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Abstract 

 

There is a severe limitation in the number of items that can be held in working memory. However, the 

neurophysiological limits remain unknown.  We asked whether the capacity limit might be explained 

by differences in neuronal coupling. We developed a theoretical model based on Predictive Coding 

and used it to analyze Cross Spectral Density data from the prefrontal cortex (PFC), frontal eye fields 

(FEF) and lateral intraparietal area (LIP).  Monkeys performed a change detection task (Buschman et 

al., 2011). The number of objects that had to be remembered (memory load) was varied (1-3 objects 

in the same visual hemifield).  Changes in memory load changed the connectivity in the PFC-FEF-LIP 

network.  Feedback (top-down) coupling broke down when the number of objects exceeded cognitive 

capacity. Thus, impaired behavioral performance coincided with a break-down of Prediction signals.  

This provides new insights into the neuronal underpinnings of cognitive capacity and how coupling 

in a distributed working memory network is affected by memory load. 
 

 

Introduction 

 

The number of objects that can be held in working memory (cognitive capacity) is limited (Vogel and 

Machizawa, 2004).  Cognitive capacity is directly related to cognitive ability (Conway et al., 2003; 

Alloway and Alloway, 2010; Fukuda et al., 2010; Unsworth et al., 2014) and is lowered in neurological 

diseases and psychiatric disorders (Luck and Vogel, 2013). Therefore, studying how working memory 

load affects neural processing can inform our understanding of why there is a capacity limit and how 

cognitive function breaks down in various neurological and psychiatric diseases and disorders.  

 

Studies of working memory load and its limits have focused on coordinated activity in frontoparietal 

networks known to play a major role in working memory (Klingberg et al., 2002; Todd and Marois, 

2005; Palva et al., 2010; Dotson et al., 2014; Gray, 1994; Awh et al., 2006).  These studies predicted 

capacity limits using measures of network integration (how different parts of these networks are 

connected together) and synchrony (Roux et l., 2012; Stevens et al., 2012).  In light of recent 

observations that visual working memory is independent for the two visual hemifields (Buschman et 

al., 2011; Kornblith et al., 2016) and that changes in load have different effects on oscillatory dynamics 

of different frequencies (Kornblith et al., 2016), we aimed for a further understanding of working 

memory load on network dynamics in the frontoparietal cortex. 
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To that end, we re-examined LFP data from a change detection task in which working memory load 

was varied between one and three objects in each hemifield (Buschman et al, 2011).  We previously 

reported (Kornblith et al.,2015) that load affected low (8-50 Hz) and high (50-100 Hz) power 

differently depending on time during the trial.  We found a dissociation between the effects of load 

on lower- versus higher-frequency power and their relationship to behavior. Notably, independence 

between the visual hemifields was apparent in high, but not low, frequencies. Independence means 

that increases in stimulus load in one hemifield has no effect on the animal’s ability to remember 

stimuli in the opposite hemifield (Buschman et al, 2011).  Likewise, increasing stimulus load only 

effects neural activity related to stimuli in the same hemifield, not neural activity related to stimuli in 

the opposite hemifield (Buschman et al., 2011; Kornblith et al., 2016). Also, load effects on power 

were similar below and above the cognitive capacity. This cannot explain abrupt decrease in 

behavioral performance above capacity.  Further, earlier power and synchrony analyses did not 

describe the directionality of interactions between brain areas. 

 

Here, we aim to provide a mechanistic explanation of load effects by focusing on changes in the 

strength and directionality of neuronal coupling. We develop a large-scale cortical network model 

comprising the prefrontal cortex (PFC), frontal eye fields (FEF), and the lateral intraparietal area 

(LIP). This is  an extension of our earlier model (Pinotsis et al., 2014; Bastos et al., 2015a) based on 

Predictive Coding and uses Cross Spectral Density (CSD) responses to infer changes in neuronal 

coupling that underlie the changes in spectral power at different frequencies. Our model addresses 

how load-dependent dynamics effects directed functional connectivity. It also suggests abrupt 

changes in neuronal coupling above capacity and a break-down of Prediction signals. Finally, it shows 

that functional hierarchies in large cortical networks do not necessarily change when neuronal 

coupling changes.  

   

  

Results 

 

Our change detection task and behavioral results has been described in detail (Buschman et al., 

2011),see also Figure 1. Two monkeys were presented with a sample array of 2 to 5 colored squares 

for 800 ms. This was followed by a delay period (800- to 1000-ms).  After that, a test array was 

presented. This differed from the sample array in that one of the squares had changed colour (target). 
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Monkeys were trained to make a saccade to the target.  We analysed LFP data from the memory delay 

period. During this delay, there was no sensory stimulation or motor responses that might affect 

neuronal dynamics.  We examined the relationship between dynamics and functional connectivity. 

 

Insert Figure 1 here. 

 

 

In our earlier work (Buschman et al., 2011; Kornblith et al., 2016), we found separate, independent 

capacities in the right vs left visual hemifields.  Early in the memory delay, lower frequency power 

decreased with both ipsilateral and contralateral load but high frequency power increased only with 

contralateral load.  By contrast, late in the memory delay, low frequency power continued to decrease 

with ipsilateral load but increased with contralateral load.  Also, ipsilateral load effects on high 

frequency power were weak and there was no effect of contralateral load. To sum up, there were 

different effects on power in the LIP-FEF-PFC network depending on whether load was presented in 

the ipsilateral or contralateral visual hemifield. This motivated a separate analysis of load effects for 

the two hemifields. This was also supported by 1) different processing of contralateral and ipsilateral 

stimuli found in visual perception studies, see e.g. (Tootell et al., 1998) and 2) anatomical differences 

in frontoparietal connectivity for ipsilateral and contralateral connections, see e.g. (Barbas et al., 

2005). ). 3) Our own prior results using these same data.  Behaviorally and neurophysiologically, the 

two hemifields seem separate and independent.  Increasing stimulus load only affected behavioural 

performance to stimuli on the same side, not those in the opposite hemifield (Buschman et al.,2011).  

