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Unimodular Equivalence and Similarity for Linear Systems
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The problem of finding the mapping between unimoduar transformations relating two minimal matrix
fraction descriptions (MFDs) of a transfer function, and the similarity transformations relating the re-
spective minimal state–space representations is considered. It is shown that the problem is equivalent
to finding the relation of MFDs of the input–state transfer functions of the two systems. This relation
turns out to be an equivalence relation involving the unimodular and the similarity matrices relating the
MFDs and the state–space systems respectively. A canonical form for MFDs under this equivalence rela-
tion is obtained and it is shown that it leads to a canonical state–space representation, via a realisation
procedure.

Keywords: linear systems, unimodular transformations, similarity, matrix fraction description.

1. Introduction

The relationship between matrix fraction descriptions (MFD) and state space representations in
linear systems theory is a thoroughly discussed topic, see for instance Dickinson et al. (1974),
Rosenbrock (1970), Kailath (1980) etc. MFDs of the input – output transfer (i.o.t.f) functions
have their corresponding state – space description which is called realisation. A basic fact in the
study of state space realisations is that minimal realisations of a given i.o.t.f. are related by simi-
larity transformations and conversely, all similarity equivalent state space descriptions of a system
give rise to the same i.o.t.f. On the other hand, a minimal (coprime and column reduced) MFD
representation of a t.f. is not unique. All minimal MFDs are related to each other by unimodular
transformations Popov (1969), Forney (1975) i.e. the corresponding composite matrices consist-
ing of the “numerator” and the “denominator” of the MFD can be obtained from each other by
multiplication by a unimodular matrix.

The aim of the present paper is the investigation of the relation between the aforementioned
similarity and unimodular transformations. The formulation of such a problem can be roughly
summarised as follows: Given two minimal MFD representations of a transfer function, find the
similarity transformation relating the corresponding realisations in terms of the unimodular matrix
relating the MFDs, or conversely, given two minimal state–space systems, find the appropriate
corresponding minimal MFDs and the unimodular transformation relating them in terms of the
similarity transformation matrix. In this way the duality between the two types of minimal system
descriptions (minimal MFD and minimal state space realisation of a given transfer function) is
completed by the duality of the transformations in the frequency domain (MFD) and time domain
(state–space) respectively.

The paper is organised as follows: In section 2 it is shown that that the relationship between
the unimodular and similarity equivalence can be obtained by considering only the input–to–
state equations either in the state–space description, or in the MFD description of the system i.e.
by considering the input – state equations, and the corresponding input – state transfer function
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(i.s.t.f.) and its minimal MFDs. The i.o.t.f can be readily obtained from the i.s.t.f. by multiplication
with the output matrix, in both state–space and MFD descriptions. Furthermore it is shown that,
when similarity is applied, the composite matrix of the i.s.t.f. MFD of the transformed system
multiplied by a unimodular matrix is equal to the composite matrix of the original system pre –
multiplied by a constant matrix. The latter defines an equivalence relation between MFDs of i.s.t.f.
of systems related by similarity. The above unimodular and the constant matrices can be obtained
from each other by inspection. The mapping so defined is shown to be an isomorphism.

Section 3 provides a realisation method of the i.s.t.f. into state equations, starting from a coprime
and column reduced MFD. The results of this section are used in section 4 where, first, a canonical
form for MFDs if i.s.t.f. of systems with state space descriptions related by similarity. Then it is
shown that application of the realisation procedure of section 3 to the canonical MFD leads to a
canonical state space description.

2. Similarity and unimodular transformations

In this section the problem statement is given, the unimodular – similarity relationship is estab-
lished and its properties are further investigated. Consider the state - space system denoted by
(A,B,C) and described by the equation

ẋ(t) = Ax(t) +Bu(t), y = Cx(t) (1)

where x ∈ X ≈ Rn, u ∈ U ≈ R`, (A,B,C) ∈ Rn×n × Rn×` × Rm×n and n ≥ `. Without loss of
generality it is assumed that rank B = `. System (1) is assumed to be minimal, i.e. [sI − A,−B]
and [sI − AT ,−CT ]T do not have finite Smith zeros Kailath (1980). The controllability indices of
a pair (A,B) are given by the right Kronecker indices Gantmacher (1959) of [sI −A,−B] Kailath
(1980). Therefore the assumption rank B = ` means that the system has no controllability indices
of value zero.

Before continuing we recall some definitions of notions related to MFDs.

