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Abstract— This paper provides an overview on side-channel 

attacks with emphasis on vulnerabilities in the smart home. Smart 

homes are enabled by the latest developments in sensors, 

communication technologies, internet protocols, and cloud 

services. The goal of a smart home is to have smart household 

devices collaborate without involvement of residents to deliver the 

variety of services needed for a higher quality of life. However, 

security and privacy challenges of smart homes have to be 

overcome in order to fully realize the smart home. Side channel 

attacks assume data is always leaking, and leakage of data from a 

smart home reveals sensitive information. This paper starts by 

reviewing side-channel attack categories, then it gives an overview 

on recent attack studies on different layers of a smart home and 
their malicious goals.  

Keywords— Smart home, Privacy, Side-channel attack 

I.  INTRODUCTION  

As the concept of digitalization becomes a main trend in 

almost every aspect of modern life, promising applications of 
the internet of things (IoT) are becoming tangible and practical, 

from smart phones to smart vehicles and smart living 

environments [1-3]. Thus, the idea of a “smart home” is much 

closer to becoming reality. Initial thoughts about smart homes 

[4-7] have changed in recent years due to significant 

advancement in IoT-enabler technologies, such as sensor 

technology, small-sized and affordable processors, small 

actuators, artificial intelligence techniques, such as machine 

learning and deep learning, cognitive technologies, and cloud 

computing. Researchers and developers are now emphasizing 

the potential of a smart home to improve the quality of human 
life [8]. Already, products and services for smart home 

applications are being developed by companies around the 

world [10]. Despite the desirable qualities offered by a smart 

home, the smart home can also introduce vulnerabilities related 

to security and privacy issues [11], [12]. Generally, people 

spend most of their private moments in their homes. 

Overcoming smart home privacy issues is a critical challenge 

for wide adoption of smart homes. Even if personal information 

is not stolen by adversaries, people still have differing concerns 

about sharing personal information related to in-home activities 

[13].  Thus, having practical and efficient solutions for 
overcoming privacy drawbacks is critical. 

The internet of things uses sensors to collect a large amount 

of data, and all kinds of activities can be detected and recorded 

by a smart home. Due to the large amount of data being 

collected, any type of data leakage can cause unpredictable and 

undesirable consequences. 

Data privacy protection falls into two major categories. The 

first category is protecting sensitive and private content of 

messages transmitted through the home network. Approaches 
in this category mainly use cryptographic techniques [14]. In 

the second category, concerns are about the context of data, 

such as identities of communicators, temporal data, and 

absolute or relative locations of the targeted smart devices. 

Hackers can apply a wide range of side-channel attacks (SCAs) 

on both privacy protection categories to achieve malicious 

aims, such as monitoring hidden in-home activity. In this paper, 

our focus is on SCAs that attack contextual data, i.e. the second 

category, where exchanged data between home appliances is 

not as important as their identities, locations, and functions. Fig. 

1 shows a classification of data privacy and related attacks and 

defenses. 

Fig. 1. Types of data privacy, attack methods, and countermeasure techniques. 

In this paper, our aim is to provide an overview of potential 

threats in smart home. It will aid researchers, developers, 

engineers, and designers in their research or development to 
propose novel solutions and identify other vulnerabilities.   

The reminder of this paper is organized as follows:          

section II describes the   concept of the side-channel attack and 

different types of SCAs, section III introduces SCAs on smart 

 



home systems based on application, and section IV provides a 

conclusion. 

II. SIDE CHANNEL ATTACK 

From the physical security point of view, attacks can be 

divided into three classes: invasive, semi-invasive, and non-

invasive. An invasive attack needs physical engagement with 

the device which results in the destruction of the device. An 

example of an invasive attack is using a chemical approach to 

determine the layout of a circuit that results in the loss of 

operation of the circuit. Semi-invasive attacks require physical 

modification to, but not the destruction of, the target device, 
such as opening a package for direct access to the enclosed 

circuits. Non-invasive attacks only utilize externally accessible 

information, such as power consumption, temporal data, or 

network traffic [15].  

The concept of SCAs assumes that data is always leaking, 

which provides the possibility for adversaries to exploit data 

leakage of a smart device to find meaningful correlation 

patterns between events and/or communication nodes. 

Consequently, they will be able to obtain some sensitive private 

data for their malicious misuses [16].   

