

City, University of London Institutional Repository

Citation: Hunt, S. & Mastroeni, I. (2005). The PER model of abstract non-interference. In:

Hankin, C. & Siveroni, I. (Eds.), Static Analysis. SAS 2005. Lecture Notes in Computer
Science. (pp. 171-185). Berlin: Springer. ISBN 978-3-540-28584-7 doi:
10.1007/11547662_13

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/193/

Link to published version: https://doi.org/10.1007/11547662_13

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

The PER Model of Abstract Non-Interference

Sebastian Hunt1 and Isabella Mastroeni2

1 Department of Computing, School of Informatics, City University, London, UK

seb@soi.city.ac.uk
2 Department of Computing and Information Sciences, Kansas State University

Manhattan, Kansas, USA

isabellm@cis.ksu.edu

Abstract. In this paper, we study the relationship between two models

of secure information flow: the PER model (which uses equivalence rela-

tions) and the abstract non-interference model (which uses upper closure

operators). We embed the lattice of equivalence relations into the lat-

tice of closures, re-interpreting abstract non-interference over the lattice

of equivalence relations. For narrow abstract non-interference, we show

that the new definition is equivalent to the original, whereas for abstract

non-interference it is strictly less general. The relational presentation of

abstract non-interference leads to a simplified construction of the most

concrete harmless attacker. Moreover, the PER model of abstract non-

interference allows us to derive unconstrained attacker models, which do

not necessarily either observe all public information or ignore all private

information. Finally, we show how abstract domain completeness can be

used for enforcing the PER model of abstract non-interference.
Keywords: information flow, non-interference, abstract interpretation,

language-based security.

1 Introduction

An important task of language based security is to protect confidentiality of

data manipulated by computational systems. Namely, it is important to guar-

antee that no information, about confidential/private data, can be caught by

an external viewer. In the standard approach to the confidentiality problem,

called non-interference, the characterization of attackers does not impose any

observational or complexity restriction on the attackers’ power. This means that

the attackers are all powerful : they are modeled without any limitation in their

quest to obtain confidential information. For this reason non-interference is an

extremely restrictive policy. The problem of refining these security policies is

considered as a major challenge in language-based information flow security [17].

Refining security policies means weakening standard non-interference, in such a

way that it can be used in practice. Specifically, we need a weaker notion of non-

interference where the power of the attacker (or external viewer) is bounded,

and where intentional leakage of information is allowed.

Abstract non-interference is introduced [9] for modeling the secrecy degree

of programs by means of abstract interpretation. In particular, it is possible

to characterize the observational capability of the most powerful harmless at-

tacker, that is, the most powerful attacker that cannot disclose any confiden-

tial information. Moreover, this model also allows one to characterize which

aspects of private information can flow during the execution of a given pro-

gram, when non-interference fails. These two complementary aspects of non-

interference have been proved to be adjoint transformers of semantics in [10],

where non-interference has been modeled as an abstract domain completeness

problem.

In the PER model of secure information flow [18], a generalised notion of non-

interference is obtained by using equivalence relations to model attackers. In this

paper we show that, since equivalence relations can be viewed as particular types

of closures called partitioning closures [16], the definitions of narrow and abstract

non-interference from [9] can be re-interpreted by using equivalence relations only

in place of arbitrary closures. For narrow abstract non-interference, we show

that the new definition is equivalent to the original, whereas for abstract non-

interference it is strictly less general. The difference lies in the fact that abstract

non-interference depends on being able to distinguish properties of sets of values,

such as intervals, congruences, etc, and this cannot be done with equivalence

relations on the underlying set. We then show how the relational presentation of

narrow abstract non-interference leads to a simplified construction of the most

powerful harmless attacker. Moreover, the generalization of the PER model of

secure information flow allows us to derive unconstrained attacker models, which

do not necessarily either observe all public information or ignore all private

information. Finally, we show how abstract domain completeness can be used for

enforcing the PER model of abstract non-interference, proving that abstract non-

interference corresponds to abstract domain completeness of the corresponding

partitioning closures.

2 Mathematical Background

In this paper we use the standard framework of abstract interpretation [5, 7] for

modeling the observational capability of attackers. The idea is that, instead of

observing the concrete semantics of programs, namely the values of public data,

attackers can only observe properties of public data, namely an abstract seman-

tics of the program. For this reason we model attackers by means of abstract do-

mains. Abstract domains are used for denoting properties of concrete domains,

since their mathematical structure guarantees, for each concrete element, the

existence of the best correct approximation in the abstract domain. This is due

to the fact that abstract domains are closed under the concrete greatest lower

bound. The relation between abstract and concrete domains is formalized by Ga-

lois connections (GC). In GC-based abstract interpretation the concrete domain

C and abstract domain A are often assumed to be complete lattices and are re-

lated by an abstraction map α : C → A and concretization map γ : A → C form-

ing a GC 〈C, α, γ, A〉 [5], i.e., for any x ∈ C and y ∈ A: α(x) ≤A y ⇔ x ≤C γ(y).

