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Summary 

Computer systems are becoming ubiquitous in most industries, and the nuclear industry is not 
alone in finding computers entrusted with important safety-critical roles. The Study Group 
believes that computer systems can bring many advantages in safety and cost reduction to the 
nuclear industry. There is empirical evidence, after the fact, that their use in safety-critical 
operations has been successful (although complacency is inappropriate since the amount of 
operational evidence so obtained is far from sufficient to justify a conclusion that any of these 
systems is free from design faults that could cause them to fail, perhaps catastrophically). On the 
other hand, it has often proved difficult and expensive to demonstrate at the time of licensing 
that software-based systems would be sufficiently dependable in operation, so many of the 
conclusions and recommendations in this report concern improvements in ways of establishing 
safety claims. 

Whilst much of this report addresses the peculiar difficulties that are posed by the use of 
computers, readers should not see this emphasis as implying that the Study Group takes a 
generally sceptical view of the efficacy of computers in safety-critical roles. On the contrary, we 
see our report partly as a contribution to the debate in the technical community aimed at solving 
these problems, so that the huge potential of computer systems - particularly the potential to 
increase the safety of other systems - can be released for the benefit of society. 

Computer systems differ from conventionally engineered electrical and mechanical systems 
mainly because of the essentially discontinuous nature of discrete logic (in particular, of 
software). This limits the claims that can be made about future behaviour from successful testing, 
and makes the effect of any changes much less predictable. 

Computer systems are vulnerable because they almost invariably contain design faults in their 
software (and perhaps in their hardware) that are triggered when the computer system receives 
appropriate inputs. Many of these faults will have been present from inception, and others will 
have been introduced during any changes that have taken place throughout the system lifetime. 
The reality is that even programs of surprisingly modest size and complexity must be assumed to 
contain design faults. It is the responsibility of the designer, having done whatever is possible to 
minimise the number of residual faults, to try to ensure that any remaining ones do not have an 
unacceptable effect upon other systems with which the computer system interacts: in particular, 
that they do not compromise the safety of the wider system. 

The major advantage of computers over simple hard-wired hardware lies in their general purpose 
nature, derived from their programmability. This allows much of the specific functionality in a 
particular application to be implemented in software and thus avoid some of the unreliability 
arising from component failures that would be incurred in a purely hardware design. Indeed, in 
many industries computers allow functionality that would have been inconceivable in hardware 
alone. Often, as in the nuclear industry for example, the use of computers allows safety enhancing 
features, such as more sophisticated monitoring. 

The very advantages of software-based systems, however, bring some special problems of difficulty, 
novelty and complexity. Designers tend to take on tasks that are intrinsically difficult as a result of the 
very flexibility of software: when a computer system is introduced into a context where a 
conventional hardware solution already exists, it is commonplace to take advantage of this 
flexibility to offer extra (sometimes excessive) functionality. In more and more applications, 
however, there is no hardware system that the computer is replacing: instead, the great flexibility 
of software is being used to do something completely novel. These trends result in great complexity 
in the end product, with the attendant problems of human comprehension. 

These problems cause difficulties both in building software-based systems that are sufficiently 
reliable, and in assuring that reliability so that justifiable confidence can be placed in the 
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s system’s fitness for purpose. In arriving at the following conclusions, much of the Study Group’s 
discussions centred upon the second of these difficulties concerning the contribution of software 
to safety cases. 

Regulatory practice 

1 There is evidence from our studies of several different industries that the safety cases in one 
industrial sector, even just within the UK, might not be acceptable in another. The reasons for 
this need to be investigated and understood. One area we have already identified as 
problematic - perhaps because it is so difficult - is the application of ALARP/SFAIRP to 
software-based systems. 

2	 There are considerable benefits to be gained from international regulatory consensus 
concerning the demonstration of fitness for purpose of future safety-critical computer 
systems. Current activities to this end are welcomed and should continue to be supported. 

3	 There should be a review of the current organisational and technical approach to 
independent assessment of computer-based systems in the UK nuclear industry, taking 
account of the experience of different practices in other industries, e.g. the DER (Designated 
Engineering Representative) system in operation in the US aircraft industry. 

Safety cases 

4	 Current guidance, based upon appropriate empirical and theoretical support, should be 
further developed for the structure and content of safety cases for software-based systems. 
This guidance should address the somewhat different problems of new applications software, 
previously-developed software (PDS), and commercial off-the-shelf (COTS) software. 

5	 The design of the system and its safety case should be robust to such changes that are 
proven to be necessary throughout the anticipated life of the system. 

6	 The reliability levels that can be demonstrated for software are quite modest, and safety 
cases should not require levels of software reliability beyond these. 

7	 Although the use of software design diversity may have positive benefits, claims for 
statistical independence from diversity should be treated with great caution. In particular, 
claims for extremely high reliability levels based upon assertions of complete independence 
of failures in two or more diverse software systems are not believable (with the attendant 
implications for assessing systems in which one software system backs up another). More 
work is needed to understand the extent and nature of diversity and to address the difficult 
problem of evaluating the degree of dependence present in particular cases. 

8	 Confidence in assessments of software-based systems is usually less than for more 
conventionally engineered systems. We believe that attention should be given to 
incorporating formally in licensees’ and regulatory guidance a recognition of the importance 
of the level of confidence that can be placed in assessments of risk within the concept of an 
‘adequate’ safety case. What is needed is to clarify and define the notion of ‘adequacy’, such 
that it can be used to guide and justify decisions as to the required extent of activities that 
will establish the level of confidence that can be placed in a risk assessment. 

9	 An appropriate method for the formal analysis of competencies should be developed and 
used as a basic demonstration element within any safety case which aims to justify a high 
integrity claim for a computer-based safety. 

viii 



10	 In the face of the potential new types of ‘cyber threat’ it is important to ensure that 
appropriate design features, production practices, and operational controls are in place 
which will be effective in countering such (and similar) threats to the dependable operation 
of a computer system important to safety on a nuclear power plant. 

Computer system design and software engineering 

11	 Attention should be given to better practices for the elicitation and specification of computer 
system requirements, since it is errors made at this early stage in system life that generally 
have the most serious impact. 

12	 Consideration should be given to the problems of safety demonstration from the very earliest 
stages of system design. Further work is needed on the development of designs for software-
based systems (in particular those incorporating COTS software) that make them amenable 
to safety demonstration. Practical methods for documenting requirements, design and 
implementation, which allow safety requirements to be traced and verified through these 
stages, need to receive more attention. 

13	 Careful consideration should be given to the allocation of responsibilities between 
computers, humans and (conventionally engineered) hardware, and to interactions between 
these (particularly the impact of the introduction of computers upon operators). This 
allocation should be justified in the safety case. 

14	 One important guiding principle in the design of computer systems should be the avoidance 
of unnecessary complexity, whether this comes from the provision of unnecessary 
functionality or from the use of inappropriate structuring in the design. The safety case 
should contain rigorous justification of the functionality of the system and of its structure. 
Much more emphasis should be placed on structuring systems so as to achieve a high degree 
of isolation between the implementation of the most critical requirements, and all others. 
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15	 Some techniques show particular promise for achieving and/or assessing safety and 
reliability in critical software-based systems, but would benefit from further investigation. 
Examples include: 

- fault tolerance via design diversity 

- probabilistic and statistical techniques for quantitative evaluation of safety and reliability 

- formal methods for specification and verification of system properties. 

16	 Better tools, together with methods for qualifying them, should be developed to support the 
development and assurance of high integrity real-time software, including the difficult 
problems associated with concurrency and distributed systems. 

Standards 

17	 Present standards are not of a form and content that would allow a positive assessment of 
conformance on its own to confirm fitness for purpose. Whilst standards are important, 
current ones do not reflect the UK safety case approach and ALARP, nor do they take 
adequate account of existing technologies and industry trends such as increased use of COTS

1 

software. The emerging generic standard, IEC 1508 , and the standards for nuclear computer-

based systems being developed by TC45A, should be reviewed and efforts made to negotiate

amendments which would take account of these deficiencies. The UK nuclear industry and its

regulator are urged to maintain active participation generally in the ongoing developments of

standards relating to computer-based safety-critical systems.


1 This has become IEC 61508 since the report was written. 
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s Research 

18	 The recent experience of the different organisations involved in those aspects of the Sizewell 
B licensing that concerned the computerised primary protection system has valuable lessons 
for similar exercises in the future - both in the nuclear industry and in other industries. This 
experience should be recorded in as much detail as feasible whilst the collective memory 
remains fresh, perhaps as a project within the Nuclear Safety Research programme. 

19	 In our report we have identified several areas where technical progress is needed to maintain 
and improve our ability to design, build and evaluate safety-critical software-based systems. 
We are encouraged to see that many of the issues of most relevance to the UK nuclear 
industry are already being addressed as part of the UK nuclear research programme, and via 
links to programmes elsewhere. We recommend that NuSAC’s Sub-Committee on Research 
use our report as a template for its on-going review of this part of the research programme. 
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Foreword 
2 

The Advisory Committee on the Safety of Nuclear Installations (ACSNI) set up the Study Group 
on the Safety of Operational Computer Systems on 17 March 1995 with the following terms of 
reference: 

to review the current and potential uses of computer systems in safety-critical applications; 

to consider the implications for the nuclear industry; 

in this context, to consider developments in the design and safety assessment of such computer-based systems, 
including other aspects of control systems; 

and to advise ACSNI where further research is necessary. 

This report addresses the broad principles upon which the Study Group believes the evidence and 
reasoning of an acceptable safety case for a computer-based, safety-critical system should be 
based. It also discusses, but does not attempt to cover in detail, the extent to which the UK 
nuclear industry already accepts these principles in theory, and the extent to which they act on 
them in practice. 

An earlier version of the report was endorsed by ACSNI at its meeting in November 1996. The 
present and final version has been prepared following the comments we received at that meeting, 
as well as later written comments on behalf of several companies and individuals. 

The membership of the Study Group was: 

Professor B Littlewood	 Professor of Software Engineering and Director, 
Centre for Software Reliability, 
City University, London 
Chairman, ACSNI member 

Dr L Bainbridge	 Formerly Reader in Psychology, 

University College, London

Former ACSNI member 

Professor R E Bloomfield	 Safety-related Software Specialist/Consultant, 
Adelard, London 

Professor P-J Courtois	 Assessor, 

AV Nucléaire, Brussels 

and Professor of Computer Science,

Département d’Ingénierie Informatique,

Université de Louvain-la-Neuve, Belgium


Dr A H Cribbens, MBE	 Technical Specialist,

British Rail Research, Derby 

To May 1996 

Dr R S Hall	 Independent Consultant in Nuclear Safety, 
ACSNI member, nominated by the CBI 

Mrs V L P Hamilton	 Group Leader, Safety-Critical Systems Group, 
GEC-Marconi Research Centre, Chelmsford 
From March 1996 

Now the Nuclear Safety Advisory Committee (NuSAC). 
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s Professor A D McGettrick Professor of Computer Science, 
Department of Computer Science, 
Strathclyde University, Glasgow 

Dr G Oddy Technical Director, 
EASAMS Ltd, Borehamwood 
To November 1995 

Professor B Randell Professor of Computing Science, 
Department of Computing Science, 
University of Newcastle, Newcastle upon Tyne 

Mr P Tooley Group Head, Technical Investigations and Safety, 
Nuclear Electric Engineering Division 
Nominated by the TUC 

The Nuclear Safety Directorate’s observer was 

Mr D M Hunns	 HM Superintending Inspector, 
Nuclear Safety Directorate, 
Health and Safety Executive 

The Study Group was supported in its activities by: 

Mr N Wainwright	 HM Principal Inspector, 
Nuclear Safety Directorate, 
Health and Safety Executive 
Technical Secretary 

Mr C Simon	 Nuclear Safety Directorate, 
Health and Safety Directorate 
Secretary 

The Study Group, in preparing this report, met first on 10 May 1995 and a further 15 times, 
including three residential meetings. 

The Study Group was extremely fortunate to be able to consult experts in the French nuclear 
industry, the UK railway industry and the US and UK aircraft industries. Visits were made by small 
sub-groups to the following organisations: 

Westinghouse Signals Limited and GEC-Marconi Avionics in the UK;


Boeing Commercial Airplane Group and the US Federal Aviation Authority in Seattle, USA;


Direction de la Sûreté des Installations Nucléaires and Institut de Protection et de Sûreté

Nucléaire in Paris, France.


We would like to express our thanks to the organisations involved, and to the individuals with

whom we had extensive discussions:


Mr J Mills, Mr S D J Pilkington, Mr H Ryland (Westinghouse Signals)


M F Feron (DSIN, France)


Mme N Guimbail, M J-Y Henry, Mme B Soubies (IPSN, France)
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Mr I Newton, Mr J Taylor, Mr N Wright (GEC-Marconi Avionics)


Mr D Hines, Mr J McWha, Ms L Schad (Boeing Commercial Airplane Group, USA)


Mr M deWalt (Federal Aviation Administration, USA)


In preparing this final version of the report, the Study Group was fortunate to be able to take

account of extensive comments that we received on the earlier version. In particular we would like

to thank the following:


Mr J Baker, Scottish Nuclear


Dr L Beltracchi, USNRC


Mr A W Clarke, OBE, Magnox Electric 


Mr R Endsor, Nuclear Electric


Mr J Gallagher, USNRC


Mr K Geary, MoD


Mr D J Hawkes, CAA


Lt Commander P D Jordan RN, MoD


Mr D J Western, Nuclear Electric


Mr B Wichmann, NPL


Mr R J Williams, BNFL 

The Study Group expresses its thanks to all those others who have been helpful in their many 
ways, not least to the ACSNI Secretariat and Nuclear Safety Directorate staff involved. 

