
              

City, University of London Institutional Repository

Citation: Halikias, G., Karcanias, N. & Papageorgiou, A. (2013). The distance to strong 

stability. Linear Algebra and its Applications, 439(10), pp. 2721-2735. doi: 
10.1016/j.laa.2013.09.003 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/19391/

Link to published version: https://doi.org/10.1016/j.laa.2013.09.003

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


The Distance to Strong Stability

G. Halikias1, N. Karcanias1 and A. Papageorgiou1

Abstract: The notion of “strong stability” has been introduced in a recent paper [KHP2]. This

notion is relevant for state-space models described by physical variables and prohibits overshooting

trajectories in the state-space transient response for arbitrary initial conditions. Thus, “strong

stability” is a stronger notion compared to alternative definitions (e.g. stability in the sense of

Lyapunov or asymptotic stability). This paper defines two distance measures to strong-stability under

absolute (additive) and relative (multiplicative) matrix perturbations, formulated in terms of the

spectral and the Frobenius norm. Both symmetric and non-symmetric perturbations are considered.

Closed-form or algorithmic solutions to these distance problems are derived and interesting connections

are established with various areas in matrix theory, such as the field of values of a matrix, the cone of

positive semi-definite matrices and the Lyapunov cone of Hurwitz matrices. The results of the paper

are illustrated by numerous computational examples.

Keywords: Matrix distance problems, Strong stability, Non-overshooting trajectory, Spectral norm,

Frobenius norm, Field of Values, Convex Invertible Cone, Lyapunov Cone.

1. Introduction

A new notion of “strong stability” was defined in [KHP1], [KHP2] for the autonomous, linear, time-

invariant (LTI) state-space system:

S(A) : ẋ(t) = Ax(t), x(t0) = x0 (1)

This is a stronger notion compared to traditional definitions of stability, e.g., asymptotic or Lyapunov

stability, related to the transient response of a system, e.g. its overshooting behaviour, initial

exponential growth or transient energy [HP2]. It is also closely related to the theory of logarithmic

norms which can be used to obtain exponential stability estimates in the solution of initial value

problems and the numerical analysis of Ordinary Differential Equations [S].

The notion of strong stability is briefly reviewed in section 2, along with some other fundamental

properties and definitions. Reference [KHP2] examined the dependence of strong stability on general

coordinate transformations and established the existence of special coordinate frames for which we

cannot have strong stability and the invariance of this property under orthogonal transformations.

It was further shown that the violation of the strong stability property is intimately related to the

eigen-frame skewnesss of the state-matrix of the system (A in (1)). Upper bounds on a measure of

eigen-frame skewnesss were also established which guarantee the equivalence of the asymptotic and

strong stability properties.
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Reference [HPK] considered the strong stabilization problem under state and output feedback.

Simple necessary and sufficient conditions of strong stabilizability were established using a variety

of techniques (polynomial, geometric, convex programming/LMI-based). Geometrically, strong

stabilization was shown to be equivalent to the condition that the intersection between an affine

hyperplane and a convex cone is non-empty, a condition which can be easily verified via Linear Matrix

Inequalities [SW], [SIG]. Simpler equivalent conditions can also be established directly from the

state-space realization of the system, along with a complete parametrization of all strongly-stabilizing

state-feedback, output injection or output feedback matrices, respectively, depending on the nature

of the problem. Note, that in the context of state or output-feedback control, a small measure of

skewness in the eigenvectors of the (closed-loop) state-matrix (equivalently small deviation of the state

matrix from normality) is a highly desirable property [KNvD] as it implies low eigenvalue sensitivity

to model uncertainty [W]. As an alternative application of strong stabilisation, consider the linear

system resulting from the linearisation of a nonlinear system around an equilibrium point regulated

via state or output feedback. In this case, “large” state overshoots in the linear response imply that

after the application of a disturbance, the state of the (nonlinear) system may drift far away from

the equilibrium, in a region where the linearisation approximation is no longer valid, resulting in

instability. This is less likely to happen if the (linearised) response decreases monotonically to zero

from a perturbed initial condition.

In this paper the following problem is addressed: Suppose a square matrix A is asymptotically stable

but is not strongly stable. Does it make sense to say in certain cases that A is “approximately

strongly stable” and, if yes, can we make this notion precise? The main motivation for posing this

question arises from the strong stabilization problem outlined in the previous paragraph. Although

strong stability is a highly desirable closed-loop system property, it may be a very strong condition to

impose in certain cases, e.g. it may require excessive actuator signal levels. In such cases relaxing the

definition by introducing approximate notions may be appropriate.

In this paper the approximate notion of strong stability is made precise by defining the “distance” of

an arbitrary matrix A from the set of all strongly stable matrices of the same dimension. Two methods

are proposed for defining this metric. The first, involves the minimization of the norm of an additive

perturbation ∆ of A such that A+∆ is strongly stable. The second method considers multiplicative

perturbations ∆ (left or right) and minimizes the norm of ∆ such that A(I+∆) (equivalently (I+∆)A)

is strongly stable. Additive and multiplicative perturbation models are two types of “unstructured”

uncertainty used extensively in robust systems and control theory as they correspond to absolute and

relative modelling errors, respectively [HP], [SIG]. Both general and symmetric perturbation matrices

∆ are considered. In addition, two norms are considered in the formulation of the distance problem,

the Frobenius and spectral norm (largest singular value). The solution to the problem is obtained

in each case either in closed-form or algorithmically, and connections are established with various

linear-algebraic notions, such as the field of values, the cone of positive semi-definite matrices and the

Lyapunov cone of asymptotically stable matrices.

The structure of the paper is as follows: The mathematical notation used in the paper along with some

background material is defined in section 2. A brief introduction to strong stability, along with some

basic definitions and fundamental results related to this notion, is included in section 3. Sections 4 and
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5 contain the main results of the paper, i.e. the formulation and solution of the two distance problems

described above, discussion of issues related to existence and uniqueness of solutions and illustration

of the optimization methods via computation examples. The results of the paper are summarized in

section 6, while section 7 contains the list of references.

2. Notation and Preliminaries

The notation is mostly standard and is included here for ease of reference. R and C denote the

fields of real and complex numbers, respectively. The set of positive and non-negative numbers

is denoted by R+ and R+0, respectively. If k is an integer, then k = {1, 2, . . . , k}. If f(x) is

a real-valued function and x ∈ X ⊆ R, then inf+{f(x) : x ∈ X} := max (infx∈X f(x), 0) and

sup+{f(x) : x ∈ X} := max (supx∈X f(x), 0) (and similarly for minimisation of maximisation of

f(x)). The open (resp. closed) left half complex plane is denoted by C− (resp. C−). Rn×m is the

space of all n×m matrices over R. For a set Ω ⊆ Rn×m, Ω̄ denotes its closure in Rn×m (with respect

to a suitable norm ∥ · ∥) and ∂Ω = Ω̄\Ω. The interior of a set Ω in denoted by int(Ω). The distance of

A ∈ Rn×m to Ω is defined as dist(A,Ω) = infX∈Ω ∥A−X∥. The cone generated by a set Ω ⊆ Rn×n is

defined as cone[Ω] = {x ∈ Rn×n : x = λω, ω ∈ Ω, λ > 0}. A set Ω ⊆ Rn×n is called a convex invertible

cone (cic) if it is a convex cone and ω ∈ Ω ⇒ ω−1 ∈ Ω.

