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Abstract 

We discuss a problem in the safety assessment of automatic control and protection systems. There 

is an increasing dependence on software for performing safety-critical functions, like the safety 

shut-down of dangerous plants. Software brings increased risk of design defects and thus 

systematic failures; redundancy with diversity between redundant channels is a possible defence. 

While diversity techniques can improve the dependability of software-based systems, they do not 

alleviate the difficulties of assessing whether such a system is safe enough for operation. We study 

this problem for a simple safety protection system consisting of two diverse channels performing 

the same function. The problem is evaluating its probability of failure in demand. Assuming failure 

independence between dangerous failures of the channels is unrealistic. One can instead use 

evidence from the observation of the whole system's behaviour under realistic test conditions. 

Standard inference procedures can then estimate system reliability, but they take no advantage of a 

system’s fault-tolerant structure. We show how to extend these techniques to take account of fault 

tolerance by a conceptually straightforward application of Bayesian inference. Unfortunately, the 

method is computationally complex and requires the conceptually difficult step of specifying 'prior' 

distributions for the parameters of interest. This paper presents the correct inference procedure, 

exemplifies possible pitfalls in its application and clarifies some non-intuitive issues about 

reliability assessment for fault-tolerant software. 

1. Introduction 

Software is increasingly used in safety systems which previously depended on analogue or 

electromechanical digital technologies. By "safety systems" we mean here those engineered systems that 

are crucial in avoiding accidents, e.g. railway signalling systems, emergency shut-down mechanisms for 

dangerous industrial plants, full-authority flight control systems which cannot fail without immediate 

danger for the controlled aircraft, etc. This increasing dependence on software causes some concerns. 
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While the use of software may improve performance and/or safety by allowing designers to implement 

more sophisticated and adaptable rules for controlling dangerous operations, by improving the monitoring 

of failures of the controlled physical plant, and by reduced use of unreliable electromechanical 

components, software technology is seen as somewhat risky in itself.  Software is known to be subject to 

design defects that are often subtle and difficult to avoid and to detect. One can in principle build 

programs that are defect-free, or that will never exhibit unintended dangerous behaviour, but it is unclear 

in practice which programs can be trusted to do so, or to have a low enough probability of dangerous 

behaviours. Thus much effort has been spent over the years in creating rules, standards and guidelines for 

the development of safety-critical software, to specify at least development and verification practices that 

should be applied as necessary pre-conditions for claiming that a software-based system is fit for a safety-

critical role (Herrmann 1999). While such "good practice" standards are certainly useful, the task of 

deciding whether a piece of software- has low enough probability of causing dangerous failures remains 

extremely difficult. 

One of the practices for reducing the risk of dangerous behaviours by the software is that of redundancy 

with diversity. Redundancy is used in all areas of engineering. When a component fails, if there is another 

component waiting to take over its task, the failure can be masked. When, as is the case for software, our 

concern is with the effects of design defects, which would be automatically replicated in all "backup" 

components, redundancy must take the form of adding components that are not identical to those whose 

failure must be tolerated (Lyu 1995). In its simplest form, this "diversity" involves the 'independent' 

creation of two or more versions of a program, which are all executed on each input reading so that an 

adjudication mechanism can produce a 'best' single output. The versions have to produce equivalent 

behaviours, either in detail or just from the viewpoint of their common function in a wider system. For 

instance, two diverse safety systems for an industrial plant may take as inputs different physical variables - 

say, pressures and temperatures. Typically, the teams building the versions work 'independently' of one 

another, without direct communication. They may have free choice of the methods and tools to use, or 

they may have these imposed upon them in order to 'force' diversity. In the former case, the hope is that 

identical mistakes will be avoided by the natural, 'random' variation between people and their 

circumstances; in the latter, the same purpose is pursued by intentionally varying the circumstances and 

constraints under which the people work to solve the given problem. 
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Design diversity between the redundant channels of a fault-tolerant architecture appears to be an effective 

way of improving the dependability of software-based systems (Littlewood, Popov et al. 2001). However, 

it does not simplify the problem of assessing the reliability or safety of a specific system, e.g. for the 

purposes of licensing. 

Consider for instance a two-channel, 1-out-of-2, software-based diverse system (Fig. 1), as could be for 

instance a protection (safety shut-down) system for some kind of plant (we will use this example 

throughout our discussion). Here, the main measure of interest for safety assessment (which we study in 

this paper) is the probability that the system fails to perform its safety function, i.e., to shut down the plant 

when required. 