London 
October, 1997 
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Safety of operational computer systems 

1 Introduction 

The increasing ubiquity of computer systems is having a dramatic effect upon almost all 
industries and upon society at large. It is now common-place to see computers entrusted with 
functions upon which human life can depend: examples include embedded computers in heart 
pace-makers, anti-lock braking systems in cars, fly-by-wire flight control systems for civil airliners. 
In the nuclear industry, software-based systems have become widespread, and in recent years 
have also started to play roles that are safety-critical, in many cases because they are specifically 
intended to protect a nuclear plant from becoming unsafe. A notable example of such a software-
based safety system is the primary protection system (PPS) of the Sizewell B reactor, a system 
which aroused widespread interest in the UK scientific and engineering communities, as well as in 
the world at large. 

Several times over the past six years, ACSNI has held meetings in which issues concerning the 
impact of computers upon nuclear safety have been discussed. Whilst these discussions often 
arose in the context of the Sizewell B PPS, it became clear that the issues were of wider 
significance for the nuclear industry and for regulators. For example, there was a concern about 
how future reactors might be licensed in the likely event that they contained safety-critical 
computer systems: the industry trend is such that manufacturers are likely to be offering only 
plants which depend upon safety-critical computers. Indeed, there is a trend for ever more safety-
critical responsibilities to be taken over by computer systems. Furthermore, the nature of 
computer systems (hardware and software) is evolving faster than other technologies, and these 
new developments, and the pace of change itself, give rise to new problems for licensees and 
regulators. 

In March 1995 ACSNI set up this Study Group to investigate these issues and report back to the 
full Committee. The terms of reference for the Study Group were: 

‘to review the current and potential uses of computer systems in safety-critical applications; 

to consider the implications for the nuclear industry; 

in this context, to consider developments in the design and safety assessment of such computer-based systems, 
including other aspects of control systems; 

and to advise ACSNI where further research is necessary.’ 

The aim of the report that follows is primarily to inform NuSAC (the renamed ACSNI) of the 
present state of the art in this area and of likely future trends, and to give our views on some 
desirable developments. Whilst our primary audience is, of course, NuSAC, the report is also 
addressed to nuclear licensees and regulators. Furthermore, since we believe that issues 
surrounding the safety of critical computing systems in the nuclear industry, and indeed 
elsewhere, are of legitimate concern to society at large, we have attempted to make the report 
accessible to an intelligent lay audience. For a technical reader familiar with the area, this may 
mean that we occasionally state the obvious: we make no apologies for this. We should also make 
clear that we have no pretensions for the report to be either a guidebook or a standard. 

We recognise that primary responsibility for nuclear safety is vested in the nuclear industry and 
that in the first place it must decide how to proceed with this important topic, although we would 
hope that, in the process, due account will be taken of the opinions, conclusions and 
recommendations expressed within our report. 
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s In the report we use the term ‘safety-critical’ to encompass both: 

(i)	 safety systems: computer systems that are part of a nuclear safety system, i.e. systems which 
respond to a potentially hazardous plant fault by implementing the safety action necessary to 
prevent the associated radiological consequences, and 

(ii)	 safety-related systems: any other computer systems that could through their actions, or lack 
thereof, have an adverse affect on the safety of a nuclear system (e.g. a control system which 
maintains operation within pre-defined limits by responding continuously to normal plant 
perturbations). 

The report concentrates in the main on reactor safety systems, but much of it will be of relevance 
to all types of safety-critical system in the nuclear industry. In general, particularly where 
significant risk is involved, the NII requires any safety-related computer system to operate under 
the overriding protection of a separate safety system, albeit not necessarily a computer-based 
safety system. It therefore regards safety systems as being of higher criticality than safety-related 
systems, though this is not implied by the above definitions. 

The report places a major emphasis upon safety cases for software-based systems3. Rather 
informally, a safety case can be thought of as the totality of arguments and evidence that is used 
to justify a claim that the system is sufficiently safe. Current experience with computer technology 
in the nuclear industry in Canada, France and the UK suggests that the major difficulties arise in 
this judgement of adequacy, i.e. in the assessment of the computer systems. Experiences in 
operation have tended to show that the systems performed satisfactorily, but great difficulties 
were experienced in demonstrating at an early stage that this would indeed be the case. 

Lastly, of course, the computer system is always part of a wider system which includes the 
physical plant, the human operator and operator supports, and the organisational culture. Proper 
design of their interactions is an essential component of a complete plant safety case, but we 
decided that such issues were beyond our scope and we have therefore concentrated mainly upon 
the computer system itself, and particularly upon software. 

2 What makes computer-based systems special? 

One of the most notable differences between most conventional mechanical and electrical systems, 
and computer systems, lies in the essentially discontinuous behaviour of discrete logic, and in 
particular of software4. 

3 It does not strictly make sense to talk of a ‘software safety case’, since a safety case can only apply to a 

system that can directly act, potentially adversely, upon its environment. Nevertheless, much of the 

discussion in this report will concern the contribution made by software to the safety case of such a 

wider system. 

4 Much of our discussion makes a distinction between ‘software’ and ‘hardware’, but this can be 

somewhat misleading: modern hardware based on the use of ‘Very Large Scale Integration’ (VLSI) has 

much more in common with software than with conventional electrical and mechanical hardware when 

viewed from a reliability perspective. Perhaps the most important distinction is between those systems 

that fail largely because of random physical causes, and those that fail because inherent design faults 

are triggered when appropriate conditions occur. Our main concern is with the latter. Because of the 

complexity of VLSI hardware, its failures tend to be because of inherent design faults - just like software. 

Thus in what follows much of what is said about software should be taken as also relating to VLSI. 
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This shows itself in two main ways. In the first place, when a computer system is tested on a 
particular input and found to work correctly, one cannot always be certain that it will work on any 
other input, even one that is ‘close’ to the one tested. In other branches of engineering, on the 
other hand, one can usually assume continuity. So, for example, if a structure such as a bridge 
survives a load of 10 tonnes, it is often reasonable to claim that it would survive loads less than 
this. Because of the discrete, logical nature of software there are usually no simple equivalents of 
‘load’ and ‘less than’. This weakens the claims that can be made from software testing, since it 
does not allow us to extrapolate with certainty from a small set of successful tests to infer that 
the software will perform correctly elsewhere. Of course, one usually cannot test all possible 
inputs, since the number of these is almost invariably astronomically large. 

The second problem arises when software is changed. In conventional engineering it is often 
possible to justify a claim that a change to a system will be certain to be beneficial because there 
is usually well established theoretical and empirical evidence that can be used to analyse the 
impacts on other parts of the system. For example, if a component in the bridge is replaced by 
one that is stronger but otherwise identical, it is often reasonable to claim that the overall 
structure will have been strengthened (or at least not made weaker) - i.e. its tendency to failure 
will have decreased. (Caution is required, of course, since impact analysis may show that such a 
change may transfer stresses elsewhere and cause another component to fail earlier, thus 
decreasing the overall reliability of the bridge.) One generally cannot so easily have confidence in 
the benevolence of a software change, and there are many well-attested examples of software 
changes whose impacts have not been properly analysed which have had catastrophic effects 
upon system behaviour. For example, a change made to the software in telephone switches in the 
US several years ago was regarded as sufficiently ‘small’ as not to require testing: in fact, it 
contained a fault that brought down the long-distance telephone system of the Eastern seaboard 
for several hours. 

Similar remarks apply even to those software changes that are merely intended to remove 
particular faults that have been identified in a program. From a reliability point of view, the 
concept of replacing a failed component by another one that is known to be working (but 
otherwise identical) is generally familiar, and in these circumstances it is reasonable to assume 
that the structure will be restored to the state it was in before the component failed. In particular, 
the repaired structure will be as reliable as it was before it failed. The nearest analogy to this in 
software is that of reloading a piece of software which has been corrupted - we can assume that 
the reloaded software will be as reliable (or otherwise) as the original load. Software 
‘maintenance’, on the other hand, refers to changes in the software design that are either intended 
to correct a fault, or are in response to a change in the specification because the software does 
not perform as the user wishes. This is a completely different set of circumstances from the 
replacement of an item of failed hardware, which merely recovers the original system 
functionality. The removal of a software fault constitutes a change to the design of the system. It is 
therefore much harder, and sometimes impossible, to be certain that such a change has not 
introduced a new fault which has made the program less reliable than it was before: there are 
many recorded examples of ‘small’ changes, supposedly just fixing faults, causing serious 
reductions in reliability. 

These difficulties associated with software changes are not only of concern to the designers of 
these systems, whose main concern is with the achievement of reliability, but also to those with a 
responsibility for assessing software reliability and its impact upon plant safety. Thus every change 
must be analysed to establish it is correct and that its impact on all aspects of the system is 
understood. In principle, if not always in practice, the disciplines and tools that software 
engineering provides for change control (see Section 7) can ensure that the required analysis is 
performed and the necessary understanding obtained. However, in many cases the only safe 
course is to treat a program that has been changed as if it were a new program, for which 
evaluation of reliability or safety must begin afresh. 
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s It is the nature of software that failures of a program can only occur as a result of design faults5­
what are commonly called bugs. Non-software-based systems can also suffer from design faults, 
of course, and a recent study of failures and accidents in pipework and vessels under the Seveso 
directive found that 23% of accidents were due to design faults (a further 3% were due to 
inadequate human factors review). 

A particularly interesting class of software design fault is the so-called ‘millennium bug’. Many 
programs will not be able to handle the transition between the years 1999 and 2000 because they 
represent the year by using only two digits - they might, for example, treat 2000 as if it were 1900 
with potentially catastrophic consequences. What is striking about the problem is its widespread 
nature: since representation of time is needed in most programs, a large proportion of all 
programs is likely to be affected. The costs of checking to determine whether software is 
susceptible to this problem, and making appropriate changes, is reported to be billions of dollars 
world-wide. 

Design faults pose particular difficulties to those responsible for building and assessing safety-
critical computer systems. Although good design practices might be expected to minimise the 
number of faults that find their way into a program, there are no general procedures that allow us 
to avoid them completely. Indeed, since software systems often are designed to provide much 
more complex functionality than the conventionally engineered systems they replace, they are 
more prone to design faults. We must therefore assume that any program that is of a reasonable size will 
contain bugs6 . 

Given that any program will contain bugs, a major concern is the unpredictability of the outcome 
when one of these is triggered. Traditional hardware systems embody much of their functionality 
within the components which comprise the systems. The failure modes of these components are 
relatively few and can be dependably predicted - hence the system impacts can be analysed a 
priori. It is also relatively easy to devise tests which can prove the satisfactory functioning of these 
components within a system prior to permitting its operational usage. When equivalent 
functionality is invested in software, the possible failure modes become extremely difficult to 
bound, and hence to test. Similarly, complete analysis of the possible failure modes in terms of 
their expected effects upon the overall system is not practicable. 

Finding and removing design faults in software is difficult for reasons that are given above. Error 
detection and recovery provisions at some higher level of the system can help to mitigate the 
effects of residual design faults, but achieving a level of fault tolerance that will entirely mask the 
effects of such faults is much more difficult. Clearly, since any design fault will be reproduced in 
identical copies of a program, simple notions of redundancy based on component replication, 
such as those used to protect against random failures of hardware systems, cannot be applied. 
Software diversity - where two or more versions of a program are developed ‘independently’ and 
their output adjudicated at execution time - has been used with some success in several 
industries to achieve a useful degree of fault masking. However, there is considerable evidence 
from several experiments and from recent theoretical work that the benefits fall far short of what 
could be expected had statistical independence of failures of the versions been achieved. Since 
independence cannot be claimed, it is necessary for the assessor to measure the degree of 

5 We shall be eclectic in our use of the term ‘design fault’. It will be taken to include ‘trivial’ coding errors 

as well as more subtle misunderstandings and omissions. As we have already indicated, software has 

the unfortunate property that faults that are ‘trivial’ in their logical nature can be far from trivial in their 

consequences and in their ease of detection. 

6 A conservative view would be that this is equally true of hardware devices that are of sufficient 

complexity. Modern microprocessors, for example, must be assumed to contain (and all too often are 

proved to contain) design faults. 
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dependence that is present in order to evaluate the reliability of the fault-tolerant diverse system7. 
There are no agreed mechanisms for assessing the degree of dependence of two pieces of 
software, other than testing them back-to-back and looking for coincident failures: if the aim is to 
demonstrate the achievement of a specific reliability, this will require as many tests as would be 
needed for a single version. 

