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for the Quantitative Assessment of
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David Wright

Centre for Software Reliability, City University,
Northampton Square, London EC1V 0HB, ENGLAND

Abstract

For safety-critical systems, the required reliability (or safety) is often
extremely high. Assessing the system, to gain confidence that the re-
quirement has been achieved, is correspondingly hard, particularly when
the system depends critically upon extensive software. In practice, such
an assessment is often carried out rather informally, taking account of
many different types of evidence—experience of previous, similar sys-
tems; evidence of the efficacy of the development process; testing; expert
judgement, etc. Ideally, the assessment would allow all such evidence to
be combined into a final numerical measure of reliability in a scientifi-
cally rigorous way. In this paper we address one part of this problem: we
present a means whereby our confidence in a new product can be aug-
mented beyond what we would believe merely from testing that product,
by using evidence of the high dependability in operation of previous prod-
ucts. We present some illustrative numerical results that seem to suggest
that such experience of previous products, even when these have shown
very high dependability in operational use, can improve our confidence
in a new product only modestly.

1 Introduction

Critical systems are coming to depend more and more upon the correct func-
tioning of software to ensure their safe operation. At the same time, the size and
complexity of these software subsystems is increasing as designers take advan-
tage of the extensive functionality that software makes possible—functionality
that sometimes enhances different aspects of safety.

There are important unresolved questions concerning how one might go
about designing such systems so that they will be sufficiently safe in operation.
In this paper, however, we shall concentrate upon the difficult problems of eval-
uation that they pose. In particular, we shall be concerned with the problem of
how to measure the reliability of such a software system when that reliability
is likely to be very high.

In several recent papers different authors have pointed out some of the
basic difficulties here, [Butler, Finelli 1993, Littlewood, Strigini 1993]. They
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show that, if we are only going to use the evidence obtained from operational
testing of the software, we shall only be able to make quite modest claims for
its reliability. For example, Littlewood and Strigini show that even in the most
favourable situation of all, that of a system that has not failed during x hours
of statistically representative operational testing, we can draw only the weak
conclusion that there is a 50:50 chance that it will survive failure-free for the
same time x in the future.

The limitations here seem intrinsic: they arise from the relative paucity
of evidence (when compared with the stringency of the reliability level that
needs to be demonstrated) and will not be ameliorated significantly by bet-
ter statistical models. To make a very strong claim—that a particular system
is ultra-reliable—needs a great deal of evidence. If that evidence comprises
only observation of failure-free behaviour, then the length of time over which
such behaviour is observed needs to be very great. To assure the reliability
goals of certain proposed and existing systems, for example the 10−9 probabil-
ity of failure per hour for the ‘fly-by-wire’ computer systems in civil aircraft
[Rouquet, Traverse 1986], would clearly require the systems to be observed and
show no failures for lengths of time that are many orders of magnitude greater
than is practicable.

Faced with these limitations to what can be claimed from merely observing
the system in operation, it has been suggested that we should instead base our
evaluations upon all the disparate kinds of evidence that are available. These
include, in addition to the operational data discussed above, evidence of the
efficacy of the development methods utilised, experience in building similar sys-
tems in the past, competence of the development team, architectural details of
the design, etc. Most of these other sources of evidence about the dependability
of a system will involve a certain amount of engineering judgement in the evalu-
ator, which might itself introduce further uncertainty and potentiality for error.
In addition, there are serious unresolved difficulties in combining such disparate
evidence in order to make a single evaluation of the overall dependability and
thus to make a judgement of acceptability.

In this paper we shall consider only a small part of this problem. We shall
treat in detail the situation where we wish to augment the evidence that can
be gained from the operational testing of a particular product, by also taking
into account the success (or not) in building ‘similar’ products in the past. An
important special case, of course, is that where there is unreserved good news
from these previous products—i.e. none of them has failed during operational
use up till the present time.