Definition 2.1: Consider the rational matrix H(s). The factorisation of H(s) in the form H(s) =
N(s)D−1(s), where N(s) and D(s) are polynomial matrices, is called (right) Matrix Fraction
Description of H(s) and is denoted by (N(s), D(s)). The matrix T (s) = [NT (s), DT (s)]T is called
the composite matrix of the MFD. If T (s) has no Smith zeros and is column reduced Kailath
(1980), then the MFD is called minimal. �

It is important to note that if H(s) is the i.o.t.f. of system (1), it is strictly proper and the i–th
column degree of N(s) are strictly less than the i–th column degree of D(s) Kailath (1980).

Consider now two minimal systems (A1, B1, C1) and (A2, B2, C2) of type (1), giving rise to the
same transfer function G(s). Then, it is well known that they are related by similarity transforma-
tions i.e. there exists invertible matrix Q ∈ Rn×n such that

A2 = Q−1A1Q, B2 = Q−1B1, C2 = C1Q (2)

Let H(s) be the i.o.t.f. of the above systems. Then

H(s) = C1(sI −A1)−1B1 = C2(sI −A2)−1B2 (3)

The i.s.t.f. of (A1, B1, C1) and (A2, B2, C2) are G1(s) = (sI−A1)−1B1 and G2(s) = (sI−A2)−1B2

respectively. Clearly,

G1(s) = QG2(s) (4)
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Let (N1(s), D1(s)) and (N2(s), D2(s)) be minimal MFDs of G1(s) and G2(s) respectively. The
MFDs (C1N1(s), D1(s)) and (C2N2(s), D2(s)) of H(s) are also minimal and their composite ma-
trices are related as follows Kailath (1980):[

C1N1(s)
D1(s)

]
=
[
C2N2(s)
D2(s)

]
· U(s) (5)

where U(s) is a unimodular polynomial matrix.
We may now give the statement of the problem of relating the unimodular and similarity trans-

formations applied on the MFD and state–space descriptions of system (1) respectively: Given two
minimal representations of (1) related by Q as in (2), find U(s) satisfying (5) and conversely, given
(5) and U(s) find Q satisfying (2).

Since C2 = C1Q, we have from (5)

C1[N1(s)−QN2(s)U(s)] = 0 (6)

D1 = D2(s)U(s) (7)

Note that (6) holds true only if

N1(s)−QN2(s)U(s) = 0 (8)

because otherwise (4) would not be satisfied. We may thus state the following:

Proposition 2.1: Let (A1, B1, C1), (A2, B2, C2) be minimal state – space realisations of the trans-
fer function G(s). If the MFDs (C1N1(s), D1(s)) and (C2N2(s), D2(s)) are two minimal MFDs of
G(s), Q is the similarity transformation relating the realisations and U(s) the unimodular matrix
relating the MFDs as in (5) then, [

N1(s)
D1(s)

]
=
[
QN2(s)
D2(s)

]
· U(s) (9)

�

The above equation provides a relation between the composite matrices of the MFDs of the i.s.t.f.
of systems (A1, B1, C1) and (A2, B2, C2), involving U(s) and Q.

Let

Q̂ =
[
Q 0
0 I`

]
, (10)

and

T1(s) =
[
NT

1 (s) DT
1 (s)

]T
, T2(s) =

[
NT

2 (s) DT
2 (s)

]T
(11)

Then (9) can be written as

T1(s) = Q̂T2(s) · U(s) (12)

Without loss of generality, we may assume that T1(s) and T2(s) are column ordered i.e. their
columns are arranged in ascending order. It is easy to verify the following:

Proposition 2.2: The relation between two coprime and column reduced composite matrices T1(s)

and T2(s) defined by (12) , with Q̂ as in (10) and U(s) unimodular, is an equivalence relation. �
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In section 4 a canonical form of a composite matrix T (s) under the above equivalence relation is
derived. This canonical form combined with the realisation procedure presented in section 3 lead
to a canonical form of the state equations under similarity.

In the rest of this section relationship (12) is investigated, it is shown that there is an isomorphism
between U(s) and Q and the explicit form of the mapping between them is derived.

Definition 2.2: The integers as σ1, · · · , σ` are the ordered controllability indices of (A,B). �

For simplicity, σi above will be referred to as controllability indices.