The spectrum of a matrix A ∈ Rn×n is the set of its eigenvalues λ(A) = {λ1(A), λ2(A), . . . , λn(A)}.
The field of values of A is the set F (A) = {x∗Ax : x ∈ Cn, x∗x = 1} where (·)∗ denotes the complex-

conjugate transpose. The spectral radius of A is defined as ρ(A) := max{|λ1(A)|, |λ2(A)|, . . . , |λn(A)|}
and the numerical radius of A is r(A) := max{|z| : z ∈ F (A)}. The set of all real n×n real symmetric

matrices (A = A′) is denoted as Sn and the set of all n× n real skew-symmetric matrices (A = −A′)

is denoted as An. The inertia of A ∈ Sn is the triplet In(A) = (π(A), δ(A), ν(A)) of positive, zero,

and negative eigenvalues of A, respectively. For A ∈ Sn we denote by [A]+ ([A]−) the matrix that

results by setting all negative (resp. positive) eigenvalues in the spectral decomposition of A to zero.

The set of all n×n positive-definite (positive semi-definite) matrices A > 0 (A ̸= 0) is denoted by S+
n

(S̄+
n ) while S−

n (S̄−
n ) denotes the set of all n× n negative-definite (negative semi-definite) symmetric

matrices. It follows easily that the sets S+
n (and S−

n ) are convex invertible cones. If A,B ∈ Sn, A < B

(A ≤ B) means that B −A > 0 (B −A ≥ 0).

∥A∥ (or σ̄(A)) denotes the spectral norm of A ∈ Rn×n and ∥A∥F the Frobenius norm of A. In matrix-

distance problems the convenience of using the Frobenius norm arises from the fact that it is induced

by an inner product in Rn×n, ⟨A,B⟩ = trace{B′A}, with ∥A∥2F = ⟨A,A⟩. Thus the space (Rn×n,R)

equipped with ∥ · ∥F is a Hilbert space (due to completeness) and can be written as the direct sum

Rn×n = Sn ⊕An of the spaces of all symmetric and skew-symmetric matrices, respectively; this is in

fact an orthogonal decomposition with respect to the inner product ⟨·, ·⟩ defined above.

The Kronecker product of two matrices A ∈ Rm×n and B ∈ Rp×q is denoted as A ⊗ B ∈ Rmp×nq.

Given A ∈ Rn×m, vec(A) : Rn×m → Rnm denotes the usual vectorisation operation; this defines

an isometric isomorphism between the spaces Rn×n and Rn2
, so that ∥A∥F = ∥vec(A)∥ where

∥ · ∥ denotes the Euclidian norm. Note also that, vec(Sn) = {vec(A) : A ∈ Sn} ⊆ Rn2
is a

linear subspace of Rn2
of dimension r = n(n + 1)/2. Let {w1, w2, . . . , wr}, be an orthonormal
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basis set for vec(Sn) and define WS = [w1 w2 . . . wr]. For each A ∈ Sn the column vector of

co-ordinates of vec(A) with respect to {w1, w2, . . . , wr} is denoted by vecS(A). Clearly we have

that: vec(A) = WSvecS(A) ⇒ vecS(A) = W ′
Svec(A). Also, W ′

SWS = Ir, R[W ′
S ] = Rr and

R[WS ] = vec(Sn).

The characterization of positive semi-definite matrices in [All] is based on the fact that A ∈ S̄+
n can

be written (e.g. via its spectral decomposition) as A = αB2 for some B = B′ and α ≥ 0. Let:

US := {B ∈ Rn×n : B = B′ and ∥B∥F = 1} ⊆ Sn

Also define: ΨS := {vec(B2) : B ∈ US} ⊆ Rn2
and ΩS = conv[ΨS ]. Then the following result is

proved in [All]:

Lemma 2.1 [All]:

(i) vec(S̄+
n ) = cone[ΩS ] with vec(S+

n ) = int cone[ΩS ].

(ii) vecS(S̄+
n ) = cone[W ′

SΩS ] with vecS(S+
n ) = int cone[W ′

SΩS ].

(iii) ΨS is a compact set, ΩS is a non empty convex compact set with dist(0,ΩS) = 1/
√
n and

cone[ΩS ] is a nonempty closed convex cone. �

We will also make use of the following result:

Lemma 2.2 [HJ]: Let m, n be given positive integers. There is a unique matrix P (m,n) ∈ Rm×n

such that vec(X ′) = P (m,n)vec(X) for all X ∈ Rm×n. P (m,n) depends only on the dimensions m

and n and is given by

P (m,n) =
m∑
i=1

n∑
j=1

Eij ⊗ E′
ij = [Eij ]

j=1,...,n
i=1,...,m

where each Eij ∈ Rm×n has entry 1 in position (i, j) and all other entries are zero. Moreover P (m,n)

is a permutation matrix and P (m,n) = P ′(n,m) = P (n,m)−1. �

We conclude the section by giving the following definitions: A matrix A ∈ Rn×n is said to be strongly

stable if A + A′ ∈ S−
n . The set of all strongly-stable matrices of dimension n × n is denoted by Dn

and is a convex invertible cone (cic) in Rn×n. Given A ∈ Rn×n we define the Lyapunov cone of A as

the set PA = {P ∈ S+
n : AP + PA′ ∈ S−

n }. Lyapunov’s stability theorem for LTI systems states that

A is Hurwitz (i.e. Reλi(A) < 0 for all i ∈ n) if and only if PA is a non-empty set [B], [HP], [BS], [H].

It is straightforward to verify that PA is also a convex invertible cone (cic) in Rn×n; further note that

A ∈ Dn if and only if In ∈ PA.

3. Strong Stability: Definitions and basic results

We begin by giving the two standard definitions of Lyapunov and asymptotic stability of linear time-

invariant systems [B], [K]:

Definition 3.1: For the linear system S(A) in (1) we define:
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1. S(A) is Lyapunov stable if for each ϵ > 0 there exists δ(ϵ) > 0 such that ∥x(t0)∥ < δ(ϵ) implies

that ∥x(t)∥ < ϵ for all t ≥ t0.

2. S(A) is asymptotically stable if it is Lyapunov stable and δ(ϵ) in part (1) of the definition can

be selected so that ∥x(t)∥ → 0 as t → ∞. �

For linear time-invariant systems a necessary and sufficient condition for asymptotic stability of S(A)
is that A is Hurwitz; a necessary and sufficient condition for Lyapunov stability is that the spectrum of

A lies in the closed left-half plane (C̄− = Re(s) ≤ 0) and, in addition, any eigenvalue on the imaginary

axis has simple structure (i.e. equal algebraic and geometric multiplicity) [B], [K], [HP]. Note that

asymptotic stability is here taken to mean that the origin is the unique equilibrium point.

