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ABSTRACT 

Previous experiments recognize that substantial heat transfer augmentation is achieved by adding ribbed 

turbulators after jet impingement with cross flow present. The present study investigates the fundamental 

working mechanism in a typical turbulent channel flow. Conjugate CFD simulations are employed for ribs, 

jet impingement, and their combinations. Flow characteristics and drawbacks for the individual and 

combined enhancement techniques are highlighted. New analysis on the coupled design arrangement 

reveals that the counter-rotating vortices generated by the jet flow can energize inter-rib recirculating 

vortices and promote spanwise convection. With an optimal design combination arrangement, extra heat 

transfer benefit is achieved beyond that associated with simple superposition of rib and jet impingement 

techniques. As such, the resulting thermal design approach is confirmed using published experimental data, 

and thus, is useful for surface heat transfer augmentation optimization in practice. 

INTRODUCTION  

    In today’s advanced gas turbine engine, many heat transfer enhancement technologies have been 

applied to the hot components, including ribs, pin fins, dimples, jet impingement, and film cooling, etc. [1-

5]. To achieve the maximum cooling performance, combinations of different techniques are often applied 

to the components which experience extremely high thermal loadings, such as those associated with 

combustor liners and with high-pressure turbine blades and associated apparatus [2,4,6]. The general design 

philosophy is to promote the turbulent mixing and break the local thermal boundary layer. With many well-

established conventional wisdoms associated with past heat transfer research, advancing the plateau in the 

existing cooling technology requires in-depth understanding of the detailed flow physics associated with 

combination designs.  



Rib turbulators were found to be able to effectively reduce the thermal resistance by removing the near-

wall viscous sub-layer. Rau et al. [7] experimentally studied the flow structures inside a ribbed straight 

channel and illustrated the existence of flow separation, reattachment as well as corner vortices. There have 

been many efforts on how to optimize the performance of ribs. Han [8] revealed that, the channel aspect 

ratio, the rib geometry and the flow Reynolds number dominated the heat transfer benefit of ribs. Han et al. 

[9] tested ribs with different angles of attack and concluded that placing ribs in an inclined angle (30-45 

degree) against the cross flow could improve heat transfer and decrease pressure loss compared to the 

transverse arrangement. Han and Zhang [10] further introduced the broken V-shaped ribs and demonstrated 

superior heat transfer performance to other continuous ribs. Similar rib configurations were utilized by 

Ekkad and Han [11] as well. Such improvement was due to the introduction of secondary flow by the 

oblique ribs, as explained by Kim et al. [12]. Gao and Sundén [13] and Jia et al. [14] studied V-shaped ribs 

and associated the span-wise variation of heat transfer enhancement with the secondary flow motion, which 

essentially has been the main strategy to improve rib turbulator performance in the past years. 

Jet impingement, as another widely used technique, is capable of boosting local heat transfer 

significantly by puncturing the boundary layer and promoting the turbulent mixing. The application of jet 

impingement requires vast pump power and high structural strength. In an early experiment, Gardon and 

Akfirat [15] studied the heat transfer enhancement of a circular impinging jet on a flat plate and highlighted 

the important role of turbulence in heat transfer augmentation. Apart from the stagnation point, they 

observed a secondary peak of heat transfer at two jet hole diameters away from the impingement center. 

The same flow pattern was verified by Viskanta [16]. Detailed flow features were investigated by 

Sakakibara et al. [17], and vortical structures were identified as the main source of extra turbulence 

generation. Angioletti et al. [18] further pointed out that the toroidal vortices were responsible for the 

maximum displacement of the heat energy.  

