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Quantum like modeling of decision making:

quantifying uncertainty with the aid of

Heisenberg-Robertson inequality

March 14, 2018

Abstract

This paper contributes to quantum-like modeling of decision mak-

ing (DM) under uncertainty through application of Heisenberg’s un-

certainty principle (in the form of the Robertson inequality). In this

paper we apply this instrument to quantify uncertainty in DM per-

formed by quantum-like agents. As an example, we apply the Heisen-

berg uncertainty principle to the determination of mutual interrelation

of uncertainties for “incompatible questions” used to be asked in po-

litical opinion pools. We also consider the problem of representation

of decision problems, e.g., in the form of questions, by Hermitian op-

erators, commuting and noncommuting, corresponding to compatible

and incompatible questions respectively. Our construction unifies the

two different situations (compatible versus incompatible mental ob-

servables), by means of a single Hilbert space and of a deformation

parameter which can be tuned to describe these opposite cases. One

of the main foundational consequences of this paper for cognitive psy-

chology is formalization of the mutual uncertainty about incompatible

questions with the aid of Heisenberg’s uncertainty principle implying

the mental state dependence of (in)compatibility of questions.
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I Introduction

During the recent years the quantum-like approach to modeling of cognition

and decision making (DM) under uncertainty has been increasingly applied

to behavioral results surprising or problematic from classical perspectives.1

One of the main distinguishing features of this approach is the possibility

to treat mutually incompatible (“complementary”) DM problems, e.g., ques-

tions, inside the common model based on quantum probability. Experts in

“classical DM-theory” were well aware about the existence of such problems,

e.g., in the form of the disjunction, conjunction, and order effects (see, e.g.,

Tversky & Shafir, 1992). The attempts to represent incompatible problems

in the classical probabilistic framework led to a number of paradoxes and

theoretical proposals augmenting classical probabilistic inference with addi-

tional assumptions (e.g., Costello & Watts, 2014; Tentori et al., 2013). The

best known are the Allais (1953), Ellsberg (1961) and Machina (1982) para-

doxes, but in their review Erev et al. (2016) count 35 basic paradoxes of

classical DM-theory.

Quantum-like modeling of DM, or more generally, cognition is based on

the quantum methodology and formalism, but not on quantum biophysics

(cf., e.g., works of Hameroff (1994) and Penrose (1989) about reduction of

1As some representative works, we can mention the following : Aerts et al., 2016; Asano

et al., 2012, 2015, 2017; Bagarello, 2012, 2015; Bagarello et al., 2017; Boyer-Kassem,

Duchene and Guerci, 2016; Busemeyer et al., 2006, 2011; Busemeyer and Bruza, 2012; de

Barros, 2012; de Barros and Oas, 2014; Dzhafarov and Kujala, 2014, 2016, 2017; Dzhafarov

et al. 2017; Haven and Khrennikov, 2013, 2017; Haven and Sozzo, 2015; Khrennikov,

2003, 2004a, 2004b, 2010, 2016; Khrennikov and Basieva, 2014; Khrennikov and Haven,

2007; Khrennikova and Haven, 2016; Plotnitsky, 2014; Pothos and Busemeyer, 2009, 2013;

Pothos et al., 2011; and Trueblood and Busemeyer, 2012; Wang and Busemeyer, 2013,

Zhang and Dzhafarov 2015, and references therein.
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cognition to quantum physical processes in the brain). In the quantum-like

framework the brain is a black box, such that its information processing can

be described by the formalism of quantum theory. “Mental observables”,

e.g., in the form of questions, are represented by Hermitian operators (and

in more general framework by so-called positive operator valued measures,

Asano et al., 2015). The mental state (or the belief state) of an agent is

represented like a quantum state, i.e., a normalized vector of the state space

(or, more generally, a density operator representing the classical statistical

mixture of pure states).

Therefore we can apply the Heisenberg uncertainty principle to character-

ize interrelation of uncertainties of two incompatible questions (or tasks) A

and B. In the general form the Heisenberg uncertainty principle is expressed

in the form of the Robertson inequality:

σA(ψ)σB(ψ) ≥ |〈[A,B]/2〉ψ|, (1.1)

where [A,B] = AB −BA is the commutator of the operators, 〈[A,B]/2〉ψ is

the mean value of the commutator with respect to the state ψ, σA(ψ), σB(ψ)

are the standard deviations of the observables A and B with respect to the

state ψ.

