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ABSTRACT: This paper assesses two different approaches for efficient output-only Vibration-

based Structural Health Monitoring (V-SHM) in large-scale civil engineering structures, 

promoting the use of dense arrays of low-power wireless sensors. Firstly, a non-uniform 

deterministic sub-Nyquist multi-coset sampling scheme is considered to acquire ambient 

stationary structural response signals. This sampling scheme is coupled with a power spectrum 

blind sampling technique along with the frequency domain decomposition algorithm of 

operational modal analysis to obtain structural modal properties. This is accomplished without 

necessitating either signal reconstruction in the time-domain or signal sparsity assumption. 

Secondly, a spectro-temporal compressive sensing approach is considered applicable to cases 

where signal reconstruction in time-domain is  desired , . The latter approach considers non-

uniform in time random sampling at sub-Nyquist average rates informed by prior knowledge of 

signal sparsity gained through smart on-sensor operations and sensor/server communication. The 

usefulness and applicability of two approaches is  numerically demonstrated by considering field 

recorded data  pertaining to the monitoring of an overpass open to the traffic and of an operating 

on-shore wind turbine. 

 

 

1 INTRODUCTION 

Vibration-based structural health monitoring (V-SHM) is widely used for structural assessment, 

design verification, and damage detection in civil engineering structures. In most field 

applications, V-SHM relies on output-only linear system identification techniques to extract the  

dynamic properties (e.g., natural frequencies and mode shapes) of vibrating structures subject to 

low-amplitude operational loads (e.g., due to wind traffic, etc.) (Brincker and Ventura (2015)). 

Such techniques consider acquiring and processing of only structural response signals recorded 

by relatively dense arrays of sensors. The excitation loads are not measured and are assumed to 

have a flat spectrum over a wide range of frequencies (i.e., white noise excitation assumption).  

From a practical viewpoint, the use of wireless sensor networks (WSNs) offers low-cost and rapid 

V-SHM implementations compared to tethered sensors, especially in densely instrumented and 

geometrically complex structures (Lynch (2007)). However, the widespread adoption of WSNs 

in practical applications is hindered by limitations to the available wireless transmission 

bandwidth and by   maintenance costs related to frequent sensor battery replacement   requiring 



  

 

  

(Lynch (2007)). To this end,, it has been recently recognized that WSNs operating on sub-Nyquist 

data acquisition schemes can provide low-power wireless sensors, while minimizing the on-

sensor data storage and local processing requirements prior to wireless transmission. Such 

considerations reduce WSNs’ upfront and maintenance costs as well as increase WSNs’ reliability 

for quality and robust V-SHM.  

In this context,, advances in the field of compressive sensing (CS) have been recently considered 

by various researchers to facilitate cost-effective V-SHM using WSNs (O’Connor et al. (2014), 

Klis and Chatzi (2015; 2017), Yang and Nagarajaiah (2015), Park et al. (2014)). Specifically, CS 

considers random non-uniform in time response acceleration signal sampling  to acquire a 

relatively small number of measurements, below the Nyquist rate. Then, the unknown full-length 

(Nyquist-sampled) signals are recovered, with high probability, from the acquired sub-

Nyquist/compressed measurements by solving an underdetermined system of linear equations 

assuming a certain level of signal sparsity. Sparsity is a signal attribute related to the number of 

non-zero coefficients required to capture the signal energy on a given basis (see e.g. Donoho 

2006). In this regard, all algorithms for sparse signal recovery necessitate an assumption of signal 

sparsity (Vaswani and Zhan 2016) which is unknown and is adversely affected by signal noise . 

