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Unimodular Transformations and
Canonical Forms for Singular Systems

Dimitris Vafiadis ∗ Nicos Karcanias ∗

∗ Systems and Control Research Centre
City University, London EC1V 0HB, England

Abstract: The relationship between the unimodular matrices relating coprime and column
reduced matrix fraction descriptions (MFD) of a nonproper transfer function, and the restricted
system equivalence (r.s.e.) transformations relating the corresponding generalised state space
realisations is considered. It is shown that the r.s.e and unimodular transformations can be
directly obtained from each other by inspection. The r.s.e. transformations leading to the
canonical form are derived from the unimodular transformations leading to the echelon canonical
form of the composite matrix of the MFD of the system.
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1. INTRODUCTION

Canonical forms is a very old and well known topic in
the study of linear systems Dickinson et al. (1974), Popov
(1972), Kailath (1980). In the case of state space systems
description, the canonical forms are usually considered in
the context of similarity transformations, while in the case
of singular (or descriptor) systems case the relevant trans-
formation is the restricted system equivalence (r.s.e. or co-
ordinate) transformation. In both cases the canonical form
is directly related to a specific external representation of
the system, the matrix fraction description (MFD) of the
transfer function and more specifically, the echelon form
of the composite matrix consisting of the numerator and
denominator of the MFD of the transfer function. Canoni-
cal forms of state space systems are obtained directly from
the echelon form of the denominator matrix of a coprime
and column reduced MFD of the system transfer function
and result in a canonical pair (A,B) of the state and input
matrix of the system. In the case of singular systems the
whole composite matrix (numerator and denominator) is
necessary for the derivation of the canonical form, which
includes the whole quadruple (E,A,B,C) of the matrices
describing a singular system Vafiadis and Karcanias (1997,
1995); Lebret and Loiseau (1994).

It is well known from the literature that all polynomial
minimal bases of a rational vector space Wolovich (1974);
Forney (1975) are related by structured unimodular matri-
ces Karcanias (2013). Therefore all coprime and column re-
duced (i.e. minimal) composite matrices corresponding to
the MFDs of the transfer function of the system are related
by structured unimodular transformations. In (Vafiadis
and Karcanias (1997)) it was shown that the canonical
form of the system is readily obtained from the echelon
form of the MFD via an appropriate realisation procedure
and in (Vafiadis and Karcanias (1995)) the procedure
for obtaining the canonical form by applying a series of
elementary strict system equivalence transformations was
described.

In the present paper a method for the derivation of the
r.s.e. transformations leading to the canonical form is
proposed. It is based on the unimodular transformation
matrix relating the composite matrix of the MFD of the
original system to its echelon canonical form. It is shown
that the r.s.e. transformations can be obtained from the
unimodular transformations by inspection and vice versa.

The development of the paper reveals the duality be-
tween transformations in the frequency domain (unimod-
ular transformations) and the time domain (coordinate
transformations), in the sense that for every unimodular
transformation on the composite matrix of a given MFD
a unique r.s.e. transformation can be derived on the cor-
responding generalised state space (g.s.s.) realisation such
that the resulting generalised state space system is a direct
realisation of the transformed composite matrix.

2. PRELIMINARIES AND PROBLEM STATEMENT

Let H(s) ∈ Rm×`(s) be nonproper transfer function and
consider two different coprime and column reduced MFDs
of H(s):

H(s) = N1(s)D−11 (s) = N2(s)D−12 (s) (1)

Let the composite matrices of the above MFDs be Tj(s) =[
NT

j (s), DT
j (s)

]T
, j = 1, 2. It is assumed that T1(s) and

T2(s) are ordered minimal bases of the rational vector
spaces spanned by their columns (Forney (1975)), i.e. they
have no finite Smith zeros and are column reduced. Then,
there exists unimodular matrix U(s) such that

T2(s) = T1(s)U(s) (2)

The generalised state–space realisations based on the
above MFDs, denoted by S(Ej ,Aj ,Bj ,Cj), j = 1, 2 are as
follows:

Ej ẋ(t) = Ajx(t) +Bju(t), y(t) = Cjx(t) (3)



where E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×` C ∈ Rm×n.
The system matrices Rj(s) of the above systems are
(Rosenbrock (1974))

