

City, University of London Institutional Repository

Citation: Hunt, S., Clark, D. & Malacaria, P. (2007). A static analysis for quantifying

information flow in a simple imperative language. Journal of Computer Security, 15(3), pp.
321-371. doi: 10.3233/jcs-2007-15302

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/195/

Link to published version: https://doi.org/10.3233/jcs-2007-15302

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A static analysis for quantifying information flow
in a simple imperative language?

David Clark1, Sebastian Hunt2, and Pasquale Malacaria3

1 Department of Computer Science, Kings College, London. david@dcs.kcl.ac.uk
2 Department of Computing, City University, London. seb@soi.city.ac.uk

3 Department of Computer Science, Queen Mary, London. pm@dcs.qmul.ac.uk

Abstract. We propose an approach to quantify interference in a simple
imperative language that includes a looping construct. In this paper we
focus on a particular case of this definition of interference: leakage of in-
formation from private variables to public ones via a Trojan Horse attack.
We quantify leakage in terms of Shannon’s information theory and we
motivate our definition by proving a result relating this definition of leak-
age and the classical notion of programming language interference. The
major contribution of the paper is a quantitative static analysis based
on this definition for such a language. The analysis uses some non-trivial
information theory results like Fano’s inequality and L1 inequalities to
provide reasonable bounds for conditional statements. While-loops are
handled by integrating a qualitative flow-sensitive dependency analysis
into the quantitative analysis.

1 Introduction

Mathematical quantitative tools (like probability theory and statistics) have
played an increasing role both in the theory and practise of most sciences. How-
ever the theory (and theory based analysis) of software systems largely relies on
logics and makes little use of quantitative mathematics.

Traditionally logic is a qualitative discipline, things are true or false, provable
or not, typable or not. It is our belief however that some fundamental notions
in theoretical computer science might benefit from a quantitative study.

Take the notion of interference [9, 24] between program variables, informally
the capability of variables to affect the value of other variables. Absence of
interference (non-interference) is often used in proving that a system is well-
behaving, whereas interference can lead to mysterious (mis-)behaviours. However
the misbehaviour in the presence of interference will generally happen only when
there is enough interference. Think in terms of electric current: non-interference
between variables X, Y is the absence of a circuit involving X, Y ; interference
is the existence of a circuit; this however doesn’t imply that there is enough
“current” in the circuit to affect the behaviour of the system.

? This research partially supported by EPSRC grants EP/C545605/1, EP/C009746/1,
and EP/C009967/1

Concrete examples of this are provided by access control based software sys-
tems. To enter such a system the user has to pass an identification stage; what-
ever the outcome of this stage (authorisation or failure) some information has
been leaked (in the case of failure the search space for the right key has now
become smaller). Hence these systems present interference [9] so they are not
“secure” in a qualitative sense. However, common sense suggests to consider
them secure if the interference is very small.

The aim of this paper is to use Shannon’s information theory [27] to define a
quantified notion of interference for a simple imperative language and to derive
a program analysis based on this notion.

1.1 Attack Model

Classical covert channel analysis is motivated by military settings in which an
insider has access to confidential information. The insider attempts to use some
aspect of the computer system’s behaviour to communicate that information
to another user. In this model, the system under analysis is being viewed as
a communication channel and the insider chooses inputs in such a way as to
maximise the amount of information transmitted.

Our model is rather different. We consider situations in which a program has
access to confidential data (the high inputs). These inputs may be controlled
by the owner of the confidential data but we assume that the owner does not
intentionally collude to leak the data. Our attacker is an outsider who may
have control over the low inputs, but does not have any direct access to the
confidential data or control over the high inputs. By contrast with the rather
specialised military setting, our model addresses what are now far more common
confidentiality problems involving every day use of the internet.

One example is the ‘spyware’ (trojan horse) problem: a user downloads and
executes untrusted software from the internet. In this situation the user has no
interest in transmitting confidential data (quite the reverse) but the software
may require access to that data in order to serve the user’s intended purpose.
Here the user needs guarantees that software does not transmit an unacceptable
amount of confidential data to any untrusted outsider.

A second example is the remote login problem: to gain access to a service,
users must authenticate using a password or PIN number. In this situation the
authentication process necessarily leaks information from the confidential pass-
word database and we need assurances that this leakage remains within accept-
able limits.

1.2 Input Distributions

Our use of information theory to quantify information flow requires us to con-
sider probability distributions on the inputs to a program. This naturally raises
the question of how such distributions might be calculated and, where there is
more than one “obvious” choice of distribution, how a choice might be made.
Though there is no simple answer to this, we can offer a guiding principle: to give

useful results, the distribution should be a reasonable model of the attacker’s
uncertainty about the inputs. As a motivating example, consider the case of
the login process giving access to accounts on the computer system of a small
organisation. Suppose there are just four accounts (Peter, Paul, John, Ringo)
and the attacker is someone trying to gain unauthorized access to one of the
accounts (say John’s). The high input is John’s password and the low input is
the attacker’s guess. Passwords are 8 character sequences of ASCII characters,
thus representable in 56 bits. We will assume for simplicity that the login process
allows just one attempt at login. Consider two alternative scenarios:

1. The attacker has inside knowledge. He doesn’t know which user has chosen
which password but he does know that they have each chosen a different
word from the set: black, red, orange, yellow, green, blue, indigo, violet. To
this attacker, each of the eight possibilities is equally likely to be John’s
password, so the appropriate distribution assigns probability 1/8 to each
one. This distribution has an entropy of 3 bits. Our definitions assign an
information flow of just over 0.54 bits.

2. The attacker has no inside knowledge but he does know from empirical stud-
ies at other (larger) organisations, that users tend to pick certain dictionary
words more often than other sequences of characters. Let us suppose (a gross
simplification) that 1/8 of all users studied have been found to choose pass-
words uniformly from a set of 28 dictionary words, and the other 7/8 of users
to choose uniformly from the remaining 256−28 possibilities. The entropy of
this distribution is approximately 0.54+1+49 = 50.54 bits. Our definitions
assign an information flow of just over 0.006 bits.

These scenarios show that is not always best to use the ‘real’ distribution
when analysing a system. Using the distribution from scenario 1 when attack-
ers have only the generic knowledge of scenario 2 would lead to a needlessly
pessimistic view of the system’s security. In fact, both these distributions may
give overly conservative results. If the company has a rigid policy of allocating
automatically generated passwords, the choices may actually conform to a uni-
form distribution over all 256 possibilities. In this case our definitions assign an
information flow of less than 10−15 bits.

1.3 Plan of the paper

Section 2 introduces the basics of information theory and program semantics
we need. We then investigate which of Shannon’s measures (entropy, conditional
entropy, mutual information) is the right one for the task; in 2.4 we introduce
our definition of leakage and in 2.5 we establish its relation to the classical
programming language definition of non-interference.

Section 3 presents a review of related work on quantifying information flow,
starting from Denning’s and Millen’s pioneering work up to the most recent
developments in the field such as Clarkson, Myers and Schneider’s work.

Section 4 introduces a static analysis based on the theory presented in 2.4.
Analysis rules are syntax (command and expression) based. A rule for a com-
mand provides lower and upper bounds for the leakage of one or more variables
in the command. A correctness result is then proven which establishes that the
bounds provided by the rules for a language statement are always consistent
with the leakage of that statement according to section 2.4.

Section 5 presents improvements to the analysis of expressions and further
justification for some of the analysis rules.

1.4 Relationship with previous work

In a previous paper [4] we sketched an information theory based program anal-
ysis for a simple language without loops. The present work is also related with
the workshop paper [3]. In contrast to the latter work, which employs a Use Def-
inition Graph (UDG) underlying the analysis, here we present a syntax directed
analysis along the lines of that in [4]. Apart from this complete recasting of the
analysis and new proofs of correctness, the significant additions in the present
paper are:

theory: Formal relationships between non-interference for program variables,
random variable independence and leakage of confidential data are estab-
lished.

analysis of commands: The analysis of conditionals is significantly refined,
using powerful results from information theory (Fano’s inequality and the
L1 inequality) to derive both upper and lower bounds on flows through if-
statements.

analysis of expressions: Improved bounds on general equality tests and arith-
metic expressions are presented.

In addition, the review of other significant contributions is extended and
updated, all relevant proofs are provided and all sections benefit from extended
discussion and more technical details and examples.

2 Information theory and interference

In this section we will provide the foundations of our work and some background
on information theory.

2.1 The language and its semantics

In a semantics-based analysis of security properties, there is a trade-off between
tractability and accuracy. Any semantic model is, necessarily, an abstraction of
its physical implementations and the limits of an analysis based on that model
are determined by the nature of the abstraction. Put more concretely, a system
which can be shown to be secure with respect to a semantic model may still

be vulnerable to attacks which exploit precisely those aspects of its behaviour
which are not modelled.

In this paper we consider a programming language with a simple denotational
semantics and we analyse confidentiality properties based purely on the input-
output behaviour which this semantics defines. The language is described in
Table 1.

The guarantees provided by our analysis are correspondingly limited. In par-
ticular, our analysis addresses the question of how much an attacker may learn
(about confidential information) by observing the input-output behaviour of a
program, but does not tell us anything about how much can be learned from its
running-time.

C ∈ Com x ∈ Var E ∈ Exp B ∈ BExp n ∈ V

C := skip | x = E | C1 ; C2 | if B C1 C2 | while B C

E := x | n | E1 + E2 | E1 − E2 | E1 ∗ E2

B := ¬B | B1 ∧B2 | E1 < E2 | E1 == E2

Table 1. The Language

Given a set A, we write A⊥ for the cpo obtained by the disjoint union of A
and {⊥}, ordered by:

⊥v⊥
⊥v a
a v a′ iff a = a′

where a, a′ range over A (thus a, a′ 6=⊥). If f : A → B⊥ and g : B → C⊥ we
write (g ◦ f) : A → C⊥ for the strict composition of g and f , thus:

(g ◦ f)(a) = g(f(a)) if f(a) 6=⊥
(g ◦ f)(a) =⊥ if f(a) =⊥

The functions A → B⊥ also form a cpo when ordered pointwise.
Program variables are drawn from a finite set Var. Let V be the set of k-

bit integers (that is, bit-vectors of length k interpreted as integers in the range
−2k−1 ≤ n < 2k−1 in twos-complement representation). The set of stores Σ is
just the set of functions σ ∈ Var → V .

An arithmetic expression E is interpreted as a function [[E]] : Σ → V , using
the usual twos-complement interpretations of +,−, ∗.

A boolean expression B is interpreted as a function [[B]] : Σ → {0, 1} in the
standard way (0 is false, 1 is true).

A command C is interpreted as a function [[C]] : Σ → Σ⊥ (see Table 2). The
semantics of while is given as the least fix point of a function F : (Σ → Σ⊥) →
(Σ → Σ⊥).

[[skip]] = λσ.σ
[[x = E]] = λσ.σ[x 7→ [[E]]σ]
[[C1; C2]] = [[C2]] ◦ [[C1]]

[[if B C1 C2]] = λσ.


[[C1]]σ if [[B]]σ = 1
[[C2]]σ if [[B]]σ = 0

[[while B C]] = lfp F where F (f) = λσ.


(f ◦ [[C]])σ if [[B]]σ = 1
σ if [[B]]σ = 0

Table 2. Denotational Semantics

2.2 Degrees of interference

We suppose that the variables of a program are partitioned into two sets, H
(high) and L (low). High variables may contain confidential information when
the program is run, but these variables cannot be examined by an attacker
at any point before, during or after the program’s execution. Low variables
do not contain confidential information before the program is run and can be
freely examined by an attacker before and after (but not during) the program’s
execution. This raises the question of what an attacker may be able to learn
about the confidential inputs by examining the low variable outputs.

One approach to confidentiality, quite extensively studied [9], is based on the
notion of non-interference. This approach looks for conditions under which the
values of the high variables have no effect on (do not ‘interfere’ with) the values
of the low variables when the program is run. We can formalise non-interference
in the current setting as follows. A terminating program P is non-interfering if,
whenever σ1 x = σ2 x for all x in L, then [[P]]σ1 = σ′1 and [[P]]σ2 = σ′2 with
σ′1 x = σ′2 x for all x in L. If this condition holds, an attacker learns nothing
about the confidential inputs by examining the low outputs.

Thus non-interference addresses the question of whether or not a program
leaks confidential information. In the current work, by contrast, we address the
question of how much information may be leaked by a program.

To help explore the difference between the approaches, consider the following
two programs:

1. if (h == x) {y = 0} {y = 1}
2. if (h < x) {y = 0} {y = 1}

Here we specify that h is high while x and y are low. Clearly, neither of these
programs has the non-interference property, since the final value of y is affected
by the initial value of h. But are the programs equally effective from an attacker’s
point of view? Suppose we allow the attacker not only to examine but actually
to choose the initial value of x. Suppose further that the attacker can run the
program many times for a given choice of value for h. There are 2k possible
values which h may have and the attacker wishes to know which one it is. It is
easy to see (below) that the second program is more effective than the first, but

the significance of this difference depends on the distribution of the values taken
by h.

At one extreme, all 2k values are equally likely. Using the first program it
will take the attacker, on average, 2k−1 runs, trying successive values for x, to
learn the value of h. Using the second program, the attacker can choose values
of x to effect a binary search, learning the value of h in at most k runs.

At the other extreme, h may in fact only ever take a few of the possible
values. If the attacker knows what these few values are, then both programs can
clearly be used to find the actual value quickly, since the search space is small.

