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Abstract 

In this thesis we investigate the question of asset price predictability. The 

two major themes that we focus on are firstly; whether machine learning and 

statistical modelling techniques, which impose less restrictive assumptions on 

asset price dynamics than do classical linear methods, can be used to forecast 

and trade financial markets to a degree greater than that which traditional 

asset pricing models would lead us to expect and secondly; to what extent 

model combination/ensemble strategies can add value in this pursuit. The 

approaches used include support vector regression (SVR), k-nearest neigh­

bours (KNN), trading rules, linear regression (LR) and the random subspace 

ensemble method. 

We investigate these two themes using inherently data-driven models across 

datasets of sufficient size to render statistically meaningful results in three 

self-contained contexts. The first piece of empirical work compares the rela­

tive forecasting performance of SVR, KNN and LR models when applied to 

predicting daily returns of 58 UK stocks in the FTSE 100 over 4000 days. 
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Bootstrap simulations are used to shed further statistical light on model 

performance. 

Secondly, we investigate the extent to which model combinations can im­

prove forecasting performance with the use of the random subspace ensemble 

method for constructing ensembles of linear regression models to predict the 

returns of a portfolio of FTSE 100 stocks. The primary ensemble consists 

of 62500 component models estimated by randomly sampling subsets of the 

feature set and the final result combined via a majority vote 

Lastly, we conduct an in-depth study of the channel break-out trading rule 

over a portfolio of 37 futures markets. We borrow a page from the book of 

modern portfolio theory where it is the performance of individual markets 

in the context of a portfolio that is ultimately of interest rather than on 

an individual basis. This approach is rarely used in the literature but is 

able to shed more light on the question of trading rule efficacy. Bootstrap 

resampling is employed to derive robust performance statistics. Our results 

show the Sharpe Ratio of the portfolio to be three times greater than of 

individual markets as a result of diversification in addition to being greater 

than that of S&P500 benchmark. 

We did not set out in an attempt to refute the weak form of Fama's (1970) 

classic taxonomy of information sets or, colloquially, "to beat the market"; 

nonetheless, some of our results suggest economically significant returns. 
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Chapter 1 

Introduction 

1.1 Motivation, Scope & Background 

In this thesis we investigate the question of asset price predictability. The 

two major themes that we focus on are 

1) Whether machine learning and statistical modelling techniques, which 

impose less restrictive assumptions on asset price dynamics than do classical 

linear methods, can be used to forecast and trade financial markets to a 

degree greater than that which traditional asset pricing models would lead 

us to expect. 

2) To what extent model combination strategies can add value in this pursuit. 
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1.1.1 The EMH & Behavioural Paradigms 

Financial markets are notoriously difficult to prcdict 1 (Timmermann 2008). 

This is not surprising given that incremental success in this endeavour ren­

ders the task progressively more challenging as detectable structure is system­

atically ironed out through exploitative trading and markets become more 

efficient. The well known Efficient Markets Hypothesis (EMH) (Fama 1970) 

embodies this process of ever increasing market efficiency at its limit, a point 

where it is deemed impossible to realize above average risk-adjusted returns. 

Given that the EMH implies that market prices arc for the most part un­

predictable it is imperative for any investigation into the predictability of 

asset prices to address those theoretical and practical limitations it imposes. 

However, whilst reference to the EMH is necessary it is important to note 

that the paradigm docs not preclude predictability per sc. In fact wc would 

expect some deterministic structure due to such factors as transaction cost 

frictions and systematically time varying risk premia. 

Prima facie, attempting to predict asset returns is by most accounts liable to 

be a futile exercise, especially if prices move randomly in accordance to an 

independent and identically distributed process (i. i. d.). Weak form market 

efficiency would suggest that prices traded in a market that is weak form 

efficient are not predictable using historical price information. This would 

imply that prices traded in such a market are serially uncorrclated. One 

1 At least in terms of the first moment. 
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method that has been adopted in the extant literature for testing weak form 

market efficiency has been an examination of asset prices for evidence of 

non-random behaviour. The Random walk hypothesis (RWH) posits that 

successive price changes in an efficient market are random. However, the 

RWH is somewhat restrictive in practice, as it implies that in the process: 

(1.1 ) 

the error term c is i. i.d .. If Pt represents the log of a market price, this implies 

that the market returns are i. i. d. It is possible to relax the assumption of 

i.i.d. returns in the context of weak form efficiency by replacing 1.1 with: 

( 1.2) 

where It is any information set which includes Pt - j , j ~ o. 1.2 is a martin­

gale process. It was Samuelson (1965) and Mandelbrot (1966) who formally 

recognised the importance of a martingale when describing efficient markets, 

though the seeds were sown by Bachelier (1900). For a more detailed expo­

sition of the EMH see appendix A 

In spite of their intellectual power, in recent decades the EMH and standard 

asset pricing models, underpinned by assumptions of rational expectations 

and homogeneity, are starting to give way to alternatives that incorporate a 

different view of the world, as the former fall short in explaining the inher-
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ently complex and volatile nature of financial markets. The classical models 

assume the existence of rational economic agents who always act in their own 

self-interest, conducting optimal cost/benefit analysis when arriving at deci­

sions using the statistically correct probabilities (perhaps more aptly termed 

hyper-rational agents). These rational agents are assumed to have homoge­

nous expectations. Many authors have questioned the foundation of these 

assumptions, most notably Simon (1955) who argued that individuals arc un­

likely to able to carry out the kind of optimization assumed in the classical 

models and rather engage in satisficing. 

This recent shift (a K uhnian paradigmatic shift in some authors' views) away 

from the rational expectations, efficient markets model towards a so-called 

behavioural/Heterogeneous Agents framework, which arguably accounts more 

satisfactorily for the stylized facts of financial markets, places a different em­

phasis on the issue of asset price predictability. If heterogeneity docs not 

simply average out via representative agents who exhibit an average agent's 

behaviour (Kirman 1992) and individuals are boundedly rational satisficers 

(Herbert 1957) then markets, rather than fully reflecting all that is known 

and reacting to fundamental 'news', may in reality be in a constantly evolv­

ing state, at times displaying nonlinearity and/or chaos (as in the results of 

the two-agent models of De Grauwe & Grimaldi (2005)). 

In a similar vein, Lo's Adaptive Market Hypothesis (AMH) (Lo 2004) recasts 

the EMH view of the world incorporating evolutionary models of human 
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behavior positing that individuals make their decisions based 011 trial and 

error and that processes of learning, adaptation, competition and natural 

selection playa significant role in the formation of prices. Investors use trial 

and error to establish heuristics in the markets. Their skills improve as they 

climb a learning curve, and then, inevitably, the market evolvcs rendering 

some strategies obsolete. The survivors innovate and adapt, establishing 

new methods of making money. 

Many systematic biases in human decision making processes have been doc­

umented by behavioral economists and psychologists and include: overconfi­

dence (Fischoff & Slovic 1980), (Barber & Odean 2000), (Gervais & Odean 

2001), overreaction (DeBondt & Thaler 1986), loss aversion (Kahneman & 

Tversky 1979), (Shefrin & Statman 1985), (Odean 1998), herding (Huberman 

& Regev 2001), psychological accounting (Tversky & Kahneman 1981), mis­

calibration of probabilities (Lichtenstein, Fischoff & Phillips 1982), hyper­

bolic discounting (Laibson 1997), and regret (Bell 1982a),(Bell 1982b), (Clarke, 

Krase & Statman 1994). 

1.1.2 Nonlinearities 

If prices evolve via complex interactions between heterogenous groups of in­

vestors in a manner similar to that advocated by the behaviouralists, clearly 

nonlinear modelling approaches are required and may result in greater accu-
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racy than traditionally motivated classical linear approaches 2. As Campbell, 

Lo & MacKinlay (1997) argue 

" many aspects of economic behavior may not be linear. Experi-

mental evidence and casual introspection suggest that investors at-

titudes towards risk and expected return are nonlinear. The terms 

of many financial contracts such as options and other derivative 

securities are nonlinear. And the strategic interactions among 

market participants, the process by which information is incor­

porated into security prices, and the dynamics of economy-w'ide 

fluctuations are all inherently nonlinear. Therefore, a natural 

frontier for financial econometrics is the modeling of nonlinear 

phenomena. " 

Questions regarding why we might expect nonlinearities in financial markets 

aside there is an extensive literature pertaining to the testing for nonlinearity 

and chaos in financial data. Antoniou & Vorlow (2005) investigated the 

compass rose patterns revealed in phase portraits (delay plots) of FTSE 

100 stock returns and found a strong nonlinear and possibly deterministic 

signature in the data generating processes. Yang & Brorsen (1993) found 

evidence of nonlinearity in several futures markets, which was consistent 

with deterministic chaos in about half of the cases. Sewell, Stansell, Lee & 

2Heterogeneous agent models do not necessarily imply markets are anymore predictable 
in terms of gaining excess returns beyond that expected under a rational expectations 
framework but rather, there may be more to predict. 
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Below (1996) examined weekly changes for the period 1980 to 1994 in six 

major stock indices (the US, Korea, Taiwan, Japan, Singapore and Hong 

Kong) and the World Index as well as the corresponding foreign exchange 

rates between the US and the other five countries. They concluded that their 

results did not conclusively prove the existence of chaos in these markets but 

that they were consistent with its existence in some cases. Examining 30 

years of the Canadian/US dollar exchange rate data Kyrtsoua & Serletisb 

(2006) conclude, "There is a strong evidence that noisy chaotic structures 

are responsible for nonlinearity in the mean of the Canadian/US exchange 

rate series". In chapter 4, page 108 using the BDS test (Brock, Dechert, 

Scheinkman & LeBaron 1996) we find nonlinearity beyond GARCH effects 

cannot be rejected for 49 of 65 FTSE 100 index stocks. 

The theoretical motivation provided by the behaviouralist agent based paradigm, 

in addition to the empirical motivation provided by literature on nonlinearity 

in markets, both underpin the first major theme of this thesis; the empiri­

cal investigation into the efficacy of linear to nonlinear modelling methods 

applied to forecasting financial markets. 

1.1.3 Model ensembles and combination 

The second major theme of this thesis is model combination. Following sem­

inal papers on model combination in business and economic forecasting by 
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Barnard (1963), Bates & Granger (1969) and Roberts (1965), a considerable 

literature has developed over four decades showing accuracy improvement 

under certain conditions using combinations of forecasts - for an overview 

see Clemen (1989). Recently this has been consolidated by Granger & Jeon 

(2004) where it is termed "thick modeling" in contrast to "thin modeling", 

the use of just a single model. The benefits have not been lost on researchers 

in other fields such as machine learning, where classifier or Illodel ensem­

bles as they are known, contribute a large part of the literature (Hansen & 

Salamon 1990)(Breiman 1996). The general consensus is that in order for 

an ensemble to improve overall accuracy the component models should be 

both accurate and diverse (Batchelor & Dua 1995), and at a minimum they 

need only be slightly more accurate than random guessing as long as they 

exhibit sufficient diversity - see Dietterich (2002) for an additional overview 

in the ML literature. For a more detailed exposition of model ensembles and 

machine learning see Chapter 2. 

Forecasters of financial markets essentially face a moving target as the data 

generating process for financial returns changes over time. Timmermann 

(2008) frames the difficulty faced by forecasters in practical terms, providing 

an intuitive explanation for the benefits of forecast model combination: 

"We would expect competition between a multitude of forecasting 

methods to cause instability both in the parameter estimates as­

sociated with particular forecasting models and in their (relative) 

12 



forecasting performances. Indeed, the performance of individual 

forecasting methods may follow a life cycle pattern. Before a par­

ticular forecasting approach is widely discovered and adopted, it 

may perform quite well. Then, given a suitably long historical 

track record indicating good performance, the forecasting method 

will become more widely adopted. Finally, as this learning and 

adoption process becomes more complete and the information in 

the forecasts gets incorporated into prices, the method will cease 

to predict future return movements." 

A model combination approach may ameliorate this problem of a single model 

life cycle to some degree. We cover the subject of model combination in detail 

in chapter 2 

1.1.4 The modelling approaches 

The No Free Lunch Theorem tells us that no one modelling method domi­

nates all others in all applications (Wolpert & Macready 1995). It may well 

be that certain methods dominate within a particular problem space where 

their strengths are aligned with characteristics of the underlying data that 

is, it is more aligned with bayesian priors than other algorithms. The mod­

elling approaches used in this study of asset price predictability and model 

combination are chosen specifically for their flexibility and problem-fit and 
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include support vector machines (SVM) - a somewhat recent addition to 

the set of nonlinear techniques available for classification and regression, k­

nearest neighbours (KNN), the channel break-out trading rule (which can be 

considered a form of nonlinear model), linear regression (LR) and random 

subspace ensemble method. 

Support Vector Machines 

The Support Vector Machine (SVM) is a powerful machine learning method 

for classification and regression (see section 2.6 for further details) and is 

fast replacing neural networks (though it is actually a super set of neural 

networks) as the tool of choice for nonlinear prediction and pattern recog­

nition tasks, primarily due to their ability to generalise well on new data 

and their solid theoretical foundation. SVMs are a member of a large class 

of learning algorithms known as kernel methods. Generally speaking kernel 

methods exploit information regarding the inner product between data in­

stances and it is possible to re-write many algorithms such that they only 

need to consider these inner products. To do this kernels are introduced 

which are essentially distance measures in some feature space. 

SVM Regression involves a nonlinear mapping of an n-dimensional input 

space into a high dimensional feature space. A linear regression is then 

performed in this feature spacc. In the field of finance SVMs have been 

used in interest rate curve estimation (Monteiro 2001), credit rating predic-
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tion (Huang, Chen, Hsu, Chen & Wu 2004), financial time-series prediction 

(Yang, Chan & King 2002) and modelling stock indices (Abraham, Philip & 

Saratchandran 2003). 

K-Nearest Neighbours 

The K-Nearest Neighbours method is form of Instance-based learning (IBL) 

(Aha, Kibler & Albert 1991) . These methods are often used in classification 

tasks and use specific instances (vectors of training examples or independent 

variables) to perform the classification, rather than using generalizations of 

the training data. IBL algorithms are also known as lazy learning algorithms, 

as they save some or all of the training examples and delay all effort towards 

inductive classification until requests for classifying yet unseen instances arc 

received. They assume that similar instances have similar classifications: 

novel instances are classified according to the classifications of t heir most 

similar neighbours. In this case the KNN method performs so-called local 

learning resulting in a globally nonlinear function. See Chapter 2.8 for further 

details. 

Model combination with the Random Subspace Method 

The random subspace method (RSM) of Ho (1998), rooted in the theory 

of stochastic discrimination (Kleinberg 2000), involves creating an ensemble 
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of models whereby ensemble components usc only a subset of the available 

training features/inputs. 

Like bagging (Breiman 1996) and boosting (Freund & Schapire 1996); (Kearns 

1988) the Random Subspace Method also works by modifying the training 

data but it does so in feature space. Given a training set of N feature 

set variables, a learning machine is repeatedly applied to randomly selected 

feature subsets of size M < N. Model outputs are then aggregated via 

majority voting to determine the final ensemble output. Although Boosting 

has proven to be a very effective combining algorithm it has a tendency to 

overfit the data in the presence of noise (Opitz & Maclin 1999) which makes 

it less appropriate in the context of financial market data where the signal 

to noise ratio is low. 

The RSM is derived from the method of Stochastic Discrimination(SD) intro­

duced by Kleinberg (1990),Kleinberg (2000) and shares some of its theoreti­

cal roots. SD is a method whereby weak component models are created and 

combined to produce accurate models. Kleinberg argues that it is not just 

another method of combining classifiers in the sense of attempting to create 

somewhat orthogonal learners for combination but rests on strict mathemat­

ical notions of enrichment, uniformity, and projectability. Its effectiveness is 

shown in Kleinberg (2000) where it outperforms bagging and boosting on a 

large number of benchmark problems. 

Ho (2000) found that RSM exhibited better performance when the discrim-
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inatory power of the input space is distributed evenly over many features. 

Skurichina & Duin (2002) confirmed this result and further noted that RSM 

was more effective in this case than when the discriminatory power is con-

densed to a few features. 

Figure 1.1: Random Subspace Sample Method 
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RSM ensembles have been shown to outperform single models in a variety of 

applications (Munro Ler & Patrick n.d.) (Skurichina & Duin 2002), (Chawla 

& Bowyer 2005), (Zhao, Tang, Lin, Samson & Remsen 2005), (Bertoni, Fol­

gieri & Valentini 2005). Rooney, Patterson, Tsymbal & Anand (2004) com­

pared RSM, bagging and boosting using regression and nearest neighbour 
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models on 15 data sets selected from the WEKA (Witten & Frank 1999) 

repository and found RSM to be most effective. 

Figure 1.1 gives a visual explanation of the method as it is used in this thesis. 

In our case we not only sample from the input feature set but also from the 

output set (dependent variable set). 

Channel break-out trading rule 

Given that the persistent use of technical analysis is still an open question 

and that it contradicts the very foundation of modern finance, the Efficient 

Markets Hypothesis, it remains an important area of research. There now 

exists a large body of literature investigating the efficacy of variolls forms 

of technical analysis, with the number of studies increasing in recent times 

(Park & Irwin 2004). A sizeable proportion of this work suggests this form 

of analysis may have value (Brock, Lakonishok & LeBaron 1992) though the 

evidence is countered by opposing studies, some of which suggest that positive 

results may be due to inadvertent data-snooping (Sullivan, Timmermann & 

White 1999) thus, despite these efforts, the academic jury is still out. 

Many formulations of technical trading rules can be considered nonlinear 

models. The channel breakout is one of these and belongs to class of trad­

ing rule considered by practitioners to be "trend following" (Pring 2002) 

,(Schwager 1996) in that it is assumed that market prices are persistent to 
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some degree ("markets trend") and by taking a position early enough and 

in the direction of a trend the trader can gain positive returns. There exist 

innumerable variations, all following a common theme that involves trad­

ing when the price "breaks out" from a predefined channel which can be 

based on price or volatility - in which case it is a volatility breakout system 

(Pring 2002). 

1.1.5 Conceptual framework and data. 

The support vector regression, k-nearest neighbour and random subspace 

sampling modelling approaches were mainly researched and developed in the 

machine learning community and are inherently data-driven, atheoretic and 

nonparametric. The underlying paradigms of econometrics tend to be para­

metric and hypothesised in nature, with a greater emphasis on theoretical 

soundness and interpretability than on inference and experimental effective­

ness per se. Therefore the empirical studies are carried out within the con­

ceptual framework of both the machine learning and econometrics disciplines 

as they largely overlap each other, each one contributing and complementing 

the work respectively. That is not to say that the research will not have 

theoretical soundness at its heart and interpretability as an objective but 

rather, there will be a greater emphasis on letting the data "speak for it­

self", largely independent of expectations and presuppositions required to 

form prior hypotheses. Given the designated context the nomenclature of 
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machine learning will be used where appropriate. 

Given that asset return predictability is still an open question and the low 

signal to noise ratio inherent to financial markets, this research leans towards 

the incorporation of comparatively large data sets combined with sparsely 

parameterized models, in addition to minimally pre-processed independent 

and dependent variables. It is generally the case that as the complexity of 

a model increases its capacity for being understood diminishes, so the fewer 

parameters and assumptions incorporated into the modelling process the 

closer we can get towards answering the underlying question of predictability 

or, informally, less is more. 

The emphasis on large datasets is adhered to throughout the thesis to also 

mitigate the fact that this category of models is inherently data driven (data­

rich, atheoretic). The research is carried out on data from both equity and 

futures markets. The FTSE 100 index (Financial Times Stock Exchange 

Index 100) is a share index of the 100 most highly capitalised UK companies 

listed on the London Stock Exchange. We use up to sixty five stocks from the 

FTSE in addition to thirty seven futures contracts over a number of years, 

in all comprising almost 500,000 data points. Last, but by no means least, 

we emphasize effective out-of-sample testing throughout. 
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1.1.6 The wider context. 

In a wider context, underlying this research are two main imperatives. Pre­

dictability of asset returns is clearly of interest to investment practitioners, 

especially those involved in market timing and active asset allocation. From 

a broader economic perspective it has important implications for the effi­

cient allocation of capital; ideally asset prices provide accurate signals for 

investment-consumption decisions. If these signals are inaccurate due to in­

formation not being fully reflected in prices then the resulting decisions may 

be inefficient. 

The results of this study, apart from contributing to the literature, should 

also prove useful to traders and investors, whether they be retail or insti­

tutional, by providing further information on potentially profitable trading 

opportunities across a number of different asset classes. Additionally, our 

results provide a basis for comparison, against which other similar empirical 

studies may be evaluated. 
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1.2 Summary of Chapters 

1.2.1 Chapter 2 

Chapter 2 provides an in-depth exposition of machine learning & ensem­

ble/model combination methods. We compare and contrast machine learn­

ing and statistics and present the two main categories of machine learning 

algorithms, regression and classification. This is followed by an explanation 

of the support vector regression method that we use in chapter 3 and how 

it performs nonlinear regression. Instance-based learning and the nearest 

neighbour method of forecasting is then covered. Finally we discuss model 

selection, the bias/variance trade-off, data-snooping and boostrap randomi­

sation tests. 

1.2.2 Chapter 3 

In chapter 3 we compare the performance of three different forecasting method­

ologies in predicting individual daily returns of 58 UK stocks in the FTSE 

100. The methods used are support vector regression, k-nearest neighbours 

and linear regression The study is conducted across a dataset of sufficient size 

to render statistically meaningful results and provides insight into the ques­

tion of nonlinear vs linear predictability. Concurrently, we wish to ascertain 

to what extent UK stock returns are predictable, if at all. 
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The data for each stock consist 4100 days from 1986 - circa 240,000 data 

points in total. Applying each methodology in such a way as to produce 

meaningful comparative out-of-sample results by incorporating in-sample, 

validation and out-of-sample data sets we find that the nonlinear support 

vector regression models outperform linear and KNN moods by a factor of 

2 in terms of Sharpe Ratio. There is no significant difference between the 

linear and KNX results. Bootstrap tests are used to test the significance of 

the results. 

1.2.3 Chapter 4 

Chapter 4 investigates the application of linear ensemble models to forecast 

and trade 65 component stocks within the FTSE 100, using daily data over 

the years 1991-2006. Specifically, we are interested in what performance 

benefits if any are accrued by using ensemble models - models that combine 

the forecasts of a number of individual component models - over single model 

specifications. We do this by comparing the performance of a single linear 

AR model and four ensembles with differing specifications. 

The primary ensemble consists of 62500 component models built using the 

random subspace method in which randomly sampled subsets of the feature 

set are used to estimate each model with the final result combined via a 

majority vote. The performance is compared to a number of benchmarks 
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and it is found that this ensemble methodology improves the overall results 

both in terms of consistency across time periods and economic significance. It 

is also found that model selection or thinning improves performance further. 

1.2.4 Chapter 5 

In Chapter 5 we examine the channel break-out technical trading rule over 

a portfolio of thirty seven futures markets from 1982 to 2005. We look not 

only at a large portfolio of markets, which few studies attempt, but also in 

a manner which closely resembles how practitioners implement these rules 

by including a trade management strategy (TMS) using stop-loss and profit­

limit orders and accounting for transaction costs. Bootstrap tests are used 

to test the significance of the results and it is found that both the vanilla 

trading rule and the rule with the TMS added consistently rcalise significant 

net returns over the whole data sample. 
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Chapter 2 

Machine Learning & Ensemble 

Methods. 

The term Machine Learning (ML) is said to have been coined by Samuel 

(1959) in a study of checkers, where, to paraphrase, he described ML as, the 

field of study that gives computers the ability to learn without being explic­

itly programmed. Mitchell (1997) defines ML thus, "a computer program is 

said to learn from experience E with respect to some class of tasks T and 

performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience." The common theme throughout ML is the adap­

tation from experience with a concomitant improvement in generalisation 

performance on similar tasks. 

25 



2.1 Statistics and machine learning 

Whilst is it often said that what is termed "machine learning" is the prac­

tice of statistics by computer scientists, it is sometimes useful to differentiate 

between the two. Typically the difference between inferential statistics and 

machine learning is the manner in which they deal with prior knowledge in 

that with the former, a hypothesis is posited which is then tested using vari­

ous statistical machinery to either confirm or deny it - so in this sense we can 

say it is "confirmatory". Moreover, often a specific prior assumption regard­

ing the distribution of the data is required as the efficacy of many statistical 

tools rely on certain assumptions of "well-behaved" distributions. ML can 

be considered less confirmatory and more an exercise of data exploration, 

in that often little or no assumptions are made regarding the data, the aim 

being to derive this information from the data itself. In this sense statistics 

can be seen to be having more self-imposed limits and in certain situations 

can be less flexible. The trade-off is that often statistical methods deliver 

benefits in terms of greater theoretical soundness and interpretability. 

The reality is that both fields largely overlap each other; statistical methods 

are frequently explicitly incorporated within machine learning algorithms, 

such as regularisation in support vector machines and neural networks. Sta­

tistical model evaluation techniques such as bootstrapping (Enfron & Tib­

shirani, 1993) and cross-validation are standard techniques used in ML. ML 

frequently offers a more pragmatic perspective in the face of ever increasing 
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data, often tackling the computational issues when scaling up algorithms to 

large data sets, resulting in more practical algorithms for real world applica­

tions and improved experimental effectiveness. 

2.2 Classes of machine learning algorithms 

In the field of ML the main elasses of learning algorithms consist of su­

pervised, unsupervised, reinforcement and, more recently, multiple-instance 

learning (Dietterich et. a1. 1997)(sometimes considered a subset of super­

vised learning). This thesis deals predominantly with supervised learning 

in which the overall task involves the selection of a function, or hypothesis, 

from a given hypothesis space that approximates a desired response contained 

within a set of labelled training examples. Supervised learning algorithms 

can be subdivided into two main categories, regression and classification. 

2.2.1 Regression 

In this case the labels take on real values. Given a set of training data: 

(2.1) 

where Xi E X C ~N and the labels Yi EYe ~ 
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our objective is to find a function, or hypothesis, which minimizes some risk 

functional: 

R(Js) = J c(Js(x), y)d, P(x, y) (2.2) 

where c is the cost of making prediction is(x) when the actual value is y. 

The prediction function is is learned from the training data 2.1 using some 

learning algorithm. 

In practice the true distribution P(x, y) is unknown so we end up minimizing 

the empirical risk: 

(2.3) 

(for example the mean square error.) The problem is that minimizing 2.3 

is not necessarily equivalent to minimizing 2.2, and pursuing the former can 

lead to the problem of over-fitting It is important to take some measures 

to avoid this, the form of which will depend on the algorithm in question. 

This problem of over-fitting is encapsulated by the so-called bias-variance 

dilemma that is covered in section 2.11. 
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2.2.2 Classification 

Where the variable of interest is categorical and each output is assigned a 

label which represents the class information of the example. Classification 

involves the process of learning to separate objects into different classes based 

on a set of features. Examples include face, voice or handwriting recognition, 

medical diagnosis, forecasting the direction or state of market prices etc. 

During training the class labels are used as the desired outputs of the classifier 

which is trained to minimize some measure of error. 

More formally, we wish to classify objects: 

(2.4) 

As belonging to one of two classes: Yi E {-I, +1} On the basis of some 

labelled training data: 

(2.5 is the same as 2.1 but is repeated here for clarity.) 

That is, we wish to learn a mapping: 

Is: X ~ Y 

Is : x I---t Y 
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that generalizes to unseen examples. 

In the context of financial time-series forecasting regression is generally used 

although the resulting forecasts can be converted into simple directional fore­

casts that is, whether a series will rise or fall in the next time period. 

2.3 Model combination and ensembles in ma­

chine learning 

Model combination is analogous to diversification in investment management. 

Portfolios of assets are created in such a way as to diversify away as much 

risk as possible, usually within a mean/variance framework. In this sense 

creating ensembles is partly an attempt to diversify away model uncertainty 

or risk. 

Note in the case of models attempting to forecast financial markets, model 

accuracy, in terms of the percentage of times the model correctly forecasts 

the sign of the return, is only part of the story. It is also the magnitude of 

the return that must be accounted for. It is quite conceivable for a model 

to exhibit less than 50% directional accuracy but to still make money if the 

return per trade/forecast is enough to offset this. This can be measured by 

the following: 
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where RW is the average return of winning trades, RL the average absolute 

return of losing trades, A W , the percentage of winning trades and A L , 

the percentage of losing trades. A value greater one indicates a positive 

expectation for the model. 

2.4 Ensembles 

In the context of supervised learning an ensemble is a collection of individual 

"learning machines" (trained regression or classification mOflels - be they 

support vector machines, linear regression models, decision trees etc.) whose 

predictions are combined - typically via a weighted voting scheme - to create 

a final prediction model with the ultimate objective of improving overall 

accuracy. 

There is a rich and diverse literature of research conducted across mul-

tiple disciplines concerning optimal combination of regression and classi-

fication models. Recently much attention has been paid to this area in 

the machine learning community due to the increasing availability of cheap 

and fast computational resources. This research has been both theoretical; 

(Hanson & Salomon 1990), (Krogh & Vedelsby 1995), (Kittler, Hatcf, Duin & 

Matas 1998) and empirical;(Opitz & Maclin 1999), (Dietterich 2000b). Pre-
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dominantly the research addresses classification though much of it generalises 

to regression models. 

There exist a multitude of different methods for creating the individual mod­

els for the ensemble and of amalgamating the resulting prediction outputs. 

Note the term ensemble is used in this thesis though other terms, such as 

committee machines (Tresp 2001) , aggregation (Brors, Kohlmann, Schoch, 

Schnittger, Haferlach & Eils 2000), multiple classifier systems (Ho 1992), 

classifier fusion (Varshney 1996) can be found in the literature, reflective of 

an emerging discipline. 