It should be emphasised that the goal in all this work is to obtain a quan-
tification of the reliability of a product. The model that is proposed in the
next sections, therefore, requires us to make certain assumptions about the
failure process, and about how we represent our beliefs about certain model
parameters. We acknowledge that these assumptions can be questioned, and
are certainly very difficult to validate. However, we believe that they are rea-
sonably plausible. More importantly, our main aim is to demonstrate that this
kind of evidence can only improve our confidence in the reliability of a product



quite modestly. Thus, we would regard a critique of our results on the grounds
that they are not sufficiently conservative as being in the spirit of our own aims;
suggestions, on the other hand, that the assumptions here can be modified in
order to arrive at much higher confidence in product reliability we would regard
with suspicion. It seems to us that, particularly in the case of safety-critical
applications, it is safest to adopt a conservative view of the informativeness of
evidence unless there are scientifically valid reasons to believe the contrary.

2 Modelling Approach

When we use evidence we have obtained from building and operating previous
products in order to try to improve the accuracy of the predictions that we
can make about the reliability of a novel product, we must take account of two
kinds of uncertainty. In the first place, there will be uncertainty concerning the
actual reliabilities that have been achieved by these earlier products. Even in
those cases where there is extensive operating experience, we shall never know
the true reliability of a product and will have to use an estimate based upon the
data collected during its operation. In those situations where we are dealing
with products that are likely to be very reliable, we shall probably only see a
small number (or even none at all) of failures even in quite extensive periods
of operation.

The second source of uncertainty will concern the ‘similarity’ of the products
that have been observed in the past, and the ‘similarity’ of the one under study
to these past products. In what follows, we shall assume that the probabilities
of failure of the different products, past and present, can be assumed to be
realisations of independent and identically distributed random variables. This
assumption, although an idealisation, captures the essentials of what we mean
by ‘similarity’. Thus, it means that the actual reliabilities of the different
products will be different, as is clearly the case in reality. We would not expect
the reliabilities of, say, two versions of a software-based telephone switch to
be identical, even though we might be prepared to agree that the problems
posed, and the quality of the processes deployed in their solution, were similar.
The notion of ‘similarity’ in the eye of an observer here seems to be equivalent
to a kind of ‘indifference’. You might agree that two different products were
similar for the purposes of the current exercise if you were indifferent between
them in reliability terms: if you were asked to predict which would be the most
reliable, before seeing them in operation, you would have no preference. This is
represented by their probabilities of failure being identically distributed random
variables: any probability statements you would make about the reliabilities
of products A and B will be identical. The important point here is that this
interpretation of ‘similarity’ in terms of indifference does not mean that you
believe that the two products will have identical reliabilities [Laprie 1992] -
indeed you will know that the actual reliabilities of the products will differ.

The two sources of uncertainty here are both important. However, it is the
nature of the uncertainty concerning ‘how similar’ the products actually are



that will be most difficult to estimate in practice, since this requires us to see
as many different products as possible. It is far more likely that we have large
quantities of information about a few products, than that we have information
on many products.

Consider first the failure process of a single software product A. Assume
a Bernoulli trials process model of the failures of this product in a sequence
of ‘demands’ with neither debugging, maintenance, nor significant variation in
the ‘stressfulness’ of the software’s operational environment. Thus, in the first
n trials of product A, let R be the random number of failures occurring and p
be the probability of failure on demand. Then the distribution of R for fixed n
and p is

R n, p ∼
(

n

r

)
pr (1− p)n−r (1)

Now think of p as unknown and construct a Bayesian model by assuming that
p is a realisation of a random variable P having a parametric distribution

P θ ∼ fp(p|θ)

with parameter θ. Here we can think of this distribution for P as representing
the general reliability of products in a particular product family , perhaps pro-
duced by a single development team, using a common development method,
and for similar applications. For example, a family of products known to have
highly variable reliability levels would correspond to a distribution fp(p|θ) with
a large variance, whereas for another product family a high ‘average’ product
reliability would correspond to a small mean for fp(p|θ). If we fully under-
stood the true variation in reliabilities of the products in each of these two
product families then we could describe the two families by specifying two
different P -distributions having the required characteristics and index these
P -distributions with two different θ-values, θ1 and θ2, say. More generally,
our parameter space S, say, for θ, could be said to represent a set of different
conceivable reliability characteristics each of which potentially characterises a
different family of similar products. I.e., given sufficient data on the reliability
variation amongst the products of a particular family, a value of θ (and hence
a particular distribution fp(p|θ)) could in principle be assigned as descriptive
of that variation. In this way, we have defined a model in which θ can be
thought of as a product-family-characterising parameter. For a product chosen
at random from those of a particular family of similar products (i.e. particular
θ) and observed for a sequence of n demands, it follows that (R,P ) has joint
distribution

