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ScienceDirect
This review surveys recent trends in the use of local field

potentials—and their non-invasive counterparts—to address

the principles of functional brain architectures. In particular, we

treat oscillations as the (observable) signature of context-

sensitive changes in synaptic efficacy that underlie coordinated

dynamics and message-passing in the brain. This rich source of

information is now being exploited by various procedures—like

dynamic causal modelling—to test hypotheses about neuronal

circuits in health and disease. Furthermore, the roles played by

neuromodulatory mechanisms can be addressed directly

through their effects on oscillatory phenomena. These

neuromodulatory or gain control processes are central to many

theories of normal brain function (e.g. attention) and the

pathophysiology of several neuropsychiatric conditions (e.g.

Parkinson’s disease).
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Introduction
Our review comprises four sections: the first considers

the central role of gain control in hierarchical message

passing and predictive coding; with a special emphasis

on precision, attention and sensory attenuation. The

second treats oscillations and local field potentials as

fingerprints that reveal asymmetries in forward and

backward extrinsic connections in cortical hierarchies.

This is a prescient area of research, because it has the

potential to disclose the hierarchical connectome and

the putative predictive coding it supports. The third

section looks more closely at horizontal connections in

visual cortex and how local field potentials have been
www.sciencedirect.com 
used to characterise context-sensitive changes in lat-

eral interactions—in terms of effective connectivity

and its underlying (GABAergic) synaptic gain control.

Finally, we consider an example of coupling between

cortical and subcortical systems that speaks to the

use of oscillations in characterising pathophysiology.

Specifically, we look at pathological beta oscillations

and their dynamic causal modelling in Parkinson’s

disease.

Oscillations, precision and predictive coding
Our treatment of oscillations rests on the premise that

dynamic coordination can be understood in terms of

predictive coding [1–3]. Predictive coding supposes that

the brain is a statistical organ, generating predictions or

hypotheses about the state of the world—predictions that

are tested against sensory evidence. This (Bayesian brain)

perspective is potentially important because many neu-

ropsychiatric syndromes (ranging from autism to psycho-

sis) can be cast in terms of false inference about states of

the world (or the body) that may be due to aberrant

neuromodulation or gain control at the synaptic level

[4,5].

The circumstantial evidence for predictive coding is

substantial—both in terms of the anatomy of extrinsic

(between-areas) and intrinsic (within-area) connections

and the physiology of synaptic interactions [3]. In these

schemes, top-down predictions are used to form predic-

tion errors at each level of cortical and subcortical hier-

archies. The prediction errors are then returned to the

level above to update predictions in a Bayesian sense. In

brief, the prediction errors report the ‘newsworthy’ infor-

mation from a lower hierarchical level that was not pre-

dicted by the higher level. A crucial aspect of this message

passing is the selection of ascending information by

adjusting the ‘volume’ or gain of prediction errors that

compete for influence over higher levels of processing.

Functionally, this gain corresponds to the expected pre-
cision (inverse variance or signal-to-noise ratio) that sets

the confidence afforded to prediction errors. Psychologi-

cally this has been proposed as the basis of attentional

gain [6]. Physiologically, precision corresponds to the

postsynaptic gain or sensitivity of cells reporting predic-

tion errors (currently thought to be large principal cells

that send extrinsic efferents of a forward type, such as

superficial pyramidal cells in cortex). This is important

because the synaptic gain or efficacy of coupled neuronal

populations determines the form of their spectral
Current Opinion in Neurobiology 2015, 31:1–6
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2 Brain rhythms and dynamic coordination
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This schematic illustrates the link between the parameters of a dynamic causal model—such as effective connectivity or synaptic efficacy—and the

spectral signatures of these coupling parameters. Left panel: state space or dynamic causal model of neuronal states x generating observed data y.