Finally, we must mention that software-based systems pose some of their most challenging 
intellectual problems to their designers in coping with tight timing constraints and concurrent 
activities of a number of inter-connected computers. Not only is it very hard to solve these 
problems, but convincing an independent assessor that they have been solved, and thus will not 
be a source of failure in operation, can itself be an immense technical challenge. 

3 What advantages do computers bring? 

The major advantage of computers over simple hard-wired hardware lies in their general purpose 
nature, derived from their programmability. This allows much of the specific functionality in a 
particular application to be implemented in software and thus avoid some of the unreliability due 
to physical component failures that would be incurred if it were implemented purely in electro­
mechanical hardware. 

In the most extreme cases, software-based systems have been implemented successfully that 
would have been inconceivable using older hardware technology alone: examples range from fly-
by-wire aircraft flight control systems, through sophisticated automobile engine controllers, to the 
now ubiquitous office systems such as word-processors and spread-sheets. 

Similarly, computers allow systems to perform in ways that would not be possible if they were 
under only human control. So-called ‘smart’ systems (i.e. systems under computer control) can 
have reaction times which are far shorter than human response times, enabling control of 
dynamically unstable physical systems. Thus we now have aerodynamically unstable military 
aircraft whose continuing safe flight is completely dependent upon computers, and chemical 
process control that operates at extremes of pressure and temperature that would not be possible 
if solely using human operators. 

The nuclear industry has perhaps been more conservative than some others in taking up the new 
technology in safety-critical contexts, but experience reports are becoming available, and these 
are generally encouraging. CANDU was among the first reactors, in the early 1980s, to use 
programmable digital computers for the trip decision logic. In 1991, the operating experience over 
a total of 288 computer-years of operations was reported [Ichiyen & Joannou 1991]. Every 
computer failure had been a safe failure, in contrast to the conventional parts of the system where 
about one in four failures were potentially unsafe (failures were called safe failures if they increased 
the probability of a spurious trip, while failures that decreased the chance of a correct trip were 
considered unsafe). This was largely attributed to a design employing features such as systematic 
processor and memory self-checks, continuous testing, watchdogs, etc., which contribute to the 
early detection of potentially unsafe failures and to their conversion into safe ones. Interestingly, 
and remarkably, although safe failures tended to increase the chance of a spurious trip, there had 
not actually been any spurious reactor trips attributed to computer-related failures during those 
years. 

In the light of the new understanding of diversity that has come from these software studies, it is 

interesting to speculate on how justified are the claims for independence that are used in assessments 

of the safety of non-software systems. 
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s Success has also been reported from other industries, notably telecommunications [Kuhn 1997]. 
The US Public Telephone Switched Network (PTSN) is the US portion of what is probably the 
world’s largest distributed computer system in operation. The PTSN contains thousands of 
switches, and software for a single switch may contain several million lines of code. Since 1992, 
US telephone companies have been required to report to the US Federal Communications 
Commission all outages that affect more than 30,000 customers. Kuhn reports on these outages 
over two years to determine the principal causes of PTSN failures. The measures of failure effect 
used are the number of outages by category of failure, and the downtime by category measured in 
‘customer minutes’ - the number of customers affected by an outage multiplied by the outage 
duration in minutes. 

The PTSN averaged an availability better than 99.999% in the time period studied. Major sources 
of failure were human errors (28%) - half by telephone company personnel (14%) and half by 
others (14%) - acts of nature (18%), and overloads (44%). An unexpected finding, given the 
complexity of the network and its intensive use of software, is that software errors caused less 
downtime (2%) than any other cause except vandalism (1%), while hardware failures were 
responsible for 7%. If we exclude from the outage and downtime percentages those caused by 
failures like overloads, acts of nature, etc., which may be rather specific to a telephone network, 
we find that software accounts for 24% of the remaining outages and 9% of customer minutes 
downtime, while hardware accounts for 32% of these outages, and 29% of downtime. 

Kuhn thinks that several factors may explain why software makes such a small contribution to 
unreliability. An important reason is the use of extensive software mechanisms for error detection 
and recovery. Second, by its very nature, the telephone network is highly distributed: failures are 
likely to be localised, and re-routing algorithms can divert traffic to avoid failed nodes8. Finally, 
the major telephone switch manufacturers are among the world leaders in computing and 
software technology. Nevertheless, there are concerns, caused by recent major outages, about the 
ability of the PTSN to maintain recent reliability levels as even more complex systems are 
designed and built. 

Operational data from the US PTSN, and other experiences, provide empirical confirmation that 
making extensive use of the powerful fault detection mechanisms of computers can substantially 
increase both safety and availability. In addition, periodic routine verification tasks, e.g. to test the 
equipment or to calibrate sensing devices, can be performed by software at much higher 
periodicity, with more discrimination and with less risk of human error or negligence than is 
possible with manual procedures. These new technologies also contribute to safety and reliability 
(and bring economic benefits) by reducing system down times. 

For robustness and reliability, and to allow for graceful degradation, advanced nuclear safety 
system designs tend to take advantage of distributed architectures not only at equipment level 
but also at control level (Sizewell B, Temelin [Temelin 1993], System 80+ [NRC 1994]). The co­
ordination between autonomous subsystems required by these architectures needs extremely 
reliable data communications; this can only be provided by digital communications and 
programmable systems, through sophisticated protocols, and communication error detection and 
correction mechanisms. The same recent advances in coding theory and communication 
technology which are driving all types of audio and video communications towards digital 
technology should thus bring benefit to these nuclear systems. 

Software implementations allow more sophisticated on-line monitoring in the form of more 
elaborate calculations or procedures to make inferences from the observed plant parameter 

8 This re-routing, however, does not come free. It requires the maintenance - by software - of a complex 

consistent data-base across the whole network. 
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values. Not so long ago (before the Three Mile Island accident), in many control rooms the core 
saturation temperature, the sub-cooling factor and other operational parameters were computed 
by hand from tables. More and more now, computer systems may continuously monitor all the 
plant safety-critical functions. In normal operations, they can allow the system under control to 
produce more power and to use more efficient operational regimes than hitherto, without 
reduction in safety. 

Computers are probably also the only solution to the ‘Christmas tree’ effect of nuclear plant 
control rooms. Sets of alarms that are capable of signalling every single detected abnormal 
indication - especially those caused by malfunctioning of the control and instrumentation 
systems themselves - are too large in number for human operators to cope with directly. They 
must be aggregated into a limited number of high-level alarm types that can be made visible 
and/or audible on the control room panels. To detect and locate the original cause of the incident, 
operators must then often look for LEDs in various racks. In contrast, computer-based displays 
can give all the necessary information to help identify and locate the cause of every single plant 
abnormal indication. They can also discriminate, prioritise, filter and mask irrelevant alarms for 
the different modes of operation and testing of the plant (e.g. Chooz-B1 [EDF 1994]). In addition 
they can provide sophisticated diagnostic aids and help the operators in troubleshooting, fixing 
the problems, and restoring safe operation. Many support systems of this kind, using relational or 
deductive database technology, are currently under development in research institutes (e.g. the 
OECD Nuclear Energy Agency’s Halden Reactor Project [Dahll & Applequist 1993]) or industry. 
However, it must be mentioned that effective operator support systems are not just a matter of 
developing the technology. If an operator support system is not compatible with the operators’ 
thinking, or is wrong or incomplete, it can cause problems for the operator rather than being an aid. 

The use of computer technology, correctly implemented, offers the means of introducing specific 
safety-enhancing features which formerly it was not reasonably practicable, or even possible, to 
achieve by the traditional engineering means. For example, in addition to those mentioned 
earlier, continuous on-line calculations can be performed of key characteristics of plant 
performance (the so-called ‘calculated parameters’) which provide both faster and additional 
diverse means of safety monitoring for use by automatic protection systems. 

Computer systems allow the number of cables to be reduced (and the commensurate fire risk), 
and hence the numbers of potentially unreliable connections/terminations, by the use of 
multiplexing, whilst increasing the integrity of the equivalent highways by use of sophisticated 
noise filtration and on-line checking calculations. 

There are, in addition, a number of other well-known advantages offered by digital programmable 
technology which are of more general interest. When they are well designed, software-based 
systems offer more flexibility to accommodate system modifications and parameter tuning, both 
during the design, and later during operations, although this advantage can be constrained by the 
rigour of the change process. 

Software, by itself, does not age or wear out, and is not affected by the environment (heat, 
electromagnetic interference, earthquakes, etc.). In principle, once correct, it can remain correct 
forever without maintenance. Thus, the more functionality one can put into the software, the 
more insensitivity to those external perturbations one can achieve in the integrated system. 

Under current pricing, software implementations are usually cheaper than hardware 
implementations of the same functionality. However, if the software is badly structured, the cost 
of testing, debugging, inspection, justification and maintenance may remove this advantage. UK 
experience shows that the licensing process associated with the justification of the design must 
be expected to be a very significant cost factor. 

Finally, for mathematical and technological reasons, more accuracy and (numerical) stability can 
often be obtained from the digital technology than from analogue computing and control devices. 
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s 4 Safety, reliability and system issues 

When discussing the use of computers and software for safety-critical functions, it is useful to 
clarify the distinction between reliability and safety. We shall typically be interested in the safety 
of an overall system, i.e. a nuclear plant, which is comprised of interacting lower level systems, 
such as instrumentation systems. These lower level systems are themselves comprised of lower 
level systems, and so on. This report addresses safety-critical computer systems, such as might 
form a part of the overall safety system of a nuclear plant. Much of our concern, in turn, will 
centre upon the role of software in such a computer system. 

Safety is the attribute of a system - e.g. a nuclear power plant - to be free from the occurrence of 
accidents, i.e. from the undesired events that lead to catastrophic consequences such as health 
and environmental effects of radiation and radioactive contamination. Safety is achieved through 
the use of reliable structures, components, systems and procedures. Reliability is the probability that 
a system or component will perform its intended function for a prescribed time and under 
stipulated environmental conditions. 

Reliability may thus be determined by the probability of failure per demand, whilst safety is also 
determined by the possible consequences of these failures. In a reactor safety system, for 
instance, the primary functionality concerns the requirement to shut the reactor down safely when 
needed, and keep it in a safe state for a specified period of time. If the software in a safety system 
is unreliable, i.e. if there is a too-high probability of its not carrying out this shut-down function 
correctly when demanded, then there will be an unacceptable effect upon the safety of the wider 
system. If a computer-controlled control panel prioritises or filters alarm signals incorrectly, there 
can also be an adverse effect on safety. 

The achievement of the required reliability by the hardware and software alone, however, is not 
enough to guarantee overall plant safety. If the specification of the safety-critical system is 
inadequate then the overall nuclear system may be unsafe even though the hardware and 
software implementation of the safety-system is completely reliable (with respect to its 
specification). Moreover, in a more general context, the events leading to an accident are almost 
never limited to a computer failure, but are a complex combination of equipment failures, faulty 
maintenance, human actions and design errors. Some accidents even result from a sequence of 
events, none of which may involve a component failure. Each component may reliably work as 
specified, but together they may create a hazardous system state. 

An example that reliability alone is not enough to guarantee safety is provided by domestic fuses 
[Leveson 1995]. Their failure frequency is estimated at 10-6 or 10-7 per year. Fuses, however, can be 
wrongly calibrated or unthinkingly replaced by copper wire. The frequency of these errors has 
been estimated at 10-3 per year. Further improvements of the reliability of individual fuses would 
therefore not overall make their use safer. 

In nuclear power plants as elsewhere, there are also sources of unreliability which would not be 
regarded as contributing to the overall plant risk - for example, components that, depending on 
their failure modes, can affect the plant safety in different ways. For instance, the protection relays 
(nowadays often microprocessor-based), which protect the power supplies of safety injection 
mechanisms against transient peaks of voltage or current, may not necessarily be considered as 
impacting safety if they fail to trip on demand. Depending on their role at the plant level, their 
failure to trip may leave the plant in a safe state. Likewise, the reliability contribution required 
from a diverse system may be much lower than that of the primary safety system or line of 
defence. An example is given by the ‘off the shelf’ computer-based radiation detectors that are 
sometimes used as an ultimate detection mechanism for containment isolation in the event of 
the protection system failing to detect a loss of coolant accident (LOCA). 
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Thus, it is important when discussing reliability and safety to have in mind both the system (or 
sub-system) of interest and its environment (often a wider system). In fact in the nuclear 
engineering community, it is normal to reserve the word safety for use as a property of an overall 
nuclear system, and to refer only to the reliability of any computer system involved as well as to the 
adequacy of its set of requirements that have been identified and specified. With this usage ­
which we adopt in this report - unreliability is associated with undesired departures from the 
specified behaviour. In contrast, breaches of safety are associated not just with inadequate 
reliability, but also with unexpected and undesired behaviours that had not been specified or had 
been inadequately specified. 