 

 

 

 

Fig. 1. Our example system 

Estimating this probability of failure per demand (pfd) would be simplest if we could assume 

independence between failures of the two channels. Then, we could just assess the pfds of the two 

channels separately and multiply them together. Evidence of even modest reliability of the channels would 

suffice to claim much higher reliability for the system. But assuming independent failures has been shown 

to be completely unrealistic by both experiments (Knight and Leveson 1986) and theoretical modelling 

(see (Littlewood, Popov et al. 2001) for a detailed discussion). Positive correlation between channel 

failures should normally be expected, essentially because, for the builders of diverse versions of a 

program, some demands will be more difficult - more error-prone - than others. So, even if diverse 

versions of the software are produced ‘independently’, their failures are more likely to happen on certain 

demands than on others, which leads to positive correlation. What is worse, research has found no simple 

way of setting an upper bound for the correlation between failures of the two channels. A specific diverse 

system may well achieve independence or even negative correlation between failures of the two channels, 

especially if its development was managed so as to "force" diversity, but the problem is how to estimate 

the level actually achieved in a specific system, before the system is deployed in its safety role. So, it is 

necessary actually to evaluate the pfd of the two-channel system as a whole. 
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The need to evaluate probabilities of common failures of redundant subsystems is not limited to software-

based systems. It arises whenever redundancy is used to improve system reliability and safety. Assuming 

independence of their failures is a tempting mathematical simplification, and would allow one to believe 

that arbitrarily reliable systems can be built out of arbitrarily unreliable subsystems, but this is generally 

over-optimistic. A theoretical explanation of positive correlation among failures from random physical 

causes is due to Hughes (Hughes 1987). Littlewood (Littlewood 1996) summarises and compares the 

models concerning design faults and physical faults. To avoid overoptimism, various constraints are often 

imposed on the reliability gain that one is allowed to claim from redundancy. For instance, lower limits 

may be imposed on the probability of failure per demand that one is allowed to claim for a redundant 

system, or on the conditional probability of a second failure given that a first failure occurred. However, 

the status of these methods is essentially that of "rules of thumb" which are consensually accepted (within 

an industrial sector) as sufficiently conservative, although they may not have a solid scientific basis. This 

creates special problems when the redundant system is software-based, where there is comparatively little 

experience on which to base this consensus. 

The simplest way to assess the reliability of a system - fault tolerant or otherwise - is to observe its failure 

behaviour in (real or simulated) operation. If we treat the fault-tolerant system as a black box  (Fig. 2a), 

i.e., we ignore the fact that it is indeed fault-tolerant, we can apply standard techniques of statistical 

inference to estimate its pfd on the basis of the amount of realistic testing performed and the number of 

failures observed. However, this ‘black-box’ approach to reliability estimation has severe limitations  

(Littlewood and Strigini 1993), (Butler and Finelli 1991): if we want to demonstrate very small upper 

bounds on the pfd, the amount of testing required becomes very expensive and then infeasible. It is then 

natural to ask whether we can use the additional knowledge that we are dealing with a fault-tolerant 

system to reduce this problem - to achieve better confidence for the same amount of testing. The 

assumption of independence would fulfil this role: if it held, we would only need to test each channel 

enough to demonstrate a much less stringent pfd bound than required for the two-channel system. Since 

this assumption cannot be made, we explore what other information we can obtain from the fault-tolerant 

nature of the system. 

We reasonably assume that we can observe whether either channel fails, so that testing produces evidence 

about the reliability of each channel by itself as well as of the whole system. Thus, we treat the system as a 

‘clear box’ (Fig. 2b). In addition, we have a priori knowledge about the effect of the channels' failures on 
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system failure: we know that we are dealing with a 1-out-of-2 system. In short, we have much more 

information than in the ‘black box’ scenario. We may hope that this additional information can be used to 

reduce the uncertainty about system reliability. This is the problem which we address in this paper. 

Both
recorded
for each
demand.
The log is
input to
inference
procedure

Channel B
 (version B)

Channel A
 (version A)

Failure or
success

Failure or
success

System
failure
or success

recorded for
each
demand. The
log is input
to inference
procedure

Channel B
 (version B)

Channel A
 (version A)

AND

Failure

Failure }
 

a)       b) 

Events in clear-box view Events in black-box view 
Channel A reaction Channel B reaction System reaction 

Shutdown request (correct 
action) 

shutdown request (correct action)  
Success (shutdown) no shutdown request (failure) 

No shutdown request (failure) shutdown request (correct action) 
no shutdown request (failure) Failure (no shutdown ) 

Fig. 2. Black-box vs. clear box inference. In response to a "demand" (the plant enters a hazardous 
state and should be shut down) there are four possible outcomes in the clear box view, which are 
collapsed into two in the black-box view. 