Jet impingement is often implemented with the existence of cross flow. Bouchez and Goldstein [19] 

concluded that the addition of cross flow deflected the jet with the stagnation point moving downstream 

and the heat transfer enhancement was reduced compared to that with the absence of cross flow. Goldstein 



and Behbahani [20] found the heat transfer benefit contributed by jet impingement was indeed weakened 

by cross flow at large jet-to-plate spacing (12 times of the jet hole diameter), but the opposite trend was 

observed when the spacing was narrowed (6 times of the hole diameter). Kim and Benson [21] numerically 

investigated the change in flow structures with the addition of cross flow and noticed the existence of a 

horseshoe vortex ahead of the jet and a pair of twin vortices in the jet wake, the generation of which was 

further explained by Chang et al. [22]. Nakade et al. [23] obtained extensive span-wise heat transfer 

augmentation by inducing a pair of longitudinal vortices through an oblique impinging jet flow.   

The combination of jet impingement and rib turbulators were also well-studied. Gau and Lee [24] 

investigated a slot-jet impinging on a ribbed wall and found the surface roughness significantly altered the 

flow structure. Chang et al. [25] studied the effect of relative position of the jet to ribs and found that the 

best performance was achieved when the jet was oriented between ribs. The experiment conducted by Yan 

et al. [26] suggests that, when impinging on smooth walls, the existence of ribs might either strengthen or 

weaken the heat transfer depending on the arrangement of the ribs. Taslim and Fong [27] reported 30% 

higher heat transfer from the combination than impinging jet only.  

The impingement and rib combination has often been applied with the presence of cross flow. This 

combination arrangement, as employed within past studies, varies significantly as different applications are 

considered. Most of these past studies address direct impingement onto ribbed surfaces. For example, 

Chang et al. [28] experimentally investigated the effect of various geometric parameters, such as relative 

position of the jet hole to the ribs, pitch-to-height ratio of the ribs and the jet-to-surface spacing, and the 

cross flow rate on flow structures. They reported the heat transfer enhancement was sensitive to these 

different conditions, and the introduction of ribs on a smooth surface could even weaken the heat transfer 

enhancement of an impinging jet when the pitch-to-height ratio of ribs was small. The effects of different 

rib configurations and blowing ratios were assessed by Rhee et al. [29]. They found that the ribs might not 

have beneficial contribution under low blowing ratios. In the heat transfer experiment by Wang et al. [30], 

an inclined jet impinged on a surface equipped with a single rib in a cross flow. Their results showed that 



the presence of ribs expanded the stagnation point from a bell shape to a plateau shape and resulted in more 

uniform Nu distributions.  

Different from the configuration from most studies, rib turbulators were added after jet impingement 

by Bailey et al. [4] in their experimental study for combustion liner cooling. Comparison was made against 

cases with either jet impingement or ribs employed individually. It was found that the presence of jet 

impingement promoted the heat transfer in the downstream ribbed region by 40% to 50%. This was 

reasoned by the authors as the increase in turbulence levels due to the jet impingement. The detailed flow 

physics behind this surprisingly high beneficial effect has not been explained.  

Optimal thermal design will always be different for different operating conditions. More design space 

can only come from further understanding of the fundamental flow physics behind the many heat transfer 

experiments conducted over the past decades. Instead of optimizing a particular industrial design, this 

numerical study aims to look into the fundamental flow structure for ribs, jet impingement, and their 

coupling effect on conjugate heat transfer. The main motivation is consideration of qualitative and 

quantitative trends in flow physics, and understanding of associated thermal and flow variables and 

parameters for design optimization.  

NOMENCLATURE 

 A  surface area of the bottom wall (m2) 

 Cp  specific heat capacity of flow (J/kgK) 

 Dh   hydraulic diameter of the channel (m) 

 HTC  heat transfer coefficient (W/m2K) 

 k  thermal conductivity of flow (W/mK) 

 �̇�𝑚   mass flow rate at channel exit (kg/sec) 

 Nu  Nusselt number 

 P  static pressure (Pa) 

 Q  heat flux at the bottom wall (W/m2) 

 RANS  Reynolds-Averaged Navier-Stokes 



 s  distance from the leading edge of a rib (m) 

 S  distance between two adjacent ribs (m) 

 T  flow temperature (K) 