2.3 Background on information theory

We use Shannon’s information theory to quantify the amount of information
a program may leak and the way in which this depends on the distribution of
inputs. Shannon’s measures are based on a logarithmic measure of the unexpect-
edness, or surprise, inherent in a probabilistic event. An event which occurs with
some non-zero probability p is regarded as having a ‘surprisal value’ of:

log
1
p

Intuitively, surprise is inversely proportional to likelihood. The base for log may
be chosen freely but it is conventional to use base 2 (the rationale for using a
logarithmic measure is given in [27]). The total information carried by a set of
n events is then taken as the weighted sum of their surprisal values:

H =
n∑

i=1

pi log
1
pi

(1)

(if pi = 0 then pi log 1
pi

is defined to be 0). This quantity is variously known as
the self-information or entropy of the set of events.

The events of interest for us are observations of the values of variables before
and after the execution of (part of) a program. Suppose that the inputs to a
program take a range of values according to some probability distribution. In
this case we may use a random variable to describe the values taken (initially)
by a program variable, or set of program variables.

For our purposes, a random variable is a total function X : D → R, where
D and R are finite sets and D comes with a probability distribution µ (D is the
sample space). We adopt the following conventions for random variables:

1. if X is a random variable we let x range over the set of values which X may
take; if necessary, we denote this set explicitly by R(X); the domain of X is
denoted D(X)

2. we write p(x) to mean the probability that X takes the value x, that is,
p(x) def=

∑
d∈X−1(x) µ(d); where any confusion might otherwise arise, we write

this more verbosely as P (X = x)

3. for a vector of (possibly dependent) random variables (X1, . . . , Xn), we write
p(x1, . . . , xn) for the joint probability that the Xi simultaneously take the
values xi; equivalently, we may view the vector as a single random variable
<X1, . . . , Xn> with range R(X1)× · · · ×R(Xn)

4. when summing over the range of a random variable, we write
∑

x f(x) to
mean

∑
x∈R(X) f(x); again, we use the more verbose form where necessary

to avoid confusion

Recall that the kernel of a function f : A → B is the equivalence relation
=f on A defined by a1 =f a2 iff f(a1) = f(a2). When two random variables
X1 : D → R1 and X2 : D → R2 have the same kernel, we say that they are
observationally equivalent, written X1 ' X2.

The entropy of a random variable X is denoted H(X) and is defined, in
accordance with (1), as:

H(X) =
∑

x

p(x) log
1

p(x)
(2)

It is immediate from the definitions that X1 ' X2 implies H(X1) = H(X2) but
not conversely.

Because of possible dependencies between random variables, knowledge of
one may change the surprise (hence information) associated with another. This
is of fundamental importance in information theory and gives rise to the notion
of conditional entropy. Suppose that Y = y has been observed. This induces
a new random variable (X|Y = y) (X restricted to those outcomes such that
Y = y) with the same range as X but with domain Y −1(y) and P ((X|Y = y) =
x) = P (X = x|Y = y), where

P (X = x|Y = y) =
p(x, y)
p(y)

The conditional entropy of X given knowledge of Y is then defined as the ex-
pected value (i.e., weighted average) of the entropy of all the conditioned versions
of X:

H(X|Y) =
∑

y

p(y)H(X|Y = y) (3)

A key property of conditional entropy is that H(X|Y) ≤ H(X), with equality
iff X and Y are independent. Notice also the relation between conditional and
joint entropy (chain rule):

H(X, Y) = H(X|Y) +H(Y) (4)

Mutual information Information theory provides a more general way of mea-
suring the extent to which information may be shared between two sets of obser-
vations. Given two random variables X and Y , the mutual information between

X and Y , written I(X;Y) is defined as follows:

I(X;Y) =
∑

x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
(5)

Routine manipulation of sums and logs yields three equivalent ways of defining
this quantity:

I(X;Y) = H(X) +H(Y)−H(X, Y) (6)
I(X;Y) = H(X)−H(X|Y) (7)
I(X;Y) = H(Y)−H(Y |X) (8)

As shown by (6), I(X;Y) is symmetric in X and Y .
This quantity is a direct measure of the amount of information carried by X

which can be learned by observing Y (or vice versa). As with entropy, there are
conditional versions of mutual information. The mutual information between X
and Y given knowledge of Z, written I(X;Y |Z), may be defined in a variety of
ways. In particular, (6)–(8) give rise to three equivalent definitions for I(X;Y |Z):

I(X;Y |Z) = H(X|Z) +H(Y |Z)−H(X, Y |Z) (9)
I(X;Y |Z) = H(X|Z)−H(X|Y,Z) (10)
I(X;Y |Z) = H(Y |Z)−H(Y |X, Z) (11)

2.4 Quantifying interference using information theory

In this section we start by defining a measure of information flow appropriate in
a quite general computational setting. We go on to consider the special case of
flows in deterministic systems (allowing a purely functional semantics) where all
inputs are accounted for, and show how the general definition simplifies in this
case.

Transformational Systems A transformational system S is specified by the
following:

1. DS - a finite set (the sample space)
2. a probability distribution on DS
3. a random variable IS : DS → R(IS) which defines the inputs of the system
4. a random variable OS : DS → R(OS) which defines the outputs of the

system

Note that, in any real system of interest, we would expect the outputs of the
system to be determined, to some extent, by the inputs, and so IS and OS will
not normally be independent. Note also that we could, without loss of generality,
fix DS asR(IS)×R(OS), taking IS and OS to be the first and second projections,
respectively. However, it is technically convenient not to do this, especially in
the case of purely deterministic systems.

Given a transformational system S, we are concerned with two classes of
observation:

– An input observation is a surjective function X : R(IS) → R(X).
– An output observation is a surjective function Y : R(OS) → R(Y).

Observations induce random variables X in : DS → R(X) and Y out : DS →
R(Y) by composition with the relevant component of S:

– X in def= X ◦ IS
– Y out def= Y ◦OS

Examples In the following, let N be some finite subset of the integers, such as
those representable in a k-bit twos-complement representation.

1. Consider terminating programs written in a simple imperative language, de-
fined as in Table 1 but with the addition of a coin operator, which evaluates
randomly to 0 or 1 with equal probability. Assume given a probability dis-
tribution on input states σ ∈ Σ, writing p(σ) for the probability that the
input state is σ.
Any such program P can be viewed as a transformational system, taking
DS

def= Σ × Σ to be the space of input/output pairs, IS(σ, σ′) = σ and
OS(σ, σ′) = σ′. The probability distribution on DS is induced by the stan-
dard semantics of P . For example, if P is the program y := coin then we
have:

p(σ, σ′) = p(σ)/2 if σ′ = σ[y 7→ 0] or σ′ = σ[y 7→ 1]
p(σ, σ′) = 0 otherwise

The obvious input and output observations to consider in this setting are
projections on the state, that is, observations of the values of one or more
program variables. For any program variable x, the corresponding observa-
tion is given by X : σ 7→ σ(x).

2. Consider the system defined by the swap function λ(x, y).(y, x) restricted
to N × N . In this case it is natural to take DS to be N × N and IS to
be the identity. Given a probability distribution on N × N , we then have
a transformational system where IS is the identity and OS is just swap. In
this case we also have R(OS) = N ×N = R(IS). Possible input and output
observations include the projections π1, π2.

Information Flow We are interested in flows of information from system inputs
to system outputs. We use some input observation X : R(IS) → R(X) and
output observation Y : R(OS) → R(Y), as defined in Section 2.4, to pick out
the parts of the input and output we wish to focus on. In this context, we refer
to X as the information source. In the rest of this section, assume given some
transformational system S.

A natural information-theoretic quantity to view as the flow from X to Y
is the mutual information between the two corresponding random variables:
I(X in;Y out). We say this seems natural because it is a direct formalisation of
the idea that the quantity of information flowing from X to Y is the amount of

information given by input observation X which is shared with output observa-
tion Y .

However, despite its intuitive appeal, this formalisation is flawed as it stands.
To see why, consider the case of Y = X xor Z (true when exactly one of
the arguments is true) with X and Z independent random variables uniformly
distributed over the booleans. Since Y is the value of a function with argument
X, and since variation in X clearly can cause variation in Y , we might expect the
presence of an information flow from X to Y , But this is not shown in I(X;Y);
indeed we have:

I(X;Y) = H(X) +H(Y)−H(X, Y) = 1 + 1− 2 = 0

At first sight this is surprising but the explanation is straightforward: xor is
here providing perfect encryption of X, with Z as the key. An observer can
learn nothing about X from Y provided the observer does not know Z. This
shows very clearly that a satisfactory definition of flow must take account of
the observer’s prior knowledge of the context. The right way to do this is via
conditional mutual information. In the xor example, if we assume knowledge of
Z and account for this by conditioning on Z, we find:

I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

Since the knowledge of the output of xor and one of its inputs allows us to
determine the other input, we can express X as a function of Y and Z, so
H(X|Y,Z) = 0. On the other hand X and Z are independent and X is a uni-
formly distributed Boolean so H(X|Z) = H(X) = 1 and I(X;Y |Z) = 1−0 = 1.

Prior knowledge may also decrease the flow of information as measured by
an observer. For example, an observer of the swap system who already knows
Z learns nothing new about <X, Z> by observing π1(swap(X, Z)), whereas an
observer who knew nothing to start with would measure a flow of H(Z) bits.

We therefore modify our definition of information flow accordingly. Let X
and Z be input observations, let Y be an output observation. Then we define
the information flow from X to Y given knowledge of Z as:

FZ(X ; Y) def= I(X in;Y out|Z in) (12)

There are two natural questions arising from this basic definition:

– What is the meaning of FZ(X ; Y) = 0? This captures the special case
when no information flows from X to Y . In Corollary 1 we show that, in
the deterministic case, this is equivalent to the standard notion of non-
interference between X and Y (provided X,Z constitute the whole input).

– What is the meaning of FZ(X ; Y) = n for n > 0? By basic information
theoretic inequalities we know that n ≤ H(X in|Z in). When n achieves this
maximum, the observation is revealing everything: all the information in
X is flowing to Y . When n falls short of the maximum, the observation is
incomplete, leaving H(X in|Z in) − n bits of information still unknown. One

possible operational interpretation of this “gap” is that it provides a measure
of how hard it remains to guess the actual value of X once Y is known. This is
formalised in [16] where it is shown that an entropy based formula provides a
lower bound for the number of guesses required by a dictionary attack (note,
however, that this ‘guessing game’ is an idealised one in which it is assumed
that the encoding of information about X in Y is invertible in constant time;
it has nothing to say about the computational difficulty of recovering X from
Y when this does not hold). For a more extensive discussion of this question
we refer the reader to [14, 4].

Deterministic Information Flow We now restrict attention to the case of
deterministic, transformational systems, by which we mean systems for which
there exists a function f such that OS = f◦IS . This will be the case, for example,
in systems defined by programs written in a simple imperative language (without
non-deterministic constructs) or in a functional language. Now consider flows
of the form FZ(X ; Y) in the special case that observations X and Z jointly
determine the inputs, thus <X, Z> is injective. For example, in a security setting
we may be interested in flows of the form FL(H ; L) where program variables
are partitioned into the high-security set (input observation H) and the low-
security set (input observation L). Such a flow measures what a low-security
observer (who can only observe low-security variables) can learn about high-
security inputs as a result of information flow into the low-security outputs. Since
H,L partition the set of all program variables they jointly provide a complete
observation of the input.

As shown by the following proposition, the deterministic case allows a sim-
plified definition of flow:

Proposition 1. Assume a deterministic system S. Let X and Z be input ob-
servations and let Y be an output observation. If <X, Z> is injective (thus
R(IS) ∼= P for some set of pairs P ⊆ R(X)×R(Z)) then:

FZ(X ; Y) = H(Y out|Z in) (13)

Proof. By determinism and injectivity of <X, Z>, we have Y out = f◦<X in, Z in>,
for some f . In what follows, let A = X in, B = Y out, C = Z in. By the definitions
(see (12) and Section 2.3), we must show H(A|C) + H(B|C) − H(A,B|C) =
H(B|C), that is, we must show H(A|C) = H(A,B|C). Expanding both sides ac-
cording to the definitions, we must show H(A,B, C)−H(C) = H(A,C)−H(C).
But B = f ◦<A,C> implies (A,B,C) ' (A,C), so we are done. ut

Given its relative simplicity, it may be tempting to consider (13) as an alter-
native general definition of flow. However, in general, it is not adequate. Con-
sider again the example program Y := coin from Section 2.4. Consider some
other program variable X (the choice is arbitrary) and define X : σ 7→ σ(X)
and Y : σ 7→ σ(Y) and let Z be any input observation. Clearly, no infor-
mation flows from X to Y , since the value assigned to Y does not depend

on any part of the store. This is confirmed using (12), which gives a flow of
I(X in;Y out|Z in) = 0 (one of the basic identities of information theory, since
X in and Y out are independent). By contrast, applying (13) would give a flow of
H(Y out|Z in) = H(Y out) = 1

2 log 2 + 1
2 log 2 = 1.

Another striking difference between the specialised setting and the more gen-
eral probabilistic setting, is that in the specialised case an upper bound on the
flow into a collection of outputs can be determined by considering the outputs
separately:

Proposition 2. Let S be a deterministic system. Let X and Z be input observa-
tions. Let Y1 and Y2 be output observations and let Y = <Y1, Y2> (thus Y is also
an output observation). If <X, Z> is injective then FZ(X ; Y) ≤ FZ(X ;

Y1) + FZ(X ; Y2).