We first briefly introduce Bayesian inference: the more widely known approach of "classical" inference, 

which typically employs different ad hoc methods for different inference problems, does not seem suitable 

in this case in which we wish to perform inference in a consistent way on various aspects of a system. We 

then describe the procedure for applying Bayesian inference to our 2-channel system. Bayesian inference 

presents two kinds of difficulty: conceptually, it depends on the user specifying "prior" probability 

distributions, which many people find difficult to specify; computationally, it can be very demanding, 

requiring numerical computation of complex integrals. Various methods are commonly applied to reduce 

both difficulties. In the rest of the paper we proceed to discuss both some standard method and some 

apparently promising ad hoc methods. It turns out that none of these will be useful in all cases.   

2 Bayesian inference 

In our scenario, we count the demands to the system and the failures (of one or both channels) observed, 

and from this information try to predict the probability of failures on a future demand. This is a problem of 
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statistical inference. Standard techniques for statistical inference are divided into "classical" and 

"Bayesian". Their applications to estimating the reliability of a system as a black box (i.e., ignoring how it 

behaves internally - in our case, ignoring that one channel may fail without the whole system failing) is 

standard textbook material.  The classical methods produce "confidence" statements, like "we have 95% 

confidence that the pfd is less than 10-3". Classical inference is the more widely known approach, but it 

has drawbacks. The meaning of a "confidence level" is defined in terms of the experiment that produced 

it: a high confidence level means that the experiment had a high probability of refuting a wrong 

hypothesis, but is not a direct statement about the likelihood of the hypothesis itself being true. This limits 

the usefulness of classical confidence statements in various ways. It is difficult or meaningless to compare 

values of confidence bounds and confidence levels obtained for different systems or under different 

regimes of observation. For instance, referring to the system in Fig. 1, suppose that we had tested Channel 

A alone on 100 test demands, and then tested the whole system (Channel A plus Channel B) on 50 test 

demands (both sets being chosen randomly from the expected statistical distribution of demands under 

which the system will be used), and in neither test sequence we observed any failure. Deriving from this 

evidence a classical confidence level for the statement "the tested item's pfd  is less than 10-3" would give 

us a lower confidence for the whole system than for Channel A alone, despite our knowledge that the 

whole system can behave no worse than Channel A alone. It is also difficult to translate classical 

confidence statements into probabilities for events of actual interest, e.g. system failure over a pre-

specified duration of operation, and to devise a classical inference procedure for a system described by 

multiple parameters, as is our case. The Bayesian approach avoids these problems, as we briefly discuss 

below 

In our case, the Bayesian approach considers that the actual pfd of the system is unknown, and thus treats 

it as a random variable. In a sense, the system that one is trying to evaluate was extracted at random from 

a population of possible systems, with different reliabilities and different probabilities of being actually 

produced. Any one of these could have been delivered, as far as the observer can tell from the available 

information. Reliability estimation consists, roughly speaking, in deciding whether the actual system is, 

among this population, one of those with a high pfd or with low pfd. This population is described by a 

prior probability distribution: for each possible value of the pfd, a probability is stated that the system has 

that value of pfd (more precisely, a probability density function is specified). This prior distribution must 
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describe the knowledge available before testing. Then, the frequency with which we observe failures gives 

us reason to alter this probability distribution. For instance, passing a certain number of tests shows that 

the system is less likely to be one with very high pfd. Bayes’s theorem completely specifies the changes in 

probabilities as a function of the observations. A posterior distribution for the pfd is thus obtained, which 

takes account of the knowledge derived from observation.  

With Bayesian inference, one can thus answer the question ‘How likely is it that this software has pfd 

≤ 10-4 ?’ with an actual probability, which we can manipulate using the calculus of probabilities to derive 

probabilities of other events of interest. For instance, one can, given the probability distribution for the pfd 

of a system, calculate the probability of the system surviving without failures a given number of future 

demands, i.e., of an observable event of direct interest. By contrast, classical confidence statements about 

a descriptive parameter like the pfd cannot be used this way. Furthermore, Bayesian inference procedures 

for any situations can be easily derived from the general approach. 

The Bayesian approach thus has the advantage of a consistent and rigorous treatment of all inference 

problems, but in our case we have additional reasons for preferring it over the “classical” approach: we 

need to produce an inference procedure for a new, non-textbook scenario - a fault-tolerant system; and we 

need inference about multiple variables (the pfds of the individual channels and of the system) linked by 

mutual constraints. 

Bayesian methods, however, present two difficulties. First, although the formulae for the inference are 

straightforward to derive, the calculations which they require may be very complex, often with no closed-

form solution. Numerical solutions may be time-consuming and vulnerable to numerical errors. Fast 

computers help, but one may need to write ad hoc software. 