When α is surjective then the GC is said to be a Galois insertion (GI) and

uniquely determines an abstract domain. Formally, the lattice of abstract in-

terpretations of C is isomorphic to the lattice uco(C) of all the upper closure

operators on C [7]. An upper closure operator ρ : C → C on a poset C is mono-

tone, idempotent, and extensive3. The dual notion of lower closure operator (lco)

is a monotone, idempotent and reductive4 map. Any closure operator is uniquely

determined by the set of its fix points ρ(C), which forms an abstract domain. If C

is a complete lattice then 〈uco(C),v,t,u,>, id〉 is the lattice of upper closures,

where >
def

= λx. >, id
def

= λx. x, and for every ρ, η ∈ uco(C), {ρi}i∈I ⊆ uco(C)

and x ∈ C: ρ v η iff η(C) ⊆ ρ(C); ti∈Iρi =
⋂

i∈I ρi; and ui∈Iρi = M(
⋃

i∈I ρi),

where M is the operation of closing a domain by concrete greatest lower bound,

e.g., intersection on power domains. The disjunctive completion of an abstract

domain ρ ∈ uco(C) is the most abstract domain able to represent the concrete

disjunction of its objects:
b

(ρ) = t{η ∈ uco(C)|η v ρ and η is additive}. ρ is

disjunctive (or additive) iff
b

(ρ) = ρ (cf. [7]).

2.1 Equivalence Relations vs Closure Operators

In this section we review the relationships between equivalence relations and

upper closures which are key to the development in the rest of the paper.

The lattice of equivalence relations. The equivalence relations on a set C form a

lattice 〈Eq(C),v,u,t, IdC ,AllC〉, where IdC is the relation that distinguishes

all the elements in C, AllC is the relation that cannot distinguish any element

in C, and:

– Q v R iff Q ⊆ R iff x Q y ⇒ x R y;

– Q u R = Q ∩ R, i.e., x Q u R y iff x Q y ∧ x R y;

– Q t R = T(Q ∪ R), where x Q ∪ R y iff x Q y ∨ x R y.

Here T(S) is the transitive closure of the relation S (it is easily seen that both ∪

and T preserve symmetry and reflexivity).

Relating equivalence relations and upper closures. In this paper we will generally

be concerned with relationships between equivalence relations on a set C and

3 ∀x ∈ C. x ≤C ρ(x).
4 ∀x ∈ C. x ≥C ρ(x).

upper closure operators on the powerset ℘(C). However, we start by observing

the following strong correspondence between ucos (on any lattice) and their own

kernels. (Recall that the kernel, Kf , of a function f : C → D, is the equivalence

relation on C defined by x Kf y iff f(x) = f(y).)

Lemma 1. Let η, ρ ∈ uco(C). Then η v ρ iff Kη v Kρ.

Next, we recall that there exists an isomorphism between equivalence rela-

tions and a subclass of the upper closure operators [16]. In fact, this isomorphism

arises from a Galois connection between Eq(C) and uco(℘(C)). For each equiv-

alence relation on a set C, R ⊆ C × C, we can define an upper closure operator

on ℘(C), CloR ∈ uco(℘(C)), and vice versa, from each upper closure operator

η ∈ uco(℘(C)) we can define an equivalence relation Relη ⊆ C × C.

Consider an upper closure operator η ∈ uco(℘(C)). We define Relη ⊆ C ×C,

as ∀x, y ∈ C . x Relη y ⇔ η({x}) = η({y}). Proving that Relη is an equivalence

relation is immediate and doesn’t depend on the fact that η is a uco, but only

on the fact that it is a function.

Consider now an equivalence relation R ⊆ C×C. We define CloR ∈ uco(℘(C))

as follows: ∀x ∈ C . CloR({x}) = [x]R and ∀X ⊆ C . CloR(X) =
⋃

x∈X [x]R. Thus

CloR is obtained by disjunctive completion of the partition induced by R. Proving

that CloR is an upper closure operator is immediate. In particular idempotence

derives directly from the fact that R is an equivalence relation.

In [16], CloR is identified as the most concrete uco η such that R = Relη. More

precisely:

Proposition 2. Let C be any set.

1. The mappings defined above form a Galois connection between the lattice of

equivalence relations on C and the lattice of upper closure operators on its

powerset. That is, for all R ∈ Eq(C), η ∈ uco(℘(C)): CloR v η ⇔ R v Relη.

2. For all R ∈ Eq(C), RelCloR

= R.

Corollary 3. Let Π(η) be defined by Π(η) = CloRelη .