Proof. By Proposition 1, it suffices to establish the general inequality

H(A,B|C) ≤ H(A|C) +H(B|C) (14)

It is easy to show (for example, by Venn diagram, see [34]) that H(A,B|C) =
H(A|C) + H(B|C) − I(A;B|C). Since all of the Shannon measures are non-
negative, the inequality follows. ut

But the conclusion of this proposition does not hold in general when the in-
jectiveness condition is dropped. The reason is essentially the one used to mo-
tivate the use of conditional mutual information in the definition of flow in
Section 2.4: knowledge of one input can increase the apparent flow from an-
other. Consider the program λ(x, z).(x xor z, z) defining a deterministic system
with DS = R(IS) = R(OS) = bool × bool. Let X and Z be the input obser-
vations π1 and π2, respectively. Similarly, let Y1, Y2 be the output observations
π1, π2. Now suppose the distribution for S is such that X in and Z in are inde-
pendent and uniform. We are concerned with flows having X as the information
source. Instead of taking Z as the observer’s prior knowledge (which would sat-
isfy the injectiveness condition of the proposition) take some constant function
W (representing ignorance), in which case, injectiveness clearly fails. Condition-
ing on a constant has no effect, thus I(X in;Y out

i |W in) = I(X in;Y out
i), hence

FW (X ; Yi) = I(X in;Y out
i). Simple calculations then give the following:

– FW (X ; Y1) = 0
– FW (X ; Y2) = 0
– FW (X ; <Y1, Y2>) = 1

So in this case it is not sufficient to calculate the flows to the outputs separately.
The reason is clear: the two outputs are, respectively, a perfect encryption of X
and its key. Knowing either one by itself reveals nothing about X but knowing
both reveals everything.

2.5 Non-interference

In this section we consider only deterministic systems S and we assume the
inputs and outputs to be finite functions whose domains index the compo-
nents, as in the case of the store for a simple imperative language. Thus we
are assuming the existence of a set of input observations {X1, . . . , Xn} such that
IS = <X1, . . . , Xn>in and a set of output observations {Y1, . . . , Ym} such that
OS = <Y1, . . . , Ym>out = f ◦<X1, . . . , Xn>in, for some f .

Note: it is a simple consequence of the definitions that <X1, . . . , Xn>in =
<X in

1 , . . . , X in
n >, and similarly for output observations.

In the setting of security, information flow is of particular relevance when
considering confidentiality properties. Leakage of confidential information is a
particular case of information flow where the source of information is a high-
security part of the input and the target a low-security part of the output. In
general when there is information flow from inputs to outputs, the inputs are
said to interfere with the outputs, whereas the absence of any such flow is known
as non-interference. One attraction of non-interference is its relative simplicity,
since it is a binary property which can be defined without any explicit recourse
to information theory [9]. Roughly speaking, a deterministic program is said to
satisfy non-interference if its low-security outputs depend only on its low-security
inputs (hence not on its high-security inputs).

More formally, in the deterministic case, a generalised definition of non-
interference can be formalised by modelling different categories of observation
(e.g. high-security, low-security) by equivalence relations. Given relations R and
S, a function f is said to map R into S, written f : R ⇒ S, iff ∀x, x′.(x, x′) ∈
R ⇒ (f(x), f(x′)) ∈ S. In what follows, R and S will always be equivalence rela-
tions, though the general construction (known as logical relations [28, 22]) does
not require this. Given a set of components X, let =X be the equivalence relation
which relates two inputs just when they agree on all components in X. Suppose
that the input (resp. output) components are partitioned into the low security
components L (resp. L′) and the high-security components H (resp. H ′), i.e
both inputs and outputs satisfy the injectivity condition with respect to H and
L. Then non-interference is defined as f : (=L) ⇒ (=L′) (‘low-equivalence’ is
mapped into ‘low-equivalence’). More generally a collection of input components
X interferes with an output component Y iff f : (=X) 6⇒ (=Y), where X is the
complement of X, i.e., all those input components not in X.

Here we go on to explore the relationship between non-interference and in-
formation theory.

Non-interference and Independence First recall that two random variables
X and Y are independent iff for all x, y, P (X = x, Y = y) = P (X = x)P (Y =
y). An immediate consequence of the definition is that for two independent
random variables X and Y , H(Y,X) = H(Y) +H(X), which provides a proof
for the following:

Proposition 3. Random variables X and Y are independent iff I(Y ;X) = 0.

As the xor example suggests, simple random variable independence is not
enough to capture the absence of information flows. The correct probabilistic
characterization of non-interference is via conditional independence:

Proposition 4. Let Y be an output component, hence (given the assumptions
of this section) Y out = f ◦ <X1, . . . , Xn>in for some f . Assume a probability
distribution such that, for all (x1, . . . , xn), P (X in

1 = x1, . . . , X
in
n = xn) 6= 0. Let

i ≤ n. Then X1, . . . , Xi are non-interfering with Y iff

I(Y out;X in
1 , . . . , X in

i |X in
i+1, . . . , X

in
n) = 0

Proof. The constraint that all inputs have non zero probability (i.e. p(x1, . . . , xn) 6=
0) is to avoid f being a “constant in disguise” i.e. f could assume theoretically
more than one value but in practice only one value is possible as the inputs for
the other values have probability 0.

In the following we use X (resp. Z) for X1, . . . , Xi (resp. Xi+1, . . . , Xn).
From Proposition 1 we know that I(Y ;X|Z) = H(Y |Z) so all we have to

prove is that Y, X are non-interfering iff H(Y |Z) = 0.
(⇒) : Y, X are non-interfering means the set of values for Y is a func-

tion of X, Z (i.e.H(Y |X, Z) = 0) constant on the X component which implies
H(Y |X, Z) = H(Y |Z).

(⇐) : Assume Y, X are interfering, i.e. f(X, Z) is non constant on the X
component. Then given only the Z component we will not know the value Y will
assume, i.e. we will have uncertainty in Y given Z, i.e. H(Y |Z) > 0. ut

Corollary 1.

1. FA(A ; Y) = 0 iff A does not interfere with Y .
2. When n = 1 we have non-interference iff I(X in;Y out) = 0, that is, iff X in

and Y out are independent random variables.

3 A review of significant contributions

3.1 Denning’s approach

In [8], Denning suggests a definition of information flow for programs, based
on information theory. Given two program variables x, y in a program P and
two states s, s′ in the execution of P , Denning suggests that there is a flow of
information from x at state s to y at state s′ if uncertainty about the value of x
at s given knowledge of y at s′ is less than uncertainty about the value of x at
s given knowledge of y at s.

Using information theory, Denning translates existence of a flow thus defined
into the following condition:

H(xs|ys′) < H(xs|ys) (15)

So, if there is a flow (i.e. (15) holds) how much information is transferred?
The quantitative answer provided by Denning is a simple consequence of (15):

H(xs|ys)−H(xs|ys′) (16)

i.e. the difference in uncertainty between the two situations.
A major merit of Denning’s work has been to explore the use of information

theory as the basis for a quantitative analysis of information flow in programs.
However it doesn’t suggest how the analysis could be automated. Also we argue
that there is a problem with Denning’s definition.

Comparison with Denning In this section we identify a flaw in Denning’s
definition, propose a correction, and show that the modified definition coincides
with our own.

Suppose that, in state s, y = abs(x) where x takes any integer value in the
range −16, . . . , 15, with uniform distribution. Then consider the following two
programs:

(A) {s}if (x = 0) {y = 1} {y = 2}{s′}

(B) {s}if (x < 0) {y = 1} {y = 2}{s′′}

Calculating the quantities involved in (16) we find:
H(xs|ys) ' 1 (because H(xs|ys) ' H(xs|abs(x))).
H(xs|ys′) ' 4.8 (because H(xs|ys′) = (1/32)H(xs|y = 1). + (31/32)H(xs|y =
2) = 0 + (31/32)log(31))
H(xs|ys′′) = 4 (because H(xs|ys′′) = (1/2)H(xs|y = 1) + (1/2)H(xs|y = 2) =
(1/2)log(16) + (1/2)log(16)).
Thus, according to (16), there is no flow from x to y in either case, since the
uncertainty in x given y actually increases in both cases. Now it is implicit in
Denning’s definition that the quantity of flow depends, in part, on what is ob-
served both before and after the program runs. The first term in (16), H(xs|ys),
represents the initial uncertainty in x given that y is observed, whereas the sec-
ond term is intended to represent the final uncertainty in x, again given that
y is observed. The problem lies with the second term: it accounts for the final
observation of y but (effectively) assumes that the initial observation has been
forgotten. This is a safe assumption only if we know that the observer has no
memory. In general, however, we must assume that, in the end, the observer
knows both the initial and final values of y. Modifying (16) in line with this
assumption, we obtain:

H(xs|ys)−H(xs|ys′ , ys) (17)

Note that H(X|Y, Z) ≤ H(X|Y), for any random variables X, Y, Z, and thus
(16) ≤ (17) will always hold.

Applying (17) to programs (A) and (B), we calculate: H(xs|ys′ , ys) = 1 and
H(xs|ys′′ , ys) = 0. So, using (17), we still find no flow for program (A) but for
program (B) we have a flow of 1 bit. The crucial difference between (A) and (B)
is that (A) reveals nothing new about x (knowing abs(x) we already know if
x = 0) whereas (B) reveals the one thing we didn’t know, namely the sign of x.

Applying (17) to the case of a program with inputs H in, Lin and outputs
Hout, Lout, we obtain:

H(H in|Lin)−H(H in|Lout, Lin) (18)

Proposition 5. FL(H ; L) = (18).

Proof. The result follows simply by rewriting both sides using the definitions of
conditional entropy and conditional mutual information. ut

3.2 Millen’s Approach

We have seen that the work we describe in this paper is not the first attempt
to apply information theory to the analysis of confidentiality properties. An
early example is that of Jonathan Millen [19] which points to the relevance of
Shannon’s use of finite state systems in the analysis of channel capacity.

Millen was, to the best of our knowledge, the first to establish a formal cor-
respondence between noninterference and mutual information. What he proves
is that, using a state machine model, the notion of non-interference in such a
system is equivalent to the mutual information between random variables rep-
resenting certain inputs and outputs being equal to zero. This is hence the first
result similar to Corollary 1.

Millen uses this equivalence to measure interference in state machine sys-
tems, in particular to study the channel capacity for covert channels. Millen’s
pioneering work is very relevant to ours; however, in contrast to Millen’s work the
fundamental concern of the current paper is the static analysis of programming
languages.

3.3 McLean’s Approach

According to McLean [18], the most stringent approach to information flow is
Sutherland’s Non-deducibility model [29]. This model requires High and Low
objects to be effectively independent. Non-deducibility, also called compartmen-
talisation, may be helpful to logicians to reason about independent subsystems of
a system, however it doesn’t capture the notion of non-interference as intended
in a security context.

McLean argues that an analysis of the notion of secure information flow,
as opposed to compartmentalisation, requires the introduction of time into the
model. When this is done, only certain classes of dependency between Low and
High are considered security violations.

Figure 1 shows allowed and forbidden flows between High and Low objects
at different times. The left figure expresses the fact that interference allows
for p(Ht|Lt−1) 6= p(Ht) i.e. low information can contribute to high informa-
tion, whereas the right figure expresses the requirement p(Lt|Ht−1) = p(Lt) i.e.
high information cannot contribute to following low information; notice that
p(Lt|Ht−1) = p(Lt) is equivalent to p(Ht−1|Lt) = p(Ht−1) which justifies for-
bidding the upward arrow as well.

However flows in Figure 1 don’t disallow the possibility that by taking the
combined knowledge of Lt, Lt−1 we may end up knowing something about Ht−1.
To avoid this situation the requirement p(Lt|(Ht−1, Lt−1)) = p(Lt|Lt−1) is in-
troduced, illustrated by Figure 2.

The main problem with this definition of non-interference is the inability to
distinguish between statistical correlation of values in the high and low objects
and causal relationships between high and low objects.

McLean’s model is highly abstract. System behaviours are modelled by the
sequences of values taken by the ‘High and Low objects’ of the system. His Flow
Model states that a system is secure if p(Lt|(Hs, Ls)) = p(Lt|Ls), where Lt

describes the values taken by the Low system objects at time t while Ls and Hs

are the sequences of values taken by the Low and High objects, respectively, at
times preceding t. The condition is illustrated in Figure 3.

forbidden flows

H
t−1 t−1

L
t

H
t

L H L

LHt t

t−1t−1

allowed flows

Fig. 1. allowed and disallowed flows

H
t−1 t−1

L
t

H
t

L

=

Fig. 2. safety requirement on flows

The Goguen-Meseguer approach The Goguen-Meseguer non-interference
model [9] can be seen as a particular case of McLean’s Flow Model, when spe-
cific assumptions about the system are made. In particular Goguen-Meseguer
concentrate on deterministic programs which cannot generate High-level output
from Low-level input.

McLean’s Flow Model provides the right security model for a system with
memory. However his work is qualitative and there is not enough machinery to
implement an analysis based on it.

H
t−1 t−1

L
t

H
t

L

LH
1 1

.

.

.

.

.

.

=

Fig. 3. McLean’s Flow Model

3.4 Gray’s approach

Gray models general non-deterministic systems using a similar synchronous
state machine model to Millen’s [19] but using probabilistic rather than non-
deterministic transitions. This allows his model to include temporal and proba-
bilistic covert channels. He assumes the system has finite sets of internal system
states, communication channels, input signals and output signals as well as a
single initial state. A probabilistic transition is given by a function that maps
to a probability a tuple consisting of a source state, a target state, a vector of
inputs indexed by the set of channels, and a vector of outputs indexed by the
set of channels.

Inputs and outputs are partitioned into High and Low with the assumption
that the only interaction between high and low environments is through the
system via the inputs/outputs in their own partition. His model assumes that
each environment has a memory of previous system inputs and outputs accessible
to it.

Gray’s information flow security condition is given as

Pt(αL, βL, αH , βH) > 0 ⇒
Pt(lt|αL, βL, αH , βH) = Pt(lt|αL, βL)

for any time t, where lt is the Low output at time t while αH (αL) is the history
of High (Low) inputs up to and including time t− 1 and βH (βL) is the history
of High (Low) outputs up to and including time t− 1.