The second difficulty is more basic. Bayesian inference always requires one to start with prior probability 

distributions for the variables of interest: it (rightly) compels us to state the assumptions that we bring to 

the problem. But formulating the prior distributions may require somewhat subtle probabilistic reasoning. 

The prior distribution must be one that the assessor does consider a fair description of the uncertainty 

about the system before the system is tested. Even experts in a domain may find it very difficult to specify 

their prior beliefs in a mathematically rigorous format. In some cases, if undecided between alternative 

prior distributions, the only practical solution may be to adopt the more pessimistic one (i.e., the one that 

causes the more pessimistic conclusions in the results of inference). The difficulty may be alleviated by 
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checking how sensitive the predictions are to the variation between the different prior distributions that 

appear plausible. As observations accumulate, they may start to "speak for themselves", making the 

differences in the priors irrelevant. Statisticians have developed various ways for simplifying both 

problems (computational complexity and difficulty in specifying priors). In our discussion we will 

consider the most popular among such general "tricks", as well as some ad hoc ones. 

3 Problem statement and Bayesian inference procedure 

We consider the system of Fig. 1, subjected to a sequence of n independent demands.  

If we treat the system as a black box, i.e. we can only observe system failure or success (Fig. 2a), the 

inference proceeds as follows. Denoting the probability of failure on demand for the system as p, the 

posterior distribution of p after seeing r failures in n demands is: 

)()|,(),|( xfxrnLnrxf pp ∝ ,             (1) 

where )|,( xrnL  is the likelihood of observing r failures in n demands if the pfd were exactly x. This is 

given in this case by the binomial distribution, rnr xx
r
n

xrnL −−







= )1()|,( . )(•pf  is the prior 

distribution of p, which represents the assessor’s beliefs about p, before seeing the result of the test on n 

demands. 

(1) is the general form of Bayes’s formula, applicable to any form of the likelihood and any prior 

distribution. 

In the clear box scenario, instead, we can discriminate among four different possible outcomes for each 

demand: We use these notations: 

Event Version A Version B Number of occurrence in n tests Probability 
α fails  fails  r1 ABP  
β fails succeeds r2 ABB PP −  
γ succeeds  fails r3 ABA PP −  
δ succeeds succeeds r4 ABBA PPP +−−1  

The probability model now has the four parameters shown in the last column of the table, but since these 

four probabilities sum to unity, there are only three degrees of freedom: the triplet PA, PB and PAB 
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completely specifies the model. An assessor will need to specify a joint prior distribution for these three 

parameters, ),,(,, zyxf
BAAB PPP . 

The likelihood of observing r1 common failures of both channels, r2 failures of channel A only and r3 

failures of channel B only in n tests is now given by a multinomial function: 

( ) ( ) 321321 )1(
)!(!!!

!
),,|,,,(

321321

321

rrrn
BAAB

r
ABA

r
ABB

r
AB

BAAB

PPPPPPPP
rrrnrrr

n
PPPnrrrL

−−−−−+−−
−−−

=
     (2) 

The posterior distribution, similarly to (1), is: 

),,(),,|,,,(),,,|,,( ,,321321,, zyxfPPPnrrrLnrrrzyxf
BAABBAAB PPPBAABPPP ∝         (3) 

Given a joint distribution for PA, PB, PAB, we can always deduce the distribution 
ABPf  of the system pfd, 

by integrating out PA and PB. So, for a given prior joint distribution, there are two options for inferring 

system reliability from the test results. in the clear box method, we obtain the posterior joint distribution 

via (3) and then deduce the posterior 
ABPf from this. We can also apply the black-box method: we first 

derive the prior probability density function, 
ABPf , and then update it to obtain a posterior density 

function via (1). Comparing the two results will be for us a way of comparing the two methods. 

How to solve these formulas is clear even though it may be computationally expensive. There remains the 

problem of specifying prior distributions, which we address in the next section. 

4 Prior distributions 

Here we study ways of specifying prior distributions. Our main concern is to help assessors to specify 

priors, by imposing a useful structure for their interrelated beliefs about the pdfs of the channels and of the 

system. A useful side effect is often a simplification of the calculations. We omit the mathematical details 

and concentrate on the practical conclusions; a more mathematical and more detailed discussion is 

available in (Littlewood, Popov et al. 2000). 
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4.1 Dirichlet distribution 

It is common in Bayesian statistics to use a conjugate family of distributions to represent prior beliefs. 