(R,P ) n, θ ∼
(

n

r

)
pr (1− p)n−r

fp(p|θ), (2)

given n and θ. Integrating (2) over p gives the conditional distribution of R
given n and θ as

R|n, θ ∼
(

n

r

)∫ 1

0

pr (1− p)n−r
fp(p|θ) dp (3)



or, expressed in terms of moments of fp(·|θ),

R n, θ ∼
(

n

r

)
E
(
P r(1− P )n−r|θ

)
. (4)

If we observe that R = r failures actually occur during n demands, then we
can condition on this data by normalising (2) to give the updated distribution

P r, n, θ ∼ pr (1− p)n−r
fp(p|θ)∫ 1

0
pr (1− p)n−r

fp(p|θ) dp
(5)

of the probability of failure on demand for this program, given θ, n and the
observation r.

The last three equations describe properties of a general mixture of Bernoulli
trials processes, where fp(·|θ) is the mixing distribution. Note that although
exchangeability1 of the original Bernoulli trials process has not been lost by
mixing the processes, the property that non-intersecting sections of the process
are independently distributed does not hold in general for the resulting mixed
process. In fact the number R′ of failures in a subsequent set of n′ demands
on the same product now has an updated distribution obtainable from (5) as

R′ r, n, n′, θ ∼
(

n′

r′

)∫ 1

0
pr+r′

(1− p)n+n′−r−r′
fp(p|θ) dp∫ 1

0
pr (1− p)n−r

fp(p|θ) dp
, (6)

=
(

n′

r′

)E
(
P r+r′

(1− P )n+n′−r−r′
θ
)

E(P r(1− P )n−r θ)

given n, r.
The distributions which we have considered up till this point are parame-

terised by θ. We now adopt a Bayesian approach to handling this parameteri-
sation by supposing a prior distribution

Θ ∼ Priorθ(θ) ,

with support set θ ∈ S. If we plan to observe and predict reliability only of a
single software product, this extension adds very little to the model as so far
described, since, by integrating over θ, the model is reduced to a degenerate
(|S| = 1) case of the assumptions described earlier. (Simply replace fp(p|θ) by∫

θ∈S fp(p|θ)Priorθ(θ) dθ in the distributions above.)
The idea of a prior distribution for θ becomes a useful concept, however,

if we wish to address the problem of learning about a distribution of product
reliabilities by observing the failure behaviour of multiple software products
from a single family 〈Ai〉, say, of similar products. We can then represent a

1i.e., the property that any permutation of a portion of the binary success-failure sequence
has the same probability as the unpermuted sequence. Equivalently, we can say that the
probability of a precise sequence of successes and failures during a specified interval of discrete

time (say from the 10th to the 20th demand, inclusive) can be expressed as a function of the
number , only, of successes during that interval.



conservative2 version of a process concept for the trend of their reliabilities,
from one product to the next, by modelling these products’ individual failure
processes as above with different pi, and an assumption that each of these pi

arises independently given θ for some unknown, common parameter value θ
characterising the entire family of products.

Thus θ and p now play distinct roles in terms of the model concepts:
Whereas each pi still captures a property of a single software product, θ now
represents a common unknown characteristic of the whole family of similar
products. To obtain the value of θ would be to capture the reliability-relevant
characteristic which these software products all have in common. For this
multi -product model, there is now a real purpose behind including separate
distributional assumptions for firstly θ, and secondly pi given θ. In the follow-
ing, we do not in fact assume that θ can ever be known3. However, we assume
that we hold probabilistic prior beliefs about θ (i.e. beliefs about the possible
distributions fp(·|θ) of reliabilities of products belonging to the family 〈Ai〉).
Then, any observation of failure behaviour of any subset of the sequence 〈Ai〉
can be regarded as information about θ which we will use in order to learn
about θ by the usual Bayesian learning mechanisms. Thus the second stage of
our doubly stochastic model is to represent our prior beliefs about a subjective
random variable Θ of which the true value θ for our particular product family
is a single unknown realisation.