Neurophysiologically, we see the same thing.  Stimulus information in spiking is only degraded by 

increases in stimulus load in the same hemifield (Buschman et al., 2011) and, likewise, effects on LFP 

power are hemifield dependent.  

 

In short, we assumed that power changes found in (Kornblith et al., 2016) reflect coupling changes 

and  analysed the effects of ipsilateral and contralateral load separately. The idea that changes in 

phenomenological measures, like power, reflect coupling changes is common:  for example, 

pathological oscillations are thought to be the signature of aberrant neuronal coupling in psychiatric 

diseases (Uhlhaas and Singer 2012), such as autism (Dickinson et al. 2015) or schizophrenia 

(Gonzalez-Burgos and Lewis 2008). Further, in previous work (Miller and Cohen, 2001) we suggested 

that FB signals from PFC to lower areas support successful execution of working memory and 

decision making tasks. In this task, the animal successfully performed the task below but not above 
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the cognitive capacity limit. We therefore expected PFC coupling to change below and above the 

capacity limit. 

 

 

We  focused on changes between 1. early vs late delay and 2. different load values (1-3 items per 

hemifield). We expected differences in coupling for early and late delay because our prior work using 

these data showed differences in power and synchrony between the early and late delay that 

depended on load and laterality (Kornblith et al., 2016). We therefore  asked if there were any 

differences in PFC signals between early and late delay. We also tested different loads because 

performance degrades with increased load (Buschman et al., 2011).  

 

To sum up, both electrophysiological and behavioural data suggest that coupling may change in the 

PFC-FEF-LIP network.  Our analysis comprised three parts.  First, we found the coupling pattern in 

the PFC-FEF-LIP network during the memory delay in order to determine their basic functional 

connectivity.  Second, we asked whether the strength of connections changed with changes in 

contralateral and ipsilateral load and between the early vs late memory delay.  Third, we examined 

how changes in load below vs above the animal’s behavioral capacity limit affected network 

connectivity.  

 

Functional hierarchy in the PFC-FEF-LIP network  

We first examined the functional hierarchy between the PFC, FEF, and LIP.  To find this hierarchy, we 

adapted our earlier canonical microcircuit (CMC) model (Pinotsis et al., 2014; Bastos et al., 2015a) to 

describe activity in the PFC-FEF-LIP network, see Figure 2.  

 

 

Insert Figure 2 here. 

 

 

 
 

 

The CMC model is based on the Predictive Coding Model (Bastos et al., 2012) and experimental 

(Buffalo et al., 2011) and theoretical observations (Bauer et al., 2014; Friston et al., 2015). It builds 

on experimental observations that superficial and deep pyramidal cells oscillate at the gamma and 
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alpha band respectively (Bastos et al., 2015b; Michalareas et al., 2016) and that superficial and deep 

pyramidal cells are the main origins of feedforward (FF) and feedback (FB) connections (Hilgetag et 

al., 1996; Vezoli et al., 2004).   These spectral asymmetries across cortical layers, (i.e. gamma power 

predominant in superficial and alpha power predominant in deep layers) follows from Predictive 

Coding where FB connections convey Prediction signals at slower time scales (alpha) compared to 

bottom-up connections that convey Prediction Error signals at faster time scales (gamma).   Following 

these observations, the parameters of the CMC model were chosen so that superficial and deep 

pyramidal cells oscillate at the gamma and alpha band, respectively (Figure 2).  

 

We extended the CMC model to construct a large-scale model that could describe the activity in the 

PFC-FEF-LIP network (the “large-scale CMC model” ;Figure 3). It is an extension of the single area 

CMC model shown in Figure 1 and comprises FF and FB connections between PFC, FEF and LIP (red 

and black thick lines in Figure 3). These connections define an anatomical hierarchy (see also 

Experimental Procedures and Methods section).  Lower areas send signal to higher areas via FF 

connections and receive top down input from them via FB connections. FF (respectively FB) 

connections are assumed to be excitatory (respectively. inhibitory). FF (respectively FB) input from 

area A to area B results in an increase (respectively decrease) of activity in area B that is proportional 

to the activity in area A. The constant of proportionality is the FF (respectively FB) coupling strength. 

In Predictive Coding, FF and FB signals form the basis of how the brain understands the world: 

according to this theory, the brain’s goal is to predict sensory inputs. Brain areas interact recurrently 

so that Predictions (FB signals) are compared to sensory inputs and updated according to how much 

they deviate from them (FF signals). The theory suggests that this iterative process is repeated until 

deviations are minimised. Thus, FF (sensory) input excites higher cortical areas. FB signals inhibit FF 

inputs and allow only FF signals that were not predicted to be passed forward. 

 

To sum so far, our large-scale CMC model predicts oscillatory interactions and hierarchical relations 

in the PFC-FEF-LIP network based on FF and FB coupling between brain areas and local oscillatory 

dynamics within each area.  It also assumes that FF and FB signals propagate at different frequencies 

and convey Prediction Errors and Predictions respectively. Thus, it allows us to test whether changes 

in phenomenological measures, like power, reflect coupling changes. It also allows us to link coupling 

changes due to memory load to Predictive Coding. Increasing FB (resp. FF) signals with increasing 

load would correspond to stronger Predictions (resp. Prediction Errors). In this context, failure to 

perform the task when the number of stimuli exceeds cognitive capacity, implies a failure in 
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Prediction signals. Thus, we expected FB from PFC to break down above the capacity limit.  