His system model and information flow security model can be seen as a more
detailed elaboration of McLean’s flow model.

Of interest from the point of view of our own work is that Gray, while mainly
concerned with non-interference, is aware that his framework is sufficiently gen-
eral to be used to examine non-zero leakage of classified information. Of even
more interest is that he establishes a connection with information theory: he

shows that, if the flow security condition holds, the channel capacity of the
channel from High to Low is zero.

He makes a definition of channel capacity for a system with memory and
internal state (Shannon’s original definition was for a discrete memoryless system
[27]):

Definition 1 (Gray’s channel capacity).
The channel capacity from H to L is

C ≡ lim
n→∞ Cn

where Cn is defined as

Cn ≡
max
H,L

 1
n

n∑
i=1

I(In-Seq-EventH,i,
Out-Seq-EventH,i;
Final-Out-EventL,i |
In-Seq-EventL,i,
Out-Seq-EventL,i)


This definition says that the channel capacity is the limit of a sequence of

approximations, each at a finite time n. Each approximation is calculated as the
maximum over all possible High and Low behaviours of the following quantity:
the average for each moment in time, i, up to the current one (n) of the mutual
information between the High input and output event histories and the Low
output at time i, given knowledge of the Low input and output event histories.

3.5 McIver and Morgan Approach

In their 2003 paper [17] Annabelle McIver and Carroll Morgan put forward an
information theoretic security condition based on measurement of information
flow for a sequential programming language enriched with probabilities. The
language is the probabilistic guarded command language of [20]. The context of
their discussion is program refinement and the paper establishes a number of
equivalent conditions for a sequential language program to meet their security
condition. There is no notion of a static analysis based on syntax.

Their security condition seeks to prevent any change in the knowledge low
has of high through the operation of the program (the assumption is that the
operation of the program can only increase low’s knowledge of high). Low may
observe low variables as well as the program text and can draw conclusions about
high variables at that point in the program. The resulting definition of flow has
a history free flavour. In what follows we give our version of their flow quantity
definition, specialised to the case that high and low partition the store:

Definition 2 (McIver and Morgan Flow Quantity). Let h and l be the
random variables corresponding respectively to the high security and low security
partitions of the store at the beginning of the program. Let h′ and l′ be the

random variables corresponding to these partitions at the end of the program.
The information flow from high to low is given by:

H(h|l)−H(h′|l′)

They use this definition of flow quantity (or, as they term it, “information
escape”) to define a notion of channel capacity, much in the same way as Gray
does, by taking the channel capacity of the program to be the least upper bound
over all possible input distributions of the information flow quantity. They give
both a general definition for this and a definition specialised to the case when
high and low partition the store. When the channel capacity of the program is
zero it is defined as secure.

They then develop some alternative formulations of this notion of security
and show that these are equivalent. The alternative formulations are quite in-
teresting. First they show that their definition means that a program can only
permute high values (i.e. can’t identify any of them as this will destroy entropy)
as well as not communicating the value of high to low. They then show that this
permutation condition is equivalent to the program preserving maximal entropy
on high values (in fact a permutation of a set would preserve entropy).

Their security condition corresponding to the absence of any flows given
by their definition is quite strong. In particular there does not need to be any
dependency of low on high introduced by the program for a flow in their sense
to exist. For example the program h := h mod 2 will in general introduce a
flow when the size of the value space of h is greater than 2, simply because the
assignment will in general reduce the amount of entropy in the final value of h.
Their security condition also rules out flows from low to high (which McLean
calls “audit flows” and argues should be allowed) in effect achieving a separability
condition, since any flow from low to high will decrease the entropy in high at
program’s end, given knowledge of low at program’s end.

In some sense their security condition embraces both the standard definition
of confidentiality (that there are no flows from a secret input to publically ob-
servable outputs) and the standard definition of integrity (that there are no flows
from a possibly tainted source, low, to the untainted one, high). These have long
been recognised as formal duals of each other [2]. McIver and Morgan state but
do not prove a lemma that says that their security condition implies a weaker
one in which the high input only is protected. It is not clear that this is correct
because we feel there seem to be some problems with their definition of flow.

First, again considering a state space partitioned between high and low, if
the program does not assign anything to high then their definition specialises
to Denning’s and suffers the same drawback: the lack of consideration of the
history of low inputs. As such it can at best be a model for an attacker without
memory. See the counter-example to Denning’s definition above in subsection
3.1.

Second, this history free flavour can lead to some odd results. Consider swap-
ping high and low via a third (low security) variable, temp.

temp := l; l := h; h := temp

Suppose that h and l have the same type (i.e. the same value space), are uni-
formly distributed, and are independent of each other. Our definition of flow
quantity gives

H(l′|l) = H(l′) = H(h)

i.e. the entire secret is leaked. Since h and l are the same type and uniformly
distributed their entropy is the same, i.e. H(h) = H(l) and so their definition
will give a flow of 0:

H(h|l)−H(h′|l′) = H(h)−H(l) = 0

which does not mean that their results about the equivalence of the security
conditions are incorrect (since the channel capacity takes the least upper bound
of a non-negative set). However these two examples do call into question the
usefulness of their definition of information flow.

3.6 Clarkson, Myers and Schneider approach

A recent work by Clarkson, Myers and Schneider [5] proposes a new perspective
and an exciting new basis for a quantitative definition of interference. The idea
is to model attacker belief about the secret input as a probability distribution.
This belief is then revised using Bayesian techniques as the program is run. The
attacker can be seen as a gambler and his beliefs as the amount he would be
prepared to bet that the secret is such and such. This beliefs revision point of
view unveils a new notion of uncertainty depending on how strongly the attacker
believes something to be true.

As an illustration, the authors of [5] propose the following example: Suppose
a password checking program and suppose there are three possible passwords A,
B and C. The attacker believes that A is the real password (he is 99% confident
about that) and he thinks B and C are equally likely with confidence 0.5%
each. What happen if the attacker fails authorization using A? He is then more
confused than before about what the password is, so his uncertainty has increased
as he has now two possible passwords B and C each with a 50% chance to be
the right one.

Uncertainty in terms of attacker beliefs allow for a study of the informa-
tion gain in a single experiment (i.e. a single run of a program) and opens up
investigation of flow policies for particular inputs.

One could see this approach as complementing ours. Indeed we can see our
input distribution as the bookie view of the input. The bookie doesn’t necessary
know the secret (e.g. a bookie doesn’t know in advance the result of a horse race)
but he builds up a probabilistic model of his beliefs such that on average he can
make a profit against all possible attackers. His view is statistical in nature.

3.7 Other related work

Contemporary with our own work has been that of Di Pierro, Hankin and Wik-
licky. Their interest has been to measure interference in the context of a prob-

abilistic concurrent constraint setting where the interference comes via proba-
bilistic operators. In [21] they derive a quantitative measure of the similarity
between agents written in a probabilistic concurrent constraint language. This
can be interpreted as a measure of how difficult a spy (agent) would find it to
distinguish between the two agents using probabilistic covert channels, with a
measure of 0 meaning the two agents were indistinguishable. However in contrast
to our work they do not measure quantities of information. Their approach does
not deal with information in an information-theoretic sense although the implicit
assumption in example 4 in that paper is that the probability distribution of the
value space is uniform.

Other recent works include Gavin Lowe who has measured information flow
in CSP by counting refusals [13] and Volpano and Smith who have relaxed strict
non-interference and developed type systems in which a well typed program will
not leak its secret in polynomial time [33].

There has been also some interesting work regarding syntax directed analysis
of non-interference properties. See particularly the work of Sands and Sabelfeld
[25, 26].

4 Analysing programs for leakage

We now develop a system of inference rules to be used in the analysis of informa-
tion flow in the simple deterministic While language defined in Section 2.1. We
consider the case of security (confidentiality) properties described in Section 2.4,
where the program variables are partitioned into H and L. Let H = {x1, . . . , xn}
and L = {y1, . . . , ym}. For vector h = <v1, . . . , vn> we write H = h to mean
xi = vi, 1 ≤ i ≤ n, and similarly for L = l = <w1, . . . , wm>.

4.1 Worst case assumptions

As described in Section 2.4 (Deterministic Information Flow), we are interested
in flows of the form FL(H ; X) where X is the output observation for some
program variable x. Since Proposition 1 applies, it suffices to calculate bounds on
H(Xout|Lin). However, this raises an important question about what knowledge
of input distributions it is reasonable to assume. Until now we have (implicitly)
assumed a probability distribution on the space of initial stores which is inde-
pendent of the choice of program. There are two potential problems with this
assumption:

1. while it is reasonable to assume that some knowledge will be available as to
the distribution of the high inputs, it is likely that little or no knowledge will
be available about the low inputs;

2. the distribution for low inputs may actually be in the control of the attacker;
in this case it is conservative to assume that an attacker chooses Lin to
maximise leakage.

We deal with both of these problems by constructing our analysis to give results
which are safe for all possible distributions on the low inputs. The approach is,
essentially, to suppose that the low inputs take some fixed (but unknown) value
l. Then, rather than calculate bounds directly on H(Xout|Lin), we calculate
bounds on H(Xout|Lin = l). Our analysis calculates bounds which hold for all
choices of l and this is conservative with respect to FL(H ; X), as confirmed
by the following:

Proposition 6. (∀l . a ≤ H(Xout|Lin = l) ≤ b) ⇒ a ≤ FL(H ; X) ≤ b.

Proof. By Proposition 1, FL(H ; X) = H(Xout|Lin). By definition of condi-
tional entropy, H(Xout|Lin) is the sum over all l of of P (Lin = l)H(Xout|Lin =
l). The result follows simply because a weighted average is bounded by the
smallest and greatest terms. ut

The analysis requires initial assumptions to be made about bounds on the
values of the entropy of the input values, H(X in|Lin = l). Methods by which
such bounds might be calculated are beyond the scope of this paper but we can
make some more or less obvious remarks:

1. Assuming k-bit variables, the bounds 0 ≤ H(X in|Lin = l) ≤ k are always
valid, though the analysis is unlikely to produce accurate results starting
from such loose bounds, except in extreme cases.

2. For all low-security variables X ∈ L, H(X in|Lin = l) = 0.
3. In most cases, it will be reasonable to assume that the initial values of H

and L are independent, in which case H(X in|Lin = l) = H(X in) for all
high-security variables X ∈ H, so the problem of calculating useful initial
assumptions reduces to the problem of finding good estimates of the entropies
of the high security inputs.

4.2 The analysis rules

The remainder of this section presents the syntax-directed analysis rules and
gives their informal meaning and motivation. The formal statements and proofs
of correctness are deferred to Section 5. We group the rules into the following
five categories:

Expressions: rules dealing with boolean and arithmetic expressions.
Logical: ‘logical’ rules for the analysis of commands, allowing us to combine

the results derived by overlapping rule sets.
Data Processing: rules expressing the basic limit placed on information flow

imposed by the Data Processing theorem [6]; this category incorporates rules
for a qualitative dependency analysis.

Direct Flow: rules which track simple direct flows of information due to as-
signment between variables and sequential control flow.

Indirect Flow: rules which deal with indirect flows arising from the influence
of confidential data on the control flow through conditionals.

EConj
Γ ` E : [a1, b1] Γ ` E : [a2, b2]

Γ ` E : [max(a1, a2), min(b1, b2)]

BConj
Γ ` B : [a1, b1] Γ ` B : [a2, b2]

Γ ` B : [max(a1, a2), min(b1, b2)]

k-Bits
Γ ` E : [0, k]

1-Bit
Γ ` B : [0, 1]

Const
Γ ` n : [0, 0]

Var
Γ, x : [a, b] ` x : [a, b]

And
Γ ` Bi : [, bi] i = 1, 2

Γ ` (B1 ∧B2) : [0, b1 + b2]
Neg

Γ ` B : [a, b]

Γ ` ¬B : [a, b]

Plus
Γ ` Ei : [, bi]

Γ ` (E1 + E2) : [0, b1 + b2]
Eq(1)

Γ ` E1 : [, b1] Γ ` E2 : [, b2]

Γ ` (E1 == E2) : [0, b1 + b2]

Eq(2)
Γ ` E1 : [a,] Γ ` E2 : [, b]

Γ ` (E1 == E2) : [0,B(q)]
1
2k ≤ q ≤ 1

2
, Uk(q) ≤ (a− b)

Table 3. Leakage inference: Expressions

4.3 Expressions

The expression analysis rules have the form Γ ` E : [a, b] where Γ is a partial
function from Var to real-valued pairs (representing intervals) of the form [a, b]
with a ≤ b. The meaning of a rule Γ ` E : [a, b] is that the expression E has
leakage in the interval [a, b] assuming that the leakage of each variable x in E
lies in the interval Γ (x).

The first two rules are ‘logical’ rules which allow us to combine derivations
obtained by overlapping rule sets. For example rule [EConj] states that if we can
show that the leakage of an arithmetic expression E in context Γ is [a1, b1] and
also [a2, b2] then we can conclude that the leakage of E in the context Γ cannot
be lower than max(a1, a2) and cannot exceed min(b1, b2). Rule [BConj] says the
same for boolean expressions.

Rule [k−Bits] says that the leakage of an arithmetic expression is between 0
and k. Rule [1-Bit] says that the leakage of a boolean expression is between 0
and 1.

The leakage of a constant is 0 (rule [Const]) whereas the leakage of a variable
x is given by the context Γ, x : [a, b] (rule [Var]).

Rule [And] says that the leakage of the conjunction of two boolean expressions
cannot exceed the sum of the upper bounds of the leakages of the expressions
and rule [Neg] says that the leakage of the negation of a boolean expression is
the same as the leakage of the original expression.