In the paper we use a refined version of stability which characterizes systems with non-overshooting

behaviour, in the sense that the Euclidian norm of their state trajectory is a monotonically

decreasing/non-increasing function of time for arbitrary initial conditions in the state-space. We

refine this notion by introducing the following definitions (see [KHP2] for details):

Definition 3.2: For the LTI system S(A) we define:

1. The system S(A) is strongly Lyapunov stable if ∥x(t)∥ ≤ ∥x(t0)∥, ∀t > t0 and ∀x(t0) ∈ Rn.

2. The system S(A) is strongly asymptotically stable w.s. (in the wide sense), if ∥x(t)∥ <

∥x(t0)∥, ∀t > t0 and ∀x(t0) ̸= 0.

3. The system S(A) is strongly asymptotically stable s.s. (in the strict sense, or simply strongly

asymptotically stable) if d∥x(t)∥
dt < 0, ∀t ≥ t0 and ∀x(t0) ̸= 0. �

The three definitions of strong stability introduced above make precise the notion of a non-overshooting

state-space response. Thus, strong Lyapunov stability does not allow state trajectories to exit (at any

time t > t0) the (closed) hyper-sphere with centre the origin and radius the norm of the state vector

at time t0, r0 = ∥x(t0)∥ (although motion on the boundary of the sphere ∥x(t)∥ = r0 is allowed, e.g.

an oscillator’s trajectory). Strong asymptotic stability (strict sense) requires that all state trajectories

enter each hyper-sphere ∥x(t)∥ = r ≤ r0 from a non-tangential direction, whereas for systems which

are strongly asymptotically stable (wide-sense), tangential entry is allowed. It is clear that strong

Lyapunov stability implies Lyapunov stability and strong asymptotic stability (in either sense) implies

asymptotic stability. Moreover, strong asymptotic stability (s.s.) implies strong asymptotic stability

(w.s.) which in turn implies strong Lyapunov stability. For further discussion and concrete examples

of each type of strong stability see [KHP1] and [KHP2].

The characterization of the properties of LTI systems for which we may have, or can avoid, overshoots

is a property depending entirely on the state matrix A. Necessary and sufficient conditions for each

type of strong stability are stated below:

Theorem 3.1 [KHP2]: For the system S(A), the following properties hold true:

(i) S(A) is strongly asymptotically stable (s.s.) if and only if A+A′ < 0.
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(ii) S(A) is strongly asymptotically stable (w.s.) if and only if one of the following two equivalent

conditions hold:

(a) A+A′ ≤ 0 and A is Hurwitz.

(b) A+A′ ≤ 0 and the pair (A,A+A′) is observable.

(iii) S(A) is strongly Lyapunov stable, if and only if A+A′ ≤ 0. �

In the remaining parts of the paper we consider only strong asymptotic stability in the strict sense

(s.s.), which in the sequel is simply referred to as “strong stability”. Note that since the present work

addresses problems which involve the calculation of the distance of a matrix from the strong stability

condition, the precise notion of strong stability which is used is not really important and affects only

the classification of an optimal solution as “infimising” or “minimising”.

4. Additive perturbations: Distance to the cone of strongly stable

matrices

A direct approach for formalizing the notion of “approximate strong-stability” is to let A be perturbed

to A + ∆ and minimise the Frobenious norm of ∆ such that A + ∆ is strongly stable. Formally we

define:

γ0 = inf{∥∆∥F : A+A′ +∆+∆′ < 0} (2)

and

γ̂0 = inf{∥∆∥F : A+A′ +∆+∆′ < 0,∆ = ∆′} (3)

An analytic solution to both problems is provided by the following Theorem:

Theorem 4.1: Problems (2) and (3) above have the unique, identical infimizing solution ∆o =

−1
2 [A+A′]+ and

γ0 = γ̂0 =
1

2

√√√√ n∑
i=1

[max{λi(A+A′), 0}]2

∆o is a minimising solution if and only if A+A′ < 0 in which case γ0 = γ̂0 = 0 and ∆o = 0.

Proof: Follows easily via a spectral factorisation argument. The symmetric nature of the optimal

solution of (2) follows from the observation that the constraint in (2) depends only on the symmetric

part of ∆, while any skew-symmetric part of ∆ would increase the norm above γ0, since ∥∆∥2F =

∥∆s∥2F + ∥∆u∥2F . �

Remark 4.1: Set X = A + ∆. Then (2) and (3) can be formulated, respectively, as the two

distance problems: γ0 = dist(A,Dn) = infX∈Dn ∥A−X∥F and γ̂0 = dist(A, D̂n) = infX∈D̂n
∥A−X∥F

where D̂n = Dn ∩ {X : X − A ∈ Sn}. These have have the unique, identical infimizing solution

X = 1
2 [A+A′]− + 1

2(A − A′). Thus, the optimal solution is obtained by decomposing A to its

symmetric (As) and skew-symmetric (Au) parts, and adding the negative part of As (obtained via

spectral decomposition) to Au. �
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Example 4.1: Consider the matrix

A =

 1 2 4

0 1 1

2 1 1

⇒ As =
1

2
(A+A′) =

 1 1 3

1 1 1

3 1 1


The eigenvalues of As are {λ1 = 5+

√
17

2 , λ2 = 5−
√
17

2 , λ3 = −2} and hence A is not strongly stable.

The nearest strongly-stable matrix (in the Frobenius-norm sense) is:

Xopt =
1

2
(A+A′)− +

1

2
(A−A′) =

 −1 0 1

0 0 0

1 0 −1

+

 0 1 1

−1 0 0

−1 0 0

 =

 −1 1 2

−1 0 0

0 0 −1


Note that the symmetric part of Xopt has eigenvalues {−2, 0, 0} and that ∥A − Xopt∥F =

√
21 =√

λ2
1 + λ2

2 in agreement with Theorem 4.1. �

Next, we examine the distance problem with the Frobenius norm replaced by the spectral norm.

Specifically, given A ∈ Rn×n we aim to solve:

γ1 = inf{∥∆∥ : A+A′ +∆+∆′ < 0} (4)

where ∥∆∥ = σ̄(∆). We start by considering a relaxed version of the problem by assuming that

∆ = ∆′, i.e.

γ̂1 = inf{∥∆∥ : A+A′ +∆+∆′ < 0,∆ = ∆′} (5)

Lemma 4.2 below provides a solution to the distance problem (5). Lemma 4.3 gives a parametrization

of all solutions to problem (5). We first need the following technical result:

Lemma 4.1: Let Λ+ = diag(Λ+) > 0 and X = X ′ ≥ 0 with Λ+ ∈ Rn×n and X ∈ Rn×n. Then

(i) λmax(Λ+ +X) = ∥Λ+ +X∥ ≥ λmax(Λ+).