1. Π : uco(℘(C)) → uco(℘(C)) is a lower closure operator.

2. For all η ∈ uco(℘(C)), Π(η) is the (unique) most concrete closure that

induces the same equivalence relation as η (Relη = RelΠ(η)).

The fix points of Π are termed the partitioning closures [16].

Proposition 4. An upper closure operator η ∈ uco(℘(C)) is partitioning, i.e.,

η = Π(η), iff it is complemented, namely if ∀X ∈ η. X
def

= C r X ∈ η.

Indeed, an upper closure operator η is always closed under glb (intersection

in this context), therefore whenever it is closed also under complementation, we

have that it is surely disjunctive, by De Morgan’s laws. In the following we have

an example of the partitioning closure associated with a partition.

O

1 2 3 4

1234

123

O

1 2 3 4

23

14

1234

123 234

partition induced
by a closure

corresponding
partitioning closure

Fig. 1. A partitioning closure.

Example 5. Consider the set Σ = {1, 2, 3, 4} and one of its possible partitions

π = {{1}, {2, 3}, {4}}, then the closure η with fix points {∅, {1}, {4}, {123}, Σ}

induces exactly π as partition of states, but the most concrete closure that

induces π is Cloπ = Π(η) =
b

({∅, {1}, {2, 3}, {4}}, Σ), which is the closure on

the right in Fig. 1.

On the closures we have the following characterizations. Note that, since Π

is a lower closure operator on uco(℘(C)), then t in Eq coincides with t in uco,

whereas CloQuR can be strictly less than CloQ u CloR.

Proposition 6. Q v R iff CloQ v CloR, Q u R = RelCloQ
uCloR

and Q t R =

RelCloQ
tCloR

.

3 Information Flows in Language-based Security

In the rest of this paper, confidential data are considered private, labeled with

H (high level of secrecy), while all other data are public, labeled with L (low

level of secrecy). Non-interference can be naturally expressed by using semantic

models of program execution (this idea goes back to Cohen’s work on strong de-

pendency [3]). Non-interference for programs essentially means that “a variation

of confidential (high or private) input does not cause a variation of public (low)

output” [17]. When this happens, we say that the program has only secure in-

formation flows [1, 3, 8, 13]. This situation has been modeled by considering the

denotational (input/output) semantics JP K of the program P . Program states in

Σ are functions (represented as tuples) mapping variables into the set of values

V. If T ∈ {H, L}, n = |{x ∈ Var(P)|x : T}|, and v ∈ V
n, we abuse notation by

denoting v ∈ V
T the fact that v is a possible value for the variables with security

type T. Moreover, we assume that any input s, can be seen as a pair (h, l), where

sH = h is a value for private data and sL = l is a value for public data. In this

case, (standard) non-interference can be formulated as follows.

A program P is secure if ∀ input s, t. sL = tL ⇒ (JP K(s))L = (JP K(t))L

This definition has been formulated also as a Partial Equivalence Relation (PER)

[18]. The standard methods for checking non-interference are based on security-

type systems and data-flow/control-flow analysis. Type-based approaches are

designed in such a way that well typed programs do not leak secrets. In a security-

typed language, a type is inductively associated at compile time with program

statements in such a way that any statement showing a potential flow disclosing

secrets is rejected [19, 21]. Similarly, data-flow/control-flow analysis techniques

are devoted to statically discover flows of secret data into public variables [2, 13,

15, 18]. All these approaches are characterized by the way they model attackers

(or unauthorized users).

3.1 Abstract Non-Interference: Attack Models

The notion of abstract non-interference [9] is introduced for modeling both

weaker attack models, and declassification. The idea is that an attacker can

observe only some properties, modeled as abstract interpretations of program

semantics, of public concrete values. The model of an attacker , also called at-

tacker , is therefore a pair of abstractions 〈η, ρ〉, with η, ρ ∈ uco(℘(VL)), rep-

resenting what an observer can see about, respectively, the input and output

of a program. The notion of narrow (abstract) non-interference (NNI), denoted

[η]P (ρ), is given in Table 1. It says that if the attacker is able to observe the

property η of public input, and the property ρ of public output, then no informa-

tion flow concerning the private input is observable from the public output. The

problem with this notion is that it introduces deceptive flows [9], generated by

different public output due to different public input with the same η property.