The properties of a good ensemble are that the individual models are accurate 

and they make errors on different parts of the feature space. Although much 

of the empirical work utilises datasets from the VCI WEKA machine learning 

repository (Asuncion & Newman 2007) in order to mitigate the problem of 

"one algorithm, one dataset", it has not yet been established theoretically 

exactly which method of ensemble creation should be used. Empirical results 

so far show this to be context dependent. Moreover, this is complicated by 

the fact that although the VCI machine learning repository goes some way 

in standardising research in this area by allowing researchers to investigate 

methods using similar datasets, often only a subset of the available datasets 

is used, without proper clarification of motivation. 
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2.4.1 Why ensembles work. 

Dietterich (2000a) provides a number of fundamental reasons why it is possi­

ble to build ensembles that perform better than a single classifier. The first is 

statistical. Learning machines search a given space of H hypotheses with the 

objective of finding the best hypothesis that fits the data. Given that many 

real world applications suffer from insufficient data is it quite conceivable for 

the algorithm to find many different potential hypotheses all of which fit the 

data equally well but which mayor may not be close to the true function f. 

In this case an average of all the individual H's may result in a H that is 

closer to the true function f than any individual model. 

The second reason is computational. Many learning machines perform a local 

search in the H -space leaving them open to the problem of getting caught in 

local minima. Even if large amounts of data are available it can still be diffi­

cult to be certain that any given H is not simply a local optimum as opposed 

the a global one. This can be ameliorated by the ensemble averaging process 

which can provide a closer approximation to the true function. Neural net­

works are known to be prone to this problem and generally the analyst must 

perform many training runs using different starting weights in attempting to 

find a global optimum. Support vectors machines should suffer less from this 

issue as they involve a quadratic optimisation problem and therefore have a 

single global optimum. 
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The third reason is representational. Although many learning algorithms 

can be shown to be universal function approximators with proven asymptotic 

representation theorems, this is with the assumption of unlimited data. In 

the context of limited data the algorithms will perform only a limited search 

of possible Hypotheses. It may be the case that the true function cannot 

be represented by any of the hypotheses in H. Again, ensemble averaging 

can serve to expand the space of representable functions resulting in better 

approximation. 

2.5 Methods for constructing ensembles 

Valentini & Masulli (2002) provide a detailed taxonomy of ensemble methods 

under the headings of "generative" and "non-generative" methods. Non­

generative ensemble methods operate on a given set of previously designed 

models, attempting to find some optimal combination. They are not involved 

in the actual creation of new models. Generative methods create ensembles 

by attempting to increase the accuracy and diversity of the base learner 1. 

1 A base learner is any classification or regression model 
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2.5.1 Non-Generative Methods 

Probably the most common typc of non-gencrative mcthod consists of simply 

majority voting a sct of componcnt models' outputs. This mcthod can bc 

refined by including a weighting scheme in which those models achieving 

greater accuracy arc given larger weights with the intention of incrcasing 

thc overall accuracy. Other approachcs include fuzzy aggregation methods 

(eho & Kim 1995),(Kellcr & Yang 2000), (Vanccka & snd S Alya 2009), and 

Dempster-Schafer combination rulcs if thc outputs are possibilistic (Rogova 

1994). A hierarchical method called stacked generalisation (Duin & Tax 

2000) crcates a numbcr of second lcvel models that takc as inputs the outputs 

of the base models and then tries to learn an optimal combination. 

2.5.2 Generative Methods. 

These methods manipulate and modify the structure and characteristics of 

the training data to create different hypotheses and are best suited to so­

called unstable algorithms where small changes in the training data can pro­

duce large differences in the output predictions, an example being neural 

networks and decision trees, as opposed to nearest neighbour methods which 

arc considered relatively stable. 
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Bagging 

With the Bagging (Bootstrap Aggregating) (Breiman 1996) algorithm, a 

learning machine is repeatedly applied to bootstrap replicate training sets 

of size m (Grossman & Williams 2000), where each bootstrap replicate is 

drawn by randomly sampling with replacement from the original training set 

(typically m = n, the size of the training set). The individual base learn­

ers are then trained on these replicates which contain on average 63.2% of 

the original training data hence it is sometimes called the .632 bootstrap. 

Their outputs are then aggregated via majority voting to determine the fi­

nal ensemble output. That is, the final model evaluates out-of-sample data 

by querying each of the base classifiers on the sample and outputting their 

majority opinion. The main arguments for its effectiveness are (1) running 

several trials on uniform samples of a population results in more significant 

(less variant) statistical results, and (2) deferring to the majority decision 

can rid the classifier of noise-induced errors that occur only in a handful of 

the base classifiers. Typically the base classifiers are homogenous with only 

the parameters differing. 

Boosting 

The goal of boosting, due to Schapire (1990) and developed by (Freund & 

Schapire 1996), is to increase the accuracy of a given algorithm on a given 
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set of training instances, via successive creation of composite classifiers based 

on a filtration of the training set. 

Boosting is similar to Bagging in that it also manipulates the training set 

however it docs so in a slightly more intelligent manner. With Adaboost, the 

most popular variant of boosting, a model is applied to the training data and 

its accuracy then measured. The probability distribution over the samples is 

then re-weighted based on a measure of how hard each sample was to classify 

for the current model. In each iteration a new model is invoked to minimize 

the weighted error over the training set. The effect of the change in weights is 

to place more emphasis on samples that were miss-classified and less on those 

correctly classified. The final ensemble is then constructed with a weighted 

vote of each base learner, on the basis of its performance on its weighted 

training set. 

The method can suffer problems especially if base model/learning method is 

not that weak (Le., the error gets small very quickly), or the data contains 

a fair amount of noise, which can then lead to over-fitting as the model 

concentrates on what are likely to be noisy training instances. 

Cross-validated committees 

Another training set sampling method consists of constructing training sets 

by leaving out disjoint subsets of the training data as in cross-validated com-
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mittees (Parmanto, Munro & Doyle 1996). For example, the training set can 

be randomly divided into n disjoint subsets. The base learner is trained n 

times, each time leaving out one of the subsets from the training set to usc 

as a validation set. The final model is then creating using an appropriate 

voting scheme. 

Stochastic Discrimination 

The Stochastic Discrimination (Kleinberg 1990) method operates by forming 

weak base learners which are then combined via the Central Limit Theorem 

to create a strong classifier. The method is designed to be resistant to over­

training (Kleinberg 2000) and has been shown to work well in practice (Chen 

& Cheng 2000). Kleinberg argues that it is not just another method of com­

bining classifiers in the sense of attempting to create somewhat orthogonal 

learners for combination but rests on strict mathematical notions of enrich­

ment, uniformity, and projectability. Its effectiveness is shown in Kleinberg 

(2000) where it outperforms bagging and boosting on a large number of 

benchmark problems. It is perhaps less popular as it requires a number of 

strict assumptions which may not hold in practice and the relevant papers 

are mathematically dense, restricting accessibility to practitioners. 
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Random subspace method (RSM) 

With the random subspace method (Ho 1998) ensemble components usc only 

a subset of the available training features/inputs. A subset of features is 

randomly selected and assigned to each component learner. This way, one 

obtains a random subspace of the original feature space with models being 

constructed inside this reduced subspace. The final decision rule is based on 

a weighted majority voting on the basis of each individual model's accuracy. 

The RSM is derived from the method of Stochastic Discrimination(SD) intro­

duced by Kleinberg (1990),Kleinberg (2000) and shares some of its theoretical 

roots. 

RSM ensembles have been shown to outperform single models in a varI­

ety of applications (Munro et al. n.d.),(Skurichina & Duin 2002), (Chawla 

& Bowyer 2005), (Zhao et al. 2005), (Bertoni et al. 2005). Rooney et al. 

(2004) compared RSM, bagging and boosting using regression and near­

est neighbours models on 15 data sets selected from the WEKA (Witten 

& Frank 1999) repository and found RSM to be most effective. 

The Input Decimation Approach. 

Input decimation (Turner & Oza 1999) attempts to reduce the correlation 

among the errors of the base classifiers, decoupling the base classifiers by 

training them with different subsets of the inputs features. It differs from 
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RSM as for each class the correlation between each feature and the output 

of the class is explicitly computed, and the base classifier is trained only 

on the most correlated subset of features. Other methods for combining 

different feature sets using genetic algorithms are proposed by Kuncheva & 

Jain (2000). 

Output Coding decomposition methods 

Output Coding (OC) methods decompose a multi-class classification problem 

into a set of two-class sub-problems and then recompose the outputs to form 

the classification (Mayoraz & Moreira 1997). With this method the various 

classifiers are not solving the same problem but rather they are each solving 

a binary classification problem. Each class is encoded as a bit string, or 

"codeword", with a diffcrent two class base learner (dichotomi~er) traincd 

to learn each codeword bit. When dichotomies are used to classify new 

points, a suitable measure of similarity between the codeword computed by 

the ensemble and the codeword classes is used to predict the class. Different 

decomposition schemes have been proposed in the literature. 

ManipUlating the output targets 

This involves using different y values for the output(targct) data. For exam­

ple, typically financial models will utilise log returns as the output/dependent 
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variable data but of course there are an infinite amount of possible outputs 

to choose from. One example is the use of binary targets whereby if thc 

price goes up the output is a one and if the price goes down it is a minus 

one. This idea can be taken further with the returns being divided into a 

number of deciles. Moreover, the first difference price transformation (log re­

turns) essentially acts as a specific form of high pass filter. There is nothing 

stopping the analyst from using a different filter, for example it may be that 

using daily log returns for a financial forecasting model results in a model 

that changes forecasts too frequency, producing large transaction costs. It 

might be possible to use a smoothed target in order to reduce the trading 

frequency in the hope of producing a more efficacious model. 
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2.6 Support Vector Machines 

2.6.1 Introduction 

The most widely used technique in econometric analysis is that of Classical 

Statistical Inference in the form of linear regression. This methodology is 

based on a number of fundamental assumptions: 

1. The data one is working with can be modelled by a set of linear ill 

parameter functions. 

2. In most rcal-life applications, the stochastic component of data is the 

normal probability distribution law, i.e., the underlying joint probabil­

ity distribution is Gaussian. 

3. Due to the second assumption, the induction paradigm for parameter 

estimation is the maximum likelihood method that is reduced to mini­

mization of the residual sum of the squared errors (RSS) cost function, 

known as least squares. 

When using parametric approaches apriori assumptions are made with re­

spect to the structure of the underlying data generating process. Assuming 

the correct functional form, a model is then built by estimating the unknown 

parameters from the data. The model choice decision is frequently based 
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on issues of tractability and interpretability rather than on whether the cor­

rect functional form has been chosen from those available. In many real life 

problems it is often the case that these assumptions arc violated resulting in 

model miss-specification. 

Given a vector of inputs X = (Xl, X 2 , ••. ,Xn ) we wish to predict the value 

Y given via the model 
n 

y = ~o + LXj~j (2.6) 
j=l 

The term ~o is the intercept or bias. If the bias term ~o is included in the 

vector of coefficients ~j and a constant variable 1 is included in Xj, in matrix 

notation we have 

(2.7) 

The most widely used method of fitting this model to data is the afore men-

tioned least squares method. In this case the coefficients f3 are chosen such 

the residual sum of the squared errors (RSS) arc minimized 

N 

RSS(f3) = L(Yi - xT (3)2 (2.8) 
i=l 

With non-parametric approaches the unknown density and distribution func-

tions are replaced by their non-parametric density estimators. In cases with 
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sufficient data non-parametric estimators often reveal features of the data 

that are undetectable under parametric techniques. 

In chapter 3 of this thesis we focus on comparing the nonlinear non-parametric 

approach of support vector machines with traditional linear methods in the 

context of financial forecasting. The main focus is on Support Vector Ma­

chine Regression of which a detailed exposition follows. 

2.6.2 Support Vector Machines 

The Support Vector Machine (SVM) is a powerful machine learning method 

for classification and regression and is fast replacing neural networks (though 

it is actually a super set of neural networks) as the tool of choice for nonlinear 

prediction and pattern recognition tasks, primarily due to their ability to 

generalise well on new data and their solid theoretical foundation. SVMs are 

a member of a large class of learning algorithms known as kernel methods. 

Generally speaking kernel methods exploit information regarding the inner 

product between data instances and it is possible to re-write many algorithms 

such that they only need to consider these inner products. To do this kerncIs 

are introduced which are essentially distance measures in some feature space. 

SVM Regression involves a nonlinear mapping of an n-dimensional input 

space into a high dimensional feature space. A linear regression is then 

performed in this feature space. SVMs use the structural risk minimization 
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(SRM) (Vapnik 2000) induction principle which differentiates the method 

from many other conventional learning algorithms based on empirical risk 

minimization (ERM) alone, for example standard neural networks. This is 

equivalent to minimizing an upper bound in probability on the test set error 

as opposed to minimizing the training set error, whieh should result in better 

generalisation. Importantly for practitioners, recently published research ha.'l 

shown successful application of the SVM methodology in a wide variety of 

fields (Barabino, Pallavicini, Petrolini, Pontil &, Verri 1999), (Joachims 1997), 

(Mukherjee, Tamayo, Mesirov, Slonim, Verri & Poggi a 1999) ,(Ince 2000). 

In the field of finance SVMs have been used in interest rate curve estimation 

(Monteiro 2001), credit rating prediction (Huang et al. 2004), financial time­

series prediction (Yang et al. 2002) and modelling stock indices (Abraham 

et al. 2003). 

The method has a number of advantages over other techniques; the param­

eters that need to be fitted are relatively low in number and, unlike other 

methods such as neural networks, they do not suffer from local minima. The 

two main features of SVMs are their theoretical motivation from statisti­

cal learning theory and the use of kernel substitution to transform a linear 

method into a general nonlinear method, with little added complexity. 
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2.7 How SVMs work. 

2.7.1 SVM Classification 

The task of classification involves the process of learning to separate objects 

into different classes based on a set of features. Examples include face, voice 

or handwriting recognition, medical diagnosis, forecasting the direction of 

market prices etc. 

More formally, we wish to classify objects: 

Xi E X C ~N 

As belonging to one of two classes: 

Yi E {-I, +1} 

On the basis of some labelled training data: 

5 = {(Xl, yd,·· . , (Xl, yd} 

That is, we wish to learn a mapping: 

is : X --+ y 

is: X ~ Y 

that generalizes to unseen examples. 
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Linear separation of the training set. 

We wish to find a decision rule that separates or explains the training set to 

a certain level of accuracy. In the example shown in figure 2.1 the task is 

to separate the red dots from the yellow dots. In order to do this we want 

to find a hyperplane wT Xi + b = 0 corresponding to the decision function 

iw,b(X) = sgn(wT X + b) that separates red positives + from yellow negatives 

Figure 2.1: Linear separation of the training set 
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The separating hyperplane is defined by the weight vector w , which is normal 

to the plane, and the offset b , the distance from the origin. Both wand b 

are learnt from the training data. 
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The optimal separating hyperplane. 

It is easy to find a hyperplane that minimizes the empirical error and there 

are of course infinitely many hyperplanes that will separate the data but what 

we're interested in is that hyperplane which results in the best generalisation 

performance on unseen examples - we are interested in the hyperplane that 

minimizes the expected error. In the figure 2.2 below hyperplanes HO, HI and 

H2 all separate the two classes with zero empirical risk or error but which will 

generalize best? Intuitively HO is best as it provides the largest separation 

between the classes. 

Figure 2.2: Optimal separating hyperplane 
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The support vector machine algorithm constructs a hyperplane where the 

margin of separation is maximised - this is defined as the optimal separating 

hyperplane and in this example is a decision surface that maximises the 

margin between red and yellow examples see figure 2.3. More specifically it 
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maximises the margin between the convex hulls of the data (to picture the 

convex hulls imagine rubber bands placed around the two classes of data). 

Figure 2.3: Hyperplane & Margin 

Margin 
Optimal 
hyperplane 

The hyperplane is uniquely determined by the support vectors - those vectors 

that lie on the margin, see figure 2.4. Because the solution only depends on 

the support vectors it is said to be sparse, a desirable property. 

This results in the following constrained optimisation problem: 

Find the weight vector w 

that minimizes the objective function: 

(2.9) 

subject to Yi(W
T 

Xi + b) ;:::: 1, i = 1, . .. , l. 
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Figure 2.4: Support Vectors & Margin 

Hyperplane uniquely 
determined by vectors 
on the margin, the 
Support Vectors 

In this case Margin 
can be shown to be: 

- because the scale is arbitrary the numerical value of the margin is set to 1. 

Linearly nonseparable patterns: Introduction of slack variables . 

The majority of real world datasets are unlikely to be linearly separable so a 

hyperplane that exactly separates the data will not exist. The concept of a 

soft margin is introduced by using slack variables that allow some errors to 

exist, see figure 2.5. 

Therefore when data are not linearly separable the objective is to maximize 

the margin with respect to correctly classified example, ubjcct to minimiz-
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Figure 2.5: Introduction of slack variables . 

Marei 

ing training error. 

Minimize: 

(2.10) 

subject to Yi(WT 
Xi + b) ~ 1- ~i) i = 1, ... , l'~i ~ 0 

C > 0 (chosen by user) determines the trade-off between margin maximiza­

tion and training error (empirical risk) minimization. 

~i are slack variables. 
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2.7.2 N onlinear data. 

Some classification task involve nonlinear data in which case no linear hy-

perplane will sufficiently separate the different classes. To extend the SVM 

algorithm to this case the data are transformed to a higher-dimensional space, 

where they are hopefully linearly separable, and then a linear SVM is learned 

in that space. Once learned the linear SVM can be tran formed back to orig-

inal space. 

Figure 2.6: Transformation into higher dimensional space 
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The "Kernel trick", nonlinearity via kernel substitution. 

The transformation into a higher dimensional space is carried out using kernel 

functions. Kernel substitution is possible as feature vectors only occur as 

inner products in the decision function and training algorithm. 

Denote the mapping X - H, x ~ ¢(x) 
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then the decision function becomes: 

f(x) = sgn(¢(xf w* + b*) (2.11) 

~ 'gn (t Y;"; ¢(x)' ¢(x,l + b' ) (2.12) 

The mapping is never explicitly carried out; a kernel function computes the 

inner product in H: 

K(x, z) == ¢(X)T ¢(z) 

Example Kernels: 

Polynomial: 

( 
XT Z ) d 

K(x,z) = (j2 + 1 (2.13) 

RBF: 

K(x, z) = exp ( _llx 2~:112) (2.14) 
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2.7.3 Support Vector R egression 

The SVM algorithm is extended to regression by introducing Vapnik's so-

called E - insensitive loss: 

V(x, y, f) = max(O, 1 y - f(x) - E I) (2.15) 

This counts as training errors only those points which fall outside an c -band 

of the fitted solution. In other words we do not take into consideration errors 

unless they are greater than E - this allows the concept of margin to be carried 

over to the regression case see figure 2.7. 

Figure 2.7: Support vector regression & the tube 
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A tube with radius E is fitted to the data. The trade-off between model 

complexity and points lying outside the tube is controlled by minimizing: 
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(2.16) 

( in this case C controls penalty magnitude for points lying outside the ( 

tube) 

In this case we need two types of slack variable, 

Minimize: 
I 

¢(w,E(*)) = ~lIw112 + CL)Ei,E;) 
i=l 

subject to: 

!(Xi) - Yi ~ E + ~i 

Yi - !(Xi) ~ E + {; 

~i' {i ~ 0 i = 1, ... ,1 

As before, nonlinearity is introduced via kernel substitution. 

(2.17) 

Although the SVM as a learning method has only recently gained in popular­

ity, the underlying principles of the algorithm were developed at AT&T Bell 

Laboratories by Vapnik and co-workers (Boser, Guyon & Vapnik 1992),(Guyon, 

Boser & Vapnik 1993),(Cortes & Vapnik 1995), (Scholkopf, Burges & V.Vapnik 

1995) and (Vapnik, Golowich & Smola 1997) and arc based on ideas derived 

from statistical learning theory. The roots of this approach, the SVM mcth-
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E-insensitive loss 

Penalty 

- E 

Figure 2.8: Lo s Functions 
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ods of constructing the optimal separating hyperplane for pattern recognition 

goes back to 1964 (Vapnik & Chervonenkis 1964). In 1992 the SVM technique 

was generalized for nonlinear separating surfaces (Boser et al. 1992). In 1993 

it was extended for constructing decision rules in non separable case (Cortes 

& Vapnik 1995). In 1995 the SVM method for estimating real-valued func­

tion was obtained (Vapnik 1995), and lastly, in 1996 the SVM method was 

adopted for solving linear operator equations (Vapnik et al. 1997). This re­

cent increase in popularity is due to advance in methods and theory which in-

clude the extension to regression from the original classification formulation. 

For a thorough treatment see (Vapnik 1998) ,(Vapnik 1995) , the tutorials 

(Burges 1998), (Smola & Scholkopf 1998) and the introduction (Cristianini 

& Shawe-Taylor 2000). 

Muller, Smola, Ratsch, Schokopf Kohlmorgen & Vapnik (1999) used SVMs 
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with radial basis function networks within a time series prediction applica­

tion. One application considered was data set D from the Santa Fe compe­

tition. They achieved excellent results for support vector regression - 37% 

above the best result achieved during the Santa Fe competition. They add, 

"Clearly, this remarkable difference is mostly due to the segmentation used 

as preprocessing step to get stationary data, nevertheless still 29% improve­

ment remaining compared to a previous result using the same preprocessing 

step." 

2.7.4 Summary 

In summary, the main advantages of the support vector machine methodology 

are: 

1. It is explicitly based on a theoretical model of learning (Vapnik 1995). 

2. There are theoretical guarantees with regards to their performance 

3. Only a few parameters need to be chosen. We only need to choose the 

width of the RBF or the degree of the polynomial kernel, then the error 

rate C and epsilon. 

4. It is not affected by local minima due quadratic optimization with 

global minimum. 
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5. It is somewhat more interpretable than neural networks in that the 

method provides a list of the support vectors, those points which arc 

most important. In addition certain kernel functions such as the poly­

nomial kernel can be directly analysed in feature space. 

6. Its formulation means that it is less affected by curse of dimensionality 

so can be used with high dimensional data. 

7. Sparseness of solution in that only the support vectors are required. 

The main disadvantage of SVMs in applications is training time compared 

to methods such Linear Regression. 
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2.8 Instance-based learning and the Nearest 

Neighbour method of forecasting. 

Instance-based learning (IBL) methods (Aha et al. 1991) are generally re­

ferred to in the context of classification where one is trying to assign a class 

label to an unknown object. The methods usc specific instances (vectors 

of training examples or independent variables) to perform the da.<;sification, 

rather than using generalizations of the training data. IBL algorithms are 

also known as lazy learning algorithms, as they save some or all of the training 

examples and delay all effort towards inductive classification until requests 

for classifying yet unseen instances are received. They assume that similar 

instances have similar classifications: novel instances are classified according 

to the classifications of their most similar neighbours. 

IBL algorithms ultimately derive from the original nearest neighbour method 

that is attributed to Fix & Hodges (1952) and Cover & Hart (1968). It is a 

simple yet powerful non-parametric forecasting and classification algorithm 

that, as its name suggests, classifies or generates a foreca..<;t for a new training 

instance to the class or forecast of its nearest neighbour in some measurement 

space using, most commonly, euclidean metrics. The approach is based on 

the idea of locating local variation in the time-series rather than attempting 

to model the global properties of the data. 

Nearest Neighbour Rule: 
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1) Given training data or sample set S = {(Xl, Yl), ... , (Xl, Yl)} 

2) Define the nearest neighbour 

N(x, S) = arg min:r,Esllx - xiii (2.18) 

3) Label test point with the label of N(x, S) 

A slight modification results in the so-called k-nearest neighbour technique 

which classifies a new instance to the class most heavily represented among 

its k nearest neighbours, rather than just a single neighbour. 

It is also possible to use the algorithm for function approximation (read 

regression) as we do in chapter 3 of this thesis. Instead of assigning the 

most frequent class label among the k-nearest neighbours most similar to 

the pattern to be classified, an average of the function values (dependent 

variables) of the k training instances is calculated and serves as the prediction 

for x. 

A variant of this approach calculates a weighted average of the k nearest 

neighbour's function values (Dudani 1975). Given a specific instance x, the 

weight of a neighbour increases by its respective proximity to x. An optimal 

value of k can be determined automatically from the training set by using 

leave-one-out cross-validation (Weiss & Kulikowski 1991). 

To use the method one has to choose k, and a distance metric, which is usually 
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the euclidean distance measure. In the context of forecasting financial time­

series another parameter is the "lookback" period, L. That is, how far back 

in the past should the algorithm search for nearest neighbours. It might 

make sense to limit how far back in time nearest neighbours are searched for 

as recency may be relevant. 

The following describes how the method is used in chapter 3 to forecast 

financial times-series: 

1. Decide on values for k, L and use the euclidean distance measure. 

2. Choose an initial starting point in the dataset from which to make the 

first prediction. 

3. Calculate the euclidean distance between the most recent instance to 

be forecast and all other instances from T - L (or the beginning of the 

data if the starting point is less than L ) to T - 1. 

4. Find the k nearest neighbours and sum their respective outputs/dependcnt 

variables weighted by their distance to the recent instance. 

5. If the result from step 4 is greater than zero then the forccast is long 

else it is short. 
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2.9 Model Selection, Data Snooping and Ran-

domisation Tests. 

Given :some data, there will always be an infinite number of viable models 

or hypotheses 2 that fit the data equally well and without making further 

assumptions there is no reason to prefer one model or hypothesis over an-

other. Therefore, we are forced to make assumptions that provide us with 

an inductive bias. Inductive bias refers to the assumptions a given learning 

method has and uses in making its inductions. For example, when using 

the nearest neighbour method to classify an unseen example ba..'ied on some 

measure of distance, one finds the nearest example and assigns its class label 

to the new point. This method has a bias: it assumes that :similar examples 

(usually within a euclidian space) will have similar outcomes. Mitchell (1980) 

explains the importance of bias for generalisation. 

If consistency with the training instances is taken as the sole 

determiner of appropriate generalizations, then a program can 

never make the inductive leap necessary to classify instances be­

yond those it has observed. Only if the program has other sources 

of information, or biases for choosing one generalization over the 

other, can it non-arbitrarily classify instances beyond those in the 

2The term hypotheses is used here in the vernacular of machine learning as opposed to 
statistics. 
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training set. 

Mitchell (1980) 

2.10 Model Selection. 

Model selection is the task of choosing a model from a set of potential models 

with the best inductive bias, which in practice means selecting parameters 

in an attempt to create a model of optimal complexity given (finite) training 

data. Ultimately what is of interest in an applied forecasting exercise is the 

performance accuracy of the models3 when presented with new unseen/out­

of-sample data assumed to be drawn from the same distribution. If the model 

explains the training data perfectly but does not generalise it will be of little 

usc. In other words, we would like to choose one that minimizes the expected 

out-of-sample error. 

The need to carry out model selection is ubiquitous across many research 

disciplines and is an inherent part of scientific enquiry in general. Nat-

urally many proposed solutions have arisen within a large body of litera-

ture dedicated to the subject. These methods can be thought of as being 

divided into empirical and theoretical model selection methods. Theorcti-

cal methods include Akaike Information Criterion (Akaike 1973), Structural 

3Here the term model is used somewhat loosely in that it can refer to a forecasting 
model, method or trading rule which hasn't necessarily been estimated on data. 
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Risk Minimization (Vapnik & Chervonenkis 1974), Bayesian Information 

Criterion (Schwarz 1978). Empirical methods include adjusted R-squared 

(Wherry 1931), Bootstrap (Efron 1979) and Cross-validation (Stone 1978). 

Many of the methods use some form of penalty term in an attempt to balance 

the trade-off between model complexity and closeness of fit. The choice of 

method will depend on the context. 

In this thesis we primarily use cross-validation, a method that is prevalent 

in machine learning. The term cross-validation or, more generally, hold-out 

testing entails a wide range of techniques but most commonly the proce­

dure divides the data in two parts: the training set, on which the model 

is estimated, and the hold-out set, on which its performance is measured. 

More generally, the k-fold cross-validation 4 procedure divides the data into 

k equally sized folds. It then produces a model by training on k - 1 folds 

and testing on the remaining fold. This is repeated for each fold, and the 

observed errors are averaged to form the k-fold estimate. Figure 2.9 shows an 

example using k=4. Leave-one-out cross-validation is k-fold cross-validation 

taken to its logical extreme, with k equal to N, the number of data points 

in the set. It should be noted that k - fold cross validation is generally 

more effective on small data sets than the simple 1 - fold hold out method 

(Goutte 1997). 

The empirical work contained within this thesis uses the following method-

4The term "k-fold" comes from the machine learning literature. See for example Bengio 
& Grandvalet (2004). 
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Figure 2.9: K-fold Cross Validation (K =4) 
Total number of examples 
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ology: 

1. The data are divided into three separate sets, an in-sample, validation 

and out-of-sample set. 

2. The models (learning algorithms, trading rules) are then estimated on 

the in-sample set. 

3. Models are then tested on the validation data. 

4. The model (or subset of models) exhibiting the optimum performance 

based on some measure is chosen and finally tested on the out-of-sample 

data. 

The in-sample comprises the earliest available data and the out-of-sampl the 

most recent. K-fold cross-validation would be preferable but requires greater 

time and computational resources. This computational overhead is especially 

65 



costly in the context of the nonparametric nonlinear models evaluated in thiH 

thesis. 

Another important factor is the degree to which the time ordered nature of 

asset prices is relevant that is, if the data are found to exhibit the charac­

teristic of structural breaks - when the underlying variable expcrienceH Homc 

fundamental change - then it may be inadvisablc to choose modeb based 

on their performance on earlier and possibly redundant data as they will lw 

biased. 

