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Abstract 
We begin by briefly discussing the reasons why claims of probability of non-
perfection (pnp) may sometimes be useful in reasoning about the reliability of 
software-based systems for safety-critical applications. We identify two ways in 
which this approach may make the system assessment problem easier. The first 
concerns the need to assess the chance of lifetime freedom from failure of a single 
system. The second concerns the need to assess the reliability of multi-channel 
software-diverse fault tolerant systems – in this paper, 1-out-of-2 systems. In earlier 
work (Littlewood and Rushby 2012, Littlewood and Povyakalo 2013) it was 
proposed that, in certain applications, claims for possible perfection of one of the 
channels in such a system may be feasible. It was shown that in such a case there is a 
particularly simple conservative expression for system pfd (probability of failure on 
demand), involving the pfd of one channel, and the pnp of the other. In this paper we 
address the problem of how to assess such a pnp. In previous work (Zhao 2015) we 
have addressed this problem when the evidence available is only extensive failure-
free working of the system in question. Here we consider the case in which there is, 
in addition, evidence of the previous success of the software development 
procedures used to build the system: specifically, several previous similar systems 
built using the same process have exhibited failure-free working during extensive 
operational exposure.  
 

KEY WORDS: Fault-free software; probability of perfection; 1-out-of-2 system 
reliability; software diversity; operational experience; Bayesian modeling; limited 
prior belief; guaranteed-conservative reliability claims. 

 
Notation Table  

Notation Definition First seen 
in 

pfdA probability of failure on demand of channel A (1.1) 
pnpB probability of non-perfection of channel B (1.1) 
pA a given upper bound on pfdA (1.2) 
αA the doubt in pfdA smaller than the given bound pA (1.2) 
pB a given upper bound on pnpB (1.2) 
αB the doubt in pnpB smaller than the given bound pB (1.2) 

pfdsys probability of failure on demand of the whole 1oo2 system (1.3) 
Ai a previous similar system i (2.1) 
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Pi pfd of the system Ai (2.1) 
ni the number of demands being executed by Ai (2.1) 
wi the number of demands causing failures by Ai (2.1) 
k total number of similar products (2.6) 

𝑓𝑓(𝑝𝑝|𝜃𝜃) a parametric family of distributions characterized by 𝜃𝜃 from which 
the pfd of each system Ai are randomly sampled. (2.2) 

𝜃𝜃 a vector of parameters characterize 𝑓𝑓(𝑝𝑝|𝜃𝜃) (2.2) 

𝜃𝜃𝑃𝑃𝑃𝑃 the probability mass at the origin of 𝑓𝑓(𝑝𝑝|𝜃𝜃), which is one of the 
parameters in the vector 𝜃𝜃 (3.1) 

g(𝜃𝜃𝑃𝑃𝑃𝑃) prior distribution of 𝜃𝜃𝑃𝑃𝑃𝑃 (3.1) 
𝜃𝜃𝑃𝑃𝑃𝑃∗  posterior probability of perfection seeing evidence (3.1) 

𝜋𝜋 a given non-zero point on a two-point 𝑓𝑓(𝑝𝑝|𝜃𝜃) in which the other point 
is 0. (3.2) 

𝑦𝑦 a given upper bound on 𝜃𝜃𝑃𝑃𝑃𝑃 (3.1.1) 
𝛼𝛼𝜃𝜃 the confidence in 𝜃𝜃𝑃𝑃𝑃𝑃 being smaller than the given bound 𝑦𝑦 (3.1.1) 
𝛼𝛼𝜃𝜃∗  posterior confidence in 𝜃𝜃𝑃𝑃𝑃𝑃 being smaller than 𝑦𝑦 seeing evidence (3.1.2) 

𝑦𝑦1 a given upper bound on 𝜃𝜃𝑃𝑃𝑃𝑃 (3.2.1) 
𝛼𝛼𝜃𝜃1 the confidence in 𝜃𝜃𝑃𝑃𝑃𝑃 being smaller than the given bound 𝑦𝑦1 (3.2.3) 
𝑦𝑦2 a given upper bound on 𝜃𝜃𝑃𝑃𝑃𝑃 (3.2.2) 
𝛼𝛼𝜃𝜃2 the confidence of 𝜃𝜃𝑃𝑃𝑃𝑃 being in the range of 𝑦𝑦1 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦2 (3.2.3) 

𝛼𝛼𝜃𝜃1+𝜃𝜃2 the confidence in 𝜃𝜃𝑃𝑃𝑃𝑃 being smaller than bound 𝑦𝑦2 (3.2.4) 
𝛼𝛼𝜃𝜃1∗  posterior confidence in 𝜃𝜃𝑃𝑃𝑃𝑃 being smaller than 𝑦𝑦1 seeing evidence (3.2.3) 

𝛼𝛼𝜃𝜃1+𝜃𝜃2∗  posterior confidence in 𝜃𝜃𝑃𝑃𝑃𝑃 being smaller than 𝑦𝑦2 seeing evidence (3.2.4) 

R the probability that a randomly selected product from the 
development process is not perfect and passed n tests. (4.1.1) 

𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅> the prior joint distribution of 𝜃𝜃𝑃𝑃𝑃𝑃 and R (4.1.3) 

𝛾𝛾𝜃𝜃 the confidence in 𝜃𝜃𝑃𝑃𝑃𝑃 being smaller than the given bound y (4.2.1) 
𝛾𝛾𝑟𝑟 the confidence in 𝑅𝑅 being smaller than the given bound r (4.2.2) 

𝑀𝑀𝑖𝑖 the probability mass of the area i on the joint distribution 𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅> Figure 8 

𝛾𝛾𝜃𝜃∗  the posterior confidence in 𝜃𝜃𝑃𝑃𝑃𝑃 being smaller than bound y (4.2.3) 
𝛾𝛾𝜃𝜃1 the confidence in 𝜃𝜃𝑃𝑃𝑃𝑃 being smaller than the given bound 𝑦𝑦1 (4.4.1) 
𝛾𝛾𝜃𝜃2 the confidence of 𝜃𝜃𝑃𝑃𝑃𝑃 being in the range of 𝑦𝑦1 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦2 (4.4.2) 
𝑟𝑟𝑈𝑈 a certain upper bound on R (4.4.4) 
𝛾𝛾𝜃𝜃1∗  the posterior confidence in 𝜃𝜃𝑃𝑃𝑃𝑃 being smaller than bound 𝑦𝑦1 (4.4.5) 
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1. Introduction 
In earlier papers we considered the problem of assessing the probability that a software-based 
system is “perfect” (Zhao 2015) – i.e. will not fail however long it operates – or is “quasi-
perfect” (Zhao 2017) – i.e. is close enough to perfect for certain practical purposes. In that 
work we addressed this problem when the evidence available is only extensive failure-free 
working of the present system. Here we consider the problem of assessing probability of 
perfection when there is, in addition, evidence of the previous success of the software 
development procedures used to build the current system and similar earlier ones. 
Specifically, this evidence takes the form of extensive failure-free working of several 
previous similar products that were built using the same development procedures. 
We begin by briefly providing the reader with a motivation for our interest in “probability of 
perfection”. The material here repeats, in shortened form, the introductory discussions of 
(Zhao 2015, Zhao 2017). 

1.1 Why is an assessment of “probability of perfection” useful? 
Software-based systems are used in an increasing number of applications where their failures 
may be very costly, in terms of monetary loss or human suffering. As a result, such systems 
often have very high dependability requirements. Although it is not common for these 
requirements to be expressed (at least publicly) in a numerical form, a rare exception is the 
claimed 10-9 probability of failure on demand (pfd) for the combined control and 
instrumentation safety systems of the UK European Pressurised Reactor (UK EPR) (HSE 
2013).  
To achieve these kinds of ultra-high reliabilities is clearly a difficult task of design and 
implementation. The problems of assessing what has been achieved – so as to be sufficiently 
confident that a particular system is safe enough to use – seem to us to be even harder. Direct 
assessment via black-box operational testing, for example, would require infeasible times on 
test (Littlewood and Strigini 1993) (Butler and Finelli 1993) to support claims for ultra-high 
reliability (even in the unlikely event that there were no doubts about the representativeness 
of the operational profile used in the testing, and we could be certain that the test oracle was 
perfect). 
In the research reported here, and similar earlier work, we consider a different approach to 
this difficult problem of assessment. The idea is that, instead of claims for reliability – failure 
rates, pfds, etc – we make claims for perfection. This word comes, we realise, with extensive 
baggage: here it just means that a “perfect” system will not fail however much operational 
exposure it receives. If we assume that failures of a software system can occur if and only if it 
contains faults, it means that the system is “fault-free”. Readers may think, reasonably, that 
we can never be certain that a system is perfect in this sense; but they may be prepared to 
accept that such perfection is possible. In the face of this uncertainty, we shall use 
“probability of perfection” as a measure of how good such a system is. 
In fact, as has been has pointed out before (Bertolino and Strigini 1998, Rushby 2009, 
Littlewood and Rushby 2012), the traditional processes of software assurance, e.g. those 
performed in support of DO-178B ((RTCA 1992) the guidelines for the certification of 
safety-critical aircraft software), can be best understood as developing evidence of possible 
perfection, rather than ultra-high reliability. Indeed, claims for the perfection of some systems 
may be more intuitively plausible than claims for very high reliability, since the two claims 
would be supported by different types of evidence and reasoning. A claim for an extremely 
small failure rate seems to acknowledge that the system in question is unlikely to be perfect – 
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for example because of the complexity of its functionality – and resulting assessment of an 
extremely small number may not be believable. A claim for perfection, on the other hand, 
may be based upon evidence that the design is simple enough that the designers had a chance 
of “getting it right”. 
What benefits can we expect from this change of approach, to seek confidence that a software 
system is perfect, rather than reliable? There seem to be two ways in which this approach 
may make the system assessment problem easier. The first addresses the need to assess the 
chance of lifetime freedom from system failure; the second addresses the need to assess the 
reliability of multi-channel software-diverse fault tolerant systems, since such architectures 
are obvious candidates for these demanding safety-critical roles (and in some cases have been 
shown to have ultra-high reliability – after the fact – e.g. some systems in Airbus aircraft). 
Consider first the problem of lifetime reliability of a critical on-demand1 system, such as a 
safety shut-down system for a nuclear reactor or hazardous chemical process. Whilst 
requirements for such a system are often expressed in terms of probability of failure on (a 
single) demand (pfd), in fact for most systems what is really needed is a high confidence that 
at most a very small number of failures will occur over all demands in the expected life of the 
system. For some systems – e.g. nuclear reactor protection systems – this required number 
may be zero. A pfd claim is thus really in support of a lifetime claim. 
The point here is that a probability of perfection directly addresses a lifetime claim: it is 
precisely the probability that the system will experience no failures, no matter how long its 
exposure (number of demands over its life) (Bertolino and Strigini 1998, Strigini and 
Povyakalo 2013). Consider the following (artificial) example to illustrate this point. Let’s say 
we have a system for which we expect 100 demands in its lifetime, and we want to be 99% 
confident that it will survive all these without failure. To obtain such confidence, we need the 
pfd to be no worse than about 10-4. If we expected 1000 demands during its lifetime, we 
would need a pfd no worse than about 10-5 to be 99% confident of seeing no failures. For 
10,000 demands, we need a pfd of about 10-6, and so on. As the expected number of lifetime 
demands increases, the required pfd needed to be 99% confident of seeing no failures 
becomes more and more demanding – and thus so does the task of assuring that the 
requirement has been met. 
In contrast, of course, we could be 99% confident of seeing no failures in any number of 
demands if we were 99% confident in perfection. If we could support such a possible 
perfection claim, the need for extremely extensive (possibly infeasibly so) testing to establish 
a very small pfd disappears. 
The second reason we might wish to claim a probability of perfection arises from some recent 
work on design diversity, which has long been proposed as a promising way of achieving 
high dependability for software-based systems. The intuitive rationale is that if we force two 
or more systems to be built differently, their resulting failures may also be different. So if, in 
a 1-out-of-2 protection system (1-o-o-2 system), channel A fails on a particular demand, there 
may be a good chance that channel B will not fail. Thus, diversity in computer-based, safety-
critical systems is popular in some industrial sectors (e.g. avionics, rail, nuclear), and 
mandated or highly recommended, for highly critical functions, by various standards and 
regulators (Wood and Belles 2010). Some of these systems have exhibited remarkable 
dependability in operation. For example, the safety-critical flight control systems of Airbus 
fleets have experienced massive operational exposure (Boeing 2015) with apparently no 

                                                 
1 We shall use the terminology of on-demand systems for the rest of the paper, but much of what we say will 
also be applicable to continuously operating systems.  
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critical failure (note, however, that these continuously operating systems have a different 
architecture from the 1-o-o-2 on-demand systems we treat in this paper). Of course, an 
absence of accidents due to software failures could be due to extreme rarity of the latter (as 
these system are built to very stringent quality standards) rather than their having occurred 
and having been tolerated thanks to diversity. But experience gives no evidence against the 
current views that support the use of diversity (Littlewood, Popov et al. 2001). 
This kind of evidence based on massive operational exposure is, of course, only available 
after the fact. Assessing the reliability of such a design-diverse system before it is deployed 
remains a very difficult problem. We know, from experimental work (Knight and Leveson 
1986, Eckhardt, Caglayan et al. 1991) and theoretical modelling (Littlewood and Miller 1989) 
that we cannot claim with certainty that there is independence between the failures of 
multiple software-based channels of a system. Thus for a 1-o-o-2 on-demand system, if 
channel A fails on a randomly selected demand, this may increase the likelihood that the 
demand is a “difficult” one and so increase the likelihood that channel B also will fail. So 
even if we know the marginal probabilities of failures of the two channels, say pfdA and pfdB, 
from extensive testing, we cannot simply multiply them and claim the system pfd is pfdA × 
pfdB. 
In recent work by Littlewood and Rushby (Littlewood and Rushby 2012), the authors 
proposed a new way to reason about the reliability of a special kind of 1-o-o-2 on-demand 
system. Here channel A is conventionally engineered and presumed to contain faults, and thus 
supports only a pfd claim (say pfdA). Channel B on the other hand is extremely simple and 
extensively analyzed, and thus is “possibly perfect”; in (Littlewood and Rushby 2012) the 
claim about this channel is a probability of non-perfection, pnpB2. They show that: 

   (1.1) 

The result depends on the events “A fails on a randomly selected demand” and “B is not 
perfect” being conditionally independent, given that the probabilities of these events, 
respectively pfdA and pnpB, are known. The right hand side of equation (1.1) is a conservative 
bound for the system’s probability of failure on demand (pfdsys). The conservatism arises 
from an assumption that if B is imperfect, it always fails when A does.  
The result is useful because it allows multiplication of two small numbers to obtain (a bound 
on) pfdsys – hopefully a very small number. That is, it overcomes the problem with the 
unattainable result above, involving the product of the small numbers pfdA and pfdB, which 
requires the unreasonable assumption of independence of channel failures. 
In reality, of course, an assessor would not know pfdA and pnpB with certainty: there is 
epistemic uncertainty about their numerical values. In principle, an assessor could represent 
his uncertainty here via a (bivariate) distribution for the two unknowns. In practice people 
find this kind of thing very difficult, if not impossible. Whilst assessors may be able to make 
informed statements about their marginal beliefs about the two parameters separately, they 
will usually be unable to say anything about their dependence. 
In (Littlewood and Povyakalo 2013) this problem is addressed: results are obtained that 
require only an assessor’s marginal beliefs about the individual numbers, i.e. they do not 
require the assessor to say anything about dependence between the two numbers. For 

                                                 
2 In the present paper we shall usually deal with “probability of perfection”, which is of course simply 1- pnp. 
Readers will find a discussion a little later on about precisely what “probability” means in this novel context, 
concerning perfection (we take it for granted that its meaning in the term “probability of failure on demand” is 
well-understood).  
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example, Theorem 5 of (Littlewood and Povyakalo 2013) shows that if an expert has a single 
(marginal) confidence bound for each channel parameter 

         (1.2) 

then the following is a conservative confidence bound for the system pfd: 
        (1.3) 

In words, the system claim  is the product of the channel claims, and the doubt about 
the truth of this system claim is the sum of the doubts, , about the channel claims. 