To  circumvent heuristically assumed sparsity signal levels in practical V-SHM settings, a 

spectro-temporal CS-based approach was developed by Klis and Chatzi (2015; 2017), which 

employs a re-weighted Basis Pursuit De-Noising algorithm (rwBPDN) (Becker et al. 2011) 

together with local on-sensor data processing and two-way wireless communication between 

sensor and server. The latter consideration allows for determining the underlying signal sparsity 

level prior to CS-based data acquisition, leading to improved time-domain signal recovery from 

the compressed measurements, at the cost of an increase wireless data transmission payload 

demands and communication protocols compared to the standard CS-based V-SHM (O’Connor 

et al. 2014). The recovered  structural response acceleration signals  can next be  treated by any 

standard output-only V-SHM algorithm. Alternatively to the above CS-based approaches, 

Gkoktsi et al. (2016) adopted a  deterministic multi-coset sub-Nyquist data acquisition 

(Venkataramani and Bresler 2001, Tausiesakul and Gonzalez-Prelcic 2013) in conjunction  with 

a Power Spectrum Blind Sampling (PSBS) technique (Ariananda and Leus 2012, Tausiesakul and 

Gonzalez-Prelcic 2013) to support V-SHM without requiring signal sparsity knowledge. The 

considered PSBS-based method treats response acceleration signals as stochastic processes (in 

alignment with the theory of output-only V-SHM (Brincker and Ventura 2015), aiming to retrieve 

the second order statistics of structural responses (i.e., covariance/power spectrum density 

estimates) by solving an overdetermined system of linear equations free from the sparse signal 

assumption.. This signal-agnostic approach is coupled with the standard frequency domain 

decomposition algorithm (Brincker and Ventura 2015) to estimate structural modal properties 

from the compressed/sub-Nyquist measurements without signal reconstruction in time. In this 

manner, data processing and memory requirements at both sensor and server level are minimized.   

In this paper, the efficiency of the PSBS-based method (Gkoktsi et al. 2016) and of the spectro-

temporal rwBPDN approach (Klis and Chatzi 2015 and 2017), is numerically assessed in support 

of low-power WSNs that operate on sub-Nyquist data acquisition rates for output-only V-SHM . 

In this respect, the efficacy of the two adopted methods in extracting quality modal estimates is 

assessed vis-à-vis, using field recorded acceleration response data from a highway overpass under 

operational conditions. The performance of the two approaches is further evaluated for different  

data compression ratios, based on sub-Nyquist sampled data  from an operating on-shore wind 

turbine . The remainder of the paper is organized as follows. Section 2 outlines the theoretical 

background of the two considered approaches. Sections 3 and 4 furnish numerical results 



  

 

  

associated with the overpass and the with the wind turbine, respectively. Finally, Section 5 

summarizes concluding remarks. 

2 THEORETICAL BACKGROUND 

2.1 Power Spectrum Blind Sampling (PSBS) approach 

Let x(t) be a continuous in time t real-valued wide-sense-stationary stochastic process 

characterized in the frequency domain by the power spectrum Px(ω) band-limited by 2π/T. It is 

desired to sample x(t) at a rate lower than the Nyquist sampling rate 1/Τ (in Hz), while maintaining 

a sufficiently accurate estimate of the power spectrum Px(ω). To this end, the multi-coset sampling 

strategy is herein adopted (Ariananda and Leus 2012) according to which the grid of Nyquist 

samples x(nT) is divided into blocks of N̅ consecutive samples and from each block only M̅ (<N̅) 

samples are selected. The resulting sampling is periodic with period N̅; non-uniform since any 

subset of M̅ samples may be selected from a total of N̅ Nyquist-rate samples within each block; 

and deterministic since the position of the M̅ samples on the Nyquist grid of samples x(nT) is 

defined a priori and applies to all considered blocks. The above sampling strategy can be 

implemented by utilizing M̅ interleaved ADC units operating at a sampling rate of 1/(N̅T) . At the 

m-th (m= 0, 1, …, M̅-1) unit, the discrete-time signal x[n]= x(n/T) is first shifted by nm samples 

and then uniformly sampled at 1/N̅T (in Hz). In this respect, an average sampling rate of M̅/(N̅T) 

(in Hz) is defined, which is associated with the compression ratio M̅/N̅, with 0 ≤ M̅/N̅ ≤ 1, 

corresponding to lower values at stronger signal compression. Notably, the limiting case of M̅=N̅ 

(i.e., M̅/N̅=1) pertains to the Nyquist rate. Finally, the shifting values nm are collected in the 

sequence n=[n0, n1,…, nM̅-1] which defines the multi-coset sampling pattern. 

