storey TMDI 

equipped building frame exposed to stochastic seismic excitation. Concluding remarks are finally 

summarized in Section 5. 

 

2 THE TUNED MASS-DAMPER-INERTER (TMDI) SYSTEM FOR MULTI-STOREY 

FRAME BUILDING STRUCTURES 

2.1 The ideal linear inerter 

Conceptually introduced by Smith [8], the ideal inerter is a linear two terminal device of 

negligible mass/weight developing an internal (resisting) force proportional to the relative 
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acceleration of its terminals which are free to move independently. As an example, the internal 

force of the inerter shown in the inlet of Fig. 1 is given by 

( - )
bid

F b x x , (1) 

where xd and xib are the displacement coordinates of the inerter terminals and, hereafter, a dot over a 

symbol signifies time differentiation. In the above equation, the constant of proportionality b is the 

so-called inertance and has mass units. Importantly, the physical mass of actual inerter devices can 

be two or more orders of magnitude lower than b. This has been experimentally validated by testing 

several flywheel-based prototyped inerter devices incorporating rack-and-pinion or ball-screw 

mechanisms to transform the translational kinetic energy into rotational kinetic energy stored in a 

lightweight rotating disk [13]. More recently, hydraulic and fluid based inerters achieving inertance 

values b that are almost independent of the physical device mass were also been prototyped and 

tested [14,15]. In this regard, the ideal inerter can be construed as an inertial amplification device, 

since by “grounding” any one of its terminals, the device acts as a “weightless” mass b developing a 

resisting force proportional to the acceleration of the ungrounded terminal [8]. This observation 

motivated the consideration of the tuned mass-damper-inerter, reviewed in the next sub-section, to 

improve the vibration suppression capabilities of the classical tuned mass-damper for the same 

attached mass (and thus weight) by exploiting the inertial amplification property of the inerter [6,7].  

 

 

Figure 1- Tuned mass-damper-inerter (TMDI) equipped seismically excited n-storey frame. 

 

2.2 Equations of motion of TMDI equipped multi degree of freedom (MDOF) structures 

Consider the planar n-storey frame building, shown in Fig. 1, whose oscillatory motion due to 

a ground acceleration 
gx  is to be suppressed (primary structure). The TMDI consists of a classical 

linear passive tuned mass-damper (TMD) located at the id-th floor of the primary structure 

comprising a mass md attached to the structure via a linear spring of stiffness kd and a linear dashpot 

of damping coefficient cd. The TMD mass is linked to the ib-th floor by an inerter device with 

inertance b. This is a more general configuration than the one considered in [6,7] where the TMD 

was located at the top floor and the inerter was linking the attached mass to the penultimate floor, 

and it allows the evaluation of different topologies for the TMDI implementation. The equations of 

motion are established by means of location and connectivity vectors as detailed below. 

Let n

s x be the vector collecting the floor displacements of the primary structure relative to 
the ground motion. Denote by n

d R the TMD location vector specifying the floor the TMD is 
attached to (i.e., vector of zeros with a single one in its id entry), and by n

b R  the inerter 
location vector specifying the floor the inerter is connected to (i.e., vector of zeros with a single one 
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in its ib entry). Further, let y  be the displacement of the TMD mass relative to the id floor (i.e., 

dd iy x x  ) and define the connectivity vector by Rc=Rd-Rb. Then, the resisting force F developing 
within the inerter is equal to ( )cb ysR x , and the coupled equations of motion for the TMDI 
equipped primary structure in Fig.1 modelled as lumped-mass damped multi degree-of-freedom 
(MDOF) system are written as 

   

 

s( ) ( ) ( )

                                                                                            ( )

T T

s s d d d c c s d d c s s s s

T

s s d d d s g

m b m b y

m x

     

  

s
M θ R R R R x R R C θ x K θ x

M θ R R R
 (2) 

and 

 ( ) T T T

d d d c s d d d d s gm b y m b c y k y m x      R R x R R .  (3) 