Observe now that, conditionally given θ and 〈ni〉ki=1, our independence as-
sumption for the 〈Pi〉 tell us that the first k terms of our 〈Ri〉 sequence are
jointly distributed

〈Ri〉ki=1 (〈ni〉ki=1 , θ) ∼
k∏

i=1

(
ni

ri

)∫ 1

0

pri (1− p)ni−ri fp(p|θ) dp . (7)

Once we have executed these k software products and observed their failure
behaviour (i.e., ri failures out of ni trials for each product Ai) then we can
regard (7) as the likelihood function L

(
θ; 〈ni, ri〉ki=1

)
of the parameter θ given

this failure data. L
(
θ; 〈ni, ri〉ki=1

)
is a product involving combinatorial terms

together with moments of the parametric distribution fp(·|θ)

〈Ri〉ki=1 (〈ni〉ki=1 , θ) ∼
k∏

i=1

(
ni

ri

)
E
(
P ri(1− P )ni−ri θ

)
. (8)

In §3 we make use of the factor of this likelihood which depends on θ,

Lk(θ) =
k∏

i=1

E
(
P ri(1− P )ni−ri θ

)
2in the sense that we desist from making any stronger assumption of any kind of systematic

development of reliability from one product to the next. For example, we do not assume an
increasing trend in reliabilities of different products in the family.

3Loosely, we can say that in order to know the value of θ characterising a family 〈Ai〉 of
products, we would require a very large amount of operational failure data on each of a very
large number of products belonging to that family.—So that we could accurately describe
from empirical data the shape of the distribution fp( · |θ).



=
k∏

i=1

∫ 1

0

pri (1− p)ni−ri fp(p|θ) dp (9)

3 Bayesian Updating of Distributions in the
General Case

To implement the Bayesian learning about Θ given observation of 〈ri〉kr=1 we
would like to calculate the posterior distribution of Θ. Recalling that the prior
for Θ is denoted Priorθ, for θ lying in S, then the required posterior distribution
is proportional to the product of the prior distribution for Θ and the likelihood
function evaluated as (7)

Θ 〈ni, ri〉ki=1 ∼ cLk(θ) Priorθ(θ)

where c is a function of 〈ri, ni〉 not involving θ, i.e.

Θ 〈ni, ri〉ki=1 ∼

[
k∏

i=1

∫ 1

0

pri (1− p)ni−ri fp(p|θ) dp

]
Priorθ(θ)

∫
θ∈S

[
k∏

i=1

∫ 1

0

pri (1− p)ni−ri fp(p|θ) dp

]
Priorθ(θ) dθ

(10)

Equation (10) moves the focus of attention away from failure probabilities
Pi of products Ai by the integrations over p. It is now of great interest to
know an up-to-date distribution for P given what has been observed (in order
to make predictions about a particular new product, for example). Then our
learning could be expressed directly in terms of the changing nature of the
current uncertainty about a failure probability of some particular product. At
this stage it is instructive to distinguish between four different stages in our
learning about one of the failure probabilities, say Pk. The first of these is the
prior marginal distribution of Pk

Pk ∼
∫

θ∈S
fp(pk|θ)Priorθ(θ) dθ , (11)

which represents our initial state of uncertainty concerning the reliability of
any given product, Ak, prior to any observation either of that or of any other
product’s behaviour.

The second most trivial case—observing only the past failure behaviour of
the specific product of interest—has effectively already been covered by (5).
Substituting

∫
θ∈S fp(p|θ)Priorθ(θ) dθ for fp(p|θ) in (5) gives a conditional dis-

tribution

Pk nk, rk ∼
prk

k (1− pk)nk−rk

∫
θ∈S

fp(pk|θ)Priorθ(θ) dθ∫
θ∈S

∫ 1

0

prk (1− p)nk−rk fp(p|θ) dp Priorθ(θ) dθ

(12)



for Pk given nk and rk.
Thirdly, replacing k by k− 1 in (10) and then substituting this distribution

in place of Priorθ(θ) in (11) (or, alternatively, directly substituting nk = rk = 0
in (14) below) gives the distribution

Pk 〈ni, ri〉k−1
i=1 ∼∫

θ∈S
fp(pk|θ)

[
k−1∏
i=1

∫ 1

0

pri (1− p)ni−ri fp(p|θ) dp

]
Priorθ(θ) dθ

∫
θ∈S

[
k−1∏
i=1

∫ 1

0

pri (1− p)ni−ri fp(p|θ) dp

]
Priorθ(θ) dθ

(13)

of Pk given observation of the failure behaviour 〈ni, ri〉k−1
i=1 only of other prod-

ucts 〈Ai〉k−1
i=1 .