Consider, for instance, the program l := l ∗ h2 and an observer who can observe

only the parity of l on input and its sign on output. Intuitively, we may say

that no information flows from h, since the sign of l after the assignment does

not reveal anything about the value of h. However, [Par]l := l ∗ h2(Sign) does

not hold5, since there is variation of the output’s sign due to the existence of

both negative and positive even numbers. In order to avoid deceptive flows we

introduce a weaker notion of non-interference, which considers as public input

the set of all the elements sharing the same property η. Hence, in the previous

example, the observable output for l is the set of all the elements with the same

parity, e.g., if Par(l) = even then we check the sign of
{

l ∗ h2
∣∣ l is even

}
which

is always unknown, since an even number can be both positive and negative,

while h2 does not interfere with the final sign. Moreover, we consider also a

property φ ∈ uco(℘(VH)), modeling the private property that has not to be ob-

served by the attacker 〈η, ρ〉. This notion, denoted (η)P (φ []ρ), is called abstract

non-interference (ANI) and is defined in Table 1. So for example the property

5 Here Par
def

= {>, ev, od,⊥} and Sign
def

= {>, 0+,−,⊥}.

[η]P (ρ) if ∀h1, h2 ∈ V
H,∀l1, l2 ∈ V

L . η({l1}) = η({l2}) ⇒ ρ({JP K(h1, l1)
L}) = ρ({JP K(h2, l2)

L})

(η)P (φ []ρ) if ∀h1, h2 ∈ V
H,∀l ∈ V

L . ρ(JP K(φ({h1}), η({l}))L) = ρ(JP K(φ({h2}), η({l}))L)

Table 1. Narrow and Abstract Non-Interference.

(id)l := l∗h2(Sign []Sign) is satisfied, since the public result’s sign do not depend

on the private input sign, which is kept secret.

Note that [id]P (id) models exactly (standard) non-interference. Moreover, we

have that abstract non-interference is a weakening of both standard and narrow

non-interference: [id]P (id) ⇒ (η)P (φ []ρ) and [η]P (ρ) ⇒ (η)P (φ []ρ), while

standard non-interference is not stronger than the narrow version, due to de-

ceptive flows. In [9], two methods are provided for deriving the most concrete

output observation for a program, given the input one, for both NNI and ANI.

In particular the idea is to collect in the same abstract object all the elements

that, if distinguished, would generate a visible flow. These most concrete output

observations, unable to get information from the program P observing η in in-

put, are, respectively, denoted [η]JP K(id) and (η)JP K(φ []id), both in uco(℘(VL)).

Hence, if for instance P
def

= l := |l| ∗ Sign(h) (where | · | is the absolute value), we

note that each value n has to be abstracted together with its opposite −n, in

order not to generate visible flows, hence the most concrete harmless attacker

can at most observe the absolute value Abs, i.e., [Abs]JP K(id) = Abs.

3.2 PER Model

The semantic approach described above has also been equivalently formalized

in [18], by using partial equivalence relations (PER) to model dependencies in

programs. As we noted above, the problem of non-interference can be seen as

absence of dependencies among data, where the meaning of dependency is given

in [3]. The idea behind this characterization consists in interpreting security

types as partial equivalence relations. In particular the type H is interpreted by

using the equivalence relation All , and L by using the relation Id . The intuition

is that All and Id model, respectively, that the user has no access to the high

information and has full access to the low information. This perspective can

simply be generalized to multilevel security problems.

In order to use this model in the security framework we need to combine

equivalence relations on simple domains to construct new relations on more

complex domains, in particular product spaces and function spaces. For the

latter, it turns out to be natural to generalise slightly to consider partial equiv-

alence relations, that is, relations which are symmetric and transitive but not

necessarily reflexive. Let Per(D) be the set of partial equivalence relations on

D. Given P ∈ Per(D) and Q ∈ Per(E) we define (P _ Q) ∈ Per(D → E) and

(P× Q) ∈ Per(D × E) as follows:

1. f (P _ Q) g ⇔ ∀x, x′ ∈ D . x P x′ ⇒ f(x) Q g(x′)

2. 〈x, y〉 P× Q 〈x′, y′〉 ⇔ x P x′ ∧ y Q y′.

In general, for P ∈ Per(D) and x ∈ D, we write x : P to mean x P x. In particular,

if f (P _ Q) f , we write f : P _ Q. Note that P _ Q will not, in general, be

reflexive, even when P and Q are (for example, All _ Id relates only functions

which are equal and constant).

At this point, we can formalize security in this model.

Definition 7. [18] A program P is said to be secure iff ∀s, t . 〈sH, sL〉 All × Id

〈tH, tL〉 ⇒ JP K(s) All × Id JP K(t), or, more concisely: JP K : All×Id _ All×Id.

4 PER Model vs Abstract Non-Interference

The correspondence existing between ucos and equivalence relations suggests

that we can define particular notions of abstract non-interference where the clo-

sures modeling properties are all partitioning, i.e., correspond exactly to equiv-

alence relations. As shown below, for NNI this specialisation makes essentially

no difference, while for ANI it does involve a loss of generality.

First of all we introduce the natural generalization of the PER model pro-

vided in [18]. Given a program P and relations Q, W ∈ Eq(V), we say that P is

〈Q, W〉-secure iff JP K : Q _ W. Clearly, P is secure (Definition 7) just when it is

〈All × Id ,All × Id〉-secure.