 

 

The anatomical hierarchy shown in Figure 3 follows recent studies that exploit differential laminar 

source and termination patterns and tract tracing experiments to obtain the hierarchical distribution 

of brain areas (Hilgetag et al., 2016; Markov et al., 2014; Medalla and Barbas, 2006). However, 

whether the functional hierarchy will follow the anatomical hierarchy is not clear. Functional 

hierarchies are not as robust as anatomical hierarchies and are often task-dependent (Buschman and 

Miller, 2007; Bastos et al., 2015b). 

 

To find the functional hierarchy in the PFC-FEF-LIP network, we fitted the large-scale CMC model to 

CSD data from trials with the same memory load.  This data contained information about oscillatory 

interactions in different frequency bands (Kornblith et al., 2016).  For model fitting, we used Dynamic 

Causal Modeling (DCM; (David et al., 2006; Pinotsis and Friston, 2014; Moran et al., 2015; Pinotsis et 

al., 2016; Garrido et al., 2009; Kiebel et al., 2009). DCM is a standard approach for model fitting.  It 

has been widely used to determine the directionality of information flow and functional hierarchy in 

brain networks (Gluth et al., 2015; Hare et al., 2011; Hillebrandt et al., 2014; Li et al., 2014; Smith et 

al., 2006). Specifically, DCM has been applied to the analysis of neuronal activity in frontal and parietal 

areas and during functions ranging from attention to memory, decision making and psychiatric 

diseases, similarly to the frontoparietal network and working memory task considered here, see 

(Mechelli et al., 2004; Garrido et al., 2009; Wang et al., 2010; Jacques et al., 2011; Vossel et al., 2012; 

FitzGerald et al., 2015).   

 

Insert Figure 3 here. 

 

 

 

To find the functional hierarchy, we used Bayesian model comparison (BMC, see  Friston et al., 2007). 

BMC is a process comprising 1. model fitting and 2. computation of model evidence. Model evidence 

is a mathematical quantity that expresses how likely each a model is for a given dataset. Usually one 

considers a set of models (model space) and finds the model with highest evidence.  We first fitted 

different variants of the large-scale CMC model (Figure 3) to our data. These model variants differed 

in the connections between PFC, FEF and LIP.  They are shown in Figure 4A and describe all possible 
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functional hierarchies. They are called “ALL”, “FEF”, “LIP” and “PFC” respectively. Model “FEF” is the 

model where FEF is connected to PFC and LIP and there are no direct connections between PFC and 

LIP. This was the coupling of the model shown in Figure 3 and is what one would expect from 

anatomical studies (Hilgetag et al., 2016).  These alternatives are described by the other three models. 

These are similar to model” FEF”, where FEF is replaced by PFC and LIP.  Model “ALL” assumed that 

all areas were connected  and information flows in FF and FB directions between all areas. When two 

areas are connected with both FF and FB connections, we say that they are connected with reciprocal 

(R) connections.  

 

To find the model evidence, BMC uses an approximation called Free Energy. Conceptually, BMC can 

be thought of as a generalization of classical model comparison approaches, e.g. Bayesian Information 

Criterion (BIC). The difference is in the cost function used. BMC uses Free Energy that also includes a 

complexity term in addition to an accuracy term.  For a model to have the highest evidence both terms 

should be maximized: the accuracy term is maximized when the model fits the data best (i.e. it has 

the smallest error). The complexity term is maximized when all model parameters are necessary for 

fitting the data. If a model has parameters that are not necessary, this term will not be maximum and 

therefore the evidence for that model will be lower.  The reason is that unnecessary parameters will 

have large posterior correlations between them. Each parameter does not explain the data in a unique 

way (similarly to coefficients of determination in classical statistics, posterior correlations quantify 

the explanatory power of model parameters in Bayesian statistics). These correlations will enter into 

the complexity term and make it smaller (for more details see Friston et al., 2007).  Even if the model 

with the highest number of parameters fits the data best (has the maximum accuracy) this model will 

not have the highest evidence if some parameters are unnecessary (the complexity term will not be 

maximum). 

 

We performed BMC between variants of the large-scale CMC model. This allowed us to find the model 

that best fit the data and whose parameters were necessary for fitting the data (i.e. the model that did 

not “over-fit” the data).   We fitted the four models of Figure 4A to four different datasets.  The first 

two datasets included CSD data from trials with one contralateral object, from the early (500-900ms 

after sample onset) or late (1100-1500ms after sample onset) delay period. The last two datasets 

included CSD data from trials with one ipsilateral object (and the same delay periods). The winning 

model had the highest evidence among all models considered.  In general, the difference in model 

evidence between (winning) model A and its runner up B is useful because it immediately yields the 
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probability that model A is more likely than model B (this is called exceedance probability of model 

A vs B) 1. It can be shown mathematically, that if this difference is bigger than 3, the exceedance 

probability is equal to 1, that is the winning model is 100% more likely than its runner up and any 

other model that was considered. A summary of the fitting process is included in Section “Dynamic 

Causal Modeling” of Supplementary Material. This process has also been described in detail in several 

earlier publications, see e.g. (Friston et al., 2012; Pinotsis et al., 2014). 

 

We first fitted CSD data from trials with one contralateral object during the early delay period 

(different memory loads are presented below). The results of our analysis are shown in Figure 4. 

Model fits are shown in Figure 4D. Plots show alpha and gamma power model fits: in most cases 

model predictions (solid lines) fully overlapped with experimental data (dashed lines). This is not 

surprising as priors have been carefully chosen to accurately reproduce alpha and gamma activity 

(Bastos et al., 2012; Friston et al., 2015).  Small discrepancies between data and model fits occurred 

only when CSD power was weak (~ 0.05V2/Hz, top right panel in Figure 4D). Model fitting yielded 

posterior parameter estimates. Including these estimates in our model, we obtained simulated LFPs. 