This term denotes a parametric family of distributions that has the property for a particular problem (i.e. 

likelihood function) that if an assessor uses a member of the family to represent his/her prior beliefs, then 

the posterior will automatically also be a member of the family. If a conjugate family exists for a certain 

likelihood function (this is not always the case), it is unique. For our clear box scenario, the conjugate 

family is that of Dirichlet distributions (Johnson and Kotz 1972). 

It turns out that, with a Dirichlet prior distribution, the posterior distributions for the probability of system 

failure derived via the  ‘clear box’ and via the ‘black-box’ methods are identical, no matter what we 

observed. In other words, whatever the detailed failure behaviour of the two channels, there is no benefit 

from taking this extra information into account in assessing the reliability of the system. So if an assessor’s 

prior belief is indeed a Dirichlet distribution, there is no advantage in using ‘clear box’ inference. On the 

other hand, if the assessor’s belief are not represented by a Dirichlet distribution, choosing this 

distribution as a convenient simplification would make it impossible to exploit any potential gain from the 

clear box inference. 

4.2 Prior distributions with known failure probabilities of the versions  

Another form of simplification of the prior distribution may be possible if there is a very great deal of data 

from past operational use for each version (e.g. if they are commercial-off-the-shelf - COTS - items), so 

that each channel’s probability of failure on demand can be estimated with great accuracy. We can then 

approximate this situation by assuming that the pfds of the versions are known with certainty and are 

AtrueP  and BtrueP . In other words, the uncertainty of the assessor concerns only the probability of system 

failure.  

We illustrate this set-up with a few numerical examples, shown in Table 1. In each case we assume that 

0.001=AtrueP , 0005.0=BtrueP . Clearly, a 1-out-of-2 system will be at least as reliable as the more 

reliable of the two versions, so the prior distribution of the system pfd is zero outside the interval [0, 

0.0005]. We consider two examples of this distribution: a uniform distribution and a Beta(x, 10, 10) both 

constrained to lie within this interval.  
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We make no claims for ‘plausibility’ for these choices of prior distributions. However, it should be noted 

that each is quite pessimistic: both prior distributions, for example, have mean 0.00025, suggesting a prior 

belief that about half channel B failures will also result in channel A failure.  

Table 1 
  Uniform prior distribution PAB|PA,PB   

   Percentiles   
  10% 50% 75% 90% 95% 99% 

 Prior 0.00005 0.00025 0.000375 0.00045 0.000475 0.000495 
 Black Box 0.000011 0.00007 0.000137 0.000225 0.000286 0.00041 

r1=0 Clear box (version failures) 0.000008 0.00005 0.000095 0.000148 0.00018 0.000245 
 Clear box (no  
version failures) 

0.000268 0.00042 0.000462 0.00048 0.000485 0.00049 

r1 = 1 Black Box 0.000045 0.000155 0.000246 0.000342 0.000396 0.000465 
 Clear box (version failures) 0.00004 0.00012 0.000179 0.000238 0.000271 0.00033 

r1 = 3 Black Box 0.00015 0.0003 0.000384 0.000443 0.000465 0.000485 
 Clear box (version failures) 0.000165 0.000283 0.000343 0.00039 0.000413 0.000448 

r1 = 5 Black Box 0.000235 0.000375 0.000435 0.00047 0.00048 0.0004878 
 Clear box (version failures) 0.000345 0.00044 0.000469 0.000482 0.000485 0.0004892 

        
  Non-uniform prior distribution PAB|PA,PB   

   Percentiles   
  10% 50% 75% 90% 95% 99% 

 Prior 0.000175 0.000245 0.000283 0.000317 0.000335 0.000368 
r1=0 Black Box 0.000146 0.000215 0.000253 0.000286 0.000306 0.000343 

 Clear box (version failures) 0.00013 0.000188 0.00022 0.00025 0.000269 0.0003 
 Clear box (no version 

failures) 
0.000205 0.000278 0.000313 0.000345 0.00036 0.00039 

r1 = 1 Black Box 0.000161 0.000228 0.000265 0.0003 0.000318 0.000353 
 Clear box (version failures) 0.00015 0.00021 0.000244 0.000275 0.000291 0.000325 

r1 = 3 Black Box 0.000185 0.000251 0.000287 0.00032 0.000336 0.00037 
 Clear box (version failures) 0.000195 0.000255 0.00029 0.00032 0.000335 0.000365 

r1 = 5 Black Box 0.000205 0.000271 0.000305 0.000335 0.000353 0.00038 
 Clear box (version failures) 0.00024 0.000304 0.000335 0.00036 0.000375 0.000402 

Table 1. Two groups of results are summarised: with uniform prior and with a non-uniform prior 
distributions, Pab|Pa,Pb=Beta(x,10,10) on the interval [0, 0.0005]. The percentiles illustrate the 
cumulative distribution P(θ≤X) = Y, where X are the values shown in the table and Y are the chosen 
percentiles, 10%, 50%, 75%, 90%, 95% and 99%. Rows labelled 'Black box' represent the 
percentiles, calculated via "black-box" inference; those labelled 'Clear box' show the percentiles 
calculated for a posterior derived with 3 and then integrating out PA and PB. The labels '(no version 
failures)' and '(version failures)' refer to two different observations, in which no individual failures of 
channels and individual channel failures were observed, respectively. 