A natural consequence of these considerations is that solutions to safety issues must start with 
nuclear system, rather than software, engineering. Clearly, the identification of the possible events 
that are to be regarded as important to safety is a key part of the determination of the safety 
requirements of, e.g. a nuclear protection system. This is a complex task which belongs to the 
world of nuclear safety engineers. They have to anticipate all possible failure modes of the 
protection system, define its functionality, and non-functional behaviour (e.g. internal 
monitoring), and do this whatever technology will be used: hardware, software, hydraulics, human 
operator, etc. The safety requirements are thus translated into functional and non-functional 
requirements of a protection system. It is then decided what technology to use, and hardware, 
software and/or human performance specifications are written. What is required from the 
implementation is demonstrable satisfaction of its specified reliability. 

In other words, the impact of safety on design should ideally be confined to the functional and 
non functional specifications of the system. Software and hardware should then simply be required 
to be a reliable implementation of these specifications - demonstrably correct and tolerant of 
hardware random faults. In these circumstances, the somewhat ambiguous notion of ‘software 
hazard’ used by certain authors could be dispensed with. 

This is not to say that safety can be ignored within the software implementation team (or any 
other implementation team). The initial version of the specification will not be perfect - it may 
have omissions, inconsistencies and requirements which are at the very least non-optimal. One of 
the important tasks of the implementation team is to refine the specification and in so doing they 
may have to feed back changes to the system team to be included in new updated versions of the 
specifications. In addition, where there are design options for the implementation team, the 
relative effect on safety should form part of the decision making process. So, concern for safety is 
indispensable within the software team, but the matters of concern and the techniques applicable 
are different from those of the system engineers who specify the safety requirements. 

Thus concern for safety is a crucial issue and is related to the role of the individual engineers in 
large projects where software is a component only. At stake is the production of system 
specifications that are both complete and understandable by all parties involved in the design. 
The challenge is to develop methods for specifying in the system requirements everything 
concerning safety in a way which is understandable to computer hardware and software designers. 

This necessity is confirmed by reported experience of incidents involving software. An example is 
the Therac-25, a computer-controlled radiation therapy machine, which massively overdosed six 
people who died or were severely injured. The machine relied on software for safety operations. 
These accidents could probably have been avoided if software designers had been given 
specifications that included a correct and complete description of the possible failure modes of 
the machine, and of the possible hazardous misuses of the operator interface [Leveson 1995]. 

Whilst there is a certain element of judgement involved in the identification of possible events 
that are important to safety, it is usual in those industries in which safety-critical systems are 
common to have a systematic safety analysis process which includes procedures to identify these 
events. In some nuclear safety systems, for example, the existence of a safe state makes the 
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s problem simpler than for other systems: reliable delivery of appropriate responses to the 
demands placed upon the safety system is the major safety issue, and the number and nature of 
these demands can be assumed to be well-understood. In other applications, however, 
particularly those involving systems that do not have a safe state (e.g. an operator assistance 
system, or an aircraft flight control system) and where safety issues are mainly associated with 
ensuring that unexpected and undesirable events do not happen, their prior identification and 
analysis can be much harder, so that the completeness and correctness of the safety analysis 
procedure is itself a major concern and thus should itself be taken into account in the safety 
evaluation. 

The nuclear industry has extensive experience of safety cases, i.e. the formal arguments and 
evidence in support of claims that systems are sufficiently safe to be allowed to operate, which 
are required as part of the regulatory process (see Appendix A). However, it has to be said that in 
the case of software-based systems, there is less experience of safety cases than for older 
technologies. In fact, such safety cases are not yet common in all industries, nor are they well-
supported by standards. As we shall see in Section 10, this suggests that safety cases involving 
software-based systems should involve some elements of diversity - both in the kinds of evidence 
used (what we shall call the ‘legs’ of the argument), and in the personnel involved (independent 
assessment). 

It should also be emphasised that safety, like reliability, is not an absolute. We can say that a 
system is sufficiently safe, but not that it is completely safe. Much of our discussion will centre on 
the evidence and arguments we need to deploy in the safety case to make claims for this 
sufficiency. Ideally, such claims will be expressed numerically; thus we might require that the 
probability of failure upon demand of a safety system - depending on the consequences of the 
failure - be smaller than some number emanating from the wider plant safety case, which 
provides the context for the requirements specification of the safety system. 

Finally, this distinction between levels at which safety and reliability requirements apply helps to 
clarify some implications of the ALARP principle which is discussed in section 9, especially if 
ALARP requirements must apply to the design of systems of limited demonstrable reliability that 
have to be used within high risk environments. 

5 Hardware, humans and computers 

There is a school of thought that says ‘keep it simple and hard-wired and we do not need to worry 
about design faults’. This view was held until recently in parts of the UK nuclear industry, and is 
certainly not one to be dismissed out of hand. Similarly, it is often argued that, in extremis, the 
human operator should always be allowed to have the final say. These views are, of course, simply 
examples of design choices: they are particular ways of allocating responsibilities among humans, 
electro-mechanical hardware and computers. However, in order to make such choices rationally, it 
is important to know what are the particular strengths and weaknesses of these different system 
‘components’. 

The decisions that are taken at the very highest level concerning the allocation of responsibilities 
between people and machines are some of the most crucial in determining the final reliability and 
safety of a system. In recent years the capability of automatic systems has increased greatly in 
many industries as a consequence of the introduction of software-based computer systems, 
resulting in a tendency for greater responsibility being given to these systems and 
correspondingly less to humans and to simple ‘hard-wired’ (non-programmable) hardware. 
Examples include highly automated civil aircraft, where computer systems can overrule pilot 
commands, and railway signalling and control systems in which safety interlocks are based on 
software rather than mechanical hardware (see Appendices D and E). For Sizewell B, the 
automatic safety system - which in this case comprises a software-based primary and a hard-wired 
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secondary - has prime responsibility for the first 30 minutes after the detection of the onset of a 
potentially hazardous situation, and its actions to shut down the reactor safely cannot be 
overridden by the human operators during this time. 

There are three main direct9 sources of failures in systems such as these. They can fail as a result 
of random physical component failures. They can fail because of logical faults (design and 
implementation faults) being triggered in either hardware or software. They can fail because of 
human errors during operation. The safety case for a plant, or top level system, will need to 
allocate achievable reliability levels to all system components whatever their sources of potential 
failures, and an important part of system validation will be a demonstration that each such target 
has been achieved. Our main concern here is the target for the computer system and in particular 
its software - how this target can be achieved, and how it can be assured. 

In general, there are human contributions to three key themes of this report : 

■	 in the development and assessment of safety cases: in areas such as development and 
application of techniques; expert subjective estimates of risk, quality of evidence, cost-
effectiveness, confidence, compliance, etc.; negotiation of agreement; 

■	 in the system specification and design of software: these may be strongly affected by 
limitations to human comprehension and communication in the handling of complexity, and 
minimising human errors resulting from these limitations is important, through, e.g., 
training, techniques of software engineering and quality assurance; 

■	 human functions in the on-line operation of the system, fault management, and plant 
maintenance. 

Other sections of this report make many points about the first two of these areas, although there 
is still considerable scope for more explicit understanding of the human cognitive and social 
processes involved. What follows in this section is primarily concerned with the issue of 
allocation of operational functions. 

5.1 Allocation of function to hardware and computers

Random hardware failures now mainly affect mechanical and electrical components. For micro­
electronic devices on the other hand, such as computer chips, this kind of random failure is quite 
rare, and thus contributes comparatively little to their unreliability. Moreover, there are well-
understood techniques, often involving redundancy, for mitigating the effects of random hardware 
failures upon the wider system; for example, in aircraft auto-land systems there are typically triple 
redundant computer channels, in nuclear plants there are now four such channels. 

The recent growth in complexity of micro-electronic components, however, means that the 
potential for failures due to design faults is becoming greater. Software failures, of course, are 
always the result of design faults. The increasing dependence upon, and the increasing complexity 
of, both software and micro-electronics point to a general increase in the importance of 
unreliability arising from design faults. 

Of course, the direct causes of failure may hide some important indirect causes. Poor management can 

be a source of failures, for example, by inadequate training of operators who then do not know how to 

react to warnings, or by not having in place an adequate means of reporting system maintenance 

changes to operators. In such cases it could be misleading to lay responsibility for system failure 

directly at the door of the operator. Equally, it has to be said that analyses of accidents - after the event 

- suggest that causes are usually multiple rather than single.
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s Most conventional reliability theory and methods concern only random physical failures of 
hardware. Whilst it could not be said that physical hardware reliability is completely understood ­
there are still unresolved issues concerning common cause failures, for example - it is true to say 
that this understanding is greater than it is for design faults in computer hardware and software 
and for human sources of failure. This greater understanding brings with it a possible hidden 
advantage to which we alluded at the beginning of this section: the impact of excessive 
complexity upon hardware reliability is so well understood by designers of these systems that 
there is a tendency to keep them as simple as possible, and this in turn lessens the likelihood of 
their containing design faults. Making it hard-wired can mean making it simpler - and thus safer and 
more reliable. 

On the other hand, there are some functions that are irreducibly difficult, and it is here that 
designers increasingly only have a choice between human and computer control. 

5.2 Allocation of function to computers and human operators

It is worth pointing out at this stage that design faults themselves - including those in computer 
software - also arise from human failures. If an aircraft crashes because the software in its flight 
control computers fails, this is a result of a human failure during the control system design 
process. Designers have to imagine all the circumstances in which the aircraft might find itself, and 
ensure that the computer system can respond to each and every one of these appropriately. They 
have the advantage of doing this in conditions which are less stressful, and less constrained by 
the imperatives of time, than the pilot. Pilots, on the other hand, have the advantage of knowing 
at some level of detail the precise circumstances aircraft are in. On the other hand they are likely 
to be suffering from the stress of needing to make immediate decisions under time constraints, 
and their reaction times are likely to be slower than those of an automatic system. A good design 
will allocate tasks to machines and human operators according to their respective strengths and 
weaknesses. 

In the nuclear industry, the role of computers has advanced from simple tasks such as monitoring 
and scheduling in the early 1960s, to sophisticated information processing and direct control of 
the reactor in present-day plant. Although automatic safety systems response has always been a 
feature of nuclear plant protection, nevertheless in the early days the human operator was 
responsible for general plant monitoring, anticipating problems, and for many aspects of plant 
fault management. However, with the evolution of modern plants, the human operator has 
become progressively less in a position to perform these primary roles dependably without 
automated assistance. This arises for several reasons: 

■	 the greater complexities of modern plants, and their more sophisticated control regimes; 

■	 automatic control disguises the first symptoms of plant faults, so it is more difficult for the 
human operator to notice that problems are developing; 

■	 if an operator is not directly involved in plant operation, and therefore keeping up to date 
with its state, it takes time to get the information required and to work out what is 
happening and what to do about it when asked to take over. 

As mentioned earlier, typically as at Sizewell B the safety system (which is computer-based) has 
prime responsibility for the first 30 minutes, during which the human operator can gain sufficient 
understanding of what is happening so that he/she can be effective. There is a requirement to 
demonstrate that the computer is sufficiently dependable to meet the safety requirement of the 
overall plant without the intervention of the human operator during those 30 minutes. (The 
operator can intervene during this time in ways that are known to be ‘benevolent’ - for example to 
switch in alternative diverse cooling systems.) Our main concern in this report is with computer 
systems that carry this sort of ultimate responsibility, though our findings relate to any kind of 
safety-critical system. 
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Of course, hardware has long been used to automate human action. What is new is that software 
is now used to automate human cognition - it is entrusted with the analysis and decision-making 
that was previously carried out by the human operator. When we apportion responsibility between 
the computer and the human operator in the high level design, we must make a trade-off between 
the different potentialities for failure in the design process and in the operator: decreasing the 
amount of human responsibility in the operation of the plant increases the amount of human 
responsibility in the design of the plant. 

The aim here is to allocate the different decisions and actions between humans and computers 
‘optimally’: each should, as far as possible, be assigned to whichever is the least likely to fail in its 
execution. Simply put, computer systems are good at performing well-defined tasks, accurately, 
quickly and continuously. They should thus be given the following sorts of tasks: 

■	 tasks which a human would find boring, such as monitoring equipment; 

■	 repetitive tasks; 

■	 tasks which consist of lots of simple elements, such as long calculations, where a human 
might be careless; 

■	 tasks which require superhuman response times. 

Some tasks which used to be beyond the capabilities of computers can now, in principle, be 
tackled by systems using novel technologies such as expert systems or neural networks. The 
claimed capabilities of these systems include: limited ability for learning from experience and 
optimising behaviour, pattern recognition, and forming conclusions from vague data or data from 
disparate sources. However, our considered view is that these novel technologies could not at 
present be considered sufficiently dependable to be used for the most safety-critical applications. 
For example, the very ability of these systems to learn poses particular difficulties in assessing 
and predicting their failure behaviour: their reliability must be assumed to change as they evolve, 
and past good behaviour could not be regarded as a guarantee of future good behaviour. 

Human beings are still required to deal with unanticipated or vague situations because it is not 
known how to program for situations which cannot be anticipated: computers are unable to be 
creative and hence generally cannot invent novel solutions when confronted with something 
unexpected. 

There are four categories of allocation: 

■	 the task is always done by the computer; 

■	 the task is usually done by the computer, but the human operator is expected to take over in 
unusual circumstances; 

■	 the task is always done by the human operator; 

■	 the task is usually done by the human operator, but the computer is expected to take over in 
unusual circumstances (this is very difficult to design effectively). 