2.11 Bias-Variance Tradeoff 

As touched on before when estimating models it iH rarely the objective to 

arrive at a function that represents the data exactly but rather, it iH to build 

a model of the underlying data generating process in the hope that it will 

generalize well on new data. 

Intuitively, if the function fits the data exactly it is less likely to result in good 

out-of-sample performance as it will have fitted much of the noise contained 

within the sample. Conversely if the fit isn't close enough this will also 

generally lead to sub-optimal results as the function will not be sufficiently 

expressive. 

It is instructive to think of this problem in the context of the so-called 
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bias/variance trade off. The terms bias and variance come from the widely 

known decomposition of the generalization error of a model into the sum of 

the bias squared plus the variance (Geman, Bienenstock & Doursat 1992). 

Bias. The extent to which the average (over all data sets) of the estimator 

differs from the desired function. 

Variance. The extent to which the estimator fluctuates around its expected 

value as the sample varies. The best generalization is obtained with the 

optimal compromi e between the conflicting requirements of small bias and 

small variance. 

Figure 2.10: Bias Variance trade off. 

Optimal fitting E=bias2+var 

var 

bias2 

More formally, a sample X = xt, yt, is drawn from unknown joint probability 

density p(x, y). Using this sample, the estimate g(.) is constructed. The 

expected square error (over the joint density) at x can be written as 
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E[(y - g(X))2 I xl = E[(y - E[y I X])2 I xl + (E[y I xl - g(X))2 
, 'Y' ~, V' ~ 

(2.19) 

Noise Squared error 

The first term on the right is the variance of y given x; it does not depend 

on g(.) or X. It is the variance of noise added, (1"2. This is the part of error 

that can never be removed, no matter what estimator is used. The second 

term quantifies how much g(x) deviates from the regression function, E[Ylxl· 

This does depend on the estimator and the training set. It may be the case 

that for one sample, g(x) may be a very good fit; and for some other sample, 

it may make a bad fit. To quantify how well an estimator g(.) is, the average 

is taken over all possible datasets. 

The expected value (average over samples X, all of size N and drawn from 

the same joint density p(y, x)) is 

Ex[(E[y I xl - g(X))2 I xl = (ElY I xl - Ex [g(X)])2 + Ex[(g(x) - Ex[g(xWl 
, ...,. ", 'Y I 

Bias Variance 
(2.20) 

As we mentioned previously, bias measures how much g(x) is wrong disre­

garding the effort of varying samples, and variance measures how much g(x) 

fluctuates around the expected value, E[g(x)], as the sample varies. 
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For example: To estimate the bias and the variance, a number of datasets 

Xi = xLyL i = 1, ... , M, are generated from some known f(.) with added 

noise. Each dataset is used to form an estimator gi (.), as f (.) is unknown 

as are the parameters of the added noise. Then E[g(x)] is estimated by the 

average over gi (. ): 

Estimated bias and variance are: 

Bias2 (g) = it l:T[g(xt) - f(xt)J2 

Variance(g) = N~ l:t l:t[gi(Xt ) - 9i(Xt )J2 

Note that the expressions for bias and variance are functions of the input 

vector x. To best understand, consider the training set to be fixed and finite. 

Ideally it would be as large as possible. 

Now consider a hypothesis space, that is the set of potential functions that 

map the input space to the output space. Less formally, just consider the 

number of parameters. 

1. Too few parameters: high bias/low variance 

2. Too many parameters: low bias/high variance 

For example, consider a training set of n points. 
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1. One could fit a straight line - too few parameters (high bias/low vari­

ance). 

2. The training set can always be fit exactly with a polynomial of degree 

n - 1 too many parameters (low bias/high variance). 

Figure 2.11: Fitting a Polynomial- the bias variance trade off. 
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Figure 2.11 depicts an example where the order M of a polynomial is in­

creased from 0 to 7. Initially polynomial of order zero can be seen to undcr-
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fit the eight data points. The fit becomes more reasonable as the order is 

increased but finally it noticeably overfits the data. 

2.12 Data snooping. 

Data snooping is related to model selection and results when a set of data 

is used more than once for purposes of inference or model selection and can 

lead to distortions in conventional significance tests that do not take it into 

account. Data snooping is a serious issue and often difficult to avoid in 

situations where data are limited. Empirical finance is especially prone to 

this given the large number of studies conducted over a relatively limited 

set of data (Lo & MacKinlay 1990). Data snooping as a problem has been 

recognised for some time, Cournot (1843) writes 

... usually these attempts through which the experimenter passed 

don't leave any traces; the public will only know the result which 

has been found worth pointing out; and as a consequence, some­

one unfamiliar with the attempts which have led to this result 

completely lacks a clear rule for deciding whether the result can 

or can not be attributed to chance. 

It can take a variety of forms, some obvious and others more subtle. An 

obvious example in the context of searching for profitable trading rules is 
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where a researcher experiments with many different rules and parameters 

in-sample and chooses that rule which results in the best performance. The 

problem is that by testing many rules on the same data inevitably some will 

perform well even if just by chance, rather than due to any modelling of 

inherent structure in the data. As Sullivan et al. (1999) point out: 

As time progresses, the rules that happened to perform well his­

torically receive more attention and are considered serious con­

tenders by the investment community, while unsuccessful trading 

rules are more likely to be forgotten. After a long sample period, 

only a small set of trading rules may be left for consideration, and 

these rules historical track record will be cited as evidence of their 

merits. 

A more subtle version is collective data snooping whereby many individual 

researchers conduct single in-sample ex-ante tests, yet unbeknownst to them, 

their individual efforts combine and result in the equivalent of data snooping. 

This occurs as those results that reject the null are more likely to be pub­

lished while those that don't are filed away, never to see the light of day, re­

sulting in the file-drawer problem/publication bias (Rosenthal 1979),(Denton 

1985),(Ioannidis 2005). What is especially problematic is that researchers in 

this case are not aware of the consequences of their individual actions. There 

is an additional consequence in that later researchers exacerbate the situation 

by building on the original published, but ultimately snooped, results. 
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2.12.1 Accounting for data snooping 

When conducting a single hypothesis test typically a maximum probability 

el, set at some conventional level (usually 0.05), is specified of rejecting the 

null when it is in fact true - this is the probability of committing a Type 

I error. When testing multiple hypotheses where each is assigned a Type I 

error probability, the probability that at least some Type I errors are com­

mitted increases. When it is recognised that a particular question of interest 

will involve testing more than one hypothesis at a time (multiple hypothesis 

testing or multiple inference as it is sometimes known) a number of methods 

have been developed, for a review see Shaffer (1995). The most commonly 

used method is to control the familywise error rate (FWE), which is the 

probability of making at least one false rejection. 

White (2000) provides a formal framework that specifically quantifies the 

effects of data snooping and tests the null hypothesis that the best model 

unearthed during a specification search has no predictive ability over a bench­

mark model. It is appropriately named the "Bootstrap Reality Check" (BRC). 

In order to account for data snooping in the area of technical trading rules 

Sullivan et al. (1999) use the BRC to test whether trading rules found by 

Brock et al. (1992) still show significance when controlling for data snooping 

(they do). 

The best rule is searched for by applying a performance statistic to all trading 
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rules considered, then a p-value is obtained from comparing the performance 

of the best rule to approximations of the asymptotic distribution of the per­

formance statistic. The BRC accounts for the increasing number of alterna­

tive models being tested by increasing the critical value as additional rules 

are added to the comparison. It is able to do this as the best performance 

statistic is a maximum, and the bootstrap procedure uses all rules being 

compared to compute bootstrap maxima, thus obtaining a non-parametric 

empirical distribution for the maximum (best) performance statistic under 

the null. 

The hypotheses are: 

Ho : No method is better than the benchmark. 

Hi: At least one method is better than the benchmark. 

Hansen (2005) notes that the BRC is overly conservative and may reduce 

rejection probabilities under the null by not properly accounting for situa­

tions where trading rules that exhibit significantly inferior performance to 

the benchmark are included in the set of rules being tested. 

2.12.2 Randomization tests 

In this thesis we used bootstrap randomization tests to test for the sig­

nificance of our results. All the studies are carefully constructed to allow 
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robust out-of-sample testing. We do not explicitly account for the form 

of data-snooping above as it isn't necessary when estimating forecasting 

models whose model selection procedure involves selection ex-post on in­

sample/validation data and testing only those models ex-ante on out-of­

sample data. 

The first empirical study we conduct is a study on forecasting FTSE100 

stocks using three different types of models. Once we have completed the 

whole modelling procedure we wish to know how well the models perform 

out-of-sample. It's not enough to simply observe that the models' predictions 

resulted in an appreciable rate of return, we need also to know how they 

performed against models that have no "skill". One way of doing this is 

to compare the performance of each model to what we would expect if the 

models had no predictive ability. 

A method of doing this is to use randomisation tests, initially introduced by 

R.A.Fisher (1935), which give one the probability of the observed model's 

performance assuming the null hypothesis of no skill. Randomisation tests 

are a useful alternative to more traditional parametric tests for analysing 

empirical research data. They have the advantage of not making any distri­

butional assumptions about the data such as normality, as is often inappro­

priate for financial data, and remain as powerful as parametric tests such as 

the T-test. 

In testing a single hypothesis, the probability of a Type I error, i.e., rejecting 
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the null hypothesis when it is true, is usually controlled at some designated 

level Q. The choice of Q should be governed by considerations of the costs 

of rejecting a true hypothesis as compared with those of accepting a false 

one. Because of the difficulty in quantifying these costs and the subjectivity 

involved, Q is usually set at some conventional level, often 0.05. 

When using the more common T -test one assumes that the data arose by 

drawing samples from two normally distributed populations, with the ques­

tion being whether the two populations differ in their mean, that is, how likely 

is it that the observed difference between the samples would be realised if 

there is no difference between the population statistics. The randomisation 

test, on the other hand, involves creating a large number of randomised data 

set replicates that could have arisen under the null (the null in this case be­

ing no predictive ability) and then computing some statistic and examining 

its distribution. The empirical distribution of this statistic is then used to 

estimate alpha, the probability of rejecting the null hypothesis when in fact 

the null is true. 

We can create an empirical distribution under the null by scrambling the 

order of a model's trades N times and then comparing its realised perfor­

mance to this distribution. The statistic used to measure performance in 

this case is termed the modified sharpe ratio (MSR), which is calculated by 

simply dividing the percentage return realised in the out-of-sample data by 

the standard deviation of the daily returns. 
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We randomise the order of actual trades (a single trade being a time period 

during which the model's daily forecasts do not change direction) 10,000 

times and calculate the MSR for each replicate. Then we calculate how many 

of the random replicates MSRs' were below that of the particular model being 

tested. 
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Chapter 3 

Forecasting FTSE 100 stocks 

using support vector regression, 

linear regression and k-nearest 

neighbour methods. 

3.1 Introduction 

In this chapter we attempt to predict the daily returns of 58 UK stocks in 

the FTSE 100 using three different methodologies, namely; support vector 

regression, k-nearest neighbours and linear regression. The objective is to 
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compare the results of the three modelling techniques, linear and nonlinear, 

across a dataset of sufficient size to render statistically meaningful results. 

Concurrently, we wish to ascertain to what extent UK stock returns are 

predictable, if at all. 

In pursuing this task the main priority was to keep the initial model as 

simple as possible, using simple independent variables and dispensing with 

any attempts at feature selection. The idea was to create a benchmark model 

with which to compare later models that will include a more detailed model 

building procedure, including the construction of ensembles. 

3.2 Model Design and Methodology. 

3.2.1 The Data 

The FTSE 100 index (Financial Times Stock Exchange Index 100) is a share 

index of the 100 most highly capitalised UK companies listed on the London 

Stock Exchange that began on Jan 3rd 1984. 

There are different approaches when it comes to deciding how much data to 

use when designing financial forecasting models. One view is that markets 

are always changing and therefore one does not want to use data too far 

back in history, as there is a danger that much of it will be redundant. The 
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other approach is to use as much data as is available, reasoning that the 

only way to have confidence in the model 's final results is if it has acceptable 

performance over as long a data history as possible. We subscribe to the 

latter approach. 

As a sizeable data history was desirable only those stocks that had price 

histories going as far back as 1986 - approximately 4100 days - were chosen, 

resulting in a dataset of 58 FTSE 100 stocks of varying market capitalisations. 
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Figure 3.1: Cumulative percentage returns 

Cumulative % returns (Avg 58 stocks) 

Date 

The stocks were contained within the FTSE100 index as of August 2003 and 

the data consist of only the closing prices from 1986 to 2001. Data from 

2001 to the present date are excluded as it is to be used for further out-of-
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sample testing in later models. This should go some way in ameliorating the 

data-snooping issue when analysing the results later in this thesis. Had we 

included and analysed data post 2001 our decisions may have been biased 

in later chapters regarding model choice/parameter values. As can be seen 

from figure 3.1 the data period includes the 87 crash in the in-sample period 

along with the events of 9/11 at the very end of the out-of-sample period. 

The stocks that were including in this study are shown in Table 3.1 and were 

obtained from Datastream. 

3.2.2 Dataset partitioning. 

The type of forecasting algorithm being used will often dictate how the 

dataset is partitioned in order to get meaningful out-of-sample results. In 

the case of a linear regression forecasting model it is usually only necessary 

to partition the data into an in-sample set and an out-of-sample set, whereby 

the in-sample data is used to estimate the regression coefficients and the out­

of-sample data is used to measure subsequent performance. This is because 

there is only one linear least squares fit through the data. 

The k-nearest neighbour (KNN) methodology (covered in section 2.8, page 

59) requires one to choose k, the number of neighbours, an initial starting 

point S from which to begin making predictions (in this case S was chosen 

to be 200 days), and a maximum "lookback" parameter L which determines 
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Table 3.1: Table of FTSE 100 stocks 

Symbol Name Mk!CaP SYlTlbol Name MktCap 
ABF.L ASSOC.SR.FOOOS 4.,·Jl KGF.L KINGFISHER 6.335 

AU.D.L ALlIED DOMECQ 4.20& LGEN.L LEGAL & GENERAL 6.47 

AH"'.L AMERSHAM 3.601 LANDL LAND SECS GROUP 3.'10-

AVZ.L AMVESCAP 3.943 MKS.L MARKS&SP. 6.913 

AV.L AVIVA 11.319 "'RW.L MORRISON SUPMKT 3.2~ 

BA.L BAESYSTBIS 5.m PFG.L PROVIDENT FINCL 1.624 

BAAC.L BAACLAYS ~.1:z6 PRUL PRUDENTlAL 0.76' 

BA~.L BRIT AM TOBACCO 13.&6 PSON.L PEARSON 4.*4 

BOC.L BOCGROUP 4.297 RB.L RECKITT BENCKSR E.m 

BOOTL BOO~GROUP 5.297 RBS.L ROYAL BANK SCOT 45.7-5 

SP.L SP 94.816 REL.L REED ELSEVIER 6.'35 

ST.L BTGROUP 15.~ RTO.L RENTOI<IL I NITlAL U43 

BNZL.L BUNZLPLC 2.107 REX.L REM'" PLC 1.En 

CSRYL CAOBURY SCHWE,PI)E 7.857 RSA.L ROYALl SUN ALL '.~ 
CW.L CABLE & WIRELESS 2.836 Rl1U REUTERS GROUP 3.595 

DGE.L DIAGEO 21.02 SH.L SMITHlNEPHEW 3.775 

DXNS.L DIXONS GROUP 2.682 SFW.L SN'EWAY 2.m 
D",oo..l D .... llYMAll TST A 2.127 SSRYl SAINSBURY (J) 5.365 

EMA.L EMAP 2.191 SDR.L SCHRODERS 1.6-:)2 

EXL.L EXEL 2.0H SClla SCOT & NEWCASTLE 3.422 

FRCL.L FOREIGN &COlOf,lIAl. 1.739 SHELL SHELL TRNPT(REG} 38m 

GKN.L GKN 1.923 S"'IN.L SMITHS GROUP 3.m 

GSKL GLAXOSMITHKLINE 72.'94 STAN.L STNDRD CH.6.RT BK !f.m 

GM.L GRANADA 2.837 TOMK.l TOMKINS 2.033 

GUS.L GUS 6.916 TSCO.L TESCO 15.'9' 

HG.l HILlON GROUP 3.068 ULVIU UNILEVER 14.979 

HNS.l HANSQt.I 3.03 wrB.l WHITSREAO 2.25 

ICl.l ICI 2.3H WOS.L WOLSELEY 4.2';)' 

JMAT.l JOHNSON MATTHEY 2.144 WPP.L WPPGROUP 6659 

how far back in the price history neighbours will be searched for. Smaller 

values of L would imply recent data are more relevant. In the case where 

L > S the lookback window will start at S and increase with t and will 

stay fixed once L = t. To keep the modelling procedure simple we created 

thirteen KNN models with different values for k and 1. No attempt was 
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made to optimize the parameters. This means that all forecasts made post 

S are effectively out-of-sample and we do not need to be concerned about 

partitioning the data set. 

In the case of support vector regression there are a number of parameter 

values that need to be chosen and it is not known apriori what these values 

should be - this is explained in more detail below. In this case is it necessary 

to divide the data into three separate partitions, the in-sample, validation 

and out-of-sample sets. The algorithm is run using different starting values 

on the in-sample data. The validation set is then used to "validate" the 

models' parameters and those models exhibiting good performance, based 

on some metric (in this case the Sharpe Ratio), are then used to forecast the 

final out-of-sample data. 

In order to make a fair comparison between the methods it is necessary to 

estimate the models using the same or at least similar data partitioning. 

The linear models are estimated with the in-sample data only. It might seem 

prudent to use both the in-sample and validation period combined as the 

in-sample set as these models only require two data partitions. However, 

this would not result in a fair comparison with the SVM models as they have 

only been estimated on the designated in-sample data. 

Bearing the above in mind the data are divided into in-sample, validation 

and out-of-sample sets as shown in table 3.2. The in-sample training period 

covers 2500 days from 2nd January 1986 to 2nd August 1995, the validation 
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set 800 days from 3rd August 1995 to 26th August 1998 and the out-of­

sample set from 27th August 1998 to 25th September 2001, 804 days (see 

Table 3.2). 

Table 3.2: Data set partitioning - Forecasting FTSE stocks. 
Set Dates Length 

In-sample set 02 Jan 1986 to 02 Aug 1995 2500 Days 
Validation set 03 Aug 1995 to 26 Aug 1998 800 Days 

Out-of-sample set 27 Aug 1998 to 25 Sep 2001 804 Days 

The SVM models were trained on the in-sample data using different starting 

parameter values. Subsequent performance was then checked on the valida-

tion set, and those models exhibiting the best performance were selected -

this procedure is explained in more detail in section 3.3.1 below. The lin-

ear regression models were estimated using the same in-sample data set but 

without the need to check performance on the validation set. The knn models 

start making predictions from 200 days into the in-sample period. We dis­

pensed with any knn model selection procedure and simply created thirteen 

models using different parameter values with the final prediction formed by 

a majority vote - see Table 3.11 for the values used. 

One issue of concern can be seen in figure 3.1, which depicts the average of 

all 58 stocks as if they were simply bought and held. The validation period of 

800 days consists of a very strong upward trend in the market and can have 

the effect of biasing the final models to only those that perform well during 

strong bull markets (when returns>O are more prevalent than returns<O). 
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One way to ameliorate this would be to use k - fold cross validation where 

the in-sample and validation data are combined and then split into k separate 

folds , k usually being 5-10. The models are then trained on k - 1 sets, each 

time leaving one out for the validation process. This is repeated until all sets 

have at one point been used as a validation set. Figure 3.2 shows an example 

using k=4. Leave-one-out cross validation is k-fold cross validation taken to 

its logical extreme, with k equal to N, the number of data points in the set. 

It should be noted that k - fold cross validation is generally more effective 

on small data sets than the simple 1 - fold hold out method. 

Figure 3.2: K-fold Cross Validation (K=4) 

Total number of examples 

Experiment 1 I 
:=:::~==;:::::=:=====: 

Experiment 2 I 
~==:::::::::===::;:::::::~ 

Experiment 3 I 
~. ========~===i / Test examples 

Experiment 4 1L..-_______ -.lL.....-_--..Ir 

This should result in models that are not biased to any particular part of the 

data. It would also have the advantage of producing models that have been 

t rained on the most recent part of the data (the validation set) just before 

the final out-of-sample data. This could go some way in improving the model 

as data from the recent past may be more relevant to predicting the future. 

We choose not to perform an k - fold cross-validation as it would require 
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us to create and train n - 1 extra models, and it was decided that potential 

benefits would not outweigh the costs at this stage. 

3.2.3 Independent and Dependent variables. 

Finding a good representation of the data to use as inputs (independent) 

variables and output or target (dependent) variables is very important, espe­

cially when building financial forecasting models. The objective is to find a 

representation that will render the signal (if one exists) more explicit and/or 

attenuate the noise component. The number of possible transformations of 

price to arrive at potential input candidates is of course infinite. Probably 

the most common price transformation used in econometrics is that of log 

returns, whereby the autocorrelation of a number of lagged log returns is 

analysed and those lags that are deemed statistically significant are included 

in the model. 

In this study we use a different transformation. The rationale behind this is 

that log returns can be seen in a signal processing context as a high pass filter 

that passes higher frequencies and attenuates the lower frequencies contained 

within the data (Abarbanel1995). In this sense there is a loss of information 

that may be detrimental to the model. Moreover, in the case of financial 

forecasting models there is the ever present issue of transaction costs. The 

greater the number of the trades the greater the transaction costs, hence 
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models that trade less frequently can be more desirable. If one's price sam­

pling frequency is daily and the price of the asset in question does not move 

by very much in an absolute sense, compared with the associated transac­

tion cost, then building a forecasting model that is biased towards higher 

frequencies (using log returns as either the inputs or target, or both) means 

that trade frequency is concomitantly higher, thus potentially causing any 

resultant model to be overwhelmed by transaction costs. Taking this into 

account we choose to use raw logs of prices but transformed in such a way 

as to render them stationary and thus allowable in a regression model. 

3.2.4 The Input Variables. 

At time T, raw log price data (not returns) from T - 15 to T inclusive are 

detrended by subtracting an end-to-end linear trend line from the prices. This 

zeros the values at T and T - 15, and the resulting 14 remaining values are 

then scaled to lie between 0 and 1. This process renders the data stationary 

and also has the effect of causing the inputs to be amplitude invariant due 

to the scaling procedure that is, using this transformation, a highly volatile 

price period and a relatively calm period that share the same "waveshape" 

will be rendered equivalent. Finally the gradient from the detrending process 

is included as an input. 

Standard daily log returns were chosen as the target or dependent variable 
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though later in the thesis other targets are used: 

(3.1) 

3.3 Support Vector Machine Regression (SVMR) 

models. 

3.3.1 Model Selection. 

As optimum starting parameters are not known apriori we are required to 

build a number of SVMR models with different starting parameter values, 

choosing those models that fit both the in-sample and validation data sets 

to create the final forecasting model, the output of which takes the form of a 

majority vote across the best performing models. Rather than choosing the 

single best model this ensemble averaging process should reduce the variance 

of the final model. In order to estimate the generalisation error and to 

select models for the final SVMR ensemble for each individual stock a cross­

validation scheme is used whereby twenty one SVMR models are initially 

trained on the in-sample set of 2500 days. To do this the following model 

building procedure was followed: 

1. Using in-sample data build twenty one SVMR models each using dif-
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ferent starting parameter values (sec Table 3.10 for the values used). 

2. With the Modified Sharpe Ratio (MSR) (this is simply a non-annualised 

Sharpe Ratio 1) as a performance measure, rank each model's per-

formance on the in-sample data and remove the worst seven, leaving 

fourteen models. 

The SVMR models produce a real output and in order to convert this 

into a prediction it is necessary to decide on a decision rule. In this 

case we used: 

Model outputs are assigned 1 if >= 0.0 and -1 if < 0.0. 

This ignores the magnitude of each forecast. 

3. Evaluate the MSR on validation dataset for remaining fourteen models 

and remove the seven worst performing models. 

4. The final seven models' forecasts are then combined using a majority 

vote - see below. Use majority voting rule to analyse the performance 

of the top seven models on the out-of-sample dataset. The combined 

model forecasts are then taken as the final SVMR model. 

Step 2 is performed as it is not desirable to have models that under-fit the 

in-sample data in the final model pool, regardless of the performance over 

the validation set. 

lThe fact that the SR is not annualised is acceptable as it is measured over the same 
time periods for all models 
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Majority Voting Rule: 

1. Each SVMR sub-model output is assigned 1 if >= 0.0 and -1 if < 0.0. 

2. The result for each model on each day is then summed, producing a 

number representing the majority decision which can take the values 

-7, -5, -3, -1, 1, 3, 5, 7. 

3. A long (short) forecast occurs if this majority is above (below) zero. 

Each trade is then held until the majority decision signals a trade in the 

opposite direction. This results in what is commonly called a stop & reverse 

model and is always in the market - there are no fiat periods. 

The SVMR method has a number of tunable parameters that need to be 

determined by the user: C, a regularisation parameter that determines the 

trade-off between margin maximization and training error (empirical risk) 

minimization. C determines the trade off between the model complexity 

(flatness) and the degree to which deviations larger than E are tolerated in 

the optimization formulation for example, if C is too large (infinity), then 

the objective is to minimize the empirical risk only, without regard to model 

complexity. The other parameter c controls the width of the c-insensitive 

tube, used to fit the training data. The value of c can affect the number of 

support vectors used to construct the regression function. Larger values of E 

result in the selection of fewer support vectors. On the other hand, larger c 
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-values result in "flatter" estimates. Hence, both C and c-values affect model 

complexity but in different ways. 

In addition one has to choose the type of kernel along with any kernel related 

parameters. It is the kernel that defines the high dimensional feature space 

where the maximal hyperplane will be found. In the case of the radial basis 

function kernel, the width of the RBF kernel (J'2 needs to be chosen. See 

Table 3.10 for the parameters sets that were used in this study. 

The choice of kernel determines the form of the resulting learning machine. 

Common kernel functions include polynomial, radial basis functions (RBF) 

and sigmoid kernels. In this research we used a number of different kernels a.<; 

apriori we do not know which one is optimum. As an example, RBF kernels 

have the form: 

RBF: 

K(x, z) = exp ( _llx 2~:"2) (3.2) 

where (J'2 is the width of the kernel. 

In all one thousand two hundred and eighteen separate SVMR models were 

built and trained. Each stock required twenty one models, each taking up to 

twenty minutes to train. 
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3.3.2 K-Nearest Neighbour models. 

The parameters chosen for the KNN model can be found in table 3.11. The 

13 models were combined using a majority voting procedure as follows: 

Majority Voting Rule (KNN): 

1. Each KNN model output is assigned 1 if >= 0.0 and -1 if < 0.0. 

2. The result for each model on each day is then summed, producing 

a number representing the majority decision which can take values 

between -13 and 13. 

3. A long (short) forecast occurs if this majority is above (below) zero. 

Each trade is then held until the majority decision signals a trade in the 

opposite direction. This results in what is commonly called a stop & reverse 

model and is always in the market - there are no flat periods. 

3.4 Results. 

3.4.1 In-sample and validation set performance. 

We present the results top-down, initially as charts followed by more detailed 

tables. Figure 3.3 shows the cumulative percentage returns of all three models 
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Figure 3.3: FTSE Results over whole data set 

Date 

averaged across all stocks over the whole dataset and includes the buy & hold 

as a comparison - this is an average of the buy & hold percentage returns for 

each stock and is not weighted by market capitalisation. What is immediately 

apparent is that the SVMR models have fit the in-sample data more clo ely 

than either the regression or the KNN models. This is not surprising as the 

SVMR models have a greater capacity and have been explicitly trained on 

this part of the dataset. The regression model exhibits better performance 

on the in-sample period than the KNN models but this is also expected as 

the results from the KNN models are effectively out-of-sample forecasts over 

the in-sample data, except of course for the first 200 days. 
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Looking at the validation set we can see that again the SVMR models outper­

form the other two but this is largely meaningless from the point of view of 

out-of-sample performance as the final SVMR models have been specifically 

chosen for their validation set performance. 

3.4.2 Out-of-sample performance. 

What is more interesting and important are the out-of-sample results, de­

picted in figure 3.4. The cumulative percentage returns of SVMR models 

Figure 3.4: Cumulative percentage returns 3 Models 

Cumulative %returns - 3 models 
58 "'.",. ... '" 

shown in ycllow continue to outperform the other models along with the buy 
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& hold (at least visually at this point - see detailed tables below). The curve 

rises steadily until the last quarter of the data when it then drops, along with 

the market as a whole during the period of the 9.11 attack on New York. 

The linear and KNN models, although also exhibiting rising equity curves, 

do not appear to be outperforming the buy & hold except that their curves 

are smoother, which should result in greater MSRs. This is indeed the case 

(See table 3.3). 

Table 3.3 shows summarised results for each method averaged over the 58 

stocks in the data sample. On average the SVMR models resulted in a 58% 

total return over the 803 days compared to 36% and 30% respectively for the 

other models. This compared to 22% for the buy & hold. At 23.3 the MSR 

for the SVM models is almost twice that of the linear models. 

The average percentage of bootstrapped trade replicates that the SVMR 

models' MSR statistics were greater than was 70% and 61% for the other 

two models. Those stocks exhibiting MSR statistics over 95% greater than 

the random replicates number thirteen for the SVMR models, five for the 

KNN models and six for the linear models. Of the 58 stocks out-of-a-sample, 

we would expect three stocks on average to show greater than 95% results 

if the forecasting models had no predictive accuracy. An assumption of in­

dependence clearly isn't reasonably in this case but if it were then using the 

binomial probability distribution we could work out how likely it is that the 

SVMR models achieve 13 successes out of 58 trials if we assume the models 
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have no predictive ability. In this case the probability of a success is 0.05, 

that is, the probability that a model's MSR will be greater than the MSR of 

95% of the replicates is 0.05. This indicates that as an upper bound there is 

a 1:250,000 chance of 13 successes out of 58 trials. 