4.1 PER Model vs NNI

Proposition 8. Let P be a deterministic program. Let η, ρ ∈ uco(℘(VL)). Then:

1. [η]P (ρ) iff JP K : All × Relη _ All × Relρ

2. [η]P (ρ) iff [Π(η)]P (Π(ρ))

Proof. Part 1 is immediate from the definitions. Part 2 follows from part 1 by

part 2 of Corollary 3. ut

Since every equivalence relation R is represented exactly by the uco CloR, this

result shows that precisely the same class of NNI properties can be expressed

using equivalence relations or partitioning closures as using arbitrary ucos. In

particular, we may define NNI directly in terms of equivalence relations:

Definition 9. Let P be a program. Let R, S ∈ Eq(VL). Then P is said to be

〈R, S〉-NSecret, written [R]P (S), iff JP K : All × R _ All × S.

By Proposition 8, all NNI properties may be written in this form.

4.2 PER Model vs ANI

To compare the relative expressive power of the PER model and the general no-

tion of abstract non-interference using arbitrary ucos, it is helpful to consider the

extension of a relation on C to a relation on subsets of C. The basic construction

is that used in defining Plotkin’s powerdomain.

Definition 10. Let R be a binary relation on a set C. Then the extension of R

to ℘(C) is the relation P [R] ⊆ ℘(C) × ℘(C) such that X P [R] Y iff

∀x ∈ X. ∃y ∈ Y . x R y and ∀y ∈ Y. ∃x ∈ X . x R y

For a partitioning closure, the extension of its corresponding equivalence relation

from C to ℘(C) has a particularly simple characterisation:

Proposition 11. Let C be any set and let η ∈ uco(℘(C)) be partitioning. Then

P [Relη] =Kη, that is: X P [Relη] Y ⇔ η(X) = η(Y).

Corollary 12. Let η, φ ∈ uco(℘(VL)) and let ρ ∈ uco(℘(VH)). If ρ is partition-

ing, then (η)P (φ []ρ) iff

∀X1, X2 ∈ V
H/Relφ, ∀Y ∈ V

L/Relη . JP K(X1, Y) P [All × Relρ] JP K(X2, Y)

The following proposition shows that, in contrast to NNI, there are ANI

properties which cannot be expressed using the partitioning closures alone.

Proposition 13. Let P be a program, let η, φ ∈ uco(℘(VL)) and ρ ∈ uco(℘(VH)).

Then (Π(η))P (Π(φ) []Π(ρ)) ⇒ (η)P (φ []ρ) but, in general, the reverse implica-

tion does not hold.

The following example shows where the difference between the two notions lies.

Example 14. Consider the following program fragment:

P
def

= if h = 0 then l := l mod 6 + 2; else if l < 0 then l := 2 else l := 7;

with security typing h : H, l : L. Consider η
def

= {>, 2Z, 2Z + 1,⊥} for parity,

φ = {>, 0+,−,⊥} for sign, and ρ
def

= Int of intervals [5], in uco(℘(Z)). Note that,

since each integer number is in particular an interval, we have that Π(Int) = id,

distinguishing all the integer values, while Π(η) = η and Π(φ) = φ. Let us see

what happens in abstract non-interference. Consider η(l) = 2Z, then if φ(h) =

0+ we have that ρ(JP K(φ(h), η(l))L) = ρ({2, 4, 6, 7}) = [2, 7]. While, if φ(h) = −,

then we have ρ(JP K(φ(h), η(l))L) = ρ({2, 7}) = [2, 7]. On the other hand, if η(l) =

2Z + 1 and φ(h) = 0+, then ρ(JP K(φ(h), η(l))L) = ρ({2, 3, 5, 7}) = [2, 7], and

when φ(h) = − we have ρ(JP K(φ(h), η(l))L) = ρ({2, 7}) = [2, 7]. So (η)P (φ []ρ)

holds. Consider now Π(ρ) = id. It is clear that if we substitute above ρ with id,

then we have that (Π(η))P (Π(φ) []Π(ρ)) does not hold. ut

Hence, ANI with ucos is a more precise notion whenever we have to deal with sets

of values, instead of with singletons. This may be particularly useful, for example,

for non-deterministic systems, where the denotational semantics returns a set of

states as output.

5 Deriving Attacker Models by Abstract Interpretation

In this section we consider the PER model of NNI and use it to derive simple,

constructive characterisations of various classes of attacker considered in [9]. For

example, suppose given a class of attackers whose power to observe low security

inputs is given by R: for a given program P , what is the most powerful attacker

in the class (with respect to observation of low security outputs), for which P is

secure? There are two cases of principal interest:

1. Most powerful attacker: given R ∈ Eq(VL), is there a smallest S ∈ Eq(VL)

such that [R]P (S)? Or, given S ∈ Eq(VL), is there a greatest R ∈ Eq(VL) such

that [R]P (S)?
2. Fix point (canonical) attacker: is there a smallest R such that [R]P (R)?