The operators representing the position and momentum observables sat-

isfy a very special commutation relation (the canonical commutation rela-

tion): [q, p] = i11, where 11 is the unit operator. By using this relation and

the Robertson inequality we obtain the original Heisenberg inequality:

σq(ψ)σp(ψ) ≥ 1/2. (1.2)

We emphasize that the latter imposes a state-independent constraint onto

the product of standard deviations, since the right-hand side of (1.2) does

not depend on the state ψ. This is very important property of the Heisenberg

inequality. In general we do not have a state independent estimate of the

form σq(ψ)σp(ψ) ≥ c, where c > 0 does not depend on ψ (cf. with (1.2)).

The lower bound for the interrelation between the standard deviations is state

dependent.
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Thus, even for noncommuting mental observables A and B, the right-

hand side of the Robertson inequality (1.1) can be equal to zero. In this case

the observables A and B are similar to classical observables. In particular, if

[A,B]ψ = 0 for some mental state, we assume an equivalence with classical

probability description in the form of random variables, see see section III.

In quantum foundations this issue was studied in very detail by Ozawa (2006,

2011, 2016) and we shall apply his approach to DM and cognition, section

III. In that section we shall refer to the condition of spectral commutativity.

The latter is equivalent to condition [A,B]ψ = 0 in the case of dichotomous

observables (which we focus on in this paper). However, for general observ-

ables [A,B]ψ = 0 does not imply spectral commutativity and hence does

not imply the possibility of using the classical probability model.2 (Note

that the condition [An, Bm]ψ = 0 for any n,m is equivalent to the spectral

commutativity of A,B.)

The more general situation, 〈[A,B]〉ψ = 0, is more complicated from

the interpretational viewpoint (section III). We note that in the finite-

dimensional space (used for representation of beliefs) it is impossible to con-

struct Hermitian operators satisfying the canonical commutation relation.

Moreover, any Hermitian operator has eigenvectors and, for states consistent

with them, variance equals zero and (1.1) degenerates to 0 ≥ 0.

The state dependence of the uncertainty relations for mental observables

was emphasized by Khrennikov and Haven (2007). The role of the principle

of complementarity in cognitive science was analyzed by Khrennikov (1999)

and Wang & Busemeyer (2013).

Section II contains the basic mathematical construction of that unifies

the two different situations (compatible versus incompatible mental observ-

ables) by means of a single Hilbert space and a deformation parameter θ

that can be tuned to describe these opposite cases (cf. the work of Buse-

2Here we speak about the noncontextual classical probability model. Contextual clas-

sical measure-theoretic models can serve even for representation of incompatible observ-

ables (see Khrennikov, 2010, and Dzhafarov and Kujala, 2014, 2016, 2017; Dzhafarov et

al. 2017).
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meyer & Pothos (2013), where these cases were treated separately and in

different state spaces). The one-parametric families of operators can be used

for quantum-like modeling in cognitive psychology and psychophysics - by

treating θ as the formal parameter (representing the degree of deformation

of compatibility) and selecting it to match experimental data. In section V

we use this approach to construct the Hermitian operator representation of

questions demonstrating the order effect: we match the deformation param-

eter θ with the degree of noncommutativity in the sequential joint probabil-

ity distributions obtained on the basis of the experimental data taken from

Moore (2002). These operators can be used in the quantum-like model of

Busemeyer and Pothos (2013). Section III presents the most important (for

psychological applications) message of this paper: the state dependence of

incompatibility of questions. Thus to be or not to be compatible depends

not only on questions, but also on the mental state. This statement is very

natural from the cognitive viewpoint and our contribution is to put it into

the formal mathematical framework.

II Operator representation of incompatible

and compatible questions (“mental observ-

ables”)

We work in finite-dimensional (complex) Hilbert spaces. Such space H can

be represented (by fixing an orthonormal basis) as the space of vectors ψ =

(ψ1, ..., ψn) with complex coordinates, endowed with the scalar product given

as 〈ψ, φ〉 =
∑

i ψiφ̄i. Mental states are represented by normalized vectors of

H, and mental observables, e.g., in the form of questions, are represented by

Hermitian operators.

Consider some decision maker, call her Alice. Following Busemeyer and

Pothos (2013), we consider the following pair of aspects of Alice’s life repre-

sented in the form of questions (mental observables):
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• Q1 : “Are you happy or not?”

• Q2 : “Are you employed or not?”