Table 3.3: Table of Results for all 3 algorithms 
Linear Regression Results. Out of sample data 803 Days 

FinalEquity Mod. Percentage rI Number Average % Trade % Daily Buy&Hold Buy&Hold 

in% Sharpe R random below oflrades Trade % Acuracy Accuracy FinalEquity% Mod. Sharpe 

Average all 58 30.5 12.7 61.4% 304.2 0.11% 0.46% SO.O% 22.5 9.0 

Number of stocks with M.S.R. grea1ltr than 95% I 6 I 
Number of stocks with M.S.R. grea1ltr than 90% I 12 I 

KNN Results. Out of sample data 803 Days 
FinalEquity Modified Percentage rI Number Average % Trade Daily B&H Buy&Hold 

in% Sharpe random below oflrades Trade % acuracy accuracy FinalEquity% Modified Sharpe 

~verage all 58 36.4 14.2 61.5% 289.5 0.14% 0.48% SO.3% 22.5 9.0 

Number of stocks with M.S.R. grea1ltr thin 95% I 5 I 
Number of stocks with M.S.R. grea1ltr thin 90% I 13 I 

Support Vector Regression Results. Out of sample data 803 Days 
FinaiEquity Mod. Percentage rI Number Average % Trade % Daily Buy&Hold Buy&Hold 

in% Sharpe R random below oflrade. Trade % Acuracy Accuracy FinalEquity % Mod. Sharpe 

~veragelll58 58.1 23.2 69.3% 284.4 0.20% 0.44% SO.8% 22.5 9.0 

Number of stocks with M.S.R. grea1ltr than t5% I 13 I 
Number of stocks with M.S.R. "rea1ltr thin 90% I 16 I 

More detailed results for each stock can be seen in tables 3.4 to 3.9. The final 

percentage equity and associated MSRs for each stock are shown in columns 

2 and 3. 

The out-of-sample results for the three modelling methods and for each stock 
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can be seen in tables 3.4 to 3.9. Following the column of stock symbols, 

the second column shows the final percentage return achieved over the 803 

days for each stock. This is followed by the modified sharpe ratio which is 

simply the final percentage equity divided by the standard deviations of daily 

percentage returns. The third column shows the results of the randomization 

tests in which the trades were bootstrapped 10000 times and the resulting 

MSR then measured. The figure represents where in the distribution the 

MSR for a particular stock falls, thus indicating the significance of the results. 

For example, in the case of stock ABF in table 4, the linear regression model 

achieved a MSR above 58.7 percent of all the bootstrapped trades' MSRs. 

Columns 5-8 show how accurate the forecasts were on a per trade and daily 

basis in addition to the magnitude of the returns. Lastly the results of the 

buy & hold are shown which serve as a comparison. 

Based on these results we conclude that the nonlinear SVMR models do 

indeed outperform the linear and KNN models over the out-of-sample period, 

which suggests that they are able to model a certain amount of nonlinearity 

within the data that is not exploitable by the other two methods. 

Note that transaction costs have not been included as the objective of the 

study is to compare the results of the different modelling procedures at this 

stage. Therefore there is not a claim that these results would result in above­

average risk-adjusted returns. However, the target/dependent variable in 

the study was one day log returns. By incorporating a target over a longer 
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period (say 5 days returns) would likely reduce the number of trades and 

hence transaction costs. Whether the returns would experience a less than 

proportionate reduction in tandem is an open question. 

3.5 Summary and Conclusion. 

In this chapter we have created forecasting models for 58 FTSE 100 stocks 

using two nonlinear methods and one linear. Using a dataset of 4100 days 

including an out-of-sample period of 803 days, the nonlinear SVMR models 

on average are shown to outperform the other two methods, in addition to 

the buy & hold - though no transactions costs were included. The SVMR 

models resulted in thirteen stocks exhibiting a MSR figure that was greater 

than 95% of the bootstrapped replicates in the out-of-sample period. 

The results for the KNN and linear regression models were approximately 

equal and also showed performance above that that would be expected if they 

had no forecasting power. I t is also apparent from the average return per 

trade - 0.20% for the SVMR models - that if transaction costs were included, 

all models on average would under-perform the buy and hold. 
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3.5.1 Contributions of Study 3 

1. We contribute to the literature on forecasting financial markets by 

conducting a robust study comparing the performance of three dif­

ferent forecasting methods namely, support vector machines (SYMs), 

k-nearest neighbours and linear regression and our results suggest that 

the nonlinear SYM models outperform the others. 

2. We contribute the literature on SYMs by providing an incremental ad­

dition to the expanding literature that show SYMs to be a competitive 

methodology when applied with real world datasets. 

3. We show for the first time in the literature the results of applying the 

relatively new method of SVMs applied to FTSE 100 stocks. 

4. We apply support vector machine regression to the largest financial 

data-set used in the literature. 
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Table 3.4: Linear Regression Results out-of-sample data 1-30 
Linear Regression Results. Out of sample data 803 Days (stocks 1 - 30) 
Stock FinalEquity Mod . Percentage of Number Average % Trade % Daily Buy&Hold Buy&Hold 

Symbol in % Sharpe R random below of trades Trade % Acuracy Accuracy FinalEqutty % Mod . Sharpe MktCap 

iABF.l 30.6 8.5 57.8% 274 0.11 % 0.46% 50.5% 90.0 25.1 4.101 

AllD.l 6.1 2.6 44.4% 339 0.02% 0.45% 48.7% 43.6 18.3 4.208 

AHM.l -34.2 -10.9 27.7% 235 -0.15% 0.37% 46.8% 68.2 21 .8 3.601 

AVZ.l -107.5 -42.2 3.3% 341 -0.32% 0.44% 47.1% 11.3 4.4 3.943 

AV.l 98.4 39.3 92.6% 367 0.27% 0.47% 52.1% 9.1 3.6 11 .319 

BA.l 82.2 28.2 84.0% 483 0.17% 0.46% 51 .6% 15.4 5.3 5.225 

BARC.l 105.7 40.3 90.4% 294 0.36% 0.48% 50.6% 57.8 22.1 30.126 

BATS.l -77.6 -24.4 10.4% 409 -0.19% 0.43% 46.2% 92.3 29.1 13.626 

BOC.l -45.9 -23.9 15.1% 371 -0.12% 0.45% 48.3% 18.1 9.4 4 .297 

BOOT.l 73.2 34.4 91 .5% 252 0.29% 0.49% 51.4% -34.9 -16.4 5.297 

BP .l 95.6 47.9 _ 291 0.33% 0.48% 53.0% 47.0 23.5 94.816 

BT.l -75.2 -24.4 19.4% 293 -0.26% 0.41 % 48.0% -32.1 -10.4 15.954 

BNZl.l 190.3 125.2 _ 283 0.67% 0.55% 55.1% 73.4 48.1 2.107 

iCBRY.l 68.0 33.4 88.5% 224 0.30% 0.53% 51 .8% 14.9 7.3 7.857 

vW.l 31 .8 9.1 64.7% 325 0.10% 0.51 % 50.7% -28.2 -8.1 2.836 

DGE.l 12.0 5.2 53.5% 265 0.05% 0.45% 50.8% 33.9 14.6 21 .02 

DXNS.l 89.4 26.5 83.2% 236 0.38% 0.45% 51 .9% 63.7 18.9 2.682 

DMGOa.l -1 .3 -0.5 46.2% 356 0.00% 0.48% 48.2% 22.5 8.2 2.127 

EMA.l 106.2 39.0 92.1% 379 0.28% 0.47% 50.8% -33.0 -12.1 2.191 

EXl.l 80.6 34.9 86.4% 298 0.27% 0.47% 54.6% 1.0 0.4 2.011 

FRCl.l 26.7 26.2 75.9% 209 0.13% 0.48% 52.2% 17.7 17.3 1.739 

pKNl -169.2 -68.9 0.6% 287 -0 .59% 0.37% 46.5% 8.2 3.3 1.923 

pSK.l 95.1 45.0 94.8% 309 0.31 % 0.55% 53.3% 18.S 8.8 72.194 

pAA.l 34.9 12.2 67.7% 258 0.14% 0.50% 51 .1% -8 .5 -3.0 2.837 

pUS.l -141 .2 -50.7 1.3% 209 -0.68% 0.43% 44.3% -10.9 -3.9 6.916 

~G.l -73.8 -24.9 18.5% 399 -0.18% 0.44% 47.6% 6.6 2.2 3.068 

~NS. l 62.0 25.0 78.8% 283 0.22% 0.48% SO.7% 63.9 2S.8 3.03 

e l. l 3S.0 13.1 71 .0% 304 0.12% 0.51 % 51.4% -38.8 -14.6 2.311 

MAT.l 50.3 20.1 67.3% 228 0.22% 0.48% 51 .8% 110.2 43.9 2.144 

Average all 58 30.5 12.7 61 .4% 304.2 0.11 % 0.46% 50.0% 22.5 9.0 9.7 

100 



Table 3.5: Linear Regression Results out-of-sample data 31-58 

Buy&Hold 

random below of trades Trade % FinalEquity % Mod. Sharpe 

79.5% 248 0.25% 0.45% 51 .1% -30.5 -11 .5 

63.9 25.2 82.3% 380 0.17% 0.48% 52.1% 6.6 2.6 

0.3 0.2 51 .1% 343 0.00% 0.46% 49.1% -1.0 -0.7 

-38.9 -14.6 33.6% 419 -0.09% 0.47% 49.1% -53.7 -20.2 

-1 .4 -0.6 32.9'10 259 -0.01 % 0.46% 50.4'10 62.7 27.5 

-28.9 -12.5 34.4'10 262 -0.11 % 0.38% 47.2% -13.3 -5.8 

35.6 14.1 71 .0% 258 0.14% 0.47% 51.6% -1.0 -0.4 

69.1 22.7 78.0% 308 0.22% 0.46% 49.3% 19.3 6.3 

-2 .6 -1 .0 45.1% 283 -0.01 % 0.48% 50.6% 18.2 7.1 

103.5 37.8 85.8'10 277 0.37% 0.47% 49.5% 85.5 31 .2 

66.3 25.2 77.2% 287 0.23% 0.47% 49.8% 50.4 19.1 

73.3 26.4 85.3% 238 0.31 % 0.44% 48.9% -9.1 -3.3 

110.6 43.2 91.3% 306 0.36% 0.45% 48.7% 79.3 31.0 

35.0 12.6 67.8% 313 0.11% 0.44% 49.5% -12.9 -4 .6 

202.0 
54.8_ 

265 0.76% 0.51 % 51.4% 67.3 18.2 

-34.8 -16.1 24.7% 384 -0.09% 0.43% 47.1% 101 .9 47.3 

-107.9 -49.8 2.8% 334 -0.32% 0.41 % 47.1% 22.4 10.3 

-16.9 -7.1 41 .5% 331 -0.05% 0.45'10 51 .1% -18.7 -7.9 

53.7 17.3 82.8% 221 0.24% 0.53% 49.8% -10.0 -3.2 

110.8 48.6 302 0.37% 0.51 % 52.8% -17.6 -7 .7 

128.2 60.7 323 0.40% 0.52% 52.1% 50.8 24.1 

14.1 6.1 57.7% 299 0.05'10 0.43% 49.7% 14.3 6.2 

32.5 10.7 59.8% 292 0.11 % 0.49% 49.6% 69.S 22.9 9.903 

-35.5 -14.4 33.2% 313 -0.11 % 0.45% 47.3% -27.8 -11 .3 2.033 

28.7 13.2 63.7% 413 0.07% 0.47% 49.5% 51 .3 23.5 15.191 

34.6 15.3 70.2% 282 0.12% 0.48% 50.0% 2.1 1.0 14.979 

-38.2 -19.0 29.4'10 273 -0.14'10 0.44% 47.8% -30.7 -15.3 2.25 

44.7 272 0.16% 0.42% 50.6% 48.7 19.1 
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Table 3.6: K N Results out-of-sample data 1-29 
KNN Results. Out of sample data 803 Days (stocks 1-29) 

Modified Percentage of Number Average % Trade Daily B&H Buy&Hold Stock 

Symbol FinalEquity% Sharpe random below of trades Trade % acuracy accuracy FinalEquity% Modified Sharpe 

ABF.L 

ALLD.L 

AHM.L 

VZ.L 

V.L 

BA.L 

BARC .L 

BATS.L 

BOC.L 

BOOT.L 

BP.L 

BT.L 

BNZL.L 

-51 .5 -14.3 18.8% 

51 .0 21 .5 73.8% 

-99.2 

88.6 

141.4 

190.3 

121.4 

21 .2 

-47.3 

-9 .1 

26.7 

83.6 

161 .2 

-28.1 

99.1 

30 .2 

89.2 

-10.3 

28.7 

181 .8 

-19.6 

101 .9 

90.6 

11.4 

-142.7 

76.8 

12.0 

-36.0 

34.2 

36.4 

-31 .7 6.8% 

34.8 92 .0% 

46.3 93.8% 

6.7 52.7% 

-24.6 17.8% 

-4.3 43.9% 

13.4 60.9% 

27.1 86.6% 

105.9_ 

-13.8 29.7% 

28.5 86.8% 

13.0 65.1 % 

26.5 79.4% 

-3.8 40.5% 

10.5 65.5% 

78.8_ 

-19.2 16.3% 

41 .5 

42.9 

4 .0 

-51 .2 

25.9 

4.9 

-13 .5 

13.6 

14.2 

93.5% 

94.4% 

55.2% 

3.3% 

82.6% 

49.8% 

29.3% 

63.5% 

61 .5% 

259 -0.20% 0 .39% 

277 0 .1 8% 0.52% 

325 -0.31 % 0.43% 

334 0.27% 0.51 % 

259 0.55% 0.51 % 

259 0.73% 0.53% 

279 0.44% 0.45% 

316 0.07% 0.47% 

326 -0.15% 0.44% 

323 -0 .03% 0.51 % 

295 0.09% 0.46% 

221 0.38% 0.52% 

237 0.68% 0.51 % 

328 -0 .09% 0.44% 

277 0.36% 0.54% 

319 0.09% 0 .49% 

272 0.33% 0.47% 

266 -0.04% 0.45% 

261 0.11% 0.43% 

197 0.92% 0.51 % 

243 -0.08% 0.39% 

300 0 .34% 0.49% 

251 0.36% 0 .53% 

280 0.04% 0.46% 

315 -0.45% 0.45% 

294 0.26% 0.55% 

272 0.04% 0.49% 

328 -0.11 % 0.41 % 

244 0.14% 0.45% 

289.5 0.14% 0.48% 
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47.3% 

49.3% 

44 .3% 

53.0% 

52.4% 

54.5% 

51 .0% 

50.1% 

48 .0% 

51 .2% 

52.0% 

51 .1% 

55.1% 

49.5% 

51 .9% 

50.3% 

50.8% 

48.6% 

48 .9% 

54.0% 

48.8% 

48 .9% 

52.2% 

49.9% 

48.2% 

52.3% 

50.9% 

48.7% 

52.0% 

50.3% 

90.0 

43.6 

68 .2 

11 .3 

9.1 

15.4 

57.8 

92 .3 

18.1 

-34.9 

47 .0 

-32.1 

73 .4 

14.9 

-28 .2 

33.9 

63.7 

22.5 

-33.0 

1.0 

17.7 

8 .2 

18.5 

-8.5 

-1 0.9 

6.6 

63 .9 

-38 .8 

110.2 

22 .5 

25.1 

18.3 

21 .8 

4.4 

3.6 

5.3 

22 .1 

29 .1 

9.4 

-16.4 

23 .5 

-10.4 

48 .1 

7.3 

-8 .1 

14.6 

18.9 

8 .2 

-12.1 

0 .4 

17.3 

3.3 

8 .8 

-3.0 

-3.9 

2.2 

25.8 

-14.6 

43.9 

9.0 

MktCap 

4.101 

4.208 

3.601 

3.943 

11 .319 

5.225 

30.126 

13.626 

4.297 

5.297 

94 .816 

15.954 

2 .107 

7.857 

2.836 

21 .02 

2.682 

2.127 

2.191 

2.011 

1.739 

1.923 

72 .194 

2.837 

6.916 

3.068 

3.03 

2.311 

2.144 
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Table 3.7: K N Results out-of-sample data 30-58 
KNN Results. Out of sample data 803 Days (stocks 30-58) 
Stock Modified Percentage of Number Average % Trade Daily B&H Buy&Hold 

Symbol FinalEquity% Sharpe random below of trades Trade % acuracy accuracy FinalEquity% Modified Sharpe MktCap 

KGF.L 42.8 16.1 74.6% 319 0.13% 0.45% 50.9% -30.5 -11 .5 6.335 

LGEN.L 28.6 11 .3 67.4% 263 0.11% 0.52% 47.3% 6.6 2.6 6.47 

LAND.L 10.8 7.6 61 .5% 301 0.04% 0.47% 50.3% -1.0 -0.7 3.981 

MKS.L 56.0 21 .1 75.7% 331 0.17% 0.47% 50.9% -53.7 -20.2 6.913 

MRW.L 4.7 2.1 43.8% 277 0.02% 0.42% 48.6% 62.7 27.5 3.289 

PFG.L -1.6 -0.7 51 .9% 296 -0.01 % 0.44% 50.7% -13.3 -5.8 1.624 

PRU .L 52.2 20.7 78.3% 234 0.22% 0.48% 50.1% -1.0 -0.4 8.761 

PSON.L 16.0 5.3 53.4% 259 0.06% 0.52% 49.6% 19.3 6.3 4.954 

RB .L 43.6 17.0 70.5% 317 0.14% 0.49% 50.6% 18.2 7.1 8.399 

RBS.L 123.9 45.2 89.6% 263 0.47% 0.50% 53.0% 85.5 31.2 45.715 

REL.L -79.3 -30.1 12.0% 318 -0.25% 0.46% 49.7% 50.4 19.1 6.135 

RTO.L 105.2 37.8 90.1% 313 0.34% 0.49% 48.8% -9.1 -3.3 3.843 

REX.L 19.4 7.6 62.5% 268 0.07% 0.46% 49.7% 79.3 31 .0 1.877 

RSA.L 146.1 52.7 _ 333 0.44% 0.49% 51 .4% -12.9 -4 .6 1.994 

fTR.L 173.5 47.1 93.9% 248 0.70% 0.51 % 51 .6% 67.3 18.2 3.595 

~N .L 6.1 2.8 42.1% 337 0.02% 0.49% 48.9% 101 .9 47.3 3.775 

~FW. L -98.0 -45.2 4.6% 337 -0.29% 0.47% 48.6% 22.4 10.3 2.998 

~BRY. L 23.9 10.1 66.0% 317 0.08% 0.47% 50.8% -18.7 -7.9 5.365 

~DR.L -54.1 -17.4 24.2% 307 -0.18% 0.49% 49.7% -10.0 -3.2 1.602 

~CTN . L -36.9 -16.2 27.8% 269 -0.14% 0.48% 49.7% -17.6 -7 .7 3.422 

~HEL.L 56.2 26.6 76.1% 275 0.20% 0.50% 50.4% 50.8 24.1 38.332 

SMIN.L -8.1 -3.5 45.1% 299 -0.03% 0.44% 49.9% 14.3 6.2 3.939 

STAN.L 17.7 5.8 54.8% 309 0.06% 0.46% 49.3% 69.8 22.9 9.903 

OMK.L -37.5 -15.2 27.0% 323 -0.12% 0.46% 50.5% -27.8 -11 .3 2.033 

SCO.L 87.8 40.4 92.1% 319 0.28% 0.52% 50.4% 51 .3 23.5 15.191 

ULVRL 6.4 2.8 52.0% 297 0.02% 0.46% 48.8% 2.1 1.0 14.979 

WTB.L 47.4 23.6 77.6% 279 0.17% 0.54% 50.2% -30.7 -15.3 2.25 

WOS.L 118.8 46.6 94.4% 314 0.38% 0.48% 51 .8% 48.7 19.1 4.201 

WPP.L 39.6 12.4 61 .9% 311 0.13% 0.46% 49.5% 78.7 24.7 6.659 

Average all 58 36.4 14.2 61 .5% 289.5 0.14% 0.48% 50.3% 22.5 9.0 9.7 
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Table 3.8: Support Vector Regression Results out-of-sample data 1-29 
Support Vector Regression Results. Out of sample data 803 Days (stocks1 -29) 

FinalEquity Mod. Percentage of Number Average % Trade % Daily Buy&Hold Buy&Hold Stock 

Symbol in % Sharpe R random below of trades Trade % Acuracy Accuracy FinalEquity % Mod. Sharpe MktCap 

ABF.L 

ALLD.L 

AHM.L 

VZ.L 

V.L 

BA.L 

BARC .L 

BATS.L 

BOC.L 

BOOT.L 

BP.L 

BT.L 

BNZL.L 

MGOa.L 

KN.L 

SK.L 

AA.L 

US.L 

G.L 

NS.L 

verage all 58 

111 .5 

·24.2 

-4.1 

-167.5 

51 .2 

44.5 

227.4 

39.2 

-85.2 

79.6 

8.2 

292.6 

254.3 

16.0 

-11 .1 

136.6 

-21 .9 

70.3 

171 .7 

133.0 

23.7 

21.6 

40.0 

83.7 

-24.5 

56.4 

146.6 

137.8 

3.6 

58,1 

31 .1 

-10.2 

85.5% 

40.0% 

-1.3 48.4% 

-65.8 0.3% 

20.5 78.3% 

15.3 71 .1% 

86.9 _ 

12.4 65.7% 

-44.4 

37.4 

4.1 

95.0 

167.8 

7.9 

2.8% 

93.0% 

53.2% 

-3.2 49.4% 

59.0 _ 

-6.5 42.4% 

25.7 82,5% 

63.0 

57.6 

23.2 

8.8 

18.9 

29.2 

-8.8 

19.1 

59.3 

51 .7 

1.4 

23.2 

66.5% 

63.0% 

74.9% 

84.9% 

37.1% 

75.9% 

SO.7% 

69.3% 

287 0.39% 0.40% 

283 -0.09% 0.43% 

304 -0.01 % 0.33% 

306 -0.55% 0.38% 

281 0.18% 0.44% 

350 0.13% 0.43% 

261 0.87% 0.52% 

270 0.15% 0.49% 

217 -0.39% 0.41 % 

235 0.34% O.SO% 

322 0.03% 0.43% 

251 1.17% 0.53% 

283 0.90% 0.49% 

245 0.07% 0.45% 

177 -0.06% 0.55% 

279 0.49% 0.47% 

265 -0.08% 0.43% 

230 0.31 % 0.40% 

277 0.62% 0.39% 

295 0.45% 0.40% 

160 0.15% 0.48% 

307 0.07% 0.43% 

312 0.13% 0.49% 

315 0.27% 0.42% 

296 -0.08% 0.48% 

320 0.18% 0.47% 

261 0.56% 0,46% 

304 0.45% 0.49% 

348 0.01 % 0.34% 

284.4 0.20% 0.44% 
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49.7% 

46.0% 

49.5% 

47.0% 

49.7% 

51 .1% 

52.4% 

52.6% 

47.7% 

51 .3% 

50.5% 

55.2% 

59.8% 

49.4% 

51.2% 

51 .9% 

51 .7% 

51.2% 

51 .9% 

55.1% 

52.2% 

48.9% 

51.2% 

52.2% 

49.7% 

49.2% 

52.0% 

53.0% 

51 .5% 

50.8% 

90.0 

43 .6 

68.2 

11 .3 

9.1 

15.4 

57.8 

92.3 

18.1 

-34.9 

47 .0 

-32.1 

73.4 

14.9 

-28.2 

33.9 

63.7 

22.5 

-33.0 

1.0 

17.7 

6.2 

18.5 

-8.5 

-10.9 

6.6 

63.9 

-38.8 

110.2 

22.5 

25.1 

18.3 

21 .8 

4 .4 

3.6 

5.3 

22 .1 

29.1 

9.4 

-16.4 

23.5 

-10.4 

48 .1 

7.3 

-8.1 

14.6 

18.9 

8.2 

-12.1 

0.4 

17.3 

3.3 

8.8 

-3.0 

-3.9 

2.2 

25.8 

-14.6 

43.9 

9.0 

4.101 

4.208 

3.601 

3.943 

11 .319 

5.225 

30.126 

13.626 

4.297 

5.297 

94.816 

15.954 

2.107 

7.857 

2.836 

21 ,02 

2.682 

2.127 

2.191 

2.011 

1.739 

1.923 

72.194 

2.837 

6.916 

3.068 

3.03 

2.311 

2.144 

9.7 



Table 3.9: Support Vector Regression Results out-of-sample data 30-58 
Support Vector Regress ion Results. Out of sample data 803 Days (stocks30-58) 
Stock 

Symbol 

KGF.L 

LGEN.L 

LAND.L 

MKS.L 

MRW.L 

PFG.L 

PRU.L 

PSON.L 

RB.L 

RBS.L 

REL.L 

RTO.L 

REX.L 

RSA.L 

RTR.L 

FinalEquity Mod. Percentage of Number Average % Trade % Daily Buy&Hold Buy&Hold 

in % Sharpe R random below of trades Trade % Acuracy Accuracy FinalEqurty % Mod. Sharpe MktCap 

93.5 

71 .0 

41 .0 

101 .9 

-47.8 

30 .9 

73.5 

-23.6 

37.5 

117.9 

185.5 

-53.4 

24.5 

-10.0 

286.2 

18.9 

-25.5 

10.0 

-86.5 

33.7 

106.9 

137.8 

45.4 

51 .0 

42.4 

68.4 

-71 .1 

159.9 

139.3 

58.1 

35.1 89.8% 

28 .0 84 .8% 

28.9 84.6% 

38.3 94.7% 

-21.0 18.8% 

13.4 68.8% 

29.1 86.9% 

-7 .8 37.4% 

14.6 69.5% 

43.0 89.6% 

70.5 _ 

-19.2 26.0% 

9.6 60.7% 

-3.6 46.0% 

77.7 _ 

8.8 75.7% 

-11 .8 32.2% 

4.2 

-27.8 

14.8 

50.6 

59.7 

55.5% 

11 .5% 

74.2% 

14.9 69.2% 

20.7 77.9% 

19.5 72.8% 

30.3 64.7% 

-35.4 13.8% 

62.8 _ 

43.8 93.9% 

23.2 69.3% 

293 0.32% 0.48% 50.5% ·30 .5 -11 .5 6.335 

356 0.20% 0.43% 51 .3% 6.6 2.6 6.47 

326 0.13% 0.43% 

256 0.40% 0.51 % 

341 -0.14% 0.33% 

304 0.10% 0.35% 

214 0 .34% 0.49% 

270 -0.09% 0.47% 

290 0.13% 0.40% 

278 0.42% 0.42% 

297 0.62% 0.47% 

256 -0.21 % 0.38% 

306 0.08% 0.36% 

312 -0.03% 0.41 % 

288 0.99% 0.49% 

353 0.05% 0.40% 

329 -0.08% 0.40% 

325 0.03% 0.40% 

253 -0.34% 0.43% 

263 0.13% 0.43% 

267 0.40% 0.51 % 

302 0.46% 0.43% 

252 0.18% 0.42% 

281 0.18% 0.47% 

301 0.14% 0.47% 

292 0.23% 0.41 % 

185 -0.38% 0.42% 

301 0.53% 0.38% 

365 0.38% 0.39% 

284.4 0.20% 0.44% 
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-1 .0 

-53.7 

62.7 

-13.3 

-1 .0 

19.3 

18.2 

65.5 

50.4 

-9 .1 

79.3 

-12.9 

67.3 

101 .9 

22.4 

-18.7 

-1 0.0 

-17.6 

50.8 

14.3 

69.8 

-27.8 

51 .3 

2.1 

-30.7 

48 .7 

76.7 

22.5 

-0.7 

-20.2 

27.5 

-5.8 

-0.4 

6.3 

7.1 

31 .2 

19.1 

-3.3 

31 .0 

-4.6 

18.2 

47.3 

10.3 

-7 .9 

-3.2 

-7 .7 

24.1 

6.2 

22.9 

-11 .3 

23.5 

1.0 

-15.3 

19.1 

24.7 

9.0 

3.981 

6.913 

3.289 

1.624 

8.761 

4.954 

8.399 

45.715 

6.135 

3.643 

1.877 

1.994 

3.595 

3.775 

2.998 

5.365 

1.602 

3.422 

38.332 

3.939 

9.903 

2.033 

15.191 

14.979 

2.25 

4.201 

6.659 
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Table 3.10: Support Vector Regression Parameters 
C 1000 C 100000 C 100 
EPSILON 0.01 EPSILON 0.001 EPSILON 0.001 
TYPE RADIAL TYPE RADIAL TYPE RADIAL 
GAMMA .01 GAMMA .01 GAMMA .01 

C 1000 C 100 C 100000 
EPSILON 0.001 EPSILON 0.01 EPSILON 0.001 
TYPE RADIAL TYPE RADIAL TYPE RADIAL 
GAMMA.001 GAMMA.001 GAMMA .001 

C 1000 C 10 C 1000 
EPSILON 0.01 EPSILON 0.01 EPSILON 0.0001 
TYPE RADiAl TYPE RADIAL TYPE RADIAL 
GAMMA.01 GAMMA.01 GAMMA.001 

C 100 C 1000 C 1000 
EPSILON 0.01 EPSILON 0.01 EPSILON 0.01 
TYPE POLYNOMIAL TYPE POLYNOMIAL TYPE POLYNOMIAL 
DEGREE 2 DEGREE 2 DEGREE 1 

C 50 C 1000 C 10000 
EPSILON 0.01 EPSILON 0.01 EPSILON 0.01 
TYPE POLYNOMIAL TYPE POLYNOMIAL TYPE POLYNOMIAL 
DEGREE 2 DEGREE 3 DEGREE 1 

C 1000 C 1000000 C 1000 
EPSILON 0.001 EPSILON 0.0001 EPSILON 0.01 
TYPE POLYNOMIAL TYPE NEURAl TYPE NEURAL 
DEGREE 1 A 0.0001 iA 0.0001 

B 0.0000001 B 0.0000001 

C 100000 C 1000000 C 10000000 
EPSILON 0.001 EPSILON 0.01 EPSILON 0.01 
TYPE NEURAL TYPE NEURAL TYPE NEURAL 
A 0.0001 A 0.0001 A 0.0001 
B 0.0000001 B 0.0000001 B 0.0000001 
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Table 3.11: KNN Parameter values. 
Set Start Lookback NumKnn 

1 200 4500 50 
2 200 4500 10 
3 200 2500 800 
4 200 2500 50 
5 200 1000 250 
6 200 1000 50 
7 200 500 250 
8 200 500 100 
9 200 500 10 

10 200 300 250 
11 200 300 50 
12 200 100 10 
13 200 100 4 
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Chapter 4 

The more the merrier? 