We assume that n=10,000 demands are executed in an operational test environment and we consider 

which conclusions an assessor should draw, depending on the observed behaviour of the two versions. 

The rows in Table 1, for each of the two prior distributions studied, differ in the numbers of failures (of 

each channel and of both together) assumed to have been observed over the 10,000 demands. The rows 
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marked “version failures” describe cases in which the observed numbers of channel A and of channel B 

failures take their (marginal) expected values, i.e. 10 and 5 respectively. The other case is the extreme one 

where there are no failures of either channel.  

In each case our main interest is in how our assessment of the system reliability based upon the full 

information, r1, r2, r3, (“clear box”) differs from the assessment based upon the black-box evidence, r1, 

alone.  

In Table 1, the first row with r1=0 shows the increased confidence that comes when extensive testing 

reveals no system failures. The black-box posterior belief about the system pfd is more optimistic (all 

percentile values are lower) than the prior belief. More importantly, the posterior belief in the 'r1=0, Clear 

box (version failures)' rows, based on observing version failures but no system failures, is more optimistic 

than the black-box posterior. Here the extra information of version failure behaviour allows greater 

confidence to be placed in the system reliability, compared with what could be claimed from the system 

behaviour alone. 

The result is in accord with intuition. Seeing no system failures in 10,000 demands, when there have been 

10 channel A failures and 5 channel B failures suggests that there is some negative correlation between 

failures of the channels: even if the channels were failing independently we would expect to see some 

common failures (the expected number of common failures, conditional on 10 As and 5 Bs, is 2.5). 

The rows where (r1≠0) show what happens when there are system failures (common failures of the 

versions), with the same numbers of version failures (10 As, 5 Bs). As would be expected, the more system 

failures there are on test, the more pessimistic are the posterior beliefs about system reliability. More 

interesting, however, is the relationship between the black-box and clear box results. Consider the rows 

with (r1=5). These rows of Table 1 represent the most extreme case, in which all demands that are channel 

B failures are also channel A failures. This would suggest strongly that there is positive correlation 

between the failures of the two versions. Here the black-box method gives results that are too optimistic 

compared with those based on the complete (clear box) failure data. 

These results show that ‘clear box’ inference can produce advantages (albeit small ones in this example). 

However, this table also shows a consequence of our simplifying assumption (perfectly known channel 

pfds) that is clearly wrong. When r1=0, that is there have been no failures of either version (and hence no 
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system failures), the posterior distribution of the pfd is worse than it was a priori. How can the 

observation of such ‘good news’ make us lose confidence in the system? 

The reason for this paradox lies in the constraints on the parameters of the model that are imposed by 

assuming the versions reliabilities are known with certainty. Consider Table2: 

       Table 2 
 A fails A succeeds total 
B fails θ PB-θ PB 
B succeeds PA-θ 1-PA-PB+θ 1-PB 

total PA 1-PA 1 

There is only one unknown parameter, θ, the system pfd, which appears in all the cells above representing 

the four possible outcomes of a test. If we observe no failures in the test, this makes us believe that the 

entry in the (A succeeds, B succeeds) cell, 1-PA-PB+θ, is large. Since PA, PB are known, this makes us 

believe that θ is large.  

Of course, it could be argued that observing no version failures in 10,000 demands, with the known 

version pfds 0.001, 0.0005, is extremely improbable - i.e. observing this result in practice is essentially 

impossible. This does not remove the difficulty, however: it can be shown that whatever the value of n, the 

‘no failures’ posterior will be more pessimistic than the prior. 

The practical conclusion seems to be that this particular simplified prior distribution is only useful 

(provided, of course, it approximates the assessor’s understanding of the prior evidence about the system) 

if the number of demands in test is great enough to ensure that at least some version failures are observed. 

4.3 Prior distributions allowing conservative claims for system 

reliability 

Here we show that even if PA and PB are not known with certainty, assuming that they are can be used to 

obtain conservative estimates in many cases, and is therefore useful despite the problems described in 

section 4.2. 