Consider, next, an array of D sensors and M̅ cosets. The cross-correlation function of the acquired 

measurements [ ]a

i

d

my l , [ ]b

j

d

my l  can be computed for all mi, mj = 0,1,…, M̅-1 cosets and da, db=1, 

2,…, D sensors as in  ,
[ ] E [ ] [ ]a b

a b
i ji j

d d

y m my y
r k y l y l k  , where Ea{·} is the mathematical expectation 

operator with respect to a. Further, the following relation holds (Gkoktsi et al. 2016) 

c=a b a by y x x
r R r , (1) 

where 
2 (2 1)   a b

M L D

y y
r  is a matrix collecting the output cross-correlation sequences 

,
[ ]a b

i jy y
r k  

computed within the range (support) −L ≤ k ≤ L. Similarly, 
(2 1) a b

N L D

x x
r  is a matrix collecting 

the input cross-correlation sequences of the traditionally sampled signals (at Nyquist rate or 

above), given in  [ ] E [ ] [ ]a b
a b

d d

xx x
r k x n  x n k  , and computed for all da and db sensors in the 

above range. Further, 
2 (2 1) (2 1)   M L N L

cR  is a sparse pattern correlation matrix populated with 

the pattern cross-correlations (Ariananda and Leus 2012) 
, [ ] [ ( )]

i j i jc c m mr n n n n   , where δ[n] 

= 1 for n = 0 and δ[n] = 0 for n ≠ 0. Note that Eq. (1) defines an overdetermined system of linear 

equations which can be solved for a by y
r  without any sparsity assumptions, provided that Rc is full 

column rank. The latter is satisfied for M̅ 2 ≥ N̅ (Tausiesakul and Gonzalez-Prelcic 2013, 

Ariananda and Leus 2012). An unbiased estimator of the output cross-correlation sequence 

,
[ ]a b

i jy y
r k  is then adopted (Gkoktsi et al. 2016) and used together with the DFT matrix, 

(2 1) (2 1)

(2 1)

  


 N L N L

L N
F  to obtain an estimate of the input cross-spectra a bx x

s  at the discrete 

frequencies ω=[0, 2π/(2L+1) N , … , 2π((2L+1) N  -1)/(2L+1) N ] (Tausiesakul and Gonzalez-

Prelcic 2013)  

 
1

T 1 T 1

(2 1)
ˆ ˆ


 


a b a bc c cL Nx x y y

s F R W R R W r . (2) 



  

 

  

In the above equation, W  is a weighting matrix, the symbol “^” denotes matrix estimation, and 

the superscript “−1” denotes matrix inversion. The solution of Eq. (2) relies on the weighted least 

square criterion 
2

c
ˆ ˆargmin || || a b a b a b

a bx x
x x y y x xr W

r r R r , where 
2 T|| a || a a
W

W  is the weighted 

version of the Euclidean norm.  