As things now stand, any increase in dependence upon computers may make the tasks remaining 
for the human operator more difficult, and so support for the operator needs to be considered 
more carefully. Human beings can only maintain the skills and commitment needed to carry out 
tasks by actually doing those tasks, and increased computer operation may give the operator less 
opportunity for this. So any increase in computer responsibilities means that more care is needed 
in supporting operators by interface and job design, and by training, to ensure that they can carry 
out their remaining responsibilities effectively. 
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s The main focus of this report is, of course, upon the role of the computer, and particularly its 
software, in such a safety-critical system. A detailed discussion on attributing the causes and 
predicting the likely rates of human error is beyond our scope: there is a large literature on these 
topics, and interested readers should refer to the reports of the earlier ACSNI Study Group on 
Human Factors [ACSNI 1990, ACSNI 1991, ACSNI 1993]. It is worth noting here, however, that 
most of the evidence available about human error is relevant only to manufacturing and operating 
tasks: in particular, it does not address the errors that humans make during design processes, 
such as the design of complex computer software. 

6 What problems do computers bring? 

For various reasons - including the effectiveness of redundancy as a protection against random 
failures - the physical hardware of computers is now extremely reliable, so much so that the major 
worry of systems designers using computers is not that they will fail randomly like mechanical 
devices, but that they might contain design flaws which will be triggered in all copies when 
appropriate external conditions are encountered. Most system functionality and hence complexity 
is normally, and quite appropriately, ‘allocated’ to the software, so such residual design faults are 
more often found in software than in digital electronics. 

It is in fact the very advantages of software, stemming from its general purpose nature, that often 
bring disadvantages from the point of view of achieving sufficient reliability, and of demonstrating 
its achievement so that the contribution of the computer system to the safety case can be 
assured. Rather informally, these problems stem from the difficulty and novelty of the problems that 
are tackled, the complexity of the resulting solutions, as well as the (previously discussed) 
inherently discrete behaviour of digital systems. 

There is a tendency for system designers to take on tasks that are intrinsically difficult when 
building software-based systems. The fact of a system being based on software frees the designer 
from some of the constraints of a purely hardware system, and allows the implementation of 
sometimes excessive extra functionality. The more difficult the task, the more likely that mistakes 
will be made, resulting in the introduction of faults which cause system failure when triggered by 
appropriate input conditions. 

The difficulty of the tasks that a software-based system has to perform is often accompanied by a 
degree of novelty in the tasks which is greater than in other branches of engineering. Whereas in 
the past computer-based systems were often used to automate the solution of problems for which 
satisfactory manual solutions already existed, it is becoming increasingly common to seek 
computerised solutions for previously unresolved problems - often ones that would have been 
regarded as impracticable using other technology. This poses particular difficulties for systems 
with high reliability requirements, since it means that we can learn little from experience of 
previous systems. Other branches of engineering, by contrast, tend to have a more continuous 
evolution in successive designs. Whilst changing from a non-digital electronic control system to a 
software-based system might be regarded as a natural step, it is perhaps better to regard it as a 
step-change in technology. Equivalent step changes in other branches of engineering are known 
to be risky, for example the attempt to introduce new materials for turbine blades that led to 
insolvency and nationalisation for Rolls Royce in 1971. In the nuclear industry, the present 
generation of computer-based safety systems, such as the Sizewell B PPS, undoubtedly contain 
some functionality that is novel when compared with the older hard-wired systems. 

Software system technology is not always concerned with step changes, however, and adding 
functionality to an existing software system can often be accomplished successfully as a natural, 
progressive evolution. 
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Most importantly, these trends to new and increased functionality in computer-based systems are 
almost unavoidably accompanied by increased complexity in the internal structure and external 
interfaces - most particularly in the software. For our purposes here, sheer size (e.g. measured in 
terms of the number of lines of code) will often give a good indication of the internal complexity, 
and the size of the user manual the complexity of its interfaces10. 

Of course, some specific design features that add to the line count and number of functional 
interfaces may be deliberately introduced in the expectation that they will improve the safety of 
the system; an example is the use of functional diversity, with separate processing of the different 
physical parameters or diagnostics. However, such features also add to the concurrency and 
synchronisation problems, i.e. to those aspects of the design which are most difficult to validate. 

Finally, as we have seen, the inherent discreteness of behaviour of digital systems makes it 
particularly difficult to gain assurance of their reliability: in contrast to conventional mechanical 
and electrical systems, it is almost invariably impossible to extrapolate from evidence of failure-
free operation in one context in order to claim that a system will perform acceptably in another 
context. 

Before discussing the problems of novelty and complexity in a little more detail, it is worth 
observing that software differs from physical hardware and from humans in that it admits the 
possibility of a complete guarantee that there will be no failures during operation. Since software 
only fails when design faults are triggered, it follows that their absence means it cannot fail. The 
same cannot be said about random failures of physical hardware (although we may be able to 
limit the effect of these) or of human failures. This observation has led some to argue that our 
goal in designing and building safety-critical software (and VLSI) should be complete perfection. 
Why seek to measure the impact of design faults upon reliability and safety when we can 
demonstrate their absence? 

6.1 The difficulty of achieving logical perfection: the role of formal methods

Engineers from older disciplines sometimes ask why software engineers cannot simply ensure 
that their programs are completely correct. In fact there do exist formal mathematical techniques 
that allow exact correspondence between a specification for a program, and the program itself, to 
be asserted with certainty (assuming the proof techniques are themselves valid and applied 
correctly). Following such a proof, we might be tempted to claim that the software was completely 
fault-free: we would certainly have a guarantee that the software would do what the specification 
says it should do - no more, no less. 

However, the specification involved in the proof here has to be a formal object itself, which we 
know to be a complete and correct embodiment of the high-level ‘engineering requirements’ - what 
we really want the software to do. In fact, experience suggests that a high proportion of serious 
design faults arise as a result of misunderstandings of these more informal system requirements. 
Such faults become embedded in the formal specification, which is then imperfect, and thus so 
will be any program written from that specification. 

For these reasons, leave alone any doubts as to the complete validity of the proof process, it is 
very rarely possible to assert credibly that software is completely reliable and that failures are 
impossible; indeed, we believe that such claims for complete perfection cannot be sustained even 
for programs of only relatively modest complexity. 

Formal mathematical measures of complexity have been proposed by the software engineering research 

community, but with mixed success: this is still an active research area. These measures do not capture 

what we want here, namely the informal notion that complexity impedes understanding and 

comprehension. 
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s This is not to say that formal proof of this kind has no value. On the contrary, it would clearly be 
useful to know that a program is completely free of implementation faults (those that arise from 
the activities involved in turning the specification into the executable program); but it does mean 
that we are still left with the task of evaluating the impact upon safety of possible faults in the 
specification. Formal methods can even help here, for example by checking for consistency of a 
specification. 

Assuming for the moment that a formal specification can be written which accurately and 
completely captures the engineering requirements, the feasibility of proving the functionality of 
the source code depends on the style and structure adopted during design. Formal verification of 
the functionality of software designed from the outset with formal verification in mind is 
becoming feasible, even for quite large programs. The cost is very high, but not excessive 
compared with, for example, the cost of the sort of testing normally expected for safety-critical 
systems. The problem is that most real-time software has structures that are inherently difficult to 
verify, and functionality that depends on non-functional properties such as scheduling and 
memory usage. Whilst these can be modelled formally, they tend to be difficult to analyse. Thus 
although it is possible to perform full formal verification in some circumstances, in many projects 
it is impractical to do so. 

Of course, it could be argued that complete correctness, although desirable, is not necessary, 
even for safety-critical software. Some of the failure modes of even safety-critical systems will be 
ones with relatively benign consequences, and others may be masked by built-in logical 
redundancy, so that it would be sufficient to know that there were no faults present that could 
cause (suitably defined) catastrophic failures. Unfortunately, complexity can make it extremely hard 
for even these claims to be substantiated. For example, if the software performs extensive non­
critical functions, as well as safety-critical ones, the presence of the former can compromise the 
claims made about the latter. Essentially the only practicable way to make claims for perfection 
with respect to safety-critical faults is to isolate these as much as possible from other functions, 
so that they can be reasoned about independently of most other functionality, and to ensure that 
the degree of independence is sufficient for the results of this reasoning to be trustworthy. 

6.2 Novelty 

In all branches of engineering, the design process is a mixture of novelty and legacy. A new system 
will contain aspects of design novelty when compared with earlier systems, but there will also be 
aspects of the design that are carried over from earlier systems. It is from the novel aspects of a 
design that the ‘added value’ arises, but there is an accompanying risk that new design faults will 
also be introduced. Extensive re-use of tried-and-tested system components, on the other hand, 
may reduce the risk of introducing new faults, but at the price of placing constraints upon the 
designer in his provision of required system functionality. 

Maintaining a balance between the conflicting demands of system functionality and reliability 
will always be an important role for designers, but the introduction of computer-based systems 
has made the problem more acute. The relative ease with which sophisticated tasks can be 
implemented using software has trapped many projects into undertaking designs which are far 
more novel and complex than is perhaps wise. Indeed, this has all too often resulted in designs 
which are not merely unreliable in operation, but so complex and imperfectly understood 
that their development becomes unmanageable and they are abandoned before becoming 
operational. 

Of course, designers usually do not introduce novelty for its own sake. Even in those 
circumstances where the new system performs roughly the same function as its predecessors, the 
novelty is often there because of genuine additional requirements, over and above those required 
from these previous implementations. And in those cases where there is a near complete novelty 
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in the functions that the system performs, in the sense that there are no ancestor systems, even 
ones of less extensive functionality, it is often claimed that the intention is precisely to use the 
extensive functionality to increase safety. Examples of this are widespread, ranging from recent 
computer-based aircraft control systems which provide protection against inadvertent stall and 
airframe over-stress (see Appendix D), and computerised automobile braking and steering 
systems, to more general information systems in fields ranging from banking to medicine. 

Just as novelty is not always a vice, so legacy is not always a virtue. The use of existing design can 
sometimes make the job of a designer more difficult. For example, the software in the Sizewell 
PPS was made more complex partly because of the decision to have a highly configurable design 
that could be re-used in future plants. This configurability made the static analysis (and also 
understandability) of the software more difficult. Similarly, when a digital system has replaced an 
electronic or mechanical device, there may be a carry-over of spurious requirements which were 
originally intended to cope with the foibles of these earlier (non-computer) implementations: 
examples include offsets to avoid transitions through zero and the use of analogue rather than 
true digital control algorithms. 

Even in those cases where reuse of a tried-and-tested component seems eminently sensible, 
problems can arise because of subtle differences between the new application and the ones upon 
which the confidence in the component were based. For example, the failure of the first launch of 
the Ariane-5 rocket in 1996 was initiated by the software of an inertial guidance system carried 
over from Ariane-4. The software failed when the inertial platform was subjected to higher 
accelerations than it had experienced previously. Here the specification for the software changed, 
and a program that might have been correct for the earlier Ariane-4 specification was not correct 
for the later Ariane-5 one. (It is reported that a recommended programme of testing under 
conditions similar to those of Ariane-5 was vetoed on grounds of cost.) 

There are some general rules of thumb for the designers of safety-critical systems emerging from 
this. Firstly, novelty that only provides non-safety functionality should be viewed with suspicion 
since it is likely to detract from the achievement or assessment of safety functionality. Secondly, 
re-use of tried and trusted designs is desirable if it allows greater confidence to be placed in the 
design of which they will be a part, but a relentless re-use of old designs - e.g. for purely 
economic reasons - can have a deleterious impact upon safety and reliability. It is a courageous 
project manager who regards old designs as merely prototypes and authorises a complete rewrite 
to remove the undesirable element of legacy, but sometimes this proves to be the more reliable 
and cheaper solution. 

6.3 Complexity 

The principal problems of designing and validating safety-critical computer systems stem from 
their discrete nature (as we have seen earlier) and their internal (and perhaps external) complexity. 
Such ‘discrete complexity’ can also increasingly be found in the logical design embodied in VLSI 
chips, but is in the main to be found in the software: this is not a criticism of software or of 
software developers, rather it is just the consequence of a valid response to the differing costs 
and time scales involved in creating and replicating VLSI and software designs. Here we will for 
simplicity refer just to the problems of software. 

Great complexity brings with it many dangers. One of the greatest is difficulty of understanding: it 
is often the case that no single person can claim to understand a program completely, and this 
brings with it an associated uncertainty about the properties of the program - particularly its 
reliability and safety. The sheer size of a program will often give a rough idea of its complexity: the 
French SACEM train control system has about 20,000 lines of code, the Sizewell PPS has 100,000 
lines of code (plus about the same amount of configuration data), and a typical telephone switch 
can have in excess of 10m lines of code. Some feel for these numbers comes from observing that 
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s the average modern novel is about 10,000 lines long, and is written in a naturally understandable 
language - even in cases of the most unrelenting modernism. Moreover, it should be noted that 
complexity, at least as it affects understanding, does not usually increase merely linearly with size. 