In Eq.(2), x( ) n n

s s M θ , x( ) n n

s s C θ , and x( ) n n

s s K θ  are the mass, damping, and stiffness 

matrices of the primary structure, respectively, where s
n

s

θ  represents the model parameter 

vector for the structural model. Further, in the previous equations, n

s R  is the earthquake 

influence coefficient vector (vector of ones). Note that in deriving the previous two equations the 

inerter is taken as weightless, similarly to the spring and to the dashpot, and, therefore, and it does 

not attract any horizontal seismic inertial force (see also [7,16]). Moreover, Eq. (3) suggests that the 

total inertia of the TMDI is equal to (md+b). The latter observation motivates the definition of the 

following dimensionless frequency ratio fd, damping ratio ζd, inertance ratio β, and mass ratio μ 

1/ ; ; / ; /
( ) 2( )

d d
d d d

d d d

k c
f b M m M

m b m b
   


   

 
 (4) 

to characterize the design of the TMDI, where ω1 and M is the fundamental natural frequency and 

the total mass of the primary structure. 

3 RELIABILITY-BASED DESIGN UNDER STATIONARY STOCHASTIC 

EXCITATION AND PARAMETRIC UNCERTAINTY 

3.1 State-space excitation and structural system modelling 

Let
gx  in Eqs. (2) and (3) be a stationary filtered Gaussian white noise stochastic process. A 

state-space formulation is utilized to calculate the response characteristics required in the solution 
of the optimum TMDI design problem, and in this setting the excitation model is given by 

( ) ( ) ( ) (t) ; ( ) ( ) ( )q q q q q g q q qt t w x t t  x A θ x E C θ x . (5) 

In the above equation, ( )w t   is a zero-mean stationary Gaussian white noise stochastic process 
with spectral intensity equal to one, ( ) qn

q t x  is the state vector for the excitation, 
x

( ) q qn n

q q A θ ,  
x1qn

q E  and 
1x

( ) qn

q q C θ  are the excitation state-space matrices, and 
q

n

q



θ  collects the parameters used in the analytical definition of the excitation (coloring) filter. 
Conveniently, the governing equations of motion of the considered structural system in (2) and (3) 
and the excitation model in (5) can be combined in a single excitation/structural system model in 
state-space written as 

( ) ( , ) ( ) (t) ; ( ) ( , ) ( )t t w t t  x A φ θ x Ε z C φ θ x , (6) 

where ( ) xn
t x  is the state vector, with nx=2n+2+nq, ( ) zn

t z  is the vector of output variables 
with zi denoting the ith output component, ;[ ]q

n

s
θ θ θ is the augmented model parameter 

vector collecting the structural sθ  and excitation qθ  model parameters, and ( , ) x xn xn
A φ θ , 

1xn x
E  and ( , ) z xn xn

C φ θ  are the state-space system matrices. Importantly, the matrices A and 
C are functions of both the vectors φ, collecting the controllable (design) parameters of the TMDI 
(cd., kd, b), and θ . Through proper selection of matrix C(φ,θ) the linear model in (6) can be used to 
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determine the statistics of any response quantity that can be expressed as a linear combination of the 
state vector x. This calculation is briefly summarized next.  

 

3.2 Stationary response statistics 

Under the previously discussed excitation modelling assumptions, each output variable 
 ( 1,..., )i zz i n  of the linear dynamic system in (6) given as T

i iz  n z  is a Gaussian stochastic 
process with zero mean and variance equal to  

2 ( | ) ( , ) ( , ) ( , )
i

T T

z i i φ θ n C φ θ P φ θ C φ θ n , (7) 

where the state covariance matrix, P(φ), is determined by solving the Lyapunov equation [17] 

( , ) ( , ) ( , ) ( , ) 0T T  A φ θ P φ θ P φ θ A φ θ EE . (8) 

Further, in evaluating the reliability (i.e., survival probability) of the response quantities zi required 
in the optimum TMDI design problem presented in the following sub-section, the variance of the 
first time derivative of zi needs to be computed. This is achieved by using the expression 

2 ( | ) ( , ) ( , ) ( , ) ( , ) ( , )
i i i

T T T

z z z φ θ n C φ θ A φ θ P φ θ A φ θ C φ θ n , (9) 

which is derived under the condition C(φ,θ)E=0. The latter is enforced to ensure that the out-
crossing rate of the zi stochastic process discussed in section 3.4 below is finite [11]. Lastly, the 
transfer function of zi, also required in the calculation of the out-crossing rate of zi, is given by 

1( | , ) ( , )[ ( , )]
i x

T

z i nH i   φ θ n C φ θ I A φ θ Ε , (10) 

where 1i    and uxu

u I  is the identity matrix. 