Lemma 2.1: Let (N(s), D(s)) be a minimal MFD of the i.s.t.f. (sI −A)−1B or equivalently

[sI −A,−B]
[
N(s)
D(s)

]
= 0 (13)

and write N(s) = C0S(s) where

S(s) = block − diag{· · · , [1, s, · · · , sσi−1]T , · · · }, i = 1, · · · , ` (14)

Then C0 is invertible.

Proof. Equation (13) is equivalent to Karcanias (1979)[
B⊥

B†

]
[ sI −A −B ]

[
N(s)
D(s)

]
= 0 (15)

where B⊥ is a basis matrix for the left null space of B and B† is a left inverse of B. In Karcanias
(1990) it has been shown that when the system (1) is controllable, then the pencil sB⊥−B⊥A has
only column minimal indices (c.m.i.) Gantmacher (1959) εi, εi = σi− 1. Thus, (15) may be further
transformed by using strict equivalence transformations Gantmacher (1959), Kailath (1980) of the
following type [

R1 0
0 I

] [
sB⊥ −B⊥A 0
sB† −B†A −I`

] [
R2 0
0 I

] [
R−1

2 N(s)
D(s)

]
= 0, (16)

to the form [
L(s) 0

sB† −B†A −I`

] [
R−1

2 C0S(s)
D(s)

]
= 0 (17)

where R1 ∈ R(n−`)×(n−`), det(R) 6= 0, R2 ∈ Rn×n, det(R2) 6= 0, L(s) is in Kronecker canonical form
Gantmacher (1959), Kailath (1980) i.e. L(s) = block − diag{. . . , Lεi(s), . . .}, ε1 ≤ ε2 ≤ · · · ≤ ε` ,
Lεi(s) = s [Iεi |0εi×1]− [0εi×1|Iεi ], εi = σi − 1. Then

L(s)R−1
2 C0S(s) = 0 (18)

The above means that the columns of R−1
2 C0S(s) lie in the right null space of L(s). A basis matrix

of the right null space of L(s) is S(s). Thus R−1
2 C0S(s) = S(s)Ξ(s),Ξ(s) ∈ Rn×n(s)

Matrix N(s) has full column rank because B, and consequently G(s), has full column rank. Then,
since N(s) = C0S(s) and Q is invertible, it follows that R−1

2 C0S(s) = S(s)Ξ(s) has rank `, which
in turn means that det(Ξ(s)) 6= 0 and therefore rank(R−1

2 C0S(s)) = `.
Let now det(C0) = 0. Then, rank rank(R−1

2 C0) < `, therefore there exists nonzero constant
vector zT ∈ Rn such that zTR−1

2 C0. which, in turn, means that zTR−1
2 C0S(s) = zTS(s)Ξ(s) = 0.
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The latter means that zT lies in the left null space of S(s). The result follows from the fact that
the left null space of S(s) has as minimal basis matrix the matrix L(s) and no constant vector
exists in the row span of L(s).

The following definition is essential for the deployment of the rest of the paper

Definition 2.3: The matrices K and U(s) are defined as follows: K is a block matrix with blocks
Kij ∈ Rσi×σj of the following Toeplitz form:

Kij =


 kij0 · · · kij(σj−σi) · · · 0

. . .
. . .

0 · · · kij0 · · · kij(σj−σi)

 , σi ≤ σj
0σi×σj

, σi > σj

(19)

and U(s) is a polynomial matrix with entries uij(s):

uij(s) =

{
sσj−σikij(σj−σi) + · · ·+ kij0, σi ≤ σj

0 σi > σj
(20)

�
It is easy to verify that

KS(s) = S(s)U(s) (21)

Consider the partitioning of the set of columns of S(s) into subsets of columns with equal column
degrees. Recall that the degree of the i − th column of S(s) is equal to σi − 1. If the number of
distinct values of the controllability indices is ϕ, then the set of integers {1, · · · , `} is partitioned
into ϕ subsets of cardinalities c1, · · · , cϕ. Each subset corresponds to a group of controllability

indices of the same value. Define ξ1 = 1 and ξi =
∑i−1

j=1 cj +1. Matrix K can be considered as block
diagonal with diagonal blocks defined as follows: The diagonal blocks of K consist of ϕ matrices
K̂i, i = 1, · · · , ϕ of the following block matrix form

K̂i =

 Kξiξi · · · Kξi,(ξi+ci−1)
...