Rule [Eq(1)] is the same as rule [And]. Rule [Plus] is the same as rule [And]
but applied to arithmetic expressions.

The most interesting rule is [Eq(2)]. This rule uses two functions, each of
which returns an entropy given a single probability. One function is:

Uk(q) def= q log
1
q

+ (1− q) log
2k − 1
1− q

(19)

This is easily shown to be the greatest entropy possible for any distribution on
2k elements assuming that one element (think of this as the value of E2) has
probability q. In fact, this is the basic principle underlying Fano’s inequality [6].
The other function is:

B(q) def= q log
1
q

+ (1− q) log
1

1− q
(20)

which is just the entropy of the binary distribution {q, 1− q}.
[Eq(2)] is based on the following observation: in an equality test E1 == E2,

if E1 has high entropy (lower bound a) and E2 has low entropy (upper bound
b), then the test will almost always evaluate to false. Informally, this is because
the value of E1 varies widely while the value of E2 remains almost constant,
hence their values can be equal only seldom. The probability that the test is
true (q in the side condition) is therefore low. More precisely, the constraint
Uk(q) ≤ (a−b) must hold. A more detailed discussion can be found in Section 5.
(We leave unstated the companion rule, justified by commutativity of ==, which
reverses the roles of E1 and E2.)

4.4 Logical

CConj
` Γ {C} x : [a1, b1] ` Γ {C} x : [a2, b2]

` Γ {C} x : [max(a1, a2), min(b1, b2)]

Join
` Γ {C} Γ1 ` Γ {C} Γ2

` Γ {C} Γ1, Γ2

dom(Γ1) ∩ dom(Γ2) = ∅

Table 4. Leakage inference: Logical

In general, a command leakage judgement has the form ` Γ {C} Γ ′. When
Γ (x) = [a, b] we write Γ−(x) for a and Γ+(x) for b. The meaning of Γ is as for
expressions: Γ (x) = [a, b] asserts that, prior to execution of C, the amount of
information leaked into x lies in the interval [a, b]. Γ ′ then reflects the effects of
any changes to variables caused by execution of C. Note that the domains of Γ
and Γ ′ need not be equal. In particular: many rules assert a leakage interval for
just one variable on the right hand side, taking the form ` Γ {C} x : [a, b]; many
rules assert either a lower bound only (intervals of the form [a, k]) or an upper

bound only (intervals of the form [0, b]). Rules [CConj] and [Join] in Table 4 then
allow us to combine multiple such derivations thus constructing Γ ′ with larger
domains and specifying smaller intervals.

Rule [CConj] is similar to [EConj], i.e. if x : [a1, b1] and x : [a2, b2] are
derived under the same initial context and running the same command C then
x : [max(a1, a2),min(b1, b2)].

Rule [Join] states that we can join disjoint final contexts.

4.5 Data Processing

Dep ` C : ∆
` Γ {C} x : [0, b]

b =
X

y∈∆(x)

Γ+(y)

Table 5. Leakage inference: Data Processing

The [Dep] rule relies on the following well known basic result of information
theory, which simply states the more or less obvious fact that the entropy of a
function of a random variable cannot exceed the entropy of the random variable
itself (you can’t get out more entropy from a deterministic system than you put
in):

Lemma 1 (Data Processing). Let X1, . . . , Xn, Z be random variables with a
common domain D and such that Z = f(X1, . . . , Xn), where f is any total func-
tion. (Equivalently, in function notation: Z = f◦(λd ∈ D.<X1(d), . . . , Xn(d)>).)
Then H(Z) ≤ H(X1, . . . , Xn) ≤ H(X1) + · · ·+H(Xn).

Proof. Immediate by the Data Processing Theorem [6].

The [Dep] rule is a “catch all” rule which allows us to apply this lemma wherever
it may be useful. The rule makes use of a secondary derivation for qualitative
dependency judgements. A dependency judgement has the form ` C : ∆, where
∆ : Var → ℘(Var). The informal meaning of a dependency judgement is as
follows: if ` C : ∆, then the value of any variable x immediately after execution
of C depends on at most the values of the variables in ∆(x) immediately before
execution of C. Dependency judgements are derived using the rules shown in
Table 6.

In the Table we use ∆t∆′ for the map (∆t∆′)(x) = ∆(x)∪∆′(x) and the
condition ∆ v ∆′ iff for all x ∆(x) ⊆ ∆′(x).

The general form of a derivation using these rules is D ` ∆ {C} ∆′ where D is
a set of program variables. Such a judgement is to be read as: in a control context
which depends at most on the variables in D, if dependencies ∆ hold before
execution of C, then dependencies ∆′ hold afterwards. A judgment ` C : ∆
corresponds to a derivation ∅ ` ∆0 {C} ∆ where ∆0(x) = {x}, for all x. In

DSkip
D ` ∆ {skip} ∆

DAssign ∆ ` E : D′

D ` ∆ {x = E} ∆[x 7→ D ∪D′]

DIf
∆ ` B : D′ D ∪D′ ` ∆ {Ci} ∆′

i i = 1, 2

D ` ∆ {if B C1 C2} ∆′ ∆′ = ∆′
1 t∆′

2

DWhile
∆′ ` B : D′ D ∪D′ ` ∆′ {C} ∆′′

D ` ∆ {while B C} ∆′ ∆ v ∆′, ∆′′ v ∆′

DSeq
D ` ∆ {C1} ∆′′ D ` ∆′′ {C2} ∆′

D ` ∆ {C1 ; C2} ∆′

Table 6. Dependency Analysis

some of the rules we write ∆ ` E : D to mean that expression E has a value
which depends at most on the variables in D, assuming the variable dependencies
captured by ∆.

The derivation system for dependency is taken from [10], where it is shown
to be a De Morgan dual of the Hoare-style independence logic of [1]. The logic
of these rules is similar to that used by [7, 30, 32] but more sophisticated (and
precise) in that it is flow-sensitive and thus does not require each variable to be
assigned a fixed security type. The formal meaning and correctness of the rules
are covered by Definition 4 and Theorem 2 below.

Notice that the only rule in our analysis which is specific to while statements
is the [DWhile] rule in Table 6. Bounds for loops can be found by applying rule
[Dep]: the bounds so obtained are conservative, i.e. it is pessimistically assumed
that all that can be leaked from the variables on which the loop depends will be
leaked. A more refined treatment of loops can be found in [14].

Dependency analysis: an example Consider the following Java program:

public static int foo(int high) {
int n = 16;
int low = 0;
while (n >= 0) {

int m = (int)Math.pow(2,n);
if (high >= m) {

low = low + m;
high = high - m;

}
n = n - 1;

}
return low;

}

Below is a data dependency analysis for the while loop using the rules in
Table 6. Notice that since in ∆′ we have low 7→ {low, n, high} then by using
rule [Dep] the analysis will conclude that all content of high is leaked into low
(because high ∈ ∆′(low)). In fact, even if no direct flow is present between high
and low, it can be easily seen that the above program will leak one bit of the
secret at each iteration of the loop.

E
def= 2n

C
def= C1; n = n− 1

C1
def= if (high ≥ E) C2 skip

C2
def= low = low + E; high = high− E

∆′ def= ∆0[low 7→ {low, n, high}][high 7→ {high, n}]

DWhile
∆′ ` (n ≥ 0) : {n}

DSeq

{n} ` ∆′ {C1} ∆′

{n} ` ∆′ {n = n− 1} ∆′

∅ ∪ {n} ` ∆′ {C} ∆′

∅ ` ∆0 {while (n ≥ 0) C} ∆′

where ∆0 v ∆′,∆′ v ∆′

4.6 Direct Flow

Assign
Γ ` E : [a, b]

` Γ {x = E} x : [a, b]
Seq

` Γ {C1} Γ ′ ` Γ ′ {C2} Γ ′′

` Γ {C1 ; C2} Γ ′′

Skip
` Γ {skip} Γ

NoAss
` Γ, x : [a, b] {C} x : [a, b]

x 6∈ Ass(C)

Table 7. Leakage inference: Direct Flow

Rule [Assign] states that if in a context Γ , E leaks between a and b then we
deduce that after running x = E under the context Γ x leaks between a and b
i.e. the context x : [a, b].

Rule [NoAss] states that if a variable is not assigned to inside the command
C (condition x 6∈ Ass(C)) then the leakage of x after C is unchanged from Γ .

Rules [Skip] and [Seq] are standard Hoare-logic style rules for skip and se-
quential composition. We note that [Skip] is easily derived using [NoAss] and
[Join] and so we do not give a direct proof of its correctness.

If(1)
Γ ` B : [, b] ` Γ {Ci} x : [, bi] i = 1, 2

` Γ {ifB C1 C2} x : [0, b + b1 + b2]

If(2)
Γ ` B : [0, 0] ` Γ {Ci} x : [ai, bi]

` Γ {ifB C1 C2} x : [min(a1, a2), max(b1, b2)]

If(3)
Γ ` E1 : [a,] Γ ` E2 : [, b] ` Γ {C2} x : [, b2]

` Γ {if(E1 == E2) C1 C2} x : [0,B(q) + b2 + qk]
1
2k ≤ q ≤ 1

2
, Uk(q) ≤ (a− b)

If(4)
` Γ {C2} x : [a,] Γ ` E1 : [a1,] Γ ` E2 : [, b2]

` Γ {if(E1 == E2) C1 C2} x : [s(a−Z(s)), k]

1
s
− s ≤ 1

2
,

1
2
≤ s ≤ 1− 1

2k ,
Uk(1− s) = (a1 − b2)

Table 8. Leakage inference: Indirect Flow

4.7 Indirect Flow

Rule [If(1)] states that the leakage of x after a conditional cannot exceed the
sum of the leakage of the guard and the leakage of x in both branches (a direct
consequence of the Data Processing Lemma).

It may seem at first sight that this rule is too conservative and perhaps
should be replaced by a rule that calculates an upper bound of b + max(b1, b2).
The following example demonstrates why b + max(b1, b2) is not an upper bound
in general.

if (h < 2) {
if (h == 0) x = 0; else x = 1;

} else {
if (h == 2) x = 2; else x = 3;

}

If h is uniformly distributed over {0, 1, 2, 3} this program leaks all 2 bits of
information in h to x.

Our analysis would use a conservative upper bound of 1 bit for the leakage
due to h < 2 and we can precisely calculate the leakage due to the two tests
h == 0 and h == 2 as 1/4 log 4 + 3/4 log(4/3) = 0.8113 for each. So an upper
bound on the leakage using b + max(b1, b2) produces 1.8113 which is not safe.
The upper bound calculated by [If(1)] is 0.8113 + 0.8113 + 1 = 2.623.

Rule [If(2)] states that if there is no indirect flow in a conditional then the
leakage of x after the conditional is the worst possible choice of leakage along
the two branches.

Rule [If(3)] states that if a conditional has as guard an equality test then the
upper bound of the leakage of x after the command is given by summing:

1. The upper bound for the equality test as given by [Eq(2)].
2. The upper bound of the leakage of x in the false-branch.

3. The maximum leakage possible (k) multiplied by the upper bound for the
probability of the test being true (q).

The idea in using qk for the true-branch is that if the test is true very seldom
then q will be very small and so qk will be a reasonable approximation to the
leakage of the true-branch.

Rule [If(4)] aims to provide lower bounds for conditionals when the guard is
an equality test. It says that if s is a lower bound of the probability of the test
being false and a is lower bound for the leakage of x in the false-branch, then
a lower bound for the leakage of x after the conditional is given by s(a− Z(s))
where Z(s) = (1

s − s)(k log(1
s − s)) will be formally justified later. The quantity

a − Z(s) is a lower bound on the entropy of x in C2 given knowledge that the
equality test is false. As shown later this lower bound is a consequence of the
information theoretic L1 inequality.

5 Correctness

Correctness of the analysis is stated with respect to a non-standard “angelic”
denotational semantics in which non-termination is replaced by the behaviour
of skip. In Section 5.3 we show that, for the purposes of calculating leakage, the
angelic semantics gives a tight approximation to the standard semantics, in the
sense that it underestimates the overall leakage by at most 1 bit.

The angelic semantics of a command C is denoted [[C]]A : Σ → Σ and is
defined, like the standard semantics, by induction on the syntax. The definition
is formally identical to the standard semantics with the exception of the case for
while, which is as follows:

[[while B C]]A = fA where:

fA(σ) =
{

f(σ) if f(σ) 6=⊥
σ if f(σ) =⊥

f = lfp F

F (f) = λσ.

{
f([[C]]Aσ) if [[B]]σ = 1
σ if [[B]]σ = 0

The angelic semantics ‘over approximates’ the standard semantics, in the follow-
ing sense:

Lemma 2. For all C, σ, if [[C]]σ 6=⊥ then [[C]]σ = [[C]]Aσ.

Proof. By a simple induction on C, observing that [[C]]A can trivially be viewed
as a map of type Σ → Σ⊥, so the lemma says that [[C]]A w [[C]], then appeal to
monotonicity of lfp. ut

Correctness then amounts to the following: if ` Γ {C} Γ ′ then, for all input
distributions which model Γ , the output distribution (as determined by the
angelic semantics) models Γ ′. To make this precise, let G : Σ → V (think of
G as the semantics of some expression) and let F : Σ → Σ (think of F as the

angelic semantics of some initial part of the program being analysed). In the
following we assume given a distribution on Σ, so that any such G and F may
be considered as random variables.

Definition 3. Say that G models [a, b], written G |= [a, b], if a ≤ H(G|Lin =
l) ≤ b for all l. Say that F models Γ , written F |= Γ , if λσ.F (σ)(x) |= Γ (x) for
all x in the domain of Γ . We write |= Γ as shorthand for λσ.σ |= Γ .