Rj(s) =
[
sEj −Ai −Bj

Cj 0

]
(4)

Write Nj(s) and Dj(s) in (1) as

Nj(s) = C̃jS(s), Dj(s) = [dj1(s), · · · , dj`(s)] (5)

where S(s) = bl–diag{[1, s, · · · , sri−1]T }, i = 1, · · · , ` and
ri the reachability indices (r.i.) of the triple (Ej , Aj , Bj),

j = 1, 2 and dji(s) = kijr`s
ri + λijris

ri−1 + · · · + λij1, i =
1, · · · , `
Consider the special form of system matrices (4)

Rj(s) =

 L(s) 0
sKj − Λj −I

C̃j 0

 (6)

where

L(s) = block− diag{. . . , Lri−1(s), . . .} (7)

r1 ≤ r2 ≤ · · · ≤ r`
Lri−1(s) = s [Iri−1, 0]− [0, Iri−1] (8)

sKj − Λj = [sKj
1 − Λj

1, . . . , sK
j
` − Λj

` ] (9)

and

Kj
i =

[
0`×(ri−1), k

i
jr`

]
Λj
i = [−λj1, · · · ,−λ

j
ri ] (10)

corresponding to realisations of H(s). It is straightforward
that they are obtained by inspection from the numerator
and denominator of the corresponding MFDs T1(s) and
T2(s). It can be shown that the above realisations are
minimal, as long as T1(s) and T2(s) are column reduced
and have no Smith zeros, and are related by the restricted
system equivalence (r.s.e.) transformations.

E2 = PA1Q,A2 = PA1Q,B2 = PB,C2 = C1Q (11)

where P , Q nonsingular constant matrices. The following
example clarifies the matrices defined above

Example 1. Let the given MFD be

T (s) =

[
N(s)
D(s)

]
=


2s+ 1 4 + s −s2 + 2s+ 3
2s− 1s 4 + s 2 s2 + 2s

2 s2 + 1 4
s+ 3 s− 1 4
s− 1 s+ 2 −2s+ 2


We have r1 = 2, r2 = 2 and r3 = 3 (for the relation of
the reachability indices with the column degrees of the
composite matrix T (s) see Remark 4 of the next section).
Then

ST (s) =

[
1 s 0 0 0 0 0
0 0 1 s 0 0 0
0 0 0 0 1 s s2

]

L(s) =

 s −1 0 0 0 0 0
0 0 s −1 0 0 0
0 0 0 0 s −1 0
0 0 0 0 0 s −1



sK − Λ =

[
2 0 1 s 4 0 0
3 1 −1 1 4 0 0
−1 1 2 1 2 −2 0

]

C̃ =
[

1 2 4 1 3 2 −1
−1 2 4 1 0 2 2

]
The problem considered in the paper is the following:
Given the unimodular matrix U(s) in (2) relating the
minimal MFDs of the transfer function, find the ma-
trices of the r.s.e. transformations in (11) relating the
corresponding realisations and conversely, given the r.s.e.
transformations relating the state space descriptions find
the unimodular transformations relating the composite
matrices of the MFDs. Also investigate the relationship
between the canonical form of singular state descriptions
under r.s.e. and the canonical MFDs of the system transfer
function.

3. UNIMODULAR TRANSFORMATIONS AND THE
STABILIZER OF L(s)

The stabilizer of L(s) is the set of s.e. transformations
leaving the pencil L(s) unaltered (Vafiadis and Karcanias
(1995)) and will be used for the development of the
paper. In this section the connection of the stabilizer
transformations to a class unimodular transformations of
polynomial matrices is established.

Definition 2. The stabilizer of L(s) is defined as the set of

all pairs (P̂ , Q̂) of invertible matrices such that P̂L(s)Q̂ =
L(s) and is denoted by Stab(L(s)). 2

Lemma 3. (Vafiadis and Karcanias (1995) ) Let P̂ , Q′ be

such that P̂L(s) = L(s)Q′. Then P̂ , Q′ are upper block
triangular matrices with blocks

P̂ij =

λij0 · · · λij(rj−ri). . .
. . .

λij0 · · · λij(rj−ri)


(ri−1)×(rj−1)

(12)

Q′ij =

λij0 · · · λij(rj−ri). . .
. . .