Clearly for every joint prior distribution, ),,(,, •••
BAAB PPPf , (with its corresponding marginal distribution 

of the probability of system failure, )(•
ABPf ), if we have upper bounds on the probabilities of channel 

failures, PAmax and PBmax, we could define a new joint prior distribution, ),,(,,
* •••BAAB PPPf , such that 
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maxAA PP = , with certainty, maxBB PP =  with certainty, and the probability of system failure is as in the 

true prior distribution, )(•
ABPf . 

Now we compare the posterior marginal distributions, ),,,|( 321 rrrnf
ABP •  and ),,,|( 321

* rrrnf ABP • , 

derived from the same observation (n : r1, r2, r3), respectively with the true and the approximated prior 

distributions, ),,(,, •••
BAAB PPPf  and ),,(,,

* •••BAAB PPPf . We illustrate the relationship between the two 

posterior distributions in Table 3.  

The prior distribution ),,(,, •••
BAAB PPPf  used in Table 3 is defined as follows: 

• )()(),(, ••=••
BABA PPPP fff , i.e. the prior distributions of PA and PB are independent.1 

• The marginal distributions )(•
APf  and )(•

BPf  are Beta distributions, )(•
APf = 

Beta(x,20,10) and )(•
BPf = Beta(x, 20, 20) within the interval [0, 0.01]:  PAmax = PBmax = 0.01.  

• The assessor is "indifferent" among the possible values of PAB, i.e.: 

  
),min(

1),|(
BA

BAP PP
PPf

AB
=•  within [0, min(PA, PB)] and 0 elsewhere. 

The system was subjected to n = 4000 tests, and the assumed number of observed failures of the system, 

of channel A and of channel B, represented by r1, r2 and r3, respectively, are shown in the table. The 

selected examples cover a range of interesting testing results: no failure, no system failure but some 

single-channel failures, system failure only, a combination of system and single-channel failures.  

The percentiles reveal that the simplified prior distribution always gives more pessimistic predictions than 

the true prior: the probability that the system reliability will be better than any reliability target will be 

greater with the true prior, )|( dataf
ABP • , than with the simplified one, )|(* dataf ABP • .  

                                                           
1 The assumption we make can be spelled out as: “Even if I were told the value of PA, this knowledge would not 

change my uncertainty about PB (and vice versa)”. Notice that this assumption is not equivalent to assuming 

independence between the failures of the two channels, which is well known to be unreasonable. In fact, our 

assumption says nothing about the probability of common failure, PAB. 
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This observation, if universally true, suggests a relatively easy way of avoiding the difficulty in defining 

the full ),,(,, •••
BAAB PPPf . If assessors can specify their beliefs about upper bounds on the channels pfds, 

PAmax and PBmax, and system pfd, )(•
ABPf , these can be combined into the simplified prior, 

),,(,,
* •••BAAB PPPf , to obtain conservative prediction. 

Table 3 illustrates a small part of the numerical experiments we carried out with different prior 

distributions and assumed testing results. It presents the typical cases in which the observations are 

consistent with the prior distributions: the number of channel failures are within the variation due to the 

random failures. In all cases the simplified prior distribution produced more conservative predictions than 

the true prior distribution. It must be noted, however, that for some extreme case of observations which 

are not consistent with the prior distributions (their occurrence is virtually impossible with the assumed 

prior distributions) the conservatism of the simplified prior distribution is not guaranteed. General 

conditions under which the simplified prior distribution is guaranteed to generate conservatism are yet to 

be identified.  

Table 3 
 Percentiles 10% 50% 75% 90% 95% 

 Prior distribution 0.00025 0.00225 0.0035 0.00435 0.00485 
r1 = 0, r2 = 0 ),,,|( 321 rrrnf

ABP •  0.00278 0.003525 0.00406 0.00445 0.00473 

r3 = 0 ),,,|( 321
* rrrnf ABP •  0.0055 0.00635 0.0067 0.00705 0.00725 

 Black-box posterior 0 0 0.000125 0.00035 0.0005 
r1 = 1, r2 = 0  ),,,|( 321 rrrnf

ABP •  0.0029 0.00372 0.0042 0.00455 0.0048 

r3 = 0 ),,,|( 321
* rrrnf ABP •  0.0055 0.00638 0.0067 0.00685 0.00735 

 Black-box posterior 0 0.00033 0.00058 0.00092 0.00115 
r1 = 1, r2 = 24 ),,,|( 321 rrrnf

ABP •  0 0.0001 0.00035 0.00062 0.00076 

r3 = 20 ),,,|( 321
* rrrnf ABP •  0.00035 0.00123 0.00178 0.00235 0.00275 

r1 = 0, r2 = 20 ),,,|( 321 rrrnf
ABP •  0 0 0.00022 0.00049 0.00067 

r3 = 15 ),,,|( 321
* rrrnf ABP •  0.00015 0.00135 0.00224 0.0029 0.00331 

Table 3: The percentiles of the marginal prior distribution )(•
ABPf  and the following three 

posterior distributions: ),,,|( 321 rrrnf
ABP • , ),,,|( 321

* rrrnf ABP •  and black-box posterior. 