These are shown with solid lines in Figure 4E. Observed LFPs are shown with dashed lines.  

 

Figure 4B shows the model evidence for the four models tested (corresponding to possible 

hierarchies shown in Figure 4A). The winning model was model “ALL”: all areas were connected with 

reciprocal connections (highlighted with a red frame in Figure 4B, shown in Figure 4C).  Model fits 

and simulated LFPs show a good fit to experimentally observed data (Figures 4D and 4E, 

respectively). 

 

Supplementary Figures 1-3 show the corresponding results for contralateral load and late delay and 

ipsilateral load and early and late delay respectively.  These are very similar to Figure 4. Although load 

effects on power were different between early and late delay and for contralateral and ipsilateral load, 

see Figure 5 in (Kornblith et al., 2016), we found that the functional hierarchy did not change between 

the early and late delay periods and was also the same for contralateral and ipsilateral objects.  Model 

fits and LFPs are also shown in Supplementary Figures 1B-3B and 1C-3C and are very similar to 

Figures 4D and 4E. 

                                                 
1 To obtain the exceedance probability from the difference in model evidence one has to apply a sigmoid function, 
see  (Kass and Raftery, 1995). 
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For a contralateral object, the difference in model evidence between model “ALL” and its runner up 

was 29F∆ =  for early delay and 111F∆ =  for late delay (Figure 4B and Supplementary Figure 1A). 

For ipsilateral object, the difference in model evidence of the winning model “ALL” with respect to 

the runner up was 60F∆ =  during early delay and 21F∆ =  during late delay (Supplementary 

Figures 2A and 3A). Because F∆ was bigger than three, model “ALL” had exceedance probability 

equal to 1 for all four datasets considered.  These results were robust to using trials with different 

memory loads (see Supplementary Figure 4).   In all cases, model “ALL” had the highest evidence. 

This means that the functional hierarchy in the PFC-FEF-LIP network did not change when changing 

memory load and for different parts of the delay period despite the different load effects on spectral 

power2. 

 

 

Insert Figure 4 here. 

 

 

 

To sum so far, we found that all three brain areas in the PFC-FEF-LIP network had reciprocal 

functional connections. In other words, all three areas were on the same hierarchical level.  The 

pattern of FF and FB connections (functional hierarchy) did not change with memory load and for 

early vs late delay.  Next, we compared alternative variants of the winning model of the first part of 

our analysis (model “ALL”) where we allowed a different subset of FF and FB connections to change 

with load (and the rest of the connections were left unaffected).  This revealed changes in the strength 

of functional connections with changes in memory load3. 

 

                                                 
2 A careful reader might question if finding model “ALL” (the model with most parameters) as the winning 
model might be the result of overfitting. In the main text, we laid out technical arguments about how the 
particular cost function (Free Energy)  used for model comparison prevents this. We also noted that we 
obtained the same result using 12 different datasets (Figure 4B and Suppl. Figures 1A-3A and 4). On top of 
these arguments, we note that we found a different model as the winning model using the same datasets but 
changing the threshold of high pass filtering. During our preliminary investigations (not shown), we had 
found winning model “FEF” by using trials where ipsilateral load was varied and focusing on low frequency 
responses only (2-50Hz).   
3 Note that in the analysis above we fitted the large-scale CMC model to data from trials with the same 
memory load. Our goal was to test whether certain connections were present or not. In the analysis below, we 
fitted the model to data from trials with different memory load simultaneously. This allowed us to focus on 
changes of model parameters with increasing load. 
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Feedforward and feedback coupling strengths changed load and time 

Above, we saw that the model “ALL” best captured the functional hierarchy between PFC, FEF, and 

LIP (i.e., they all had reciprocal, R, connections with each other).  Here, we test whether FF, FB, or R 

coupling in the early vs late memory delay was affected by working memory load.  We did so using 

BMC to compare variants of model “ALL”.  In these model variants, different FF, FB or R connections 

were allowed to change for different load conditions. These model variants are described by an 

acronym shown in the entries of Table 1. They corresponded to all possible connections that could 

change with increasing object load and included models where connections did not change. There 

were 64 such variants. The first 16 variants (first two lines of Table 1) are also depicted in Figure 5.  

The same variant was fitted to CSD data for all contralateral and ipsilateral load conditions and from 

data from early or late in the memory delay. Coupling parameters were allowed to change 

progressively between the lowest and highest load conditions.  Coupling changes between different 

load conditions were assumed to be linear increments (increases or decreases) to coupling 

corresponding to lowest load.  In other words, load changes were assumed to have modulatory effects 

on cortical coupling and are called trial specific effects in DCM. This is similar to trial specific effects 

in fMRI literature (Coderre and van Heuven, 2013; Den Ouden et al., 2008; Gordon et al., 2015). 

 

 

Insert Table 1 here. 

Insert Figure 5 here. 

 

 
 

 

Each variant had an acronym, please see Table 1. For example, in variant BBF, the feedback 

connections between LIP and FEF and FEF and PFC and the feedforward connections between LIP 

and PFC were allowed to change with load. Connections that were not allowed to change with 

increasing memory load were depicted with solid lines. Connections that were allowed to change 

were depicted with dashed lines.  Using BMC, we identified the most likely model (that is, the set of 

connections affected by contralateral and ipsilateral load and in the early vs late delay) among the 64 

alternatives (see Figure 6A for contralateral load and early delay and Supplementary Figures 5A-7A 

for contralateral load and late delay and ipsilateral load and early and late delay respectively).  These 

Figures include bar plots of model evidence. We call the space of all possible variants “model space”. 
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This is shown in the horizontal axis and is the same as in Table 1.  Figures 6B and 6C  and 

Supplementary Figures 5B-7B and 5C-7C  show model fits to CSD data and simulated and observed 

LFPs respectively. These are similar to results in Figure 4D and 4E and Supplementary Figures 1B-3B 

and 1C-3C. 