To summarise, the results of (Littlewood and Rushby 2012) and (Littlewood and Povyakalo 
2013) reduce the problem of assessing the pfd of this kind of special 1-o-o-2 system to one 
concerning simply marginal beliefs about the parameters pfdA and pnpB. In particular, we do 
not need to be concerned about aleatory dependence between failures of A and B  (Littlewood 
and Rushby 2012), nor about epistemic dependence between beliefs about model parameters 
(Littlewood and Povyakalo 2013). The price paid, of course, in each case, is conservatism in 
the results. 
There is a large literature on the assessment of pfd from statistical analysis of operational 
tests – see e.g. (Littlewood and Wright 1997) – so the first of these parameters could be easily 
assessed, e.g. in terms of a Bayesian posterior distribution based on evidence from 
operational testing.  
That leaves pnpB, the assessment of which is the subject of the current paper. 

1.2 How can we assess pnp? 
We first digress briefly here to discuss what “probability” means in the phrase “probability of 
non-perfection”. The aim here is to suggest how we might learn about its magnitude, and thus 
motivate the detailed modeling in the body of the paper. 
Clearly, each program either is, or is not, “perfect”. An observer of a particular program may 
be uncertain whether it is perfect or not, so one interpretation of this probability is the 
observer’s subjective strength of belief in non-perfection. A useful classical (frequentist) 
interpretation can be obtained from the notion of software development as the random 
selection of a program from a population of programs, as first introduced in (Eckhardt and 
Lee 1985). The idea here is that, for a particular problem that a program is to solve, and a 
particular development process to be used in creating the program, there is a hypothetical 
population of all programs that could be written to solve the problem using the process, and a 
distribution over this population that determines the probability of selection for each member 
of the population (note that, almost certainly, such a distribution will not result in equi-
probable selection of programs). 
A slightly different conceptual formulation is to consider the population of all programs that 
could be written. A particular problem to be solved would then be completely characterized 
by its probability distribution over all programs. In this scenario, many programs (in fact 
almost all) would have zero probability of selection. 
In these rather abstract models of software development pnp is a property of a hypothetical 
population of programs: each program in this population will be either perfect, or not, for the 
problem being solved. The act of randomly selecting a single program from the population – 
i.e. developing a program to solve the problem – results in a program that is either perfect or 
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not. The parameter pnp is just the probability that such a randomly selected program is not 
perfect. 
Notice how this contrasts with the interpretation of pfd, which concerns a single program. 
Here there is a distribution over the population of all demands – the “operational profile”. 
Each demand will be executed correctly, or not, and the act of selection results in a demand 
that is correctly, or incorrectly, executed. The parameter pfd is then just the probability that a 
randomly selected demand is one of those that cannot be executed correctly. 
This difference in interpretation of the two probabilities hints at the different ways we might 
learn about them. So, for a pfd concerning a particular program, we would like to see the 
outcome (success or failure) of many randomly selected demands executed by that program. 
But for a pnp concerning a development process (population of programs), we would like to 
know, for each of many randomly selected programs, which of them are not perfect. 
It is this observation that underpins much of the rest of this paper: the model we develop 
allows an assessor to learn about the quality of a development process by observing previous 
products developed to solve a similar problem, and thus to learn about the pnp for that 
process/problem pair. 
There is, of course, an important difference between this learning about pnp and learning 
about pfd. For the latter, when we see many demands, we shall know for each demand 
whether it was a success or a failure. In contrast, for previous software products, we shall not 
know with certainty which were perfect; rather at best we may only have evidence of 
extensive failure-free operation.  
Our early work on this problem, e.g. (Zhao 2015), used only evidence of perfect working on 
many statistically representative demands on the present single system. In practice, of course, 
other kinds of evidence will be available and should be used to increase confidence in claims 
for perfection. In the current paper we consider the case where, in addition to evidence of 
failure-free working on this system, there is also evidence of failure-free working of previous, 
similar systems. The idea here is that such evidence supports claims about the quality of the 
development procedures used to build this system and previous ones. This kind of process-
quality evidence has long been used in support of claims about system dependability – “trust 
us to have built this system right because we have built similar ones in the past, and here’s 
the evidence of their success.” But hitherto this kind of claim has been supported only in 
informal, qualitative ways; we present here what we think is the first formal mathematical 
model to take account of such evidence in support of quantitative perfection claims. 
Our approach here – as in previous work – will be Bayesian. As is well known, a serious 
problem in Bayesian analysis concerns the elicitation of prior beliefs from the expert who 
“owns” the problem. For the safety-critical systems that motivated our work, this expert 
assessor may be a regulator, or perhaps a safety engineer, employed by a licensee of 
regulated plant such as a nuclear power station. 
Ideally, the Bayesian approach requires a complete description of the subjective prior 
uncertainty about the parameter(s) of a model. In the case of a model with a single parameter, 
this involves a complete uni-variate distribution representing the expert’s subjective beliefs 
about the parameter. More generally – and posing greater difficulties – it requires the expert 
to provide a complete multi-variate distribution representing his beliefs about several 
parameters. 
Experts find it difficult, or impossible, to provide such complete distributions for their prior 
beliefs, particularly for the cases we are examining, which concern difficult concepts like 
possibility of perfection of a complex system. Any practical approach to these problems 
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needs to take account of these difficulties, and this is a major theme of the work reported here 
and in our previous work (Bishop, Bloomfield et al. 2011, Zhao 2015). In this paper we shall 
assume that the expert can provide only quite limited beliefs, e.g. only one or two percentiles 
of a distribution rather than the complete distribution. We show how to do this in such a way 
that useful results are still obtained. The modeling trade-off here is between the restricted 
prior beliefs being too minimal to be useful, and their being so extensive as to place 
impossible demands upon the expert. 
Throughout our modeling here, as in previous work, the approach is one that guarantees that 
the eventual top-level claims about a system’s dependability are conservative, as seems 
necessary for the safety-critical applications that we have in mind. We do this as follows. For 
any particular restricted set of expert prior beliefs – e.g. one or two percentiles in the case of 
prior beliefs about a single parameter – there will be an infinite number of complete prior 
distributions satisfying these constraints. We can think of any one of these as satisfying the 
expert’s limited expressed beliefs. In section 4.2 below, we extend essentially the same idea 
to the case of two unknown parameters, and we believe that, in principle, the same underlying 
reasoning may be found applicable to any vector of unknown system parameters. For two 
parameters, this is not necessarily equivalent merely to eliciting one or more marginal 
percentiles for each parameter in turn, since the expert might believe in an association 
between them (a form of subjective belief that has elsewhere been termed “epistemic 
correlation”) which he might also wish to express, in some limited way. In either case, 
whether for a single parameter or for multiple unknown parameters, we show how to choose 
the single constraint-complying prior (whether univariate or multivariate) that provides the 
most conservative posterior beliefs about the probability of (im)perfection (Strictly speaking, 
there may be more than one prior that produce this same result -but there is none that is more 
conservative than the one that we present in a later section). Use of this extreme prior then 
guarantees conservatism of the final results. These priors turn out to be ones that have non-
zero probability mass at only a few points – see also (Bishop, Bloomfield et al. 2011). 

2. A general doubly stochastic hierarchical model of “process 
quality” evidence 

We begin by describing a general model for learning about the dependability of a system 
using evidence about the efficacy of the development procedures used to build it, obtained 
from observing failure-free operation of previous “similar” systems, built “similarly”. We 
shall then later specialize this general model in order to support claims about perfection. 
The informal scenario we have in mind is the following. We have built a new system. We 
want to predict its reliability (including its possibility of perfection). We have some 
information about this system, e.g. it has survived a number of tests without failure. We also 
have similar evidence from previous similar systems. We wish to use all this evidence to 
predict the reliability of our current system. The informal idea here is that there is a common 
development process for all systems that are addressing “similar” problems. The process thus 
can be thought of as generating a possible population of systems, of which the current one – 
the one that interests us – is an instance. Knowledge of the population thus informs our 
judgment of this system. 
More particularly, and more formally, we shall consider here the case where the “evidence” 
for each system is just the record of outcomes (success or failure) for the demands that it has 
experienced during its lifetime: see Figure 1. This evidence thus supports the kind of informal 
claim (see Section 1) that we have seen used by builders of safety-critical systems: “trust us 
to have built this system right because we have built similar ones in the past, using similar 
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procedures, and here’s the evidence of their success, i.e. evidence of the success of our 
design-and-build process that was used to build this system.” 
Our aim is to formalize such reasoning, and to do so we shall begin by assuming the 
following doubly stochastic model.  
At the first level of the model, for each system, Ai, the successes/failures on successive 
demands will form a Bernoulli process. That is, successive demands of system Ai fail 
independently, with probability Pi, say. Thus, if system Ai has executed a known number ni of 
demands, and Pi=pi, the (random variable) number of failures Wi has the binomial 
distribution Bnl(pi, ni) given Pi=pi: 

iii wn
i

w
i

i

i
iii pp

w
n

~pnW −−







)1(,|                    (2.1) 

 

 
 
Figure 1. Evidence from (k-1) previous “similar” systems’ behaviour to support a claim about the k-th novel (but 
“similar”) system. 
 

The process generates different systems, Ai, and these different systems will have different 
pfds, pi. In this second level of the doubly stochastic model, we assume that these system 
failure probabilities are sampled independently from a distribution, f. More precisely, the Pi 
are independent, identically distributed random variables  

)|(| θθ pf~Pi           (2.2) 

from some parametric family of distributions )|( θpf  that is characterized by the parameter θ 
(which may be a vector).  
A distribution f from this family (i.e. having a particular, but likely unknown, value of the 
parameter θ) can be thought of as characterizing the development process, as far as its ability 
to produce reliable systems is concerned. More precisely, it characterizes the reliability 
variation between systems that come from the same development process (i.e., that have the 
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same value of the parameter θ). Thus if it were a highly concentrated distribution (i.e. has a 
very small variance), the process could be regarded as consistent, inasmuch its products 
would have reliabilities that differed little from one another. If most of the probability mass 
of the distribution f were near the origin, the system probabilities of failure would all tend to 
be small – i.e. the process would be “a good one”, producing mainly reliable products. 
In this reliability model, building a system using this particular process can be thought of as 
randomly selecting a pfd from a population with distribution f. We shall be interested here in 
the case where there is a possibility of a chosen system being perfect – i.e. its pfd is zero. In 
fact our interest will centre on the probability of this event, which is just the probability mass 
of f concentrated at the origin. 
Initial uncertainty about inter-product variation in this Bayesian model is represented by the 
prior distribution for the parameter θ: 

            (2.3) 

Figure 2 shows the two-stage (what we have called doubly stochastic) dependency model. 
The only random variables (those with upper case letters in the figure) that are observable 
here are the Wi. Consider, however, the following thought experiment. First, for each 
particular system Ai let ; it is easy to see that the ratio wi/ni converges to the true (but 
unknown, unobservable) probability of failure on demand, pi. Now imagine generating k 
systems – i.e. randomly and independently selecting k probabilities of failure on demand, {pi}, 
from f – and let . This generates an infinite number of systems, and thus an infinite 
random sample of pfds, pi. A histogram of these pis will converge to the true (but unknown) 
distribution f =f (p|θ), and we shall therefore know the value of θ with certainty. 
 

 
Figure 2. The dependency model. Note that the realisations of the random variables {Wi}(Zhao 2015, Zhao 2017) 
will be observable here; those of {Pi} and Θ will not. 
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We have defined here a model in which the parameter θ can be thought of as characterizing a 
family of systems generated by a particular process. For a system chosen at random from a 
particular family (i.e. particular θ) and observed for n demands, it follows that (W, P) has the 
joint distribution 

)|()1(,|),( θθ pfpp
w
n

~nPW wnw −−







                (2.4) 

given n and θ. Integrating (2.4) over p gives 

∫ −−






 1

0

)|()1(,| dppfpp
w
n

~nW wnw θθ                 (2.5) 

Informally, our uncertainty about the process is just uncertainty about f. This in turn is just 
uncertainty about θ. So we need to “learn” about θ, which we can do via Bayes’ Theorem 
when we have collected evidence from the testing of multiple systems. So, if for k systems 
we have seen wi failures in ni demands (i=1, 2, ..., k), the likelihood function for θ is 

∏ ∫
=
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−

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
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)|()1(),;( θθ                  (2.6) 

from which, with (2.3), we can obtain the posterior distribution for θ.  
Rather than continue this account with the full general model, we shall now illustrate the 
ideas via a very simple example. In particular, here the parameter θ will be specialised to 
represent the probability of perfection, upon which our interest centres. 