Furthermore, only for the most trivial of software components is exhaustive enumeration of all 
possible behaviours feasible: we cannot simply test the software for all conditions it could ever 
meet in operation and thus guarantee that it will be failure-free in operation11. 

For these reasons, the most important issues involved - at design time and/or with respect to the 
resulting system - in achieving and demonstrating the achievement of software safety are the 
minimisation and control of complexity. 

These issues are as important for formal software specifications as they are for software 
implementations. Indeed, there is conceptually rather little difference between a software 
component (i.e. the software implementation) and its specification - whether this is a complete 
specification, or just relates to particular system requirements. Such implementations and 
specifications are both digital systems, written in a formal language, and both may contain faults. 
Ideally the specification is much shorter and simpler than the component design/implementation, 
but particularly where efforts are made to have a ‘complete’ specification, the issues of 
complexity, and indeed discreteness and novelty, are as relevant to software specifications as they 
are to software designs. In other words a formal specification is just as much a ‘system’, which can 
contain faults, and cause failures (of the design process), as is the software that is designed to 
meet this specification. 

One has to distinguish, albeit informally, between two kinds of complexity: 

■	 unavoidable (i.e. required) complexity - whether in the specification, or in the design that is 
supposed to match this specification - arising from difficulties that are inherent to the task at hand; 

■	 unwarranted complexity, arising from inadequate skills and experience, techniques and tools, 
particularly those related to achieving an appropriate system structure. 

The first of these cannot be addressed simply within the software context - rather the questions 
which have to be answered are whether the apparently required complexity is actually needed, 
and whether the requirements placed on the software cannot be reduced without excessive 
detriment to the system of which the software is but a component. For example, it is generally 
undesirable to incur extra complexity to gain benefits (e.g. economic) that are not related to an 
increase in safety if this further complexity compromises either the achievement or the 
assessment of the safety. This points up the importance of the decisions taken early in the design 
process about how much functionality can be expected of the system, and the estimates of the 
impact of this upon safety. 

As regards the second point, it is evident that the question of the adequacy of the skills and 
experience of the people involved is an issue which has to be addressed in any safety case, for 
any technology. However, there has been considerable study of system structuring as a ‘divide and 
conquer’ approach to controlling computer system (and specification) complexity. 

11 

10

Consider the hypothetical case of a system where each input consists of a vector of readings arising 

from 50 sensors, each of which has passed through an analogue-to-digital converter with output on a 

100-point scale: there are 10050 possible different inputs to the software (although not all will be 

feasible). Even if each of these cases could be tested in one second, a complete test would take some 
92 years. Such numbers are actually modest compared with those encountered in some real systems 

(and they do not allow for the fact that the timing of inputs may be as critical as their value). This 

observation suggests that it would be inappropriate to be complacent about systems that have shown 

themselves to be failure-free even in very extensive operational use: such evidence is far from sufficient 

to conclude that they will never fail. 
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Finally, it is perhaps worth mentioning here a different kind of threat that complexity can pose, 
namely to the successful completion of a software development project. There are numerous 
examples of systems whose developments have been abandoned, at great cost, because they grew 
too complex. Many of these were in the military field, but the French Cegelec Controbloc P20, 
which was to have been used for Sizewell B, is a cautionary example from the nuclear industry 
(see Appendix C). 

7 Computer system design and software engineering 

The development of software can involve many years of human effort, with the consequent 
difficulties of co-ordination and management. Each new piece of software represents a new 
solution to a new problem. It is equivalent in other engineering disciplines to the manufacturing 
prototype used to create the production line. The goal of systematising the software production 
process, and making it more dependable and cost-effective, motivated the invention of the term 
‘software engineering’ nearly thirty years ago, and much subsequent effort aimed at providing a 
body of techniques and tools that justified such a term. In safety-critical systems, the tools and 
techniques of most importance are those concerned with reducing as far as humanly possible the 
number of design faults that are introduced (post-specification) and remain in the operational 
system, and in protecting against their effects. 

Because of the difficulty, complexity, size and novelty of the typical software task, mistakes are 
bound to be made and unless these are subsequently detected and removed, they will result in 
defects in the product. In order to reduce the number of design faults introduced, the discipline of 
software engineering includes management practices, design practices and quality assurance 
techniques. Planning and using a well-defined development process are essential. However, the 
software development process is an intellectual one: it is far less predictable and controllable 
than a factory production line. The technical and administrative capabilities of the software 
developer organisation and its staff are of crucial importance. Various attempts to characterise the 
capability of organisations are currently being promoted. These are still rather immature, however, 
and lack a sufficiently firm scientific underpinning to be of much relevance to assessing the 
suitability of an organisation’s products for use in safety-critical applications. 

One characteristic of the software development process is that, in general, the earlier a fault is 
introduced, the more serious its impact is and the more expensive (in time and cost) it will be to 
fix it. Thus mistakes in the planning, requirements definition and design concept phases are of 
most concern in managing the development of software. This observation is one factor that 
motivates the use of tools that assist in requirements elicitation and in such matters as the 
determination of a system specification, its design, and prototyping. Bridging the gap between 
systems requirements and implementation - and so achieving the necessary visible traceability ­
is another factor in motivating the use of (suitably validated) tools. 

7.1 Requirements specification

The system or plant requirements specification is arrived at as a result of a process of 
requirements elicitation which involves experts from a range of disciplines. The specification is 
typically based on an analysis of the safety of the plant and involves any other relevant 
information, e.g. details of earlier accidents. The requirements specification of the computer 
system is derived from the system requirements specification and describes the functionality of 
that computer system including any protective actions and performance (in particular safety) 
criteria. 

T
h
e 

u
se

 o
f 

co
m

pu
te

rs
 i

n
 s

af
et

y-
cr

it
ic

al
 a

pp
li
ca

ti
on

s 

19 



T
h
e 

u
se

 o
f 

co
m

pu
te

rs
 i

n
 s

af
et

y-
cr

it
ic

al
 a

pp
li
ca

ti
on

s The computer system requirements specification is the basis for all future development. As such 
it should possess certain characteristics that support and encourage an efficient approach to 
design and implementation. These include ensuring that it is: 

■	 simple and easy to understand for all parties including licensers, suppliers, designers and 
users; this includes being unambiguous, well-structured and readable; it also implies that 
extraneous information (e.g. unnecessary implementation detail) is absent; 

■	 complete in the sense that: 

- all important functional properties are described, including the human computer 
interface and other operator supports, the human behaviour in situations for 
which the operators are responsible, e.g. sensor failure; 

- non-functional characteristics such as safety, reliability, dependability (and this 
may involve security issues) and timing properties are all precisely described, and 
shown to have been derived from the plant safety analysis; 

- a  precise definition of all system boundaries exists (sensors and actuators, other 
external systems, human operators); 

- physical constraints are identified for the values of all environmental variables and 
parameters; 

■	 easily checkable and analysable; it must also have properties that make it easy to use for the 
purposes of verifying the adequacy of the final computer system and this is related to the 
ease with which it can be used as a reference document and support traceability; 

■	 able to support the process of design with the necessary traceability being simply 
accomplished. 

Descriptions are also needed for each of the different states in which the system can reside 
together with the events that cause the change of state. These ideas are best supported with the 
use of a model-based specification, i.e. a specification based on a model of the system that uses 
well-understood mathematical entities such as sets and functions. In particular the requirements 
must specify actions of the software in the event of failures of sensors or other such devices. 

Model-based languages include text-based specification languages such as Z, VDM or B and 
graphical languages such as those used in the railway industry, or LOTOS which is popular in 
telecommunications applications. Such formal languages have well understood formal notations 
with a clearly defined syntax and semantics. However, in the nuclear industry model-based 
approaches to specification are not well established. Rather, dataflow-like languages tend to be 
employed in which behaviour is described in the form of an algorithm. Examples are the use of 
logic or control flow diagrams where boxes represent algorithms and the connections are the data 
flows. In model-based languages, invariant properties can be used to capture the notion of safety 
and automatic checks can then be made to ensure that the system remains in a safe state. 
Dataflow languages do not make explicit such concepts as the invariant property of a system. 
Essentially, the problem with dataflow-like languages is that there is insufficient logical 
separation between the specification and the implementation. Hence using these languages the 
validation process is more difficult. 

The degree of formality of such systems is variable. In France Merlin-Gerin (a subcontractor to 
Framatome, a main contractor and designer of protection systems) for the purposes of 
specification utilises natural language augmented with diagrams which include such devices as 
and/or gates. This has the apparent benefit of simplicity; manufacturers are required to express 
the requirements in a manner that conforms to the diagrams. The Merlin Gerin language is called 
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SAGA [Bergerand & Pilaud 1989]. In Germany Siemens also use a graphical approach using 
Teleperm XS and XP [Bock et al. 1988]. 

In the case of the Sizewell B Primary Protection System, the traditional approach was adopted 
[Boettcher & Tooley 1994]. This approach followed a progressive and systematic breakdown of 
requirements into details, and the definition of these requirements in a structured set of English 
language documents of predefined scope and contents. These documents were supplemented by 
a set of functional logic diagrams which were used to specify the system functional requirements 
in an unambiguous way. 

Since the requirements specification is developed at an initial phase of the life cycle its accuracy 
and completeness have the potential to have an enormous influence on the effectiveness and the 
efficiency of the overall development process. Accordingly there is merit in ensuring that any 
specification language is machine processable. 

Appropriate software tools can be employed for a range of purposes, e.g. to test at the earliest 
possible stage that the specification has properties such as self-consistency and certain kinds of 
completeness, or to allow the specification to be animated so that there is confidence in the 
accuracy of the specification. In addition tools can be used to support the process of design by 
transforming or otherwise manipulating the specification, an approach that tends to ensure 
traceability automatically. The validation and the selection of appropriate software tools of proven 
quality is a matter of some importance, for their selection provides a potential source of common 
mode failure for the system. Where these are successful, their use has the benefit of removing 
tasks from the validation and verification activity and allowing the software developers to devote 
their energies to other activities. 

7.2 Architecture 

In the design phase of development the implementor takes the requirements specification and 
from this derives an approach to implementation. A major challenge for the designer is the need 
to produce a (demonstrably) reliable system from (known to be) less reliable components. For 
hardware components the designer would expect to have reliability estimates (at least concerning 
operational faults). However, for both hardware and software components reliability estimates 
concerning residual design faults are problematic. 

The means by which the computer system architecture is demonstrated to be adequately safe and 
to meet the computer-based system requirements (functional and non-functional) must also be 
addressed at this stage. The methodical and systematic derivation of the design requirement 
specifications for the architecture is important for the safety demonstration. It is not a trivial task, 
and it must be addressed carefully and properly. To a large extent, the design process is an 
empirical and heuristic process based on past experience gained in previous designs. Besides, 
new designs are often driven by technological considerations (e.g. use of a new, more efficient or 
more reliable technology) or by commercial objectives (e.g. better configurability, easier 
maintenance). As a result, many architectures which are proposed, even the most recent ones, 
appear, from a safety point of view, as being somewhat arbitrary instead of derived from the 
system requirements. 

As part of the architectural design there will be a need to identify and to select technologies 
capable of realising the system in a way that ensures the system can acquire the required 
functional and non-functional requirements. The definition of the hardware and software 
structures of the computer system architecture must address the non-functional requirements 
(such as performance, reliability, maintainability, security, replaceability) even more directly than 
the functional requirements. 
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s The architectural design will involve decisions about overall system design as well as the details 
of software/hardware partitioning. Safety integrity levels12 (SILs) will typically have a significant 
role to play in these decisions. Decisions need to be made to ascertain: 

■	 what to implement in hardware and then which particular choice of hardware - the latter 
needs to be of proven quality; whether a centralised or distributed system is to be used, and 
then whether a dedicated or general purpose machine is to be employed; 

■	 what to implement in software and how; thus how should the software be partitioned so that 
undesirable interference does not occur between sub-components of the software; 

■	 what structure the safety-critical software should have (e.g. whether a safety kernel is 
appropriate); 

■	 what functions are to be allocated to pre-written software (perhaps using libraries such as 
window systems, run-time code, or code generators), what languages are to be used for new 
software and what compilers and other tools will be used to support development; 

■	 whether a single computer system is sufficient or whether a particular kind of distributed 
system will be required, with the latter having implications for communications software and 
possibly for co-ordination; 

■	 what role the human operator will have, and how the interface, training, organisational 
climate and other operator supports should be constructed so that the necessary safety 
levels are always achieved. 

These various decisions will include attention to such matters as: what part of the system has 
responsibility for detecting and handling device errors, hardware errors, programming errors, co­
ordination errors, timing errors, system errors, operator errors and so on. 