Finally, replacing k by k − 1 in (10) and then substituting this distribution
in place of Priorθ(θ) in (12) gives the distribution

Pk 〈ni, ri〉ki=1 ∼

prk

k (1− pk)nk−rk

∫
θ∈S

fp(pk|θ)

[
k−1∏
i=1

∫ 1

0

pri (1− p)ni−ri fp(p|θ) dp

]
Priorθ(θ) dθ

∫
θ∈S

[
k∏

i=1

∫ 1

0

pri (1− p)ni−ri fp(p|θ) dp

]
Priorθ(θ) dθ

(14)

for Pk given observation both of the failure behaviour 〈nk, rk〉 of the product
Ak itself and also the failures 〈ni, ri〉k−1

i=1 of other products 〈Ai〉k−1
i=1 .

4 The No-Failures Case

Consider the special case in which no failures at all have been observed—neither
of the product for which we wish to predict reliability, nor of other products
within the same product family. This case is of particular importance since
it provides an upper limit for the reliability levels which can be objectively
measured in a given amount of observation time purely from observation of
failure behaviour. Specialising the equations of §3 to this case is simply a matter
of substituting 〈ri〉 = 〈0〉. If we similarly specialise the form of our predictions
by considering the Bayesian predictive probability of a further period of failure-
free operation, we find that these predictions can be expressed in rather a
simple form as the expectations of products of higher non-central moments
of a particular conditional distribution. So, conclusions about the reliability
levels measurable using this model turn out to depend crucially on our decision
about what may be considered realistic model assumptions for these moments.
Thinking in terms of the probability Qi = 1 − Pi of successful completion
of an individual demand, and assuming that we do believe that our product



family is highly reliable, then the conditional distribution of Qi given θ will
be concentrated very close to 1 (for all except, perhaps, some values of the
product-family parameter θ which we consider to be highly unlikely, i.e. that
are assigned small probability (density) values Priorθ(θ) by our prior for θ).
Defining µ′m to be the mth non-central moment of this conditional distribution
of Qi given θ makes µ′m a deterministic function of θ

µ′m =
∫ 1

0

(1− p)mfp(p|θ) dp. (15)

We now take the expectation of Qn
k with respect to each of the three updated

distributions (12–14) for Pk. This yields three expressions representing the
Bayesian predictive probability that the next n demands on Ak will be failure-
free given previous observation of failure-free execution of respectively: Ak

only; 〈Ai〉k−1
i=1 ; or, lastly, all of 〈Ai〉ki=1:

E(Qn
k Rk = 0) =

E
(
µ′nk+n

)
E
(
µ′nk

) , (16)

E
(
Qn

k 〈Ri〉k−1
i=1 = 〈0〉

)
=

E

(
µ′n

k−1∏
i=1

µ′ni

)

E

(
k−1∏
i=1

µ′ni

) , (17)

E
(
Qn

k 〈Ri〉ki=1 = 〈0〉
)

=

E

(
µ′nk+n

k−1∏
i=1

µ′ni

)

E

(
k∏

i=1

µ′ni

) . (18)

These predictive probabilities of n consecutive successful demands on Ak should
be compared with the unconditional

E(Qn
k ) = E(µ′n) (19)

which is the probability that the next n demands on Ak will be failure-free
given no conditioning observation of either Ak or any other products—i.e.
based solely upon the prior belief.

5 An Example of a Particular Choice of Prior
Distributions for P given Θ, and for Θ

We shall retain throughout what follows our original assumptions that each
product Ai fails as a Bernoulli trials process with unknown parameter Pi,
and that the 〈Pi〉 sequence is i.i.d. conditionally given an unknown product-
sequence-characterising parameter θ. To generate particular cases of our model



we are then left with the tasks of choosing the distribution family {fp(·|θ) ; θ ∈
S} and the single prior distribution Priorθ over this family.