Considering the attack behavior, there are two types of 
SCAs: passive attacks and active attacks. If an attack only 

exploits the output of a system, for example, monitoring the 

network traffic and analyzing the observations to discover 

desired information, this attack is working passively. On the 

other hand, an active attack starts from system input and 

continues collecting system output, such as an attack that 

provides some predefined events for sensors, then studies the 

response of the device to those events to find secret information 

[15]. Fig. 2 shows the relationship between physical security 

attack and SCAs.  

Fig. 2. Taxonomy of physical security attacks. 

In addition to performing computing tasks, microelectronic 

devices generate physical phenomena that makes them 

vulnerable to side-channel attacks. Each component of a device 

can be subject to one or multiple SCAs. The following are brief 

descriptions of the main types of these attacks: 

A. Timing Analysis: 

A timing analysis investigates the associated timestamps 

assigned to each event, such as packet transmission in a network 

or encoding and decoding operations by a smart device. The 

timing analysis can reveal secret information about the system. 
This attack is useful for global eavesdroppers when they are 

looking for contextual information of a wireless network [17], 

[18]. 

B. Traffic Analysis: 

A traffic analysis involves an attacker that, by monitoring 

all or a part of network traffic, can track data packets, count 
packet number, and record their transmission intervals. This 

analysis is useful when identifying the sender, receiver, or both, 

and spotting their locations is needed [19]. 

C. Electromagnetic Analysis:  

Cryptographic devices performing encryption or decryption 
tasks emit power radiation of electromagnetic fields. In this type 

of attack, adversaries exploit leaked radiation for performing 

electromagnetic analysis to find correlations between leaked 

radiation and ciphertext. Since this radiation can be captured 

remotely, depending on the receiver equipment strength, this 

side-channel attack can be performed from a distance and 

hackers do not need to be close to the target [20]. 

D. Simple Power Analysis (SPA): 

Visual observation of consumed power alterations during 

execution of encryption algorithms enables attackers using a 

simple power analysis to figure out which encryption method is 

being applied on the signal. But existence of various current 

spikes and noises is a challenge for this method [21]. 

E. Differential Power Analysis (DPA): 

Applying statistical error-correcting methods through visual 

data monitoring of electrical power can lead to discovering the 

encryption key through a differential power analysis. Unlike 

SPA, in this approach analysis of power consumption will be 

done on both non-cryptographic operations and cryptographic 

operations, then results will be compared. All cryptographic 

approaches and their hardware are vulnerable to this class of 

SCA [15], [22]. 

F. Fault Analysis: 

Fault analysis injects various types of faults into 

cryptographic devices and analyzes the output of the system. 

[23] states that useful techniques for finding encryption patterns 

involve changing physical conditions of the hardware, such as 

increasing the temperature, injecting fake packets for raising the 

collision likelihood, or applying a laser beam at a particular 
frequency. 

G. Acoustic Analysis: 

Sound produced by electromechanical devices is another 

source for attackers to gain secret information via analysis of 

associated acoustic oscillations. A trained model can be capable 

of distinguishing between sounds that are slightly different. In 

 

 



Overview of side-channel attacks on a smart device

order to launch this attack, a simple digital sound reordering 

system can be sufficient, such as a smart phone [24], [25]. 

Fig. 3. illustrates an overview on a smart device, its 

components and associated side-channel attacks. 

III. VULNERABLE SMART HOME SYSTEMS 

As one of the most promising applications of the IoT, smart 

homes combine various types of smart systems to provide a 
better domestic life environment through intelligent interaction 

with residents. To develop a smart home, four layers of 

connected automation systems are considered: infrastructure 

layer, ambient condition management layer, application layer, 

and security layer. Systems related to multimedia, household 

appliances, and healthcare monitoring fall into the application 

layer. The ambient condition management layer includes 

systems for controlling temperature, humidity, air freshness, 

and lighting management. The security layer consists of 

different types of access control solutions, such as access cards, 

biometric authentication systems, and surveillance approaches. 
Finally, the infrastructure layer is a group of technologies for 

dealing with energy and water consumption management, such 

as smoke detectors and fire extinguishers. Table 1 provides an 

overview of systems and devices in each layer. This section will 

provide examples of studies done to compromise devices in 

each layer.  

A. Application Layer: 

In a practical experiment by [26], four types of smart TVs 

are investigated to explore possible vulnerabilities. The authors 

managed to successfully modify firmware of a smart TV. They 

discussed three types of firmware analysis techniques: firmware 

updates analysis, physical access, and debugging interfaces. 