3. A simple example using two-point distribution as f(p|θ) 
We consider a simple case of a two-point distribution of 𝑓𝑓(𝑝𝑝|𝜃𝜃) with θPP mass at origin 
(representing probability of perfection) and 1 − 𝜃𝜃𝑃𝑃𝑃𝑃 mass at π, as in Figure 3. 

pfd1π 0

θPP 

1- θPP   

f(p|θ )

 
Figure 3 two-point f distribution 

Here, for simplicity, π is assumed to be known. This is, of course, unrealistic, but will suffice 
for this simple illustration. It follows that the parameter θPP, representing probability of 
perfection, on its own completely characterises the distribution f. That is, θPP alone is the 
parameter θ in the previous section, at the process level, that determines the development 
process quality.  
Our interest is in the posterior distribution of probability of perfection, say 𝜃𝜃𝑃𝑃𝑃𝑃∗ , having seen 
evidence from the successful operation of several products as shown in Figure 1. If an expert 
were able to provide a complete prior distribution, say g(θPP), he can simply use Bayes’ 
theorem to obtain this posterior distribution. Assuming the k systems have each executed n 
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demands without failure (we refer to this as the “process evidence” in what follows, for 
notational simplicity), we have 

𝜃𝜃𝑃𝑃𝑃𝑃∗ ~𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃|process evidence) = 𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃;process evidence)𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)

∫ 𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃;process evidence)𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
1
0

     (3.1) 

where the likelihood function is: 
𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃; process evidence) = [𝜃𝜃𝑃𝑃𝑃𝑃 + (1 − 𝜋𝜋)𝑛𝑛(1 − 𝜃𝜃𝑃𝑃𝑃𝑃)]𝑘𝑘     (3.2) 
As we have argued elsewhere (Bishop, Bloomfield et al. 2011, Zhao 2015) it is generally 
unreasonable to expect an expert to be able to provide a complete g(θPP) as prior. But it is 
often feasible to express some precise but partial beliefs about the unknown θPP. We now 
examine, as an example, the very simple case of knowing only one percentile of θPP.  

3.1 One percentile of θPP as prior partial belief 
In this case, the assessor can only tell us one percentile of θPP as his prior belief, i.e. the 
confidence bound (𝑦𝑦,𝛼𝛼𝜃𝜃): 
𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦) = 𝛼𝛼𝜃𝜃                           (3.1.1) 
To use the results of (Littlewood and Rushby 2012, Littlewood and Povyakalo 2013) – see 
equations (1.2) and (1.3) – we need a posterior confidence bound. If we had a complete prior 
distribution, this would be  

        (3.1.2) 

where g is the prior distribution as before, and L is the likelihood function in equation (3.2). 
Now in general there will be an infinite number of prior distributions satisfying (3.1.1). The 
question is which of these gives us the most conservative (i.e. maximum3) 𝛼𝛼𝜃𝜃∗. 
We can show that (see Appendix 1 for proof) all the mass of the most conservative prior 
𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃) collapses to the point y, as in Figure 4. Therefore, starting with only one percentile 
prior (3.1.1), we cannot learn about 𝜃𝜃𝑃𝑃𝑃𝑃 from process evidence, i.e. 𝛼𝛼𝜃𝜃 = 𝛼𝛼𝜃𝜃∗. 
 

1y0

αθ 
1- αθ

g(θPP  )

θPP  
Figure 4 the most conservative prior of 𝜽𝜽𝑷𝑷𝑷𝑷 

This case is, of course, unhelpful. The extremely minimal prior belief here is too minimal to 
provide useful learning from the multiple product evidence. We therefore now consider the 
case in which the expert can provide two percentiles of θPP as prior belief. 

                                                 
3 P(θPP<y)=αθ equals to P(1-θPP≤1-y)=1-αθ, so αθ is essentially the doubt that pnp (probability of non-perfection) 
is smaller than a certain bound. We want this doubt to be small, so it is conservative to maximize it. 
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3.2 Two percentiles of θPP as prior belief 
Consider the case where we have two percentiles of g(θPP), i.e. the confidence bounds 
𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦1) = 𝛼𝛼𝜃𝜃1  and 𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦2) = 𝛼𝛼𝜃𝜃1+𝜃𝜃2 = 𝛼𝛼𝜃𝜃1 + 𝛼𝛼𝜃𝜃2 , as in Figure 5. The 
corresponding posterior confidence bounds in terms of a complete prior distribution g are: 

         (3.2.1) 

            (3.2.2) 

where again 𝐿𝐿 is the likelihood function (3.2). 
 

1y2
0

y1

g(θPP  )

θPP 

area αθ1 area αθ2 

 
Figure 5 Two percentile constraints of θPP as priori belief 

 
We can show (see Appendix 2) that the most conservative prior distributions satisfying the 
two expert belief constraints are the point-mass distributions in Figure 6. The corresponding 
most conservative posterior confidence results, 𝛼𝛼𝜃𝜃1∗  and 𝛼𝛼𝜃𝜃1+𝜃𝜃2∗  (keeping the same bounds, y1 
and y2) are: 

)(
)1)((
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θPP 
1y20 y1

g(θPP  )

θPP 

αθ1 
αθ2 

1-αθ1-αθ2 

θPP 
1y20 y1

g(θPP  )

θPP 

αθ1 

αθ2 
1-αθ1-αθ2 

 
Figure 6 The most conservative prior distributions giving results (3.2.3) and (3.2.4) respectively 
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Table I gives some numerical results based on different values of the various model 
parameters. 
Consider case #1, with some arbitrary but not unreasonable numbers for the parameters. Here 
we do learn something from the process evidence (10 similar products that each passed 10000 
tests). However, even though the results are better than the “learn-nothing” results in section 
3.1, the two posterior confidence bounds on 𝜃𝜃𝑃𝑃𝑃𝑃  are still very unhelpful: the decrease of 
doubts from priors to posteriors (i.e. comparing the columns 𝛼𝛼𝜃𝜃1 with 𝛼𝛼𝜃𝜃1∗  and 𝛼𝛼𝜃𝜃1+𝜃𝜃2 with 
𝛼𝛼𝜃𝜃1+𝜃𝜃2∗ ) is quite limited.  
 
 
 

Table I Numerical examples of the case with prior beliefs expressed in terms of two percentiles  

Case 
# 𝑦𝑦1 𝛼𝛼𝜃𝜃1 𝑦𝑦2 𝛼𝛼𝜃𝜃1+𝜃𝜃2 𝜋𝜋 𝑛𝑛 𝑘𝑘 𝛼𝛼𝜃𝜃1∗  𝛼𝛼𝜃𝜃1+𝜃𝜃2∗  

1 0.9 0.05 0.99 0.1 0.001 10000 10 0.020540109 0.071473861 

2 0.9 0.05 0.99 0.1 0.001 10000 50 0.000472913 0.053056233 

3 0.9 0.05 0.99 0.1 0.001 1000000 10 0.02053921 0.071473018 

4 0.9 0.05 0.99 0.1 0.01 10000 10 0.02053921 0.071473018 

5 0.5 0.05 0.7 0.1 0.001 10000 10 0.001913788 0.054352684 

6 0.9 0.05 0.99 0.1 0.000001 10000 10 0.04959824 0.099598419 

7 0.9 0.05 0.99 0.1 0.000001 10000 50 0.048019803 0.098024151 

8 0.9 0.05 0.99 0.1 0.000001 1000000 50 0.002897123 0.055239721 

9 0.9 0.05 0.99 0.1 0.000001 1000000 10 0.029020956 0.079498839 

 
 
Cases #2 and #3 consider the impact of increases in k and n, respectively. The benefit of 
increasing k (from 10 to 50) is much greater – two orders of magnitude – than increasing n 
(from 104 to 106), even though the total number of tests (i.e. the number k*n) for case #2 is 
500000 which is much less than the 10000000 tests in case #3. The latter observation should 
not be taken as a guide to the relative “cost” of the two scenarios, however, since the number 
of test cases is a poor guide to the “cost” of gaining the evidence in these two cases: 
developing many systems is far more onerous than generating many test cases.  
The importance of k here is not surprising. It seems intuitively obvious that “all things being 
equal” we learn more about the efficacy of the process by having evidence of good working 
from many products, than we do from massive exposure of only a few products. In practice, 
of course, it seems unlikely there will be available very many previous products to provide 
this kind of evidence. 
Another observation that confirms intuition is that the weaker the claims are, the greater the 
confidence we could obtain from process evidence. Consider case #5: the claim 𝜃𝜃𝑃𝑃𝑃𝑃 < 0.5 is 
weaker than it is for the previous cases (𝜃𝜃𝑃𝑃𝑃𝑃 < 0.9), so seeing the same evidence (n=10000, 
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k=10), we learn more in this case. Notice also that for each case the improvement for 𝛼𝛼𝜃𝜃1∗  is 
better than for 𝛼𝛼𝜃𝜃1+𝜃𝜃2∗ . Again, this is because the claims (i.e. 𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦1)) for 𝛼𝛼𝜃𝜃1∗  are 
weaker than the ones for 𝛼𝛼𝜃𝜃1+𝜃𝜃2∗  (i.e. 𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦2)).  
We shall not pursue analysis of Table I any further here, since this set-up with the two-point f 
distribution is unlikely to be a realistic representation of reality; it was meant only to be an 
illustrative aid to understanding.  
However, the reader will note that, even for this unrealistically simple example, there are 
differences between the results of Sections 3.1 and 3.2. The very restricted prior beliefs of 
Section 3.1 do not allow any useful learning from the evidence of failure-free working of 
multiple systems; the slightly more informative prior beliefs of Section 3.2, in contrast, 
provide some modest learning. An important issue in this kind of study is identifying exactly 
how minimal prior beliefs can be – to aid the task of the assessor – without being too minimal 
to give useful results. In the following section we introduce a more plausible model to 
investigate such issues. 

4. More practical assumption of an arbitrary f distribution with 
mass at the origin 

In Figure 7 we show a schema of the different layers of our model that need to be populated 
to enable its use.  
At the bottom is the “behaviour level” that describes the aleatory uncertainty about failures 
or successes on demand of a system. Each system has a pfd that determines whether a 
randomly selected demand will result in failure (or not), and successive demands are assumed 
to fail independently – all as described in Section 2.  
This pfd of a (randomly chosen) system is determined at the middle “product level” of Figure 
7: for different products, these pfds are independent and identically distributed random 
variables from a distribution f(p|θ), characterized by a (possibly vector) parameter, θ.  
 

Process level

Product level

Behavior level

1...k

1...n

θ~ 
g(θ) 

Pi~  
f(p|θ )

Fail or 
Pass

How good 
is the 

process

i.i.d. pfd 
dis.

Testing 
evidence

 
 

Figure 7 Schema for the different stages of our model. 
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This parameter, θ, is unknown. Our statistical inference – based upon evidence from the 
testing of several products – concerns this parameter at what we have called the “process 
level” of the Figure 7 schema. This statistical inference will proceed automatically, via Bayes’ 
Theorem, starting from the expert’s prior distribution, g(θ). 
In the previous section, to illustrate the general approach, we showed an analysis based on an 
unrealistic two-point-mass distribution f at the middle level of the schema; in this section we 
propose a way to treat this middle layer of the model more realistically. Readers will note, 
however, that even with the unrealistic “product level” simplification of Section 3 – where 
the only unknown quantity is θpp – there arise quite difficult problems concerning prior 
beliefs.  
What would be a reasonable assumption about f? Clearly, this must have mass at the origin, 
θpp, since this is the centre of our interest. But what happens in (0,1]? Having probability 
mass only at the point π – with no probability density anywhere else in the interval – as in 
Section 3, is clearly unbelievable. In fact non-zero probability mass at any point in (0,1] 
seems unbelievable.  Most experts, we think, would be prepared to say that f had an 
absolutely continuous density for positive values of pfd.  
An obvious “classical” approach then would be to assume a parametric family for this density. 
E.g. we could assume that p had a (conditional, given p>0) Beta distribution with parameters 
(α,β). In that case the unknown model parameter at the top level of the Figure 7 schema 
would be θ=(θpp,α,β).  
There are problems with such an approach, however. Most importantly, it is hard to justify 
the choice of a Beta (or any other) parametric family. Additionally, experts would find it hard 
to express their prior beliefs about the vector (θpp,α,β). In what follows, therefore, we 
propose a different way forward that does not rely on such a parametric assumption; in fact 
no assumptions are made about the shape of the distribution f for non-zero p. 

4.1 The introduction of R 
We consider an unknown arbitrary distribution f with some mass ( 𝜃𝜃𝑃𝑃𝑃𝑃) at the origin. Our 
objective function is: 

𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦| process evidence) =
𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦 and process evidence)

𝑃𝑃(process evidence)

=
𝐸𝐸𝑓𝑓(𝐼𝐼𝜃𝜃𝑃𝑃𝑃𝑃<𝑦𝑦(𝑓𝑓) × 𝑃𝑃(process evidence|𝑓𝑓))

𝐸𝐸𝑓𝑓(𝑃𝑃(process evidence|𝑓𝑓))
 

where 𝐼𝐼𝜃𝜃𝑃𝑃𝑃𝑃<𝑦𝑦(𝑓𝑓) is an indicator function using all possible f as inputs. When the mass at the 
origin of a f is less than y, 𝐼𝐼𝜃𝜃𝑃𝑃𝑃𝑃<𝑦𝑦(𝑓𝑓) = 1, otherwise 0. 𝐸𝐸𝑓𝑓 is the expectation over all possible 
f. The use of the indicator function 𝐼𝐼𝜃𝜃𝑃𝑃𝑃𝑃<𝑦𝑦(𝑓𝑓) ensures the mean value in the numerator only 
involves those possible f having a mass at the origin less than y. 
Now4 

𝑃𝑃(process evidence|𝑓𝑓) = �𝜃𝜃𝑃𝑃𝑃𝑃 + � (1 − 𝑝𝑝)𝑛𝑛𝑓𝑓(𝑝𝑝|𝜃𝜃)
1

0+
𝑑𝑑𝑝𝑝�

𝑘𝑘

 

                                                 
4 The notation of 0+  in the following integral means the integral over the set which is the half open interval 
(0,1]; and similarly for y- in the later sections of the paper 
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So if we denote5  

𝑅𝑅 = ∫ (1 − 𝑝𝑝)𝑛𝑛𝑓𝑓(𝑝𝑝|𝜃𝜃)1
0+ 𝑑𝑑𝑝𝑝                 (4.1.1) 

then 
𝑃𝑃(process evidence|𝑓𝑓) = [𝜃𝜃𝑃𝑃𝑃𝑃 + 𝑅𝑅]𝑘𝑘               (4.1.2) 
which is a function only of the pair  < 𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅 >. And in principle the joint distribution of 
𝜃𝜃𝑃𝑃𝑃𝑃 and 𝑅𝑅 , say 𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅> , could be calculated from the 𝑔𝑔(𝜃𝜃)  (i.e. the distribution of all 
possible f).  

𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦| process evidence) =
𝐸𝐸𝑓𝑓 �𝐼𝐼𝜃𝜃𝑃𝑃𝑃𝑃<𝑦𝑦(𝑓𝑓) × 𝑃𝑃(process evidence|𝑓𝑓)�

𝐸𝐸𝑓𝑓�𝑃𝑃(process evidence|𝑓𝑓)�
 

=
𝐸𝐸<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅>�𝐼𝐼𝜃𝜃𝑃𝑃𝑃𝑃<𝑦𝑦(𝜃𝜃𝑃𝑃𝑃𝑃) × [𝜃𝜃𝑃𝑃𝑃𝑃 + 𝑅𝑅]𝑘𝑘�

𝐸𝐸<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅>([𝜃𝜃𝑃𝑃𝑃𝑃 + 𝑅𝑅]𝑘𝑘)  

                   (4.1.3) 

which depends only on the joint distribution of 𝜃𝜃𝑃𝑃𝑃𝑃 and 𝑅𝑅, say 𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅>. 

The importance of this result is obvious. The problem of how to deal with f at the “product 
level” of Figure 7 has been transformed into a problem at the “process level”. Most 
importantly, no assumptions about the shape of f for non-zero p have been made. Instead an 
expert “only” has to express joint prior beliefs about the pair of parameters 𝜃𝜃𝑃𝑃𝑃𝑃  and R. 
Mathematically, R is sufficient to represent the non-zero part of f in terms of Bayesian 
learning about the probability of perfection (Note the similarity of this observation to the 
concept of sufficient statistic in classical statistics; see, for example (Lehmann and Cassella 
2003)). 
We use quotes for “only” in the previous paragraph because this remaining problem 
concerning prior beliefs is not a simple one. Certainly, it would be unreasonable to expect an 
expert to have a complete bi-variate distribution 𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅> for his prior beliefs. As we have 
discussed elsewhere (Bishop, Bloomfield et al. 2011), experts have great difficulty expressing 
beliefs about dependence, and even providing complete marginal prior distributions.  
In what follows, then, we shall obtain results that require only marginal prior beliefs about 
the unknown model parameters, and these marginal beliefs will themselves be only partial – 
typically only one or two percentiles. Of course, reducing the burden on experts in these ways 
introduces further conservatism in the results (as in, for example, (Littlewood and Povyakalo 
2013)). 
Particularly problematic here is the parameter R. R is the probability that a randomly selected 
product from the development process is not perfect and passed n tests. We shall discuss later 
in the paper the difficulties of expressing prior beliefs about R (and about 𝜃𝜃𝑃𝑃𝑃𝑃 ); in the 
following sections, in order to develop the theory further, we shall take it that it is possible to 
express partial marginal prior beliefs about these two parameters. 

                                                 
5 Strictly, since it is a function of n, it would be more precise to talk of R(n) here and in what follows. We shall 
use R instead just for notational simplicity.  
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4.2 Bayesian learning with one marginal percentile of θPP and R 
respectively 
As in Section 3, we consider here first the case where an expert assessor is able to provide 
only very minimal prior beliefs about the unknown parameters. Specifically he is only 
prepared to provide the four numbers that constitute a single marginal percentile for each: 

θγθ =< )( yP PP                 (4.2.1) 

rrRP γ=< )(                  (4.2.2) 

To illustrate our approach, we restrict ourselves to what we consider to be the case most 
likely to crop up in practice, in which y+r≤1. (The reasoning in other cases is similar, but 
with some tedious differences of detail.) 
As we explained in Section 1, at the end of introductory remarks about our approach, 
although a standard Bayesian analysis would here require an expression of full prior beliefs 
about a pair, now, of parameters  𝜃𝜃𝑃𝑃𝑃𝑃 and R, we continue instead to pursue our less ambitious  
“conservative” treatment. This involves working from only the partial elicitation of this 
bivariate prior represented by constraints (4.2.1) and (4.2.2). Although not fully elicited, our 
approach nevertheless reasons with the concept of the potential bi-variate prior distribution. 
We shall denote such a hypothetical bi-variate joint distribution, of 𝜃𝜃𝑃𝑃𝑃𝑃 and R, by 𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅> 
illustrated in Figure 8. Because of the constraint 𝜃𝜃𝑃𝑃𝑃𝑃 + 𝑅𝑅 ≤ 1, this distribution would have 
non-zero density only beneath the broken line connecting (0,1) and (1,0). In this triangle we 
label the probability masses associated with the four regions in the figure M1, M2, M3, M4. 
Then we have 𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦) = 𝛾𝛾𝜃𝜃 = 𝑀𝑀1 + 𝑀𝑀3 and 𝑃𝑃(𝑅𝑅 < 𝑟𝑟) = 𝛾𝛾𝑟𝑟 = 𝑀𝑀1 + 𝑀𝑀2.  
To assist with interpretation of Figure 8, note that the quantity 1 − 𝜃𝜃𝑃𝑃𝑃𝑃 − 𝑅𝑅 is the probability 
that a randomly selected product will fail one or more of the n tests applied to it. 
In the figure this is simply the vertical (or horizontal6) distance of a point (𝑅𝑅,𝜃𝜃𝑃𝑃𝑃𝑃) of this 
distribution’s support set below (respectively, to the left of) the dashed 45o-line. 
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Figure 8 The prior constraints (4.2.1) and (4.2.2) on the joint distribution of 𝜽𝜽𝑷𝑷𝑷𝑷 and R 

 
Our interest lies in the posterior confidence bound for 𝜃𝜃𝑃𝑃𝑃𝑃: 

                                                 
6 The two distances are equal. 
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𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦| 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑒𝑒𝑒𝑒𝑑𝑑𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝) 

=
∫ ∫ (𝐼𝐼𝜃𝜃𝑃𝑃𝑃𝑃<𝑦𝑦(𝜃𝜃𝑃𝑃𝑃𝑃) × [𝜃𝜃𝑃𝑃𝑃𝑃 + 𝑅𝑅]𝑘𝑘)𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅>(𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃𝑑𝑑𝑅𝑅

1
0

1
0

∫ ∫ [𝜃𝜃𝑃𝑃𝑃𝑃 + 𝑅𝑅]𝑘𝑘𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅>(𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃𝑑𝑑𝑅𝑅
1
0

1
0
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Figure 9 The most conservative joint prior distribution satisfying the constraints (4.2.1) and (4.2.2) 

 
We can show (see Appendix 3) that the most conservative joint prior, g, satisfying the 
expert’s constraints (4.2.1) and (4.2.2) is the 4-point-mass distribution shown in Figure 9, the 
black dots, P1, P2, P3, P4, representing the probability masses of the related value ranges. So 
that, for example, these four points’ weighted mean distance (vertically or horizontally) from 
the dashed 45o-line is the prior subjective probability of the event that a randomly selected 
product will fail one or more of the first n tests applied to it, in the judgement of a 
hypothetical expert who happens to possess exactly this “most conservative” bivariate prior 
distribution. The corresponding most conservative posterior confidence bound for 𝜃𝜃𝑃𝑃𝑃𝑃 is: 

          (4.2.3) 

So 𝛾𝛾𝜃𝜃∗  is the guaranteed-conservative posterior bound for the probability of perfection, 𝜃𝜃𝑃𝑃𝑃𝑃. 
Of the infinite number of prior distributions satisfying the expert’s prior constraints (4.2.1) 
and (4.2.2), none result in a value for 𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦| 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑒𝑒𝑒𝑒𝑑𝑑𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝) smaller than this. 
Table II shows some numerical examples.  
 

Table II numerical examples of the “counter-intuitive” results 

Case # y γ𝜃𝜃 r γ𝑟𝑟 k 𝛾𝛾𝜃𝜃∗  

1 0.9 0.05 0.09 0.05 10 0.056729362 

2 0.9 0.05 0.099 0.05 10 0.052166239 

3 0.99 0.05 0.009 0.05 10 0.050696597 

4 0.99 0.05 0.0099 0.05 10 0.050285647 
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In fact, Table II shows some very counter-intuitive results: in all cases we find that 𝛾𝛾𝜃𝜃∗ > γ𝜃𝜃. 
That is, observing “good news” process evidence (failure-free working of k products) results 
in the posterior belief in perfection being worse than the prior belief.  
In the next section we discuss the reasons for this result – essentially we show that the prior 
beliefs here are too minimal to be useful. This analysis suggests that priors be made 
sufficiently “partial” to make the expert’s task feasible, but at the same time sufficiently 
informative to produce useful results.  

4.3 The “counter-intuitive” results 
The results above are “counter-intuitive” because seeing good evidence did not enhance our 
confidence in the positive claim about probability of perfection that interests us; on the 
contrary it increased our doubt. This result is not due to the choice of numbers in the 
examples of Table II: for any valid numbers of the model parameters the “counter-intuitive” 
result (i.e. 𝛾𝛾𝜃𝜃∗ > γ𝜃𝜃) will apply.  
To understand this result, consider the most pessimistic prior distribution (satisfying the 
percentile constraints (4.2.1) and (4.2.2)), in Figure 9. 
As shown in Appendix 3, this is a bi-variate distribution with probability mass concentrated 
on four points: P1 at (r-, y-)7, P2 at (0, y), P3 at (1-y, y-) and P4 at (r, y). The corresponding 
masses at these points are M1, M2, M3, M4 respectively. The effect of seeing more and more 
process evidence is that in the posterior distribution the masses at P2, P1 and P4 all gradually 
move to P3. Since P3(1-y, y-) is below the line  𝜃𝜃𝑃𝑃𝑃𝑃=y, it follows that  
𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦| process evidence) > 𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦)  
will always hold.  
What does this mean practically? The four points of probability mass in Figure 9 can be 
thought of as representing four different development processes:  

• The points P1 and P4 represent very similar processes that produce some (100y%) 
perfect, some (100r%) reliable (but not perfect) and some (100(1-y-r)%) unreliable 
products. 

• The P2 process produces some (100y%) perfect, no (0%) reliable (but not perfect) and 
many (100(1-y)%) unreliable products. 

• The P3 process produces some (100y%) perfect, many (100(1-y)%) reliable (but not 
perfect) and no (0%) unreliable products. 

As we accumulate evidence of only good working, we tend to believe more strongly that our 
development process is P3, i.e. the one with no unreliable products. That is, seeing good 
process evidence we tend to rule out processes producing unreliable products. And in our 
worst case, the only process producing no unreliable products is P3. But P3’s ability to 
produce perfect products is lower than what we want to claim (as the ordinate is y- which is 
smaller than y). Therefore, believing more strongly in the process P3 means having increasing 
doubt that the probability that randomly selected software from the process is not perfect is 
lower than a claimed bound. 
But why are there only these 4 development processes as candidates here? Ideally, for 
example, there could be a development process producing many perfect products, based on 

                                                 
7 Note the difference with (r, y): (r-, y-) is the coordinate infinitesimally close to (r, y) but smaller than r and y in 
both directions. The minus signs used here and later means smaller but infinitesimally close to the number.  
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the very best practices and design principles of utmost simplicity. If we had a prior belief that 
there exists this kind of process (even with very small probability), we would expect helpful 
support from the evidence to increase our confidence about the probability of perfection. 
Unfortunately, prior belief in the possibility of this kind of “perfection favoured” 
development process is ruled out due to the conservative nature of our method. That is, 
starting with the very minimal prior belief of only one marginal percentile of θPP and R 
respectively (i.e. constraints (4.2.1) and (4.2.2)), the most conservative joint prior distribution 
does not allow the possibility of “perfection favoured” process.  
The counter-intuitive results, then, arise because in our pursuit of simplicity to aid the 
expert’s task, we have allowed an expert to express partial prior beliefs that are too minimal. 
In what follows we suggest to relax this minimalism slightly: the cost, of course, is a heavier 
burden on the expert in expressing prior beliefs.  

4.4 Using less minimal prior knowledge to get useful results 
As discussed above, the most conservative prior distribution in Figure 9 did not include the 
possibility of a development process producing many perfect software products. 
Mathematically, this is due to the possibility for the marginal distribution of 𝜃𝜃𝑃𝑃𝑃𝑃 to have zero 
variance (since only one prior percentile of 𝜃𝜃𝑃𝑃𝑃𝑃 has been specified). Thus in the worst case, 
the marginal distribution of 𝜃𝜃𝑃𝑃𝑃𝑃 will conservatively collapse onto one point (the y point of the 
vertical axis in Figure 9). Informally this collapsing means all our candidate development 
processes have the similar capability to produce perfect products. Therefore the assessor will 
believe that the good process evidence is only due to high reliability property of the process. 
Unfortunately, in our worst case (Figure 9), the one having the highest reliability property is  
one having slightly less capability of producing perfect products than our interest. 
By extending our priors about 𝜃𝜃𝑃𝑃𝑃𝑃 to at least two percentiles, we rule out the possibility of a 
prior having zero variance and so stop the collapsing onto a single point of the marginal 
distribution of 𝜃𝜃𝑃𝑃𝑃𝑃 . So, we would have candidate processes with different capabilities of 
producing perfect products. Now perfection property might be thought to be the reason for 
seeing good process evidence. However, due to the conservative nature of our method, the 
“perfection favoured” process in our priors also tends to produce unreliable products, and the 
“high reliability (but not perfect) favoured” process will never produce unreliable products. 
So the “high reliability (but not perfect) favoured” process will always be preferred in the 
Bayesian learning. But this is obviously unrealistic, as no process will never produce 
unreliable products. So there must be an upper bound on R to make room for the possibility 
of unreliable products produced in all possible candidate processes. 
We propose, therefore, a new (less) minimal partial prior belief about the model parameters 
in terms of two percentiles for 𝜃𝜃𝑃𝑃𝑃𝑃 and one percentile and a certain upper bound for R: 
𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦1) = 𝛾𝛾𝜃𝜃1                  (4.4.1) 
𝑃𝑃(𝑦𝑦1 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦2) = 𝛾𝛾𝜃𝜃2                 (4.4.2) 
𝑃𝑃(𝑅𝑅 < 𝑟𝑟) = 𝛾𝛾𝑟𝑟                  (4.4.3) 
𝑃𝑃(𝑅𝑅 < 𝑟𝑟𝑈𝑈) = 1                 (4.4.4) 
The intention is that this set of prior beliefs may be sufficiently rich to produce useful results 
whilst still imposing upon an expert a manageable task in their expression. Figure 10 shows 
these prior beliefs, where the regions M1, M2,…M6 contain non-zero probability mass. (Note 
that the position of the vertical line at 𝑟𝑟𝑈𝑈  in Figure 10 is just for illustration; its precise 
location will be discussed in more detail later) 
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Figure 10 The minimum useful priori constraints on the joint distribution of 𝜽𝜽𝑷𝑷𝑷𝑷 and R 