 

3.3 Reliability-based design formulation with uncertain excitation and structural properties 

In this work, reliability related criteria are used to determine the optimum TMDI design 

variable vector φ accounting for uncertainty to the model parameter vector θ which contains both 

excitation and structural properties. Specifically, the design criteria are based on the probability that 

each output (performance) variable zi in (6) of interest to seismic design (e.g., inter-storey drift, 

floor acceleration, etc.) exceeds a given threshold βi (defining acceptable performance) within some 

duration T of the excitation (strong ground motion duration). This probability is quantified as 

 ( | )  for some [0, ] ( | , ) ( )i i i iP T P z T P T p d        φ φ θ θ θ
Θ

  (11) 

where P[.] stands for probability. In the last equation, p(θ) is the probability distribution function 
(pdf) of the model parameter vector θ, describing the relative plausibility of different model 
parameter values, and Θ corresponds to the region of possible values for θ [support of function 
p(θ)]. The above pdf ultimately incorporates the available knowledge expressed in 
statistical/probabilistic terms about the structural model and the excitation into the design problem. 
Further, the function ( | , )iP Tφ θ is the first-passage probability for output zi out-crossing the 
threshold βi which, in stationary conditions, is approximated by [18] 

 ( | , )  1 exp ( | )i iP T T   φ θ φ θ , (12) 

In the above equation, ( | )i

φ θ is the conditional out-crossing rate for zi computed as described in 

the following sub-section. 
 From the structural design viewpoint, it is important to note that the quantity ( | )iP Tφ in 
(11) can be interpreted as the probability that the failure mode described by i iz   occurs. In this 
regard, the overall design objective function for robust design is herein taken as a linear 
combination of these different probabilities (over all nz adopted performance variables zi) 
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1 1

( ) ( | ) ( | , ) ( ) ( | ) ( )
z zn n

i i i i

i i

J w P T w P T p d k p d
 

     φ φ φ θ θ θ φ θ θ θ
Θ Θ

 , (13) 

where  

( | )

1 1

( | ) ( | , ) 1 e
z z

i

n n
T

i i i

i i

k w P T w
 

 

   
  

φθ
φ θ φ θ   (14) 

and wi are weighs representing the relative consequences for failure mode i iz  . Therefore, the 

objective function in (13) considers the contribution of each of the individual failure modes which 

is aligned with current performance-based earthquake engineering applications [12] that add the 

contributions from all the examined damage states (failure modes) of interest. 

Eventually, the optimal TMDI parameters are obtained through the optimization problem  

arg min ( )J







φ

φ φ , (15) 

where Φ corresponds to the admissible design space. The solution of the robust design problem in 

(13)-(15) requires the computation of the out-crossing in (12) and the estimation of the multi-

dimensional probabilistic integral appearing in the last part of Eq. (13). These two issues are 

addressed in the following two sub-sections.  

 

3.4 Out-crossing rate calculation 

The conditional out-crossing rate for zi in (12) is given by [18] 

( | ) ( | ) ( | )+

i i ir  φ θ φ θ φ θ   (16) 

and is a product of the Rice’s unconditional out-crossing rate ( | )+

ir φ θ  and of the temporal-
correlation correction factor ( | )i φ θ . The first term is given by [19] 

2

2

( | )
( | ) exp

( | ) 2 ( | )

i

i i

z+ i
i

z z

r


 

 
  

 
 

φ θ
φ θ

φ θ φ θ

β
  (17) 

with the required variances given by (7) and (9). This rate assumes independence between out-
crossing events for the process zi. A temporal correlation factor ( | )i φ θ  is then utilized to 
approximately address errors introduced by this independence assumption. This factor is important 
for problems involving narrow-band systems or cases where out-crossing of threshold βi is a 
frequent event and various semi-empirical approximations have been proposed for it. A detailed 
survey may be found in [18], where it is shown that the choice for the approximation should be 
based on the bandwidth characteristics of the system. The correction factor proposed by Taflanidis 
and Beck [18] is herein adopted given by 

0.1

0.6

2

2

22
1 exp ( | )

( | )
( | )

1 exp
2 ( | )

i

i

i

z

i

i

z

q









  
   

   
 

  
  

φ θ
φ θ

φ θ

φ θ

,  (18) 

where for a process with spectral density ( | , )
i iz zS  φ θ  

6

2

( | )
( | )