Firmware update analysis involves reverse engineering the 

update packages, impersonating the TV, or compromising raw 

binary firmware. In the physical access approach modification 

is enabled by desoldering the memory chip which contains the 

firmware and replacing it with a new chip.  Finally, to debug 
interfaces, serial ports and JTAG interfaces are misused. A 

compromised serial port can give access to the bootloader 

prompt. JTAG interfaces are used for CPU debugging and allow 

flash memory modification. In this experiment, physical access 

to the targeted TV, or access to at least one of the local 

networks, is needed.  

In [27], recognition of the content being watched on TV was 

discerned from the diffusion of light from the screen. The 

authors claim this attack is robust and efficient, and light 

emanation from windows is sufficient to perform their two-

stage approach. First, feature extraction is performed from 
recorded changes in light emission. Second, video retrieval, 

using a pre-computed library of features is extracted from the 

reference content. 

Voice communication is a common activity in every home. 

[28] proposed a novel attack to identify speakers despite 

encrypted voice communication. The authors exploit a 

technique used for reducing voice traffic loads to save 

bandwidth. This technique is called voice activity detection 

(VAD). The authors have shown that using the VAD approach 

generates patterns in encoded network traffic, and traffic 

patterns can be associated with the characteristics of the person 
speaking. 

[29] provides an example of an acoustic side-channel attack 

on printers. In this work, the authors presented a novel attack 

that can recreate English text that is printed by recording the 

sound of the printer during the process. This attack benefits 

from a combination of machine learning, speech recognition, 

and audio processing. They reported that this attack can be 

successful on dot matrix printers, which are still in use in many 

organizations.    

 [30] describes a new side channel attack called PIN 

skimmer that targets mobile computers. This attack is able to 

exploit compromised cameras and microphones installed in the 
smart home to discover entered PINs in soft keyboards. A 

microphone detects the touch event, and data from the camera 

is used to estimate the orientation of the device then correlates 

it to the position of the tapped area on the screen to find the 

related digit.   

In [31], an eavesdropping attack on a wearable device is 

implemented. Researchers were successful in detecting 

physical activity levels based on correlation between sensed in-

home activities and changes in the network traffic, which was 

 



Table 1.  Devices and systems in each layer of a smart home 

measured using the signal strength. They validated their attack 

with real data collected from their wearable prototype. 

 [32] emphasizes privacy threats on smart devices with 

built-in microphones set to be “always on”, for example, smart 

TVs and their voice searching feature or systems using the 

Google Chrome search engine for its ability to passively listen 

for the phrase “OK, Google”. Digital assistants, such as Alexa 

or Siri, are vulnerable in the same way. [33] concentrated on 

smart toys. They can interact with children and, due to their 

connection to the network, they can leak private data through 

online attacks.       

B. Ambient Condition Management Layer: 

In [34], the authors implemented an experiment on Google’s 
Nest. They argued that, since Nest devices send user data to the 

server, intercepting this data can reveal sensitive information. 

They state it can even be done by a script kiddie attack (shared 

malicious scripts developed by sophisticated hackers, 

performed by beginner hackers). Due to credential leakage, 

hackers can take the full control of the device. They suggested 

that, instead of performing learning algorithms on the server 

side, the attack can be performed locally by each individual 

device, and Nest is powerful enough to perform a simple 

learning algorithm. 

In another study on Google’s Nest, [35] managed to install 
malicious software by bypassing firmware verification of the 

device. As a result, the attacker gains access to all available 

information stored on the memory. Moreover, attackers can 

change the behavior of the compromised device and use it to 

perform similar attacks on other devices within the local 

network.  

In yet another work on Google’s Nest [36], the Nest smoke 

and carbon dioxide detectors are exploited to detect home 

occupancy. This work shows how it is possible to achieve a high 

accuracy rate by performing a traffic analysis attack, even if the 

data is encrypted.   

Zigbee Light Link (ZLL), a low power network, is designed 

to be used by smart lighting systems. [37] introduced a novel 

attack on smart homes that use this system to take full control 

of the system after bypassing all pre-designed security defense 

considerations. They tested three popular smart lighting 

systems: Osram Litify, Philips Hue, and GE Link, and all of 

them are vulnerable to this attack.  

In research conducted by [38], vulnerability of visual light 

communication (VLC) is investigated. VLC is considered to be 

secure from eavesdropping attacks, because, unlike radio 
waves, light cannot pass through walls. However, the authors 

showed that a small gap under a door, keyholes, and covered 

windows can be enough for an attacker to intercept and decode 

the message packets, even outside of the direct beam. Captured 

traffic can then be used for timing or traffic analysis attacks. 