From the definition of R, there is the constraint θ𝑃𝑃𝑃𝑃 + 𝑅𝑅 ≤ 1 which derives the other two 
implicit constraints y1 + r < 1 and y2 + r < 1.  
The possible range of values of the certain upper bound 𝑟𝑟𝑈𝑈 are: 1 − y1 ≤ r𝑈𝑈 < 1, 1 − y2 ≤
r𝑈𝑈 < 1 − 𝑦𝑦1 and r ≤ r𝑈𝑈 < 1 − 𝑦𝑦2. In Appendix 4 we show that useful results can be obtained 
only when the objective function is 𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦1| 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑒𝑒𝑒𝑒𝑑𝑑𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝)8  and r𝑈𝑈  lies in the 
range 1 − 𝑦𝑦2 ≤ 𝑟𝑟𝑈𝑈 < 1 − 𝑦𝑦1  or in the range 𝑟𝑟 ≤ 𝑟𝑟𝑈𝑈 < 1 − 𝑦𝑦2 . The corresponding most 
pessimistic joint prior distributions are in figure 11 and figure 12 respectively. As before 
these are distributions with only a number of point masses. 
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Figure 11 The most conservative prior satisfying the minimum useful priori constraints with 𝟏𝟏 − 𝒚𝒚𝟐𝟐 ≤ 𝒓𝒓𝑼𝑼 < 𝟏𝟏 − 𝒚𝒚𝟏𝟏 

                                                 
8 As we have two prior confidence bounds on θPP, i.e. (4.4.1) and (4.4.2), both of them could be updated and 
potentially used as the input required by the LP model. But by proof, we found that only the former could be 
useful. 
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Figure 12 The most conservative prior satisfying the minimum useful priori constraints with 𝒓𝒓 ≤ 𝒓𝒓𝑼𝑼 < 𝟏𝟏 − 𝒚𝒚𝟐𝟐 

 
With the most conservative prior distributions above, the objective function satisfies the 
formula below: 
𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦1| process evidence)

=
∫ ∫ �𝐼𝐼𝜃𝜃𝑃𝑃𝑃𝑃<𝑦𝑦1(𝜃𝜃𝑃𝑃𝑃𝑃) × [𝜃𝜃𝑃𝑃𝑃𝑃 + 𝑅𝑅]𝑘𝑘�𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅>(𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃𝑑𝑑𝑅𝑅

1
0

1
0

∫ ∫ [𝜃𝜃𝑃𝑃𝑃𝑃 + 𝑅𝑅]𝑘𝑘𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅>(𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃𝑑𝑑𝑅𝑅
1
0

1
0

≤
[𝑦𝑦1 + 𝑟𝑟𝑈𝑈]𝑘𝑘𝛾𝛾𝜃𝜃1

[𝑦𝑦1 + 𝑟𝑟𝑈𝑈]𝑘𝑘𝛾𝛾𝜃𝜃1 + [𝑦𝑦1 + 𝑟𝑟]𝑘𝑘𝛾𝛾𝜃𝜃2 + 𝑦𝑦2𝑘𝑘𝛾𝛾𝑟𝑟 + [𝑦𝑦2 + 𝑟𝑟]𝑘𝑘(1 − 𝛾𝛾𝑟𝑟 − 𝛾𝛾𝜃𝜃2 − 𝛾𝛾𝜃𝜃1) = 𝛾𝛾𝜃𝜃1∗  

 
 
 
 
(4.4.5) 

That is, 𝛾𝛾𝜃𝜃1∗  is the most conservative posterior belief we are interested in.  
Thus, for example, the pair (1 − 𝑦𝑦1, 𝛾𝛾𝜃𝜃1∗ ) could be used as the input pair (𝑝𝑝𝐵𝐵,𝛼𝛼𝐵𝐵) of the LP 
model (Littlewood and Povyakalo 2013) as in equations (1.2) and (1.3) in Section 1.  
Table III shows some numerical examples. The first 4 cases are illustrating the results with 
constraint 1 − 𝑦𝑦2 ≤ 𝑟𝑟𝑈𝑈 < 1 − 𝑦𝑦1 and the rest of them are about the ones with constraint 𝑟𝑟 ≤
𝑟𝑟𝑈𝑈 < 1 − 𝑦𝑦2. 
 

Table III Numerical examples using the “less minimal” prior knowledge 

# y1 γ𝜃𝜃1 y2 γ𝜃𝜃2 r γ𝑟𝑟 r𝑈𝑈 k 𝛾𝛾𝜃𝜃1∗  

1 0.9 0.05 0.99 0.05 0.009 0.05 0.0600 10 0.035391421 

2 0.9 0.05 0.99 0.05 0.009 0.05 0.0999 10 0.052250881 

3 0.9 0.05 0.99 0.05 0.009 0.05 0.0110 10 0.021265865 

4 0.9 0.05 0.99 0.05 0.009 0.05 0.0600 50 0.007679250 

5 0.9 0.05 0.99 0.05 0.009 0.05 0.0095 10 0.020925570 

6 0.9 0.05 0.92 0.05 0.009 0.05 0.0790 10 0.082798474 

7 0.9 0.05 0.99 0.05 0.009 0.05 0.0091 10 0.020835634 

8 0.9 0.05 0.99 0.05 0.009 0.05 0.0095 50 0.000518818 
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The 𝛾𝛾𝜃𝜃1∗  column in Table III contains results that are both bigger and smaller than the prior 
value, 𝛾𝛾𝜃𝜃1 = 0.05. It seems the “less minimal” prior constraints are indeed helpful in some 
cases compared with the counter-intuitive results in the section 4.3, but not universally.  
The two counter-intuitive results happen in cases #2 and #6 in which the certain upper bound 
r𝑈𝑈 is high. Mathematically, there is a competition between the points P3 and P6 in Figures 11 
and 12, in which the result depends on the specific choices of the parameters. The higher the 
certain upper bound r𝑈𝑈, the more likely P3 will be the result. The informal interpretation in 
that case is that we believe more in the P3 process which is producing many “ultra-reliable 
but not perfect” products.  
In contrast, when the result is the P6 process we have our  “perfection favoured” process. 
Cases #4 and #8 get practically useful results which are one and two orders of magnitude 
better that prior belief, respectively. Comparing with case 1 and 5 respectively where only the 
numbers of k vary, there is evidence that, for a certain set of prior numbers, collecting more 
products in the process evidence is very helpful. This is consistent with the conclusion in 
section 3.2, and is in accord with intuition. But our comments about the feasibility of 
observing many previous products still apply. 
Notice that, in contrast to k, we cannot say how the parameter n affects the result, since n is 
now hidden in the subjective beliefs about R. That said, from the definition of R, it is obvious 
that larger n means smaller R.  
Comparing case #3 to case #1 and case #7 to case #5, the smaller values of r𝑈𝑈 here indeed 
give better results; but its impact does not seem as great as that of k.  

4.5 How to use these results? A possible model of negotiation 
We imagine a situation where there is to be negotiation between a regulator and the licensee 
of a system – say a nuclear plant – that contains a critical software-based subsystem. As part 
of the safety case for the plant, the licensee needs to make a claim for “probable perfection” 
of this subsystem. That is, he needs to convince the regulator to accept as reasonable his 
declared confidence that 𝜃𝜃𝑃𝑃𝑃𝑃 is no smaller than some declared number y1.  
Clearly this cannot be done by mere assertion about the licensee’s top-level claim here. It is 
agreed between the regulator and the licensee that their negotiation will take place within the 
framework of our approach outlined above. Our model then allows the discussion between 
them to be a negotiation about the elements of the argument that underpin the regulator’s 
claim: i.e. about numbers for the 7 parameters < 𝑦𝑦1, 𝛾𝛾𝜃𝜃1,𝑦𝑦2, 𝛾𝛾𝜃𝜃2, 𝑟𝑟, 𝛾𝛾𝑟𝑟 , r𝑈𝑈 > needed to obtain 
the conservative posterior bounding confidence, (4.4.5). Recall that there are some 
constraints on the numerical values that these numbers need to satisfy: these constraints must 
be respected in the discussion. 
Rather than say simply “trust me when I declare my confidence in perfection”, the licensee 
says “here are the numbers I used to arrive at my confidence in perfection”. These numbers, 
then, rather than simply the top-level claim, become the subject of discussion and negotiation 
with the regulator. 
Below we sketch briefly how such negotiation might be conducted.  
We begin with a simple monotonicity analysis of the impact of the seven parameters on 𝛾𝛾𝜃𝜃1∗ . 
It is easy to see (by partial differentiation w.r.t. each parameter) that: 

1. 𝛾𝛾𝜃𝜃1∗  is an increasing function in terms of 𝛾𝛾𝜃𝜃1.  
2. 𝛾𝛾𝜃𝜃1∗  is a decreasing function in terms of 𝑦𝑦2.  
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3. 𝛾𝛾𝜃𝜃1∗  is an increasing function in terms of 𝛾𝛾𝜃𝜃2.  
4. 𝛾𝛾𝜃𝜃1∗  is a decreasing function in terms of 𝑟𝑟.  
5. 𝛾𝛾𝜃𝜃1∗  is an increasing function in terms of 𝛾𝛾𝑟𝑟.  
6. 𝛾𝛾𝜃𝜃1∗  is an increasing function in terms of 𝑟𝑟𝑈𝑈.  
7. The monotonicity of 𝑦𝑦1 depends on specific choices of other parameters 

The monotonicity analysis shows how changes to these parameters make claims about 
probability of perfection stronger or weaker: increasing parameters in 1, 3, 5, 6 make the 
posterior bound more conservative. 
Note that 7 parameters are either “bounds” (𝑦𝑦1,𝑦𝑦2, 𝑟𝑟, 𝑟𝑟𝑈𝑈) or their corresponding “confidences” 
(𝛾𝛾𝜃𝜃1, 𝛾𝛾𝜃𝜃2, 𝛾𝛾𝑟𝑟 ) which represent the licensee beliefs. It seems likely that agreement on the 
bounds will be easier, and negotiation will then concentrate on the related confidences. The 
bound 𝑦𝑦1 is a special bound which is essentially the licensee’s claim, his confidence in which 
he is trying to persuade the regulator is acceptable.  
The negotiation could proceed in the following steps: 

• They begin by agreeing on the “claim”, 𝑦𝑦1 : this comes from higher-level system 
requirements. Then the licensee and regulator state their prior beliefs about this claim, 
i.e. values for 𝛾𝛾𝜃𝜃1. 

• Second, licensee and regulator agree on 𝑦𝑦2 and 𝑟𝑟. Then they state their beliefs about 
𝑦𝑦2 and 𝑟𝑟: i.e. values for 𝛾𝛾𝜃𝜃2 and 𝛾𝛾𝑟𝑟.  

• Finally, they negotiate on the 𝑟𝑟𝑈𝑈. 
The following is a simple example of how this might proceed (the numbers are merely 
illustrative and not meant to be representative of those that would occur in a real negotiation 
about a critical system): 

1. The claim concerning probability of perfection is pnp<0.1 (obtained from higher level 
requirements), so the y1=0.9. For 𝛾𝛾𝜃𝜃1 , the licensee’s doubt that the probability of 
perfection is bigger than 0.9 is 0.05, and the regulator’s doubt about it is 0.1. Then 
0.05 ≤ 𝛾𝛾𝜃𝜃1 ≤ 0.1. 

2. Then the two parties fix the 𝑦𝑦2 = 0.99 and 𝑟𝑟 = 0.009 
a. For 𝛾𝛾𝜃𝜃2, the licensee’s doubt that the θpp is bigger than 0.99 is 0.1, and the 

regulator’s doubt about it is 0.2. Then 0.05 ≤ 𝛾𝛾𝜃𝜃2 ≤ 0.1. 
b. For 𝛾𝛾𝑟𝑟, the licensee’s doubt that the R is bigger than 0.009 is 0.05, and the 

regulator’s doubt about it is 0.1. Then 0.05 ≤ 𝛾𝛾𝑟𝑟 ≤ 0.1. 
3. The regulator does not believe that the R will be bigger than 0.0098, and the licensee 

does not believe that R will be bigger than 0.0095. Then 0.0095 ≤ 𝑟𝑟𝑢𝑢 ≤ 0.0098.  

For each confidence/doubt here we have assumed that the regulator will be more conservative 
in his beliefs than the licensee. If the process evidence to form posterior beliefs is based on 
k=50 products, we have the following Table IV: 

 

 



Conservative claims for probability of perfection  

 
 

26 

Table IV An illustrative numerical example of the negotiation model 

y1 γ𝜃𝜃1 y2 γ𝜃𝜃2 r γ𝑟𝑟 r𝑈𝑈 k best 
𝛾𝛾𝜃𝜃1∗  

worst 
𝛾𝛾𝜃𝜃1∗  

0.9 [0.05, 0.1] 0.99 [0.05, 0.1] 0.009 [0.05, 0.1] [0.0095, 0.0098] 50 0.00052 0.0012 
There is a factor of about 2 difference in the doubt of the regulator (“worst” in the Table) and 
the licensee about the claim of perfection. 
The reduction in doubt about probability of perfection bound (i.e. from prior to posterior) is 
about the same for licensee and licensor in this example: around two orders of magnitude in 
each case.  
In the next example, Table V, there is significant variation (about an order of magnitude) 
between the two parties on parameter 𝑟𝑟𝑈𝑈, keeping the other parameters the same as before. 
 