...
K(ξi+ci−1),i · · · K(ξi+ci−1),(ξi+ci−1)

 (22)

Note that when the controllability index σi is distinct then K̂i = Kξiξi . From (20) we have

det(U(s)) =

ϕ∏
i=1

∣∣∣∣∣∣
kξiξi0 · · · kξi(ξi+ci−1)0

...
...

k(ξi+ci−1)ξi0 · · · k(ξi+ci−1)(ξi+ci−1)0

∣∣∣∣∣∣
∆
=

ϕ∏
i=1

∆i

(23)

Proposition 2.3: The following hold true
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(i) Matrix U(s) in (21) is unimodular with det(U(s)) =
∏ϕ
i=1 ∆i

(ii) det(K) =
∏ϕ
i=1 ∆σi

i

Proof. Result (i) is obvious, since the determinants in (23) are constants. Note that when ci = 1
then ∆i = kξiξi0. In order to prove (ii), consider the determinant of matrix K in (19). It is equal to
the product of the determinants of the diagonal blocks of K. The number of the diagonal blocks is
ϕ and each one of them has dimensions equal to σici×σici. Blocks corresponding to ci > 1, form a
ci × ci block matrix having as blocks diagonal matrices of dimension σi, with kij1 on the diagonal.
It can be shown (by using permutations on the rows and columns) that the determinant of such a
block matrix is equal to ∆σi

i where ∆i is defined in (23) and the result follows.

Remark 2.1: Matrix U(s) of (20) is a unimodular which relates two ordered minimal bases of the
same rational vector space (the space spanned by their columns) Wolovich (1974), Forney (1975)
and is called structured unimodular. �

Remark 2.2: Equation (21) can be written as KS(s)V (s) = S(s) where V (s) = U−1(s) is also
structured unimodular. Then the pair (K,U(s)) is the stabilizer (i.e. the subgroup of the trans-
formation group that leaves S(s) unaltered) MacLane & Birkhoff (1967) of S(s) with respect to
the transformation group defined by pre–multiplication by a constant invertible matrix and post–
multiplication by a unimodular matrix. �

In the following example the structure of K and U(s) is clarified.

Example 1: Consider the case where σ1 = 2, σ2 = σ3 = 3, σ4 = 4. Then ϕ = 3, c1 = 1, c2 = 2
c3 = 1 and ξ1 = 1, ξ2 = 2, ξ3 = 4

ST (s) =,

 1 s
1 s s2

1 s s2

1 s s2 s3

 (24)

K =

 K11 K12 K13 K14
02×2 K22 K23 K24
03×2 K32 K33 K34
04×2 03×3 03×3 K44

 (25)

where

K11 =
[
k1,1,0 0

0 k1,1,0

]
,K12 =

[
k1,2,0 k1,2,1 0

0 k1,2,0 k1,2,1

]
K13 =

[
k1,3,0 k1,3,1 0

0 k1,3,0 k1,3,1

]
K14 =

[
k1,4,0 k1,4,1 k1,4,2 0

0 k1,4,0 k1,4,1 k1,4,2

]
K22 = diag(k2,2,0, k2,2,0, k2,2,0)

K23 = diag(k2,3,0, k2,3,0, k2,3,0)
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K24 =

[
k2,4,0 k2,4,1 0 0

0 k2,4,0 k2,4,1 0
0 0 k2,4,0 k2,4,1

]
K32 = diag(k3,2,0, k3,2,0, k3,2,0)

K33 = diag(k3,3,0, k3,3,0, k3,3,0)

K34 =

[
k3,4,0 k3,4,1 0 0

0 k3,4,0 k3,4,1 0
0 0 k3,4,0 k3,4,1

]
K44 = diag(k4,4,0, k4,4,0, k4,4,0, k4,4,0)

Notice the diagonal blocks according to (22)

K̂1 = K11, K̂3 = K44, K̂2 =
[
K22 K23
K32 K33

]
(26)

of K, corresponding to the group of the two equal controllability indices σ2 and σ3. It is easy to
verify that K̂2 can be transformed by column and row permutations only, into the following matrix

K ′2 =


k2,2,0 k2,3,0 0 0 0 0
k3,2,0 k3,3,0 0 0 0 0

0 0 k2,2,0 k2,3,0 0 0
0 0 k3,2,0 k3,3,0 0 0
0 0 0 0 k2,2,0 k2,3,0
0 0 0 0 k3,2,0 k3,3,0


The number of row permutations performed for the conversion of K̂2 into K ′2 is equal to the number

of column permutations, thus the total number of permutations is even, which means that det(K̂2) =
det(K ′2) = ∆3