The usefulness of the conservative prior distribution ),,(,,
* •••BAAB PPPf  seems limited. Indeed, for the 

important special case of testing which does not reveal any failure (r1 = 0, r2 = 0, r3 = 0), the conservative 

result is too conservative and hence not very useful: the posterior will be more pessimistic than the prior 
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distribution, due to the phenomenon explained in section 4.2. This fact reiterates the main point of this 

paper: elicitation of prior distributions is difficult and there does not seem to exist easy ways out of this 

difficulty. 

The last two cases presented in Table 3 with testing results (r1 = 1, r2 = 24, r3 = 20) and (r1 = 0, r2 = 20, r3 

= 15), respectively, illustrate the interplay between the black-box and the clear box inferences. In the case 

with a single system failure the black-box posterior is more pessimistic than the full clear box posterior, 

while in the case with no system failure the black-box posterior gives more optimistic prediction about 

system reliability. In the case (r1 = 1, r2 = 24, r3 = 20) we have evidence of negative correlation between 

failures of channels. The expected number of system failures under the assumption of independence is 1.4 

in 4000 tests, while we only observed 1. In the case (r1 = 0, r2 = 20, r3 = 15) even though no system failure 

is observed the evidence of negative correlation is weaker (lower number of individual failures is 

observed). As a result, the clear box prediction is worse than the black-box one. 

In summary, using the black-box inference for predicting system reliability may lead either to 

overestimating or to underestimating system reliability. 

5. Conclusions 

We have studied how to use the knowledge that a system is internally a fault-tolerant system, of which we 

can observe the individual channels, to improve the confidence in the reliability assessments that we can 

derive from observing its behaviour under realistic testing. I.e., we have studied  what we call 'clear box' 

inference, in which failures of the channels, masked by fault tolerance, are taken into account, as opposed 

to 'black box' inference in which they are ignored. 

Bayesian inference is the correct method for 'clear box' inference about a fault-tolerant systems: we do not 

see a better way for consistently performing inference about multiple parameters (the pfds of the channels 

and of the whole systems) linked by reciprocal constraints. 

We have described the proper application of this approach to infer the pfd of a 1-out-of-2, on-demand 

system. 

Recognising that this method, albeit correct, is practically very cumbersome to apply, we have then looked 

for ways of simplifying its practical use. The most standard method - using prior distributions from a 

conjugate family of distributions, which is often a somewhat arbitrary but useful approximation - turns out 
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to be useless for this particular problem as it is equivalent to ignoring the fault-tolerant structure of the 

system. We have then explored more ad hoc methods for simplifying the correct inference method. In one 

simplification, the reliabilities of the channels are taken as known with certainty. It turns out that this 

approximation, plausible in some situations, produces the artefact of counterintuitive (and useless) 

conclusions in the important case of no observed failures.  Last, we showed that even if this assumption is 

not justified it may be used in some cases (see 4.3) as it seems to allow a conservative approximation that 

dispenses with the need to specify complete prior distributions: this may be useful in practice, but not 

universally so. 

In conclusion, it is for the time being unavoidable to adapt the application of the inference procedure to 

the specific case at hand, selecting those specific approximations that work best for the conditions 

observed. The practical difficulties could be alleviated by better, specialised software tools, relieving the 

burden of the multiple sensitivity analyses and 'what if' analyses that may be necessary. The main 

requirement is that such tools must guarantee the necessary numerical precision, to avoid the risk of 

decisions being driven from mere artefacts of numerical error. 

The immediate conclusion is that it is important to be aware of how 'clear box' inference should be 

performed, but in many cases its difficulties will make it unattractive. We expect that in some cases its 

outcome will appear immediately useful (e.g. as a way of trusting that a certain claimed pfd is 

conservative), and hope that these will lead to improving mathematical techniques and tools and thus 

reduce the mechanical difficulties of applying the approach. The more basic difficulty - the dependence on 

prior distributions - is actually at the same time the basic advantage of Bayesian inference: it requires one 

to make explicit the assumptions underlying the inference activity and it clearly measures how much 

added confidence can really be derived from observing the system's behaviour. 
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