Table V A numerical example of the negotiation model with big variance on rU. 

y1 γ𝜃𝜃1 y2 γ𝜃𝜃2 r γ𝑟𝑟 r𝑈𝑈 k best 
𝛾𝛾𝜃𝜃1∗  

worst 
𝛾𝛾𝜃𝜃1∗  

0.9 [0.05, 0.1] 0.99 [0.05, 0.1] 0.009 [0.05, 0.1] [0.0091, 0.098] 50 0.00051 0.110 

 
Introducing this significant difference in the parties’ views about 𝑟𝑟𝑈𝑈 results in the best and the 
worst result being very different (the worst result even shows the “counter-intuitive” result). 
This suggests that the value of r𝑈𝑈 is critical in negotiation. 
Table VI shows some more results with different parameter values for each party. From this 
limited analysis it seems that prior belief in γ𝜃𝜃1 also has a high impact on the final result. In 
contrast, wide variation in γ𝑟𝑟 and γ𝜃𝜃2 seemed to have less impact. 
From the limited evidence of these examples, it seems negotiation might centre upon γ𝜃𝜃1 and 
r𝑈𝑈, since these seem to have the greatest effect on the result 𝛾𝛾𝜃𝜃1∗ . 
The examples here are meant to be only illustrative, so it would be wrong to draw strong 
conclusions from the particular numerical results above – we have not attempted to make 
these numbers typical of real systems. Rather our intention is to show how our modeling 
might provide a framework for negotiation. It does this by allowing the discussion to take 
place about the components of the parties’ arguments that support their different claims about 
perfection. We believe that, of the 7 parameters in total in the model, it is likely that the 
parties’ differences will centre upon 4 of these parameters: the 3 parameters representing 
confidence, i.e. γ𝜃𝜃1, γ𝜃𝜃2, γ𝑟𝑟, together with ru.  
 

Table VI Numerical examples of the negotiation model with different variance on the parameters 

y1 γ𝜃𝜃1 y2 γ𝜃𝜃2 r γ𝑟𝑟 r𝑈𝑈 k best 
𝛾𝛾𝜃𝜃1∗  

worst 
𝛾𝛾𝜃𝜃1∗  

0.9 [0.05, 0.1] 0.99 [0.05, 0.1] 0.009 [0.05, 0.1] [0.0095, 0.0098] 50 0.00052 0.0012 

0.9 [0.05, 0.1] 0.99 [0.05, 0.1] 0.009 [0.05, 0.5] [0.0095, 0.0098] 50 0.00052 0.0015 

0.9 [0.05,0.1] 0.99 [0.05, 0.5] 0.009 [0.05, 0.1] [0.0095, 0.0098] 50 0.00052 0.0024 

0.9 [0.05, 0.5] 0.99 [0.05, 0.1] 0.009 [0.05, 0.1] [0.0095, 0.0098] 50 0.00052 0.011 
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5. Conclusions and discussion 
The model we have presented here allows evidence of the efficacy of development process(es) 
to be taken into account when assessing the possibility of perfection of a software-based 
system. Informal arguments in support of system dependability have long used the following 
kind of evidence: “we have in place a wealth of experience and good processes, as evidenced 
by the many similar systems we have built in the past that have experienced lots of 
operational exposure without failure – this makes us confident that this system will operate 
with high dependability.” Such claims about track records are, of course, intuitively attractive: 
e.g. we are confident flying in a new aircraft type built by Boeing or Airbus because we have 
seen the excellent safety record of previous types. The work reported here is an attempt to put 
this kind of argument onto a formal basis. In particular, it allows quantitative claims to be 
made – in this case, about possible perfection – and it does this in ways that are guaranteed to 
be conservative. 
Our mathematical approach to the problem is via a hierarchical model (Gelman, Carlin et al. 
2013) – in fact a two-stage Bayesian model. Such models are in wide use, and in particular 
have been used in the nuclear industry (Kaplan 1983, Bunea, Charitos et al. 2005), which was 
the source of our own initial interest in these issues. In conventional applications of such two-
stage Bayesian models, particular attention must be paid to the assumptions about the 
hyperdistribution and the hyperpriors for the parameters of that distribution (Cooke, Bunea et 
al. 2002, Vaurio and Jänkälä 2006). Our approach in this paper is different: for our two-stage 
Bayesian model we assume an arbitrary hyperdistribution, and obtain worst-case priors for 
its parameters. We believe this approach is new. 
In the nuclear examples in the papers cited above, failure data is assimilated from different 
plants and/or their components, and the validity of the models will depend on the similarity of 
usage across this population of users. The database ZEBD (PowerTech 2010) provides 
datasets for various two-stage Bayesian models of components used in German nuclear 
power plants. Similarly, our modeling here depends upon the reasonableness of notions of 
“similarity” between different products when these have been developed using the same 
process, and the way that these are represented mathematically.  
In this section we discuss briefly some of the issues that arise in using our model to make 
claims about perfection of real systems. As the attentive reader will have noticed, an expert 
assessor would face some difficult problems in using the model. We discuss these, and point 
to ways forward that need to be addressed in further work. 

5.1 Similarity and common development process 
We have used informally terms like “similarity” and “common development process”. What 
would these mean in practice? In other words, when could one claim that one has identified a 
population of similar products, of which the one being assessed is an instance? The two-stage 
model requires that the products whose record of success we use as evidence, and the product 
to be assessed, all be sampled independently from the same distribution.  
This matter of “similarity” is of course the crucial issue in any application of statistics to 
predict something about one individual. It usually needs to be argued informally on the basis 
of what is known about the population and whether the individual can be considered as being 
sampled randomly from it. 
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For software products, such a claim could be quite convincing, for instance, if it came from a 
company that has developed multiple products in a “product line”, using an identical 
“software engineering process” (set of methods and tools for development and verification,  
artefacts produced and their required verification and documentation, etc.), the same team, 
under similar conditions (e.g., how budget and deadlines are set). The variations of achieved 
dependability (a product’s pfd, and in particular whether it is perfect or not) between these 
products would be just contributed by those accidental events in the application of the process 
that cannot be systematically observed and are thus treated as random factors. We would 
expect this scenario to give a comparatively “concentrated” distribution for the parameters, a 
“consistent” process, as we called it in section 2, although this is not a formal requirement for 
the model to apply.  
In principle, one may wish to apply a broader definition of “similarity” – e.g., all the products 
in a certain range of code size, developed for a certain class of applications, according to the 
practices prescribed by a certain standard for a certain criticality level, by companies within a 
certain range of CMM “maturity levels”. But a claim based on a sample of such a more 
diverse population would be harder to believe, because it would be harder to believe that all 
the assumptions are satisfied: that a little more effort would not show some systematic 
differences between these products (if e.g. we knew that the producer of this one product has 
better records – or worse – than the bulk of the industry; or that the application problems 
addressed can really be classified into subsets for which we would expect different 
difficulties in achieving good pfd and perfection; then not using this information about the 
new product to be assessed would ignore useful information); that indeed the claims that all 
have passed n demands are equally believable for all the products (for some we might not 
really trust the failure reporting process); that the set of k previous products chosen is a true 
random sample of the population and not affected by some involuntary selection bias (we are 
not really informed about all products in this population: are we accidentally picking our 
sample based on some factor that correlated with their true reliability?). 

5.2 Extent of process evidence: what values of n and k are feasible? 
It is trivially true that the more products have performed successfully (the higher k is), and 
the more failure-free demands have been seen for them (the higher n is), the better. However, 
our numerical results here, whilst only intended to be illustrative rather than realistic, suggest 
– not surprisingly – that k seems more important than n. Massive operational exposure from 
only a very few previous products tells us less about the population of products than more 
modest exposure of many products. 
Unfortunately, the value of k is unlikely to be controllable. It is infeasible to build many 
products just to evaluate the efficacy of a development process. Instead, users of a model like 
this must rely upon the evidence that is available. The scenario of a “product line” mentioned 
above is a case in point. Likewise, in a company that has built several generations of safety 
protection systems, there may be evidence of their reliability in operational use that could be 
used for our model. But values of k in such cases are likely to be modest, unlikely to be as 
large as the value k= 50 in our earlier tables, which gave the most useful results.  

5.3 Inference from deployment of the same product in many environments 
Although we have described everything here in terms of multiple similar products developed 
using the same process (to tackle similar problems), the same model can be applied to the 
case where a single product is used in multiple similar (but different) environments.  
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For example, some components of safety protection systems are installed in many 
industrial plants. Each plant has a different operational environment (probability distribution 
of the demand events that may happen - timing, values of inputs etc.), leading in principle to 
a different pfd in each installation (or zero pfd, if the component is "perfect").  If such a 
component is reused in a new plant for which it can be argued that its environment is just one 
more instance of the same general population, then our two-stage model can be used, 
and k may be quite large, allowing reasonably strong conclusions about probability of 
perfection. 
We note, however, a limitation here. In Section 1 we gave two reasons for our interest in 
possible perfection: firstly that it is of value in its own right for making claims about lifetime 
reliability; secondly that it overcomes a basic hurdle in making reliability claims for fault-
tolerant 1-out-of-2 systems via the result (1.1) from (Littlewood and Rushby 2012). This new 
interpretation of similarity does not fit into the latter scenario. The reason is as follows.  
The basic result in (Littlewood and Rushby 2012), which a reader may think we could use to 
obtain our equation (1.1) is, from a slightly modified form of equation (6) on p 1182 of 
(Littlewood and Rushby 2012): 

 

Now the first term on the RHS is  

 

The second term on the RHS is . 

Unfortunately, in contrast to the theorem on p1182 of (Littlewood and Rushby 2012), this 
term is not pnpB. Instead, the pnpB here is the probability that B is imperfect in a randomly 
chosen environment, not in this environment (i.e. the one from which pfdA is defined as the 
probability of failure of a randomly selected demand from it). We therefore cannot claim that 
the system pfd is bounded by the simple product of pfdA and pnpB as required for our (1.1). 
There is a practical restriction on the allowable values of n: all our results assume that n takes 
the same value over all k systems observed. Clearly, this is a serious issue because it is 
unlikely to be true in practice. It arises because the parameter R involves a particular n. It 
would be infeasible to elicit beliefs about k different Ri corresponding to the different values 
of ni for the k different products. A work-around is to choose conservatively the minimum ni 
to be the n in our equations. Of course, this solution may be very conservative if the 
minimum ni is much smaller than other ni. In this case, we could simply ignore the evidence 
from this product, and carry out the model calculations using the next smallest ni. The price, 
of course, is a reduction of k to k-1.   

5.4 What is R, and how could an expert express beliefs about it? 
Our general model is complex, and at its heart lies a distribution for pfd which we have called 
f: see the middle level of Figure 7. Specifying this distribution is difficult. As we argued 
earlier, adopting some parametric family for f and then incorporating its unknown parameter 
values into the Bayesian analysis does not seem a plausible way forward. It would be hard to 
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justify a particular choice of family; given such a family, it would be unreasonable to expect 
an expert to be able to express even partial beliefs about its parameters. 
The result of Section 4.1 is a way round these difficulties, albeit via the introduction of 
different ones. The key result here shows that knowledge of the complete (non-zero) shape of 
f does not need to be specified, because knowledge of R is “sufficient” (with θpp), in a precise 
mathematical sense, for statistical inference about perfection. We commented that this notion 
of sufficiency is similar to the idea of “sufficient statistic” in classical statistics. 
Whilst the use of R is a considerable simplification, compared with the need to specify a 
complete distribution f, it requires an expert to express (at least partial) prior beliefs about R. 
How could he do this?  

From Section 4.1,  𝑅𝑅 = ∫ (1 − 𝑝𝑝)𝑛𝑛𝑓𝑓(𝑝𝑝|𝜃𝜃)1
0+ 𝑑𝑑𝑝𝑝. Here 𝑓𝑓(𝑝𝑝|𝜃𝜃) is the distribution of the pfd of a 

randomly selected software system from the population produced by the common 
development process for this and similar problems. Note that the range of p excludes the 
perfect products, so R means the probability that a randomly selected product from the 
population produced by the development process is not perfect but passes n tests.  
One way to think about R is to imagine some extremely long sequence of randomly selected 
tests and to say that R is the probability that the system will fail on at least one of these tests, 
but that this failure will not occur on the first n tests applied. It can thus be seen as involving 
belief about both the fact of imperfection of the system, and the “size” of that imperfection. 
As a shorthand, we shall say that R means “reliable and not perfect”; where by “reliable” we 
mean “passes n tests without failure”. Note the presence of n in this: in fact in this treatment 
of our model, n only appears in the Bayesian analysis via an expert’s belief(s) about R. 
Note also that R, like the probability of perfection 𝜃𝜃𝑃𝑃𝑃𝑃 , is an objective property of the 
population of software systems: it is an unknown “in-the-world” parameter. There will 
therefore be epistemic uncertainty for assessors about these two parameters – in fact this is 
the only epistemic uncertainty in the model now. The task of the assessor is to express his 
(limited, partial) beliefs, for example in constraints like (4.2.2). How should he go about this? 
– this task seems harder for R than the similar task he faces concerning 𝜃𝜃𝑃𝑃𝑃𝑃. 
Of course, scrupulous companies may be expected to have extensive (even complete) 
operational failure data on their earlier products. In some cases a product may have had 
massive exposure. Some will have experienced failures, some not. This is the evidence of 
previous experience of similar products upon which assessors must make their judgments 
about the parameters of the model. 
So, in our shorthand terminology, we have 
𝑅𝑅 = 𝑃𝑃(imperfect and reliable) = 𝑃𝑃(imperfect)𝑃𝑃(reliable|imperfect )          (5.1.1) 
𝑃𝑃(imperfect) here is just 1 − 𝜃𝜃𝑃𝑃𝑃𝑃; we assume the assessor is able to express beliefs about 
𝜃𝜃𝑃𝑃𝑃𝑃 . More difficult is the second factor on the right hand side of (5.1.1), which is a 
conditional probability. It is well known people find it hard to assess a conditional probability 
– in fact it is essentially the same, and thus as difficult, as assessing bivariate uncertainty.  
Some help may come here from noting that 
𝑃𝑃(reliable|imperfect ) ≤ 𝑃𝑃(reliable)  
from which it follows that 
𝑅𝑅 = 𝑃𝑃(reliable) − 𝜃𝜃𝑃𝑃𝑃𝑃 ≤ (1 − 𝜃𝜃𝑃𝑃𝑃𝑃)𝑃𝑃(reliable) 
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and the problem reduces to expressing beliefs about a product of unconditional probabilities, 
with all the difficulties related to epistemic dependence between them. 
Clearly this remains a difficult problem, though, and is an obvious candidate for further 
thought.  