There are important guidelines that tend to underpin good design: they arise from the desire to 
control complexity and they give rise to issues such as structuring, simplicity, modularity, 
testability, information hiding, etc. Correctness with respect to the specification is another 
important property. But a further set of established principles that underlie the design of safety-
critical computer systems then include the following: 

■	 separate the safety and non-safety functions; 

■	 use redundancy of hardware, with separate channels being separated physically and 
electrically; 

■	 employ diversity of hardware; 

■	 if possible design systems and sub-systems so that they detect their own faults, defaulting to 
a safe state; in the nuclear industry this is an obligation, with the licensee being asked to 
demonstrate that mechanisms have been devised to ensure that all devices do detect their 
own faults; indeed if error correcting codes are used and if some correction occurs there is an 
obligation in the nuclear industry to have this recorded; 

12 IEC1508 defines four Safety Integrity Levels (SIL) with SIL4 being the most onerous. A level N 

SIL defines the range of the average probability of failure to perform its design function on 

demand as ≥ 10-(N+1) to < 10-N. 
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■	 complement software fault avoidance with software fault tolerance mechanisms (e.g. 
exception handling, n-version programming, recovery blocks, error correcting codes, self-
checking programs) when deficiencies in design are well understood; 

■	 design to ensure easy testability, analysability (for hazard analysis, for example, but also for 
performance), verifiability, traceability (back to requirements), for maintainability and for 
assurance; the latter implies that justification should be provided for all design decisions; 

■	 if possible identify safe states and see these as havens in the event of failures. 

Of the above, the concept of software diversity cannot yet be said to be an established principle 
within the nuclear industry. Rather, its use is still a matter of discussion and debate. For example, 
exception handling is used, n-version programming arouses controversy, and recovery blocks are 
never used. 

Ultimately designs should exhibit a number of desirable properties. At a functional level these 
include such properties as: completeness, consistency, testability, accuracy, traceability to the 
specification. At the non-functional level there is typically a need to address such matters as 
timing, performance, safety, reliability. The design of interfaces should be included in these 
considerations. 

One particularly interesting approach to some of these issues has been made by the Boeing 
Company in the design and implementation of the Boeing 777. The company took the view that if 
it did not have sight and control of the manufacturing process of a component (e.g. computer 
hardware or a compiler) then it would use replication and hardware diversity (with subsequent 
voting) as a means of guarding against error. To reduce further the possibility of common mode 
error it would: 

■	 select components that were manufactured using different technologies; 

■	 employ people from different backgrounds and trained in different ways; 

■	 continually monitor operation to check for performance and common errors. 

The best approach to architectural design remains a topic which is not fully understood. Some 
general guidelines and principles exist and have been outlined above but there is room for 
considerably more research in the area. 

In the nuclear industry, the need for designs to be validated and licensed imposes further 
requirements that are not always addressed. For example, attention needs to be paid to the 
documentation associated with the design, including traceability and validation results, since this 
forms the basis of the information for the licensor. 

7.3 Software engineering 

Managing the task of developing safety-critical systems which are explicitly software-based is 
widely recognised to be more challenging than similar developments which are based on more 
conventional technologies. Simplicity is a key principle that underpins all development. Within 
the industry the main problems stem from 

■	 the very great difficulty of proving and thereby guaranteeing safety properties, even relatively 
simple ones; 

■	 designing software paying attention to the documentation necessary for licensing and 
independent assessment. 
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s The essence of the software engineering problem in the industry is about finding disciplined and 
rigorous ways of managing this. If complexity is present this provokes adverse reaction. 
Convincing evidence of safety properties is sought, and design that supports this is viewed 
favourably. 

Generally there is no widely accepted view of the most appropriate techniques to use in the 
development of safety-critical systems or any clear view of the inadequacies of current methods. 
The relationship between current approaches and the ease with which reliability levels can be 
evaluated is in need of further clarification. 

7.3.1 Languages 

For safety-critical systems the choice of language should support the development of programs 
that are easy to read, easy to understand, have predictable behaviour and are capable of handling 
errors. In the process of language selection a number of other factors need to be taken into 
account, e.g. the programming language needs to fit comfortably with the facilities used at higher 
levels of the design process, it needs to be familiar to those producing code, and appropriate 
(validated) tools need to be available. 

In the nuclear industry in general, the emphasis in language selection is on preferring features 
that permit static checking. Thus the normal review process and static analysers are favoured. 
Conversely the emphasis is on strenuously avoiding features or properties that reduce the 
verifiability of programs and that can be verified only by appealing to mentally executing the 
program or by dynamic testing. 

Taking these observations into account then, one can identify several desirable characteristics of 
languages, for example: 

■	 a well-defined syntax and semantics; 

■	 strong typing and range checking; 

■	 block structured; 

■	 well conceived concepts and structuring mechanism as well as a rich selection of data types 
to encourage modularity, simplicity, re-use, abstraction, decomposition, information hiding 
and separate compilation; 

■	 facilities to support self test and accessing hardware; 

■	 support for the development of programs that are easy to read and understand; 

■	 mechanisms to support fault tolerance (e.g. exception handling). 

One can also identify features of languages that are considered undesirable since they tend to 
reduce clarity. These can be addressed through language selection or through coding standards 
which need to be policed by appropriate tools. Thus attention needs to be given to the use of pre-
written libraries of code (unless such code is guaranteed to have been thoroughly validated), 
undefined variables, changing priorities of operators, assumptions about default values, and 
various other unsafe constructs (e.g. unchecked conversion in Ada). Use of pointers and dynamic 
storage including recursion, real arithmetic, excessive overloading, and concurrency all need to be 
used with special care. 
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7.3.2 Programming 

Certain approaches to programming support the development of safety-critical software. These 
include defensive programming whereby the assumptions made when code is written are 
formalised and checks are made to ensure that these assumptions hold at run time. Another 
similar concept involves identifying assertions or annotations (usually about ranges of variables 
or about relationships between values of variables) which should be true at run time and 
including checks to ensure that these do hold. 

Coding standards (ideally automatically checked) often provide a framework within which coding 
occurs. These are intended to ensure such desirable qualities as simplicity and readability, and 
the absence of undesirable characteristics. Thus there may be guidance on depth of nesting of 
constructs (e.g. of subroutines within subroutines), lengths of routines, use of certain constructs, 
numbers of parameters, and the readability of identifiers. 

In the nuclear field there are two main approaches to development of software: 

■	 the traditional approach using a specification, and from this producing code in a language 
such as C or PL/M; 

■	 capturing requirements in a dataflow like specification language, validating this using 
appropriate tools, and from this automatically generating code, e.g. in C; the program 
generators are modelled on the use of various operators and other boxes for which there is 
pre-generated code. 

In the case of the Sizewell B PPS, the traditional approach was used, with the majority of code 
produced in the Intel PL/M 86 language. The implementation was restricted by a set of coding 
standards which aimed to ensure the production of good quality code (e.g. easy to understand; 
avoiding practices known to be error-prone). 

Another practice which is commonly employed in these safety-critical systems is defensive 
programming. Typically this is included in the specification of the system. Basically checks are 
made at run-time to ensure that: inputs lie within the expected range of values; devices including 
memory remain active through the use of watch dog checks; other relationships between variables 
remain true. These ongoing checks made at run time ensure that the system remains in a safe 
state, that devices continue to respond, that memory is still operational and so on. 

7.3.3 Verification and validation 

The twin topics of verification and validation are applicable throughout the life-cycle: colloquially 
verification can be described as ‘building the system right’ whereas validation is ‘building the 
right system’. An important principle is that the sooner in the life cycle an error or deficiency is 
identified the better. Verification and validation tend to be more effective when a more formal 
approach is taken to the process. In particular steps should be taken to carry out checks on the 
initial requirement specification that are as near exhaustive as possible. 

A wide range of possibilities exists ranging from reviews, inspections and walkthroughs through to 
a range of approaches to testing (that include both static and dynamic approaches) and to the 
extensive use of mathematically-based (‘formal’) methods. Verification and validation methods 
available include functional testing, structural testing, statistical testing, equivalence partitioning, 
cause effect analysis, boundary value testing, stress testing, top-down methods and bottom up 
methods, performance testing, timing. 

The validation and verification process needs to address systematically not only the functional 
capability of the system but also the non-functional requirements. In particular where software is 
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s being reused and has been developed in one environment, it should be verified and validated ­
with careful management this may benefit from automation - in each new environment. 

In these activities having some model of the plant supports the development of requirements; 
then the validation and testing of the specification is driven by this. The testing should reflect the 
full range of possible uses. It should address situations where the system has to operate in a 
range of possible degraded states. 

When a system is operational the testing process needs to continue, because of the likelihood of 
(operational) faults in the hardware, for which there is typically a regime whereby testing occurs 
every two or three months. In addition the specification will indicate the presence of other checks 
(captured in the concept of defensive programming mentioned in the previous section) which 
ensure the ongoing well-being of the plant. 

The compilation process can give rise to the inclusion of code to support some run-time 
activities. Such code needs to go through the verification and validation process. This can be 
done through special arrangements with the compiler vendor or reverse engineering techniques 
can be employed. Some manufacturers take the step of producing their own version of the run­
time system so that they can be confident that the code is well understood. 

Of course, the compiler needs to be maintained throughout the life-time of the plant; a developer 
therefore needs to strike a balance between utilising a new version of a compiler or remaining 
with a version of the compiler whose defects are known but manageable. In this context it is often 
important to avoid optimisations in the code. If the new object code is not compatible with the 
old code this can lead to difficulty and point to preferring an older version of a compiler; a sense 
of balance is required. 

The verification and validation process is usually extensive, time consuming and often regarded 
as involving a high level of drudgery. Yet it is important. Further work is needed to understand 
how to carry out this activity in a manner that reduces the effort and yet ensures the development 
of systems which attain a required and proven level of reliability. Safety-critical systems often have 
a long life, and in the nuclear industry there is an obligation to record in the safety case file tests 
and the results of tests as well as, for example, the details of proofs. The implication is that if 
maintenance occurs then considerable saving may be possible by replaying these automatically. 
All relevant information needs to be carefully structured to ensure an efficient approach to these 
activities. 

7.3.4 Maintenance 

The information that is associated with the development of reliable programs is typically 
extensive and leads to the need for careful handling of the related software systems configuration 
data. This information typically includes: 

■	 specifications and designs; 

■	 configurations and versions; 

■	 traceability information including the reasons for design decisions; 

■	 source code and object code; 

■	 test data and the results of tests; 

■	 proofs; 

■	 errors and incident information with subsequent reliability growth information to ensure 
healthy evolution. 
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Maintenance of software (the system software or indeed tools used for development) occurs for 
various reasons, e.g. to remove bugs from programs, to add new functionality. This needs to be 
done in a carefully controlled manner which involves impact analysis (may include hazard 
analysis, etc.) with modification occurring in a manner that ensures a disciplined approach to its 
control and the ongoing evolution of the software. This will involve subsequent validation and 
verification with such activities as regression testing. 

The problems of changing software are now well recognised by the nuclear industry, and 
appropriate measures are taken during the design process. These measures can include modular 
design, strict procedures for control of changes, impact analysis, and regression testing and re­
analysis to provide a demonstration of the maintenance of the safety case. 

7.4 Tools 

A wide range of tools can find use in the developing of safety-critical systems. Apart from the 
normal range of system software such as a wide variety of language processors (including systems 
to check adherence to a carefully chosen language subset), there are typically tools to support 
each stage of the systems life-cycle. Thus tools can be used to: 

■	 test properties of specifications and animate them; 

■	 support the design process; 

■	 analyse and measure aspects of code; 

■	 support the system configuration management and version control; 

■	 support the verification and validation phases, e.g. with theorem provers, and software to 
support maintenance using regression testing; 

■	 support a range of techniques such as hazard analysis, event tree analysis, and software fault 
tree analysis. 

Often tools themselves have limitations. The major static analysis tools, for example, are 
SPARK/SPADE and MALPAS plus translators. They carry out static analysis of source code and 
design documentation in the form of special annotations of the source code. These tools are 
mainly used in the UK. The analysis tools can only handle a limited subset of computer language 
constructs, so either the programming must be done in a limited subset (such as the SPARK 
subset of Ada) or tool assisted translation has to be done. Translation is time consuming and is a 
potential source of errors in the static analysis. These tools are designed to handle purely 
sequential problems and their models can only be adapted with a great deal of manual effort and 
difficulty to handle very simple concurrent processes. 

The tool SAGA, based on the language LUSTRE, is an industrial tool used in France by Merlin-
Gerin. It carries out the familiar type checking activity but also carries out the automatic code 
generation. This implies that code produced in other ways has to be fully integrated into these 
fragments, but that seems not to present any serious difficulty. 

The very use of tools in the development process means that validating or otherwise 
demonstrating the quality of a tool is necessary for high integrity systems. Such activity needs to 
address specifically the introduction of code that could lead to possible threats to security that 
would compromise safety. 

The use of tools such as high level language compilers introduces the possibility of common 
mode failure. It is often argued that with significant and widespread use, and removal of identified 
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s deficiencies, software errors are reduced to a minimum. Although approaches do exist for the 
validation of certain kinds of tools, the precise details and standards applied are often confusing 
and uncertain. 

Various approaches exist to resolving any difficulty, for example: 

■	 mistrust the compiler and embark on such procedures as reverse engineering the object code 
to produce the original source code, or verifying the authenticity of the object code; 

■	 use multiple tools (with diversity of design) and use diversity to check the agreed results, as 
done with the Ada compilers in the Boeing 777 development - the complexity of the voting 
algorithms often presents enormous difficulty; 

■	 have compilers validated (or ideally proved correct though for common languages this is 
beyond the state of the art); so at least the aim should be to ensure that compilers do not 
introduce errors into code or introduce dangerous code, e.g. unreliable run-time code. 