We represent each aspect of Alice’s life in its own Hilbert state space. The

happiness status is modeled as a two-state system living in the two-dimensional

Hilbert space HH = C2. We introduce an orthonormal basis FH = {h+, h−}
of HH , and a Hermitian operator H, the happiness operator, having h± as

eigenstates: Hh± = ±h±. Of course, we have 〈hj, hk〉 = δjk, j, k = ±.
The interpretation of eigenstates of the happiness operator is clear: if Al-

ice’s state is Ψ = h+, then she is definitively happy. But she is unhappy

if Ψ = h−. The crucial point is that the state of happiness is not always

explicitly determined; Alice can be in the state of superposition of happiness

and unhappiness. Such a mental state is represented by a linear combination

Ψ = α+h+ + α−h−, with |α+|2 + |α−|2 = 1. In this case, |α+|2 is the proba-

bility that Alice is happy, while |α−|2 is the probability that she is not. We

see that the answer to Q1 is sure (i.e., determined with probability one) only

if Ψ is an eigenstate of H.

In Busemeyer and Pothos (2013), the questionsQ1 andQ2, can be thought

to be compatible or incompatible. It depends on the mental context. Here

compatibility is understood as the absence of the mutual disturbance of these

questions. The psychological basis of the mutual disturbance is clear. Sup-

pose Alice is unemployed and she is asked first the question Q2. By replying to

it she modifies her original mental state. In this new (“post-measurement”)

state her answer to the next question Q1 can be different from her possible

answer to Q1 as the first question, i.e., in the initial mental state.3

In Busemeyer and Pothos (2013), the issue of incompatible questions was

handled in a two-dimensional Hilbert state space, but the issue of compatible

questions was handled in a four-dimensional space. The mathematics behind

such modeling is explained in appendix 1.

3We note that this picture for how prior questions can activate thoughts which impact

on our perspective for later question is well known in social psychology, e.g., Schwarz

(2007).
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In this paper we propose a unified framework which can be used in both

situations: for compatible as well as incompatible questions. Also, rather

than measuring the degree of compatibility of the questions by means of the

angle between, say, h+ and e+ (see Busemeyer & Pothos, 2013), we propose

below a suitable deformation of the original operators, which is able to include

in the same settings the two different situations, by means of some relevant

commutator.

We adopt as our Hilbert state space the tensor product of the states spaces

HE and HH representing the states of (un)happiness and (un)employment,

H = HE ⊗HH = C4. An orthonormal basis for H can be constructed out of

FE and FH : Fϕ = {ϕαβ = hα⊗eβ, α, β = ±}. These are common eigenstates

of the operators Ẽ := E ⊗ 11H and H̃ = 11E ⊗H, where 11E and 11H are the

identity operators on HE and HH . (For operators D and C acting in HE and

HH , respectfully, their tensor product acts as D⊗C(u⊗ v) = Du⊗Cv.) We

have

Ẽϕα,β = µαϕα,β; H̃ϕα,β = λβϕα,β (2.1)

where µα, λβ = ±1. Of course, the operators H̃ and Ẽ commute: [Ẽ, H̃] = 0.

(This is because they admit a common set of eigenstates, Fϕ.) When this

is so, the Heisenberg uncertainty principle becomes σẼσH̃ ≥ 0, which is not

particularly useful.

If, in particular, Ψ is an eigenstate of Ẽ, then σẼ = 0. Analogously, if Ψ

is an eigenstate of H̃, then σH̃ = 0. Of course, if Ψ is an common eigenstate

of Ẽ and H̃, which is possible, since [Ẽ, H̃] = 0, then σẼ = σH̃ = 0. The

meaning of these results is that, since Ẽ and H̃ commute, we are able to know,

in principle, what are the eigenvalues of these two operators simultaneously

and we are able to answer, with no uncertainty, to Q1 and Q2. Notice,

however, that this is true if Alice’s state Ψ is a common eigenstate of Ẽ

and H̃. Suppose now that Alice’s mental state does not coincide with any

common eigenstate of Ẽ or H̃, but it is a superposition of the four eigenstates.

In this case Q1 and Q2 are still compatible, but the state of Alice does not

allow us to have any certain answers to our questions.
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The key point in our analysis, now, is quite elementary: we deform con-

tinuously Ẽ and H̃, producing two new operators which, in general, do not

commute anymore, and we use this non commutativity as a measure of com-

patibility of the questions. It is well known that one can use unitary (or just

invertible) operators to modify a given operator preserving its eigenvalues

and producing eigenvectors related to those of the original operator. Our

idea is to deform H̃ and Ẽ using this general scheme. However, since the

main aim of our procedure is to produce operators which do not commute, we

cannot use a single invertible operator S to deform both Ẽ and H̃ as shown

before, since SẼS−1 and SH̃S−1 commute in the same way as Ẽ and H̃ do.