 TKE  normalized turbulent kinetic energy 

 u  flow velocity (m/sec) 

 w  width of the channel (m) 

 x  distance from the inlet (m) 

 X  length of the channel (m) 

 y  span-wise distance from one side (m) 

 ρ  flow density (kg/m3) 

 θ  non-dimensional temperature 

 γ  flow vorticity (1/sec) 

 ζ   loss coefficient 

Subscripts 

0  flat channel 

in   cross flow inlet 

m   mean 

w  wall 

SUMMARY OF CASE STUDIES 

A simplified channel flow was chosen in the present study. The geometry configuration is summarized 

first in this session. 

The aspect ratio of the channel cross section is 2:1 and the channel length is 19 times of the height. 

Four cases have been studied:  

Case 1 is a simple channel flow on a flat wall, which will be used as the baseline to assess the degree 

of heat transfer enhancement by the various techniques. 



Case 2 includes rib turbulators on the bottom wall. There are total 14 ribs on the bottom of the channel 

with the block ratio of 1:10 and the height of the ribs equal to 7.5 percent of the channel hydraulic diameter. 

These squared ribs with pitch to height ratio of 10:1 are distributed evenly along the channel and oriented 

orthogonally to the cross flow. The first rib is four pitches from the entry.  

Case 3 concerns jet impingement only. A single jet is introduced from the top of the channel only and 

the bottom of the channel remains flat and smooth. The impingement hole situates at four diameters 

downstream of the channel inlet and at the centre of span-wise with a diameter of a quarter of the channel 

width (half of the rib pitch).    

Case 4 is the design of combining jet impingement and ribs. The arrangements of ribs and the jet 

impingement are the same as shown in Case 2 and Case 3.  

COMPUTATIONAL METHOD 

Fluid-solid conjugate analysis was conducted for all the four cases listed. The computational domain 

and the associated meshes for the combined ribs and jet impingement are presented in Figure 1. The overall 

domain consists of a rectangular flow channel with a thin solid layer placed at the bottom with the thickness 

of half of the rib height.  

The commercial RANS CFD package ANSYS FLUENT 14.5 was applied to solve the three-

dimensional, steady-state, turbulent hydro-thermal fields with the turbulence model chosen as K-Omega 

SST, which has been widely adopted to resolve adverse pressure gradients and flow separation.  

Fully-developed velocity and temperature profiles were assigned as the inlet boundary condition. At 

the impingement hole, the velocity was specified as three times of the inlet mean velocity and the 

temperature is identical to that at the inlet. The overall mass flow rate at the exit of the channel remains the 

same in all the cases. Uniform heat flux of 2 kW/m2 was supplied to the bottom of the solid wall. The top 

of the channel was regarded as a stationary adiabatic wall and both lateral sides were set with the periodic 

boundary condition.  

The main purpose of adopting a conjugate model is to take into account the increase in the wetted area 

over the ribbed region and to reasonably compare local heat transfer enhancement among all cases 



investigated. The Reynolds number based on the exit flow is 1×105. The solid material was aluminum, of 

which the thermal properties are listed in Figure 1 as well. 

The commercial software Pointwise was employed to generate structured meshes for the present study. 

Mesh independence study was carried out by comparing the Nusselt number contours at the wall surface 

for three different density levels of grids. The Nusselt number was evaluated as 𝑁𝑁𝑁𝑁 = 𝑄𝑄𝐷𝐷ℎ
(𝑇𝑇𝑤𝑤−𝑇𝑇𝑚𝑚)𝑘𝑘

, where Q, 

Dh, Tw, Tm and k refer to surface heat flux, channel hydraulic diameter, wall temperature, local flow mean 

temperature and flow thermal conductivity respectively. Figure 2 presents the distribution of the relative 

difference in Nu between all three sets of grids with the one of 4.5 million grids as reference. The maximal 

local difference for 2.5 million grids goes beyond 3%, while that of 3.5 million grids is under 1%. Hence 

the 3.5 million grids were applied for all cases. 