 

Insert Figure 6 here. 

 

 

 
 

The winning models  are shown in Figure 7A(i)-(iv): RFR and ROB were the winning models for 

contralateral load during early and late delay and BFB and RRR were the winning models for 

ipsilateral load during early and late delay. Model evidence of winning models is shown with red bars. 

The difference in model evidence between them and their runner ups was 1F∆ = and 24F∆ =  for 

contralateral load during early and late delay and 0.7F∆ = and 4F∆ = for ipsilateral load 

respectively. The corresponding model exceedance probabilities were 74% and 100% for variants 

RFR and ROB and 65% and 100% for variants BFB and RRR respectively.  

 

What these models showed was that changing contralateral load affected R coupling between LIP and 

FEF and FB coupling between PFC and LIP throughout the delay period (Figure 7A(i) and 7A(ii)).  

However, FF input to PFC from the other two brain areas was affected by contralateral load only 

during early delay (Figure 7A(i)). Also, changing ipsilateral load affected FB coupling between LIP 

and the other two areas and FF coupling between FEF and PFC throughout the delay period 

(Supplementary Figures 7A(iii) and 7A(iv)).  During late delay, on the other hand, all connections in 

the network were affected by changing load: on top of the above connections, FF coupling between 

LIP and the other two areas and FB coupling between FEF and PFC changed with ipsilateral load 

(Supplementary Figure 7A(iv)).4 

 

To sum this analysis, we identified different sets of connections that were affected by increasing 

memory contralateral and ipsilateral load during different parts of the delay period. Having 

                                                 
4 The results of Figure 7A show that models with R of FF connections between LIP and FEF are favoured in the 
corresponding model comparisons. These are the models 17-32 and 49-64, see also rows 3-4 and 7-8 in Table 
1. These results can also be useful for family-wise inference which we will consider in future work. 



13 
 

established load-specific changes in connection strengths, we can now proceed to our last analysis.  

In this last set of analyses we examine in greater detail how coupling changed with changes in load 

below and above the animal’s working memory capacity.  

 

 

Increases and decreases in feedforward and feedback coupling strengths below and above capacity. 

Here, we explore the changes in coupling between areas as a result of changes in load.  To organize 

this discussion, we distinguish changes below (from load 1 to load 2) and above (from load 2 to load 

3) the animal’s behavioral capacity. There were as many coupling parameters in our model as thick 

lines in winning model “ALL”, see Figure 4C.  

 

The results below were obtained from the same model fits as in the previous section. We used model 

fits of the winning model only (winning models are shown in Figure 7A). In the previous section, the 

winning model (and the other 63 alternatives of Table 1) was fitted to CSD data for all load conditions 

simultaneously. Coupling strengths were allowed to change progressively between the lowest and 

highest contralateral and ipsilateral load. We also used CSD data obtained during early and late delay. 

The set of coupling strengths that changed with load determined the winning model in each case. 

Below, we discuss these strengths and their progressive changes, see Figure 7B.  

 

Insert Figure 7 here. 

 

 
  

 

 

Coupling strengths corresponding to the lowest load (one contralateral or ipsilateral object) were 

rescaled so that they were equal to 100%. The three  blue bars in each panel show coupling strength 

for load 1, 2 and 3 (from left to right). This reveals progressive changes in the same coupling strength 

as load increases. Strengths were normalized with respect to the lowest load condition. Besides the 

blue bars, each panel includes three additional lines connecting adjacent bars: black (shows coupling 

changes below the capacity limit), solid red (shows coupling change above the capacity limit) and 

dashed red (separates coupling below and above the capacity limit).  Recall that FB connections were 

inhibitory while FF connections were excitatory (these are shown with black and red arrows 

connecting brain areas in Figure 4C).  In Figures 7B(i) (resp. 7B(ii)), we show changes in coupling 
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strengths during the early (resp. late) delay period when contralateral load changes. In Figures 7B(iii) 

(resp. 7B(iv)), we show the corresponding changes when ipsilateral load changes.   

 

Almost all parameters (15/17) were significantly modulated above the capacity limit: they showed 

marked increases or decreases of at least 25% or more. We will call these changes “strong” as opposed 

to other changes that we will call “weak”. Below the capacity limit fewer parameters were strongly 

modulated (9/17). We first focused on changes in coupling strength below the capacity limit. These 

changes can be readily seen by focusing on the slope of black lines in Figures 7B(i) and 7B(ii): almost 

horizontal (resp. oblique) lines correspond to weak (resp. strong) changes. Changes in connections 

involving PFC followed a consistent spatiotemporal pattern regardless of whether load change was 

contralateral or ipsilateral: they were weak during early delay and strong during late delay signaling 

bigger PFC involvement closer to the decision time (i.e., during late delay)5. Conversely, changes in 

the other FF and FB connections (between LIP and FEF) followed the opposite pattern: they were 

strong during early delay and weak during late delay but for contralateral load only (for ipsilateral 

load they were strong throughout the delay period). 

 

Specifically, for contralateral load during early delay, we observed strong changes in the FF and FB 

connections between LIP and FEF but not PFC, compare black lines in Figures 7B(i)a and 7B(i)d with 

black lines in Figures 7B(i)b, 7B(i)c and 7B(i)e. Similarly, for ipsilateral load, compare black line in 

Figure 7B(iii)b with black lines in Figures 7B(iii)a and 7B(iii)c. This also means that excitatory input 

to PFC did not increase due to higher load (black lines in Figures 7B(i)b, 7B(i)c and 7B(iii)a). At the 

same time, FEF input from LIP decreased with increasing load (black line in Figure 7B(i)a) and input 

from FEF to LIP increased (black lines in Figures 7B(i)d and 7B(iii)b).   