The beta-family of distributions

fp(p|θ) =
pa−1(1− p)b−1

β(a, b)
, θ = 〈a, b〉 , a, b > 0

is conjugate [DeGroot 1970] to both the binomial and the negative binomial
(including geometric) distributions, and is thus in some sense a ‘natural’ choice.
If we use this as our fp distribution family, we obtain a mixed process for the
failures of a single product for which the probability of r failures in n demands
is given from equation (4) to be

R n, a, b ∼
(
n
r

)
β(r + a, n− r + b)

β(a, b)
,

obtained by integrating over p the joint distribution of equation (2) which would
be

(R,P ) n, a, b ∼
(
n
r

)
pr+a−1 (1− p)n−r+b−1

β(a, b)

in this case.
The likelihood (8) resulting from observation of k products in operation is

〈Ri〉ki=1 (〈ni〉ki=1 , a, b) ∼
k∏

i=1

(
ni

ri

)
β(a + ri, b + ni − ri)

β(a, b)

with

Lk(a, b) =
k∏

i=1

β(a + ri, b + ni − ri)
β(a, b)

as defined in equation (9).
Having decided to investigate the beta fp, the choice of Priorθ over S, the

positive quadrant4, remains problematic. In real life there would be an ‘expert’
from whom we would wish to elicit the distribution that truly reflects his a
priori belief. This is not an easy task in such a complex model, and the expert
may find it difficult to represent his beliefs in a distribution for 〈a, b〉. A way
out of this difficulty is to assume that the expert is ‘ignorant’, and use that
prior distribution which represents ignorance. Even this is a non-trivial task.
As an example we consider the simple case of distributions uniform on some
finite rectangle with sides parallel to the a and b axes,

Priorθ(a, b) =
{

1
(a2−a1)(b2−b1)

, if a1 < a < a2, b1 < b < b2

0, elsewhere.

4possibly extended to include points representing a, b →∞ with a/b constant, and a, b → 0
with a/b constant, to include all the limiting cases of the beta family



Firstly we can examine characteristics of the prior distribution (11) for Pk

implied by these model assumptions,

Pk ∼
∫ a2

a1

∫ b2

b1

pa−1(1− p)b−1

β(a, b)
db da

(a2 − a1)(b2 − b1)
.

The first and second non-central moments of P a, b are a
a+b and a(a+1)

(a+b)(a+b+1) .
These may be integrated analytically with respect to fp(p|a, b) (first expanding
in partial fractions with respect to b in the case of the second moment) to give
the expressions,

E(P ) = 1
2 + (a2

1−b21) log(a1+b1)−(a2
2−b21) log(a2+b1)−(a2

1−b22) log(a1+b2)+(a2
2−b22) log(a2+b2)

2(a2−a1)(b2−b1)

and

E
(
P 2
)

=
2
3

+
t(a1, b1)− t(a2, b1)− t(a1, b2) + t(a2, b2)

6(a2 − a1)(b2 − b1)

where t(a, b) = s(a, b)− s(a, b + 1), where

s(a, b) = (2a2 − 2ab + 2b2 + 3a− 3b)(a + b) log(a + b).

The prior reliability function is given from equations (15) and (19) by

P(Xk > n) = E(µ′n)

=
∫ a2

a1

∫ b2

b1

β(a, b + n)
β(a, b)

db da

(a2 − a1)(b2 − b1)

=
∫ a2

a1

∫ b2

b1

b(b + 1) . . . (b + n− 1)
(a + b)(a + b + 1) . . . (a + b + n− 1)

db da

(a2 − a1)(b2 − b1)
,

where the first failure of Ak occurs on the Xth
k demand.