RESULTS AND DISCUSSION 

Rib turbulator: pros and cons  

Heat transfer enhancement by ribs is through not only enlarging the wetted surface area but also 

producing strong turbulence and destroying the boundary layer, hence altering the flow structures as 

detailed by Han et. al. [31]. Figure 3 is the results of Case 2. It presents the flow streamlines colored by 

velocity magnitude for one rib pitch and the Nu distribution along the rib surface. 

For a typical flow between two parallel smooth walls, the boundary layers keep growing until reaching 

fully development profile. In contrast, the ribs extruding from the surface disturb the boundary layer 

repetitively and create periodic flow structures. As shown in Figure 3, flow separation happens at the front 

edge of the rib tip leading to a tiny separation region (zone 1). A substantially large after-rib recirculating 

vortex (zone 2) is established after the rib. Flow reattaches between two adjacent ribs and the local heat 

transfer is enhanced (zone 3). There is another corner vortex before the next rib (zone 4). 

Compared to the baseline smooth wall case, heat transfer at the windward surface and the tip of ribs is 

significantly strengthened, due to the flow impingement and the regrowth of boundary layer. Meanwhile, 

the introduction of ribs also brings in extensive low-Nu regions locating between ribs.  



Optimizing the thermal behavior over these regions or coupling other enhancement technique to 

enhance the performance in these regions has been the design focus in the past studies.  

Jet impingement with cross flow 

The application of jet impingement is to penetrate the cross flow and to impinge onto the wall surface 

with high velocity. As consequence, an extremely thin boundary layer in the impingement area is created 

and a pair of counter-rotating vortices downstream is induced.  

Results of Case 3 are shown in Figure 4 and it illustrates streamlines of the jet flow colored by helicity 

and the non-dimensional temperature contour over the solid surface, with θ defined as 𝜃𝜃 = �̇�𝑚𝐶𝐶𝑝𝑝(𝑇𝑇−𝑇𝑇𝑖𝑖𝑖𝑖)
𝑄𝑄𝑄𝑄

. The 

two strands of intertwined streamlines show equivalent amount of helicity but with contrary signs, 

indicating they are rotating in opposite direction. And the region of the lowest temperature at the surface 

corresponds to the impingement area. 

Figure 4 further presents the secondary flow vectors with a background of the turbulent kinetic energy 

contour over a cut-plane downstream of the impingement hole. The magnitude of the turbulent kinetic 

energy shown is normalized with respect to the mean value at the inlet. These velocity vectors indicate the 

transverse motion of near-wall fluids induced by the jet flow and demonstrate the redistribution of the 

boundary layer along the span-wise direction. The low-momentum fluids inside the boundary layer are 

driven to move laterally by the counter-rotating vortices, with part dragged off the surface and the rest 

stacked at two sides. Hence the boundary layer profile appears in a “U” shape. The turbulent kinetic energy 

is not uniformly spread as well. The turbulent mixing is strengthened significantly by the vortical structure 

and high-TKE fluids are rolled downwards closer to the area at center in accordance with the flow transverse 

movement. 

All the above-mentioned factors promote heat transfer at the central region and result in the span-wise 

Nu distribution high in the central area as illustrated in Figure 5. This is supported by the fact that in Figure 

4 the central zone is at a relatively lower temperature than both sides although the internal conduction 

lessens the transverse variation of the solid surface temperature. The magnitude of Nu at center is more 



than two and half times of that without impingement, while the enhancement at sides is negligible. The 

average augmentation approximates to be twice of the case without jet impingement. Figure 5 also presents 

the stream-wise variation of the transversely averaged Nu over the entire computational domain. The peak 

of high Nu is found at the impingement region and then the level of elevated Nu declines continuously at 

the downstream. Such a trend is in conformity to the observation from Figure 4, where the flow helicity 

drops as travelling downstream and the surface temperature keeps rising after the impingement spot 

correspondingly.  