2.2 Spectro-Temporal Compressive Sensing via rwBPDN 

Spectro-Temporal Compressive Sensing (STCS) is based on the formulation of the missing data 

problem investigated by a number of authors (Candes 2007 and 2011, Becker 2011). Let 
T

1 2[ , ,..., ]  N

i i i Nix x xx  designate the complete ith signal recorded by the ith sensor of N data 

samples. The missing data estimation problem can be expressed as:  

i iy Sx . (3) 

The problem may be formulated as the task of inferring the full response time-series  N

ix  

given the incomplete observation vector  M

iy  ( M N ), and the selection matrix 
 M N

S , 

so that (3) holds. A spectral representation of the complete response signal ix  is accomplished 

using the orthonormal basis  N N
A  of the Discrete Fourier Transform (DFT) as: 

2

,,  where    
1

l
j i

N
i i i l e

N



 x Ac A , (4) 

where 
T

1 2[ , ,..., ]  N

i i i Nic c cc is a sparse vector of coefficients. From the above equations, the 

observed vector 
iy  can be cast in the form  

i iy SAc . (5) 

As demonstrated in previous work of the authors (Klis and Chatzi 2015 and 2017) the former 

representations allow to reconstruct the original (i.e, complete) response signal 
ix , by solving (5) 

for 
ic  and inverting the transformation in (4). The sought solution for 

ic  may be obtained via the 

following optimization problem, known as the reweighed Basis Pursuit De-Noising problem 

(rwBPDN) (Becker 2011) 

1 2
ˆ subjectargmi  to  n    

i

i i i i
c

c Wc y SAc‖ ‖ ‖ ‖ , (6) 

where 1 2([ , ,..., ])Ndiag w w wW , indicating the salient spectral elements. These weighting 

coefficients are the key feature of the Spectro-Temporal Compressive Sensing formulation. The 

weighting matrix W is defined upon selection of a suitable threshold l , which defines the 

elements to be included in the so-called support vector U. The support components are defined 

locally at the node level, and eventually transmitted to the server, where the weighting matrix is 

formed and the level of sparsity is decided upon. Sparsity k is defined as the ratio of the number 

of harmonic components, K, in the signal over its full dimension, N. The original signal is then 

reconstructed using the coefficient vector ˆ
ic  defined in equation (6), via projection back to the 

time domain as in 

ˆˆ
i ix Ac . (7) 

For further details on the steps involved, as well as the exchange of operations between the server 

and the nodes, the interested reader is referred to the work of Klis and Chatzi (2015, 2017).  



  

 

  

3 ASSESSMENT FOR OPERATIONAL MODAL ANALYSIS  

The effectiveness of the PSBS-based approach for structural modal properties extraction is herein 

numerically assessed vis-à-vis the spectro-temporal rwPBDR method by considering response 

acceleration signals  recorded in the Bärenbohlstrasse overpass in Zürich, Switzerland (Klis et al 

2016). Specifically, a dataset of D=18 vertical bridge acceleration responses of 107460 samples 

each is considered, acquired under operational conditions at a uniform sampling rate of 200Hz. 

The raw data are first pre-processed (baseline adjustment and 4th-order Butterworth band-pass 

filtering within the frequency range of [0.15, 50] in Hz) to remove the mean value and any 

potential low-frequency trend within each acceleration response.The PSBS-based approach is 

applied assuming compression ratios (CRs) at 31% (M̅=5, N̅=16, n = [0, 1, 2, 5, 8]T), and at 11% 

(M̅=14, N̅=128, n= [0, 1, 2, 6, 8, 20, 29, 38, 47, 50, 53, 60, 63, 64]T) below the Nyquist freqeuncy  

to retrieve the sub-Nyquist sampled measurements [ ]d
my l  (d=1,2,…,18, m=1,2,…,M). The latter 

are next collectively considered to obtain the output cross-correlation sequences, 
,

ˆ [ ]a b
i jy y

r k , which 

are further used in Eq. (2) to estimate the power spectral density (PSD) response matrix, ˆ
a bx x

s

,from the 18  devices. The PSD matrix is subsequently fused within the standard FDD algorithm 

(Brincker and Ventura 2015) to extract the modal properties of the monitored bridge, which are 

reported in Table 1 for the first four modes of vibration.  