Informally λσ.F (σ)(x) maps a store σ into the value of the variable x in the
store F (σ). We will use F̂x (or simply F̂ when x is clear from the context)for
λσ.F (σ)(x). Similarly for G : Σ → V , Ĝ will stand for λσ.G(σ). To simplify

notations we will often write Ĉ for a command C instead of [̂[C]]A. For example
ẑ = 3x is the map which send a store σ into σ(x) if x 6= z and into 3 if x = z.

We can now state correctness of the analysis rules.

Theorem 1 (Correctness).

1. If F |= Γ and Γ ` E : [a, b] then [[E]] ◦ F |= [a, b].
2. If F |= Γ and ` Γ {C} Γ ′ then [[C]]A ◦ F |= Γ ′.

Corollary 2. If |= Γ and ` Γ {C} Γ ′ then, for the transformational system
induced by [[C]]A, Γ ′(x) = [a, b] ⇒ a ≤ FL(H ; X) ≤ b, where X = λσ.σ(x).

In the proofs below we suppress explicit mention of the assumptions Lin = l.
The justification for this is that H(X|Lin = l) is just H(X) for the residual
distribution given Lin = l and we are implicitly quantifying over all possible
choices of l. We write, for example, H(X) ≥ b, as shorthand for ∀l.H(X|Lin =
l) ≥ b, and so on.

The proof of the Correctness Theorem is by induction on the height of the
derivations. The proof cases for Part 1 are very simple, except for the rule [Eq(2)]
which is dealt with in Section 5.1.

Proof (Correctness, Part 1). Note throughout that 0 is necessarily a correct
lower bound since entropy is non-negative.

Case: EConj, BConj. Immediate by inductive hypothesis.

Case: k-Bits, 1-Bit. These are absolute upper bounds determined by the
sizes of the value spaces for expressions in the language.

Case: Const. The entropy of any constant function is 0.

Case: Var. Immediate from the definitions.
Case: And, Plus, Eq(1). Immediate by the Data Processing Lemma.

Case: Neg. Permutation of the elements in a domain has no effect on
entropy.

Case: Eq(2). See Section 5.1.
ut

Before proving part 2 of the Correctness Theorem, we need to establish the
correctness of the Dependency Analysis (Table 6). The property we require is
that ` C : ∆ implies λσ.[[C]]Aσ(x) can be decomposed as G ◦ F where F picks
out just the vector of variables in ∆(x). We derive this as a corollary of a more
general property of the Dependency Analysis, formalised using the following
definition (which may be viewed as a qualitative analogue of Definition 3).

Definition 4. Let D ∈ ℘(Var). Say that G : Σ → V is determined by D if
(∀x ∈ D.σ(x) = σ′(x)) ⇒ G(σ) = G(σ′). Say that F : Σ → Σ is determined by
∆ if λσ.F (σ)(x) is determined by ∆(x) for all x.

Theorem 2. Suppose D ` ∆ {C} ∆′. Then:

1. For all program variables x, if ∃σ, σ′.[[C]]Aσx 6= [[C]]Aσ′x, then ∆′(x) ⊇ D.
2. For all F : Σ → Σ, if F is determined by ∆ then [[C]]A ◦F is determined by

∆′.

Corollary 3. Suppose ` C : ∆ and ∆(x) = {x1, . . . , xn}. Then there exists
G : V n → V such that λσ.[[C]]Aσ(x) = G ◦ (λσ.<σ(x1), . . . , σ(xn)>).

Proof. Proof of the theorem is by induction on C. This is essentially the same
as the correctness proof in [1]. ut

Proof (Correctness, Part 2).

Case: Dep. We must showH(λσ.([[C]]A◦F)σ(x)) ≤ b, where b =
∑

y∈∆(x) Γ+(y).

First note that λσ.([[C]]A ◦ F)σ(x) = (λσ.[[C]]Aσ(x)) ◦ F . and, by Corollary 3,
λσ.[[C]]Aσ(x) = G ◦ (λσ.<σ(y1), . . . , σ(yn)>), where {y1, . . . , yn} = ∆(x). Thus:

λσ.([[C]]A ◦ F)σ(x)
= G ◦ (λσ.<σ(y1), . . . , σ(yn)>) ◦ F
= G ◦ (λσ.<Fσ(y1), . . . , Fσ(yn)>)
= G ◦ (λσ.<(λτ.Fτ(y1))(σ), . . . , (λτ.Fτ(yn))(σ)>

Thus, by the Data Processing Lemma, H(λσ.([[C]]A ◦F)σ(x)) ≤ H(λτ.Fτ(y1))+
· · · +H(λτ.Fτ(yn)) By assumption, F |= Γ , hence H(λτ.Fτ(yi)) ≤ Γ+(yi), for
1 ≤ i ≤ n, as required.

Case: CConj. The hypothesis is F |= Γ implies H |= x : [ai, bi] (i = 1, 2)
where H = [[C]]A ◦F . That means ai ≤ H(Ĥ) ≤ bi, i = 1, 2, hence min(a1, a2) ≤
H(Ĥ) ≤ max(b1, b2).

Case: Join. The hypothesis is F |= Γ implies H |= Γi, for dom(Γ1) ∩
dom(Γ2) = ∅ and i = 1, 2 where H = [[C]]A ◦ F . This means that for all x ∈
dom(Γ1) ∪ dom(Γ2) Γ−(x) ≤ H(Ĥ) ≤ Γ+(x) and so H |= Γ1, Γ2.

Case: Assign. By induction hypothesis F |= Γ implies H |= [a, b] where
H = [[E]] ◦ F . But by definition of semantics of assignment Ĥ = λσ.[[x = E]]A ◦
F (σ)(x) and so [[x = E]]A ◦ F |= x : [a, b].

Case: Seq. By induction hypothesis F |= Γ implies [[C1]]
A ◦ F |= Γ ′ and

F ′ |= Γ ′ implies [[C2]]
A ◦F ′ |= Γ”, hence F |= Γ implies [[C2]]

A ◦ [[C1]]
A ◦F |= Γ ′′

that is [[C1;C2]]
A ◦ F |= Γ ′′.

Case: NoAss. Assuming F |= Γ, x : [a, b] and C doesn’t change the
value of x we want [[C]]A ◦ F |= x : [a, b]. Notice that for all stores σ, [[C]]A ◦
F (σ)(x) = F (σ)(x) (because x 6∈ Ass(C)) and so we are done by using the
induction hypothesis F |= Γ, x : [a, b].

Case: If(1). Here the hypothesis is F |= Γ implies [[B]] ◦ F |= [−, b]
and [[Ci]] ◦ F |= [−, bi] for i = 1, 2. The definition of the if statement in the
denotational semantics is as a function IF of the semantics of the guard and the
branches, i.e. [[if B C1 C2]]

A = IF([[B]], [[C1]]
A
, [[C2]]

A) and by compositionality
of the semantics [[if B C1 C2]]

A ◦ F = IF([[B]] ◦ F, [[C1]]
A ◦ F, [[C2]]

A ◦ F). We
hence apply the Data Processing theorem to conclude:

H(λσ. [[if B C1 C2]]
A ◦ F (σ)(x)) =

H(λσ.IF([[B]] ◦ F, [[C1]]
A ◦ F, [[C2]]

A ◦ F)(σ)(x)) ≤
H(λσ.[[B]] ◦ F (σ)) +H(λσ[[C1]] ◦ F (σ)(x)) +H(λσ.[[C2]] ◦ F (σ)(x)) ≤

b + b1 + b2

Case: If(2). By applying the induction hypothesis to the premise Γ ` B :
[0, 0] i.e. F |= Γ implies H(λσ.[[B]] ◦ F (σ)) = 0 we deduce (by basic information
theory) that, for each choice of a low input, the map [[B]] is a constant function.
Hence for each choice of a low input IF([[B]], [[C1]]

A
, [[C2]]

A) is either [[C1]]
A or

[[C2]]
A and hence the result follows.

Case: If(3), If(4). Correctness for these rules is proved in section 5.2. ut

5.1 Analysis of equality tests

This section will justify rule [Eq(2)] i.e. analysis of tests of the form E1==E2.
By associating random variables X and Y to the two expressions, this becomes a
problem of refining bounds on H(X = Y) (by H(X = Y) we mean H(Z) where
Z = true if X = Y , Z = false otherwise).

We begin with a simple observation: when the distribution of values for E1 is
close to uniform (X has high entropy) and the distribution for E2 is concentrated
on just a few values (Y has low entropy), then most of the time, E1 and E2 will
not be equal. Thus, qualtitatively, we can see that high entropy for X and low
entropy for Y implies a low probability that E1==E2 evaluates to true (a low
value for P (X = Y)). If we can quantify this bound on P (X = Y) we can use it
to calculate a bound on H(X = Y).

It turns out that a well known result from information theory provides just
such a quantitative bound:

Lemma 3 (Fano’s inequality, [6]). Let X and Y be random variables taking
values in a set of size 2k. Then

H(X|Y) ≤ Uk(P (X = Y))

where Uk(q) def= q log 1
q + (1− q) log 2k−1

1−q .

We note that Fano’s inequality is normally stated in terms of the so called
error probability Pe, where Pe

def= P (X 6= Y). Since Pe = 1 − P (X = Y), our
presentation is a trivial rewriting of the usual one.

Our justification of [Eq(2)] proceeds in three steps:

1. [Lemma 4] We argue that the quantity a − b used in the side condition of
[Eq(2)] is a lower bound for H(X|Y), hence Uk(q) ≤ a − b implies Uk(q) ≤
H(X|Y).

2. [Lemma 5] We use Fano’s inequality to show that any q ≥ 1/2k such that
Uk(q) ≤ H(X|Y) is an upper bound for P (X = Y).

3. [Lemma 6] For q ≤ 0.5, if q is an upper bound for P (X = Y) then B(q) is
an upper bound for H(X = Y).

Lemma 4. Let a ≤ H(X) and let b ≥ H(Y). Then a− b ≤ H(X|Y).

Proof. By assumption a ≤ H(X) and b ≥ H(Y), hence a − b ≤ H(X) −H(Y).
Thus, since H(X) ≤ H(X, Y), a− b ≤ H(X, Y)−H(Y) = H(X|Y). ut

Lemma 5. Let X and Y be random variables taking values in a set of size 2k

and let q ≥ 1/2k. Then Uk(q) ≤ H(X|Y) implies q ≥ P (X = Y).

Proof. We show the contrapositive. Suppose that P (X = Y) > q. Note that
for q ≥ 1/2k, Uk(q) is a decreasing function of q (see, for example, figure 4)
hence P (X = Y) > q implies Uk(P (X = Y)) < Uk(q). By Fano’s inequality,
H(X|Y) ≤ Uk(P (X = Y)), hence H(X|Y) < Uk(q), as required. ut

Lemma 6. Let q ≤ 0.5. Then q ≥ P (X = Y) implies B(q) ≥ H(X = Y).

Proof. B(q) is an increasing function of q in the region 0 ≤ q ≤ 0.5 (see figure
4). ut

Together, these three results provide:

Proposition 7 (Correctness of [Eq(2)]). If a ≤ H(X) and H(Y) ≤ b then
H(X = Y) ≤ B(q) for any 1/2k ≤ q ≤ 0.5 such that Uk(q) ≤ a− b.

When using [Eq(2)], as the third lemma above shows, smaller values for q
give tighter upper bounds for H(X = Y). So to find the best upper bound
we need to solve equations of the form Uk(q) − (a − b) = 0, where a and b
are known values. For this, simple numerical techniques suffice [12]. Another
computationally useful fact is that B(q) + (1− q)k is an upper bound for Uk(q)
and that this bound is very tight unless k is small. We note that [Eq(2)] will
give useful results in the case that a is high and b is low, that is, when E1 is

known to contain a large amount of confidential information and E2 is known
to contain very little.

The way in which rule [Eq(2)] can be applied is illustrated by the example
shown in fig. 4. This plots Uk(q) and B(q) against q for k = 4 and shows that
for a lower bound of (a − b) = 3.75, q is bounded by 0 ≤ q ≤ 0.25 (the precise
upper bound is slightly lower than this).

�

���

�

���

�

���

�

���

�

� ��� ��� ��� ��� �

	�� �
 � ����

� � ���� � � ���

��	�

�	�

Fig. 4. the upper entropy for q in 4 bits

Example1: Consider the program P :

if (h == 0) x = 0; else x = 1;

with h high-security.
Suppose that k = 32 and the input distribution makes h uniform over its

232 possible values; by definition of entropy of the uniform distribution we can
therefore analyse the program starting with the assumption H(h) = log 232 =
32. We can then derive that the leakage from h to x will be in the interval
[0, 0.78× 10−9]. Let Γ be such that Γ (h) = [32, 32] and let ε

def= 0.78× 10−9. The
derivation is illustrated in Table 9. The use of [Eq(2)] is justified by checking
the side condition for q = 1

232 , a = 32, b = 0 (check Uk(q) = 32 = 32 − 0) and
B(q) = ε. Derivation ∆0 is the sub-derivation for the true-branch x = 0:

Assign

Const
Γ ` 0 : [0, 0]

` Γ {x = 0} x : [0, 0]

Derivation ∆1, the sub-derivation for the false-branch x = 1, is similar.

Example 2: Consider the following schema for Java programs using n if state-
ments, where each Bi(high) is a boolean expression which tests the ith bit of

If(1)

Eq(2)

Var
Γ ` h : [32, 32]

Const
Γ ` 0 : [0, 0]

Γ ` (h == 0) : [0, ε] ∆0 ∆1

` Γ {if(h == 0) (x = 0) (x = 1)} x : [0, ε + 0 + 0]

Table 9. Derivation for Example 1

high. Such programs thus copy n bits of high (a 32 bit variable) into low and
then test high and low for equality. We assume n < 32. Note that high itself is
not modified.