Ribbed surface after jet impingement: flow structure 

When ribs and jet impingement coupled together in a flow passage, their individual flow characteristics 

are still preserved. However, the interaction between jet impingement and the cavity flow between two 

adjacent ribs modifies the two individual flow patterns and leads to new secondary flow features as showed 

in Figures 6 and 7. 

In Figure 6, the streamlines starting from the impingement hole colored by helicity demonstrate the 

existence of counter-rotating vortices. On two inter-rib cut-planes, the secondary flow velocity vectors are 

also superimposed with the contour of helicity. As indicated, the mainstream vortical structure above ribs 

energizes the inter-rib recirculating flow. Driven by the strong span-wise turbulent shear stress, two induced 

vortices with opposite rotating directions forms behind the rib. Such span-wise convection of the “dead” 

stream-wise recirculating fluids brings substantial augmentation in local turbulence, and more importantly, 

enhances the local heat transfer. Figure 7 presents a close-up view of the near wall turbulence kinetic energy 

and temperature gradient. Compared with the ribbed surface without impingement, the combination of rib 

and jet impingement has significant improvement. 

Figure 8 compares the near-wall TKE distributions for all cases. For the channel with flat and smooth 

walls, the turbulent kinetic energy is at a very low level. The addition of jet impingement brings strong 

turbulent mixing inside vortices, creating a high-TKE footprint at the impingement spot and promoting the 

TKE at centre significantly. For the ribbed channel, the inter-rib recirculating vortex generates extra 

turbulence and slightly raises the TKE over the cavity floor. The windward surface of ribs blocks the near-



wall low-turbulence fluids and flow separation at the rib tips leads to the high TKE stripes. When both ribs 

and jet impingement are applied to the channel, a remarkable augmentation is achieved. The amount of 

turbulent mixing is even more than the superimposed value. The entire wall surface is immersed in flow 

with markedly higher TKE. The most striking growth occurs at the tip of ribs. The enhancement around the 

frontal edge of ribs is factually much higher than the simple summation of the benefit obtained from ribs 

and jet impingement individually. This is due to the combination of ribs’ boundary layer removal and jet 

impingement’s vortical structures, making the off-wall high-TKE fluids land onto the rib tips. 

Ribbed surface after jet impingement: heat transfer 

Figure 9 is the comparison of Nu distribution along a rib surface for Case 2 (ribbed enhancement only) 

and Case 4 (coupled enhancement of ribs with jet impingement). The introduction of additional jet 

impingement for the rib application succeeds in improving the heat transfer performance globally. The Nu 

around the dead corners is more than doubled. As discussed earlier, the benefit is a direct result of span-

wise convection and TKE enhancement by involving jet impingement. 

   To evaluate the performance of ribs and jet impingement, the comparison of Nu distributions among all 

cases are made. Given the enlargement of the wetted area brought by ribs, Figure 10 shows the Nu contours 

at the flat bottom of the solid and Figure 11 plots the stream-wise variation of the span-wise averaged Nu. 

Since the solid is of high thermal conductivity and small thickness, the associated thermal resistance is 

negligible. So the Nu presented can reasonably reflect the flow convection. Meanwhile, the conduction 

inside the solid diminishes the difference of local heat transfer capabilities and smooths out the flow 

characteristics to some extent. 

For the ribbed channel, arrayed stripe shadows can be observed in the Nu contour demonstrating the 

ribs’ pump effect. The Nusselt number experiences a slight drop ahead of the ribbed region and then keeps 

growing steadily and stabilizing at 1.25. The application of jet impingement leaves a high-Nu footprint 

beneath the impingement hole and results in higher Nu at centre  than at sides. The span-wise averaged 

Nu surges beyond 2 at the impingement region, but falls steadily after the peak with the value standing at 

1.2 at the exit. In the case with the combination of ribs and jet impingement, due to the low Nu region ahead 



of the first rib, the location of the maximum Nu region moves slightly downstream compared to the case 

with jet impingement only. 