These expressions can be thought of as different ways of expressing a priori
belief about the reliability of a product. Now we explore the effects on these
beliefs of learning from observation. We examine the realisations under these
particular distributional assumptions of both the posterior distributions for Pk

given by equations (12–14), and the predictions of Xk, the time to next failure
of Ak using equations (16–18). In the most general case of arbitrary periods of
observation of some finite number of previous products, each of the probabilities
entailed by these questions takes the form of the ratio of a pair of integrals (over
the chosen rectangle in the 〈a, b〉-plane), where the integrands in the numerator
and denominator are each equal to some product of terms of the form

E
(
P r(1− P )n−r a, b

)
=
∫ 1

0

pr(1− p)n−r pa−1(1− p)b−1

β(a, b)
dp

=
β(a + r, b + n− r)

β(a, b)
=

a(a + 1) . . . (a + r − 1)b(b + 1) . . . (b + n− r − 1)
(a + b)(a + b + 1) . . . . . . . . . . . . . . . (a + b + n− 1)

.

In practice, since this kind of inference is most likely to be called for in dealing
with very high reliability systems, the values ni of n in these products are



likely to be rather large, and the values of r are likely to be small, and ideally
zero. So some very large products will be involved in the above term. We
shall report elsewhere on the mathematical difficulties that arise as a result of
this. Here we show only some illustrative numerical results based upon the
observation of three previous products, each of which has been exposed to 107

demands without a single failure. In Table 1 we can see how various different
assumptions for Priorθ affect the strength of the inferences concerning a fourth
product in the same family which can be drawn from this sort of evidence of
high reliability of previous, similar products.

All the results in the Table involve assuming uniform distributions over
different regions of the 〈a, b〉–space. We have excluded values of b smaller than
one, since these entail beta distributions with infinite density at 1; but we have
allowed values of a smaller than one, since infinite density at the origin seems
plausible. The region in the positive quadrant where a and b are both large can
also be ruled out, since any point here corresponds to a beta distribution with
very small variance—i.e. it implies that different products will have essentially
identical probabilities of failure upon demand, which runs counter to the spirit
of this whole exercise.

The first nine rows of the Table involve several rectangles of the kind de-
scribed above. The ninth row shows a small rectangle, effectively approximating
to a known point value for 〈a, b〉. Rows 10 to 12 show thin ‘wedges’ adjacent to
the b-axis. The informal reasoning here is that it may be reasonable to believe
a priori that the mean E(P a, b) of the distribution of probability of failure on
demand does not exceed a certain value 0 ≤ E(P a, b) ≤ M < 1, say, and this
is equivalent to the restriction to a

b ≤ M
1−M . We used M = 10−3, 10−5, and

10−7. Once again, all points in the wedge are given equal weight.
In the Table we show how ‘the reliability’ of a product changes as a result

of the different types of evidence that could be available. For brevity here we
have chosen to present the mean of the distribution of P4, and the reliability
function evaluated at 107 demands (i.e. the probability of surviving this number
of demands), in each of the four cases: given no data; given only evidence of
failure-free operation of this product; given only evidence of failure-free working
of earlier products; and given both these latter items of evidence.

The most interesting and important results concern the different predic-
tions of future operational behaviour, expressed as the probability R(107) of
surviving 107 further demands without failure: the information from the perfect
working of previous products makes only a modest contribution to our confi-
dence in the current product when compared with actual evidence of failure-free
working on that product itself (compare columns 8 and 10). Thus when we only
have evidence from the previous products, although this is of extensive perfect
working for each, it only allows us to claim, in the case of the rectangular priors,
about 0.75 probability of similarly extensive perfect working (i.e. surviving 107

demands) for the new product5.

5We conjecture that some limiting result may be indicated here : perhaps the probability
that product Ak will survive its first X demands, given that k − 1 previous products have
done so, tends to (k − 1)/k as X →∞.



The evidence from previous perfect working of the same product, however,
is more informative. It allows us to be much more confident that the product
will work perfectly in the future: the probability of it surviving 107 demands,
given that it has already survived 107 demands, exceeds 0.9 in all cases.

On the other hand, the small increase in confidence that comes from ex-
perience of other products may be useful in the case of safety-critical systems,
especially as it is likely to come with little or no cost to developers of the new
product. Thus, in the first row of the Table, the a priori belief of the 107

demand survival is .062, this increases to .96 after we have actually seen the
product survive 107 demands, and to .99 when we are told, in addition, that
three other products have also survived 107 demands. Putting it another way,
this evidence of previous product survival has reduced the chance of a failure
in the next 107 demands by a factor of 4 (from .04 to .01) compared with the
result based only on the evidence from operational experience of this product.