(ii) Further if Λ+ = diag(λ1Ir, Λ̂+) with ∥Λ̂+∥ < λ1, then (i) is an equality if and only if

X = diag(0, Y ) where Y ∈ R(n−r)×(n−r) such that ∥Λ̂+ + Y ∥ ≤ λ1.

Proof: Straightforward and therefore omitted. �

Lemma 4.2: (i) If A+A′ ≤ 0, then γ̂1 = 0 and ∆0 = 0 is the unique optimal (infimising) solution of

problem (5) (minimising if A+ A′ < 0). (ii) If at least one eigenvalue of A+ A′ is positive, then the

optimal distance in (5) is given by γ̂1 =
1
2λmax(A+A′). Further, one optimal solution in this case is

∆o = −1
2 [A+A′]+.

Proof: (i) Follows immediately since in this case ∆ = 0 is feasible or lies on the closure of the feasible

set. (ii) Assume that the largest eigenvalue of A + A′ is positive and let 1
2(A + A′) have a spectral

decomposition 1
2(A + A′) = UΛU ′ = U1Λ+U

′
1 + U2Λ−0U

′
2 with λi(Λ+) > 0 and λi(Λ−0) ≤ 0. Set

ρ = dim(Λ+). Then, the distance problem is equivalent to:

γ̂1 = inf{∥∆∥ : A+A′ +∆+∆′ < 0,∆ = ∆′} = inf{∥∆̂∥ : Λ + ∆̂ < 0, ∆̂ = ∆̂′} (6)
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where we have defined ∆̂ = U ′∆U , using the fact that the spectral norm is unitarily invariant and

noting that the transformation ∆ → ∆̂ is a bijection in Sn. We claim that ∆̂o = −diag(Λ+, 0) is

an infimiser of the optimisation problem defined in equation (6), so that U∆̂oU ′ is an infimiser of

the original problem. Assume for contradiction that ∆̃ = ∆ − diag(Λ+, 0), ∆ = (∆ij)i,j∈{1,2} with

∆11 ∈ Rρ×ρ, is an infimising solution which satisfies ∥∆̃∥ < ∥∆̂∥ = λmax(Λ+). Since ∆̃ lies inside

the feasible set or on its closure, Λ + ∆̃ ∈ S̄−
n or, ∆ + diag(0ρ×ρ,Λ−0) ≤ 0 and in particular that

∆11 ≤ 0 and ∆22 ≤ −Λ−0. Now ∥∆̃∥ ≥ ∥Λ+ −∆11∥ ≥ λmax(Λ+) using Lemma 4.1 part (i) which is a

contradiction and concludes the proof. �

The following Lemma gives a complete parametrisation of all solutions to the distance problem (5).

Lemma 4.3: Assume that A+ A′ has at least one positive eigenvalue. Let 1
2(A+ A′) have a spectral

factorization 1
2(A + A′) = UΛU ′ = Udiag(λ1Ir, Λ̂+,Λ−0)U

′ with Λ = diag(Λ), UU ′ = U ′U = In,

0 < λi(Λ̂+) < λ1 for i = 1, 2, . . . , π1−r where π1 := π(A+A′) and λi(Λ−0) ≤ 0 for i = 1, 2, . . . , ν1+δ1

where ν1 := ν(A+A′) and δ1 := δ(A+A′). Then:

(i) The optimal distance in (5) is given by γ̂1 =
1
2λmax(A+A′) = λ1.

(ii) All optimal (infimising) solutions of (5) are given as ∆o = Udiag(−λ1Ir,∆)U ′ where ∆ = ∆′,

diag(Λ̂+,Λ−0) + ∆ ≤ 0 and ∥∆∥ ≤ λ1.

Proof: Using the spectral decomposition of 1
2(A + A′) and following the steps of the first part of

the proof of Lemma 4.2, shows that the optimisation problem is equivalent to: γ̂1 = inf{∥∆̂∥ : ∆̂ =

∆̂′,Λ + ∆̂ < 0} where ∆̂ = U ′∆U . Let ∆̂ = ∆̂′ = (∆ij)i,j∈{1,2,3} be an arbitrary infimising solution

with ∆11 ∈ Rr×r, ∆22 ∈ R(π1−r)×(π1−r) and ∆33 ∈ R(ν1+δ1)×(ν1+δ1). Since ∆̂ is an infimising solution

it must lie inside or on the closure of the feasible set, i.e. ∆̂ + diag(λ1Ir, Λ̂+,Λ−0) ≤ 0 (which implies

that λi(∆11) ≤ −λ1 for all i = 1, 2, . . . , r and hence ρ(∆11) ≥ λ1) and from Lemma 4.2 must have

norm ∥∆̂∥ ≤ λ1 (which implies that ∥∆11∥ ≤ λ1). Since ∆11 = ∆′
11 it follows that λi(∆11) = −λ1 for

all i = 1, 2, . . . , r and hence ∆11 = −λ1Ir. Thus ∥∆11∥ = ∥∆̂∥ = λ1 and hence ∆12 = 0 and ∆13 = 0

from which the parametrisation of part (ii) follows. �

The following Theorem gives a complete parametrisation to the optimal solutions of (4) and (5). Note

that there is always an matrix which optimizes (5) in the set of optimal solutions of (4).

Theorem 4.2:

(i) If A + A′ ≤ 0 then γ1 = γ̂1 = 0 and ∆ = 0 is the unique infimising solution for both problems

(4) and (5) (minimising solution if A+A′ < 0).

(ii) If A+ A′ has at least one positive eigenvalue, then γ1 = γ̂1 = 1
2λmax(A+ A′) and the set of all

optimal solutions of (5) described by Lemma 4.3 forms a subset of the set of all optimal solutions

of problem (4). Further if ∆ is an infimising solution of problem (4), then 1
2(∆+∆′) is also an

infimising solution of problem (4).

(iii) Let 1
2(A+ A′) have a spectral factorization: 1

2(A+ A′) = UΛU ′ = Udiag(λ1Ir, Λ̂+,Λ−0)U
′ with

Λ = diag(Λ), UU ′ = U ′U = In, 0 < λi(Λ̂+) < λ1 for i = 1, 2, . . . , π1 − r, (π1 := π(A + A′))

and λi(Λ−0) ≤ 0 for i = 1, 2, . . . , ν1 + δ1 where ν1 := ν(A + A′) and δ1 := δ(A + A′). Then all
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optimal (infimising) solutions of problem (4) are given as ∆o = Udiag(−λ1Ir, D + E)U ′ where

D = D′ and E = −E′ satisfy diag(Λ̂+,Λ−0) +D < 0 and ∥D + E∥ ≤ λ1.