4π ( | , ) ( | , )

i

i i i i

z

z z z z

q
S d S d



    
 

 



 

φ θ
φ θ

φ θ φ θ
. (19) 
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For the calculation of the integrals in the denominator of Eq. (19), the spectral density ( | , )
i iz zS  φ θ  

is substituted by the equivalent expression  

2

( | , ) ( | , )
i i iz z zS H φ θ φ θ   (20) 

with ( | , )
izH  φ θ  given by Eq. (10). The frequency range over which the dynamics of system are 

important is partitioned at desired points and the frequency response is calculated. The one-

dimensional integral is then evaluated via a standard quadrature rule.  

 

3.5 Estimation of probabilistic integral  

Two different approaches are herein discussed for estimation of the integral in (13). The first 

approach is based on the asymptotic approximation for integrals of this type developed by 

Papadimitriou et al. [20]. This ultimately entails fitting a scaled Gaussian function over the 

logarithm of the integrand around its design point, corresponding to the global maximum for it. The 

original integral is then approximated by the integral corresponding to this fitted function, which 

leads to the approximate formula 

* *
/2

*

( | ) ( )
( ) (2 )

| ( | ) |

n

s

k p
J 

φ θ θ
φ

H θ φ
 , (21) 

where θ*  corresponds to the design point for the integrand 

 * arg max ( | ) ( )
Θ

k p



θ

θ φ θ θ  , (22) 

and  ( | ) ( | ) ( )s k p θ θH θ φ φ θ θ  is the Hessian of the integrand with respect to θ which needs to 
be numerically evaluated. The estimation of Eq. (21) involves small computational effort, 
especially if dimension of θ is small (below 5-10 model parameters), but its accuracy is unknown 
and depends on how well the actual integrand is approximated by the fitted Gaussian. In a number 
of studies [18, 20-22] this approximation has been demonstrated to yield good accuracy for 
applications similar to the one examined here.  

The second approach for estimation of the integral in (13) is based on stochastic (Monte 
Carlo) simulation. In this case an unbiased estimate is obtained and the accuracy of that estimate 
can be controlled by the number of samples utilized [23]. This accuracy can be further increased by 
using importance sampling (IS). The idea behind IS is to introduce an auxiliary IS density q(θ) so 
that the computational effort in the stochastic simulation is concentrated in regions of Θ that have 
higher contribution in the integrand of the probabilistic integral. Using N samples, { ; 1,..., }j j Nθ  
from IS density q(θ)  the estimate for J(φ) is  

1

1 ( )
( ) ( | )

( )

jN
j

j
i

p
J k

N q

 
θ

φ φ θ
θ

  (23) 

Even for cases with multiple design points, the estimate in (23) yields a good approximation if q(θ) 

is chosen such that its peak is near a prominent design point and has as large spread as p(θ) [21]. 

 

3.6 Solution of the design optimization problem 

For solving the robust design problem an efficient two-stage approach is adopted here. In the 

first stage the analytic expansion is adopted, leading to the simultaneous optimization for the design 

points and the optimal design variables 

 
* *

/2

*

( | ) ( )
arg max ( | ) ( ) ; arg min (2 )

| ( | ) |

n

Θ Φ
s

k p
k p  

 

 
  
  

θ φ

φ θ θ
θ φ θ θ φ

H θ φ
. (24) 
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Once this stage has converged a refinement of the identified optimum is established using stochastic 
simulation to calculate the objective function. An IS proposal density is established, q(θ), utilizing 
the information for the design point 

θ  at the optimal design configuration from the first stage 
φ . 

This density then supports the simulation-based optimization 

1

1 ( )
arg min ( | )

( )

jN
j

j
Φ i

p
k

N q



 

 
  

 


φ

θ
φ φ θ

θ
  (25) 

using the previously converged to optimum (stage 1) as an initial point and adopting an exterior 

sampling approach [24] and a large enough N to facilitate high accuracy estimates (small coefficient 

of variation). Exterior sampling utilizes the same stream of common random numbers for all design 

configurations considered within the optimization described by Eq. (25); this creates a consistent 

estimation error and facilitates significant computational benefits for the numerical optimization. 