What will be the result of the analysis on the final test low == high? As-
suming that the high values are uniformly distributed the result depends on n.
By using the techniques described in the previous pages we can bound the leak-
age; a few values are shown in Table 10. We have assumed uniform distribution,
hence H(high) = 32 and at the end of the program H(low) = n. In order to
upper bound H(low == high) we use [Eq(2)], i.e. we first determine q such that
H(high)−H(low) = U32(q) and we then compute B(q).

public static void foo(int high)

{

int low = 0;

int b;

if (B1(high)) b = 2^0; else b = 0;

low = low + b;

...

if (Bn(high)) b = 2^(n-1); else b = 0;

low = low + b;

System.out.println(low == high);

}

Table 10.

n H(high)−H(low) q B(q) ≥ H(low == high)

2 30 0.074 0.38
7 25 0.24 0.80
12 20 0.41 0.98

5.2 Bounding leakage into a variable via execution of an if
statement

This section provides justifications for rules [If(3)] and [If(4)].

We can set reasonable bounds on the leakage into a given variable as the
result of the execution of an if statement (implicitly, this is a variable within the
statement), assuming that we have the following:

– bounds on the leakage due to evaluation of the control expression and
– bounds on the leakage into the variable as a result of the execution of the

individual branches.
– the control expression is an equality test
– the test is not true very often (i.e. the probability p(ê == ff) ≈ 1)

Notation-wise in the following pages we are referring to the following com-
mand:

C = if e C1 C2

Upper Bounds From standard information theory

H(Ĉ) ≤ H(Ĉ, ê) = H(Ĉ|ê) +H(ê)

Assuming we can calculate an upper bound for H(ê) as shown in the previous
section, we want to find a bound on the other term, H(Ĉ|ê). Since we will be
using the quantity p(ê == ff) extensively in what follows we give it a name, r.
That is, p(ê == ff) def= r.

We can expand H(Ĉ|ê) into a term summing the weighted contribution from
each branch:

H(Ĉ|ê) = rH(Ĉ|ê == ff) + (1− r)H(Ĉ|ê == tt)
= rH(Ĉ2|ê == ff) + (1− r)H(Ĉ1|ê == tt)

We assume the entropy of the true-branch is bounded by k (the maximum
entropy possible for x, assuming x is a k-bit variable, and the always-available
worst case assumption). Since r is close to 1 this branch will make a small
contribution when weighted. We can show the weighted other branch is bounded
by H(Ĉ2).

rH(Ĉ2|ê == ff) ≤ rH(Ĉ2|ê == ff) + (1− r)H(Ĉ2|ê == tt)
= H(Ĉ2|ê)
≤ H(Ĉ2)

Hence we have

H(Ĉ) ≤ H(ê) +H(Ĉ2) + (1− r)k

The inference rule for this is given as rule [If(3)] in Table 8.

Lower Bounds We discuss setting a lower bound on the leakage into the vari-
able. Given the role that lower bounds play in determining upper bounds in the
analysis of equality tests (see above), it is quite useful to be able to determine
tight lower bounds. To bound the leakage from below we use the L1 inequality
proposition (this is well known in information theory and can be found in [6]):

We state the proposition. First, we need to define the L1 distance between
two probability distributions on the same event space.

Definition 5 (L1 Distance). Define the L1 distance between two probability
distributions, p and q on the same event space, written ‖p− q‖1, as follows

‖p− q‖1
def=

∑
v

|p(v)− q(v)|

The following is proved in [6] (Theorem 16.3.2)

Proposition 8 (L1 Inequality).

‖p− q‖1 ≤
1
2
⇒ |H(p)−H(q)| ≤ ‖p− q‖1 log

(
|X|

‖p− q‖1

)
where |X| is the size of the event space for both p and q.

We can manipulate the RHS of the inequality in the consequent as follows:

‖p− q‖1 log
(

|X|
‖p− q‖1

)
= ‖p− q‖1(log |X| − log ‖p− q‖1)

= ‖p− q‖1(k − log ‖p− q‖1)

Let’s now define the two following probability distributions:

– p(v) = P (Ĉ2 = v) i.e. Σσ:Ĉ2σ=vp(σ)
– q(v) = P (Ĉ2 = v|ê == ff) i.e. Σσ:Ĉ2σ=vp(σ|ê == ff)

Hence p(v) is the sum of the probabilities of all stores where after the eval-
uation of C2, x = v and q(v) is the sum of the probabilities of all stores where
after the evaluation of C2, x = v conditioned to such stores having e evaluated
to false.

Recall that we assume p(ê == ff) ≈ 1.
We now show that ‖p− q‖1 ≤ 1

r − r. This is useful because when r is near to
1 then 1

r − r is less than 1
2 , satisfying the LHS of Proposition 8.

Proposition 9. Σv|p(v)− q(v)| ≤ 1
r − r.

We first prove

Lemma 7. 1
r − r = 1

r Σvp(v)−Σvp(v, e == ff).

Proof: 1
r − r = 1

r Σvp(v) − rΣvq(v) = 1
r Σvp(v) − rΣv

p(v,e==ff)
r = 1

r Σvp(v) −
Σvp(v, e == ff). ut

We then prove

Lemma 8. for all v the following is true:
|p(v)− q(v)| ≤ 1

r p(v)− q0(v)
where q0(v) = p(v, ê == ff).

This is proven by cases: (1) p(v) ≥ q(v): In this case |p(v)− q(v)| = p(v)− q(v)
and since 1

r ≥ 1 we have p(v)−q(v) ≤ 1
r p(v)−q(v). Notice now that q(v) ≥ q0(v)

because q(v) = P (Ĉ2 = v|ê == ff) ≥ P (Ĉ2 = v, ê == ff) = q0(v) (conditional
probability is greater than joint probability): hence we conclude.

(2) p(v) < q(v): In this case |p(v) − q(v)| = q(v) − p(v). By definition
q(v) = 1

r p(v, ê == ff) and by basic probability q0(v) = p(v, ê == ff) ≤ p(v)
so we have q(v) ≤ 1

r p(v) which gives us q(v)− p(v) ≤ 1
r p(v)− p(v). Using again

p(v) ≥ q0(v) we conclude q(v)− p(v) ≤ 1
r p(v)− p(v) ≤ 1

r p(v)− q0(v) ut
Combining the previous lemmas we now conclude the proof of the proposi-

tion:
for all v |p(v)− q(v)| ≤ 1

r p(v)− q0(v) implies
Σv|p(v)− q(v)| ≤ Σv(1

r p(v)− q0(v)) = 1
r Σvp(v)−Σvp(v, ê == ff) = 1

r − r.
ut

Thus we can apply the L1 inequality and we get:

|H(p)−H(q)| ≤ ‖p− q‖1(k − log ‖p− q‖1)

≤ (
1
r
− r)(k − log(

1
r
− r))

def= Z(r)

‖p−q‖1(k− log ‖p−q‖1) ≤ (1
r −r)(k− log(1

r −r)) is justified by Proposition 9
and the fact that λx.x(k − log(x)) is monotonic over the interval of interest,
(0, 1

2], for k ∈ N+. This can be demonstrated by differentiating the function and
determining the sign of the first derivative on the interval (0, 1

2] (always positive).
Hence, by noticing that H(p) = H(Ĉ2) and H(q) = H(Ĉ2|ê == ff) we get a

lower bound on H(Ĉ2|ê == ff) :

H(Ĉ2|ê == ff) ≥ H(Ĉ2)−Z(r)

We can use this to obtain a lower bound for the command C as follows:

H(Ĉ) ≥ H(Ĉ|ê)
= (1− r)H(Ĉ|ê == tt) + rH(Ĉ|ê == ff)
≥ rH(Ĉ|ê == ff)
= rH(Ĉ2|ê == ff)

≥ r(H(Ĉ2)−Z(r))
≥ s(a−Z(s))

Where a is a lower bound for H(Ĉ2) and s ≤ r. To justify If(4) in Table 8
we are left with finding a lower bound s ≤ r. In the rule this is given by solving
a1−b2 = Uk(1−s) where a1 (resp. b2) is a lower (resp. upper) bound for E1(resp.
E2). This is a consequence of Proposition 7. In the rule, we restrict our search
for the lower bound to the region 1

2 ≤ s ≤ 1− 1
2k . This is safe since s(a−Z(s))

is monotone in the region 1− 1
2k to 1.

Notice that the quantities involved in inference rule [If(4)] can be automati-
cally computed using techniques discussed in the analysis of boolean expressions.

Example The importance of the lower bounds provided by If(4) can be seen in
the following example. Let P be the program

if (h==n) {h=0} {y=h}
if (y==m) {l=0} {l=1}

Assuming that the secret variable h is very unlikely to be equal to a constant n
the true-branch of the first conditional will be chosen almost never and so almost
always y=h. Hence statistically P is very similar to the program P’

if (h==m) {l=0} {l=1}

for an analysis to give similar results for P and P’ we need the analysis of y in
P at the end of the first conditional to be similar to the analysis of the secret
input h which is h:[32,32] (we are assuming uniform distribution on the secret).

Using the same argument as in a previous example we have:
[Eq2] h : [32, 32] ` (h == n) : [0, ε]
where ε = B(1/232) ≈ 7.8× 10−9.

We also know that the analysis of the false-branch will be
[Assign] ` h : [32, 32]{y = h} y : [32, 32]
and so we get values q = 1/232, a = 32 which we use in the conditional rule to
deduce
` h : [32, 32]{C}y :[(1− 1/232)(32− 4.2−8), 32]
where C = if (h==n) {h=0} {y=h}.
Notice that this bound is extremely close to [32,32] and hence the bounds for
the low variable l in P and P’ will be very close (in both cases around 7.8×10−9

bits).
On the other hand, suppose we didn’t have good lower bounds for y after the

first conditional (suppose for example we had y : [0, 32]). Then testing (y==m)
against a constant m will produce
[Eq1] y : [0, 32] ` (y == m) : [0, min(1, 32)] = [0, 1].
This is because the side conditions for [Eq2] are not satisfied and so the only
applicable rule is [Eq1] which will result in much higher bounds for l in P (1
bit) than in P’ (around 7.8× 10−9 bits).

5.3 Observing Non-termination

The so-called angelic semantics used in the correctness proof above has the effect
of ignoring non-termination and hence any information flow which might flow as
a result of variation in termination behaviour. Intuitively, this is dangerous. In
reality, it is possible for a program’s termination behaviour to vary according to
its inputs, including the confidential ones. Moreover, given knowledge of the code,
an observer can, in practice, observe that a program is never going to terminate.
On the other hand, consider how an observer can tell that a program is stuck in
an infinite loop: either by some low-level observation of the program state or by
timing it. But our input-output model of observation - captured precisely by the
simple state-transformer semantics - clearly excludes these possibilities. So there
is a strong argument for ignoring non-termination in the proof: it falls outside
our abstraction of the observer. Note, however, that this does not mean it is safe
to ignore the possibility of such flows, only that modelling them would require
a more fine-grained model of the observer (and hence a different semantics).

In fact, we can do a little better than this. Let us suppose that non-termination
is observable. We can capture this by using the standard denotational semantics
and treating ⊥ as an observable value, like any other. How would this affect our
results? The following result shows that, if we measure flows with respect to the
standard denotational semantics, rather than the angelic semantics, our analysis
under-estimates flows by at most one bit.

Proposition 10. If |= Γ and ` Γ {C} Γ ′ then, for the transformational system
induced by [[C]], Γ ′(x) = [a, b] ⇒ FL(H ; X) ≤ (b + 1), where X = λσ.σ(x).

Proof. Let TC : Σ → {t, f} be defined by:

TCσ =
{

t if [[C]]σ 6=⊥
f if [[C]]σ =⊥

Fix some program variable x and consider the corresponding output observations

[̂[C]] and [̂[C]]A. By Shannon’s inequalities, we have

H([̂[C]]) ≤ H([̂[C]], TC) = H([̂[C]]|TC) +H(TC) (21)

Since (Lemma 2) [[C]]A w [[C]], we have:

[̂[C]]σ =

{
[̂[C]]Aσ if TCσ = t
⊥ otherwise

From this it follows that H([̂[C]]|TC = t) = H([̂[C]]A|TC = t), while H([̂[C]]|TC =

f) = 0. Hence, by the definition of conditional entropy,H([̂[C]]|TC) ≤ H([̂[C]]A|TC).

Thus H([̂[C]]|TC) ≤ H([̂[C]]A|TC) ≤ H([̂[C]]A). Furthermore, since TC is 2-valued,

H(TC) ≤ 1. Hence, by (21), H([̂[C]]) ≤ H([̂[C]]A)+1. The proposition then follows
by Corollary 2. ut

6 Analysis of arithmetic expressions

We can improve the analysis of leakage via arithmetic expressions by exploit-
ing algebraic knowledge of the operations together with information about the
operands acquired through supplementary analyses such as parity analysis, con-
stant propagation analysis etc. The (binary) operations we consider are addition,
subtraction, multiplication (+,−, ∗) on the twos-complement representations of
k bit integers with overflow.

We use � for the binary operator while the random variables X, Y and Z
range over the first and second inputs and the output of the operator respectively.
They are related by

P (Z = z) =
∑

(x,y)∈�−1(z)

P (X = x, Y = y)

We assume we know bounds on the entropy of the input space, H(X, Y),
and entropy of the projected input spaces, H(X) and H(Y) and we aim to find
bounds on the entropy of the output space, H(Z).