Table 1. Bridge modal estimates obtained from a conventional approach applied to the full-length dataset 
(CR=100%), the PSBS-based FDD CR={31%,11%}, and the rwPBDR NeXT-ERA at CR={36%,11%}   

 Conventional  PSBS rwPBDR 

 CR=100% CR=31% CR=11% CR=36% CR=11% 

Mode F [Hz] dF/F [%] MAC dF/F [%] MAC dF/F [%] MAC dF/F [%] MAC 

1 7.617 0.37 1.000 1.02 0.997 0.63 0.997 0.52 0.983 

2 10.352 0.44 0.998 0.31 0.987 0.18 0.981 0.32 0.976 

3 11.719 0.84 1.000 0.46 0.998 0.19 0.992 0.14 0.990 

4 12.598 0.47 0.972 0.50 0.960 1.22 0.960 0.78 0.943 

 

The STCS-rwPBDN approach is further applied to a dataset of 18 two-minute long measurements 
1, ( 1 18, 11776)N

i i N  x , down-sampled at 100 Hz. The considered dataset is first 

partitioned into R= 29 windows (frames) of NR= 400 samples, and each window is projected into 

the spectral domain (see also left panel in Figure 1). Following the methodology in Section 2.2, 

the spectral coefficients per data frame are then thresholded with a value 

1 , 1ij l ij RN j R c‖ ‖ , which pertains to 1.5,l   yielding the spectral domain elements 

illustrated in the left panel of Figure 1. The selected support elements are further used to form a 

weighting matrix 
ijW  per data frame. Considering next two different CRs at {36%,11%}, the 

compressed samples iy  (denoted with a cross in Figure 1) are selected and used to retrieve the 

reconstructed time-domain sequence plotted in Figure 1 by a broken line. The Natural eXcitation 

Technique (NeXT) combined with the Eigensystem Realization Algorithm (ERA) are then used 

to extract the bridge modal propertied presented in Table 1. This table also reports the modal 

estimates obtained from a conventional approach applied to the full-length dataset (i.e. 

CR=100%), hereafter referred to as the “exact solution”. In this respect, the percentage difference 

error, dF/F, and the Modal Assurance Criterion (MAC) (Brincker and Ventura (2015)) are used 

to quantify the accuracy of the modal estimates extracted from the two alternative sub-Nyquist 

approaches with respect to the exact solution. From Table 1, it is readily observed that the two 

alternative approaches perform equally well in extracting quality modal estimates even from the 



  

 

  

processing of 89% fewer measurements compared to conventional approaches (i.e., at CR=11%), 

yielding natural frequencies with small errors (below 1.3%), and mode shapes of high MAC 

values (close to unity) in all cases considered.    

 

Figure 1. Spectral domain projection (left) and time-domain recovery (right) of data-frame #4, channel #1 

at CR=36%. Crosses indicate transmitted samples used in the recovery process. 

4 ASSESSMENT FOR SIGNAL RECOVERY IN TIME AND IN FREQUENCY 
DOMAIN 

Arguably, the accuracy of the two considered approaches strongly depends on the efficiency of 

the associated recovery operation (i.e., power spectral recovery in the PSBS-based approach, and 

time-domain signal reconstruction in the STCS-rwPBDN method) applied on the acquired 

compressed measurements. For both approaches, the pertinent recovery performance is 

numerically assessed herein as a function of the signal compression level achieved by the adopted 

sub-Nyquist sampling schemes, using field-recorded acceleration responses from an operational 

Wind Turbine (WT) in Lübbenau, Germany (Klis and Chatzi 2015). The recorded WT data were 

conventionally acquired at a uniform sampling rate of 200 Hz.  

4.1 PSBS approach for frequency domain signal recovery 

For the numerical evaluation of the power spectral recovery in the PSBS-based approach (sub-

section 2.1), a WT pre-processed (i.e., baseline adjusted and filtered) acceleration time-series is 

employed herein, in which the stationarity hypothesis is confirmed at the 95% confidence level. 