2, where ∆2 is defined in (23). The determinant of K is ∆2
1·∆3

2·∆4
3. The corresponding

matrix U(s) has the block form

U(s) =

[
U11(s) U12(s) U13(s)
02×1 U22(s) U23(s)
01×1 01×2(s) U33(s)

]
(27)

where

U11(s) = k1,1,0

U12(s) = [ sk1,2,1 + k1,2,0 sk1,3,1 + k1,3,0 ]

U13(s) = s2k1,4,2 + sk1,4,1 + k1,4,0

U22(s) =
[
k2,2,0 k2,3,0
k3,2,0 k3,3,0

]
U23(s) =

[
sk2,4,1 + k2,4,0
sk3,4,1 + k3,4,0

]
U33(s) = k4,4,0

Finally,

det(U(s)) = k1,1,0·
∣∣∣[ k2,2,0 k2,3,0
k3,2,0 k3,3,0

]∣∣∣ · k4,4,0
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Proposition 2.4: Let K and Λ be two matrices of the form (19). Then the product KΛ is in the
form (19) i.e. the set of matrices corresponding to the same set of controllability indices, is closed
under matrix multiplication.

Proof: Let the K, Λ be partitioned into blocks as in (19) and denote by P their product i.e.

Pij =
∑̀
µ=1

KiµΛµj (28)

and consider the row vector obtained by multiplying the first row of Kiµ by Λµj . The last σi − 1

entries of this vector are zero due to the “band” structure of Kiµ and Λµj . Denote this vector by
[t̂µij , 0σi−1] where t̂µij = [tµij0, · · · , t

µ
ij(σj−σi)

]. The rest of the rows 2, · · ·σi of Kiµ·Λµj are obtained by

“shifting” t̂µij to the right, one position per row. Then

Kiµ·Λµj =

 t̂
µ
ij 0 · · · 0

. . .
. . .

0 · · · 0 t̂µij


σi×σj

and from (28)

Pij =

 t̂ij 0 · · · 0
. . .

. . .
0 · · · 0 t̂ij


σi×σj

where t̂ij =
∑`

µ=1 t̂
µ
ij , which proves the result. �

Proposition 2.5: The inverse of matrix K in (19) has the same form with K.

Proof: Only the case of distinct controllability indices is going to be considered, for the sake of
simplicity. Then K̂i = Kii (see (22)). In order to prove the Proposition we must show that, given
an invertible K of the form (19), the equation

K · Λ = I (29)

has a solution with respect to Λ, where Λ has the same block structure (including the dimensions
of blocks) with K. Similarly to Proposition 2.4, let P = KΛ = I and assume that Λ is upper
diagonal with block dimensions as in (19). Then

Pij =
∑̀
µ=1

KiµΛµj (30)

The block triangular structure of K and Λ imply that P is also block triangular with the same
block dimensions. For (29) to hold true we must have

Pii = Iσi
, Pij = 0σi×σj

, i 6= j, i, j ∈ 1, · · · , ` (31)

The above equations imply that

Pii = Λii ·K−1
ii = Iσi

or Λii = K−1
ii (32)
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By equating the non-diagonal blocks Pij , i 6= j to zero we can see that (29) is solvable with respect
to Λ as follows: Start from the equation P`−1,` = K`−1,`−1Λ`−1,` +K`−1,`Λ`,` = 0 or

Λ`−1,` = −K−1
`−1,`−1K`−1,`K

−1
`,` (33)

The next equation considered is P`−2,` = 0 or

K`−2,`−2Λ`−2,` +K`−2,`−1Λ`−1,` +K`−2,`Λ`,` = 0 or

Λ`−2,` = −K−1
`−2,`−2

(
K`−2,`−1K

−1
`−1,`−1K`−1,` −K`−2,`

)
K−1
`,` (34)

Proceeding this way, on the `–th block–column of P (s) we obtain Λ`−2,`, · · · ,Λ1,`. Next we apply
the same procedure to the block – columns `− 1, · · · , 1 and obtain the inverse of K. All blocks of
Λ are given by expressions involving products of blocks of K in the fashion of Proposition 2.4 an
therefore, their (Toeplitz) structure is that of equation (19). �

Based on the above results it is easy to show the following:

Proposition 2.6: The set of matrices with the structure defined in equation (19) for a given set of
controllability indices σ1, · · · , σ`, endowed with the operations of matrix addition and multiplication,
is a ring. �

The detailed relation between the similarity transformations and the corresponding unimodular
matrices as it is defined in (12) is given by the following result.