 

For contralateral load during late delay, the above pattern of connection changes was reversed: 

connections between LIP and FEF showed weak modulations with load (black lines in Figures 7B(ii)a 

and 7B(ii)b). At the same time, FB input from PFC to LIP showed a strong increase with increasing 

load (black line in Figure 7B(ii)c). Similarly, for ipsilateral load FF and FB PFC connections also 

showed a strong increase with load (black lines in Figures 7B(iv)b, 7B(iv)e and 7B(iv)f). However, in 

contrast to what we observed for contralateral load, connections between LIP and FEF continued to 

show strong modulations (as in the early delay period, see black lines in Figures 7B(iv)c and 7B(iv)d). 

                                                 
5 This general trend had one exception: the FF connection from FEF to PFC which was weakly modulated 
when increasing ipsilateral load during late delay, see Figure 6(iv)a. 
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Interestingly, above the cognitive capacity limit (when going from load two to load three), changes in 

connections in the PFC-FEF-LIP network were strong.  The only exception was the LIP-FEF 

connections during early delay for contralateral load and late delay for ipsilateral (red lines in Figures 

7B(i)d and 7B(iv)c). We will see below that connections between LIP and FEF showed the opposite 

pattern of changes above capacity in comparison to their pattern below capacity.  Also, signals to and 

from PFC were affected by load during both early and late delay (below capacity they were affected 

by load only during late delay). Most importantly, FB signals from PFC and FEF were modulated 

differently for contralateral and ipsilateral load. 

 

During early delay, FF input to PFC from the other two brain areas was strongly reduced above the 

capacity limit, see red lines in Figures 7B(i)b, 7B(i)c and 7B(iii)a. Similarly, FB input from PFC to LIP 

increased above capacity during early delay (red lines in Figures 7B(i)e and 7B(iii)c). This was also 

the case for contralateral load during late delay (red line in Figure 7B(ii) c). However, for ipsilateral 

objects and late delay FB signals from PFC broke down: they showed a strong reduction (as opposed 

to increase in all other cases) when exceeding the capacity limit (red lines in Figures 7B(iv)e and 

7B(iv)f). This was accompanied by a strong reduction (break down) in FF input from LIP to PFC (red 

line in Figure 7B(iv)b). These were the only cases where coupling above the capacity limit was very 

similar to coupling for lowest load. FF input from FEF on the other hand showed an increase (red line 

in Figure 7B(iv)a). FF input from LIP to FEF also increased above capacity regardless of object 

hemifield and delay period (red lines in Figures 7B(i)a, 7B(ii)a and 7B(iv)c). FB input from FEF 

reduced for early (red lines in Figures 7B(i)d, 7B(iii)b) and increased for late delay above capacity for 

both contralateral and ipsilateral objects(red lines in Figures 7B(ii)b, 7B(iv)d). 

 

Above we described coupling changes with increasing load. To quantify how likely these changes 

were we used posterior probabilities (coupling estimates were found using DCM which is a Bayesian 

approach for model fitting). These are shown in Supplementary Figures 8 and 9. They are the 

probabilities of a significant non-zero change with respect to the coupling strength for the lowest 

load. Because all parameters were normalized to the lowest load condition, we included posterior 

probabilities only for Load 2 and Load 3. These are shown in matrix form. Columns correspond to the 

brain areas from which connections originated and rows to areas where they terminated. The number 

of these matrices is one less than the number of possible loads (there are no probabilities for the 

lowest load). The posterior probability of changes in coupling strengths for contralateral load ranged 
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between 53-100% (resp. 62-100%) for early (resp. late) delay, see Supplementary Figure 8. The 

posterior probabilities for coupling parameters for ipsilateral load ranged between 71-100% (resp. 

54-100%) for early (resp. late) delay, see Supplementary Figure 9. 

 

 

Discussion 

 

We studied the effects of changing working memory load on neuronal dynamics during a change 

detection task. We analysed CSD data obtained using LFPs from frontal and parietal areas, namely 

PFC, FEF and LIP. Activity in this frontoparietal network has been found to consistently change with 

training (Goldman-Rakic, 1995; Li et al., 1999) and has been associated with cognitive capacity 

(Rottschy et al., 2012).  

 

We followed up on earlier work (Buschman et al., 2011; Kornblith et al., 2016), where we had found 

that neuronal activity in high, but not low, frequencies reflects independent processing of ipsilateral 

and contralateral objects and changes substantially between early and late delay period. Independent 

processing of objects in different hemifields has also been confirmed by (Matsushima and Tanaka, 

2014) and is supported by early anatomical studies (Goldman-Rakic and Schwartz, 1982). In 

(Kornblith et al., 2016), neuronal activity changes with load were captured as spectral power effects. 

However, these effects were similar below and above the cognitive capacity, which appears at odd 

with a reduction in behavioral performance observed when capacity is exceeded. Further, earlier 

power and synchrony analyses did not describe the directionality of neuronal interactions. Here, we 

aimed at a mechanistic explanation of load effects by focusing on changes in the strength and 

directionality of neuronal coupling. We extended our earlier model based on Predictive Coding (CMC 

model; Pinotsis et al., 2014; Bastos et al., 2015a) and used it to analyze Cross Spectral Density data. 