The equations at the top represent the equations of motion and (static) observer function generating data. These dynamics are driven by random

fluctuations v, where w represents measurement noise. The example shown here is perhaps the simplest; with recurrently and reciprocally (and

linearly) coupled excitatory (black) and inhibitory (red) neuronal populations. Right panel: this illustrates the corresponding spectral behaviours

expressed in terms of spectral densities. The top equation shows that the observed spectral density g(v) is a mixture of signal generated by applying

transfer functions K(v) to the spectral density of the random fluctuations (assumed to be the identity matrix here for simplicity) plus a component due to

measurement noise. Crucially, the transfer functions and ensuing spectral density are determined by the eigenvalues of the model’s connectivity

(shown on the lower left). In turn, the eigenvalues are relatively simple functions of the connectivity. The resulting (Lorentzian) spectral density is

centred on the imaginary part of the eigenvalue and corresponds to the connection strength of reciprocal connections. The dispersion (full width half

maximum) of the spectral peak is determined by the recurrent connectivity. This example shows how connectivity parameters can be expressed

directly and intuitively in measured spectra. Furthermore, peristimulus time-dependent changes in the spectral peak disclose stimulus-induced

changes in the strength of reciprocal connectivity (i.e. short-term changes in synaptic efficacy of the sort that could be mediated by NMDA

receptors)—as illustrated on the lower right. In practice, dynamic causal models are much more complicated than the above example; they usually

consider distributed networks of sources with multiple populations within each source and multiple states within each population—with non-linear

coupling.
(oscillatory) behaviour. See Figure 1. Because, synchro-

nous activity determines synaptic gain [7], oscillations have

a mechanistic impact on neuronal processing—rather than

being epiphenomenal—which completes the circular caus-

ality between synchrony and synaptic efficacy.

Casting hierarchical neuronal processing in terms of pre-

dictive coding has proven useful in providing formal

models of behaviour and structure–function relationships

in the brain. It is now arguably the dominant paradigm

in cognitive neuroscience. Under predictive coding,

the central role of precision—mediated by classical
Current Opinion in Neurobiology 2015, 31:1–6 
neuromodulatory and synchronous gain control—fits

comfortably with computational and physiological formu-

lations of neuronal processing. Crucially, electrophysio-

logical studies of oscillations provide a rich source of

empirical data for estimating synaptic efficacy. In what

follows, we consider recent empirical approaches to un-

derstanding the functional architectures of predictive

coding using local field potentials and dynamic causal

models (DCM) of their spectral behaviour [8].

Physiologically, synaptic gain rests on a competition

between excitatory and inhibitory processes. This means
www.sciencedirect.com



LFP and oscillations Friston et al. 3
that a detailed characterisation of gain control should

differentiate between excitatory and inhibitory postsyn-

aptic currents. However, LFP oscillations are generated

by both—creating a difficult inverse problem. DCM tries

to resolve this problem with the Bayesian inversion of

physiologically plausible forward models of coupled

inhibitory and excitatory populations.

Hierarchical message passing and the
spectral connectome
This section focuses on recent trends in the characteris-

ation of functional integration in cortical hierarchies.

Much current work focuses on spectral asymmetries in

the (functional and effective) connectivity between des-

cending (top-down) and ascending (bottom-up) extrinsic

(between area) projections. Bastos et al. have shown

canonical patterns of directed interactions between differ-

ent visual areas, with theta and gamma oscillations pre-

dominating in the bottom-up (or feedforward) direction

and beta oscillations signal in the top-down (or feedback)

direction. In addition, this metric of functional asymmetry

between inter-areal oscillatory interactions predicted the

underlying anatomical asymmetries in terms of laminar-

specific top-down and bottom-up connections (see Vezoli,

Bastos, Fries, this issue for more details). Similar spectral

asymmetries in forward and backward message passing

have also been found in the auditory system [9��]. The

emerging picture is that oscillatory coupling prescribes a

functional cortical hierarchy that closely matches the

anatomical hierarchy [10]. The function of this hierarchy

is an open question, although predictive coding models

offer an intriguing explanation—in terms of hierarchical

Bayesian inference.

Complementing this work, Richter et al. (see this issue)

describe beta oscillations from extrastriate cortex to V1 in

the monkey that predict the strength of evoked potentials

in V1, and may therefore be a candidate mechanism for

gain control. Furthermore, the top-down beta predicts

stimulus-response mappings that the animal has been

trained to perform. Thus, beta signals may provide top-

down influences that contextualize lower-level proces-

sing. These findings fit comfortably with predictive

coding models [3], which predict that top-down cortico-

cortical connections convey prediction signals at slower

time scales (e.g. beta) compared to bottom-up connec-

tions that convey prediction error signals at faster time

scales (e.g. gamma). Recent work supports this hypoth-

esis, linking fast and slow frequencies to prediction error

and predictions, respectively:

Bauer and colleagues [11] have recently demonstrated

that the cumulative probability of a stimulus change (a

proxy for stimulus predictability) was tracked by

attention-dependent alpha-band oscillations, while the

inverse of cumulative probability (a proxy for surprise)

was tracked by attention-dependent gamma-band
www.sciencedirect.com 
oscillations. This suggests that neuronal signalling of

predictions is mediated by alpha and prediction errors

by gamma. These are exactly the sort of spectral dis-

sociations one would expect if lower frequencies were

involved in relaying predictions and faster frequencies in

relaying prediction error.