Theorem 2.1: Consider two systems with corresponding i.s.t.f. coprime and column reduced com-
posite matrices related by (12), i.e. T1(s) = Q̂T2(s)·U(s). Let N1(s) = C01

S(s) and N2(s) = C02
S(s)

be the numerator matrices of T1(s) and T2(s) as in (11). Then, (i) U(s) is unimodular matrix of
the form (20) and (ii) Q−1 = C02

KC−1
01

where K is derived from U(s) by (19).

Proof: Result (i) readily follows from the fact that both composite matrices in (12), i.e. T1(s)

and Q̂T2(s) are coprime and column reduced, i.e. are minimal bases of the same vector space.
Additionally, they are considered as column ordered (see (12)). Thus, according to Remark 2.1,
U(s) if of the form (20). (ii)From Lemma 2.1 we have that C01

and C02
are invertible. From (12)

we take

C01
S(s) = QC02

S(s)U(s) (35)

or

C−1
02
Q−1C01

S(s) = S(s)U(s) (36)

The above equation is actually equation (21) with K = C−1
02
Q−1C01

. �

Theorem 2.2: Let Kσ be the set of matrices of the form (19) corresponding to the set σ of integers
(controllability indices) and Uσ the set of unimodular matrices of the form (20). The map

F : Uσ −→ Kσ (37)

defined by (19) –(20) is an isomorphism.
Proof: We have to prove that F is bijective i.e. it is (i) injective and (ii) surjective.
(i) Let U1(s) and U2(s) ∈ Uσ. Then F (U1(s)) = K1 and F (U2(s)) = K2 with K1,K2 ∈ Kσ. If

K1 = K2 it readily follows that U1(s) = U2(s).
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(ii) Given matrix M ∈ Kσ, there always exists a polynomial matrix U(s) ∈ Uσ such that
F (U(s)) = K1 as it is clearly derived from equations (19) – (20). �

An immediate consequence of the above two theorems (since Q−1 = C2KC
−1
1 ) is the following:

Corollary 2.1: The relationship between matrices Q and U(s) in (36) is an isomorphism. �

3. Controller type realisation of the input – state transfer function

In realisation theory the transfer function considered is the input – output transfer function of
the system which is invariant under similarity transformations. Here, the realisation is obtained
with regard to the input – state transfer function. As it was pointed out in Section 2 (see (4)),
the transfer functions of similar systems are equal modulo pre – multiplication with the similarity
matrix. The controllability pencil of a controllable system is the canonical (in echelon form, see
Forney (1975)) basis matrix of the left null space of the composite matrix of the MFD of the i.s.t.f.
Thus it is uniquely defined, which is equivalent to the statement that the realisation of an i.s.t.f. in
state – space form, is uniquely defined. Next, we proceed to the realisation of a given minimal MFD
(N(s), D(s)) of the i.s.t.f. in the form of a pair (A,B). This realisation is obtained by inspection
from the MFD.

The construction is the one proposed in Forney (1975) with the difference that there is no output
matrix C in the realisation or, equivalently, C is the identity matrix.

Write the numerator of the MFD as N(s) = C0S(s) and the denominator as (see Kailath (1980))

D(s) = Dhc· diag(sσ1 , · · · , sσ`) +Dlc·S(s) (38)

and consider the equation

[sM −H,−I]
[
C0S(s)
D(s)

]
= 0 or (39)[

sM̂ − Ĥ,−D−1
hc

]
T̂ (s) = 0 (40)

where M̂ = D−1
hcMC0 and Ĥ = D−1

hc HC0 and T̂ (s) = [ST (s) DT (s)]T . For (39) to hold true, M̂

and Ĥ must be such that

(sM̂ − Ĥ)S(s) = diag(sσ1 , · · · , sσ`) +D−1
hc ·Dlc·S(s) (41)

Let sM̂ − Ĥ be partitioned according to the partitioning of S(s) as follows

sM̂ − Ĥ = [sM̂1 − Ĥ1, . . . , sM̂` − Ĥ`] (42)

where M̂i ∈ R`×σi Ĥi ∈ R`×σi , i = 1, · · · , `. Then from (41) it follows

M̂i = [ 0`×(σi−1), ei ] and Ĥ = −D−1
hc ·Dlc (43)

where ei are the vectors of the orthonormal basis of R`. Denote by µi(s) the i–th row of sM̂ − Ĥ,

by L̂i(s) the matrix formed by the rows
∑i−1

j=1(σj) + 1, · · · ,
∑i

j=1(σj) of L(s) in (17) and by d̂i the

i–th row of D−1
hc . Then the matrix 

L̂1(s)
µ1(s)

...
L̂`(s)
µ`(s)

 (44)
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is of the form sI − Â. If B̂ is defined as

B̂ =


0(σ1−1)×`

d̂1
...