Proof: (i) If A+A′ ≤ 0, ∆ = 0 is feasible (or lies on the closure of the feasible set) and hence is the

unique infimising solution for both problems; hence in this case γ1 = γ̂1 = 0. (ii) Note that since the

constraint set of problem (5) is a subset of the constraint set of problem (4), we have that γ1 ≤ γ̂1.

Note also that if ∆ = ∆s +∆u with ∆s ∈ Sn and ∆u ∈ An, we have

∥∆∥ = ∥∆s +∆u∥ = max{|x′∆y| : x ∈ Rn, y ∈ Rn, ∥x∥ = ∥y∥ = 1}

≥ max{|x′(∆s +∆u)x| : x ∈ Rn, ∥x∥ = 1}

= max{|x′∆sx| : x ∈ Rn, ∥x∥ = 1} (since x′∆ux = 0)

= ρ(∆s) = ∥∆s∥ (since ∆s = ∆′
s)

Hence,

γ1 = inf{∥∆∥ : A+A′ +∆+∆′ < 0}

= inf{∥∆s +∆u∥ : A+A′ +∆s +∆′
s < 0,∆s = ∆′

s,∆u = −∆′
u}

≥ inf{∥∆s∥ : A+A′ +∆s +∆′
s < 0,∆s = ∆′

s}

= γ̂1

We conclude that γ1 = γ̂1. Further, since all optimal (infimising) solutions of problem (5) lie on the

closure of the feasible set of problem (4), they are also infimising solutions of (4). Finally, let ∆ be

an infimising solution of problem (4). Decompose ∆ as ∆ = ∆s + ∆u with ∆s ∈ Sn and ∆u ∈ An.

Suppose for contradiction that ∆s is not an infimising solution of problem (4). Then ∥∆∥ = γ1 and,

since A+A′ + 2∆s ≤ 0, we must have that ∥∆s∥ > γ1 if ∆s is not an infimiser. In this case, however

γ1 < ∥∆s∥ ≤ ∥∆∥ = γ1, which is a contradiction. (iii) Using similar arguments with the first steps of

the proof of Lemma 4.2 we conclude that

γ1 = inf{∥∆̂∥ : Λ + ∆̂s ≤ 0, ∆̂ = ∆̂s + ∆̂u, ∆̂s = ∆̂′
s, ∆̂u = −∆̂′

u} (7)

and all optimal ∆o are given as ∆o = U(∆̂o
s+∆̂o

u)U
′, where ∆̂o = ∆̂o

s+∆̂o
u are the infimising solutions

of (7). All symmetric infimisers ∆o
s = U∆̂o

sU
′ are parametrised in Lemma 4.3 part (ii), and part (ii)

of this Theorem shows that all infimisers are obtained by perturbing the symmetric minimisers ∆o
s

by a skew-symmetric part ∆o
u so that the norm is unaffected, i.e. ∥∆o

s + ∆o
u∥ = ∥∆o

s∥ = γ1. Hence

all optimal ∆o are of the form U ′∆oU = diag(−λ1Ir, D) + E where D ∈ Sn−r, E ∈ An such that

diag(Λ̂+,Λ−0) + D < 0 and ∥diag(−λ1Ir, D) + E∥ = λ1. When E = (Eij)i,j∈{1,2} is partitioned

conformally with diag(−λ1Ir, D), the last equation implies that

∥E11 − λ1Ir∥ ≤ λ1 ⇒ (E11 − λ1Ir)(E
′
11 − λ1Ir) ≤ λ2

1Ir ⇒ E11E
′
11 − λ1(E11 + E′

11) + λ2
1Ir ≤ λ2

1Ir

and hence E11 = 0 since E11 +E′
11 = 0. Similarly,∥∥∥( −λ1Ir E12

)∥∥∥ ≤ λ1 ⇒ λ2
1Ir + E12E

′
12 ≤ λ2

1Ir

and hence E12 = 0 from which the parametrisation of all optimal ∆o follows. �
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Remark 4.2 (Field of values): It is possible to give a geometric interpretation to the (spectral-

norm) distance problem discussed in this section via the field of values of a matrix. Recall that for

A ∈ Rn×n the field of values of A is defined as the set F (A) = {x∗Ax : x ∈ Cn, x∗x = 1}. F (A)

is a compact convex subset of the complex plane which contains the convex hull of the spectrum of

A; in particular, if A is normal F (A) = co(λ(A)) [HJ]. Two useful properties of the field of values

are: (i) the “shift property”, i.e. F (A + αIn) = α + F (A), and (ii) the “projection property”, i.e.

Re(F (A)) = F (As) where As denotes the symmetric part of A, As =
1
2(A+A′) ∈ Sn [HJ]. It can also

be easily shown that F (A) ⊂ C− if and only if A ∈ Dn (i.e. A + A′ < 0), which defines a geometric

necessary and sufficient condition for strong stability; hence:

γ1 = inf{∥∆∥ : A+∆ ∈ Dn} = inf{∥∆∥ : ∆ ∈ Rn×n, F (A+∆) ⊂ C−}

≤ min+{α : F (A+ αIn) ⊂ C−} = min+{α : α+ F (A) ⊂ C−} := γ̃1

Assuming that F (A) is not contained in C−, γ̃1 geometrically represents the minimum amount α that

F (A) must be shifted to the left (i.e. in the negative real-axis direction) so that it is contained entirely

within C−, i.e.

γ̃1 = max+{Re(z) : z ∈ F (A)} (8)

Since A is assumed real, F (A) is symmetric (with respect to the real axis) i.e. z ∈ F (A) ⇔ z̄ ∈ F (A).

This follows from the equivalences z = x∗Ax ⇔ z̄ = xtAx̄ and ∥x∥ = 1 ⇔ ∥x̄∥ = 1. The fact that

F (A) is symmetric (with respect to the real axis) and convex implies that maximum in (8) is attained

on the real axis (since z0 ∈ F (A) ⇒ z̄0 ∈ F (A) ⇒ Re(z0) =
1
2(z0 + z̄0) ∈ F (A)). Now,

λ(A) ⊆ F (A) ⇒ Re(λ(A)) ⊆ Re(F (A)) = F (As)

using the “projection” property of F (A). Note that F (As) is the closed interval

F (As) =

[
1

2
λn(A+A′),

1

2
λ1(A+A′)

]
which lies on the real axis of the complex plane. Thus

γ̃1 = max+{x : x ∈ Re(F (A))} = max+{x : x ∈ F (As)} = max

(
1

2
λ1(A+A′), 0

)
(9)

Note that this is actually equal to γ1 (see Theorem 4.2 (ii)) and hence the inequality γ1 ≤ γ̃1 is actually

an equality. For connections between the field of values and stability questions in numerical analysis

see [S2]. �

5. Multiplicative perturbations: Distance to Lyapunov cone

Recall that Dn denote the set of all strongly stable matrices in Rn×n and assume that A ∈ Rn×n is a

Hurwitz (but not necessarily strongly stable) matrix. It is well known that in this case the Lyapunov

inequality

AP + PA′ < 0 (10)

has a positive-definite solution P = P ′ > 0. Denote the set of all solutions to the Lyapunov inequality

by PA. It can be easily shown that PA is a convex invertible cone [CL], [L], [H]. Now, if A is not

strongly stable, we have In /∈ PA and we can define:

γ2 = dist(A,Dn) = inf
P∈PA

∥In − P∥F (11)

10



Re(z)

Im(z)

γ1= λ1((Α+ΑΤ)/2)

F(A)

F(As)

Figure 1: Field of values

Note that if In ∈ PA we have dist(A,Dn) = 0.