This second stage facilitates ultimately higher accuracy estimates for the objective function and 

therefore supports a more reliable identification of the optimal design configuration. The higher 

burden associated within this second stage optimization is reduced by the information utilized by 

the first stage: a good starting point for the numerical optimization and a IS density that facilitates 

high accuracy in the vicinity of the optimal solution. 

4 ILLUSTRATIVE DESIGN EXAMPLE AND DISCUSSION 

The optimal TMDI design approach of section 3 is herein illustrated by considering a 

particular primary structure and seismic excitation model with parametric uncertainty presented in 

sub-section 4.1. Selected results from application of the optimal design approach are reported and 

discussed in sub-section 4.2 for several different values of attached mass and TMDI topologies. 

Lastly, sub-section 4.3 provides additional data demonstrating the robustness of optimally designed 

TMDIs  to uncertainty in the input and structural parameters. 

 

4.1 Structural and excitation models 

A 10-storey lumped mass planar linear shear frame building is adopted as the primary 
structure with uncertain classical modal damping and uncertain floor stiffnesses involving 
correlation between different floors. The lumped mass per story is 900ton whereas the nominal 
stiffness has a gradual decrease along height; it is 782.22MN/m for the bottom four stories, 
626.10MN/m for the three intermediate ones and 469.57MN/m for the top three stories. The inter-
story stiffnesses ki of all the stories are parameterized by i ki ik k , i=1,..,n, where ik  are the 
nominal values (mentioned above) and θki are non-dimensional uncertain parameters, assumed to be 
correlated Gaussian variables with mean value one and covariance matrix with elements 
Σij=(0.1)2exp[-(i-j)2/22]. This assumption implies significant correlation between inter-story 
stiffnesses within two stories apart and a coefficient of variation (c.o.v) of 10%. The damping ratio 
for all modes ζ is assumed to be a lognormally distributed random variable with median value equal 
to 0.035% and c.o.v 40%. The natural periods for the nominal structure along with the participation 
factors in parenthesis are 1.5s (81.7%), 0.55s (11.8%), 0.33s (3.7%).  

The stationary seismic excitation 
gx  is described by a high-pass filtered Kanai-Tajimi power 

spectrum [25] 

 

   

4 2 2 2 4

2 2
2 2 2 2 2 2 2 2 2 2

4
( )

4 4

g g g

g o

g g g f f f

S s
    


         




   
  (26) 

In the above equation the Kanai-Tajimi parameters ωg and ζg represent the stiffness/frequency and 
damping properties, respectively, of the supporting ground modelled by a linear damped SDOF 
oscillator driven by white noise. Further, the parameters ωf and ζf control the cut-off frequency and 
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the “steepness” of a high-pass filter used to suppress the low frequency content allowed by the 
Kanai-Tajimi filter. Lastly, so is chosen to achieve a desired pre-specified value for the root mean 
square acceleration aRMS of the considered seismic input. For the purposes of this study, ωg, ωf , ζg , 
ζf  and aRMS  are modeled as lognormal variables with median values 3π, π/2, 0.4 and 0.8, 
respectively, and c.o.v 15% for the frequency parameters, 30% for the damping parameters and 5% 
for aRMS. The duration of excitation T is taken as 15 s.  These choices lead to a 5-dimensional θq=[ 
ωg  ωf  ζg  ζf  aRMS] and a 11 dimensional ; 1, ,10[{ } ]s si i   θ θ . 
 

4.2 Robust reliability-based TMDI design 

The structural performance/response variables zi, i=1,…,nz considered in the design includes 

the inter-storey drifts and absolute accelerations for all 10 floors of the adopted primary structure 

plus the TMD mass displacement (stroke). The corresponding thresholds βi in (11) are chosen as 3.3 

cm for inter-storey drifts, 0.5g for floor accelerations, and 1m for the stroke. Equal weights wi are 

assumed in the definition of the design objective function in (13) for all zi variables. For the 

uncontrolled (without the TMDI) nominal structure and excitation (median value for all elements of 

θ assumed) the objective function (average failure probabilities) is 12.38%. When considering only 

drift or acceleration responses this value becomes 10.94% and 13.83%, respectively. When 

uncertainty to the primary structure and excitation is considered the above values become 17.56% 

(total), 17.43% (drifts) and 17.69% (accelerations). 