λij0 · · · λij(rj−ri)


ri×rj

(13)

when rj ≥ ri and P̂ij = 0, Q′ij = 0 if rj < ri 2

Matrix S(s) defined in (5) is a basis matrix for Nr{L(s)},
where Nr{•} denotes the right null space. Then L(s)S(s) =

0 and, if (P̂ , Q) ∈ Stab(L(s), we have

P̂L(s)QS(s) = 0 (14)

which means that

QS(s) ∈ Nr{L(s)} = 〈S(s)〉R(s) (15)

where 〈•〉R(s) denotes the column span over R(s). Thus,
there exists invertible polynomial matrix V (s) such that

QS(s) = S(s)V (s) (16)

By equating the coefficients of like powers of s above, we
obtain Q and V (s):

Q is an upper block triangular matrix with blocks Qij ∈
Rri×rj of the following Toeplitz form:



Qij =


 vij0 · · · vij(rj−ri) · · · 0

. . .
. . .

0 · · · vij0 · · · vij(rj−ri)

 , ri ≤ rj
0ri×rj , ri > rj

(17)

and V (s) is a polynomial matrix with entries vij(s):

vij(s) =

{
srj−rivij(rj−ri) + · · ·+ vij0, ri ≤ rj

0 ri > rj
(18)

Equation (16) can be written as

Q′S(s) = S(s)W (s) (19)

where Q′ = Q−1 and W (s) = V −1(s). Then W (s) and Q′

are block matrices with

Q′ij =


 wij0 · · · wij(rj−ri) · · · 0

. . .
. . .

0 · · · wij0 · · · wij(rj−ri)

 , ri ≤ rj
0ri×rj , ri > rj

(20)
and W (s) is a polynomial matrix with entries wij(s):

wij(s) =

{
srj−riwij(rj−ri) + · · ·+ wij0, ri ≤ rj

0 ri > rj
(21)

Note that V (s) and W (s) (and consequently Q and Q−1)
above, have the same structure. This is expected, since
the structure of matrices V (s) and W (s) is that of a
unimodular matrix relating two ordered minimal bases of
the same rational vector space (Karcanias (2013)). Such
a matrix is called structured unimodular and has the
same structure to its inverse.

Remark 4. The assumption that the matrices T1(s) and
T2(s) are ordered is necessary, in order to have U(s) in
the triangular form and all the related constant matrices
in the upper block triangular form. For the case of strictly
proper systems the column degrees of the matrices T1(s)
and T2(s) (the controllability indices (c.i.) of the system)
coincide with the r.i., and the ordering of the columns is
based on the c.i. For singular systems we have two types
of c.i., the proper and the nonproper ( Karcanias (2013);
Karcanias and Eliopoulou (1990); Malabre et al. (1990)). If
the polynomials of the i–th column of a minimal composite
matrix with degree equal to the degree of the column
appear only in the corresponding denominator column,
the i–th c.i. is called proper and the value of the i–th c.i.
is equal to the value of the i–th r.i. If the column degree
appears in the numerator then the “plus one” property
holds (Malabre et al. (1990); Karcanias (2013)) i.e. the
corresponding value of the he i–th r.i. is the degree of the
corresponding column plus one, the case of nonproper c.i.
In order to have U(s) and matrices P̂ , Q, Q′ in the forms
shown by the equations (12) – (21) the column ordering of
T1(s) and T2(s) must be considered with respect to r.i. in
the same way the blocks in the diagonal of L(s) in (7) are
ordered. 2

The following example clarifies the above Remark.

Example 5. Consider the composite matrix

T1(s) =

[
N1(s)
D1(s)

]
=


s+ 1 s −s2
s s 2 s2

1 s2 1
s s s− 2

s− 2 s− 1 −2 s


T1(s) above is a minimal basis, since it has no Smith zeros
and is column reduced. The controllability indices are the
column degrees of the above i.e. c1 = 1, c2 = c3 = 2. The
c.i. c1 and c3 are nonproper, since the column degrees of
columns 1 and 3 occur in N1(s). The r.i. are r1 = r2 = 2
and r3 = 3. T1(s) is column ordered. A unimodularly
equivalent to T1(s) is