In Figure 11, the red dashed line represents the mathematical superposition of the augmentation from 

ribs and jet impingement individually. It is of interest to notice the red solid line exceeds the red dashed line 

throughout the entire region, although the gap between them narrows continuously and nearly vanishes at 

the end. The information conveyed is that additional heat transfer enhancement can be obtained by 

employing ribs and jet impingement at the same time. The extra benefit remains around 10% over the first 

twelve ribs in the present study.  

The general trend observed in the present fundamental case study is also consistent with the previous 

work by Bailey et al. [4]. Their experimental data are replotted in Figure 12. The complicity of the channel 

geometry made it difficult to access accurate numerical results with details of the computational domain 

unknown. So only the published experimental data are presented without further CFD simulation. For this 

channel, there are five jet holes arranged in line at the top wall, creating the HTC oscillations at the 

impingement region. Heat transfer over the ribbed region of the case with jet impingement on ribs 

outperforms the summation of the enhancement from each technique individually. The addition 

augmentation even achieves above 50% at the region near the exit. 

SUMMARY AND CONCLUSIONS 

Substantial heat transfer augmentation is achieved by adding ribbed turbulators after jet impingement 

with cross flow. Within the present investigation, the fundamental working mechanism, behind this previous 

experimental finding, is numerically investigated. Employed for this purpose is fluid-solid conjugate 

analysis, conducted by using a commercial CFD tool.  

Of particular importance are counter-rotating vortices induced by jet impingement, which induce 

spanwise convection for the inter-rib recirculating “dead” fluids. On the other hand, the rib turbulators also 

delay the heat transfer decay by jet impingement with cross flow. These complementary effects can be 

managed to produce extra heat transfer enhancement. The present results show that this management is 



quantitatively more complex, than that which results from superposition of the effects of impingement array 

flows, with flow effects which result from wall-mounted rib turbulators.  

The physical understanding from the present study can be further applied to the design optimization 

process in gas turbine heat transfer, particularly for components such as combustor liners and turbine blades 

subject to intensive heat loads. Although practical designs involve more complex geometries which may 

induce new flow features, the scenario utilized within the present investigation provides guidance and 

serves as a benchmark for further optimization.  
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Figure 1. Computational domain and meshes. 

 

 

 

 

 

Figure 2. Grid independence study: Nusselt num ber variations for different grid density levels. 

 

 

 

 

 

 

 

 

 



Figure 3. Flow structures in the ribbed channel: flow streamlines colored by velocity (top), and Nusselt 

number distribution on the rib surface (bottom). 

 

 

 

 

 

 

 

 

 

 

Figure 4. Flow structures in the flat channel with jet impingement: streamlines colored by helicity with 

temperature contour over the solid surface (top), and secondary flow vectors and turbulent kinetic energy 

contour over the cut-plane (bottom). 

 

 

 

 

 

 

 

 

 

 



Figure 5. Nusselt number distribution in the flat channel with jet impingement along: the span-wise 

direction (top), and the stream-wise direction (bottom). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Flow structures in the channel with coupled ribs and jet impingement: (a) streamlines colored 

by helicity with temperature contour over the solid surface, (b) secondary flow vectors with helicity 

contours along two inter-rib cut-planes. 

 

 

 

 

 

 

 



 

 

Figure 7. Near-wall TKE and temperature contours on the two cut-planes for: ribs with impingement 

(left), and ribs without impingement (right). 

 

 

 

 

 

 

 

 

 

 

Figure 8. Near-wall TKE contours for all cases. 

 

 

 

 

 

 

 

 

Figure 9. Comparison of Nusselt number distributions along a rib surface without jet impingement. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Normalized Nusselt number contours at the solid bottom. 

 

 

 

 

 

 

 

 

 

Figure 11. Spanwise averaged Nuseelt number values at the solid bottom. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Comparisons of present results with experimental results from Bailey et al. [4]. 

 

 

 