The natural way out is to use two different invertible operators, one for H̃

and a different one for Ẽ. Of course, the choice of these operators is quite

arbitrary, but must be constrained by the requirement that commutativity

is changed continuously.

This can be achieved by using unitary matrices constructed out of one-

parameter rotations in some plane,

Rθ =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

 , Vθ =


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

 ,

(2.2)

where θ is a parameter which we take in [0, 2π].

Specifically, we use Rθ, to deform H̃ by means of two copies of the same

rotation acting respectively on {φ11, φ12} and on {φ21, φ22}. This choice,

obviously nonunique, is motivated by its simplicity, and by the fact that it

satisfies the requirements listed below. Rotation operator for Ẽ, Vθ, is just

one rotation (in the subspace with the basis {φ12, φ21}). This suffices for

our analysis of modulating incompatibility by means of the single parameter

θ as will be demonstrated further. Moreover, adjustments of θ together

with the choices of the ψ-function allow us to reproduce experimental results

(see Section V). Thus our construction provides the possibility to generate
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rich families of generally incompatible operators by using a single rotation

parameter θ.4

It is clear that R†θ = R−1θ = R−θ, V
†
θ = V −1θ = V−θ and that Rθ → 11 and

Vθ → 11 when θ → 0. Here 11 is the identity matrix in H. We define two new

Hermitian operators

Hθ = RθH̃R
−1
θ , Eθ = VθẼV

−1
θ

with eigenstates FHϕ = {ϕHα,β = Rθϕα,β, α, β = ±} and FEϕ = {ϕEα,β =

Vθϕα,β, α, β = ±}. The eigenvalues are ±1, each with multiplicity two. Also,

FHϕ and FEϕ are related by the unitary operator Tθ = RθV
−1
θ : ϕHα,β = Tθϕ

E
α,β,

for all α and β. Moreover, when θ → 0, both FHϕ and FEϕ converge to the

original set Fϕ, and Hθ → H̃ and Eθ → Ẽ. We can also check that

[Eθ, Hθ] = iUθ, (2.3)

where the matrix of Uθ can be found in appendix 2, see (6.1). From the

latter, we see that Uθ = U †θ and that Uθ → 0 when θ → 0. This reflects the

fact that, at this limit, the two operators Eθ and Hθ converge to the com-

muting matrices Ẽ and H̃. Therefore it is natural to call θ the compatibility

parameter, and the pair (Rθ, Vθ) the compatibility operators.

Now, the Robertson inequality implies that

σEθ σHθ ≥
1

2
| 〈Uθ〉 |, (2.4)

4Deformation quantization procedure developed in this paper can be considered as

ad hoc. However, even in quantum physics quantization procedures (starting with

Schrödinger’s quantization) have no intrinsic conceptual justification. They are used be-

cause they work well. For example, justification of the Schrödinger quantization via the

correspondence, h→ 0, with classical phase space mechanics is mainly of a mathematical

value (the real physical Planck constant is a constant). In cognitive science and psychol-

ogy in general the situation is more complex, since there we have no analog of classical

phase space mechanics. Mathematically our construction follows the scheme of quantum

physical deformation quantizations. There is a parameter of a small value and by sending

it to zero we approach a commutative model, a kind of classical formalism.
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where 〈X〉 = 〈Ψ, XΨ〉 and σX =
√
〈X2〉 − 〈X〉2, for any Hermitian operator

X.

Let Alice’s mental state be described by a generic normalized vector Ψ =

(c++, c+−, c−+, c−−), with
∑

α,β=± |cα,β|2 = 1. Since E2
θ = H2

θ = 11 for all

values of θ, we have 〈E2
θ 〉 = 〈H2

θ 〉 = 1. Moreover, simple computations give

〈Eθ〉 = |c++|2−|c−−|2+
(
|c+−|2 − |c−+|2

)
cos(2θ)+(c+− c−+ + c−+ c+−) sin(2θ),

while

〈Hθ〉 =
(
|c++|2 + |c−+|2 − |c+−|2 − |c−−|2

)
cos(2θ)+

+ (c++ c+− + c+− c++ + c−− c−+ + c−+ c−−) sin(2θ),

whence

(σEθ)
2 = 1− 〈Eθ〉2 , (σHθ)

2 = 1− 〈Hθ〉2 .