0(σ`−1)×`
d̂`

 (45)

we have that [
sI − Â,−B̂

]
T̂ (s) = 0 (46)

The dimensions of L̂i(s) and the blocks which form B̂ are derived from the controllability indices

(column degrees) of the MFD while the coefficients of the nontrivial rows of Â and are B̂ are taken
by inspection from D(s).

From the above equations (43)–(46) it is clear that the realisation (Â, B̂) is derived directly from

the MFD of the input-state transfer function. The pair (Â, B̂) is a realisation of the given input
state transfer function pre–multiplied by C0, therefore it is related to the realisation (A,B) sought,
by the similarity transformation C−1

0 (note that from Lemma 2.1 we have that C0 is invertible) as
follows:

A = C0ÂC
−1
0 , B = C0B̂ (47)

4. Realisations and canonical forms

In the theory of canonical forms under similarity, the canonical representation is related to the
denominator matrix of the echelon canonical form of the composite matrix of the MFD of the
i.s.t.f. Kailath (1980), Popov (1969), Forney (1975). The strict properness of a state space system
(A,B) ensures that when T (s) is in echelon form, D(s) is also in echelon form and vice versa. Then
the so called Popov parameters Kailath (1980), Popov (1972) , of the canonical representation, are
directly related to the echelon form of D(s). Actually they are the coefficients of the polynomial
entries of the latter polynomial matrix. This is the controllable canonical form Kailath (1980)
and it can be obtained by any of the i.s.t.f. corresponding to the orbit of the systems related by
similarity. Each one member of the equivalence class of the system (A,B) has its uniquely defined
corresponding minimal composite matrix T (s) in echelon form, since the composite matrix is a
basis matrix of the right null space of the controllability pencil (recall that [sI −A,−B]T (s) = 0,
T (s) is a minimal basis and [sI − A,−B] has full row rank). All the echelon composite matrices
share the same denominator and differ on the numerators as shown below:

Proposition 4.1: Consider two pairs (A1, B1) and (A2, B2) related by similarity transformation
Q and let

[sI −A1,−B1]T1(s) = 0, [sI −A2,−B2]T2(s) = 0 (48)

where

T1(s) =
[
N1(s)
D1(s)

]
, T2(s) =

[
N2(s)
D2(s)

]
(49)
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and T1(s), T2(s) coprime and column reduced. Write

T1ech(s) = T1(s)U1(s) =
[
N1ech(s)
D1ech(s)

]
(50)

T2ech(s) = T2(s)U2(s) =
[
N2ech(s)
D2ech(s)

]
(51)

where U1(s) and U2(s) unimodular matrices, and T1ech(s), T2ech(s) are in echelon form Forney
(1975), then D1ech(s) is in echelon form, D1ech(s) = D2ech(s) and N2ech(s) = QN1ech(s).

Proof: Let A2 = Q−1A1Q, B2 = Q−1B1. Then the second of (48) yields

Q−1 [sI −A1,−B1]
[
Q 0
0 I

] [
N2(s)
D2(s)

]
U2(s) = 0 (52)

or

[sI −A1,−B1]
[
QN2ech(s)
D2ech(s)

]
= 0 (53)

The column degrees of N2ech(s) are strictly less than the corresponding column degrees of D2ech(s)
because the system is strictly proper. This means that the matrix[

QN2ech(s)
D2ech(s)

]
(54)

is in echelon form so D2ech(s) is also in echelon form. Furthermore, matrix in (54) is equal to
T1ech(s) which yields that D2ech(s) = D1ech(s) and N2ech(s) = QN1ech(s). �
Between the composite matrices corresponding to the equivalence class defined by a system (A,B)
we distinguish the following

Tc(s) =
[

S(s)
Dech(s)

]
(55)

In the rest of the paper Tc(s) will be referred to as the canonical composite matrix of the system
(A,B). Obviously, Tc(s) is the canonical composite matrix of all systems in the orbit of (A,B).