The particular interest of fix point attackers is that, in many situations, the

power of the attacker to observe low security data may be independent of the

data’s rôle as input or output.

5.1 Deriving unconstrained attackers

In this section, given a semantics f and an input [output] equivalence relation R

[S], we show how we can derive the most concrete [abstract] output [input] rela-

tion S [R] that makes the program satisfy f : R _ S. Consider an arbitrary func-

tion f : A → B between sets. As is well known, any such f lifts to an adjunction

between ℘(A) and ℘(B), in the form of f ’s direct and inverse image mappings. It

turns out that f can be lifted to an adjunction 〈Eq(A), f̂ , f̂−1,Eq(B)〉 between

lattices of equivalence relations in a similar way. In this section we detail the

construction of f̂ and f̂−1, and we go onto show how they are used to derive

attackers.

Given an output relation S it is always possible to find a good candidate for

input relation R, essentially by simply imposing the condition f : R _ S. In other

words we can always define the equivalence relation f̂−1(S) in the following way:

x f̂−1(S) y iff f(x) S f(y) (1)

This is the key definition in [14] and is also exactly the idea used in [22] on the

trace semantics, namely we collect together all the elements whose semantics are

equivalent in the output observation6.

6 This transformation corresponds to the quotient of the concrete semantic domain

with respect to the property CloS [4]

Lemma 15. f̂−1(S) is an equivalence relation and f : R _ S ⇔ R v f̂−1(S).

Note that for each S we have f̂−1(S) w Kf . This means that the input relation

has, at least, to identify all the elements with the same image under f . This

observation makes the definition of f̂ a bit more complicated. Indeed, given R,

we would like to find the best relation S which satisfies f : R _ S. A naive

construction leads to the function f̃ : Rel(C) → Rel(C), as follows:

y f̃(R) y′ iff (∃x, x′ . x R x′ and f(x) = y, f(x′) = y′ ∨ y = y′)

Note that the disjunct y = y′ guarantees that the relation is reflexive. However,

f̃(R) may fail to be transitive, as we can see in the following example.

Example 16. Consider a domain C = {1, 2, 3, 4, 5, 6} and a function f such that

f(1) = 1, f(3) = f(4) = 2, f(2) = f(6) = 5 and f(5) = 3, and suppose that

R = {[1, 3], [2, 4], [5, 6]}, then we would have 1f̃(R)2, 2f̃(R)5 and 5f̃(R)3, but for

example 1¬f̃(R)3.

The problem is that f is not injective (Kf 6= Id) and therefore, in the example

the fact that f(3) = f(4) while R distinguishes 3 from 4, creates the problems.

Proposition 17. Consider f : C → C and R ∈ Eq(C). If Kf v R, then f̃(R) is

an equivalence relation, if Kf = R, then f̃(R) = Id.

We would like to modify f̃ in order to guarantee that f̃(R) is always an

equivalence relation. For this reason we prove the following result.

Proposition 18. Let f : A → B. Then f̂−1 : Eq(B) → Eq(A) is co-additive.

This means that f̂−1 is the right adjoint of a Galois connection. Thus we can

define the following function, which is its left adjoint [5]:

f̂(R)
def

=
d {

Q

∣∣∣R v f̂−1(Q)
}

(2)

The co-additivity of f̂−1 guarantees that the element uniquely exists. We ma-

nipulate this set obtaining that f̂(R) =
d {

Q
∣∣x R y ⇒ f(x) Q f(y)

}
.

Theorem 19. f̂(R) = f̃(R t Kf) = T(f̃(R)).

This means that, when R w Kf , then f̃(R) = f̂(R).

By construction, the following result is straightforward:

Proposition 20. 〈Eq(A), f̂ , f̂−1,Eq(B)〉 is a Galois connection. That is, for all

R ∈ Eq(A), S ∈ Eq(B): f̂(R) v S ⇔ R v f̂−1(S).

Combining Proposition 20 with Lemma 15, gives:

Theorem 21. f : R _ S ⇔ f̂(R) v S ⇔ R v f̂−1(S).

This result shows which is the rôle of the two operators f̂ and f̂−1 in the whole

construction. Indeed, by Theorem 21 we have that f satisfies non-interference,

namely f : R _ S, iff f̂(R) v S. This means that f̂ characterizes exactly the most

concrete output relation that guarantees non-interference for f , fixed the input

relation. By the adjunction relation we can also say that f : R _ S iff R v f̂−1(S).