Let us now see what happens for a few particular choices of Ψ.

We remark that for all mental states represented by vectors with real

coordinates, RHS of the Robertson inequality equals to zero. This is a simple

consequence of the fact that the matrix elements of the operators Eθ and Hθ

are real numbers.

To obtain nontrivial interrelation between RHS and LHS of the Robertson

inequality, we consider the following states having one imaginary component.

These are just illustrative examples:

Ψa =
1

2
(i, 1, 1, 1); Ψb =

1

3
(i,
√

2,
√

3,
√

3), Ψc =

(
i cos(θ),

sin(θ)√
2
,
sin(θ)√

2
, 0

)
.

(2.5)

In the latter case the state also depends on the deformation parameter θ.

The results of numerical simulation are presented at Figures 1, 2.

We remark that the product of standard deviations (LHS of the Robert-

son inequality) fluctuates as a function of the deformation parameter θ; the

average of commutator (RHS of the Robertson inequality) behaves similarly

(see Fig. 1 and 2). In complete accordance with quantum theory the graph
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Figure 1: Dashed line: RHS of the Robertson inequality (the commutator value divided

by 2) and the solid line: LHS (the product of standard deviations) as functions of θ, for

Ψ = Ψa (left) and Ψ = Ψb (right).
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Figure 2: Dashed line: RHS of the Robertson inequality (the commutator value divided

by 2); the solid line: LHS (the product of standard deviations), as functions of θ and

Ψ = Ψc.

of RHS is majorized by the graph of LHS. In particular, the product of un-

certainties can vanish only for the values of θ for which the average of the

commutator vanishes as well, see Fig. 2. Of course, inverse is not true. Nev-

ertheless, all points, where the average of the commutator vanishes, are of

special interest (see section III).

From our analysis, it is clear that, for all those values of θ for which Uθ =

0, we go back to the case of compatible questions: in this case (consider, in

particular, θ = 0), we recover the orthonormal basis considered in Busemeyer

and Pothos (2013), and Eθ and Hθ become those considered in that paper.
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So everything discussed in Busemeyer and Pothos (2013) can be restated in

our framework. The interesting feature of our settings is that we don’t need

to change anything to describe the questions, even when they are assumed

to be incompatible, and θ parametrizes the degree of compatibility.

III Mental state dependent (in)compatibility

For cognitive systems, the state dependence of compatibility is evident. It

is clear that, for some mental states of Alice, the questions about happiness

and employment are compatible and, for other mental states, they are incom-

patible. We formalize this issue in the framework of the uncertainty relation

based on the Robertson inequality.

Consider first the weakest version of the commutativity between Eθ and

Hθ in (2.3). It is possible that, even if [Eθ, Hθ] 6= 0, still Cθ,ϕ := 〈ϕ, [Eθ, Hθ]ϕ〉 =

0, for some specific non zero vector ϕ ∈ H. In our particular situation, be-

cause of the expression in (2.3) for Uθ, Cθ,ϕ = 0 if the following equality is

satisfied:

u1,2 (x y − y x+ z w − w z)+u1,3 (x z − z x+ w y − y w)+u2,3 (y z − z y) = 0,

(3.1)

where x, y, z and w are the components of the normalized column vector ϕ,

|x|2 + |y|2 + |z|2 + |w|2 = 1, while uk,l are related to Uθ as follows:

u1,2 = −4i cos(θ) sin3(θ), u1,3 = i sin2(2θ), u2,3 = −i sin(4θ).

A first class of solutions of (3.1) is easily found: it is enough to choose

x, y, z and w all reals. Then Cθ,ϕ = 0 for all values of θ. This suggests

that, in order to have nontrivial incompatibility effects of Eθ and Hθ, the

state of the system cannot have all components real. Of course, finding the

general solution of (3.1) is rather difficult, if not impossible. However, it is

not hard to find other particular solutions. For instance, if we assume that

|x| = |y| = |z| = |w| = 1
4
, and if we call ϕx, ϕy,... the phases of x, y,..., then

12



it is possible to deduce that these can be chosen for instance as in

ϕw − ϕx = arccos (cot(2θ)) , ϕy = ϕw, ϕz = 2ϕw − ϕx,

or

ϕy−ϕx = arctan

(
cos(2θ)

2 sin2(θ)

)
, ϕz = 2ϕy−ϕx+

π

2
, ϕw = 3ϕy−2ϕx−

π

2
.

Other possibilities are also allowed, but we will not discuss them here.