Remark 5.1: Let Po be an infimising solution of (11) and set ∆o = Po − In. Since Po ∈ PA we have

APo + PoA
′ ≤ 0. Since ∆o = ∆′

o, this may be written as

A(I +∆o) + (I +∆′
o)A

′ = A(I +∆o) + (I +∆o)A
′ ≤ 0

and hence the problem defined in (11) is equivalent to:

γ2 = inf{∥∆∥F : In +∆ ∈ PA} = inf{∥∆∥F : ∆ = ∆′, A(I +∆) ∈ Dn}

This can be interpreted as the problem of finding the minimum-norm symmetric (right) multiplicative

perturbation of A, such that the perturbed matrix is strongly stable. �

To compute this distance numerically, vectorize equation (10) to get:

−(In ⊗A+A⊗ In)vec(PA) = vec(S+
n )

Defining ΦA = −(In ⊗A+A⊗ In), this can be written as:

PA = vec−1
[
Φ−1
A vec(S+

n )
]

Thus, p ∈ vec(PA) if and only if p = Φ−1
A q for a vector q ∈ vec(S+

n ) and hence:

γ2 = dist(A,Dn) = inf
Q=Q′>0

∥In − vec−1
[
Φ−1
A vec(Q)

]
∥F = inf

Q=Q′>0
∥vec(In)− Φ−1

A vec(Q)∥

where ∥ · ∥ denotes the Euclidean norm. Using the relationship vec(Q) = WSvecS(Q), this can be

written in the more “compact” form as:

γ2 = dist(A,Dn) = inf
Q=Q′>0

∥vec(In)− Φ−1
A WSvecS(Q)∥

The following Lemma shows that dist(A,Dn) is well defined for Hurwitz matrices in the sense that

ΦA is invertible:

11



Lemma 5.1: If A is Hurwitz, ΦA is invertible.

Proof: The eigenvalues of ΦA are given by the n2 numbers {λi(A) + λj(A), i, j = 1, 2, . . . , n}, where
{λi, i = 1, 2, . . . , n} are the eigenvalues of A [HJ]. These have all negative real parts if the eigenvalues

of A have all negative real parts. �

Remark 5.2: (i) An alternative way of seeing that ΦA is invertible when A is Hurwitz the Sylvester

equation AP−PB = 0; this has a nonzero solution P if and only if A and B have a common eigenvalue

[HJ], which is impossible if B = −A′. (ii)Suppose that the Hurwitz matrix A ∈ Rn×n has n linearly

independent eigenvectors and hence is diagonalisable, i.e. A =
∑n

i=1 λiwiv
′
i where {wi} and {v′i},

i = 1, 2, . . . , n, denote the right and left eigenvectors of A, respectively. Now,

(Awi)⊗ wj = (λiwi)⊗ wj ⇒ (A⊗ In)(wi ⊗ wj) = λi(wi ⊗ wj)

Similarly,

wi ⊗ (Awj) = wi ⊗ (λjwj) ⇒ (In ⊗A)(wi ⊗ wj) = λj(wi ⊗ wj)

Adding the two equations above gives

(A⊗ In + In ⊗A)(wi ⊗ wj) = (λi + λj)(wi ⊗ wj)

and hence the n2 vectors {wi ⊗ wj}, i = 1, 2, . . . , n, j = 1, 2, . . . , n are right eigenvectors of ΦA. A

similar argument shows that:

(v′i ⊗ v′j)(A⊗ In + In ⊗A) = (λi + λj)(v
′
i ⊗ v′j)

In fact, under the assumption that A is diagonalisable, ΦA has only linear elementary divisors and the

n2 vectors {wi ⊗ wj} are linearly independent; thus, in this case, ΦA has a spectral decomposition:

ΦA =
n∑

i=1

n∑
j=1

(λi + λj)(wi ⊗ wj)(vi ⊗ vj)
′

Since λi + λj ̸= 0 for every pair (i, j) if A is stable,

Φ−1
A =

n∑
i=1

n∑
j=1

1

λi + λj
(wi ⊗ wj)(vi ⊗ vj)

′

is an eigenvalue-eigenvector decomposition of Φ−1
A . In the case when A has a Jordan form with m

Jordan blocks of size pi, i = 1, 2, . . . ,m, ΦA has Jordan blocks of size:

{pi + pj − 1, pi + pj − 3, . . . , |pi − pj |+ 1}; i = 1, 2, . . . ,m and j = 1, 2, . . . ,m

(see [G]). In this case an explicit expression for Φ−1
A has a much more complex form. �

The following Theorem shows that the calculation of γ can be performed by calculating the distance

of a vector to a convex cone. A concrete algorithm for this purpose is given later in this section.

Theorem 5.1: The distance problem defined in (11) is equivalent to

γ2 = inf
k∈K

∥f1 − k∥ (12)
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where [f1 f2]
′ := U ′vec(In) with f1 ∈ Rr and f2 ∈ Rn2−r; K := cone(LW ′

SΩS) in which L ∈ Rn2×r is

defined by the factorization

Φ−1
A WS = U

(
L

0

)
(13)

and U ∈ Rn2×n2
orthogonal. Then: (i) L is non-singular; (ii) K is a convex cone, and (iii) f2 = 0 .

Further, if k̂ denotes the (unique) infimiser of (12), then

P̂o = vec−1(Φ−1WSL
−1k̂) (14)

is the unique infimizer of (11) such that AP̂o + P̂oA
′ ≤ 0 and AP̂o + P̂oA

′ is singular, unless

vec−1(L−1k̂) ≥ 0, in which case the infimum in (11) is uniquely attained by P̂o = In and γ2 = 0.

Proof: Factorisation (13) can be easily performed (e.g. via QR or singular value decomposition).