Forecasting FTSE 100 stocks 

with a random subspace 

ensemble of 62500 models. 

This chapter investigates the application of linear ensemble models to forecast 

and trade 65 component stocks within the FTSE 100, using daily data over 

the years 1991-2006. The primary ensemble consists of 62500 component 

models built using the random subspace method in which randomly sampled 

subsets of the feature set are used to estimate each linear regression model 

with the final result combined via a majority vote. The performance is 
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compared to a number of benchmarks including a single AR modcl and it is 

found that this ensemble methodology improves the overall results both in 

terms of consistency across time periods and economic significance. It is also 

found that model selection or thinning improves performance further. 

4.1 Introduction 

The aim of this study is to investigate the application of linear ensemble 

models to forecast and trade 65 component stocks within the FTSE 100, 

using daily data over the years 1991-2006. Specifically, we are interested in 

what benefits in performance if any are accrued by using ensemble models 

- models that combine the forecasts of a number of individual component 

models - over single model specifications. We do this by comparing the 

performance of a single linear AR model and three ensembles with differing 

specifications. 

While single model least-squares linear prediction of closing daily stock re­

turns rarely produces remarkable results, even if markets are not strictly 

random walksl, we might well enquire where the limits of predictability lie. 

Improvement beyond that of single model classical least-squares is suggested 

by the literature; firstly, the common approach of using just a single model 

results in additional information in alternatively parameterised models not 

IThe Efficient Markets Hypothesis can still hold even if markets are not random walks 
(Lucas 1978),(LeRoy 1973). 
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being utilized, an issue ensemble models may be able to exploit. Secondly, 

augmenting the feature space by including frequently neglected open, high 

and low price data over and above the close may increase the discrimina­

tory power of a model. Thirdly, research into nonlinearity is suggestive of 

nonlinear structure within financial times-series data, which might be im­

plicitly approximated by combinations of linear models that specialize on 

local areas of the problem space, thus producing a final nonlinear ensemble 

function that is irreproducible by its the component linear models (Opitz & 

Maclin 1999)(Zenobi & Cunningham 2001). 

The approach taken involves estimating four models, a single AR(p) in ad­

dition to three ensemble models to forecast the returns of component stocks 

within the FTSE 100 index on a daily basis. 

1. AR(p) model. 

2. Predetermined Ensemble (PE) - uses a restricted information set. 

3. Primary Random Subspace Ensemble (RSM1) - constructed using the 

unrestricted information set. 

4. Secondary Random Subspace Ensemble (RSM2) - built using the top 

2% of RSM1 models. 

The three ensemble models can be differentiated both by their information set 

and method of construction. The Predetermined Ensemble (PE) is restricted 
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Figure 4.1: Random Subspace Method 

Features TarQets ... 
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Model 4 @@@@@®® ® 

• 

Modeln ®®® 
to using a subset of the information superset and is mainly for comparative 

purposes. The remaining two ensembles are less restricted and are given 

access to the full information set which includes daily price open, high, low 

and close data and use a different method of construction namely, the random 

subspace method (RSM) of Ho (1998), whereby the component models are 

constructed by estimating them on pseudo-randomly selected subsets of the 

feature set. The primary RSM model (RMS1) consists of 62500 models while 

the secondary RSM model (RSM2) ensemble is built by conducting a model 

selection procedure on the former, that reduces the number of component 
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models to 1250. 

The remainder of this paper is divided into the following sections. Section 4.2 

describes the literature on forecast combinations and ensemble methods and 

our motivations for using the RSM, while Section 4.3 provides an explanation 

of the data used. In Section 4.4 the methodology is explained, followed by 

Section 4.5 where our results are presented. Finally Section 4.6 provides our 

concluding remarks. 

4.2 Model ensembles and forecast combina­

tion 

The fact that combining model outputs or forecasts can, under certain COIl­

ditions, increasc accuracy has bccn exploited in many fields from mcteorol­

ogy to politics and has a long history. Stigler (1973) writes that Laplace 

suggested combining models as far back as 1818 (La Place 1820). Cunning­

ham & Zen obi (2001) write of the Codorcet Jury Theorem (Condorcet NC 

de 1785), inferred by Black (1958), which predates the French Revolution: 

"If each voter has a probability p of being correct and the prob­

ability of a majority of voters being correct is M, then p > 0.5 

implies M > p. In the limit, M approaches 1, for all p > 0.5, as 

the number of voters approaches infinity" 
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This is further explicated with an example pertaining to classification by 

Dietterich (2002), 

"if the error rates of L hypotheses hi are all equal to p < 1/2 

and if the errors are independent, then the probability that the 

majority vote will be wrong will be the area under the binomial 

distribution where more than L/2 hypothesis are wrong." 

The probability that the final ensemble will make an error is given by (4.1). 

L 

Perrar = L (~) pi (1 _ p)L-i 

i=L/2 

( 4.1) 

So given a dichotomic classification task with H hypotheses that have a 

greater than 50% classification accuracy, an ensemble using majority voting 

will have an accuracy that is greater than anyone component model if the 

errors of the component models are un correlated. 

In the forecasting literature Barnard (1963) showed that averaging outper­

formed individual forecasts. Bates & Granger (1969) developed methods 

for combining forecasts using linear weighted averaging. More recent work 

by Breiman (1996), Freund & Schapire (1996), Wolpert (1992) and Zhang, 
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Mesirov & Waltz (1992) has extended these ideas by looking at morc com­

plex combinatorial methods, though this is somewhat of a double-edge sword; 

potential improvements in accuracy over simple methods often results in 

increased complexity which can be concomitant with the problem of over­

fitting. 

For problems for which certain strict assumptions hold true model combina­

tion will not be beneficial. Hendry & Clements (2004) state that aggregating 

forecasts is not beneficial when using the correct conditional expectation in 

a weakly stationary process, but that this is an unlikely scenario found in 

practice and that mis-specification, mis-estimation or non-stationarities are 

behind any improvement from model combination. In a similar vein Ncftci 

(1991) makes the point that forecasts based on Wiener-Kolmogorov predic­

tion theory will dominate in a mean square error sense for a linear stochastic 

process, hence model combination would not improve on this. 

Restricting choice to a single best model results in information contained 

within discarded models not being utilised. Additionally, when making the 

final choice the researcher is frequently faced with many statistically indis­

tinguishable models without enough evidence to prefer one over another. A 

choice of best single model then has to made which often results in a sub­

jective decision. Moreover, even if the model selection criteria points to one 

best model it is far from certain this is optimal. The discriminatory power 

of widely used model selection criteria such as AIC and BIC is reduced in 
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environments with low signal to noise ratios DellAquila & Ronchetti (2006). 

Like bagging and boosting the Random Subspace Method of Ho (1998) also 

works by modifying the training data but it does so in feature space. Given 

a training set of N feature set variables, a learning machine is repeatedly 

applied to randomly selected feature subsets of size M < N . Model outputs 

are then aggregated via majority voting to determine the final ensemble 

output. Although Boosting has proven to be a very effective combining 

algorithm it has a tendency to overfit the data in the presence of noise (Opitz 

& Maclin 1999) which makes it less appropriate in the context of financial 

market data where the signal to noise ratio is low. 

The RSM is derived from the method of Stochastic Discrimination(SD) in­

troduced by Kleinberg (1990),Kleinberg (2000). Its effectiveness is shown in 

Kleinberg (2000) where it outperforms bagging and boosting on a large num­

ber of benchmark problems. It has been shown to outperform single models 

in a number of papers; (Chawla & Bowyer 2005), (Zhao et al. 2005), (Bertoni 

ct al. 2005),(Rooney et al. 2004). Skurichina & Duin (2002) compared RSM, 

bagging and boosting using regression and nearest neighbours models on 15 

data sets selected from the WEKA (Witten & Frank 1999) repository and 

found RSM to be most effective. 

Ho (2000) found that RSM exhibited better performance when the discrim­

inatory power of the input space is distributed evenly over many features. 

Skurichina & Duin (2002) confirmed this result and further noted that RSM 
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was more effective in this case than when the discriminatory power is con­

densed to a few features. This is likely the case with this application in that it 

is difficult to argue that some specific lags contain all the relevant information 

at the expense of others, a situation complicated by the time varying nature 

of feature discriminatory power. Lastly, due to the sheer size of the feature 

space in this application it isn't feasible to use bagging or boosting using 

all features, nor is it easy to conduct the NP hard problem of multivariate 

feature selection (Amaldi & Kann 1998), (Guyon & Elisseeff 2003). 

The use of the random subspace ensemble method with linear regression as 

its base learner is motivated by a number of factors. Linear regression models 

are fairly easy to interpret as their properties are based on firm theoretical 

foundations. This makes it easier to analyse a single model LR benchmark 

against its ensemble counterpart, teasing out those aspects of performance 

due to one over the other. Moreover, LR lends itself to the RSM; it ha. ... been 

shown that generative methods are most effective when the base learner is 

unstable to perturbations to the training set. Linear regression coefficients 

are relatively stable to the kinds of changes to the training data induced by 

algorithms such as bagging which uses subsets of training instances, resulting 

in reduced diversity of output predictions. However, RSM builds models 

based on subsets of features (individual independent variables) which induces 

instability in regression models. 
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4.3 The Data 

The data used in this study consist of the daily open, high, low and closing 

prices of 65 UK stocks covering the years 1991 to 2006 and werc containcd 

within the FTSE 100 index as of January 2006 - see table 1. As a sizeable 

data history was desirable only those stocks that had price histories going as 

far back as 1991 - approximately 3900 days - were chosen hence the choice of 

65 stocks of varying market capitalisations. This has the effect of excluding 

the more recent entries in the index such as technology stocks and placing 

greater emphasis on index stalwarts, though this is unlikely to have much 

impact on the results. All data was obtained from Datastream. As expected, 

based on the Jarque-Bera statistic, normality is rejected at the 1 % level for 

all returns and all but four stocks have a positive mean over the period of 

study. 

As linear models are the focus of this study the Qstat p-value column shows 

the significance of the p-values from computing the Ljung-Box Q-statistic 

for high-order serial correlation for each stock up to order 15. Many of the 

stocks exhibit significant serial correlation in log returns with 77% significant 

at the 5% level.. 

To further explore the data we include are the results of the BDS test (Brock 

et al. 1996). The BDS test is one the of most popular tests for nonlinear 

structure and tests the null that a time series is independent and identically 
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Table 4.1: Closing price return statistics for 65 FTSE100 component stocks 
from 1991 to 2006. 

Mkt 
Std. 

Ljung- Mkt 
Std. 

Ljung-
Stock Cap Mean # Skew # Kurt Box bds Stock Cap Mean Skew.' Kurt' Box 

(mil) 
Dev. 

a stat (mil) 
Dev. 

astat 

f"UN 3164 0.053 1.4 1.0 22.0 LGEN 8445 0.035 2.0 0.1 6.4 

~VZ 4361 0.056 2.7 0.2 8.3 ... ... jMKS 10564 0.020 1.8 0.4 11.4 .. 
~NTO 4052 0.092 1.6 0.8 11.5 ... IMRW 5657 0.048 1.8 -0.1 13.2 ... 
~BF 6930 0.033 1.6 0.4 10.3 ... ... NXT 4154 O.llB 2.1 -0.5 lB.6 

~V 18864 0.012 2.1 0.1 7.2 ... ... PSON 5644 0.026 2.1 0.2 7.7 ... 
BAA B612 0.035 1.5 -0.6 20.1 .. PO 3680 0.025 2.0 1.0 15.B 
BA 13484 0.030 2.6 -3.6 74.6 ... PSN 4071 0.050 1.B 0.2 9.4 ... 
BARC 43259 0.050 2.0 0.1 6.0 ... .. PRU 14622 0.028 2.1 -0.3 8.8 .. 
BG 23638 0.047 1.8 0.0 5.6 ... · RB 14691 0.035 1.7 -0.2 16.5 

BOC 7611 0.027 1.5 0.2 15.0 REL 6550 0.029 1.B 0.7 11.5 ... 
BOOT 3446 0.016 1.5 0.0 9.0 ... RTO 2846 0.035 2.0 -0.4 12.5 .. 
BP 129540 0.039 1.6 -0.2 7.0 ... RTR 5276 0.022 2.6 -0.1 11.2 

BAY 3718 0.026 2.4 -0.1 9.1 .. .. REX 2799 0.026 1.8 0.0 8.6 
BATS 2B547 0.053 2.0 1.4 26.4 ... · RIO 28431 0.050 1.B 0.1 5.3 .. 
BLND 6270 0.038 1.7 0.4 10.1 .. ... RR 7714 0.030 2.2 0.0 11.2 ... 
BT.A 17289 0.001 2.1 -0.1 8.4 ... .. RSA 3786 -0.021 2.5 -0.2 10.3 .. 
CW 2492 -0.019 2.7 -3.3 73.5 ... .. RBS 60525 0.064 2.0 0.0 7.0 ... 
CBRY 12056 0.033 1.5 0.2 6.2 .. .. ROSA 118437 0.036 1.6 0.0 6.4 .. 
CNE 3068 0.058 2.5 1.9 33.2 ... .. SGE 3549 0.111 2.6 0.1 11.5 .. 
CPI 3098 0.113 22 0.4 9.7 ... · SBRY 6132 -0.001 1.8 -0.3 8.1 .. 
DMGT 2843 0.055 1.9 0.2 11.0 .. .. SDR 3333 0.060 2.2 0.0 8.1 ... 
DGE 25243 0.021 1.7 0.4 B.B ... .. SDRC 3333 0.070 2.5 ·0.3 9.6 ... 
DSGI 3190 0.041 2.4 -0.5 12.8 .. ... SCTN 4560 0.010 1.6 0.0 6.4 .. 
GSK 84210 0.032 1.8 0.2 8.7 .. .. SN 4768 0.044 1.6 0.2 7.8 .. 
GUS 9194 0.041 1.8 -0.4 14.6 ... ... SMIN 5269 0.039 1.7 -0.1 10.2 
HMSO 3246 O.OlB 1.4 0.3 9.7 ... ... STAN 19540 0.OB6 2.2 0.1 7.0 
HNS 5031 0.015 1.B 0.2 7.1 ... TATE 2911 0.018 1.8 ·01 13.9 ... 
IHG 3829 0.016 2.3 0.1 11.3 .. 

trsco 26514 0.036 1.7 0.1 5.1 ... 
ICI 3994 ·0.001 2.2 -2.5 69.2 ULVR 17102 0.032 1.5 ·0.5 10.6 
lTV 4415 0.034 2.3 0.1 6.5 .. '" ~OD 67170 0.048 2.3 0.2 5.8 ... 
JMAT 3140 0.046 1.7 0.3 8.1 ... 

~OS 8344 0.057 1.8 0.2 9.6 .. 
KGF 5346 0.014 1.9 -0.1 7.2 .. .. ~PP 8379 0.057 3.2 0.8 20.9 .. 
LAND 8562 0.030 1.2 0.1 4.9 .. · 

distributed (iid) against a non-specified alternative. Usually an appropriate 

linear model is estimated on the data and the residuals, which lack linear 

structure by design, are then tested. If the iid null is rejected it is con-

eluded the data contains some form of nonlinear structure. Given that much 

of the nonlinear structure in financial data is generated by GARCH effects 
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Figure 4.2: Log returns of six of 65 stocks. 

lESCO HANSON GLAXOSMIll-iKLlNE 

CAIRN ENERGY ~KS& SPENCER GROUP REED ELSEVIER 

(nonlinearity in the second moment) it is useful, especially if one is consider­

ing models that attempt to capture nonlinearities that are a result of other 

causes, to perform the BDS test on the standardised residuals of a GARCH 

model. In this case a GARCH (1,1) model was fitted to each stock and the 

resultant standardised residuals tested. 

It can be seen from table 4.1 that the iid null was rejected at the 5% level 

for 75% (49 out of 65) of the stocks indicating that these stocks may con­

tain nonlinear structure beyond expected GARCH effects. This conclusion 

is necessarily tentative being complicated by issues involving possible model 

miss-specification and the low power of the BDS test in detecting neglected 
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second moment asymmetries (Brooks & Henry 1999). What is notable is 

that some stocks which had no significant linear structure did contain non­

linearities such as, BOOTS and NEXT. 

The type of forecasting model used and the manner in which the model 

parameters are estimated will dictate how the dataset is partitioned in or­

der to get meaningful out-of-sample results. In the case of a linear regression 

forecasting model it is usually only necessary to partition the data into an iIl­

sample and out-of-sample set, whereby the in-sample data is used to estimate 

the regression coefficients and the out-of-sample data to measure subsequent 

performance. This is due to there being only one global linear least squares 

fit through the data so model selection is unnecessary once the feature set 

has been fixed. In this study all models are autoregressive in nature and the 

information set is restricted to price data. Although it might be reasonable to 

expect additional information (volume, macro-economic variables etc) to im­

prove model accuracy, this possibility is not investigated here. The data are 

divided into three different subsets, in-sample, validation and out-of-sample 

- see table 4.2. This is necessary as some of the ensembles require a model 

selection procedure based on in-sample and validation data performance to 

reduce problems of overfitting and datasnooping - a perennial issue in fore­

casting financial data. The final results are then tested out-of-sample to give 

an indication of potential real-time performance. 
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Table 4.2: Data set partitioning - 65 FTSE Stocks. 
Set Dates Length 

In-sample set 24 Jan 1991 to 31 Aug 1998 1983 days 
Validation set 01 Sep 1998 to 26 Sep 2001 801 days 

Out-of-sample set 26 Sep 2001 to 24 Jan 2006 1130 days 

Figure 4.3: Averaged cumulative returns for all 65 stocks rebased to 100. 

Avg 65 FTSE stock cumulative log returns 
Jan 1991 to Jan 2006 

(rebased to 100) 
2~r---------------------------~---------;---------------, 
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It is worth noting the type of market conditions that occurred during each 

partition as it can have a bearing on the final results. It is generally the 

ease that a model that allows both long and short positions is less likely to 

perform well in a bull market when compared with the buy and hold (B&H) 

as often simply staying long is the best strategy. The average cumulative log 

returns during the in-sample period shown has a relatively high Sharpe Ratio 

121 



(SR) (Sharpe 1965) of2.3 (see results section), clearly identifiable from figure 

4.3, where the period consisted of a smoothly upward sloping B&H curve or 

bull market. The validation period consisted of what practitioners might 

refer to as a consolidated or sideways market - which is reflected in a lower 

SR of 0.89. The beginning of the out-of-sample period contains a large dip 

followed by an upwardly trending bull market and has a SR of 0.86. 

4.4 Methodology 

We attempt to predict and trade the daily returns of 65 FTSE 100 con­

stituent stocks using linear regression models as our base learners or COlll­

ponent models, which are then combined into ensembles. Each component 

model is estimated on and will predict the returns of each constituent stock, 

the results then combined into a portfolio for purposes of diversification. It 

is the portfolio results that are considered relevant and that arc reported as 

they provide a more robust indication of overall model performance than do 

the results from individual stocks. To this end we create and compare four 

different models that differ both in their method of construction and by the 

information set used: 

1. AR(p) model. 
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2. Predetermined Ensemble (PE) - uses a restricted information set. 

3. Primary Random Subspace Ensemble (RSMl) - constructed using dlP 

unrestricted information set. 

4. Secondary Random Subspace Ensemble (RSM2) - built using the top 

2% of RSMI models. 

4.4.1 Model Specification. 

Dependent /Target variables: 

(4.2) 

Independent /Driver variables: 

Yt-i,t = (Ct/Pt-i) ( 4.3) 

where y = log returns over various horizons, Ct is the closing price on day t , 

and P may be an open, high, low or close from another day. 

General model specification is: 

15 

Yt,t+k = ao + L aidiYt-i,t + Ut,t+k' 
i=1 
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where ai are estimated regression coefficients, di thc driver variables and Ut 

the error term. 

Model 1: AR(5) 

Autoregressive model AR(5) with a fixed 500 day estimation window, rolled 

(re-estimated) daily. Model 1 is included as a benchmark and is typical of 

the form of model applied to this class of forecasting problem. The use of 5 

lags is to capture possible weekly effects within the data. 

p = closing price c, 

k = 1, d = [1111100 ... 0] 

estimated on data from t - 499, t 

Model 2: Predetermined Ensemble (PE) 

The PE model serves as a benchmark with which to compare the morc com­

plex RSMI and RSM2 ensembles. Trades are based on the forecasts of the 

following 1170 regression models: 

p = closing price c, k = 1,2,3, ... ,9 (9 horizons) 

d = [111000 ... 0], [111100 ... 0], [111110 ... 0] up to [111111 ... 1] 
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(13 driver variable sets) 

estimated on data from windows t - n, t where n= 100,200,300, ... ,1000. (10 

samples). Models are rolled every 30 days. 

To clarify, there are 13 different sets of independent variables, 9 dependent 

variables and 10 different rolling estimation windows. The PE consists of a 

fairly simple structure and there is no attempt to optimise performance via 

variable or model selection. 

Clearly the PE's component models contain some redundancy across the in­

dependent variables for example, all models contain at least one to three day 

lagged returns. This is intentional and is in contrast to the RSM ensembles 

of which an important element of the methodology is the construction of (if 

not truly) orthogonal models, models which are by design more diverse than 

the PE models. 

Model 3. Primary Random Subspace Ensemble (RSM1) 

This ensemble uses a larger information set than the PE Model. The inde­

pendent variables can consist of any members of the price information set 

including the open, high, low and close. Forecasts and thus trades are based 

on 62500 models generated using the following process: 

125 



p= randomly selected open, high, low or close. k = 1,2,3, ... , 10, randomly 

selected. 

d= randomly selected 15-vector, with between 1 and 8 values =1, 

estimated on data from windows t - n, t where n= randomly selected in the 

range 110, 1000. 

In all cases random sampling is from the uniform distribution and models 

are rolled every 30 days. It is evident from the model specification that there 

is a greater capacity for model diversity than previous models for example, 

at a minimum a model using only one independent variable is possible. This 

capacity also results in the creation of clearly miss-specified models, defined 

as any model that results in a negative overall return on the in-sample data. 

These models are removed - a form of real time model pruning. To clarify, 

miss-specified models can result when the target is randomly selected as: 

The I-day close to low target return is frequently negative when compared to 

the I-day close to close return (in the region of 70% negative for the former 

and 40% the latter). This produces negatively biased forecasts and, given 

that measured performance is based on close to close returns, can result in 

a negative overall return, even though the model may perform well on the 

basis of close to low returns. 
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Model 4: RSM2 

The RSM2 ensemble comprises of the top 2% of RSM1 component models, 

chosen on the basis of in-sample total returns. This is a form of modd 

skimming and is similar to pruning or thinning except that only a small 

percentage of models are retained rather than dispensed with. The rationale 

behind this method of model selection is explained in the results section. 

Converting model outputs into forecasts for trade simulation. 

Every component regression model built outputs a forecast (a real number) 

for each day in the dataset. This needs to be converted into a trading decision 

rule (TDR) to hold either a long (1), short (-1) or, in some cases, a flat (0) 

position in the underlying share. The first stage is to assign the output of 

each model either 1 or -1 according to the following rule: 

If model output ~ 0, then output = 1, Else output = -1. 

This results in a vector of Is and -Is for each of the 65 stocks for each day. 

In the case of Model 1 this is all that is needed and the model is tested by 

simulating holding a long or short position from t to t+ 1 depending on the 

sign of the model output. In the case of the ensembles we compare two TDRs 

based on thresholding the summed output of the whole ensemble. For each 
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day the integer output of all component models is summed, which in the case 

of Model 2 (PE) consists of summing the output of all 1170 models. 

Figure 4.3 shows this in more detail where, on one particular day for one of 

the 65 stocks, there are 1170 model outputs of either 1 or -1. The summed 

value is taken as the ensemble's forecast for that particular share and day. 

Table 4.3: Hypothetical ensemble forecast for PE model. 

Estimation 
k (forecast horizon) 

window 1 2 3 4 5 6 7 8 9 
100 13 5 5 -6 -6 -3 1 3 3 

200 -3 -3 -7 5 13 3 5 -5 5 

300 -3 5 -3 5 1 -6 7 -3 6 

400 -3 7 -3 1 7 1 -11 1 -1 

500 -3 -5 -3 5 -5 1 -5 -3 -7 

600 9 -7 -3 13 7 9 -6 5 -9 

700 -9 11 12 -1 -13 -11 1 8 5 

800 -5 6 1 13 5 -11 1 3 -7 

900 -7 9 -3 5 11 5 -5 13 1 
1000 -5 -5 9 11 3 5 -9 -11 -5 

I Sum= 60 

In the example shown pertaining to the PE model the forecast is +60, though 

it can range between 1170 and -1170. If we assume a higher value is reflective 

of greater confidence then it might be the case that only taking a position 

when the forecast is above or below a certain threshold produces better per-

formance. 

Denote by Fl , ... , FL the forecast (1,-1) of each component model for one 

stock on daYt, where L is the number of component models in the ensemble: 

128 



Trading Decision Rule 1 (TDR 1): 

L 

If 2: Fi > lon9_thres, positiont = 1, 
i=1 

L 

Else If 2: Fi < shorLthres,positiont = -1, 
i=1 

Else positiont = O. 

Trading Decision Rule 2 (TDR 2): 

L 

If L Fi > long_thres, positiont = 1, 
i=1 

L 

Else If2:Fi < shorLthres,positiont = -1, 
i=1 

Else positiont = positiont_1. 

When using a threshold of 0 for both rules TRD1=TDR2. For thresholds 

greater than zero (the threshold for short positions is simply opposite in sign 

to the long threshold) TDRI results in either long, short or flat positions i.e'., 

it is not always in the market. On the other hand TDR2 results in either 

long or short positions and is always in the market, as once a long (short) 

position is taken it is only switched to short (long) when the model output is 

less (greater) than the chosen short (long) threshold. The rationale behind 

TDR2 is to reduce transaction costs by reducing trading frequency, based on 
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the notion that there is no strong reason to switch positions until the model 

is strongly confident of a move in the opposite direction. 

4.5 Results 

In this section the results of the four models are presented across the three 

data partitions for the portfolio of 65 stocks. Note that the in-sample pe­

riod shown is based on the last 983 days of the original in-sample data of 

1983 days and is that period beyond the initial maximum historical window 

length of 1000 days used to estimate the component models. This renders 

the in-sample results shown effectively ex-ante and allows more meaningful 

comparisons with the validation and out-of-sample results. 

The reported SRs do not include the risk free rate in their calculation as the 

resulting simultaneous long and short positions will largely offset each other, 

though not entirely, as the portfolio is not 100% market neutral. As a result 

the need to choose an appropriate risk free rate is dispensed with. 

4.5.1 Modell: AR(5) 

As there is only one AR model per stock the threshold value is zero and 

TDR1 is examined2
. A number of performance statistics which relate to 

2In this case TDRl=TDR2 
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over 80,000 simulated trades over the three separate in-sample, validation 

and out-of-sample periods are shown in table 4.4, including the equivalent 

buy and hold SR figure for each period. Figure 4.4 depicts the resulting 

cumulative return curves with transaction costs of 0% and 0.5% included, in 

addition to the equally weighted portfolio average 3. What is immediately 

clear is that without transaction costs the model looks promising, exhibiting 

a smooth upwardly sloping cumulative return curve and SRs of between 2.2 

and 5. Once transaction costs of 0.5% are taken into consideration model per­

formance significantly degrades. The out-of-sample performance is markedly 

worse than that over the other data partitions, most notably the average 

trade figure which almost halves. Overall the results are not surprising in 

terms of market efficiency and are indeed what would be expected, highlight­

ing the point that although there exists a certain amount of predictability 

within the price data, it is not enough to beat the assumed transaction costs 

using this model and information set. 