Now, following Ozawa (2006, 2011, 2016), we classify various variants of

(non-)commutativity of Hermitian operators representing quantum observ-

ables. Consider two Hermitian operators A and B. We shall also consider

their spectral families EA(x), EB(y). In the case of discrete spectra (as for

finite-dimensional Hilbert spaces) these are just families of projectors on the

eigen subspaces of these operators. We restrict our consideration to the latter

case.

A,B commuting: [A,B] = 0. There exists an orthonormal basis con-

sisting of common eigenvectors, i.e., any state ψ can be represented as su-

perposition of common eigenvectors.

A,B non-commuting: [A,B] 6= 0. An orthonormal basis consisting of

common eigenvectors does not exist. (However, common eigenvectors may

exist.)

A,B nowhere-commuting: for any state ψ, [A,B]ψ 6= 0. There exists

no common eigenvector.

A,B spectrally commuting in ψ : [EA(x), EB(y)]ψ = 0. Such ψ is a

superposition of common eigenvectors of A,B.

A,B weakly commuting in ψ : 〈ψ, [A,B]ψ〉 = 0.

Spectral commutativity provides the most natural generalization of com-

patibility. Of course, spectrally commuting (in a state ψ) observables have

the joint probability distribution:

p(x, y) = 〈ψ,EA(x)EB(y)ψ〉 = 〈ψ,EB(y)EA(x)ψ〉.

One can say that, for such a mental state ψ, Alice’s answers to these questions

are based on hidden variables that are “objectively present in her brain”. At
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the same time if these operators do not commute, there exist mental states

for which it is impossible to model answers to these questions with the aid

of a common classical probability space.

In particular, spectral commutativity implies that, for this concrete state,

there is no order effect, nor a disjunction effect. We discuss the latter state-

ment in more detail. (One can say that it immediately follows from the

existence of the joint probability distribution, and hence the validity of the

formula of total probability. However, the validity of this formula is not evi-

dent, since it involves conditional probabilities, and in quantum theory they

are not defined by Bayes’ formula. So, we have to analyze the process of the

update of probabilities starting with a specific state ψ.)

IV Maximizing incompatibility

In sections II, III we investigated the problem of minimization of incompat-

ibility and approaching the weak compatibility, when the right hand side of

the Robertson inequality, (1.1), equals to zero. We can also consider the

opposite question: When incompatibility achieves its maximum?

Maximum expectation value of Uθ equals to its maximum eigenvalue and

is reached at the corresponding eigenstate. If we denote

sq =
√

(5− 4 cos(2θ) + cos(4θ)) sin2(2θ),

the four eigenvalues of U are λ1,2 = i
2

(√
2sq ± sin(4θ)

)
, λ3,4 = −λ1,2. The

first two corresponding eigenstates (not normalized) are

e1,2 =


±i

−1
8

csc(θ) (csc(θ)∓ i sec(θ))
(√

2sq ± i sin(4θ)
)

1
8

csc(θ) (csc(θ)∓ i sec(θ))
(
∓i
√

2sq + sin(4θ)
)

1

 .

In Fig. 3 we show dependence of the right-hand-side of inequality (1.1)

as a function of θ. Note that the left-hand-side of (1.1) equals 1 for any θ,
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because expectation values of Hθ and Eθ are zero at eigenstates of Uθ. Taking

into account that squares of Hθ and Eθ are just the identity matrix (inde-

pendent of θ value), it can be seen that at eigenstates of Uθ both standard

deviations σHθ and σEθ as well as their product are equal to one.
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Figure 3: Standard deviations σHθ
, σEθ

(upper horizontal lines) and expectation values

|〈Uθ/2〉e1 | (left panel), |〈Uθ/2〉e2 | (right panel), as functions of θ.

V An application to decision making: model-

ing the order effect in social opinion polls

Now we apply our construction of the one parametric families of generally

noncommuting Hermitian operators to a problem of the failure of commu-

tativity in DM which was discussed, using quantum mechanical language,

in Busemeyer and Pothos (2013), Wang and Busemeyer (2013), see Moore

(2002) for experimental data. Our aim is to construct a quantum-like repre-

sentation of questions exhibiting the order effect, i.e., to find a value of the

deformation parameter θ and the coordinates of a mental state Ψ matching

the aforementioned experimental data.