Since a binary arithmetic operation on twos-complement integers is a function
from X × Y to Z and since functions can only reduce entropy or leave it the
same we have

0 ≤ H(Z) ≤ H(X, Y)

In general we will not knowH(X, Y) but onlyH(X) andH(Y). SinceH(X, Y) ≤
H(X) +H(Y) we can use this sum as an upper bound. The upper bound obser-
vation is captured for an operation � in the rule [OpMax] in table 11.

[OpMax]
Γ ` E1 : [−, b1] Γ ` E2 : [−, b2]

Γ ` E1 � E2 : [0, b1 + b2]

[AddMin]
Γ ` E1 : [a1, b1] Γ ` E2 : [a2, b2]

Γ ` E1 + E2 : [max(a1, a2) − min(b1, b2), k]

[ConstAdd]
E1 is constant Γ ` E2 : [a, b]

Γ ` E1 + E2 : [a, b]

[ZeroMult]
E1 is zero Γ ` E2: [a, b]

Γ ` E1 ∗ E2 : [0, 0]

[OddMult]
E1 is an odd constant Γ ` E2 : [a, b]

Γ ` E1 ∗ E2 : [a, b]
Table 11. Some Refined Analysis rules

Further improvements to either the upper or the lower bound depend on
knowledge more specific to the operation and/or the expressions.

Before examining individual operations there is something we can say about
the relationship between H(Z) and H(X, Y) that holds for all operations which
we exploit directly in Proposition 13.

We can use the functional relationship between inputs and outputs to show
that the entropy of the output space is the entropy of the input space less
the entropy of the input space given knowledge of the output space. This latter
quantity is a measure of the entropy of the input space destroyed by the function
�. The idea is expressed formally in the following proposition:

Proposition 11. Let Z = �(X, Y) then H(Z) = H(X, Y)−H(X, Y |Z).

Proof. Using conditional entropy expressions we have this relationship between
H(X, Y) and H(Z): H(X, Y, Z) = H(Z) +H(X, Y |Z). However we also have

p(x, y, z) = p(x, y) if (x, y) ∈ �−1(z)
= 0 otherwise

Hence

H(X, Y, Z) = −
∑
x,y,z

p(x, y, z)log(p(x, y, z))

= −
∑
x,y

p(x, y)log(p(x, y))

= H(X, Y)

Then we have H(X, Y) = H(Z) + H(X, Y |Z) and so H(Z) = H(X, Y) −
H(X, Y |Z). ut

6.1 Addition and subtraction

Addition and subtraction are essentially the same operation in twos-complement
arithmetic so we restrict our attention to addition.

Bitwise addition (+) makes the set of numbers representable in twos-complement
using k bits a cyclic additive group with identity 0 and generator 1 (so a + 1
has its usual meaning except when a = 2k−1 − 1, in which case a + 1 = −2k−1).
The inverse −a is given by the twos-complement operation (so −a has its usual
meaning except for a = −2k−1, which is its own inverse).

Proposition 12. Let Tk = {−2k−1, . . . , 2k−1 − 1}, the set of integers repre-
sentable by k bits in twos-complement. Bitwise addition (+) makes Tk a cyclic
additive group with identity 0 and generator 1.

We don’t include a proof here but the proposition is straightforward to verify.
As an immediate consequence, addition of a constant is just a permutation

on Tk and thus leaves entropy unchanged. This is captured by rule [ConstAdd].
The symmetric rule which follows from commutativity of addition is left implicit.

The cyclic group structure further allows us to show that either operand
of + is a function of the other operand and the result. This in turn allows us
to establish a tighter lower bound for +: the entropy of the outcome, H(Z), is
bigger than or equal to the entropy of the input space, H(X, Y) less the smaller
of the two projected entropies for that space, H(X) and H(Y).

Proposition 13. Let Z = +(X, Y), then

H(Z) ≥ H(X, Y)−min(H(X),H(Y))

Proof. First we establish that H(Z) ≥ H(X, Y)−H(X).
We can make arguments similar to the one employed to justify Proposition 11

and demonstrate that H(X, Y, Z) = H(X, Z).
By Proposition 11 we have H(Z) = H(X, Y) − H(X, Y |Z) so it suffices to

show that H(X, Y |Z) ≤ H(X)

H(X, Y |Z)
= H(X, Y, Z)−H(Z)
= H(X, Z)−H(Z)
= H(X|Z)
≤ H(X)

By a similar argument we can also establish H(Z) ≥ H(X, Y)−H(Y). These
two inequalities establish the proposition. ut

Since H(X, Y) ≥ max(H(X),H(Y)) we can safely replace H(X, Y) with that
quantity. This provides the rule [AddMin] in table 11 for calculating an improved
lower bound for addition.

6.2 Multiplication

Multiplication is less straightforward to analyse than addition as the algebraic
structure of the operation is more complex. We are not currently able to provide
any general result for the operation. However, in the event that some subsidiary
prior analysis is able to identify a useful property of one of the operands of
the operation, we can get very good bounds on the entropy of the output, in
particular when one of the operands is odd or when one of the operands is zero.

Multiplication by zero always has zero as the result, i.e. Z has value space
singleton set {0} whose element has probability 1, so knowing that one operand
is zero guarantees that H(Z) = 0. This observation is captured in the rule
[ZeroMult] in table 11. The symmetric rule which follows from commutativity
of multiplication is left implicit.

To justify the rule [OddMult] recall that the order of a group is the number of
its elements, hence the order of Tk is 2k. Furthermore, the order of any element
a is defined to be the order of the cyclic subgroup <a> which it generates (with
elements {n.a : n ≥ 0}). We denote the order of an element a by o(a). We can
then state the following

Proposition 14. For a ∈ Tk where a is odd, o(a) = 2k, i.e. any odd element is
a generator for Tk.

This can be demonstrated using some elementary group theory since every
odd number does not divide the order of Tk.

Because odd elements are generators for the whole set, multiplication by an
odd constant (i.e. zero entropy in one component) can be viewed as an injective
function from Tk to Tk and so the entropy of the output space can never be less
than the entropy of the other operand.

Proposition 15. Let Z = ∗(X, Y) where ∀x ∈ X. x is an odd constant, then

H(Z) ≥ H(Y)

.

The implication of this result for propagation of lower bounds during mul-
tiplication is captured in the rule [OddMult] in table 11. The symmetric rule
which follows from commutativity of multiplication is left implicit.

Although we don’t have anything we can say in general about leakage via
multiplication we do have a theoretical result which may prove useful in future
work: we know the size of the inverse image of an element of Tk.

Theorem 3. For c in Tk,

|∗−1(c)| =
{

(k + 1− log o(c))2k−1 if c 6= 0
(k + 2)2k−1 if c = 0

7 Conclusions and future work

The work presented in this paper is the first time information theory has been
used to measure interference between variables in a simple imperative language
with loops. An obvious and very desirable extension of the work would be to a
language with probabilistic operators.

Incremental improvement of the analysis could be given by a subtler treat-
ment of loops and by improved bounds on a wider range of expressions. A similar
syntax based, security related analysis might be applied to queries on a secure
database. Denning [8] did work on information flow in database queries.

It would be also interesting to be able to provide a “backward” analysis where
given an interference property that we want a program to satisfy we are able
to deduce constraints on the interference of the input. A simple example of this
scenario is provided by Shannon’s perfect secrecy theorem where the property
of non-interference on the output implies the inequality H(L) ≥ H(Out).

Timing issues like “rate of interference” could also be analysed by our theory
allowing for a quantitative analysis of “timing attacks” [31].

On a more speculative level we hope that quantified interference could play
a role in fields where modularity is an issue (for example model checking or

information hiding). At the present modular reasoning seems to break down
whenever modules interfere by means other than their interfaces. However if
once quantified the interference is shown to be below the threshold that affects
the desired behaviour of the modules, it could be possible to still use modular
reasoning. An interesting development in this respect could be to investigate the
integration of quantified interference with non-interference based logic [23, 11].

In our work information theory and denotational semantics provide two dif-
ferent levels in the analysis. However recent work relating denotational semantics
and entropy has shown that there is an interaction between these two disciplines:
both theories model in different albeit related ways partiality/uncertainty. The
choice of flat domains as a denotational semantics for our programming language
was motivated by a desire to emphasise that our analysis assumes programs are
not reactive but have a functional, or data transforming, semantics. It may well
be an accident that these flat domains sit comfortably with entropic measures
but the work of K. Martin [15] begs the question whether there is a more fun-
damental relationship between the two being utilised in our work.

The authors would like to thank Peter O’Hearn and the anonymous referees
for their helpful comments, corrections and suggestions for improvement.

References

1. Torben Amtoft and Anindya Banerjee. Information flow analysis in logical form. In
Roberto Giacobazzi, editor, SAS 2004 (11th Static Analysis Symposium), Verona,
Italy, August 2004, volume 3148 of LNCS, pages 100–115. Springer-Verlag, 2004.

2. K.J. Biba. Integrity considerations for secure computer systems. Technical Report
ESD-TR-76-372, USAF Electronics Systems Division, Bedford, MA, April 1977.

3. D. Clark, S. Hunt, and P. Malacaria. Quantified interference for a while language.
In Electronic Notes in Theoretical Computer Science 112, pages 149 – 166. Elsevier,
2005.

4. David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative analysis of
the leakage of confidential data. In Alessandra Di Pierro and Herbert Wiklicky,
editors, Electronic Notes in Theoretical Computer Science, volume 59. Elsevier,
2002.

5. Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Belief in informa-
tion flow. In 18th IEEE Computer Security Foundations Workshop, 2005.

6. Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley
Interscience, 1991.

7. D. E. R. Denning. A lattice model of secure information flow. Communications of
the ACM, 19(5), May 1976.

8. D. E. R. Denning. Cryptography and Data Security. Addison-Wesley, 1982.
9. J. Goguen and J. Meseguer. Security policies and security models. In IEEE Sym-

posium on Security and Privacy, pages 11–20. IEEE Computer Society Press, 1982.
10. Sebastian Hunt and David Sands. On flow-sensitive security types. In Proc. Prin-

ciples of Programming Languages, 33rd Annual ACM SIGPLAN - SIGACT Sym-
posium (POPL’06), Charleston, South Carolina, USA, January 2006. ACM Press.
To appear.

11. S. Isthiaq and P.W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In 28th POPL, pages 14–26, London, January 2001.

12. Richard L.Burden and J. Douglas Faires. Numerical Analysis. PWS-KENT, 1989.
ISBN 0-534-93219-3.

13. Gavin Lowe. Quantifying information flow. In Proceedings of the Workshop on
Automated Verification of Critical Systems, 2001.

14. Pasquale Malacaria. Assessing security threats of looping constructs. In Principles
of Programming Languages, 2007.

15. Keye Martin. Entropy as a fixed point. Theoretical Compututer Science, 350(2–
3):292–324, 2006.

16. James L. Massey. Guessing and entropy. In Proc. IEEE International Symposium
on Information Theory, Trondheim, Norway, 1994.

17. Annabelle McIver and Carroll Morgan. A probabilistic approach to information
hiding. In Programming methodology, pages 441–460. Springer-Verlag New York,
Inc., New York, NY, USA, 2003.

18. John McLean. Security models and information flow. In Proceedings of the 1990
IEEE Symposium on Security and Privacy, Oakland, California, May 1990.

19. Jonathan Millen. Covert channel capacity. In Proc. 1987 IEEE Symposium on
Research in Security and Privacy. IEEE Computer Society Press, 1987.

20. C.C. Morgan, A.K. McIver, and K. Seidel. Probabilistic predicate transformers.
ACM Transactions on Programming and Systems, 18(3):325–353, May 1996.

21. Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Approximate non-
interference. In Iliano Cervesato, editor, CSFW’02 – 15th IEEE Computer Security
Foundation Workshop. IEEE Computer Society Press, June 2002.

22. Gordon Plotkin. Lambda definability and logical relations. Technical Report
Memorandum SAI-RM-4, Department of Artificial Intelligence, University of Ed-
inburgh, 1973.

23. J. Reynolds. Separation logic: a logic for shared mutable data structures. Invited
Paper, LICS’02, 2002.

24. J. C. Reynolds. Syntactic control of interference. In Conf. Record 5th ACM Symp.
on Principles of Programming Languages, pages 39–46, Tucson, Arizona, 1978.
ACM, New York.

25. Andrei Sabelfeld and David Sands. A per model of secure information flow in
sequential programs. In Proc. European Symposium on Programming, Amsterdam,
The Netherlands, March 1999. ACM Press.

26. Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded
programs. In Proc. 13th IEEE Computer Security Foundations Workshop, Cam-
bridge, England, July 2000. IEEE Computer Society Press.

27. Claude Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423 and 623–656, July and October 1948. Available
on-line at http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.

28. Richard Statman. Logical relations and the typed lambda calculus. Information
and Control, 65, 1985.

29. D. Sutherland. A model of information. In Proceedings of the 9th National Com-
puter Security Conference, September 1986.

30. D. Volpano and C. Irvine. Secure flow typing. Computers and Security, 16(2):137–
144, 1997.

31. Dennis Volpano. Safety versus secrecy. In Proc. 6th Int’l Symposium on Static
Analysis, LNCS, pages 303–311, Sep 1999.

32. Dennis Volpano and Geoffrey Smith. Eliminating covert flows with minimum typ-
ings. In Proceedings of the 10th IEEE Computer Security Foundations Workshop,
pages 156–168, Rockport, MA, 1997.

33. Dennis Volpano and Geoffrey Smith. Verifying secrets and relative secrecy. In Proc.
27th ACM Symposium on Principles of Programming Languages, pages 268–276,
Boston MA, Jan 2000.

34. Raymond W. Yeung. A new outlook on shannon’s information measures. IEEE
Transactions on Information Theory, 37(3), May 1991.