We have shown the columns for the means of the various distributions for
P4 mainly as a warning that these can be misleading if used to represent ‘the
reliability’ of a product. Thus the mean probability of failure on demand can
be quite large (0.24 in the first line prior distribution), but still the chance
of surviving 107 demands may be non-negligible (0.063 in this case). The
informal reason is that the distribution is such that the mean is not a good
summary statistic, and in particular cannot be used in a geometric distribution
to approximate to the more complex model that applies here.

In fact, decreasing values of E(P4) do not necessarily imply increasing
chance of surviving 107 demands, as might naively be expected: see, for ex-
ample, columns 7 and 8 of rows 1 to 4. Imagine that we have two experts, let
us call them James and Peter, represented by two different prior distributions
(rows of the Table), who observe the system to survive for 107 demands. They
are then asked to tell us how reliable the system is. If the question is posed
as ‘what is the mean of P4?’, then James is more optimistic than Peter; if,
however, the question is posed as ‘what is the chance of surviving a further 107

demands’, Peter is more optimistic than James. Such (only apparent) para-
doxes underline the importance of using the right formulation for our purposes
when we ask questions about the reliability of a system.

6 Conclusions and future work

A major motivation for research of this kind is to make the process of assessing
safety-critical systems more open to analysis. Currently, particularly in those
cases where complex software is involved, such assessments have a high degree
of informality and rely a great deal upon expert judgement. Whilst this process
is usually carried out responsibly, and with great rigour, it is difficult for an
outsider to analyse how the final judgement has been reached, and much has
to be taken on trust. Since there is some evidence of experts being unduly
optimistic about their judgemental abilities [Henrion, Fischhoff 1986], simply
checking their honesty is insufficient. What is needed is a more formal means



of argumentation, where the assumptions and reasoning processes are visible
and can be questioned. This new model treats a small part of this problem
by providing a representation, and means of composition, of two important
types of evidence that are commonly used to make claims for the reliability
of a product: evidence from testing of the product itself and evidence from
previous experience of ‘similar’ products.

Whilst we make no great claims for the realism of the example we have
used, it does indicate the way in which a formal model of this kind could be
used to question whether an optimistic conclusion drawn from past experience
might be ill-founded. Essentially, if you were to claim that great trust could
be placed in a particular system because of past experience of other systems,
you would have to justify this by trying to claim that your prior distribution
is reasonable within the model. It is clear that some of the examples of prior
distributions we have used could be said to be ‘unreasonable’ in the sense that
they represent beliefs about the reliability, prior to seeing any evidence, that
are very strong.

The particular numerical examples used here are meant only to be illus-
trative. Clearly further work is needed to identify classes of ‘plausible’ prior
distributions, even for the case in which the expert professes ‘complete prior
ignorance’. For example, rather than addressing the raw 〈a, b〉 parameters, it
may be easier for the subject to think in terms of a reparameterisation - the
mean and coefficient of variation are possibilities. Another area of future work
concerns the impact of different kinds of evidence upon the conclusions. For
example, the case here of complete perfection of operation of the previous prod-
ucts is the best news that it is possible to have, and it would be interesting to
investigate the case where there have been failures in the earlier products.

The possibility that conclusions about the reliability of a system can be
highly dependent upon the precise way in which they are formulated is some-
what surprising and needs further investigation. However, the results here
support those obtained in a different context, concerning stopping rules for
software testing [Littlewood, Wright 1995].

Finally, all this modelling depends upon the reasonableness of notions of
‘similarity’ between different products. In this we are merely making more
formal the extremely informal claims that experts make when they argue that
the behaviour of one product can be used as a means of inferring the likely
behaviour of another. Justification of such assumptions of similarity in partic-
ular cases is, of course, outside the direct scope of our studies—presumably it
will come, in the case of software, from knowledge of the application domain
(the problems being solved were similar), the development process (the meth-
ods used were similar), the design teams (they were the same or of comparable
competence), etc. However, we believe that our model can be used to provide
a curb on the enthusiasm of experts: specifically, the use of ‘similarity’ argu-
ments to make stronger claims than would be warranted via the model should
be treated with suspicion.
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