5.5 Why conservative Bayesian reasoning? 
In this and other recent work on systems dependability we have adopted a Bayesian approach 
to the treatment of uncertainty. A probabilistic treatment of risk is now standard in most 
safety-critical industrial domains; the Bayesian approach is widely and increasingly accepted: 
e.g. directives for Probabilistic Risk Assessment (PRA) like (NRC 2003) and (NRC 2017) 
recommend Bayesian methods. Comparing the 2017 version (NRC 2017) with its 2009 
version (with No. UREG1855-V.1.2009), we see that the earlier version mentioned 
frequentist statistics as acceptable for parameter estimation, while pointing at its limits, but 
the 2017 version no longer does so. However, researchers and practitioners acknowledge as 
the main practical difficulty of Bayesian methods the difficulty of eliciting prior beliefs from 
experts who “own the problem” – in the terminology of this paper, regulators and licensees – 
in the kinds of complex situations we are dealing with. It is this issue that we have addressed 
here and in our earlier work.  
In the Bayesian literature, including regulatory documents and advice for PRA practitioners, 
various approaches are proposed to address this problem: e.g. empirical Bayes, non-
informative priors. For many application domains, it is possible to obtain very extensive data, 
and the differences between such approaches and “proper” Bayes, involving informative 
priors, disappear. Unfortunately, this is a luxury we do not have for the kinds of safety-
critical applications we are considering. Indeed, in software engineering generally, large 
sample sizes are rare: e.g. random samples of programs are unknown, except in specialized 
small-scale experiments such as those described in (Knight and Leveson 1986, Eckhardt, 
Caglayan et al. 1991). In conclusion, the conditions for obtaining complete probability 
distributions from empirical data are not satisfied. 
The method we have adopted in the face of these problems is, we believe, novel. It allows the 
expert to populate the model with minimal partial prior beliefs. Our procedure then is to 
obtain results for the claims of interest – in this case, confidence bounds for probability of 
perfection – that are guaranteed to be conservative. The trick here is to allow the user’s prior 
beliefs to be as minimal as possible to aid his task, whilst not being too minimal to provide 
useful results. We gave examples of prior beliefs that are too minimal to be useful, and 
showed that prior beliefs that were only slightly more informative (i.e. that impose upon the 
assessor a task that is only slightly more onerous) could give useful results. 
Whilst the model here is a complex one, we presented an example of how it might be used to 
inform the negotiation between a regulator and a licensee about a claim in part of a safety 
case. We claim, somewhat tentatively, that this shows the potential usefulness of our 
approach. 
There are, of course, other proposed ways of addressing these difficulties. Interesting surveys 
and discussions of these alternatives are for instance (Aven and Zio 2011) and  (Zio and 
Pedroni 2013). They characterize their application domain as “high-consequence risk analysis 
of complex systems with limited knowledge on their behavior.” It is the analysis of such 
systems – particularly those in the nuclear industry – that motivated our own work. The 
alternatives they discuss include approaches like possibility theory and Dempster-Shafer 
evidence theory. These approaches differ somewhat radically from standard probability 
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calculus (although links can be made between the formalisms). They are not candidate 
solutions as of now, simply because the very axioms are controversial, and in any case 
adopting them would require a cultural change in the whole large community of practitioners. 
Other alternatives simply attempt to extend probability calculus by considering intervals of 
uncertainty on probability assignments. Our approach is more akin to these, but we require 
only minimal additions to standard Bayesian methods, via our theorems that state bounds for 
whole sets of prior distributions. This way we allow users of the method to see the true 
consequences of the minimal beliefs they state. An important aspect is that the theorems 
bound the results implied by whole sets of possible distributions, as opposed to the effects of 
just intervals of variation of parameters of parametric distributions. Currently applied 
sensitivity analysis can do the latter, but the very use of parametric distributions may 
sometimes impose the analysts’ description of the problem on top of the experts’ input to the 
analysis, which we agree with (Zio and Pedroni 2013, p.41) should be avoided. 

5.6 Counter-intuitive results 
We briefly comment on the counter-intuitive results of Sections 3 and 4. We see these as a 
warning against placing too much trust in informal reasoning when dealing with these quite 
complex models for dependability. We observed here cases where “obviously good news” 
from operational testing of a system could – counter-intuitively – decrease “confidence in 
perfection”.  
Similar counter-intuitive results were found in (Littlewood and Wright 2007). There, a two-
legged argument was used to support claims for the pfd of a system. The two legs used were, 
respectively, evidence of failure-free working on test (involving a possibly fallible test 
oracle), and evidence of proof of correctness against a (possibly incorrect) formal 
specification. The counter-intuitive result there was that more failure-free working could, in 
certain circumstances, result in lower confidence in a small pfd. 
In all these cases, of course, further analysis showed that the interpretation from the formal 
modeling was correct – i.e. eventually, intuition guided by formal reasoning caught up with 
reality. Such examples are, we believe, warnings against the use of unaided informal 
engineering judgment. 

5.7 Some comments on applicability and practicality 
Hierarchical models of the kind we have described here can be complex, and consequently 
impose upon users quite stringent requirements in a Bayesian analysis, particularly in 
expressing the necessary prior beliefs. The practical situations we are dealing with are not 
ones where there are large quantities of data, in which the dominant contribution to posterior 
belief via Bayes Theorem comes from the likelihood function. There are no believable 
“ignorance” priors. It follows that these are not situations in which “the data can speak for 
themselves.” 
Our approach to this problem in our recent work (Bishop, Bloomfield et al. 2011, Zhao 2015, 
Zhao 2017) has been to allow assessors to express only quite minimal prior beliefs (e.g. one 
or two percentiles, rather than complete distributional information), and then to obtain 
guaranteed-conservative posterior results under this minimal information set-up. We believe 
this way of handling the problem of prior belief is novel, and we have adopted it again in the 
work reported here.  
Readers may think our proposed procedures are still rather complex. In fact an anonymous 
reviewer made the following remarks (we have edited them slightly): 
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“My major remaining concern is with the applicability of the results… The authors 
acknowledge this issue... I think it would be inappropriate to expect them to solve it in this 
paper, which establishes the intellectual framework for a certain new kind of assessment. 
After all, fifty years after the introduction of Hoare logic there are software developers 
claiming it is infeasible to use, as well as other developers using it routinely. The main reason 
for the charge of impracticality here can be regarded as primarily social, lying in the technical 
experience required of software developers, which is a manifestly different issue from the 
intellectual applicability of the method itself. Similarly, here, practicality is likely to follow 
possibility by a good few years. It is not necessarily required for assessors to be able to 
understand the framework; only for a regulator to do so, who then demands of assessors that 
they provide certain values of parameters...” 
We think this is a fair assessment of the difficulties in using our results. Assessors will need 
to provide the 7 parameters contained in the key equations (4.4.1) to (4.4.4). However, as we 
suggest in our account of a possible negotiation regime in Section 4.5, it is likely that 
agreement will need to be negotiated on the values of only 4 of these: that is, the parameters 
y1, y2, and r should be the subject of early agreement, leaving only 𝛾𝛾𝜃𝜃1,  𝛾𝛾𝜃𝜃2,  𝛾𝛾𝑟𝑟, and  𝑟𝑟𝑈𝑈 for 
negotiation.  
Whilst agreeing with sceptical readers that all this is still not easy, we nevertheless claim that 
it is a very much simpler task than expressing complete distributional prior beliefs. We also 
claim that it is a minimal simplification: as we have shown, greater simplification (e.g. 
requiring only one percentile rather than two) does not produce useful results. For anyone 
wishing to use this particular Bayesian hierarchical model, then, there is a sense in which our 
approach to its analysis is as simple as possible, but no simpler.  
Having said that, our results are conservative. For the kinds of safety-critical systems that 
prompted our interest in this kind of modeling, such a guarantee of conservatism seems right. 
Depending on circumstances, though, the results may be disappointingly conservative for 
those wishing to be allowed to operate the systems under analysis. We see no way to avoid 
this.  
 

Appendix 1 
By the mean value theorem for integrals, we could find two values, say P1 and P2, satisfying 
the equations below: 

𝐿𝐿(𝑃𝑃1)� 𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
𝑦𝑦−

0
= � 𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃)𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃

𝑦𝑦−

0
 

𝐿𝐿(𝑃𝑃2)� 𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
1

𝑦𝑦
= � 𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃)𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃

1

𝑦𝑦
 

where the 𝐿𝐿  is the likelihood function as the formula (3.2) and  0 ≤ 𝑃𝑃1 < 𝑦𝑦,𝑦𝑦 ≤ 𝑃𝑃2 ≤ 1 .  
From the one percentile prior knowledge P(𝜃𝜃𝑃𝑃𝑃𝑃 < y) = 𝛼𝛼𝜃𝜃, we know: 

� 𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
𝑦𝑦−

0
= 𝛼𝛼𝜃𝜃 

� 𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
1

𝑦𝑦
= 1 − 𝛼𝛼𝜃𝜃 

Therefore our objective function: 



Conservative claims for probability of perfection  

 
 

34 

𝛼𝛼𝜃𝜃∗ =
∫ 𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃)𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
𝑦𝑦
0

∫ 𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃)𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)1
0 𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃

=
𝐿𝐿(𝑃𝑃1) ∗ 𝛼𝛼𝜃𝜃

𝐿𝐿(𝑃𝑃1) ∗ 𝛼𝛼𝜃𝜃 + 𝐿𝐿(𝑃𝑃2) ∗ (1 − 𝛼𝛼𝜃𝜃)
=

1

1 + 𝐿𝐿(𝑃𝑃2) ∗ (1 − 𝛼𝛼𝜃𝜃)
𝐿𝐿(𝑃𝑃1) ∗ 𝛼𝛼𝜃𝜃

 

As the likelihood function L is an increasing function: 

𝛼𝛼𝜃𝜃∗ =
1

1 + 𝐿𝐿(𝑃𝑃2) ∗ (1 − 𝛼𝛼𝜃𝜃)
𝐿𝐿(𝑃𝑃1) ∗ 𝛼𝛼𝜃𝜃

≤
1

1 + 𝐿𝐿(𝑦𝑦) ∗ (1 − 𝛼𝛼𝜃𝜃)
𝐿𝐿(𝑦𝑦) ∗ 𝛼𝛼𝜃𝜃

= 𝛼𝛼𝜃𝜃 

This means, with the most conservative prior 𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃) showed in figure 4, we cannot learn 
anything about probability of perfection from the process evidence. 

Appendix 2 
Similarly as the proof in Appendix 1 here, by the mean value theorem for integrals, we could 
find 3 values, say P1, P2 and P3 satisfying the equations below: 

𝐿𝐿(𝑃𝑃1)� 𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
𝑦𝑦1−

0
= � 𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃)𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃

𝑦𝑦1−

0
 

𝐿𝐿(𝑃𝑃2)� 𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
𝑦𝑦2−

𝑦𝑦1
= � 𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃)𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃

𝑦𝑦2−

𝑦𝑦1
 

𝐿𝐿(𝑃𝑃3)� 𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
1

𝑦𝑦2
= � 𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃)𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃

1

𝑦𝑦2
 

 
where the 𝐿𝐿 is the likelihood function as the formula (3.2). And 

0 ≤ 𝑃𝑃1 < 𝑦𝑦1,𝑦𝑦1 ≤ 𝑃𝑃2 < 𝑦𝑦2,𝑦𝑦2 ≤ 𝑃𝑃3 ≤ 1 
From the two percentile prior knowledge  𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦1) = 𝛼𝛼𝜃𝜃1 and 𝑃𝑃(𝑦𝑦1 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦2) = 𝛼𝛼𝜃𝜃2, 
we know: 

� 𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
𝑦𝑦1−

0
= 𝛼𝛼𝜃𝜃1 

� 𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
𝑦𝑦2−

𝑦𝑦1
= 𝛼𝛼𝜃𝜃2 

� 𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
1

𝑦𝑦2
= 1 − 𝛼𝛼𝜃𝜃1 − 𝛼𝛼𝜃𝜃2 

Therefore our two objective functions: 

𝛼𝛼𝜃𝜃1∗ =
∫ 𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃)𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
𝑦𝑦1−
0

∫ 𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃)𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)1
0 𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃

=
𝐿𝐿(𝑃𝑃1) ∗ 𝛼𝛼𝜃𝜃1

𝐿𝐿(𝑃𝑃1) ∗ 𝛼𝛼𝜃𝜃1 + 𝐿𝐿(𝑃𝑃2) ∗ 𝛼𝛼𝜃𝜃2 + 𝐿𝐿(𝑃𝑃3) ∗ (1 − 𝛼𝛼𝜃𝜃1 − 𝛼𝛼𝜃𝜃2)

=
1

1 + 𝐿𝐿(𝑃𝑃2) ∗ 𝛼𝛼𝜃𝜃2 + 𝐿𝐿(𝑃𝑃3) ∗ (1 − 𝛼𝛼𝜃𝜃1 − 𝛼𝛼𝜃𝜃2)
𝐿𝐿(𝑃𝑃1) ∗ 𝛼𝛼𝜃𝜃1
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𝛼𝛼𝜃𝜃1+𝜃𝜃2∗ =
∫ 𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃)𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃
𝑦𝑦2−
0

∫ 𝐿𝐿(𝜃𝜃𝑃𝑃𝑃𝑃)𝑔𝑔(𝜃𝜃𝑃𝑃𝑃𝑃)1
0 𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃

=
𝐿𝐿(𝑃𝑃1) ∗ 𝛼𝛼𝜃𝜃1 + 𝐿𝐿(𝑃𝑃2) ∗ 𝛼𝛼𝜃𝜃2

𝐿𝐿(𝑃𝑃1) ∗ 𝛼𝛼𝜃𝜃1 + 𝐿𝐿(𝑃𝑃2) ∗ 𝛼𝛼𝜃𝜃2 + 𝐿𝐿(𝑃𝑃3) ∗ (1 − 𝛼𝛼𝜃𝜃1 − 𝛼𝛼𝜃𝜃2)

=
1

1 + 𝐿𝐿(𝑃𝑃3) ∗ (1 − 𝛼𝛼𝜃𝜃1 − 𝛼𝛼𝜃𝜃2)
𝐿𝐿(𝑃𝑃1) ∗ 𝛼𝛼𝜃𝜃1 + 𝐿𝐿(𝑃𝑃2) ∗ 𝛼𝛼𝜃𝜃2

 

As the likelihood function L is an increasing function, for 𝛼𝛼𝜃𝜃1∗ : 