The form of the right factor and the fact that L is nonsingular follows immediately from the fact that

rank(WS) = r. Thus,

γ2 = inf
Q∈S+

n

∥∥∥∥∥vec(In)− U

(
L

0

)
vecS(Q)

∥∥∥∥∥ = inf
Q∈S+

n

∥∥∥∥∥
(

f1

f2

)
−

(
L

0

)
vecS(Q)

∥∥∥∥∥
since the Euclidean norm is unitarily invariant. Thus,

γ2 =
√

∥f2∥2 + inf
Q∈S+

n

∥f1 − LvecS(Q)∥2 =
√

∥f2∥2 + inf
k∈K

∥f1 − k∥2

using Lemma 2.1(ii) and noting that K := cone(LW ′
SΩS) is convex. To show that f2 = 0, consider

the linear map Sn → Sn : P → AP + PA′ when A is a fixed Hurwitz matrix. Since the Lyapunov

equation AP + PA′ = Q has a unique (symmetric) solution P for every symmetric matrix Q [B],

the map defined above is bijective and hence its inverse is well-defined. In vector form this inverse

map can be represented as vec(Sn) → vec(Sn) : p = −Φ−1
A q, where p = vec(P ) and q = vec(Q), or

equivalently as Rr → vec(Sn) : t → p = −Φ−1
A WSt. Thus, the columns of matrix Φ−1

A WS form a

basis of the (r-dimensional) subspace vec(Sn). Consider the indicated factorisation of Φ−1
A WS , and

partition U = (U1 U2) where U1 ∈ Rn2×r and U2 ∈ Rn2×(n2−r). It is clear that the columns of U1 form

an orthonormal basis of the subspace vec(Sn) while the columns of U2 form an orthonormal basis of

(vec(Sn))
⊥ = vec(An). Thus U ′

2f = 0 for every vector f ∈ vec(Sn). In particular f2 = U ′
2vec(In) = 0

from which the result follows. �

Thus, the problem of computing γ2 reduces to the calculation of the distance of a fixed vector from

(the interior of) a convex cone, i.e. infk∈K ∥f1 − k∥, where K = cone(Γ), Γ = LW ′
SΩS . This can be

solved numerically by an iterative algorithm given in [All] which is guaranteed to converge in a finite

number of steps for any pre-specified tolerance ϵ.

Remark 5.3: Distance problems to strong stability of a Hurwitz matrix A subject to symmetric left

perturbations can formulated as:

γ̂2 = inf
P̂∈P̂A

∥In − P̂∥F (15)

where P̂A denotes the dual Lyapunov cone P̂A = {P̂ : P̂A+ A′P̂ < 0} to PA defined in (11). Again,

let P̂o be an infimising solution of (15) and set ∆o = P̂o− In. Since P̂o ∈ P̂A we have P̂oA+A′P̂o ≤ 0.

13



Since ∆o = ∆′
o, this may be written as (I +∆o)A+A′(I +∆′

o) ≤ 0 and we can formulate the problem

defined in (15) as:

γ̂2 = inf{∥∆∥F : In +∆ ∈ P̂A} = inf{∥∆∥F : ∆ = ∆′, (I +∆)A ∈ Dn}

This can be interpreted as the problem of finding the minimum-norm symmetric (left) multiplicative

perturbation of A, such that the perturbed matrix is strongly stable. Note that In ∈ PA if and only

if In ∈ P̂A and that

P̂A = vec−1
[
Φ̂−1
A vec(S+

n )
]

where Φ̂A = −(In ⊗ A′ + A′ ⊗ In). Thus Theorem 5.1 (and the corresponding Algorithm) may be

applied to calculate γ̂3 with only minor modifications (essentially replacing ΦA by Φ̂A). �

We can establish the following relations between the cones PA and P̂A:

Lemma 5.2: Let A ∈ Rn×n be Hurwitz. Then: (i) PA = PA−1; (ii) P̂A = P̂A−1; (iii) PA′ = P̂A; (iv)

PA = P̂A′; (v) PA = P̂(−1)nadj(A).

Proof: (i) By definition, PA = {P : AP + PA′ < 0}. Now if P ∈ PA, by Sylvester’s law of inertia

we have A−1(AP + PA′)(A−1)′ < 0, or equivalently P (A−1)′ + A−1P < 0 and hence P ∈ P̂A−1 ,

so that PA ⊆ P̂A−1 . A dual argument shows that P̂A−1 ⊆ PA and hence P̂A−1 = PA. (ii) Follows

similarly to (i). Parts (iii) and (iv) are immediate from the definitions of the cones PA and P̂A. (v)

Writing A−1 = (det(A))−1(adj(A))′ and noting that sign(det(A)) = sign(
∏n

i=1 λi(A)) = (−1)n, we

conclude that (−1)nadj(A) is Hurwitz and hence the cone P̂(−1)nadj(A) is non-empty. Hence, defining

λ = (−1)ndet(A), we have that

P̂(−1)nadj(A) = P(−1)nadj(A)′ = P(−1)ndet(A)A−1 = PλA−1 = PA−1 = PA

using (i), (iii) and the fact that PλA−1 = PA−1 since PA−1 is a cone and λ > 0. �

Corollary 5.1: Let A ∈ R2×2 be Hurwitz. Suppose that P o and P̂ o be the (unique) infimisers of

problems defined in equations (11) and (15) respectively. Then,

P o =

(
p1 p2

p2 p3

)
⇔ P̂ o =

(
p3 −p2

−p2 p1

)
Further, γ2 = γ̂2.

Proof: The two optimal solutions P o and P̂ o are the projections of I2 onto the closure of the cones

PA and P̂A, respectively, denoted in the sequel as P o = ΠPA
(I2) and P̂ o = ΠP̂A

(I2), respectively.

Define

J =

(
0 −1

1 0

)
and note that J ′ = −J and J ′J = I2. Note also that for any A ∈ R2×2, adj(A) = JAJ . Using Lemma

5.2(v), P̂ o = ΠP̂A
(I2) = ΠPadj(A)

(I2) = ΠPJAJ
(I2). Now,

PJAJ = {P : (JAJ)P + P (JA′J) < 0} = {P : A(JPJ) + (JPJ)A′ < 0} = JPAJ

Hence,

P̂ o = ΠJPAJ(I2) = JΠPA
(I2)J = JP oJ
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from which the result follows. Finally,

γ̂2 = ∥I2 − P̂ o∥F = ∥I2 − JP oJ∥F = ∥J(I2 − P o)J∥F = ∥I2 − P o∥F = γ2

since the Frobenius norm is unitarily invariant. �

Next, we consider distance problems involving both symmetric and non-symmetric multiplicative

perturbations of A expressed in terms of the spectral norm. Specifically we define the two distance

problems

γ̂3 = inf{∥∆∥ : A(I +∆) + (I +∆′)A′ < 0,∆ = ∆′} (16)

with symmetry constraints, and

γ3 = inf{∥∆∥ : A(I +∆) + (I +∆′)A′ < 0} (17)

without symmetry constraints. Note that the infimum in both problems can be easily computated via

Linear Matrix Inequality (LMI) techniques [SW], [SIG]. The following Theorem parametrises all ∆

for which A(In +∆) ∈ Dn (recall that Dn = {A ∈ Rn×n : A+A′ ∈ S−
n }).

Theorem 5.2: (i) There exists ∆ ∈ Rn×n such that A(In +∆) ∈ Dn if and only if A is non-singular.