When interpreting these results over the periods analysed it's important to 

consider the transaction cost environment over time. The in-sample SR with 

no transaction costs is the largest at 5.8 but then declines steadily across 

the data, dropping to 2.2 in the out-of-sample period. A large component of 

this decline will likely be the result of steadily decreasing transaction costs 

since the early 1990s. Whether it is also a result of the market becoming 

more efficient to linear modelling of closing price data is unclear, as linear 

3This represents the return achieved via buy and hold. 
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Table 4.4: Model l. AR(5) results. 
In-sample 

Number of models per stock = 1 Sharpe Ratio given level of Avg Final Equity per stock Daily 
Number of days = 983 transaction costs TOR 1 given level of trans costs Ret 

Thres 
IAIIg Tr80e % Avg I race In Num lraces 

0.0% 0.25% 0.50% 0.75% 1.00% 0.0% 0.25% 0.50% 0.75% 1.00% 0.25% 
TOR1 days TOR1 

0 0.29 2.5 25981 5.8 0.7 -4.3 -9.0 -13.3 117% 17% -83% -183% -283% 0.017% 

Buy and hold Sharpe Ratio = 2.3 

Validation 
Number of models per stock = 1 Sharpe Ratio given level of Avg Final Equity per stock Daily 

Number of days = 801 transaction costs TOR 1 given level of trans costs Ret 

Thres 
AIIg Tr80e % I Avg Trace In INum lraces 

0.0% 0.25% 0.50% 0.75% 1.00% 0.0% 0.25% 0.50% 0.75% 1.00"k 0.25% 
TOR1 days TOR1 

0 0.29 2.2 23188 4.5 0.7 -3.1 -6.8 -10.4 103% 14% -75% -165°k -254% 0.02% 

Buy and hold Sharpe Ratio = 0.89 

Out-ot-sample 
Number of models per stock = 1 Sharpe Ratio given level of Avg Final Equity per stock Daily 

Number of days = 1130 transaction costs TOR 1 given level of trans costs Ret 

Thres 
AIIg Tr80e% I Avg 1 race In .Num Traces 

0.0% 0.25% 0.50% 0.75% 1.00% 0.0% 0.25% 0.50% 0.75% 1.00% 0.25% 
TOR1 days TOR1 

0 0.15 2.2 3280G 2.2 -1.5 -5.2 -6.7 -11.9 74% -51% -177% -302% -428% -0.05% 

Buy and hold Sharpe Ratio = 0.86 

regression was, after all, clearly available at the time. 

The literature confirms a steady decline in trading costs; Gemmill (1996) re­

ports that spreads for block trades dropped from 0.78% in 1988 to 0.43% in 

1992. Levin & Wright (2004) found the average spread for FTSE 100 stocks 

to be 0.55% during '94 to '95. (Gemmill 1998) reports a 0.39% spread for 

large companies before the introduction of SETS4 in October 1997 and 0.32% 

shortly afterwards. The London Stock Exchange reported average spreads of 

0.2% in their guide to trading the FTSE. We calculated an average spread 

4Thc London Stock Exchange's trading service for UK blue chip securities 
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Figure 4.4: Modell AR(5) cumulative returns. 
~~--------~-------
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of 0.15% in 2006 for FTSE 100 stocks from SETS prices. Our results ac-

count for transaction costs between 0% and 1%, though we mainly assume 

0.25% and 0.5% which probably ranges from a minimum to an amount rea­

sonably attainable by institutional traders. Of course transaction costs also 

comprise of other components such as financing costs, estimated at O. Hi% 

for institutional investors (Naik & Yadav 1999b). 

On another note it's important when making any inferences regarding eco-

nomic significance that it was actually possible to trade at, or close to, the 

price reported. For example, numerous authors have found the bid-ask spread 

to be at its widest during the opening, and then declining throughout the 

rest of the day (Levin & Wright 1999) (Naik & Yadav 1999a). This suggests 
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that the opening price is less reliable in terms of simulated trading than the 

close. To investigate this we re-estimated the PE model using open to open 

prices and found the average trade figure increased by around 20%. We in­

terpret this as being more likely reflective of the aforementioned problem of 

trade price unattainability than an opportunity to improve results. 

The SRs reported don't account for the risk free rate as some positions offset 

each other so are self-financing. Additionally, traders are rarely required to 

trade at the observed spread. Traders face what is termed the effective spread 

which is generally reported to be lower than the average spread. Moreover 

Taylor (2002) showed that it was possible to reduce the effective spread by 

predicting and trading when the spread was at a minimum. As a result the 

SRs are only slightly inflated, if at all, when compared to exogenous research 

that includes the risk free rate. 

4.5.2 Model 2. Predetermined ensemble. 

These results are shown in Tables 4.5 to 4.7 and figure 4.5. The tables show 

the results of applying different thresholds to the output of the 1170 model 

ensemble for both TDR1 and TDR2, in addition to the effect of applying 

different levels of transaction costs to TDR2. In figure 4.5 the cumulative 

return curves for four different combinations of thresholds and transaction 

costs can be seen, in addition to the equivalent buy and hold. 
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The first two columns show the percentage and absolute value of the threshuld 

used (the threshold for short positions is merely of opposite sign). The third 

and fourth column show the average percentage return of each trade given the 

threshold level for TDR2 and TDR1 and columns five and six show the total 

number of trades across all stocks for TDR2 and TDRI respectively. The next 

set of five columns show the SRs based on five different levels of transaction 

costs for each threshold level for TDR2 only. Given that TDR2 results in 

higher SRs in-sample once transaction costs are taken into account this is 

the trading decision rule chosen for simulated trades. The equivalent results 

for TRDI can be largely inferred given the average trade and transaction 

costs. The next seven columns show figures for the average total percentage 

return for each stock over the given data partition for each level of transaction 

costs. The last two columns show the average daily pcrccntage return per 

stock assuming transaction costs of 0.25% and 0.5% which, in addition to the 

SR, allows comparison across different time periods. Finally, at the bottom 

of each table, the SR for buying and holding an equally weighted portfolio 

of all stocks is included for comparison. 

As expected, when the threshold increases the number of trades for both 

TDRs decreases, though more so for TDR2, for which positions arc only 

switched if a forecast (ensemble output) follows in the opposite direction 

beyond the relevant threshold value. The percentage average trade increases 

in tandem with the threshold for TDR2 though not for TDRl. Note that 
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with regards to TRDl, although the average percentage return per trade 

isn't rising with the threshold it may be that the average daily percentage 

return is rising. 

Table 4.5: Predetermined ensemble results over the in-sample data period. 
Number of models per stock = 1170 Sharpe Ratio given level of Avg Final Equityper stock Daily 

Number of days = 983 transaction costs TDR2 given level of trans costs Ret 

Thres 
Avg Avg Num Num 

Thres 
Val 

Trade % Trade % Trades Trades 0.0% 0.25% 0.50% 0.75% 1.00% 0.0% 0.25% 0.50% 0.75% 1.00% 0.25% 
TOR2 TOR1 TOR2 TOR1 

0 0 0.54 0.54 11081 11081 3.8 2.1 0.3 -1.5 -3.3 92% 49% 7% -38% -79% 0.05% 

20% 234 0.83 0.54 7303 10975 3.8 2.7 1.5 0.4 -0.8 93% 65% 37% 9% -19% 0.066% 

40% 468 1.13 0.53 4923 10676 3.5 2.7 2.0 1.2 0.4 86% 67% 48% 29% 10% 0.068% 

60% 702 1.65 0.51 3141 9919 3.5 3.0 2.4 1.9 1.4 80% 68% 56% 43% 31% 0.069% 

80% 936 2.98 0.45 1483 8145 3.0 2.8 2.6 2.3 2.1 68% 62% 57% 51% 45% 0.063% 

99% 1169 21.22 0.58 146 1652 2.3 2.3 2.3 2.3 2.2 48% 47% 47% 46% 45% 0.048% 

Buy and hold Sharpe Ratio = 2.3 J 

Table 4.6: Predetermined ensemble results over the validation data period. 
Number of models per stock = 1170 Sharpe Ratio given level of Avg Final Equityper stock Daily 

Number of days = 801 transaction costs TDR2 given level of trans costs Ret 

Thres Thres 
Avg Avg Num Num 

% Val 
Trade % Trade % Trades Trades 0.0% 0.25% 0.50% 0.75% 1.00% 0.0% 0.25% 0.50% 0.75% 1.00% 0.25% 

TOR2 TORI TOR2 TORI 

0 0 0.49 0.49 11892 11892 4.3 2.3 0.2 -1.9 --4.0 90% 44% -2% -47% -93% 0.06'4 

20% 234 0.70 0.46 6437 11689 4.0 2.7 1.4 0.1 -1.4 90% 56% 25% -7% --40% 0.072% 

40% 468 0.65 0.48 5958 10923 3.5 2.6 1.7 0.7 -0.3 77% 55% 32% 9% -14% 0.068% 

60% 702 0.94 0.47 3923 9360 2.7 2.1 1.4 0.8 0.1 57% 42% 27% 11% -4% 0.052% 

80% 936 1.48 0.52 2084 6819 2.2 1.6 1.5 1.1 0.6 47% 39% 31% 23% 15% 0.049% 

99% 1169 0.68 0.70 199 1008 0.1 0.0 0.0 0.0 -0.1 2% 1% 0% 0% -1% 0.002'4 

Buy and hold Sharpe Ratio = 0.891 

The average trade figure of 0.29% in-sample for the AR(5) model rises to 

0.54% at a threshold of zero for the PE model, with an approximate halving 

of the number of trades to just over 37,000, which is due in a large part to 

the inclusion of lower frequency targets (1 to 9 days ahead as opposed to 1 
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Table 4.7: Predetermined ensemble results over the out-of-sample data pe­
riod. 

Number of models per stock = 1170 Sharpe Ratio given level of Avg Final Equityper stock Daily 
Number of days = 1130 transadion costs TDR2 given level of trans costs Ret 

Thres Thres 
Avg AIIQ Num Num 

Trade % Trade % Trades Trades 0.0% 0.25% 0.50% 0.75% 1.00% 0.0% 0.25% 0.50% 0.75% 1.00% 0.25% 
% Val 

TDR2 TOR1 TDR2 TDR1 

0 0 0.22 0.22 14987 14987 1.5 -0.2 -1.9 -3.5 -5.0 51% -6% -64% -122% -179"" -0.01% 

20% 234 0.36 0.21 9105 14736 1.5 0.4 -0.6 -1.6 -2.6 50% 15% -20% -55% -90% 0.014% 

40% 468 0.50 0.21 5468 13381 1.2 0.6 0.0 -0.6 -1.2 42% 21% 0% -21% -42% 0.019% 

60% 702 0.71 0.20 2685 10896 0.9 0.6 0.3 0.0 -0.3 31% 20% 9% -2% -13% 0.018% 

80% 936 1.00 0.21 1177 7271 0.5 0.4 0.2 0.1 0.0 18% 14% 9% 5% 0% 0.Q12% 

99% 1169 -0.16 0.26 89 648 0.0 0.0 0.0 0.0 -0.1 0% -1% -1% -1% -2% 0.000% 

Buy and hold Sharpe Ratio = 0.861 

day for AR(5)) and inputs in the models. 

Initially, for some threshold levels the results look promising. Assuming a 

threshold level of 80% and transaction costs of 0.5% the model exhibits a 

SR of 2.6 in-sample and 1.5 during the validation pcriod_ However, the 

performance degradation continues out-of-sample, where it drops to 0.2 and 

is representative of a general downward trend in all performance statistics 

when moving from validation to out-of-sample. Given that all the results 

shown are effectively ex-ante5 the overall decline in performance is less likely 

to be explained by model overfitting or datasnooping and again, like the 

AR(5) model, results are more likely to be explained by the steadily declining 

rate of transaction costs. Note also that at a threshold of 80% the number of 

trades in-sample for TDR1 is only reduced to 73% of the value for a threshold 

of zero. This suggests there is low diversity in the ensemble as the individual 

5The in-sample results are reported for the 983 days after the maximum 1000 days 
estimation period. 
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model'~ forecasts are correlated. 

Figure 4.5: Cumulative equity curves for the PE model. 
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In figure 4.5 the very top and bottom curves are the results of using a thresh­

old of zero and 0% and 0.5% transaction costs respectively. Their shape is 

comparable to the AR model's cumulative equity curves and similarly reflect 

the inability of the ensemble to beat the market once transaction costs are 

considered. The two grey curves above the black B&H curve depict the re-

suIts of using a 40% threshold with and without 0.5% transaction cost~. It is 

clear overall that the addition of costs is having a lesser effect due to larger 

average trades but still large enough to underperform the buy and hold. 
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4.5.3 Model 3. Random Subspace Ensemble (RSM1) 

The results for Model 3 are shown in tables 4.8 to 4.10. The number of thrcsh-

olds for which results are reported has been increased as much of the change 

occurs at the lower end of threshold values. This points to one method 

of gaining insight into the extent of model component diversity; compare 

between models the reduction in the total number of trades for a given per-

centage threshold. The RSM1 model was expected to have greater diversity 

than the previous models and this is indeed the case in that a threshold of 

80% reduces the number of trades to 48% of the amount at a threshold of 

zero, compared to 73% for the PE model. 

Table 4.8: RSM1 Ensemble results over the in-sample data period. 
Number of models per stock = 62500 Sharpe Ratio given level of Avg Final Equityper stock Daily 

Number of days = 983 transaction costs TDR2 aiven level of trans costs Ret 
Avg Avg Num Num 

Thres Thres Val Trade % Trade % Trades Trades 0.0% 0.25% 0.50% 0.75% 1.00% 0.0% 0.25% 0.50% 0.75% 100% 025% 
TDR2 TOR1 TOR2 TORI 

0 0 0.98 0.98 4386 4386 2.7 2.1 1.5 0.9 0.2 66% 49% 32% 16% 59% 0050% 

5% 3125 1.26 0.99 3481 4324 2.8 2.3 1.8 1.3 0.8 67% 54% 40% 27% 62% 0.055% 

10% 6250 1.50 0.99 2885 4331 2.8 2.4 2.0 1.6 12 66% 55% 44% 33% 62% 0056% 

15% 9375 1.74 0.98 2454 4328 2.8 2.5 2.2 1.8 1.4 66% 56% 47% 37% 62% 0.057% 

20% 12500 2.05 1.00 2058 4203 2.9 2.6 2.3 2.0 1.7 65% 57% 49% 41% 62% 0058% 

25% 15625 2.47 1.02 1706 4160 3.0 2.7 2.5 22 1.9 65% 56% 52% 45% 62% 0059% 

30% 18750 2.87 1.01 1450 4144 3.0 2.8 2.6 2.4 21 64% 59% 53% 47% 62% 0060% 

40% 25000 4.24 1.01 1006 3952 2.9 2.8 2.7 2.5 2.4 66% 62% 58% 54% 64% 0.063% 

50% 31250 6.30 1.01 663 3734 2.8 2.7 2.6 2.5 2.4 64% 62% 59% 57% 63% 0.063% 

60% 37500 9.94 0.96 400 3415 2.7 2.6 2.5 2.5 2.4 61% 60% 58% 57% 61% 0.061% 

70% 43750 19.63 0.94 205 2860 2.5 2.5 2.5 2.4 2.4 63% 62% 61% 60% 62% 0.063% 

80% 50000 63.24 0.95 66 2116 2.5 2.5 2.5 25 2.5 64% 64% 64% 63% 64% 0065% 

90% 56250 1310.71 1.08 3 1182 2.3 2.3 2.3 23 2.3 60% 60% 60% 60% 60% 0.062% 

99% 61675 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Buy and hold Sharpe Ratio = 2.3 J 

What is immediately of note is the average trade for TDR1 has increased from 
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Table 4.9: RSMI Ensemble results over the validation data period. 
Number of models per stock = 62500 Sharpe Ratio given level of Avg Final Equityper stock Daily Daily 

Number of days = 801 transaction costs TDR2 given level of trans costs Ret Ret 
Avg Avg Num Num 

Thres Thres Val Trade % Trade % Trades Trades 0.0% 0.25% O.SO% 0.75% 100% 0.0% 025% O.SO% 0.75% 100% 0.25% 0.50% 

TDR2 TOR1 TDR2 TOR1 

0 0 0.60 0.60 5579 5579 2.2 1.4 0.7 -0.2 -1.0 51% 30% 8% ·13% 43% 0.037% 0010% 

5% 3125 0.79 0.67 4397 5599 2.2 16 10 0.4 -0.2 53% 36% 20% 3% 47% 0.046% 0024% 

10% 62SO 0.96 0.69 3635 5534 22 1.7 1.3 0.8 0.3 54% 40% 26% 12% 48% 0.049% 0032% 

15% 9375 106 0.65 2972 5328 1.9 1.6 1.2 0.8 0.4 49% 37% 26% 14% 44% 0047% 0.032% 

20% 12500 106 0.68 2462 S076 1.7 14 1.1 0.8 0.4 40% 31% 21% 12% 36% 0038% 0026% 

25% 15625 1.19 0.64 2053 4826 1.7 1.4 1.2 0.9 0.6 37% 30% 22% 14% 34% 0.037% 0.027% 

30% 187SO 135 0.69 1691 4478 1.7 1.5 12 10 0.8 35% 29% 22% 16% 33% 0.036% 0028% 

40% 25000 1SO 0.70 1087 3786 1.2 1.1 1.0 0.8 0.7 25% 21% 17% 12% 23% 0026% 0.021% 

50% 312SO 0.88 074 644 3039 0.8 0.7 0.6 0.5 0.4 9% 6% 4% 1% 8% 0.008% o 005'A> 

60% 37500 166 0.78 357 2425 0.7 0.7 0.6 0.6 0.5 9% 8% 6% 5% 9% 0.010% 0008% 

70% 43750 3.43 0.91 233 1709 0.8 0.7 0.7 0.7 0.7 12% 11% 11% 10% 12% 0.014% 0013% 

80% 50000 7.37 1.17 87 937 0.7 0.6 0.6 0.6 0.6 10% 10% 9% 9% 10% 0012% 0011% 

90% 56250 133.88 153 11 423 0.8 0.8 0.8 0.8 0.8 23% 23% 23% 23% 23% 0.028% 0028% 

99% 61875 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Buy and hold Sharpe Ratio = 0.89 I 

Table 4.10: RSM1 Ensemble results over the out-of-sample data period. 
Number of models per stock = 62500 Sharpe Ratio given level of Avg Final Equityper stock Daily Daily 

Number of days = 1130 transaction costs TDR2 given level of trans costs Ret Ret 
Avg Avg Num Num 

Thres Thres Val Trade % Trade % Trades Trades 0.0% 0.25% 0.50% 0.75% 100% 0.0% 0.25% 0.50% 075% 1.00% 0.25% 0.50% 
TOR2 TOR1 TOR2 TOR1 

0 0 088 088 6123 6123 2.3 1.7 1.0 0.3 -0.3 83% 59% 36% 12% 73% 0052% 0032% 

5% 3125 1.25 0.92 4397 6148 2.3 1.9 1.4 0.9 0.4 85% 68% 51% 34% 78% 0.060% 0.045% 

10% 6250 1.56 0.90 3319 6025 2.1 1.8 1.4 11 0.7 80% 67% 54% 41% 75% 0.059% 0048% 

15% 9375 1.81 0.91 2550 5911 1.8 1.6 1.3 1.1 0.8 71% 61% 51% 41% 67% 0.054% 0045% 

20% 12500 2.23 0.91 1988 5629 17 1.6 1.4 1.2 10 68% 60% 53% 45% 65% 0053% 0047% 

25% 15625 2.91 0.93 1524 5273 1.7 1.6 1.4 1.3 11 88% 62% 56% 51% 66% 0.055% 0.050% 

30% 18750 3.65 0.97 1144 4881 1.6 15 1.4 1.3 1.2 64% 60% 55% 51% 63% 0053% 0.049% 

40% 25000 6.63 0.96 601 4122 1.6 15 1.5 1.4 1.4 63% 61% 59% 56% 62% 0.054% 0052% 

50% 31250 11.96 0.97 291 3406 1.4 1.4 1.4 1.3 1.3 54% 52% 51% 50% 53% 0046% 0045% 

60% 37500 31.47 0.97 111 2558 14 14 1.3 13 13 54% 53% 53% 52% 54% 0047% 0047% 

70% 43750 80.70 1.11 39 1531 0.9 0.9 0.9 0.9 0.9 48% 48% 48% 48% 48% 0.043% 0043% 

80% 50000 302.93 1.18 11 626 0.9 0.9 0.9 0.9 0.9 51% 51% 51% 51% 51% 0.045% 0.045% 

90% 56250 3669.86 1.61 1 138 0.8 0.8 0.8 0.8 0.8 56% 56% 56% 56% 56% 0050% 0050% 

99'A> 61875 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Buy and hold Sharpe Ratio = 0.86 I 
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about 0.25-.45 for the PE model to a range of about 0.65 to 1 for RSMl. 

Similar to the PE model the number and size of trades increases in line with 

the size of the threshold. The SRs also increase as the average trade increases 

across all data partitions. What is markedly different is that the performance 

of the model remains more consistent across the whole data.'.;et than the PE 

model. The in-sample SRs for thresholds greater than 20% tends to equal or 

exceed that of the B&H (2.3) even when transaction costs of 0.5% are taken 

into account, which is interesting given the relatively advantage of the B&H 

during a bull market, as previously noted. 

4.5.4 Model 4. Random Subspace Ensemble (RSM2) 

Given that all constructed models are included in the final RSMI ensemble 

(there is no model selcction6 ) it is likely that a proportion of the component 

RSMI models perform poorly enough to actually reduce the performance 

of the ensemble as a whole. RSM2 uses a relatively simple form of model 

selection in an attempt to render a higher performing ensemble than RSMl. 

Removing just a small proportion of the weak performing models is unlikely 

to change RSM1's performance as many of them will just be contributing 

noise, with their near random outputs simply out-voted by the higher quality 

models. RSM2 is built by skimming the top 2% of RSM1 models based on a 

measure of their in-sample performance. 

6 Apart from the initial pruning of models that result in negative in-sample returns. 
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There are many criteria that could be used to define top performing models 

but in this case we choose what is probably the simplest; those models with 

the highest in-sample total returns, not including transaction costs. This 

criteria is unlikely to be optimal if the ultimate objective is a model exhibiting 

a high SR net of transaction costs and will be affected by a number of factors: 

1. By not including transaction costs the selection procedure is biased 

to those models that capture a larger component of the daily price 

movement which tends to be models that trade more frequently and 

therefore increase transaction costs. 

2. A good ensemble will contain models that are not only accurate but 

arc also diverse. This type of selection will tend to reduce diversity as 

those models that perform well individually in terms of total returns 

will tend to be correlated. 

Examples of other methods include choosing those models exhibiting the 

highest SR after accounting for transaction costs or choosing the top 2% of 

models based on some portfolio optimisation method. Whatever the method 

chosen there will be drawbacks. For example, the latter method will tend to 

exclude those models that are very accurate on a short term basis but result 

in many transactions, even though they may actually benefit the ensemble 

when combined with longer term models. We choose a simple method as 

first a approximation and any recorded improvement might be increased by 
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using a more sophisticated selection procedure. 

The results of this skimming procedure can be seen in figures 4.6 to 4.8. What 

is notable is the consistency of performance of the average trade figures across 

all three data partitions, ranging from 0.62% to 0.66% at a threshold of zero. 

Except for the validation period these are lower than RSM1, something we 

might expect as the model selection method favoured models that traded 

more frequently and hence with lower average percentage trades. The SRs 

across all periods for transaction costs of 0.5% are in the region of 2, with 

figures dipping slightly in the validation set but subsequently improving out-

of-sample. The in-sample results are good by construction so we would expect 

nothing less. 

Figure 4.6: Top 1250 RSM2 model results over the in-sample data period. 
Number of models per stock = 1250 Sharpe Ratio given level of Avg Final Equityper stock Daily 

Number of days = 983 transaction costs TDR2 given level of trans costs Ret 

Thres 
Avg Avg Num Num 

Thres 
Val 

Trade % Trade % Trades Trades 0.0% 0.25% 0.50% 0.75% 1.00% 0.0% 0.25% 0.50% 0.7!!% 1.00% 0.25% 
TDR2 TOR1 TDR2 TOR1 

0 a 0.62 0.62 11892 11892 5.8 3.5 1.1 -1.2 -3.5 114% 68% 22% -24% -69% 0.069% 

20% 250 0.83 0.84 8179 11679 5.4 3.8 2.2 0.5 -1.2 104% 73% 41% 10% -22% 0.074% 

40% 500 1.02 0.65 5716 11097 4.7 3.6 2.5 1.3 0.2 90% 68% 46% 24% 2% 0.069% 

60% 750 1.40 0.63 3792 9985 4.1 3.4 2.7 2.0 1.3 82% 67% 53% 38% 24% 0.068% 

80% 1000 2.35 0.64 1974 7528 3.4 3.0 2.7 2.4 2.1 71% 64% 56% 49% 41% 0.065% 

99% 1237 36.13 0.77 105.0 1561 2.4 2.4 2.4 2.4 2.4 58% 58% 58% 57% 57% 0.059% 

Buy and hold Sharpe Ratio = 2.3 I 

A reasonable choice of threshold of between 40% and 60% based on in-sample 

and validation results yields SRs in the region of 2.5, 2 and 2.4 over the three 

data partitions, the consistency of which suggests the ensemble is managing 

to model some of the structure within the data. 
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Figure 4.7: Top 1250 RSM2 model results over the validation data period. 
Number of models per stock = 1250 Sharpe Ratio given level of Avg Final Equityper stock Daily 

Number of days = 801 transaction costs TDR2 Qiven level of trans costs Ret 

Thres Thres 
Avg Avg Num Num 

Trade % Trade % Trades Trades 0.0% 0.25% 0.50% 0.75% 1.000A. 0.0% 0.25% 0.50% 0.75% 1.00% 0.25% 
% Val 

TOR2 TORi TOR2 TORI 

0 0 0.63 0.63 10341 10341 4.3 2.8 1.2 -0.6 -2.4 100% 60% 20% -19% -59% 0.075% 

20% 250 0.78 0.62 7242 10079 4.0 2.9 1.7 0.5 .0.7 87% 59% 31% 3% -24% 0.074% 

40% 500 1.01 0.65 5077 9120 3.7 3.0 2.1 1.3 0.4 79% 59% 40% 20% 0% 0.074% 

60% 750 1.10 0.64 3463 7884 3.1 2.5 1.11 1.2 0.6 59% 46% 32% 19% 6% 0.057% 

80% 1000 1.31 0.63 1958 5409 2.1 1.8 1.5 1.1 0.8 39% 32% 24% 17% 9% 0.040% 

99% 1237 8.31 0.84 161.0 979 0.9 0.9 0.8 0.8 0.8 21% 20% 19% 19% 18% 0.025% 

Buy and hold Sharpe Ratio = 0.891 

Figure 4.8: Top 1250 RSM2 model results over the out-of-sample data period. 
Number of models per stock = 1250 Sharpe Ratio given level of Avg Final Equityper stock Daily 

Number of days = 1130 transaction costs TDR2 aiven level of trans costs Ret 

Thres Thres 
Avg Avg Num Num 

Trade % Trade % Trades Trades 0.0% 0.25% 0.50% 0.75% 1.00% 0.0% 0.25% 0.50% 0.75% 1.00% 0.25% 
% Val 

TOR2 TORi TOR2 TORi 

a 0 0.66 0.66 14038 14038 4.5 2.9 1.2 -0.7 -2.8 142% 88% 34% -20% -74% 0.077% 

20% 250 0.95 0.85 8874 13842 3.9 3.0 2.0 0.9 .0.2 130% 96% 62% 27% ·7% 0.065% 

40% 500 1.33 0.68 5875 12448 3.9 3.3 2.6 1.8 1.1 116% 94% 73% 51% 29% 0.064% 

60% 750 1.84 0.65 3314 9991 3.0 2.7 2.3 1.9 1.4 94% 81% 68% 56% 43% 0.072% 

80% 1000 3.59 0.68 1456 8430 2.4 2.2 2.1 1.9 1.8 80% 75% 69% 64% 56% 0.066% 

99% 1237 35.59 0.75 76.0 597 1.3 1.3 1.3 1.3 1.3 42% 41% 41% 41% 40% 0.037% 

Buy and hold Sharpe Ratio = 0.86 I 

Further details of RSM2's component models are provided in figures 4.9 

to 5.9. Figure 4.9 depicts the frequency of occurrence of forecast horizons 

between 1 and 10. Most models use a shorter term horizon of between 1 

to 4 days, as was expected, given that the model selection criteria favoured 

high frequency trading. Figure 4.10 depicts the frequency of occurrence of 

historical lag length and prime facie indicates a lack of dominant feature lags 

as each is approximately equally represented. However it could simply be that 
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the models are robust against uninformative features - good performance is 

derived from informative lags even in the presence of noisy features. 

Figure 5.8 shows clearly that the targets used were confined to close-to-close 

and open-to-close only, at all lags. This is also not surprising as short term 

forecast horizons (1-4 days) models which use either high-to-close or low­

to-close targets will be penalized more heavily when ultimate performance 

is measured using close-to-close prices, as the shorter term horizons suffer 

from the bias mentioned in section 4.5.4. However, it may be that a different 

model selection method would produce different results in that one which 

favoured longer forecast horizons (by including transaction costs and thus 

reducing trading frequency) would be less affected by either high or low 

to close targets as they tend have a higher correlation to their close-to-close 

counterparts. Figure 5.8 and 5.9 show there to be little in terms of preference 

for particular price classes in the lag structure as each appears more or less 

equally. 
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Figure 4.9: Forecast horizon frequency. 
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Figure 4.10: Lag frequency. 
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Figure 4.11: OHLC frequency in fore­
cast horizon. 

Percentage occurance of Price 
OHLC in target for top 1250 models 

70% ,-------------, 

60% -1- = =------------1 

50% 

40% 

30% 

20% 

10% 

0% 

2 3 4 
Price 

147 

Figure 4. 12: OHLC frequency in lags. 
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4.6 Summary and Conclusions 

The objective of this study was to investigate the value of using ensembles 

over single models in the context of forecasting and trading 65 FTSE 100 

components stocks. To this end the performance of four different models, 

comprising of a single AR model and three ensembles, was compared. 

We found that the single AR model performed well until transaction costs 

were taken into account. The PE model outperformed the AR model net of 

transaction costs as it traded less often, but the performance of both models 

exhibited consistent deterioration across the data, an effect we attribute pri­

marily to a concomitant reduction in transaction costs and increased market 

efficiency. 