𝛼𝛼𝜃𝜃1∗ =
1

1 + 𝐿𝐿(𝑃𝑃2) ∗ 𝛼𝛼𝜃𝜃2 + 𝐿𝐿(𝑃𝑃3) ∗ (1 − 𝛼𝛼𝜃𝜃1 − 𝛼𝛼𝜃𝜃2)
𝐿𝐿(𝑃𝑃1) ∗ 𝛼𝛼𝜃𝜃1

≤
1

1 + 𝐿𝐿(𝑦𝑦1) ∗ 𝛼𝛼𝜃𝜃2 + 𝐿𝐿(𝑦𝑦2) ∗ (1 − 𝛼𝛼𝜃𝜃1 − 𝛼𝛼𝜃𝜃2)
𝐿𝐿(𝑦𝑦1) ∗ 𝛼𝛼𝜃𝜃1

 

It reaches the upper bound when  
𝑃𝑃1 = 𝑦𝑦1−,𝑃𝑃2 = 𝑦𝑦1,𝑃𝑃3 = 𝑦𝑦2 

So we got the most conservative prior distribution in the figure 6 (left-hand side) and the 
corresponding 𝛼𝛼𝜃𝜃1∗  as (3.2.3). 
Similarly for 𝛼𝛼𝜃𝜃1+𝜃𝜃2∗ : 

𝛼𝛼𝜃𝜃1+𝜃𝜃2∗ =
1

1 + 𝐿𝐿(𝑃𝑃3) ∗ (1 − 𝛼𝛼𝜃𝜃1 − 𝛼𝛼𝜃𝜃2)
𝐿𝐿(𝑃𝑃1) ∗ 𝛼𝛼𝜃𝜃1 + 𝐿𝐿(𝑃𝑃2) ∗ 𝛼𝛼𝜃𝜃2

≤
1

1 + 𝐿𝐿(𝑦𝑦2) ∗ (1 − 𝛼𝛼𝜃𝜃1 − 𝛼𝛼𝜃𝜃2)
𝐿𝐿(𝑦𝑦1) ∗ 𝛼𝛼𝜃𝜃1 + 𝐿𝐿(𝑦𝑦2) ∗ 𝛼𝛼𝜃𝜃2

 

It reaches the upper bound when  
𝑃𝑃1 = 𝑦𝑦1−,𝑃𝑃2 = 𝑦𝑦2−,𝑃𝑃3 = 𝑦𝑦2 

So we got the most conservative prior distribution in the figure 6 (right-hand side) and the 
corresponding 𝛼𝛼𝜃𝜃1+𝜃𝜃2∗  as (3.2.4). 

Appendix 3 
If we introduce 8 variables with their ranges,  

�

0 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃1 < 𝑦𝑦, 0 ≤ 𝑅𝑅1 < 𝑟𝑟 
𝑦𝑦 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃2 ≤ 1,0 ≤ 𝑅𝑅2 < 𝑟𝑟
0 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃3 < 𝑦𝑦, 𝑟𝑟 ≤ 𝑅𝑅3 ≤ 1
𝑦𝑦 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃4 ≤ 1, 𝑟𝑟 ≤ 𝑅𝑅4 ≤ 1

 

by the mean value theorem for integrals, and similarly as the reasoning in appendix 1 and 2, 
we would have (as the figure 8, we label the probability masses associated with the four 
regions as M1, M2, M3, M4): 
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𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦| 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑒𝑒𝑒𝑒𝑑𝑑𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝)

=
∫ ∫ (𝐼𝐼𝜃𝜃𝑃𝑃𝑃𝑃<𝑦𝑦(𝜃𝜃𝑃𝑃𝑃𝑃) × [𝜃𝜃𝑃𝑃𝑃𝑃 + 𝑅𝑅]𝑘𝑘)𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅>(𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃𝑑𝑑𝑅𝑅

1
0

1
0

∫ ∫ [𝜃𝜃𝑃𝑃𝑃𝑃 + 𝑅𝑅]𝑘𝑘𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅>(𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃𝑑𝑑𝑅𝑅
1
0

1
0

=
[𝜃𝜃𝑃𝑃𝑃𝑃1 + 𝑅𝑅1]𝑘𝑘𝑀𝑀1 + [𝜃𝜃𝑃𝑃𝑃𝑃3 + 𝑅𝑅3]𝑘𝑘𝑀𝑀3

[𝜃𝜃𝑃𝑃𝑃𝑃1 + 𝑅𝑅1]𝑘𝑘𝑀𝑀1 + [𝜃𝜃𝑃𝑃𝑃𝑃3 + 𝑅𝑅3]𝑘𝑘𝑀𝑀3 + [𝜃𝜃𝑃𝑃𝑃𝑃2 + 𝑅𝑅2]𝑘𝑘𝑀𝑀2 + [𝜃𝜃𝑃𝑃𝑃𝑃4 + 𝑅𝑅4]𝑘𝑘𝑀𝑀4

=
1

1 +
[𝜃𝜃𝑃𝑃𝑃𝑃2 + 𝑅𝑅2]𝑘𝑘𝑀𝑀2 + [𝜃𝜃𝑃𝑃𝑃𝑃4 + 𝑅𝑅4]𝑘𝑘𝑀𝑀4
[𝜃𝜃𝑃𝑃𝑃𝑃1 + 𝑅𝑅1]𝑘𝑘𝑀𝑀1+[𝜃𝜃𝑃𝑃𝑃𝑃3 + 𝑅𝑅3]𝑘𝑘𝑀𝑀3

≤
1

1 +
𝑦𝑦𝑘𝑘𝑀𝑀2 + [y + 𝑟𝑟]𝑘𝑘𝑀𝑀4

[y + 𝑟𝑟]𝑘𝑘𝑀𝑀1 + 𝑀𝑀3

=
1

1 +
𝑦𝑦𝑘𝑘(γ𝑟𝑟 − 𝑀𝑀1) + [y + 𝑟𝑟]𝑘𝑘(1 − γ𝜃𝜃 − γ𝑟𝑟 + 𝑀𝑀1)

[y + 𝑟𝑟]𝑘𝑘𝑀𝑀1 + (γ𝜃𝜃 −𝑀𝑀1)

 

And it is not hard to see the right hand formula is a decreasing function of M1. And the range 
of M1 is 0 ≤ 𝑀𝑀1 ≤ min (γ𝜃𝜃, γ𝑝𝑝), so, when 𝑀𝑀1 = 0, we reach the upper bound 𝛾𝛾𝜃𝜃∗ . 

𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦| 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑒𝑒𝑒𝑒𝑑𝑑𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝) ≤
1

1 + 𝑦𝑦𝑘𝑘𝛾𝛾𝑟𝑟 + [𝑦𝑦 + 𝑟𝑟]𝑘𝑘(1 − 𝛾𝛾𝜃𝜃 − 𝛾𝛾𝑟𝑟)
𝛾𝛾𝜃𝜃

= 𝛾𝛾𝜃𝜃∗  

Appendix 4 
First let us set the 𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦1| process evidence) as our objective function.  
We introduce 12 variables with their ranges,  

⎩
⎪
⎨

⎪
⎧

0 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃1 < 𝑦𝑦1, 0 ≤ 𝑅𝑅1 < 𝑟𝑟 
𝑦𝑦1 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃2 < y2, 0 ≤ 𝑅𝑅2 < 𝑟𝑟
𝑦𝑦2 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃5 ≤ 1, 0 ≤ 𝑅𝑅5 < 𝑟𝑟
0 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃3 < 𝑦𝑦1, r ≤ 𝑅𝑅3 < 𝑟𝑟𝑈𝑈
𝑦𝑦1 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃4 < y2, r ≤ 𝑅𝑅4 < 𝑟𝑟𝑈𝑈
𝑦𝑦2 ≤ 𝜃𝜃𝑃𝑃𝑃𝑃6 ≤ 1, r ≤ 𝑅𝑅6 < 𝑟𝑟𝑈𝑈

 

By the mean value theorem for integrals and similar reasoning in appendix 1 and 2, we would 
have (as in figure 10, we label the probability masses associated with the four regions as Mi) 

𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦1| 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑒𝑒𝑒𝑒𝑑𝑑𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝) =
∫ ∫ (𝐼𝐼𝜃𝜃𝑃𝑃𝑃𝑃<𝑦𝑦1(𝜃𝜃𝑃𝑃𝑃𝑃) × [𝜃𝜃𝑃𝑃𝑃𝑃 + 𝑅𝑅]𝑘𝑘)𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅>(𝜃𝜃𝑃𝑃𝑃𝑃 ,𝑅𝑅)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃𝑑𝑑𝑅𝑅

1
0

1
0

∫ ∫ [𝜃𝜃𝑃𝑃𝑃𝑃 + 𝑅𝑅]𝑘𝑘𝑔𝑔<𝜃𝜃𝑃𝑃𝑃𝑃,𝑅𝑅>(𝜃𝜃𝑃𝑃𝑃𝑃 ,𝑅𝑅)𝑑𝑑𝜃𝜃𝑃𝑃𝑃𝑃𝑑𝑑𝑅𝑅
1
0

1
0

=
[𝜃𝜃𝑃𝑃𝑃𝑃1 + 𝑅𝑅1]𝑘𝑘𝑀𝑀1 + [𝜃𝜃𝑃𝑃𝑃𝑃3 + 𝑅𝑅3]𝑘𝑘𝑀𝑀3

[𝜃𝜃𝑃𝑃𝑃𝑃1 + 𝑅𝑅1]𝑘𝑘𝑀𝑀1 + [𝜃𝜃𝑃𝑃𝑃𝑃3 + 𝑅𝑅3]𝑘𝑘𝑀𝑀3 + [𝜃𝜃𝑃𝑃𝑃𝑃2 + 𝑅𝑅2]𝑘𝑘𝑀𝑀2 + [𝜃𝜃𝑃𝑃𝑃𝑃4 + 𝑅𝑅4]𝑘𝑘𝑀𝑀4 + [𝜃𝜃𝑃𝑃𝑃𝑃5 + 𝑅𝑅5]𝑘𝑘𝑀𝑀5 + [𝜃𝜃𝑃𝑃𝑃𝑃6 + 𝑅𝑅6]𝑘𝑘𝑀𝑀6

≤
[𝑦𝑦1 + 𝑟𝑟]𝑘𝑘𝑀𝑀1 + [𝑦𝑦1 + 𝑟𝑟𝑈𝑈]𝑘𝑘𝑀𝑀3

[𝑦𝑦1 + 𝑟𝑟]𝑘𝑘𝑀𝑀1 + [𝑦𝑦1 + 𝑟𝑟𝑈𝑈]𝑘𝑘𝑀𝑀3 + 𝑦𝑦1𝑘𝑘𝑀𝑀2 + [𝑦𝑦1 + 𝑟𝑟]𝑘𝑘𝑀𝑀4 + 𝑦𝑦2𝑘𝑘𝑀𝑀5 + [𝑦𝑦2 + 𝑟𝑟]𝑘𝑘𝑀𝑀6

=
[𝑦𝑦1 + 𝑟𝑟]𝑘𝑘𝑀𝑀1 + [𝑦𝑦1 + 𝑟𝑟𝑈𝑈]𝑘𝑘(𝛾𝛾𝜃𝜃1 − 𝑀𝑀1)

[𝑦𝑦1 + 𝑟𝑟]𝑘𝑘𝑀𝑀1 + [𝑦𝑦1 + 𝑟𝑟𝑈𝑈]𝑘𝑘(𝛾𝛾𝜃𝜃1 − 𝑀𝑀1) + 𝑦𝑦1𝑘𝑘𝑀𝑀2 + [𝑦𝑦1 + 𝑟𝑟]𝑘𝑘(𝛾𝛾𝜃𝜃2 − 𝑀𝑀2) + 𝑦𝑦2𝑘𝑘(𝛾𝛾𝑟𝑟 − 𝑀𝑀1 −𝑀𝑀2) + [𝑦𝑦2 + 𝑟𝑟]𝑘𝑘(1 − 𝛾𝛾𝑟𝑟 − 𝛾𝛾𝜃𝜃2 − 𝛾𝛾𝜃𝜃1 + 𝑀𝑀1 + 𝑀𝑀2) 

which is a decreasing function in terms of M1 and M2 respectively. So, when M1=M2=0, we 
reach the upper bound 𝛾𝛾𝜃𝜃1∗ : 

𝛾𝛾𝜃𝜃1∗ =
[𝑦𝑦1 + 𝑟𝑟𝑈𝑈]𝑘𝑘𝛾𝛾𝜃𝜃1

[𝑦𝑦1 + 𝑟𝑟𝑈𝑈]𝑘𝑘𝛾𝛾𝜃𝜃1 + [𝑦𝑦1 + 𝑟𝑟]𝑘𝑘𝛾𝛾𝜃𝜃2 + 𝑦𝑦2𝑘𝑘𝛾𝛾𝑟𝑟 + [𝑦𝑦2 + 𝑟𝑟]𝑘𝑘(1 − 𝛾𝛾𝑟𝑟 − 𝛾𝛾𝜃𝜃2 − 𝛾𝛾𝜃𝜃1) 

The corresponding most conservative prior distribution is shown in figure 11 or 12, depends 
on the specific values assigned on the parameters. 
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Note that, when 1 − y1 ≤ r𝑈𝑈 < 1, by the reasoning above, we got the most conservative prior 
distribution as the figure below.  

0

<θPP, R>
θPP

M1

M2

M3

M4

y1

r

1

1 R

M5

M6

y2

r_U

P3

 
Figure A.1 a most conservative prior dist. giving the counter-intuitive result 

In this case, the P3 will always win out. As the P3 point is below y1, we will have 𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 <
𝑦𝑦1| process evidence) > 𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦1), which is the “counter-intuitive” result again. 
Similarly as the reasoning above, it is not hard to draw the most conservative prior 
distribution for the objective function 𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦2| process evidence) as below: 

0

<θPP, R>
θPP

M1

M2

M3

M4
y1

r

1

1 R

M5

M6

y2

r_U

P6

P4

 
Figure A.2 a most conservative prior dist. giving the counter-intuitive result 

When seeing good process evidence, the P4 point will always win out of the other points on 
the joint distribution, no matter how the ru varies in its range. In other words, the mass at 
other points will move to the P4 point. As the P4 point is below y2, we will have 𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 <
𝑦𝑦2| 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑒𝑒𝑒𝑒𝑑𝑑𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝) > 𝑃𝑃(𝜃𝜃𝑃𝑃𝑃𝑃 < 𝑦𝑦2), which is the “counter-intuitive” result again. 
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