The CMC model can predict oscillatory interactions and hierarchical relations in the PFC-FEF-LIP 

network based on FF and FB coupling between brain areas and local oscillatory dynamics within each 

area. It has been validated pharmacologically (Muthukumaraswamy et al., 2015), using data from 

single-gene mutation channelopathy (Gilbert et al., 2016) and aging studies (Cooray et al., 2014a; 

Moran et al., 2014).  The model has also explained the manipulation of sensory expectation and 

attention engaging frontoparietal networks in healthy subjects and patients  (Auksztulewicz and 

Friston, 2015; Cooray et al., 2014b; Dı́ez et al., 2017; Phillips et al., 2015; Ranlund et al., 2016). A very 

similar model was recently used to explain context –dependent dynamics in hierarchical brain 
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networks (Mejias et al., 2016). 

 

We first studied the basic functional hierarchy in the PFC-FEF-LIP network. We determined its form 

and asked whether this changed with memory load and time during the delay period. Anatomical 

connections provide the substrate for functional connections but functional hierarchies can be 

different than anatomical hierarchies. They can be task-dependent and even change during a task 

(Buschman and Miller, 2007; Bastos et al., 2015b) as a result of goal-directed behaviour (Miller, 1999; 

Miller and Cohen, 2001) and of processing abstract information (Koechlin et al., 2003). Also, there 

are reciprocal anatomical connections between frontal areas are other frontal and parietal areas 

(Medalla and Barbas, 2006; Hilgetag et al., 2016). Some studies have placed PFC at the top and 

parietal areas at the bottom of functional hierarchies in visual perception tasks (Bastos et al., 2015b; 

Michalareas et al., 2016). However, the functional hierarchy in the change detection task we studied 

here was unknown.  

 

To find the functional hierarchy, we compared variants of our model corresponding to different 

hierarchical relations between PFC,FEF and LIP using Bayesian model comparison (BMC, Friston et 

al., 2007). We found that PFC,FEF and LIP had reciprocal functional connections (they were at the 

same hierarchical level). This result was the same regardless of memory load and time during the 

delay period. However, load effects on power were different of low for contralateral and ipsilateral 

objects and early vs. late delay (Kornblith et al., 2016). Therefore, it might well be that although the 

functional hierarchy remained the same across trials with different load and throughout the delay 

period, the amount of signal transmitted through FF and FB connections, that is, the strength of FF 

and FB connections, changed with load and time.  

 

Thus, we then identified different subsets of FF and FB connections whose strength changed with 

load during different parts of the delay period. We used BMC to compare different models 

corresponding to all possible combinations of connections that might be affected by load. After 

finding the most likely model, we focused on the corresponding changes in coupling strengths. These 

explain the weak load effects on power (1-2% power change per added object) found in (Kornblith 

et al., 2016) without changing the functional hierarchy.  

 

We found that below the capacity limit connections involving PFC were affected later than 

connections involving other frontal and parietal areas for contralateral and ipsilateral load. During 
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early delay, connections between LIP and FEF were strongly affected by load while connections 

involving PFC did not change much. FF input from LIP decreased with increasing load while FB input 

to LIP increased.  This could be related to the fact that receptive fields observed in LIP are unilateral 

and have a narrow spatial tuning (Platt and Glimcher, 1998). During late delay, connections involving 

PFC were strongly modulated for contralateral and ipsilateral load but connections between LIP and 

FEF were not affected for contralateral load. However, when ipsilateral load changed, changes in 

connections between LIP and FEF remained strong during late delay (similarly to early delay). This 

could be related to the widespread and more dense patterns of ipsilateral as opposed to contralateral 

connections to frontal areas (Barbas et al., 2005). Based on the above results, our model predicts that, 

below the capacity limit, PFC engages strongly in network activity only close to the decision time 

(above capacity, PFC engages throughout the delay period, see below). Further, as load increased, we 

observed increases in both FF input to PFC and FB signals from PFC to other frontal and parietal 

areas.  These reflected increased FF drive due to higher load and increasing FB stabilizing signals 

from PFC to counteract increased in cognitive demands (load) due to increased FF drive in earlier 

areas. They are similar to earlier modeling results (Macoveanu et al., 2006; Edin et al., 2009; Wei et 

al., 2012).  

 

Above the cognitive capacity limit, connections that we had previously identified to be affected by 

load changes showed strong modulations. Connections involving PFC were affected by load 

throughout the delay period. Importantly, FB connections were modulated differently by 

contralateral and ipsilateral load. FB stabilizing signals from PFC increased above capacity for 

contralateral load but were significantly reduced (broke down) for ipsilateral load. This could explain 

reduced behavioral performance when the total number of objects in the same (but not the opposite) 

hemifield as the target object exceeded the capacity limit found by (Buschman et al., 2011). This also 

provides an interesting link to Predictive Coding. Break down of Prediction signals coincided with 

impaired behavioral performance. This difference in coupling changes while changing contralateral 

vs ipsilateral load  supports earlier findings about independent capacities of the two hemifields 

(Buffalo et al., 2011; Matsushima and Tanaka, 2014). Stabilizing signals from FEF to LIP also broke 

down above capacity for ipsilateral, but not contralateral load. This  supports an important role of FB 

from frontal areas in successful performance. Interestingly, FB signals from FEF broke down earlier 

than PFC FB signals (these broke down closer to decision time). This might be related to the fact that 

loss of information about object identity in PFC occurs later than other frontal areas, see (Buschman 

et al., 2011).  
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To sum up, we found that neuronal coupling changes as a result of changing the number of objects 

maintained in working memory. These changes are dynamic and evolve as the time for behavioral 

response (decision) approaches. We also found that FB coupling breaks down when the number of 

ipsilateral objects is above the cognitive capacity limit and that this occurs first in parietal and then 

frontal areas. These results shed new light in coupling changes that might underlie reduced cognitive 

capacity and behavioral performance. They also suggest network-specific pathological  changes in 

neuronal coupling that might occur in various neurological and psychiatric diseases and disorders 