Of the ensembles, those constructed using the random subspace method out­

performed both the AR and PE models both in terms economic significance 

and consistency of performance over the full dataset. The best performing 

model was obtained by selecting the top 2% of the RSM1 ensemble models 

and resulted in SRs of over 2.0 across the all data partitions. We conclude 

that creating ensembles of forecasting models adds value beyond that of sin­

gle models and that the inclusion of extra price information in the form of 

the open, high and low improves the results. 
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4.6.1 Contributions of Study 4 

1. For the first time in the literature we apply the RSM method in the 

context of financial forecasting models and find it to be an effective 

method for constructing ensembles of linear models. 

2. We shed further light on the ability of standard AR modds in foreca.'lt­

ing stock prices. 

3. The majority of literature on forecasting financial markets uses closing 

price data. We show that the daily open, high, low prices arc important 

contributors to forecasts of asset returns. 

4. The study is based on a large data sample which lends additional con­

fidence to the results. 

5. We contribute to the literature on nonlinearity in financial markets by 

reporting the results of the BDS test 65 FTSE 100 stocks. 
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Chapter 5 

An investigation of a nonlinear 

technical trading rule over a 

portfolio of futures markets. 

5 .1 Introduction 

Given that the persistent use of technical analysis is still an open question 

and that it contradicts the very foundation of modern finance, the Efficient 

Markets Hypothesis, it remains an important area of research. There now 

exists a large body of literature investigating the efficacy of various forms 

of technical analysis, with the number of studies increasing in recent times 
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(Park & Irwin 2004). A sizeable proportion of this work suggests this form 

of analysis may have value (Brock et al. 1992) though the evidence is coun­

tered by opposing studies, some suggesting positive results may be due to 

inadvertent data-snooping (Sullivan et al. 1999) thus, despite these efforts, 

the academic jury is still out. 

In this study we concern ourselves with a subset of the technical analysis 

literature that relates to technical trading rules; mathematically definable 

trading indicators, usually based on price, that signal when a trader should 

enter and or exit the market. Many of these rules can be seen as nonlinear 

forecasting methods, some of which use the same underlying price transfor­

mation functions as those found in econometrics. Simple and exponential 

moving averages form the basis of ARIMA models and are also used for 

simple trading rules 1 , though the manner and intent in which they arc 

applied differs. This chapter contributes to the extant literature by taking a 

somewhat different approach to many studies, which frequently analyse thE' 

performance of a selection of trading rules over either a single market or a 

restricted set of markets, see (Tomek & Querin 1984), (Qi & Wu 2002) for 

representative examples. Rather than looking at the performance of many 

different rules applied to a few markets we apply one simple incarnation 

of a popular technical trading rule, the channel break-out or trading range 

break-out, to a diverse portfolio of thirty seven futures markets. The rule 

in question has only one parameter - the length of the historical estimation 

1 For example, moving average crossover rules 
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window - which is estimated over the entire portfolio. Additionally, we test 

another commonly used rule - the moving average cross-over - for comparison 

and to shed further light on the generality of our results. 

The channel break-out technical trading rule is examined over a portfolio 

of thirty seven futures markets from 1982 to 2005. We look not only at a 

large portfolio of markets, which few studies attempt, but also in a manner 

which closely resembles how practitioners implement these rules by including 

a trade management strategy (TMS) using stop-loss and profit-limit orders 

and accounting for transaction costs. Bootstrap tests are used to tcst the 

significance of the results and it is found that both the vanilla trading rule 

and the rule with the TMS added consistently realise significant net returns 

over the whole data sample. 

Managed futures funds predominantly use technical trading as their primary 

methodology (Billingsley & Chance 1996) and our approach is motivated by 

the observation that many of them implement this type of methodology in the 

context of a diverse portfolio (Lukac, Brorsen & Irwin 1988), as combining 

over many markets reduces the effect of individual market idiosyncrasies 

across the portfolio. Moreover, it is rare for practitioners to simply follow 

trading rules in their basic form, they will often construct some form of 

trade management strategy, combining stop-loss and profit-limit orders, in 

an attempt to improve performance and reduce risk. In fact it is claimed 

that more emphasis should be placed on trade position management and 
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allocation issues than should be placed on the specific trading rule as returns 

from different trend-following rules can be highly correlated (Vince 1999). 

Therefore it is arguably expedient to investigate trading rules in a manner 

resembling how they are actually implemented and as such we also look at 

the effect of adding a trade management strategy to the vanilla rule using 

stop-loss and profit-limit orders. 

Much of literature on technical analysis has tended to focus on equity mar­

kets (Brock et al. 1992) but as we're investigating its efficacy within the 

context of a portfolio of futures markets, the majority of which are classed a 

commodities (70% of the portfolio), the literature that investigates commod­

ity futures and their characteristics as an investment class is clearly relevant. 

Miffre & Rallis (2007) report on Jegadeesh & Titman (1993) style momen­

tum profits in commodity futures. Gorton, Hayashi & Rouwenhorst (2007) 

show that commodity futures can be an effective vehicle for diversification 

with stock and bond portfolios. Marshall, Cahan & Cahan (2008) usc the 

bootstrap reality test methodology of Sullivan et al. (1999) to test the prof­

itability of trading rules in commodity futures and find that individually and 

when controlled for datasnooping trading rues are not profitable. 

The channel breakout rule was chosen for a number of reasons; it has been 

shown historically to have value (Brock et a1. 1992), (Taylor 1994),(Qi & Wu 

2002) providing an imperative to investigate whether performance continues 

on recent data. The possibility of such a parsimonious formulation, using 
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only one parameter, should make it less likely to over-fit the data and more 

likely to generalise out-of-sample. 

Whilst it is true that main rule we have chosen has been tested on market 

data over many years by both practitioners and academics, we ameliorate 

the data-snooping issue to an extent by considering a final out-of-sample 

test of data not analysed by many of the key papers in this subject area, 

for the simple reason that they were written before the start of this period. 

Moreover, to further guard against over-fitting and data-snooping we divide 

the data into appropriate in-sample, validation and out-of-sample sets in an 

attempt to render as true an out-of-sample performance test as possible. 

Bootstrap re-sampling tests are used to evaluate the results and it is found 

that the performance of the trading rule is both statistically and economically 

significant over the whole data period, even when accounting for transaction 

costs. The addition of a trade management strategy to the vanilla rule in­

creases performance in terms of the Sharpe Ratio (SR) (Sharpe 1965) over 

the in-sample and validation sets but results are inconclusive over the final 

out-of-sample data. The remaining sections of this chapter are organised as 

follows: in the next section we present the relevant literature pertaining to 

this form of trading rule. Section 5.3 explains data and methodology and 

section 5.4 the results and lastly, section 5.5 our conclusions. 
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5.2 Literature Survey 

Technical Analysis is the use of historical market generated data such as 

price, volume and, in some cases, open interest to forecast and trade finan­

cial markets. Derived from these three primary data streams there exist a 

multiplicity of methods devised by practitioners to form expectations con­

ditional mainly on price which include technical indicators such as moving 

averages (Pring 2002), patterns based on chart formations (Bulkowski 2000), 

cycle analysis (Dewey 1971), candle stick charting (Nilson 1991), to name 

but a few. 

The channel break-out is a so-called technical trading rule, a mechanical 

rule designed (alleged) to give indications of price direction. It is these me­

chanical trading rules that have received most attention from academics as 

they are easy to test in isolation - though some authors question the wisdom 

of this approach arguing that indicators play only a small part in forming 

practitioners' investment decisions. 

The channel break-out rule has a long history and its underlying logic is 

relatively straight forward, relying on the concept of support and resistance, 

references to which can be found in (Wyckoff 1910). The idea is that market 

prices are driven by demand and supply (Murphy 1999) and that recent 

minimum price levels form a level of support at which demand is thought 

to be strong enough to prevent the price from declining further. Conversely, 
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recent price maximums are thought to signify a level of resistance at which 

sellers are willing to supply (sell) the market and thus prevent the price from 

rising above this level. These support and resistance levels create a channel, 

or trading range, around the current price which, when broken, is said to 

signify a change in market sentiment and the beginning of a possible trend. 

There are a variety of methods for defining these levels though the simplest 

is to use a recent price maximum and minimum over a given historical data 

window. Donchian (1960) is usually credited with actually using the concept 

within a trading rule in which the preceding fortnight was used to define the 

channels. 

The channel breakout belongs to class of trading rule considered by prac­

titioners to be "trend following" (Pring 2002),(Schwager 1996) in that it is 

assumed that market prices are persistent to some degree ("markets trend") 

and by taking a position early enough in the direction of a trend the trader 

can gain positive returns. There exist innumerable variations, all following 

a common theme that involves trading when the price "breaks out" from a 

predefined channel which can be based on price or volatility - in which case 

it is a volatility breakout system (Pring 2002). 

Osler (2000), provides a microstructural explanation for why trends gain 

momentum once predictable support and resistance levels - stop-loss and 

profit-limit order cluster points - are crossed, lending some credence to the 

notion held by adherents of technical analysis that when prices reach a certain 
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level they can be prone to "break out" and produce trends. Brock et al. 

(1992) investigated both the channel and moving average trading rules and 

found that returns generated by applying these rules to the D.HA were not 

consistent with traditional asset pricing models, though transaction costs 

weren't accounted for and no inference regarding economic significance was 

made. 

Lukac et al. (1988) tested twelve trading systems including the channel hreak 

out and found seven generated statistically significant returns and four gen­

erated significant risk-adjusted returns. In a more recent paper Park & Irwin 

(2005) replicate these results and investigate the performance on new data, 

finding that although positive performance over the original data is confirmed 

this docs not persist in recent data periods. Lukac, Brorsen & Irwin (1989) 

tested the channel rule and the directional movement rule over fifteen fu­

tures markets and found results significantly greater than a buy and hold 

benchmark, but also noted that attempts to apply adaptive re-optimisation 

strategies using more recent data to estimate the parameters did not yield 

significant results. Taylor (1994) applied the channel rule to four currency 

futures and found significant net returns over the sample period. Lee (2001) 

tested moving average and channel rules on thirteen Latin American curren­

cies and found for the channel rule significant positive net returns for three 

of the currencies and note that they were unable to discern which curren­

cies would be profitable based on serial correlation statistics. For a further 

157 



exposition on technical trading rules and technical analysis see appendix C 

5.3 Data and Methodology. 

We chose what we considered to be the simplest manifestation of this rule 

and define it thus: 

Closing Price (C P) = the closing price at time t. 

Highest Close (HC) = max{CPt_l, ... , CPt-n+tl, where CPt- 1 is the closing 

price at time t - 1 and n is the historical estimation window. 

Lowest Close (LC) = min{CPt_l, ... , CPt-n+tl. 

If CP > HC, then enter Long at tomorrow's Open. 

If C P < LC, then enter Short at tomorrow's Open. 

Figure 5.1 shows the rule applied to Corn futures using the last 150 days to 

define the channel. 

The rule in this form results in the trader always having an open position in 

the market, only exiting when a subsequent trade is signalled in the opposite 

direction. 
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Figure 5.1: Corn futures and 150 day channel. 
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5.3.1 Bootstrap Randomisation Tests . 

Measuring the performance of the rule over the validation set in terms of 

its SR provides some information as to its value however, it 's not enough to 

simply observe that the trading rule signals result in an appreciable rate of 

return, what is more important is its performance compared to rules that 

have no "skill" . One way of doing this is to compare the performance to 

what we would expect if the rule had no predictive ability. 

This can be done by using randomisation tests, initially introduced by Fisher 

(1935) , which give one the probability of the observed model's performance 

assuming the null hypothesis of no skill. Randomisation tests are a use-

ful alternative to more traditional parametric tests for analy ing empirical 

research data. They have the advantage of not making any distributional 
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assumptions about the data, such as normality, yet still remain powerful 

tests. 

When using the more common T-test one assumes that the data arose by 

drawing samples from two normally distributed populations, with the ques­

tion being whether the two populations differ in their mean, that is, how likely 

is it that the observed difference between the samples would be realised if 

there is no difference between the population statistics. The randomisation 

test, on the other hand, involves creating a large number of randomised data 

set replicates that could have arisen under the null (the null in this case be­

ing no predictive ability) and then computing some statistic and examining 

its distribution. The empirical distribution of this statistic is then used to 

estimate alpha, the probability of rejecting the null hypothesis when in fact 

the null is true. 

We can create an empirical distribution under the null by sampling with 

replacement the order of trades produced by the rule N times and then 

comparing its realised performance (SR) to the distribution of the SR under 

the null. We also look at two other measures of performance; total profit and 

the profit factor of each rule. 
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5.3.2 Methodology. 

The data used in this study consist of the daily open, high, low and close 

of thirty seven futures contracts - see table 5.1. The time period covered is 

from January 1982 to January 2005, a total of twenty three years or eight 

hundred and fifty one years combined. A broad spectrum of asset classes arc 

covered, the only criteria for inclusion was simply that the markets had price 

histories going back to 19822. No attempt was made to choose markets that, 

from the literature, have shown to be amenable to trend-following systems. 

Moreover, the out-of-sample data was not viewed until all th(' results from 

the initial data were in. 

Continuous futures contract adjustment. 

When working with futures data it is frequently necessary to convert the 

individual contract data for each market into a continuous contract series 

whereby prices are adjusted to take into account the spread at rollover be-

tween the nearest contract to expiry and the next contract. This was ac-

complished by establishing the spread between the nearest contract and the 

next nearest contract at rollover and then adding the cumulative spread up 

to that contract to the new contract prices. Contracts are rolled over when 

the trading volume of the next contract is equal to, or greater than, that 

2Note that we replaced the Deutschmark contract with the Euro when the former 
ceased trading 
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Table 5.1: 37 Futures markets. 

Name Symbol Exchange Name Symbol Exchang(' 
Soybean Oil BO CBT Live Cattle LC CME 
British Pound BP CME Live Hogs LH CME 
Corn C CBT Minnesota Wheat MW MGE 
Cocoa CC CS&CE Oats 0 CET 
Canadian Dollar CD CME Palladium PA NYME 
Crude Light CL NYME Pork Bellies PB Cl\lE 
Cotton #2 CT CTN Platinum PL NYME 
Deutschmark DM CME Soybeans S CBT 
Eurodollars 3M 0 ED CME Sugar #11 SB CS&CE 
Feeder Cattle FC CME Swiss Frank SF CME 
Gold GC COMEX Silver SI COMEX 
Copper #1 HG COMEX Soybean Meal SM CUT 
Heating Oil #2 HO NYME S&P Index SP CME 
Unleaded Gasoline HU NYME T Bilss 90 Days TB CME 
Orange Juice JO CTN Ten Year Notes TY CBT 
Japanese Yen JY CME T Bonds US CUT 
Coffee KC CS&CE Chicago Wheat W CET 
Kansas Wheat KW KCBT NYSE Index YX NYFE 
Lumber LB CME 

of the present contract. This splicing creates a new series with the contract 

rollover distortions removed. All exchange holidays are filled with data from 

the previous close. 

Adhering to a policy of emulating what is used in practice we opted to use 

actual returns without converting to logs, though subsequent testing showed 

no significant difference in our results. In this case, when testing a strategy 

using a portfolio of futures contracts it is important to take into account the 
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different dollar volatilities of the various markets traded, as the objective is 

for each market to contribute equally to overall portfolio performance. To 

futures traders the S&P 500 is considered a large contract, whereas oats is a 

small contract as the notional value of the former is much greater than the 

latter - if only one contract of both markets were traded the resulting two 

market portfolio would clearly be dominated by the S&P 500 futures. Thit> 

can be ameliorated by normalising the number of contracts traded for each 

market and results in trading more contracts of those markets that move less 

in dollars per time period, and fewer contracts of those that have greater 

movements over the same period. 

To do this the dollar value of a point was calculated for each market by divid­

ing the dollar value of a tick - the minimum price movement possible - by its 

size. For example, using the CBOT wheat contract, the dollar value of a tick 

is $12.50 and its size is 0.25, so the dollar value of 1 point is 12.50/0.25~~$50. 

A measure of volatility is then needed and in this case an average of the 

absolute values of daily close to close returns is taken over the last 100 days, 

although other measures of volatility can be used. The resulting dollar value 

of 1 point and the volatility value are then multiplied to obtain the daily dol­

lar volatility (DDV). To compute the number of contracts a market should 

trade the DDV is divided into a constant of 6000 (chosen as it was greater 

than the maximum DDV of any single contract at any time during the data 

sample so that each market trades at least 1 whole contract), which meant> 
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that the number of contracts traded in each market is such that each position 

will have a daily dollar volatility of about 6000. For example, in early 1997 

the system was trading seven S&P contracts and twenty six coffee contracts. 

Figure 5.2 shows the position sizes for a number of markets over a 10 year 

period using the channel breakout system. 

Figure 5.2: Position sizes for 10 markets. 

Trading positions - No. of contracts 

The optimal estimation window. 

A major issue when modelling data is that of over-fitting. Implicit to tests 

of trend-following rules is an assumption that market prices persist to some 

degree and, explicitly, a hypothesis that these rules may be able to exploit 

this general characteristic. As far as we know there is nothing from the 

literature to indicate how susceptible this class of model i to over-fitting 

and therefore it was decided to err on the side of caution. It was assumed 
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that if indeed markets have a tendency to trend, they do so only weakly, and 

that this characteristic is homogenous across markets. 

The choice variable that needs to be estimated in this case is the length 

of the historical estimation window - or equivalently the look-back period -

that defines the channel. In the literature on return predictability a variety 

of methods for choosing the optimum window are length used, some of which 

attempt to re-optimize the window conditional on some factor such as recent 

model performance or more complex notions of structural breaks. The most 

popular include expanding window, rolling window, volatility and structural 

break estimation methods (Pesaran & Timmermann 2003), the choice of 

which depends on the model's underlying assumptions. The choice of window 

length conceptually relates to the so-called bias variance trade off in that IOllg 

time windows result in greater bias but lower variance and vice versa with 

respect to shorter window lengths. 

Another issue when testing trading rules is whether the estimation window 

should be optimized individually for each market (as is frequently the case in 

the literature), or across the whole portfolio. Lukac et a1. (1988), in a study 

of trading rules that included the channel break-out which was conducted 

over a number of markets, used a methodology that involved re-optimising 

the estimation window every year on the preceding three years of data for 

each individual market. 

We choose what we considered to be the simplest method which involves csti-
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mating the optimal window length across the whole portfolio. This goes SOli 1(' 

way in reducing the problem of model uncertainty in that we are restricting 

the size of the search space of possible models. 

Trade Management Strategy - Adding Stop loss and Profit Limit 

orders. 

Many practitioners consider a trade management strategy (TMS) to be an 

integral part of any trading system (Osler 2001). The objective is to balanc(' 

the two competing yet equally important objectives of cutting losses short 

and letting profits run (Shiller 1996). It is said that when the market movcs 

against a trade it is important to exit quickly, cutting any losses short, as it 

is probable that the trade was the result of a failed entry signal (Schwager 

1998). In contrast, it is believed to be imperative to allow trades some room 

to breath as it may be that, after a brief initial reversal, the trade bounces 

back to produce large profits, in which case exiting early is detrimf'lltal. A 

properly designed TMS attempts to allow enough room for a trade to bCCOIlH~ 

profitable yet place a strong emphasis on controlling losses and preserving 

capital. 

One of the more common strategies for cutting losses is the use of a stop-loss 

order, which in the case of a long (short) trade, involves placing a stop order 

at a price some distance below (above) the trade entry price. Once a trade is 

placed and the price hits the stop before any other exit criteria it is exited, 

166 



with a loss equal to the difference between the entry price and the stop price 

- except when the market moves quickly through the stop, in which case 

the loss can be substantially greater.Theoretically it is difficult to justify the 

use of these forms of trade management strategies, however they have been 

showed to be efficacious under certain conditions. As Kaminski & Lo (2007) 

state, 

"If the portfolio follows a random walk, i. e., independently and 

identically distributed returns, the stopping premium is always 

negative. This may explain why the academic and industry liter'­

ature has looked askance at stop-loss policies to date. If rdnrn8 

are unforecastable, stop-loss rules simply force the portfolio out 

of higher-yielding assets on occasion, thereby lowering the over­

all expected return without adding any benefits. In such ca...,C8, 

stop-loss rules never stop losses. However, for non-random-walk 

portfolios, we find that stop-loss rules can stop losses. For ex­

ample, if portfolio returns are characterized by "momentum" or 

positive serial correlation, we show that the stopping premium can 

be positive and is directly proportional to the magnitude of return 

persistence. " 

It is not only important to know when to take a loss but also when to take 

a profit - once a trade has moved into profit it is quite possible for the price 

to then retrace, converting what was once a profitable trade into a losing 
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one. One method of addressing this is to set a profit target some distallce 

above (below) the entry price for a long (short) position so that when a trari!' 

becomes reasonably profitable this profit is locked in by exiting the position. 

The vanilla channel breakout trading rule is what is known as a stop and 

reverse system as it exits a trade when a subsequent entry is signalled ill the 

opposite direction, regardless of the initial trade's performance. To add the 

TMS, a static stop-loss and profit-limit order are added to each trade. They 

are static in that once the orders have been placed at a certain price they 

don't change and are either hit/executed or cancelled. 

Normalising the TMS for multiple futures contracts. 

In order to facilitate a meaningful test of the TMS over the portfolio of futures 

it is necessary to employ a method that can be applied across markets and 

is adaptive to changes in per contract volatility. It is inadvisable to use fixed 

dollar amounts as the volatility of individual contracts is liable to change 

over time, making what might have been a loose stop-loss in one period a 

tight one in another - a good example is that of S&P 500 futures; since this 

contract was first traded its volatility has increased, so to have a fixed dollar 

stop would make little sense, it would be hit far more often today than 15 

years ago. In addition, using the same fixed dollar amount stops for both tlw 

S&P 500 and Oats would make little sense for the same reason that trading 

a similar number of contracts for both markets in the same portfolio isn't 
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advisable. 

To deal with this issue we use stop-losses and profit targets based on units 

of the average true range, as this allows us to test our exit strategy across 

the whole portfolio of futures. 

Estimating the parameters. 

We are estimating parameters for two models, the vanilla channel breakout 

rule (VCBO) and the channel breakout with the TMS included. ThE' first stPI> 

is to estimate the look-back period for the VCBO in-sample and then ohserV<' 

resulting performance on the validation set. Next the TMS is optimised in­

sample using the length of estimation window chosen for the YCBO. 

We partition the data into three sets rather than two in an attempt to miti­

gate data-snooping issues in that once we have observed the performancc of 

the vanilla rule on the second partition any further model estimation using 

the same data is, in a sense, data-snooping as we already know the perfor­

mance of the vanilla trading rule. Therefore, the third partition is used H.'l 

a final out-of-sample set. The dataset is divided into three sets; in-sample, 

validation and out-of-sample consisting of 13, 5, and 5 years respectively, 

approximating a ratio of 60:20:20 - see Table 5.2. 

The in-sample data was used to find the optimum estimation window for the 

YCBO using values between 10 and 210 days inclusive, in increments of 10 
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T bl 52 D t a e a a se t par 1 101lIng- 37 Fut ures M kt ar e ,So 

Set Dates Length 
In-sample set January 1982 to January 1995 13 Years 
Validation set January 1995 to November 1999 Approx. 5 years 

Out-of-sample set November 1999 to January 2005 Approx. 5 y(~ars 

days. For example, the look-back parameter was set to 10 days and the rule 

was then applied to each individual market, results combined, and a Sharpe 

Ratio computed for the entire portfolio returns - this process was repeated 

for each parameter value. Once the optimal value was found subsequent rule 

performance was measured on the validation set. 

To test the TMS the optimum value for the stop-loss and profit.-limit. orders 

are estimated on the in-sample data using the VCBO's optimum window a.nd 

performance evaluated on the validation data. The last set of data a.llows 

us to investigate a true out-of-sample test of both systems. Finally, the' 

performance on out-of-sample data is evaluated and reported for both the 

VCBO and TMS rules. Also included are transaction costs of $15 per round 

turn and 3 ticks slippage for each trade which is inline with what traders 

actually use (Katz 2000). 
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5.4 Results. 

5.4.1 VeBO Results. 

The results from the VCBO in-sample from 1982 to 1995 measured ov('r 

the whole portfolio can be seen in Table 5.3. A visual representation of 

these results is shown in figure 5.3, which depicts the cumulative returns 

conditional on the rule for a number of the window lengths tested. It can 

be seen that shorter estimation windows result in lower SRs, primarily duC' 

to transaction costs. The 150 day period resulted in the highest in-sample 

SR though performance is fairly stable in this region of the parameter space. 

The results suggest a worsening of performance for those periods of less tha.n 

70 days, around the beginning of the 1990's, mnfirming Kidd & Brors(,lls' 

(2004) observation that returns to managed futures funds have decreased 

since around the same time. This cannot be said of the longer time periods 

where performance has been fairly consistent throughout this part of the 

data set. Interestingly, the results also confirm a common finding that short 

trades return less than long trades (Brock et. al 1992), contributing to just 

16% of the total net returns at the 150 day period. 

Included at the bottom of table 5.3 are the performance results of simply 

trading long all markets without transaction costs. 

It is evident that a window of 150 days realised the highest SR in-sample so 
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ure 5.3: Cumulative equity curves for the VCBO rule. Lookbacks from 10 to 210 days for th 
iample and validation periods. 
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this value was cho en for the rule. Performance was then measured over the 

validation set from 1995 to 1999, the results of which can be seen in figure 

5.3 and table 5.4. These result are fairly consistent with those in-sample, 

with the 150 days estimation window realising a SR of 0.91, very imilar to 

the in-sample value of 0.97. Most of the other stati tics are consi t nt with 

their equivalents in-sample suggesting that the trading rule is continuing to 

generalise beyond the in-sample data. 

Although these results are interesting it may simply be that we wer fortu-
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Table 5.3: In-sample results for VeBO Rule from 1982 to 1995. 
Lookback Sharpe Net Profit Net Profit Net Profit Profit Max Number of Percent Average Avg Trade 

Period 
10 
20 
30 
50 
70 

100 
130 

Ratio in OOO's Lon in Short in Factor Drawdown 
-0.26 -$6,071 $2,229 -$8,300 0.94 $9,480 
0.42 $7,659 $8,657 -$998 1.12 $3,077 
0.67 $12,670 $11,112 $1,557 1.25 $2,596 
0.83 $15,061 $12,709 $2,351 1.41 $2,292 

0.8 $14,449 $12,887 $1,561 1.49 $2,603 
0.91 $15,464 $13,646 $1,817 1.63 $3,092 
0.91 $15,936 $14,200 $1,735 1.78 $3,464 

Trades 
7338 
3652 
2452 
1438 
1002 
674 
504 
4 
340 
296 

Trades 
2750 
1362 
934 
553 
395 
258 
192 

winners Trade in da s 
32% -$827 18 
33% $2,097 35 
36% $5,167 51 
38% $10,473 85 
41% $14,420 120 

$22,944 174 
$31,619 230 

46% 

77 

Average Avg Trade 
winners Trade in da s 

34% -$2,055 18 
$112 35 

-$801 51 
$4,804 85 
$8,723 118 

$28,517 183 
$41,664 244 

nate to have chosen a particular trading rule that happened to have profitable 

performance over this data period. To test whether these results arc morc 

general we tested another trading rule - the simple moving average crossover 

- using the same data. This rule signals a long position when the shorter 
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Figure 5.4: Cumulative equity curves for the Simple Moving Average double crossover. Subset of 
Crossovers from 10 to 300 day for the in-sample and out-of-sample periods. 
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moving average cro es the longer term average from below and a short po­

sition when crossing the longer average from above. The results of this test 

can be seen in tables 5.5 and 5.6 and figure 5.4. 

The fact that the in-sample and out-of-sample moving average crossover rules 

results are somewhat similar to those of the VCBO rule leads us to conclude 

they are not due to just to luck. To test this more formally we conducted 

the aforementioned bootstrap re-sampling te ts on the VCBO rule over the 

in-sample and validation data and then finally tested the rule on the third 
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Table 5.5: In-sample results for the from 10 to 300 day Simple Moving Average double crossover rule 
from 1982 to 1995. 

SMA Sharpe Net Profit 
Len hs Ratio in ooo's 

10 & 20 -0.14 -$651 
10 & 50 0.31 $1,474 
10 & 100 0.69 $4,939 
10 170 . 7 
50 & 80 
50 & 200 
50 & 300 
100 & 200 
100 & 300 

Net Profit Profit Max Number of 
Short in Factor Drawdown Trades 

-$820 0.98 $2,699 1923 
$274 1.07 $1,917 1167 
$908 1.31 $2,549 807 

1.84 5 

,429 

Percent Average Avg Trade 
winners Trade in da s 

28% -$338 25 
27% $1,263 40 
26% $6,121 58 

6,845 
$25,206 
$30,928 
$41,374 
$39,578 
$26,169 

87 
122 
190 
254 
268 
307 

Table 5.6: Out-of-sample results for Moving Average Rule from 1995 to 1999. 
SMA Number of 

Trades 
4979 
3188 
2091 

Percent 
winners 

29% 
27% 

Average Avg Trade 
Trade in da 
$1,880 
$4,054 
$7,293 

and final out-of-sample data set from 1999 to 2005. The results can be seen 

in table 5.7. 

As might be expected the in-sample SR and Net profit figures are significant 

at the 1% level3 (given that the window was optimised over the in-sample 

3a single * denotes significance at 10% and a double * at 1% 
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Table 5.7: VCBO results for all data partitions. 
Lookback Sharpe Net Profit Net Profit Net Profit Profit Max Number of Percent Average Avg Trade 

Period Ratio in OOO's LonQ in Short in Factor Drawdown Trades winners Trade in days 
lin sample results from 1982 to 1995 

150 0.97** $18161- $15,323 $2,838 2.04 $3,392 418 44% $43,449 2n 
Long Only 

150 0.47 $12,319 $12,319 $0 1.61 $4,777 418 50% $29,472 277 

Validation results from 1995 to 1999 
150 0.91· $740r $6,408 $993 2.08 $2,266 163 44% $45,411 278 

Long Only 
150 0.42 $5,328 $5,328 $0 1.68 $4,860 163 54% $32,688 278 

Final Out of sample Results from 1999 to 2005 
150 

Long Only 
150 

1.32 $10,189 $7,226 $2,962 2.37 $2,386 163 42"10 $62,510 

1.02 $4,182 $4,182 $0 1.4 $2,581 163 47% $25,660 

data). What is more interesting is that over the validation data the SR 

continues to be significant (but at the 10% level, whereas the net profit figure 

again significant at the 1%). The out-of-sample results also show signficance 

at the 1 % level. This suggests that the rule is not performance on the basis 

of chance alone. 