Thus, the accuracy of the recovered PSD estimate in Eq. (2) is assessed at two different CRs of 

approximately 11% (for M̅=14, N̅=128, and n= [0,1,2,6,8,20,29,38,47,50,53,60,63,64]T), and 

31% (for M̅=5, N̅=16, and n= [0,1,2,5,8]T), which pertain to 89% and 69% fewer data compared 

to the uniformly-sampled full-length signal. For the two adopted CRs, the obtained PSD estimates 

are presented in Figure 2 (solid gray curve), and plotted against the standard Welch periodogram 

(broken black curve), which is computed for the full-length signal of 172420 samples, assuming 

4096 (=212) FFT points, eight overlapping segments with 50% overlap, windowed with a Hanning 

function (Marple 1987). Notably, the PSD curves in Figure 2 are normalized to their maximum 

amplitude to facilitate comparison. For CR=11%, the left panel of Figure 2 shows that the 

recovered PSD curve can closely approximate the Welch periodogram in the frequency range 

below 5 Hz, where the important WT modal information lies. However, the retrieved PSD 

estimate deviates significantly from the Welch periodogram at higher frequencies (i.e., above 5 

Hz), and especially in the anti-resonance ranges. These discrepancies are considerably reduced at 

the higher CRs and the PSD recovery from an increased number of measurements, as clearly 

indicated in right panel of Figure 2 for the PSBS-based approach operating at CR=31%. 



  

 

  

 

Figure 2. PSD estimates: Wlech periodogram at Nyquist rate compared with PSBS approach for CR=11% 
(left), and CR=31% (right) 

4.2 STCS-rwBPDN approach for time domain signal recovery 

The reconstruction performance of the STCS-rwBPDN framework is next assessed for two 

compression ratios at CR = {30%, 45%}. For a given WT acceleration response, the underlying 

signal support U is first computed to define the signal’s sparsity level, k (i.e., number of 

components in the spectral domain), as well as the variance of the noisy component, i.e., the 

complementary set of the support (remaining part of the spectral representation). As elaborated 

upon in the work of Klis and Chatzi (2015; 2017), this is used to prescribe error bounds on the 

reconstructed signal. For the two considered CRs, the obtained signal reconstruction estimates are 

illustrated in Figure 3 for an acceleration time-window of 400 samples. Comparing the two panels 

in Figure 3, it becomes evident that the increase in the number of transmitted samples results in 

narrowing the estimated maximal error bounds. Figure 3 also demonstrates the potential of the 

proposed framework, when applied in windows of non-stationary response signals, albeit 

necessitating higher compression rates than the conventional stationary case. The delivered error 

bounds allow for attributing some level of confidence on the undertaken signal reconstruction 

operation, which offers a benefit over the alternative (plain) BPDN approach adopted by 

O’Connor et al. (2014).  

 

Figure 3. Effect of the increase of transmission level CR on the estimated error bounds: CR=30% (left), 

CR=45% (right). Figure reused from (Klis and Chatzi (2015)). 

5 CONCLUDING REMARKS  

The performance of a PSBS-based method and a spectro-temporal rwBPDN-based approach has 

been numerically assessed in undertaking output-only V-SHM using  WSNs. Both the approaches 

aim to reduce wireless data transmission payloads by considering compressed structural 

acceleration responses acquired at sub-Nyquist rates.  The PSBS method recovers power spectral 

estimates directly in the compressed domain while the STCS-rwBPDN approach provides 



  

 

  

reconstructed signals in time-domain. The validation of the two approaches is carried out on field-

recorded data obtained from an overpass, and from an operating wind turbine. It is shown that 

both considered approaches can accurately identify the underlying structural modal properties for  

compression ratios (CRs)as low as 11% yielding modal estimates of similar accuracy. It is further 

shown that the efficacy of the two approaches relies on the pertinent recovery operations applied 

on compressed data, which are significantly affected by the adopted CR. 
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