The vector of dimensionless TMDI design variables is φ=[ζd fd β]T and includes the damping, 

frequency and inertance ratios in (4). For the frequency ratio the nominal (median) structural model 

characteristics are utilized in the definition. The mass ratio μ is treated as a fixed pre-specified 

variable and a parametric investigation is undertaken for different values of μ ranging from 0.01% 

to 10%. Furthermore, a set of 8 different TMDI topologies are assessed defined by id and ib floor 

pairs (i.e., floor numbers where the TMD and the inerter are attached, respectively). Note that, 

although practical architectural considerations suggest that the inerter would link the md mass to the 

floor immediately above or below the id floor, cases in which |id-ib|=2 are also examined here. Such 

cases can be facilitated, for example when an atrium exists (e.g., Taipei 101 skyscraper).   

 

Table 1: Optimal performance ( )J 
φ [%] and optimal inertance ratios in parenthesis for various 

TMDI topologies defined through id, ib and attached mass ratios. 

id ib 
μ (%) 

0.1 0.3 0.5 0.6 1 1.5 3 5 7 10 

10 9 
10.986 10.883 10.257 9.487+ 7.357+ 5.810+ 3.505+ 2.033+ 1.269+ 0.712+ 

(175.3) (172.5) (169.5) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) 

10 8 
4.447 4.376 4.308 4.275 4.138 3.977 3.509 2.033+ 1.269+ 0.712+ 

(99.9) (98.2) (97.0) (97.2) (93.7) (90.9) (77.2) (0.0) (0.0) (0.0) 

9 8 
5.446 5.403 5.360 5.339 5.255 5.152 4.110+ 2.755+ 1.977+ 1.299+ 

(197.7) (195.7) (193.8) (192.9) (188.9) (184.0) (0.0) (0.0) (0.0) (0.0) 

9 7 
1.531 1.525 1.518 1.514 1.501 1.484 1.431 1.355 1.256 0.973 

(129.3) (127.7) (126.0) (125.5) (122.8) (119.7) (110.9) (96.5) (72.0) (16.9) 

8 7 
3.082 3.073 3.063 3.058 3.039 3.015 2.943 2.845 2.737 2.443+ 

(237.7) (235.6) (233.6) (232.5) (228.7) (223.8) (209.9) (190.0) (166.1) (0.0) 

8 6 
1.042 1.042 1.042 1.042 1.042 1.042 1.040 1.037 1.029 1.005 

(161.2) (159.7) (158.3) (157.8) (155.5) (152.6) (145.4) (136.0) (125.2) (102.1) 

7 6 
3.160 3.153 3.145 3.142 3.127 3.110 3.056 2.988 2.923 2.833 

(330.8) (329.6) (328.5) (327.8) (325.6) (322.9) (315.1) (304.9) (294.4) (276.9) 

7 5 
0.849 0.847 0.846 0.846 0.844 0.841 0.834 0.828 0.826 0.826 

(185.1) (184.8) (184.2) (184.2) (184.0) (182.6) (180.5) (178.0) (175.4) (170.7) 
+ Optimal TMDI design yields a classical TMD (i.e., inertance under optimal design is zero) 
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In deriving optimal parameters for all the TMDI cases considered, the probabilistic integral in 

(13) has been transformed to the standard Gaussian space and the two-stage approach discussed in 

sub-section 3.6 is adopted. For the second stage N=5000 samples are used for the stochastic 

simulation achieving high accuracy for all cases, with c.o.v less than 2% for most topologies 

examined. The proposal densities in the second stage are taken as independent Gaussian 

distributions for each uncertain model parameter with standard deviation equal to 1 and mean equal 

to the design vector θ* identified in the first stage.   

Table 1 reports the optimal value of the objective function ( )J 
φ  obtained for all considered 