(Luck and Vogel, 2013).  
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Table 1 6 

1:BBB 2: BBR 3: BBO 4: BBF 5:BRB 6: BRR 7: BRO 8: BRF 

9:BOB 10: BOR 11: BOO 12: BOF 13:BFB 14: BFR 15: BFO 16: BFF 

17:RBB 18: RBR 19: RBO 20: RBF 21:RRB 22: RRR 23: RRO 24: RRF 

25:ROB 26: ROR 27: ROO 28: ROF 29:RFB 30: RFR 31: RFO 32: RFF 

33:OBB 34: OBR 35: OBO 36: OBF 37:ORB 38: ORR 39: ORO 40: ORF 

41:OOB 42: OOR 43: OOO 44: OOF 45:OFB 46: OFR 47: OFO 48: OFF 

49:FBB 50: FBR 51: FBO 52: FBF 53:FRB 54: FRR 55: FRO 56: FRF 

57:FOB 58: FOR 59: FOO 60: FOF 61:FFB 62: FFR 63: FFO 64: FFF 

 
Figure 1. Behavioral performance (indicated by the color of the border/background) for all possible stimulus displays. 

Adding objects to the same side (ipsilateral) as the target (marked with a “T”) impaired performance (rows), whereas adding 

objects to the other side (contralateral) had no effect. This result argues for separate capacities in each hemisphere. 

 

Figure 2. The canonical microcircuit model (CMC). The model suggests a canonical cortical architecture for the primate 

cortex. There are four populations of neurons (spiny stellate cells, superficial and deep pyramidal cells and inhibitory 

interneurons). These are connected together with excitatory (red) and inhibitory (black) intrinsic connections (thin lines). 

This set of populations and connections is motivated by anatomical and theoretical considerations supporting a canonical 

cortical microcircuitry (Douglas and Martin, 2007; Bastos et al., 2012; Pinotsis et al., 2013).  Power spectra and LFPs 

produced by these cells are shown in the top right and bottom left plots respectively. Power spectra from each brain area 

are shown in the bottom right plot.  Model parameters are chosen so that superficial and deep pyramidal cells oscillate at 

the gamma and alpha bands. These  different laminar responses result from assuming different time constants (depending 

on GABAergic vs. glutamatergic neuromodulation) and intrinsic delay parameters for the different neuronal populations. 

 

Figure 3. Large-scale CMC model. The model describes the large-scale structure of the primate cortex. Different brain areas 

are connected with extrinsic connections (thick lines). Intrinsic connections are as described in Figure 2. Extrinsic 

connections are as follows: Feedforward (FF) connections are assumed to originate in superficial layers and target input 

spiny stellate cells and deep pyramidal cells. Feedback (FB) connections are assumed to originate from deep layers and 

target superficial pyramidal cells and inhibitory interneurons. This pattern of extrinsic and intrinsic coupling has been 

shown to explain activity in parietal and frontal areas (Heinzle et al., 2007; Ma et al., 2012; Phillips et al., 2015; Ranlund et 

al., 2016; Dı́ez et al., 2017). We have omitted extrinsic connections between PFC and LIP in the Figure and depicted one out 

of four possible connection patterns that corresponds to results from anatomical studies (Hilgetag et al., 2016). This is 

variant “FEF” of the large-scale CMC model (see main text for details). 

                                                 
6 Each variant had an acronym.  The first letter in this acronym corresponds to the connections that were 
allowed to change with load between LIP and FEF. The second letter corresponds to the connections that were 
allowed to change between FEF and PFC. The third letter corresponds to the connections that were allowed to 
change between PFC and LIP.  The letters F, B and R correspond to feedforward, feedback and reciprocal 
connections respectively. The letter O corresponds to connections that were not allowed to change. 
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Figure 4. A. Possible functional hierarchies in the PFC-FEF-LIP network. B. Bayesian model comparison (BMC) results after 

fitting variants of the large-scale CMC model to trials with one contralateral object during the early delay period. C.  The 

model with highest evidence was model “ALL”. All brain areas occupy the same hierarchical level. D. Model fits to CSD data. 

E. Using posterior parameter estimates, we simulated LFPs. In all plots, dashed lines depict model predictions and solid 

lines depict observed data (CSD or LFPs). 

 
Figure 5. Plots showing variants of model “ALL”. These correspond to the 16 variants included in first two lines of Table 1. 

Each variant had an acronym. The letters in the acronym correspond to connections that were allowed to change for 

different load conditions. These are also shown with dashed lines. Solid lines depict connections that were not allowed to 

change. 

 
Figure 6. Contralateral WM Load Effects on FF and FB coupling in the PFC-FEF-LIP network during early delay. Plots follow 

the format of Figure 3. A. Bayesian model comparison (BMC) results after fitting the 64 variants of model “ALL” included in 

Table 1. B. Model fits to CSD data. C. Simulated and observed LFPs. In all plots, dashed lines depict model predictions and 

solid lines depict observed data (CSD or LFPs). 

 
Figure 7. A. Models that had the highest evidence for each experimental condition. Dashed lines denote connections that 

were modulated by load. RFR and ROB were the winning models for contralateral load during (i) early and (ii) late delay 

and BFB and RRR were the winning models for ipsilateral load during (iii) early and (iv) late delay.  B. Changes in neuronal 

coupling strengths due to changes in (i) contralateral load during early delay; (ii) contralateral load during late delay; (iii) 

ipsilateral load during early delay; (iv) ipsilateral load during late delay. Coupling strengths corresponding to the lowest 

load are shown with blue bars. The cognitive capacity limit is shown with a vertical red dashed line. Strength changes below 

(resp. above) the capacity limit are shown with black (resp. red) lines.  

 

 
 

 

 

 