C. Security Layer 

 [39] investigates a video surveillance system. The authors 

reported that difference coding, which is a highly efficient 

approach for compressing video streams, causes data leakage. 

Encrypted compressed video shows distinguishable changes in 

traffic patterns that can be correlated with basic in-home 

activities. When there is no video stream being transferred, the 

size of an encrypted data stream is much smaller than that when 

there is a stream. Authors performed experiments to show that 

activities such as styling hair, moving, and eating are detectable 

with high accuracy.  

Another work is focused on security of smart locks. Authors 
investigated number of available smart locks in the market: 

Kevo, August, Dana, Okidokeys and Lockiton. Most of these 

locks are using device-gateway-cloud (DGC) architecture. 

Based on the working mechanism of these devices, two classes 

of attacks are introduced: revocation evasion and access log 

evasion. All tested smart locks have an option to revoke other 

user’s access by the owners.  This feature can be exploited in a 

revocation evasion. However, these devices have access 

logging features to inform owners of unauthorized access. The 

logging feature can be overcome with an access log evasion, 

where the attacker prevents the recording process [40]. 
 

D.  Infrastructure Layer 

[41] showed that service providers can exploit power 

consumption levels to enhance their services. However, these 

 



data can also reveal in-home activity patterns. To investigate 

the effects of this privacy attack, they implement an attack 

known as non-intrusive appliance load monitoring (NIALM) to 

discover how privacy of energy consumption data can be 

preserved while still providing services. To address this issue, 

they proposed a masking approach where the smart meter 

masks data then sends it to the provider. In order to be effective, 

this masking should not affect the outcome of the aggregating 

operations.  

Table 2. Smart home systems attack overview 

In another work, the possibility of private in-home activity 

recognition is demonstrated. A NIALM attack is used to reveal 

private activities, such as how much one sleeps, when one 

leaves for work, if a child is home alone, and whether one’s 

breakfast is hot or cold. The proposed solution is called zero-

knowledge (ZK) billing protocol, consisting of three steps: 

registration, tuple gathering, and reconciliation. Moreover, a 
formulated leakage model is presented to ensure adequate 

privacy [42].  

In [43], the authors performed a layered hidden Markov 

model (LHMM) to discover whether it is possible to deduce 

activities of daily living (ADL) from patterns of associated 

power consumption. They found that all ADLs are not 
detectable with this attack due to low sample size for some 

activities, such as washing dishes or using air exhaust. To 

overcome this problem, they proposed a hierarchical Dirichlet 

process hidden Markov model (HDP-HMM) to model the 

emission probability with a mixture of gaussian distributions 

and demonstrated that this method perform better than other 

models in detecting ADLS.  

In [44], the authors conducted an experiment to demonstrate 

occupancy detection by performing a common classification 

technique based on data gathered by network-connected energy 

meter equipment. The authors found that, by considering 

features such as mean, standard deviation, and sum of the 

absolute differences of each power phase, it is possible to 

achieve to up to 80% accuracy in determining home occupancy.   

 [45] designed a framework called MTPlug using supervised 
machine learning techniques. This attack aims to detect laptop-

users by exploiting power consumption data collected from 

either household level sensors or wall-socket level sensors. 

Results show that they can reach to up to 80% accuracy in a 

relatively short time. This laptop energy trace can lead to 

privacy threats, for example identification or position tracking.  

A fingerprint and timing-based snooping (FATS) attack 

aims to reveal in-home activities using timing analysis. By 

logging fingerprints and associated timestamps of 

communication from each wireless device, the attack performs 

a four-tier classification to identify each device, its location, and 

its function. Therefore, each action in the home is exposed to 

attackers. [46] introduced this attack, and [47], [48] have shown 

potential solutions to this attack.  

Attacks discussed in this section are summarized in Table 2. 

The table is organized based on the system under attack and the 

goal of the attack. 

IV. CONCLUSION 

The emergence of smart homes affects various aspects of a 

user’s life. They will be monitored by a number of sensors, 

including cameras, microphones, motion detectors, and activity 

loggers. All of these systems are intended to provide useful 

services for a better quality of life; however, they also increase 
privacy concerns due to data leakage. In this paper, we provided 

an insight of how adversaries can use side-channel attacks to 

exploit smart home vulnerabilities. We discussed the 

significance of privacy issues in smart home environments and 

how vulnerable they are to side-channel attacks. Seven major 

types of SCAs were introduced, and a review on recent privacy 

attacks on different aspects of smart home systems was 

provided.   
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