TMDI topologies as well as the optimal inertance β and several observations follow. For one, a 
definite optimum inertance ratio β is obtained in all cases from the optimization approach whose 
value depends significantly on the mass ratio μ. Above a certain critical mass ratio value, the 
classical TMD (no inerter included) achieves better performance. In other words, the inclusion of 
the inerter device is more beneficial for relatively small attached masses, an observation previously 
reported in the literature in terms of top floor displacement variance minimization [17]. Herein, it is 
also found that this critical mass ratio value is strongly dependent on the TMDI topology. 
Examining the structural performance, it is observed that the incorporation of the inerter leads to 
enhanced vibration suppression compared to the classical TMD. Significantly better performance is 
achieved for |id-ib|=2 compared to the more conventional |id-ib|=1 cases. Further, for the TMDI cases 
(non-zero inertance) an increase of the mass ratio does not impact the performance significantly. 
However, an almost linear positive relationship exists between performance and mass ratio for the 
TMD cases. Overall, placement of the TMDI at lower floors provides greater efficiency, while for 
the TMD cases higher floor placement appears to be more beneficial. Lastly, it is generally found 
that the improvement of performance due to the inclusion of the TMDI is remarkable even for mass 
ratios as low as 0.1% of the total mass of the structure. As a final remark, it is noted that similar 
observations and trends have been reported in Giaralis and Taflanidis [9], who considered optimally 
designed TMDIs through minimizing the probability that any of the considered performance 
variables zi (taken same as here) exceeds a given threshold βi assuming a deterministically known 
primary structure and seismic excitation frequency content. 

 

4.3  Influence of the structural and excitation model uncertainty to optimal TMDI design  

As a measure of the achieved robustness of the TMDI vis-à-vis the classical TMD, the 
sensitivity of the optimum reliability-based performance achieved to uncertainties in the structural 
and excitation models is examined. This sensitivity is quantified through the ratio of optimal 
performance for the nominal case (i.e., design for deterministically known primary structure and 
excitation) ( )nJ 

φ  over the optimal performance under uncertainty reported in Table 1. Table 2 
reports this ratio, ( ) / ( )nJ J 

φ φ , for all TMDI topologies and attached masses considered before. 
 

Table 2: Performance under uncertainty if the nominal design was adopted to the corresponding 

optimal performance ( ) / ( )nJ J 
φ φ .  

id ib 
μ (%) 

0.1 0.3 0.5 0.6 0.75 1 1.5 2 3 5 7 10 

10 9 1.01 1.01 1.02 1.02+ 1.01+ 1.01+ 1.02+ 1.04+ 1.08+ 1.42+ 1.45+ 1.20+ 

10 8 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.42+ 1.45+ 1.20+ 

9 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.08+ 1.04+ 1.06+ 1.11+ 

9 7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.06 

8 9 1.00 1.00 1.00 1.00 1.00 1.00 1.01 0.91 1.00 1.03+ 1.04+ 1.05+ 

8 6 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.01 

7 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 

7 5 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00 
+ Optimal TMDI design yields a classical TMD (i.e., inertance under optimal design is zero) 
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 These results clearly indicate that the TMDI enjoys a very high degree of robustness with 
respect to structural and excitation uncertainties; the performance ( )nJ 

φ  is very similar to ( )J 
φ  in 

all studied topologies. However, this is not the case for the TMD for which the ratio ( ) / ( )nJ J 
φ φ  

is consistently higher than one. This observation can be attributed to detuning effects for the TMD 
which do not seem to affect the TMDI. This assertion is reinforced by the fact that for the largest 
value of the attached mass considered (μ=10%) and for the commonly used TMD topology (mass 
attached to the top floor), an increased robustness is attained compared to the μ=7% and μ=5% 
cases, while it is well-known that large-mass TMDs are more robust to detuning effects (e.g. Hoang 
et al.).  
 

5 CONCLUDING REMARKS 

A first-passage reliability based approach was considered for the optimum design of the recently 

proposed TMDI to control the dynamic response of linear building frames subject to stationary 

seismic excitations and accounting for parametric structural and excitation uncertainty. Different 

failure modes were examined for defining acceptable performance, extending to inter-storey drifts 

and floor acceleration responses for the primary structure as well as displacement responses of the 

attached mass. The design variables included the inertance (mass amplification property) of the 

inerter as well as the TMDI linear spring and damping constants. The illustrative example 

demonstrated the enhanced performance of the TMDI over the classical TMD especially for 

relatively small additional attached mass. More importantly, it was shown that the TMDI is 

significantly more robust to the considered uncertainties than the classical TMD, even compared to 

TMDs with an order of magnitude larger attached mass. Future work will include treating the mass 

ratio as a design parameter as well as the consideration of TMDI topology optimization. Further, 

robust to uncertainty optimization techniques accounting for the non-stationary nature of the 

seismic excitation as well as the potential non-linear behaviour of the primary structure due to 

yielding will also be considered. 
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