The problem is quite simple: let us suppose we ask a set of people, P , two

questions QC and QG in two different orders, OC→G or OG→C . Here QC and

QG stand respectively for is Clinton honest? and is Gore honest? 5 Order

5These questions should be updated, changing the names of the actors, of course. We
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OC→G means that QC is asked first, and QG after, while OG→C describes

the reversed temporal order. The results of this experiment show that, if we

adopt OC→G, then 50% of P answer yes to QC , and 68% of P answer yes to

QG. On the other hand, if we consider the reverse order, OG→C , the above

percentages change respectively to 57% and 60%. It is clear that the order

is important, and the explanation proposed in the literature is that the first

question activates thoughts, (Busemeyer & Pothos, 2013). Here we want to

show how our general settings can be efficiently used in the description.

We shall use the formalism developed in section II. To couple the op-

erators to questions about Clinton and Gore, in this section we shall use

the symbols C,G and Cθ, Gθ. Note that these operators can be represented

as differences of projectors onto the eigensubspaces corresponding to their

eigenvalues ±1. Thus Cθ = P θ,C
+ − P θ,C

− , and Gθ = P θ,G
+ − P θ,G

− .

Consider “joint sequential probabilities” for transitions QC → QG and

QG → QC , i.e., the probabilities pQCQG(α, β) that a respondent first gives

the answer α to the question QC and then the answer β to the question QG

and the probabilities pQGQC (β, α) for these questions asked in inverse order.

The social opinion poll (Moore, 2002, see also Wang & Busemeyer, 2013),

give us the following numbers:

pQCQG(++) = 0.4899; pQCQG(+−) = 0.0447;

pQCQG(−+) = 0.1767; pQCQG(−−) = 0.2886;

pQGQC (++) = 0.5625; pQGQC (+−) = 0.1991;

pQGQC (−+) = 0.0255; pQGQc(−−) = 0.2130.

Our aim is to find representation of the questions QC and QG by the operators

Cθ = P θ,C
+ −P θ,C

− and Gθ = P θ,G
+ −P θ,G

− for some values of the deformation

parameter θ and states Ψ which generate the joint probabilities. We have

the following matching conditions (for α, β = ±) :

‖P θ,G
β P θ,C

α Ψ‖2 = pQCQG(α, β), ‖P θ,C
α P θ,G

β Ψ‖2 = pQGQC (β, α). (5.1)

merely follow a literature example here.
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Note that these matching conditions are consequences of the projection pos-

tulate. 6

Since the sum of the probabilities for each of the experiments QC → QG

and QG → QC equals one, we have the system of 6 equations. Each state

in the four-dimensional complex Hilbert space can be encoded by 3 + 3 real

parameters, Ψ = xe1+ye2+ze3+we4, where e1, ..., e4 is the basis in the state

space constructed in section II. (But in the present considerations the tensor

product structure of the basis is not important.) Here |x|2 + ... + |w|2 =

1.Thus we have 3 independent real variables a = |x|, b = |y|, c = |z|. There

are also 3 independent phase variables, φ1, φ2, φ3, given by x = eiφ1u1, y =

eiφ2u2, z = eiφ3u3. By taking into account the deformation parameter θ, we

get the system of 6 equations with 7 variables. This system was solved

numerically using the Mathematica software package for minimizing with

respect to θ and Ψ the sum of squares of differences between experimental

and theoretical probabilities. The optimal parameters are θ = 0.427; a =

0.538; b = 0.424; c = 0.342; φ1 = 0.217;φ2 = 0.593;φ3 = −0.188. Thus the

state vector can be chosen as

Ψ = aeiφ1e1 + bei∗φ2e4 + ceiφ3e3 +
√

1− a2 − b2 − c2e4. (5.2)

Matching between quantum and experimental probabilities is very good, ε =

0.5 × 10−6, where ε is the averaged sum of squares of differences between

(independent) experimental and theoretical probabilities.

Note that, for the optimal θ and Ψ, operators Cθ and Gθ do not commute.

Moreover, they are not even weakly commuting (see section III), i.e., the

average of their commutator is nonzero: 〈[Cθ, Gθ]Ψ,Ψ〉 = −0.07i. For these

6In general different assumptions on the joint sequential probability of the observables

Eθ and Hθ would be possible - in a way consistent with the quantum formalism. In quan-

tum mechanics, there are in many ways to measure the same observable with different

state changes, described by quantum instruments (Ozawa, 2006), that leads to different

joint sequential probability distributions. Here, we assume one particular type of instru-

ment determined by the projection postulate, which has been a standard postulate in the

conventional quantum measurement theory.
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quantum observables and quantum state, the right hand side of the Robertson

equality equals to 0.035. By computing the variances from the experimental

data we obtain that σ2
Cθ

(Ψ) = 0.9952 and σ2
Gθ

(Ψ) = 0.7263, i.e, the Robertson

inequality is satisfied: σCθ(Ψ)σGθ(Ψ) = 0.80501 > 0.035.