Table 5.8: TMS rule results for all data partitions. 

296 

296 

Net Profit Net Profit Net Profit Profit Max Number of Percent Average Avg Trad 
Short in Factor Drawdown Trades winners Trade in da s 

1.58 1,587 1170 54 19,597 83 

1.48 456 51% 17,483 87 
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Figure 5.5: Cumulative equity curves for VCBO and TMS rules out-of-sample. 

Final out of sam pie results 
14000000 

12000000 +------1 

10000000 +--------- _'\.. '\'------I"""------'-..!IL--

::: +----------lIL/-i/-\-'/·'"·'·L.~7. 
2000000 +-----,r--:"I'-) -\.-::,,-,:,-/ -·,::-·,·,-:::-:,,:-,·;'-·· --------­

Profit ;::.!::::.; :. 

o ~:;,':'!::'illltiiiiiiiliiiii'lil l "liiillliiiliiiii'i,1,1111 1 
301 1/99 31/08100 31/05101 28102102 29/11/02 29/08103 31/05/04 

-2000000 Date - 150 day eso - No TMS SR=1.32 

",·,·,···,,:,:· 150 Day eso incl. TMS SR=1 .21 

5.4.2 T M S R esults. 

The TMS results can be seen in figure 5.S (we haven't included detailed 

results for the sake of brevity). The total number of trades increases and the 

average holding period drops as a result of the TMS. It can be seen that the 

TMS rule exhibits a SR in-sample of 1.32 and 1.19 in validation and finally 

1.21 out-of-sample. These are all significant at the 1% level. Prima facie this 

suggests that the TMS rule does improve the performance over the VCBO 

however, the VCBO exhibits a SR of 1.32 out-of-sample. Figure 5.5 depicts 

the out-of-sample cumulative equity curves for the VCBO and TMS rules. 
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Figure 5.6: In-sample Results for SR. 

• Frequency Bootstrap test for Sharpe Ratio (in-sample) 
150 Day lookback period 

1200...,_~ 

1000 

800 

600 +-------------~ ••• ~~ •• ·------~ 

400 +-------------~HH .... ~~-------

200 +-----------a.~HH .... ~~~-----

-1 .30 -0.97 -0.65 -0.32 0.01 0.34 0.66 0.99 
Sharpe Ratio 

Figure 5.8: In-sample Re ults for Net Profit. 
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Figure 5.7: Out-of-sample Results for SR. 

• Frequency Bootstrap testfor Sharpe Ratio (out ofsample) 
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Figure 5.9: Out-oE-sample Results for Net Profit. 
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5.5 Conclusion 

In this paper we examined the popular channel break-out technical trading 

rule over a portfolio of thirty seven futures markets from 1982 to 2005 to 

investigate whether it had value within the context of a portfolio. We argue 

that the use of futures portfolios is essential when researching trading rules 

and is comparative to studies of the stock market where portfolios are used 

to render returns orthogonal to idiosyncratic risk. It was thought that any 

existing data dependence was likely to be weak and that only by averaging 

over many markets would we be able to shed light on potentiall interesting 

resuls. We were cautious in our approach with regards to data-snooping 

and over-fitting in that the data was divided into appropriate in-sample, 

validation and out-of-sample sets, with the last part of the data covered 

representing a period that has not been examined by most of the literature 

on this subject. 

We found that both the vanilla trading rule and the rule with additional 

TMS component produced significant excess returns over the whole data set, 

even after accounting for transaction costs. 

5.5.1 Contributions of Study 5 

l. New empirical evidence is added to the literature regarding the prof­

itability of technical trading rules and demonstrate that their use in 
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investment circles must primarily be their performance in the context 

of a portfolio. 

2. We add to the extant literature by using a comparatively large dataset: 

The data used consists of daily close of 37 futures markets from 1982 to 

2005, resulting in over 200,000 data points, more than all 56 studies that 

dealt with trading rules on futures and/or foreign exchange identified in 

Park & Irwin (2004)'s extensive review. Moreover, we also use arguably 

the simplest parameterisation of many of the studies reviewed, serving 

to increase the robustness of our results. 

3. We shed further light on the prevalent use of stop and limit orders 

within trade management strategies by showing that they can be ben-

eficial. 

4. We cast some doubt on the finding that returns to technical trading 

rules have substantially diminished in recent years by showing that 

longer term lookback windows exhibit somewhat stable returns up to 

the year 2005. 
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Chapter 6 

Summary and Conclusions 

This thesis investigates the important question of asset price predictability. 

It does so via three self-contained studies that focus on whether: 

1) Machine learning and statistical modelling techniques - both linear and 

nonlinear - which impose less restrictive assumptions on asset price dynamics 

than do classical linear methods, can be used to forecast and trade financial 

markets to a degree greater than that which traditional asset pricing models 

would lead us to expect. 

2) To what extent model combination strategies can add value in this pursuit. 

Based on the results of the three studies the answer to both of the above 

appears to be in the affirmative. 
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In chapter 3 we compared the performance of three different forecasting 

methodologies in predicting individual daily returns of 58 UK stocks in the 

FTSE 100. The methods used were support vector regression, k-nearest 

neighbours and linear regression The nonlinear support vector regression 

models exhibited superior performance over the linear regression models by 

factor of 2. 

Chapter 4 investigated the application of linear ensemble models to forecast 

and trade 65 component stocks within the FTSE 100, using daily data over 

the years 1991-2006. The primary ensemble consisted of 62500 component 

models built using the random subspace method in which randomly sampled 

subsets of the feature set were used to estimate each model with the final 

result combined via a majority vote. 

Of the ensembles, those constructed using the random subspace method out­

performed both the AR and PE models both in terms economic significance 

and consistency of performance over the full dataset. The best performing 

model was obtained by selecting the top 2% of the RSM1 ensemble models 

and resulted in SRs of over 2.0 across the all data partitions. We conclude 

that creating ensembles of forecasting models adds value beyond that of sin­

gle models and that the inclusion of extra price information in the form of 

the open, high and low improves the results. The results suggest that model 

combination strategies do indeed add value in forecasting financial markets. 

In Chapter 5 we examined the channel break-out technical trading rule over 
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a portfolio of thirty seven futures markets from 1982 to 2005. We look not 

only at a large portfolio of markets, which few studies attempt, but also in 

a manner which closely resembles how practitioners implement these rules 

by including a trade management strategy (TMS) using stop-loss and profit­

limit orders and accounting for transaction costs. Bootstrap tests are used 

to test the significance of the results and it is found that both the vanilla 

trading rule and the rule with the T~S added consistently realise significant 

net returns over the whole data sample. 
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Chapter 7 

Suggestions for Future 

Research 

One of the important aspects of completing a Ph.D. is knowing when to cease 

doing empirical research and start writing up. Invariably there is always 

something extra that one could do to render the research that little bit more 

complete. The first suggestions are logical extensions from the central themes 

that were covered earlier in this thesis. Following that are some ideas that 

are somewhat less related. 
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7.1 Forecasting FTSE 100 stocks using sup­

port vector regression, linear regression 

and k-nearest neighbour methods 

1. It would be interesting to investigate further the form of nonlinear­

ity that the results suggest exists in the stock prices (if indeed it is 

nonlinearity rather than some other factor that is causing the superior 

performance of the SVM models). We need to investigate whether the 

SVMR models were superior in this chapter simply because they better 

able to deal with the curse of dimensionality (there were fourteen input 

features) and possible multi-colinearity in the training data than were 

the linear and knn models. 

This is important because if this is the case it may be not be that the 

data posses nonlinearities, but rather, that they just require a more 

stringent pre-processing procedure for linear models to achieve similar 

performance. 

2. This study was carried out using a fixed historical estimation window of 

2500 days to estimate the parameters of both the linear and nonlinear 

models. It would be interesting to investigate the result of using a 

rolling window approach as this would have the effect of including more 

recent data. One can see from figure 3.4 that the cumulative equity 

curves all start to flatten at the end of the out of sample period, possibly 

185 



as a result of redundant data. 

3. Using a more sophisticated preprocessing stage may produce better 

results. 

7.2 The more the merrier? Forecasting FTSE 

100 stocks with a random subspace en­

semble of 62500 models 

1. Experimentation with different types of performance measurement would 

be interesting as the one used made no allowance for transaction costs. 

2. The RSM2 ensemble was built via a fairly simple model selection method. 

There are many other approaches that might produce a more accurate 

result. For example one could choose say the top 100 models based on 

their in-sample sharpe ratio. Then each model could be added only if 

it increases the sharpe ratio of the ensemble as a whole. This should 

increase the orthogonality of the component models. 

3. An interesting study would be to include volume and open interest 

information into a similar study performed on futures markets. 

4. Replacing linear regression with a nonlinear variant would allow one to 

ascertain whether there were potential nonlinearities in the data which 
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lead to more accurate models. 

7.3 An investigation of technical trading rules 

over a portfolio of futures markets 

1. One aspect of this investigation that is striking is that the channel 

break-out trading rule, at least in the manner in which it was formu­

lated here, takes very little of the available historical price information 

into account, yet still produces a Sharpe Ratio of around 1 for the port­

folio. This is information is simply the most recent close in comparison 

with the maximum closing price within the historical estimation win­

dow. What might be interesting would be a study that attempted 

to exploit more information in terms of how the price actually moved 

within the window. 

2. A form of classification overlay model could be built which uses the 

price movement within the window and tries to differentiate between 

those original break-out signals that resulted in a profit and those a loss. 

Although the 150 day window was optimal one could carry out this 

proposed study on all window lengths. Using shorter windows would 

mean larger datasets and hence potentially more significant results. 

3. More recent papers in the literature test a large universe of trading 
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rules and test for significance using the bootstrap reality test. It might 

be interesting to conduct this class of study but using the portfolio of 

futures in this chapter. 

4. What we have not touched upon is the possibility that there are struc­

tural drivers behind the results of this study. Structural in the sense 

that certain aspects of futures contracts themselves are behind the pos­

itive results. The literature suggests that the average return of individ­

ual commodity futures prices are not statistically different from zero 

(Ibbotson and Peng 2003), Dimson, Marsh and Staunton (2002), Gor­

ton and Rouwenhorst(2005) and that they are largely uncorrelated, Erb 

& Harvey 2006 show the average correlation to be 0.09%. 

Prima facie this would suggest that a system that produces abnormal 

returns is likely to be doing well. However although the returns to in­

dividual commodity futures may be zero this is not necessarily the case 

in the context of a portfolio. The intuition that the return of a port­

folio should mirror the weighted average of the portfolio's individual 

constituents holds in the case of unrebalanced portfolios of bonds. For 

example, a portfolio consisting of two bonds both with a return of zero 

would unlikely combine to produce a positive return. This is also the 

case with a portfolio of stocks. Siegel (2005) shows that both the S&P 

500 and a weighted average of its constituents result in a 11% return 

from 1957 ro 2003. However, when the assets are uncorrelated and 
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exhibit high average standard deviations the portfolio can experience 

a positive geometric return. Erb & Harvey (2006) put it thus: 

"When the return of a portfolio is greater than the average 

return of the portfolio's constituents, and the portfolio con­

stituents have average geometric risk premia of zero, then the 

portfolio weighting decision, not a geometric risk premium, 

is the source of the incremental return." 

Additionally it may be interesting to investigate how much the results 

are affected by the term structure of futures prices and the so-called 

roll return. 
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Appendix A 

The Efficient Markets 

Hypothesis. 

It was in 1978 that economist Michael Jensen famously pronounced that, 

"there is no other proposition in economics which has more solid empirical 

evidence supporting it than the Efficient Markets Hypothesis" (Jensen 1978). 

Even given the evidence available at the time this claim was somewhat hy­

perbolic. Yet Jensen's oft-quoted assertion is indicative of the extent that 

efficient markets theory had captured the collective imagination of a gener­

ation of economists and finance theorists by the 1970s. 

It is often misunderstood which simply serves to fuel the controversy for 

example, it is frequently assumed that the EMH implies prices are unpre-
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dictable, that all investors are rational or that no investor will beat the 

market - it does not. It is necessary to this thesis to examine the EMH more 

closely in order to gauge its impact on the empirical forecasting applications 

contained herein. At the very least it provides a starting point on which to 

base one's ex ante chances of success. 

The EMR is a central proposition of finance and much of modern finan­

cial theory rests on its far reaching implications i.e., option pricing, modern 

portfolio theory etc. Although its origins date back to 1565 (RaId 2003) it is 

Bachelier (1900) who is usually credited with having sown the initial seeds 

of the idea, in the context of stock returns, in his thesis entitled, "Theory of 

speculation" : 

The determination of these fluctuations depends on an infinite 

number of factors; it is, therefore, impossible to aspire to mathe­

matical prediction of it. Contradictory opinions concerning these 

changes diverge so much that at the same instant buyers believe 

in a price increase and sellers in a price decrease (p. 17). 

Informally, the underlying rationale for this proposition lies in the idea that 

asset prices are impacted by supply and demand which is affected by new 

information or news. All presently known information is already incorporated 

in the price, so prices only change in reaction to news, which is by definition 

unpredictable, otherwise it wouldn't be news. 
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A.O.I Classic taxonomy 

It was Fama (1970) who is widely acknowledged to have laid down its mod­

ern foundations in terms of information sets, though the concC'pt originally 

appeared in Roberts (1967): 

Weak Form Efficiency: the information set includes only the history of prices. 

Semi-strong Form Efficiency: the information set includes all information 

known to all market participants (publicly available information). 

Strong Form Efficiency: the information set includes all information known 

to any market participant (private information). 

It should be noted at this point that for this thesis it is the so- called weak 

form of the classic taxonomy that is relevant, which states that it is impossible 

to gain above average risk-adjusted returns on the basis of historical price 

information only. 

During the two decades surrounding the publication of Fama's definitive pa­

per (Fama 1970) the EMH seemed almost unassailable as, in addition to 

existing work, more empirical and theoretical evidence appeared to support 

it. Samuelson (1965) showed that the weak form was consistent with the ran­

dom walk hypothesis. US and UK stocks and indices, along with some com­

modities, were shown to be efficient (Working 1934),(Cowles & Jonnes 1937), 

(Kendall 1953),(Osborne 1959),(Mandelbrot 1963), (Fama 1965). Event stud-

192 



ies supported the semi-strong form (Ball & Brown 1968),(Fama. FislH'r. 

Jensen & Roll 1969) and studies showing that no fund manager beat the 

market supported the strong form (Cowles 1934), (Jensen 1968). It was at 

this juncture that Jensen (1978) famously stated: 

There is no other proposition in economics which has more solid 

empirical evidence supporting it that the efficient markets hypoth­

esis. 

It was during the following decade that evidence began to emerge against 

the EMH as it was defined at the time, initially in the form of Shiller (1981) 

and LeRoy & Porter (1981), whose work on stock market volatility sug­

gested that market prices were more volatile than were theoretically justified. 

Price variation was shown not to correspond with news (Cutler, Poterha & 

Summers 1989) and, in a paper that marked the beginning of Behavioural 

Finance, Bondt & Thaler (1985) showed that stock prices overreact, suggest­

ing weak form market inefficiencies. On theoretical grounds Grossman (1976) 

and Grossman & Stiglitz (1980) pointed out that if markets arc efficient aud 

prices actually reflect all available information, there is no incentive for ra­

tional traders and arbitragers to collect this information in the first place. 

Further research elucidating the possibility that the EMH stood on less than 

hollowed ground includes (Fama & French 1988), (Lo & MacKinlay 1988), 

(Poterba & Summers 1988). 
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There is still a vigorous ongoing debate in the field as to what extent lllarkf't~ 

are efficient. Indeed there exists a chronological increase in clarification by 

various authors in the literature of what exactly is meant by efficient (s('e 

below) primarily in terms of information sets and in part to accommodate 

further empirical results casting some doubt against it (Jcgadeesh & Titman 

1993), (Levich & Thomas 1993), (Fama & French 1998), (Neely, Weller & 

Dittmar 1997). 

A.O.2 Increased clarification or a movement of the goal 

posts? 

Fama (1970) 

A market in which prices always "fully reflect" available informa­

tion is called "efficient". 

Jensen (1978) 

A market is efficient with respect to information set Bt if it is 

impossible to make economic profits by trading on the basis of 

information set Ot. 

Fama (1998) 
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' ... market efficiency (the hypothesis that prices fully reflect avail­

able information) ... ' ' ... the simple market efficiency story; that 

is, the expected value of abnormal returns is zero, but chance gen­

erates deviations from zero (anomalies) in both directions. ' 

Timmermann & Granger (2004) 

'A market is efficient with respect to information set, nt, search 

technologies, St, and forecasting models, M t , if it is impossible to 

make economic profits by trading on the basis of signals produced 

from a forecasting model Mt, defined over predictor variables in 

the information set nt, and selected using a search technology in 

St. ' 

A.O.3 The EMH and its impact on asset price pre­

dictability 

Prima facie, attempting to predict asset returns is by most accounts liable 

to be a futile exercise, especially if prices move randomly in accordance to 

an independent and identically distri bu ted process (i. i. d. ). 

In recent decades a large amount of effort has been expended conducting 

research into the behaviour of asset prices. Weak form market efficiency 

would suggest that prices traded in a market that is weak form efficient 
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are not predictable using historical price information. This would imply 

that prices traded in such a market are serially uncorrelated. One method 

that has been adopted in the extant literature for testing weak form market 

efficiency has been an examination of asset prices for evidence of non-random 

behaviour. The Random walk hypothesis (RWH) posits that successive price 

changes in an efficient market are random. However, the RWH is somewhat 

restrictive in practice. as it implies that the process: 

(A.I) 

the error term E is i.i.d .. If Pt represents the log of a market price, this implies 

that the market returns arc i. i. d. It is possible to relax the assumption of 

i. i. d. returns in the context of weak form efficiency by replacing A.l with: 

(A.2) 

where It is any information set which includes Pt-j,j ~ O. A.2 is a martin­

gale process. It was Samuelson (1965) and Mandelbrot (1966) who formally 

recognised the importance of a martingale when describing efficient markets, 

though the seeds were sown by Bachelier (1900). 

What this means is that tomorrow's price is expected to equal today's price 

given an asset's price history or, alternatively, an asset's expected return is 

zero when conditioned on its past price history. It's important to note that 
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whilst a martingale process implies a correlation of zero between successivp 

price changes, or the first moment of returns, it does not rule out dependence 

in higher moments. In fact, correlation between successive squared returns 

is a so-called stylised fact in finance literature. 

For the martingale property to hold for prices investors are required to be 

risk neutral. However, LeRoy (1973), Cox & Ross (1976), Lucas (1978) and 

Harrison & Kreps (1979) pointed out that investors are in practice risk­

averse and therefore there is no theoretical justification for the martingale 

property hence, a random walk is neither necessary nor sufficient for an 

efficient market. What this means is that asset price predictability does 

not necessarily imply inefficiency and conversely, asset prices that follow a 

random walk do not necessarily imply efficiency. 

The EMH is further complicated by the "joint hypothesis problem". An 

efficient market is said to always fully reflect available information, howewr 

in order to determine how the market should fully reflect this information, 

investors risk preferences need to be determined. Therefore, any test of the 

EMH is a test of both market efficiency and investors risk preferences. So for 

this reason, the EMH per se is not a well-defined and empirically refutable 

hypothesis. This joint hypothesis problem was first pointed out by Fama 

(1970). 

So to what extent would we expect asset prices to be predictable within 

the confines of EMH? We would expect predictability that doesn't refute 
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the EMH if risk aversion or changes in risk are predictable as prices will 

reflect this. Additionally, asset prices may exhibit a measure of "residual" 

predictability that, if exploited, would not produce excess returns net of 

transaction costs. 

A.O.4 Heterogenous Agent Models and The Efficient 

Markets Hypothesis 

An important paradigmatic shift in finance has emerged since the 19908, from 

a rational-expect at ions-efficient-markets (REE~) vi£'w towards a houndedly 

rational, heterogeneous agents, behavioral and evolutionary financc approach. 

The central keystones of the traditional well established Rational Represen­

tative Agent Paradigm are investor homogeneity and market efficiency. The 

REEM model held sway up until the 1990s where somc of its inconsistencies 

began to be investigated more thouroughly in light of the emerging disci­

plines of Behavioural Finance and Heterogenous Agent Modelling (HAM). 

Up until the 1990s, the Efficient Markets Hypothesis (EMH) (Fama 1970) 

was the most widely-accepted and influential idea in financial economics. 

More recently, however, the concept of market efficiency has fallen into dis­

repute as it fails to adequately explain most of the stylized facts empirical 

puzzles characterizing the dynamics of financial markets. 

It would be disingenuous to suggest the EMH has been usurped, it has not, 
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and its advocates still argue vigorously in its defence and against what they 

consider to be heterodox. This is not surprising given the impact that the 

EMH and economic theory has had on modern finance, ranging from modern 

portfolio theory, the Capital Asset Pricing Model, Arbitrage Pricing Theory, 

Black-Scholes/Merton option pricing model to the Cox-Ingersoll-Ross theory 

of the term structure of interest rates. It remains a controversial topic ever 

since its inception. 
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Appendix B 

Forecasting financial markets 

and asset pricing models. 

B.1 Forecasting financial markets and asset 

pricing models 

Intuitively, the higher the risk of investing in a particular asset, the higher 

the expected return required by an investor as compensation. The question 

then is how to measure and price risk such that a theoretical value or price 

can be assigned to an asset in terms of its individual risk characteristics. A 

widely accepted measure of risk is volatility, measured in terms of the stan­

dard deviation of an asset's returns. To solve the problem of pricing risk a 
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number of asset pricing models have evolved. Asset pricing models provide 

a benchmark with which we can compare other assets in order to ascertain 

whether they offer fair value given their risk-return characteristics. Clas­

sic asset pricing models such as the Capital Asset Pricing Model (CAPM) 

(Sharpe 1964),(Lintner 1965) and (Mossin 1966) and Arbitrage Pricing The­

ory (APT) (Ross 1976) attempt to provide a prediction of the relationship 

between the risk of an asset and its expected return - the former in terms of 

so-called market risk and the latter in terms of unspecified risk factor:,; that 

can include various fundamental, firm specific and statistical factors. 

Both models differentiate between two types of risk: 

1. Unsystematic or idiosyncratic risk 

2. Systematic or market risk 

The first type, unsystematic risk, is known a diversifiable risk as with an 

appropriately formed portfolio it can be virtually eliminated. The second 

type cannot be diversified away and hence investors are only compensated 

for accepting systematic risk. 

Asset pricing models can be expressed in general terms: 

where E(~), Fl and N denote the expected return on asset i, the [-th risk 

factor and the number of risk factors. 
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If an investor decides to invest in an asset that is not risk free they will expect 

a premium over and above the risk free rate 

E{Ri) = Rf + riskpremium 

where Rf is the risk free rate. The size of the risk premium will depend on 

those risk factors relevant to the particular asset and the manner by which 

the asset pricing model takes these into account. In this case the asset pricing 

model can be reformulated as 

(B.1) 

B.1.l The CAPM 

The Capital Asset Pricing Model introduced by Sharpe (1964) can be ex-

pressed as: 

E(Ri) = Rf + (3i(E{RM) - Rf ) 

f3i = Cov(~, RM) 
Var{RM 

where E(RM ) is the expected return on the portfolio and {3i the measure of 

systematic risk of asset i relative to the market portfolio. 

In this way the CAPM can be considered a factor model that only takes into 

account one risk factor, the market risk. 
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B.l.2 The APT 

k 

E(~) = R j + L (3ik(E(Fk) - R j )) (B.2) 
k=l 

With some minor conditions the CAPM can be considered a special case of 

the APT that only takes into account one risk factor, market risk. 

As touched on previously, in any study of return predictability it is necessary 

to compare the results of any modelling procedure with what would be ex-

pected based on underlying theory. Empirical tests of the EMH are by their 

very nature joint hypothesis tests; one of the underlying a..")set pricing model 

and the other of whether the test. results show significant departurf's from 

this assumed pricing model. 
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Appendix C 

Technical Analysis and Trading 

Rules. 

Technical analysis is the prediction of future asset prices based on an in­

ductive study of historical price information and thus is contradictory with 

the notion of weak form efficiency. This form of market analysis covers a 

broad spectrum, incorporating both qualitative and quantitative techniques 

ranging from the positively arcane: astrology, numerology, to the somewhat 

sensible: linear regression. 

The continued use of technical analysis by practitioners (Cheung, Chinn & 

Marsh 1999),(Oberlechner 2001) and the sheer amount of resources devoted 

to the study of its various esoteric forms is difficult to explain when contrasted 
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against the backdrop of continued academic scepticism based on a belief in 

informationally efficient markets. Unlike astrology for example, a practice 

which holds currency in some circles regardless of general/academic ridicule, 

large pools of capital are invested by intelligent individuals on the prcmise of 

technical analysis. Given the Darwinian ruthlessness of markets at routing 

out inefficiencies it would be surprising that, at least at the extreme, its usagf' 

was simply a case of bright individuals 1 acting irrationally. If, as academic 

finance proclaims, it really has no value, that it persists presents something 

of a conundrum. 

Of course, that it exists docs not necessarily imply it must have value in the 

sense of gaining above-average returns by its usage, there arc many reasons 

why a particular practice or belief may continue to exist in a population with 

scant real evidence of efficacy. Sewell (2007) describes technical analysis as 

representiveness, a psychological heuristic that people employ when making 

judgments under uncertainty posited by Tversky & Kahneman (1974). When 

trying to predict future events people often form their predictions by relying 

on a short period of historical data and extrapolating this forward. Sewell 

(2007) gives other psychological reasons for the persistent usc of TA. 

1. Communal Reinforcement. This is a social construction in which a 

strong belief is formed when a claim is repeatedly asserted by members 

lIn the case of well financed funds which tend to be run by those who appear ill tlw 
far right tail of the IQ bell curve (Chevalier & Ellison 1999) 
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of a community, rather than due to the existence of empirical evidence 

for the validity of the claim. 

2. Selective Thinking. This is the process by which one focuses on favourable 

evidence in order to justify a belief, ignoring unfavourable evidence. 

3. Confirmation Bias. This is is a cognitive bias whereby one tends to 

notice and look for information that confirms one's existing beliefs, 

whilst ignoring anything that contradicts those beliefs. It is a type of 

selective thinking. 

4. Self-deception. This is the process of misleading ourselves to accept as 

true or valid what we believe to be false or invalid by ignoring evidence 

of the contrary position. 

Theoretical reasons that support the persistent use of technical analysis are 

found in the form of noisy rational expectation models that rest on the idea 

that price, rather than adjusting instantaneously to new information, ad­

justs sluggishly due to such factors as noise, market frictions, market power, 

investors sentiments or herding behavior, or chaos. Smidt (1965) describes 

two futures market, one where participants have perfect information and an­

other which consists of two types of traders, "insiders" and "outsiders", and 

insiders are privy to new information before outsiders. He posits that tech­

nical analysis is unlikely to perform in the former or in the latter if insiders 

perfectly predict outsider's performance. In the event that insiders do not 
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predict well there may be a situation where market rises or falls tend to per-

sist which may provide an environment where technical analysis could result 

in long term profits. 

There now exists a large body of literature investigating the efficacy of various 

forms of technical analysis with the number of studies increasing in recent 

times (Park & Irwin 2004). The majority focus on technical trading rules, 

mathematically definable trading indicators, usually based on price, that 

signal when a trader should enter and or exit the market. The reason for 

this focus is simply that easily defined trading rules are more readily testable 

than the more subjective forms of technical analysis, though there have been 

some forays into testing the latter (Lo 2000),(Osler 2000). 

Despite academic scepticism a sizeable proportion of the work suggests this 

form of analysis may have value. In a study by Park & Irwin (2004), of 

92 "modern studies" 2 dating from 1988, 58 (63%) show positivc results, a 

somewhat surprising result given the robustness of the EMH. On that note 

we would not want to underestimate potential publication bias, the impact 

of which, some authors claim, renders most published research findings to be 

false (Ioannidis 2005). Refutation of positive results does not rest solely on 

publication bias, many of these studies are also criticised rather convincingly 

on a theoretical basis. Sullivan et al. (1999) suggest that positive results may 

2They define Modern studies as those that account for one or more of the following; 
risk, transaction costs and datasnooping. By contrast Early studies fell short ill one or 
more of these areas. 
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be due to inadvertent data-snooping (see section 2.12) whilst others have 

shown that many did not account sufficiently for risk (Brock et al. 1992) 

thus, despite these efforts in support of technical analysis, the academic jury 

is still out. 

Much of literature on technical analysis has tended to focus on equity markets 

(Brock et al. 1992) but as we investigated its efficacy within the context of a 

portfolio of futures markets, the majority of which are classed a commodities 

(70% of the portfolio), the literature that investigates commodity futures and 

their characteristics as an investment class is also clearly relevant. Miffre & 

Rallis (2007) report on Jegadeesh & Titman (1993) style momentum profits 

in commodity futures. Gorton et al. (2007) show that commodity futures 

can be an effective vehicle for diversification with stock and bond portfolios. 

Marshall et al. (2008) use the bootstrap reality test methodology of Sullivan 

et al. (1999) to test the profitability of trading rules in commodity futures 

and find that individually and when controlled for datasnooping trading rues 

are not profitable. 
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