These experimental findings are now being incorporated

into models of canonical microcircuitry [3,12��] to under-

stand at a mechanistic level how oscillations contribute to

top-down and bottom-up processing. A key challenge for

future work will be to understand not only the functional

segregation between top-down and bottom-up signalling

but also the functional integration of these streams, which

may be subserved by laminar specific processing within

the cortical microcircuit [3,13��].

Gain control and lateral interactions in cortex
The preceding sections focused on the dynamic coordi-

nation among cortical areas as indexed by their spectral

coupling. Here, we focus on cortical gain control (implicit

in the optimisation of precision) within the intrinsic

connections of the canonical cortical microcircuit. In

particular, we look at recent advances in characterising

excitatory-inhibitory balance—as mediated by horizontal

connections within visual cortex—using dynamic causal

modelling and neural fields.

Dynamic causal modelling (DCM) is a biophysically

informed Bayesian framework for comparing hypotheses

or network models of (neurophysiological) timeseries. It

is an established procedure in the analysis of functional

magnetic resonance timeseries [14,15] and is now used

increasingly for the characterisation of electrophysiologi-

cal measurements. There is an extensive literature on the

validation of DCM ranging from face validation studies

[16] to construct validation in terms of multimodal

measurements [17], pharmacological manipulations

[8,18] and psychophysical constructs [19]; for example,

predictive coding. Predictive validity has been estab-

lished in studies of pathophysiology [20]. Generally,

dynamic causal modelling uses point sources (cf., equiv-

alent current dipoles); however, recent developments

now allow the use of neural fields in the forward model.

Dynamic causal modelling of neural fields and cortical

gain control

Neural fields treat neuronal signalling as a continuous

process on the cortical sheet using partial differential

equations [21,22]. By combining neural fields with

dynamic causal modelling, one can quantify important

aspects of cortical microcircuitry, like cortical excitability

and the spatial reach of horizontal connections that med-

iate receptive field properties [23,24]. Receptive fields are

not invariant to stimulus properties—their configuration

is highly contrast-sensitive [25]. In [26], the authors

showed that at higher contrasts, the excitatory centre
Current Opinion in Neurobiology 2015, 31:1–6
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of receptive fields in visual cortex (V1) had a smaller

stimulus summation field, while in [27] they showed that

the balance of excitatory-inhibitory influences could be

modulated by stimulus context.

Neuronal responses in visual areas are sensitive to both

stimulus contrast and top-down factors [28��]. This con-

text-sensitivity is thought to underlie visual attention

[29]. It is also known that gamma band oscillations

(30–100 Hz) in V1 are sensitive to contrast, stimulus size

and attention [30]. Furthermore, attention increases the

peak frequency of gamma oscillations [31��]. This

suggests an intimate link among gamma oscillations,

stimulus contrast, horizontal connections and cortical gain

control.

These relationships have been examined using Bayesian

model comparison of dynamic causal models that embody

competing hypotheses about how visual contrast effects

lateral interactions [32]. Using invasive electrophysiologi-

cal responses from awake-behaving monkeys several

mechanisms were compared [31��]: candidate DCMs

allowed for contrast-dependent changes in the strength

of recurrent local connections [6], the strength of hori-

zontal connections [33] or the spatial extent of horizontal

connections [27]. The ability of each model to explain

induced responses was evaluated in terms of their Baye-

sian model evidence; which provides a principled way to

evaluate competing hypotheses. Bayesian model com-

parison suggested that increasing contrast increases the

sensitivity or gain of superficial pyramidal cells to hori-

zontal inputs from spiny stellate populations. This is

consistent with precision or gain control in predictive

coding—assuming that increasing contrast increases sig-

nal-to-noise. Furthermore, they provide a mechanistic

explanation for why the receptive fields of V1 units shrink

with increasing contrast.