T2(s) =



s+ 1 − 1
3 −1

s s2 − s
3 0

1 s
3 s2 − 1

s 1
3 s

2 − 2
3 0

s− 2 1
3 s

2 − 5s+ 2
3 1


The converting unimodular matrix is

U(s) =

 1 s/3− 1/3 −1

0 0 1

0 1/3 0


which, clearly, is not of the form (18) due to the element
s/3 − 1/3 (the degree of that element according to (18)
should be 0 because r2 = r1). If T2(s) is ordered with
respect to the r.i., we take

T ′2(s) =



s+ 1 −1 − 1
3

s 0 s2 − s
3

1 s2 − 1 s
3

s 0 1
3 s

2 − 2
3

s− 2 1 1
3 s

2 − 5s+ 2
3


and the corresponding unimodular matrix leading to the
echelon form is

U ′(s) =

 1 −1 s/3− 1/3

0 1 0

0 0 1/3


which now conforms to (18). This discrepancy between the
two unimodular matrices is due to the Forney’s definition
of pivot indices (p.i.) (Forney (1975)), which dictates that
the p.i. corresponding to columns of equal degrees are
increasingly ordered, and the fact that proper p.i. (p.i.
corresponding to columns with proper c.i.) are by defini-
tion greater than the nonproper p.i. since they appear in
the numerator D(s) only.



4. R.S.E. EQUIVALENCE AND UNIMODULAR
TRANSFORMATIONS

In this section the relationship of unimodular transfor-
mations relating minimal MFDs of a nonproper transfer
function and the r.s.e. transformations relating the corre-
sponding generalised state space realisations of the form
(6) is considered. It is shown that the r.s.e. transformations
are obtained directly from the unimodular transformations
and vice – versa.

Proposition 6. Let R1(s) and R2(s) be two system matri-
ces of the form (6) of systems related by (11). Then

P =

[
P̂ 0
0 I`

]
, Q = Q̂−1 (22)

where (P̂ , Q) ∈ Stab(L(s)).

Proof. Let

P =

[
P̂ P2
P3 P4

]
Then, from (11) it follows that[
P̂ P2
P3 P4

] [
L(s) 0

sK1 − Λ1 −I

] [
Q 0
0 I

]
=

[
L(s) 0

sK2 − Λ2 −I

]
The above may be expanded to the following equations:

P̂L(s)Q+ P2(sK1 − Λ1)Q = L(s) (23)

P2 = 0 (24)

P3L(s)Q+ P4(sK1 − Λ1)Q = sK2 − Λ2 (25)

P4 = I (26)

Equations (23) and (24) yield that (P̂ , Q) ∈ Stab(L(s)).

It remains to show that P3 = 0. From (6) it follows that

(sK1 − Λ11)S(s) = D1(s) (27)

then from (2)

(sK1 − Λ1)S(s)U(s) = D1(s)U(s) = D2(s) (28)

Matrix U(s) ) is structured unimodular (see. Remark 4),
because T1(s) and T2(s) are ordered minimal bases and

has the form (18). Then, since (P̂ , Q) ∈ Stab(L(s)), we
have (see (16)) QS(s) = S(s)U(s) and (28) becomes

(sK1 − Λ1)QS(s) = D2(s) (29)

thus
(sK1 − Λ1)Q = sK2 − Λ2 (30)

and from (25), (26) it follows that P3 = 0. 2

Consider now the two realisations of H(s) in the form (6)
and the corresponding MFDs related as in (2). Then

[
L(s) 0

sK1 − Λ1 −I
C̃1 0

] [
S(s)
D1(s)

]
=

[
0
0

N1(s)

]
(31)

From U(s) in (2) we obtain matrices Q and P as follows:
Q is obtained from U(s) by equation (17). Then Q−1 is
taken either by direct inversion of Q or from U−1(s) and
(20) and P from Q−1 by using (12) and (13). Then

[
PL(s)Q 0
sK1 − Λ1 −I

C̃1 0

] [
Q−1S(s)
D1(s)

]
U(s) =

[
0
0

N1(s)

]
U(s)

(32)

or

[
L(s) 0

sK2 − Λ2 −I
C̃2 0

] [
S(s)
D2(s)