Thus f̂−1 characterizes the most abstract input relation that guarantees non-

interference for f , fixed the output relation. Indeed, as expected, we can always

abstract the output observation and we can always concretize the input one.

Note that [9] misses exactly a construction of the input observation that makes

a program secure, given the output one, while this is possible in this context

since we are considering equivalence relations. An example is provided in Fig. 2.

ff f f
bf(R)R

⇒ ⇒

Sbf−1(S)

Fig. 2. Example of application of bf and of bf−1.

5.2 Fix point attackers

In this section we look for the characterisation of attackers that observe the same

property both in input and in output. The idea is to consider the fix points of

the unconstrained attackers derived above. Unfortunately, the most concrete and

the most abstract non trivial (different from top and identity) attacker models

do not exist as can be also verified in Fig. 3, therefore we can use the fix point

iteration simply as a possible systematic construction of canonical attackers.

Fix point of f̂−1. Note that f̂−1(>) = >, this means that the interesting case,

if it exists, is the least fix point of f̂−1 starting from Id . We know that f̂−1 is

monotone (Prop. 20), therefore the least fix point exists and can be obtained as

the limit of the iterative application of f̂−1 starting from Id , the bottom of the

lattice of relations [6, 20].

Fix point of f̂ . Note that f̂(Id) = Id , this means that we can find, if it exists,

only the greatest fix point of f̂ starting from >. We know that f̂ is monotone

f

(a)

lfpid
bf−1

f

(b)

gfp
>

bf

Fig. 3. Examples of fix points.

(Prop. 20), therefore the greatest fix point exists and can be obtained as the

limit of the iterative application of f̂ starting from the element > of the lattice

of relations [6, 20].

5.3 Deriving contrained attackers

In this section, we consider attackers which are unable to observe private data,

and which can only observe properties of public data. In this way we derive

attackers for abstract non-interference [9], where the attackers are modeled by

equivalence relations instead of by closure operators.

Most Powerful Attackers. We can use f̂ to construct the most powerful attacker.

Firstly, note that it follows directly from the definitions that [R]P (S) iff π2 ◦ JP K :

All × R _ S7. The following result is then a straightforward consequence of

Theorem 21:

Proposition 22. Let P be a program and let R ∈ Eq(VL). Then the smallest S

such that [R]P (S) is f̂(All × R), where f = π2 ◦ JP K.

Fix Point Attackers. We wish to construct the smallest R such that:

JP K : All × R _ All × R (3)

Let FP (R)
def

= f̂(All × R), where f = π2 ◦ JP K. Then, using Theorem 21, it is

easily verified that (3) holds iff FP (R) v R. Thus the solutions to (3) are just

the post-fix points of FP . Since FP is clearly monotone on Eq(VL), Tarski’s fix

point theorem gives:

7 Here π2(〈a, b〉) = b is the projection on the second component of a pair.

Proposition 23. Let P be a program and let FP : Eq(VL) → Eq(VL) be defined

as above. Then the smallest R such that [R]P (R) is lfp FP .

Note that this construction corresponds exactly to the characterization given

in [9] for arbitrary closures. Indeed here we collect elements, in the new relation

f̂(R), iff they are images by f of elements that are in the input relation. In [9] the

elements are collected, for obtaining the resulting closure, when they are images,

under f of inputs that differ only in the private information (which is the input

relation in ANI).

5.4 Non-interference and Completeness

In [10] it is proved that (abstract) non-interference can be modeled as a prob-

lem of completeness in the standard framework of abstract interpretation. Since

partitions are particular closure operators, we can use completeness also for the

PER model of abstract non-interference. We would like to understand how com-

pleteness can be helpful in order to obtain non-interference. First of all let us

consider a new characterization of completeness.

Theorem 24. Given ρ1, ρ2 ∈ uco(℘(C)), and

f : C → C, then 〈ρ1, ρ2〉 is complete for f ,

i.e., ρ2 ◦ f ◦ ρ1 = ρ2 ◦ f iff ∀X ∈ ρ1.∃Y ∈ ρ2

such that ∀z . (ρ1(z) = X ⇒ ρ2(f(z)) = Y).

f

ρ1

ρ2

At this point let us define completeness of equivalence relations in terms of

completeness of the corresponding closure operators. Let R, S ∈ Eq(C), and f a

map on C: S◦f ◦R = S◦f iff CloS ◦f ◦CloR = CloS ◦f .

Corollary 25. f : R _ S iff S◦f ◦R = S◦f .

(It is interesting to note that precisely this relationship was used in [12] to

establish a correspondence between PER-based and projection-based program

analyses. It holds generally for idempotent maps and their kernels.)

This means that we can use the constructive method given in [11] for making

abstract domains complete. Clearly the result of this transformation need not be

a partitioning closure, hence we have then to derive the partition associated with

the complete domain. In this way we obtain a method for making equivalence

relations complete.