Remark 4.1: The term “canonical” above, is justified as follows: Relation (12) is an equivalence
relation for the coprime and column reduced composite matrices of the state – space systems be-
longing to the same orbit with respect to similarity. More specifically, we may define the following
transformation on this set of composite matrices

Q̂−1T1(s)V (s) = T2(s) (56)

where V (s) = U−1(s) and U(s) is defined in (12). Then it is quite straightforward that Tc(s) is the
canonical form of all composite matrices of this orbit, under this transformation. �

Consider now the realisation of Tc(s) of section 3. For this realisation we have that C0 = I, therefore

A = Â and B = B̂ (see (47 )). We have the following

Theorem 4.1: The realisation (Â, B̂) of Tc(s) is canonical.

Proof: If we apply the similarity transformation C−1
0 (the coefficient matrix of the numerator

of the echelon form of the echelon composite matrix of (A,B)) to system (A,B) we end up with

(Â, B̂) which is the same for all pairs (A,B) in the same orbit, since Â and B̂ are uniquely defined
from the echelon form of the denominator matrix, which is common to all systems in the orbit. The
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continuous invariants are obtained by the coefficients of the denominator. The discrete invariants
are the controllability indices which are equal to the column degrees of Tc(s). �

Given a system (A,B), the similarity transformation leading to the canonical form can be found
as follows: Find a coprime an column reduced MFD (N(s), D(s)) of the i.s.t.f. of the original
system. Then find the echelon form Dech(s) (see Forney (1975)) of D(s).Then the matrix U−1(s)
obtained as the solution of Dech(s) = D(s)U−1(s) is the unimoduar matrix transforming the
original denominator to the echelon form. Then from (19) find K by inspection. The similarity
transformation is given by Q−1 = KC−1

01
as stated in Theorem 2.1.

Example 2:

Consider the system MFD of the i.s.t.f. S(s)D−1(s) with

S(s) =
[

1 s
1 s s2

]T
, D(s) =

[
s2 s3 + s2 + 1
2 s3 − 2 s+ 2

]
(57)

Here we have C01
= I5. The corresponding controllability pencil, obtained by using the realisation

method of section 3, is

[ sI −A,−B ] =


s −1 0 0 0 0 0
2 s 3 −2 1 −1 −1
0 0 s −1 0 0 0
0 0 0 s −1 0 0
2 0 2 −2 s 0 −1

 (58)

The echelon form of the denominator D(s) of the original system and the corresponding U(s) are

Dech(s) =

[
s2 1
2 s3

]
, U(s) =

[
1 −s+ 1
0 1

]
(59)

The canonical composite matrix is that of (55) and has corresponding controllability pencil

[ sI −Ac,−Bc ] =


s −1 0 0 0 0 0
0 s 1 0 0 −1 0
0 0 s −1 0 0 0
0 0 0 s −1 0 0
2 0 0 0 s 0 −1

 (60)

Matrix K is obtained from U(s) according to (19) and (20)

K =


1 0 1 −1 0
0 1 0 1 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (61)

and the similarity transformation matrix is Q = K since Q−1 = KC−1
01

and C01
= I5;

5. Conclusions

In the present paper two minimal types of representations (coprime and column reduced MFDs
and minimal state– space ) were considered. It was shown that unimodular transformations in
the frequency domain (composite matrix of the MFD of input – state transfer function) can be
directly mapped to similarity transformations in the time domain (state – space). This mapping
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was shown to be an isomorphism. Thus, the well known duality of MFD and state–space represen-
tations was also established for the transformations on the frequency and time domain respectively.
The transformation matrices can be obtained by inspection from each other. In this context, new
canonical forms were proposed for both MFD composite matrix and the corresponding state space
realisation. The results about canonical forms are based on the fact that the denominator of the
echelon form of different input state transfer functions of systems related by similarity, is invariant.

Some extensions of the present results could be the subject of further research: The case of non-
proper transfer functions and the corresponding singular system representations can be considered.
However in that case the echelon form of the denominator of thr i.s.t.f. is not invariant and the
corresponding coordinate transformations for the state equations are the so called restricted system
equivalence transformations. The challenge in this case is to define the canonical MFD of the input
state transfer function in a way similar to the present paper for state–space systems (see equation
(55)).

The results of the paper could also be extended to the case of implicit descriptor systems where
the transfer equivalence is replaced by external equivalence and the transfer function by the au-
toregressive equations relating the external variables of the system.
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