]
=

[
0
0

N2(s)

]
(33)

The latter equation and Proposition 6 mean that matrices
P and Q in (22) are the r.s.e. transformations relating
systems S(Ej ,Aj ,Bj ,Cj), j = 1, 2. We have thus established
the following:

Theorem 7. Consider two coprime and column reduced
MFDs of a given nonproper transfer function H(s). Let
the composite matrices be related by a unimodular trans-
formation U(s) as in (2). If S(Ej ,Aj ,Bj ,Cj), j = 1, 2 are the
corresponding realisations of the form (6) then

i) U(s) is structured unimodular of the form (18)
ii) The r.s.e. transformations P and Q relating the

systems S(Ej ,Aj ,Bj ,Cj), j = 1, 2 are obtained by U(s)
as described by (17) and (12) (13) and (22).

2

Remark 8. The above theorem can be stated the reverse
way, i.e. starting from the r.s.e. transformations relating
two systems of the form (6), we can obtain the unimodular
matrix U(s) according to (17) and (12) (13) and (22).

The meaning of the above result is that there is a mapping
between unimodular transformations of the input–output
description and r.s.e. transformations in the state–space
description.

Theorem 9. Let Qr be the set of matrices of the form (17)
corresponding to the set of integers ri (reachability indices)
and U` the set of unimodular matrices of the form (18).
The map

F : U` −→ Qr (34)

defined by (17) –(18) is an isomorphism.

Proof: We have to prove that F is bijective i.e. it is (i)
injective and (ii) surjective.

(i) Let U1(s) and U2(s) ∈ U`. Then F (U1(s)) = Q1 and
F (U2(s)) = Q2 with Q1,K2 ∈ Qr. If Q1 = Q2 it readily
follows that U1(s) = U2(s).

(ii) Given matrix M ∈ Qr, there always exists a polyno-
mial matrix U(s) ∈ U` such that F (U(s)) = Q1 as it is
clearly derived from equations (17) –(18). 2

This relationship allows the derivation of transformations
leading to canonical forms of the generalised state equa-
tions from transformations leading to canonical forms of
polynomial descriptions of the system as it is discussed in
the following section.



5. DERIVATION OF THE CANONICAL FORM

The problem of Popov type canonical forms under r.s.e.
transformations was considered in Vafiadis and Karcanias
(1997, 1995) where the sequence of the elementary co-
ordinate (r.s.e.) transformations leading to the canonical
quadruple (E,A,B,C) of a generalised state space system
was described in detail. In this section the results of the
previous section are used for the derivation of the coor-
dinate transformations directly from the transformations
relating minimal MFDs.

Definition 10. The MFD N(s)D−1(s) of a transfer func-
tion is called canonical MFD if the matrix T (s) =[
NT (s), DT (s)

]T
has no Smith zeros, is column reduced

and is in the echelon canonical form for polynomial matri-
ces (Forney (1975)). 2

It is known that all minimal generalised state–space re-
alisations of a nonproper transfer function belong to the
same r.s.e. class, i.e. they are r.s. equivalent to each other.
The canonical element is given by the following result.

Theorem 11. (Vafiadis and Karcanias (1997)) The canon-
ical form of the singular system S(E,A,B,C) under r.s.e.
transformations is the minimal realisation of the type (6)
obtained by the canonical MFD of the transfer function.

2

The canonical MDF is the one derived from the transfor-
mation to the echelon canonical form.

Here, we are going to consider a slightly different definition
of the echelon form than the one given in (Forney (1975)),
in order to be compliant with Remark 4 above. In what
follows, echelon form of minimal basis polynomial matrix,
is considered the usual echelon form defined by Forney
with the difference that the column ordering is done on the
basis of reachability indices and not the column degrees.
This means that in the case where one proper and one
nonproper c.i. of the system have the same value, the
column corresponding to the proper c.i. goes first, since the
corresponding r.i. is less than the r.i. which corresponds to
the nonproper c.i.

Then the results of the previous section can be used for the
derivation of the r.s.e. transformations leading a system of
the form (6) to the canonical form.

Theorem 12. The r.s.e. transformations leading a system
of the form (6) to the canonical form are obtained from
the unimodular matrix U(s) transforming the composite
matrix

T (s) =

[
N(s)
D(s)

]
=

[
CS(s)

(sK − Λ)S(s)

]
to the echelon canonical form according to Theorem 7.