Gain control and pathophysiological
oscillations
We close with an important example of dynamic coordi-

nation in pathophysiology. Namely, the emergence of

pathological beta oscillations in Parkinson’s disease (PD)

and their characterisation with intracortical and non-inva-

sive methods to examine the underlying directed func-

tional connectivity (Granger causality) and effective

connectivity (dynamic causal modelling).

PD is associated with degeneration of dopaminergic

neurons in the substantia nigra. However, the mechan-

isms mediating Parkinsonian symptoms are not well

understood. One robust finding—in both patients and

animal models—is increased oscillations in the lower beta

band (around 18–20 Hz) in the basal ganglia (BG),

particularly the subthalamic nucleus (STN). Their ampli-

tude correlates with slowness and rigidity but not tremor

[34�]. Beta oscillations decrease with movement and their
Current Opinion in Neurobiology 2015, 31:1–6 
baseline level is greatly reduced by dopaminergic medi-

cation and Deep Brain Stimulation (DBS) [35]. Recent

studies point to a causal role of beta in movement slowing;

transcranial alternating current stimulation in the beta

band slows voluntary movement in healthy subjects

[36,37] and adaptive DBS triggered by high beta power

appears to be superior to constant DBS in ameliorating

Parkinsonian symptoms [38��].

The central role of abnormal beta has motivated a focus

on its generative mechanisms. The reciprocally con-

nected glutamatergic STN and GABAergic Globus Pal-

lidus (GP) are natural candidates for generating beta [39].

A recent simulation study showed that oscillations

emerge with realistic connectivity based on the latest

empirical findings [40]. In light of these simulations, one

might assume that beta oscillations generated in BG reach

the cortex via the thalamus and ‘jam’ it. However, studies

using simultaneous MEG and STN-LFP recordings in

DBS patients suggest that the pathophysiology is more

complicated; functional connectivity in the beta band,

manifest as cortico-STN coherence, is prominent and

involves ipsilateral motor areas of the cortex [41,42].

However, the frequency of this coherence does not match

that of STN beta oscillations; rather it is in the upper beta

band (25–30 Hz). Moreover, directed functional connec-

tivity analyses show that the cortex drives the STN in this

frequency band [41]. Additional evidence for dissociation

between the pathological beta and cortico-STN coher-

ence is the fact that the coherence is only weakly affected

by dopaminergic medication and movement [43]. This

cortico-STN coherence contrasts with the dopamine-

sensitive synchronisation in the lower beta band—evi-

dent within and between basal ganglia nuclei, as was

recently shown by looking at different cell populations

within one STN [44,45] and between bilateral STN [46].

Dynamic causal modelling of beta oscillations and

synaptic gain

Dynamic causal modelling has the potential to reconcile

these findings and reveal the architectures that underlie

pathological oscillations. Two DCM studies of beta oscil-

lations—one in a rat model of PD and one in patients—

have been published to date [47,48�]. Both show an

increase in cortical drive to the STN, accompanied by

changes in STN-GP coupling in the pathological state.

Thus DCM points to changes in synaptic gain caused by

abnormal neuromodulation as the key mechanism under-

lying pathological increases in BG beta synchrony. How

that synchrony impairs movement is still an open ques-

tion—and it may transpire that the mechanism involves

BG outputs to other subcortical structures, rather than

disruption of motor cortical processing.

From the perspective of predictive coding, the role of

beta activity fits comfortably with the observations in

the visual system that top-down beta modulates the
www.sciencedirect.com
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excitability of evoked responses. In the motor system,

beta oscillations may reflect the precision or gain afforded

by proprioceptive signals—as is evident by their attenu-

ation during movement. This attenuation has been linked

to sensory attenuation during self-made acts [49],

suggesting a failure of sensory attenuation in Parkinson’s

disease that rests on dopaminergic modulation of beta

activity [5,50].

Conclusion
This review has considered several perspectives on how

LFP oscillations can be used to inform computational and

clinical models of neuronal coupling. We have focused on

DCM as a way of formalising hypotheses about directed

(effective) connectivity. In closing, it should be noted

that—unlike descriptive (functional) connectivity mea-

sures of statistical dependencies—effective connectivity

is only as good as the model that defines it. Clearly, to

fully harness the macroscopic dynamics of electrophysi-

ology, there is a long road ahead to validate current

models in terms of microscopic and intracellular pro-

cesses.
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