VI Conclusions

We have proposed a strategy to discuss, within the framework of quantum

formalisms, questions which may be compatible or not. Our proposal pro-

vides a unifying framework to consider both these situations. We have also

shown that this framework can be used in DM, in the presence of failure of

commutativity.

We quantified uncertainty in beliefs of people with the aid of the Heisen-

berg uncertainty relation (in the general form of the Robertson inequality).7

The general theoretical framework was illustrated by concrete statistical data

collected in the political opinion pool (Moore, 2002) and exhibiting the or-

der effect (Pothos & Busemeyer, 2013; Wang & Busemeyer, 2013). By using

our formalism of generating noncommutative operators based on the defor-

mation parameter technique we reconstructed the operators (representing

questions about Clinton and Gore) and the mental state of the representa-

tive participant of the poll. Consistency between theoretical model and the

experimental data is very high, of the magnitude ε ∼ 10−6.

7The Heinsenberg uncertainty relations played the decisive role in the elaboration of

the principle of complementarity by N. Bohr, and in coupling the noncmmutativity of

Hermitian operators (representing quantum observables) with incompatibility of these

observables. It is strange that this fundamental feature of quantum theory has not yet been

utilized in quantum-like modeling of cognition and decision making. One of the reasons

for this situation was the absence of a formalism of deformation quantization applicable

to mental observables. Such formalism was developed in this paper, and it provides the

possibility to couple uncertainty with noncommutativity through the Robertson inequality.

We suggest that exploring of the Heinsenberg uncertainty relations started in our paper

is an important step in establishing foundations of quantum-like cognition.
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We hope that this theoretical work will have implications for specific pre-

dictions in decision making, regarding the emergence of quantum-like effects.

Notably, in quantum cognition research so far it is typically either assumed

that two observables are compatible or assumed that they are incompatible.

In the latter case we predict quantum-like effects, such as results correspond-

ing to fallacies according to classical probability theory (conjunction fallacy,

order effects, etc.). The novel prediction made in this paper is that the degree

of incompatibility may be state-dependent, so that for some mental states

we would predict quantum-like effects, but for the same individual and for

the same questions, other states would eliminate such effects. The issue of

mental state preparation in psychological experiments is still a methodologi-

cal challenge, as we cannot prepare mental states with the same precision as

physical states. However, it is generally accepted that the more background

information provided for a task and the more elaborate supporting manipu-

lations (e.g., questions which establish that participants had understood the

presented information), the more we can be confident that a specific mental

state has been achieved.

Appendix 1.

Hermitian operators are commuting if and only if there exists an orthonor-

mal basis which consists of their common eigenvectors. Suppose that one uses

the two-dimensional Hilbert space to represent two compatible questions by

Hermitian operators H and E with spectrum {−1,+1}. Then the eigenvec-

tors h−, h+ of H coincide with the eigenvectors e−, e+ of E, up to (a single)

unitary transformation. Suppose that, for example, h− = e− and h+ = e+.

This means that the answers to the questions are perfectly correlated: Al-

ice is (un)happy if and only if she is (un)employed. Now let h− = e+ and

h+ = e−. This means that the answers are perfectly anti-correlated. Alice is

happy only being unemployed and vice versa. (This situation is not unusual:

some people may prefer to live relaxed lives by using social funds; they may

be unhappy to go each day to work.) Thus representation of compatible

questions in the two-dimensional space covers only the very special situa-
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tion of perfect correlations, or questions which are “unitarily equivalent”:

E = UHU−1, where U is a unitary operator. One cannot be satisfied by

such a model, since precise (anti-)correlations are not typical for psychology.

Therefore Busemeyer and Pothos (2013) proposed to use four-dimensional

representation for compatible questions. Here one can realize all possible

joint probability distributions and correlations.

Appendix 2.

The matrix representation of the operator Uθ in the commutation relation

(2.3):

Uθ =


0 −4i cos θ sin3 θ i sin2 2θ 0

4i cos θ sin3 θ 0 −i sin 4θ −i sin2 2θ

−i sin2 2θ i sin 4θ 0 −4i cos θ sin3 θ

0 i sin2 2θ 4i cos θ sin3 θ 0

 .

(6.1)
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