6 Conclusion

In this paper we define abstract non-interference in terms of the PER model.

In particular, we consider equivalence relations instead of arbitrary abstract

domains. We show that the notion does not change for narrow non-interference,

while it becomes less general when we consider abstract non-interference. And

it is possible to show that, even if we lift PERs to sets then we cannot reach the

generality of uco since lifted PERs correspond only to additive closures. The use

of equivalence relations allows us to simplify the characterization of the most

powerful harmless attacker. Moreover we can also derive distinguished attackers

for the generic PER model of security (〈Q, W〉-security, Sect. 4).

Finally, we show that the PER model of abstract non-interference can be

rewritten as an abstract domain completeness problem. This result is interesting

for us since it suggests how we may approach the problem of making partitioning

closures complete, similarly to what is done in [11]. Such a result could be useful

also in other fields of computer science, such as completeness in model checking

[16]. In this paper we only provide the relation-based construction of the most

powerful harmless attacker for the narrow case, which is the straightforward

generalization of the PER model [18]. It could be interesting to investigate if

the restriction to partitioning closures simplifies also the characterization of the

harmless attacker for abstract non-interference.

Acknowledgments

We would like to thank Roberto Giacobazzi for his insightful comments and

contribution of ideas, and the anonymous referees for their helpful suggestions

for improvement.

References

1. D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations

and model. Technical Report M74-244, MITRE Corp. Badford, MA, 1973.

2. D. Clark, C. Hankin, and S. Hunt. Information flow for algol-like languages. Com-

puter Languages, 28(1):3–28, 2002.

3. E. S. Cohen. Information transmission in sequential programs. Foundations of

Secure Computation, pages 297–335, 1978.

4. A. Cortesi, G. Filé, and W. Winsborough. The quotient of an abstract interpreta-

tion. Theor. Comput. Sci., 202(1-2):163–192, 1998.

5. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proc.

of Conf. Record of the 4th ACM Symp. on Principles of Programming Languages

(POPL ’77), pages 238–252. ACM Press, New York, 1977.

6. P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.

Pacific J. Math., 82(1):43–57, 1979.

7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks.

In Proc. of Conf. Record of the 6th ACM Symp. on Principles of Programming

Languages (POPL ’79), pages 269–282. ACM Press, New York, 1979.

8. D. E. Denning and P. Denning. Certification of programs for secure information

flow. Communications of the ACM, 20(7):504–513, 1977.

9. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing

non-interference by abstract interpretation. In Proc. of the 31st Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’04), pages 186–197. ACM-Press, NY, 2004.

10. R. Giacobazzi and I. Mastroeni. Adjoining declassification and attack models by

abstract interpretation. In Proc. of the European Symposium on Programming

(ESOP’05), volume 3444 of Lecture Notes in Computer Science, pages 295–310.

Springer-Verlag, 2005.

11. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-

plete. J. of the ACM., 47(2):361–416, 2000.

12. Sebastian Hunt. Pers generalise projections for strictness analysis (extended ab-

stract). In Proc. 1990 Glasgow Workshop on Functional Programming, Workshops

in Computing, Ullapool, 1991. Springer-Verlag.

13. R. Joshi and K. R. M. Leino. A semantic approach to secure information flow.

Science of Computer Programming, 37:113–138, 2000.

14. J. Landauer and T. Redmond. A lattice of information. In Proc. of the IEEE

Computer Security Foundations Workshop, pages 65–70. IEEE Computer Society

Press, 1993.

15. P. Laud. Semantics and program analysis of computationally secure information

flow. In In Programming Languages and Systems, 10th European Symp. On Pro-

gramming, ESOP, volume 2028 of Lecture Notes in Computer Science, pages 77–91.

Springer-Verlag, 2001.

16. F. Ranzato and F. Tapparo. Strong preservation as completeness in abstract inter-

pretation. In D. Schmidt, editor, Proc. of the 13th European Symposium on Pro-

gramming (ESOP’04), volume 2986 of Lecture Notes in Computer Science, pages

18–32. Springer-Verlag, 2004.

17. A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE J.

on selected ares in communications, 21(1):5–19, 2003.

18. A. Sabelfeld and D. Sands. A PER model of secure information flow in sequential

programs. Higher-Order and Symbolic Computation, 14(1):59–91, 2001.

19. C. Skalka and S. Smith. Static enforcement of security with types. In ICFP’00,

pages 254–267. ACM Press, New York, 2000.

20. A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific J.

Math., 5:285–310, 1955.

21. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.

Journal of Computer Security, 4(2,3):167–187, 1996.

22. S. Zdancewic and A. C. Myers. Robust declassification. In Proc. of the IEEE

Computer Security Foundations Workshop, pages 15–23. IEEE Computer Society

Press, 2001.