2

Example 13. Consider the transfer function H(s)

H(s) =

 − 1
2

9 s3−23 s2−33 s+35
s4+4 s3−6 s2+18 s−5 −

1
2

s5−7 s4−2 s2+19 s−23
s4+4 s3−6 s2+18 s−5

3 2 s3+7 s2+2 s−5
s4+4 s3−6 s2+18 s−5

s5+2 s4−5 s3−3 s2−14 s+13
s4+4 s3−6 s2+18 s−5

1
2

s5+s4−2 s3−2 s2+25 s+9
s4+4 s3−6 s2+18 s−5

− s5+4 s4−2 s3+8 s2−15 s−4
s4+4 s3−6 s2+18 s−5

]
(35)

Two minimal MFDs of the above are

T1(s) =



1 + 2 s 4 + s −s2 + 2 s+ 3

−1 + 2 s 4 + s 2 s2 + 2 s

2 s2 + 1 4

s+ 3 s− 1 4

s− 1 s+ 2 −2 s+ 2



T2(s) =



s+ 1
2 7/2 7

12

s− 1
2

9
2 s2 − s

3 + 5
12

1 s2 s
3 + 1

2

s
2 + 3

2
s
2 −

5
2

1
6 s

2 + s
12 + 1

12

s
2 −

1
2

s
2 + 5

2
1
6 s

2 − 5
4 s+ 13

12


For the above systems we have realisations of the form (6)
with

sK1 − Λ1 =

 2 0 1 s 4 0 0

3 1 −1 1 4 0 0

−1 1 2 1 2 −2 0


C1 =

[
1 2 4 1 3 2 −1

−1 2 4 1 0 2 2

]

sK2 − Λ2 =

 1 0 0 s 1/2 1/3 0

3
2

1
2 −

5
2

1
2

1
12

1
12

1
6

− 1
2

1
2

5
2

1
2

13
12 − 5

4
1
6


C2 =

[
1
2 1 7

2 0 7
12 0 0

− 1
2 1 9

2 0 5
12 −

1
3 1

]
The r.i. of the system are r1 = 2, r2 = r3 = 3 and the c.i.
are c1 = 1, c2 = c3 = 2. The c.i. c1, c3 are nonproper. The
unimodular matrix of equation (2) relating the two MFDs
is

U(s) =


1
2 −

1
2

s
6 −

5
12

0 1 0

0 0 1
3


then Q (see (17))

Q =


1/2 0 −1/2 0 − 5

12 1/6 0
0 1/2 0 −1/2 0 − 5

12 1/6
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1/3 0 0
0 0 0 0 0 1/3 0
0 0 0 0 0 0 1/3





Notice the dimensions of the blocks of Q above which are
derived from the reachability indices of the system and the
correspondence of the coefficients of the polynomial entries
of U(s) and the values of the elements of Q.

U−1(s) =

 2 1 −s+ 5/2

0 1 0

0 0 3


Note that

(sK1 − Λ1)Q = sK2 − Λ2

Matrix P1 is obtained from U−1(s)

P1 =

 2 1 5/2 −1
0 1 0 0
0 0 3 0
0 0 0 3


It can be verified that P1L(s)Q = L(s). The composite
matrix T2(s) is obtained from the echelon form of T1(s)
in the sense of Forney, with the last columns permuted,
in order to have the columns ordered according to the
reachability indices (see Remark 4), therefore the resulting
system described by C2, sK2−Λ2 (see (6)) is the canonical
form.

6. CONCLUSIONS

In the present paper the problem of deriving the coor-
dinate transformations relating minimal generalised state
space realisations of a given nonproper transfer function
from the unimodular transformations relating the corre-
sponding polynomial (MFD) descriptions of the system
was considered. It was shown that there is a correspon-
dence between the transformations in the frequency and
time domain. This correspondence is actually an isomor-
phism. The transformation matrices can be obtained by
inspection from each other. Based on this correspondence,
the coordinate transformation resulting in the canonical
form was derived from the unimodular transformation
yielding the echelon canonical form of the corresponding
matrix fraction description.
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