(ii) If A is non-singular, then all ∆ such that A(In +∆) ∈ Dn are given as:

∆ = −ρA′ +
√
ρLΩ1/2, ρ > ρ0 = max{0, λmax(A

−1 + (A−1)′)}

where Ω = ρAA′−A−A′ and ∥L∥ < 1. (iii) If A+A′ ≤ 0, we have γ3 = γ̂3 = 0, the unique infimiser

of problems (16) and (17) is ∆ = 0 (minimiser if A + A′ < 0}. If A + A′ has at least one positive

eigenvalue, then we have:

γ3 = inf{∥√ρLΩ1/2
ρ − ρA′∥ : ρ > ρ0, ∥L∥ < 1}

and

γ̂3 = inf{∥√ρLΩ1/2
ρ − ρA′∥ : ρ > ρ0, ∥L∥ < 1,

√
ρLΩ1/2

ρ − ρA′ =
√
ρΩ1/2

ρ L′ − ρA}

where γ3 and γ̂3 are defined in (16) and (17), respectively.

Proof: (i) If A is non-singular then setting ∆ = A−1B − In where B is any strongly stable matrix

shows that A(In + ∆) is strongly stable. Conversely, is A is singular then so is A(In + ∆) for every

∆ ∈ Rn×n. Hence A(In + ∆) cannot be Hurwitz and hence it cannot be strongly stable. (ii) Note

that A(In +∆) is strongly stable if and only if there exist ρ > 0 and ∆ ∈ Rn×n such that

A+A′ +A∆+∆′A′ + ρ−1∆′∆ < 0

or equivalently

ρ−1(ρA+∆′)(ρA′ +∆) < ρAA′ −A−A′ = Ωρ ⇔

(
−ρIn ρA′ +∆

ρA+∆′ −Ωρ

)
< 0

This is further equivalent to:(
1√
ρI

1√
ρ(ρA

′ +∆)Ω−1
ρ

0 Ω
−1/2
ρ

)(
−ρIn ρA′ +∆

ρA+∆′ −Ωρ

)(
1√
ρIn 0

1√
ρΩ

−1
ρ (ρA+∆′) Ω

−1/2
ρ

)
< 0
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Figure 2: Cost function γ2(δ)

or

diag

(
−In +

1

ρ
(ρA′ +∆)Ω−1

ρ (ρA+∆′),−In

)
< 0

which is equivalent to

(ρA′ +∆)Ω−1
ρ (ρA+∆′) < ρIn ⇔ (ρA′ +∆)Ω−1/2

ρ =
√
ρL

for some contractive L (∥L∥ < 1). Thus,

∆ = −ρA′ +
√
ρLΩ1/2

ρ , ∥L∥ < 1 (18)

as required. Conversely, it can easily be shown by reversing the steps of the above argument that if

∆ has this form, then A(In +∆) ∈ Dn and therefore (18) defines all such ∆. Finally note that if A is

non-singular,

Ωρ = ρAA′ −A−A′ > 0 ⇔ A[ρIn − (A−1)′ −A−1]A′ > 0 ⇔ λmax(A
−1 + (A−1)′) < ρ

and hence ρ > ρ0 = max{0, λmax(A
−1 + (A−1)′). Note that since Dn is a convex invertible cone

A ∈ Dn if and only if A−1 ∈ Dn, and hence if A is nonsingular, ρ0 > 0 if and only if A /∈ D̄n. Finally

part (iii) follows directly from part (ii). �

Example 5.1: Consider the matrix

A =

(
−1 δ

0 −2

)
where δ is a real parameter which can be used to control the skewness of A. It can be easily verified

that A is strongly stable if and only if |δ| < 2
√
2. Consider the optimization problem γ2 = min ∥I2−P∥

such that AP +PA′ ≤ 0. This was solved for 101 values of δ equally spaced in the interval 0 ≤ δ ≤ 10

using Algorithm 5.1. The plot of γ2(δ) versus δ is shown in Figure 2. As expected the cost increases

(above the critical value δ = 2
√
2) as the skewness parameter δ increases. Next consider in detail the

case δ = 4. In this case the algorithm executed with a pre-set tolerance ϵ = 10−8 converges after 20

iterations, as shown in Table 2. Thus, γ2 = 0.4313669 and the optimal P is
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iteration index current cost lower bound

1 0.5745280951 0

2 0.4816416579 0.2962912575

3 0.4345016481 0.399206505

4 0.4332772565 0.4255259071

5 0.4326725181 0.4272459424
...

...
...

18 0.4313669448 0.4313668025

19 0.4313669398 0.4313668851

20 0.4313669372 0.4313669372

Table 1: Performance of Algorithm 5.1

P =

(
p1 p2

p2 p3

)
=

(
1.18877 −0.07046

−0.07046 0.62515

)
> 0

Matrix AP + PA′ has eigenvalues λ = {−5.44184,−1.59 10−8} and thus lies (almost) on the

boundary of the feasible region. To check the solution, the optimisation is formulated as a non-linear

programming problem with objective function:

f(p1, p2, p3) = (p1 − 1)2 + 2p22 + (p3 − 1)2

and inequality constraints:

g1(p1, p2, p3) = p1 ≥ 0

g2(p1, p2, p3) = p3 ≥ 0

g3(p1, p2, p3) = p1p3 − p22 ≥ 0

g4(p1, p2, p3) = p1 − 4p2 ≥ 0

g5(p1, p2, p3) = 8p3(p1 − 4p2)− (3p2 − 4p3)
2 ≥ 0

The Lagrangian of the problem has the form:

L(p, µ) = f(p1, p2, p3)−
5∑

i=1

µigi(p1, p2, p3)

At point (p∗1, p
∗
2, p

∗
3) = (1.18877,−0.07046, 0.62515) all five constraints are feasible but only the fifth

constraint is active, i.e. g5(p
∗
1, p

∗
2, p

∗
3) = 0 (within error tolerance of 10−8), so that µ∗

1 = µ∗
2 = µ∗

3 = µ∗
4 =

0. Solving simultaneously Lpi(p
∗, µ∗) = 0, i = 1, 2, 3, shows that the three equations are consistent

and

µ∗
5 =

p∗1 − 1

4p∗3
= − 2p∗2

4p∗3 + 9p∗2
=

p∗3 − 1

4p∗1 − 4p∗2 − 16p∗3
= 0.0755 > 0

and hence the Kuhn-Tucker conditions are satisfied. �
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6. Conclusions

In this paper the notion of approximate strong stability has been formalised by formulating and

solving distance problems from the convex invertible cone (cic) of all strongly stable matrices. Both

the Frobenius and spectral norms were considered in the formulation of the distance metric, involving

both additive and multiplicative perturbations. Closed-form or algorithmic solutions were derived,

along with the parametrization of the optimal solution set, where this was possible. Interesting links

were also developed with diverse concepts of matrix theory such as the field of values, the cone of

positive semi-definite matrices and the Lyapunov cone of Hurwitz matrices. The results of the paper

were illustrated via several numerical examples. Future work will apply the results of the paper to

control synthesis problems involving relaxed notions of strong stability.
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