In all cases there should be continuous monitoring to identify and document (hopefully with the 
intention of ultimately removing) any compiler errors. When diverse compilers are used, this same 
activity allows the gathering of evidence to support or otherwise the arguments about 
independent development of the compilers. Changing tools repeatedly, e.g. to adopt new 
versions, can be enormously expensive in terms of time and other resources. There is a balance to 
be struck between the benefit these bring and the cost of becoming familiar with a new product 
and noting the differences from the old. 

7.5 Final observation 

In safety engineering generally a lack of maturity in a technology can be seen as a threat to safety, 
and as such something to avoid; if users do not fully understand the implications of use then 
there may be effects that compromise safety. Within software engineering new languages, new 
tools, new methods or approaches all fall into this category. Likewise approaches that rely on 
some deep understanding or complex software system need to be treated with caution. 

The use of certain technologies such as some branches of Artificial Intelligence, e.g. those 
employing probabilistic rule-based systems or neural networks, merits considerable caution. 
These systems can have unpredictable behaviour and make recommendations that cannot be 
readily validated. This makes it very difficult for those using or maintaining systems employing 
these technologies to fully understand their implications, and so their use for systems of high 
integrity is not recommended. 

8 The software failure process 

8.1 The inherent uncertainty in the failure process 

People who are new to the problems of software reliability often ask why probabilities need to be 
used. After all, there is a sense in which the execution of a program is completely deterministic. It 
is either fault-free, in which case it will never fail; or it does contain faults, in which case any 
circumstances that cause it to fail once will always cause it to fail. This contrasts with hardware 
components which will inevitably fail if we wait long enough, and which can fail randomly in 
circumstances in which they have previously worked perfectly. 
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Reliability engineers often call failures due to software (and other failures arising from design 
defects) systematic, to distinguish them from random hardware failures. This terminology is 
somewhat misleading, inasmuch as it seems to suggest that in the one case an approach 
involving probabilities is inevitable, but that in the other we might be able to get away with 
completely deterministic arguments. In fact this is not so, and probability-based reasoning seems 
inevitable in both cases. When we use the word systematic here it refers to the fault mechanism, i.e. 
the mechanism whereby a fault reveals itself as a failure, and not to the failure process. Thus it is 
correct to say that if a program failed once on a particular input (i.e. a particular set of input 
values and timings) it would always fail on that input until the offending fault had been 
successfully removed. It is from this rather limited determinism that the terminology arises. 

However, our interest really centres upon the failure process: what we see when the system under 
study - and in particular the software - is used in its operational environment. The software failure 
process arises from the random uncovering of faults during the execution of successive inputs. We 
cannot predict with certainty what all future input cases will be: in the case of a reactor safety 
system, for example, there would be inherent uncertainty about the physical state of the reactor 
during a future demand (although the set of all possible demands is well understood, as are the 
frequencies of their occurrence). As well as this uncertainty about which inputs will be received by 
a computer program, there is also uncertainty about its faults. We would not know which inputs, 
of the ones we had not yet executed, would produce a failure if executed (if we did know this, we 
would use the information to fix the fault). 

There is another little-understood source of uncertainty: that of our understanding of the 
boundaries of the input space. Typically, in building software systems, judgements are made 
based on engineering knowledge that certain combinations are not possible and that therefore 
the software need not be designed to handle them. Practical experience, however, shows that 
many failures categorised as software failures only arose when the software was in a state that it 
was never designed to handle. The Ariane 5 failure, mentioned earlier, provides a topical example 
of this. The failure occurred when Ariane 4 software, reused in Ariane 5, encountered during 
launch different conditions from the ones for which it was designed. Whilst nuclear systems are 
generally designed to be robust - i.e. to cope with unexpected states - there is still the potential 
for unexpected input conditions to create a failure. 

There is inevitable uncertainty in the software failure process, then, for several reasons. This 
uncertainty can only be captured by probabilistic representations of the failure process: the use of 
probability-based measures to express our confidence in the reliability of the program is therefore inevitable. The 
important point is that the language and mathematics of reliability theory are as appropriate (or 
inappropriate) for dealing with software reliability as they are for hardware and human reliabilities. 
This means that it is possible, during the construction of the safety case for a plant, to assign a 
probabilistic reliability target to a subsystem even when, in the most general case, this is subject 
to random hardware failures, human failures, and failures as a result of software or hardware 
design faults. 

8.2 Measurement of safety and reliability 

Once it is accepted that there is inherent uncertainty in the failure process, we must express our 
reliability and safety requirements probabilistically. The way in which this is done will vary 
according to the nature of the system. Thus it is natural to demand that a safety system, which 
needs to respond only rarely to demands, should have a requirement expressed as a probability 
of failure on demand; a control system on the other hand, which needs to keep a physical system 
continuously within acceptable operating bounds, would more appropriately have its requirement 
expressed in terms of a failure rate per unit time. Other measures can also be of interest. For 
example, the availability of a system - measured, say, in expected down-time per annum - may 
affect safety: an availability requirement would need to be satisfied, for example, by an air traffic 
control system (together with a reliability requirement). 
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s There is often more than one such requirement imposed upon a system, each being associated 
with a different kind of failure. In the case of Sizewell B, for example, the reliability needed 
corresponded to 10-3 probability of failure on demand (pfd) for the computer-based PPS (and 10-4 

pfd for the hard-wired secondary system). This figure of 10-3 refers only to those safety-related 
failures of the PPS to trip the reactor and maintain it in a safe post-trip state. Clearly, there is an 
additional requirement for undemanded trips to occur sufficiently infrequently: this is a safety 
issue, too, albeit a less important one than failure to trip on demand. In general, it is possible for 
there to be several such reliability and safety requirements associated with different types of 
undesirable events. 

There are severe limitations on the levels of reliability that can be measured statistically from 
direct observation of the failure behaviour of a program. In the case of a protection system, for 
example, where the reliability requirement of the software would be expressed as a probability of 
failure on demand, some 4600 failure-free demands would need to be executed to claim that this 
pfd was better than 10-3 with 99% confidence. For 99% confidence in a 10-4 pfd, 46000 failure-free 
demands would be needed, and so on. If each demand requires minutes13 of computer time (and 
time on a simulator generating the demands), it is clear that there are severe practical limitations 
to the levels that can be measured. We may be able to justify a claim of about 10-4 pfd for a 
protection system in this way - albeit at considerable expense - but levels that are orders of 
magnitude higher than this will be completely infeasible. It should be said, however, that the 
present reliability requirements for computers in safety systems in the UK nuclear industry appear 
to be more modest than those in other industries: see, for example, Appendix D on safety-critical 
control systems in civil aircraft. 

Notice also that this unforgiving statistical limitation on what we can measure is accompanied by 
some stringent practical difficulties: the simulator that generates the demands needs to do so in 
a way that accurately reflects the frequencies with which the different classes of demand will be 
seen in real-life operation, and the results of each and every test have to be evaluated absolutely 
correctly. Achieving this is by no means easy. 

These remarks do not imply that it is impossible to achieve (rather than measure beforehand or 
predict) very high levels of reliability in software. On the contrary, there is evidence in several 
industries that very high levels have been achieved as evidenced by failure-free working for 
extremely long times in operational use. For example, in the aircraft industry, software has 
operated without failure over many years in hundreds of aircraft (see Appendix D). However, 
having this confidence after the event is very different from having it at the beginning of the life of 
the system, when a decision has to be made as to whether it is acceptably safe to be operated. 

It should also be emphasised that seeing previous systems exhibit failure-free working for long 
times in operation is only relatively weak evidence for the reliability of a new system. It may 
constitute indirect evidence, since it might make us more confident in the process by which the 
systems were built, but there will typically be aspects of the new system that are unique, and we 
can expect the process itself to have changed considerably from the time when the evidence of 
failure-free working was collected on the earlier systems. 

13 The dynamic test harness for the Sizewell B primary protection system requires about five minutes on 

average for each test. 
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9 Background to nuclear plant safety 

9.1 ALARP 

The Health and Safety at Work Act (HSWA) places a duty on employers (licensees, in the nuclear 
context) to ensure that risks are reduced ‘so far as is reasonably practicable’ (SFAIRP). The 
popular terminology which expresses the application of this duty is captured by the acronym 
ALARP - i.e. the risk should be As Low As Reasonably Practicable. The interpretation of ALARP 
has been set into the context of ‘tolerability of risk’ as a clarification arising from the Sizewell B 
Public Inquiry. This found its expression in the well known ‘carrot diagram’ (see figure below), 
which has become the standard means for the exposition of the principle. 

Central to this thinking is the notion of an upper level of risk above which the operation of a plant 
would not be accepted; below this ‘intolerable level’, however, further risk reduction continues to 
be sought on an ALARP basis - i.e. until the cost becomes disproportionate to the improvement 
gained. In other words, it is not sufficient merely to ensure that risks are tolerable, when an 
additional safety margin can be provided at reasonably practicable cost. The achievement of 
ALARP clearly requires some evaluation (qualitative or quantitative) of the reduction in risk 
associated with adopting some particular measure and a clear view of the costs. 

The ALARP principle is based on the assumption that it is possible to compare marginal 
improvements in safety (marginal risk decreases) with the marginal costs of the increases in reliability. 
Nuclear risks may offer this possibility when they are quantified (i.e. in terms of event probability 
and of radiation releases), and when the failure rate improvements of the systems controlling the 
relevant events can be evaluated. This comparison of marginal variations does not in principle 
require a common measure, but simply that both risk and the marginal cost or efforts to improve 
reliability can be realistically assessed. This assessment can however be problematic, especially 
when design faults have to be taken into account. 

Another issue that can be raised in practice by the application of the ALARP principle is that one 
may have to be able confidently to evaluate these potential marginal variations before the detailed 
design and the implementation of the modifications are actually completed, or even started. 

Nevertheless this does not rule out the application of the concept where risk reduction can only 
be judged qualitatively, rather than quantitatively. For example, the simple addition of a further 
safety feature, which costs relatively little, may be obviously worthwhile - qualitative judgements 
of this nature can often be readily made. Thus the application of ALARP should not be seen as 
restricted only to those circumstances which are amenable to quantitative reliability analysis. 

9.2 Safety case and PSA 

The requirement for a nuclear plant safety case arises from several Licence Conditions. 
Importantly, a safety case must demonstrate, by one or other means, the achievement of ALARP. 
Other Licence Conditions, e.g. the establishment of Operating Rules, in the satisfaction of their 
requirements draw upon the contents of the safety case(s). Unlike other industries, such as off­
shore and railways, there is no single piece of legislation that defines the term safety case. In the 
Health and Safety Commission’s submission to the Government’s ‘Nuclear Review’14 a Safety Case 
is defined as ‘a suite of documents providing a written demonstration that risks have been 
reduced as low as reasonably practicable . . . It is intended to be a living dossier which underpins 
every safety-related decision made by the licensee.’ 

The review of the future of nuclear power in the UK’s electricity supply industry. 
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Risk cannot be 
justified save in 
extraordinary 
circumstances 

Intolerable 
risk level 

The ALARP 
region 

reduction is impracticable 
or if its cost is grossly 
disproportionate to the 
improvement gained 

reduction would exceed 
the improvement gained 

No need for detailed 
working to demonstrate 
ALARP 

Negligible risk level 

Broadly acceptable 
region 

Tolerable only if risk 

Tolerable if cost of 

The ALARP principle: levels of risk are divided into three bands. Width of wedge represents 
level of risk. 

The core of any safety case is (i) a deterministic analysis of the hazards and faults which could 
arise and cause injury, disability or loss of life from the plant either on or off the site, and (ii) a 
demonstration of the sufficiencies and adequacies of the provisions (engineering and procedural) 
for ensuring that the combined frequencies of such events will be acceptably low. Safety systems 
will feature amongst the risk reducing provisions comprised in this demonstration, which will thus 
include qualitative substantiations of compliance with appropriate safety engineering standards 
supplemented (where practicable) by probabilistic analyses of their reliabilities. Other techniques 
which may be used for structuring the safety case include fault and event tree analysis, failure 
mode and effects analysis (FMEA) and hazard and operability studies (HAZOPS). 

The safety case traditionally contains diverse arguments that support its claims. These arguments 
are sometimes called the ‘legs’ of the safety case and are based on different evidence. Just as 
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there is defence in depth in employing diversity at a system architecture level, so we see this as 
an analogous approach within the safety case itself. Another important feature of the safety case 
process is independent assessment. The objective of independent assessment is to ensure that 
more than one person or team sees the evidence so as to overcome possible conflicts of interest 
and blinkered views that may arise from a single assessment. The existence of an independent 
assessor can also motivate the assessed organisation. The actual evidence in these different 
assessments will, however, be largely identical and in that way should not be confused with the 
different legs of the safety case. 

Probabilistic Safety Analysis (PSA) is now an accepted aspect of the demonstration of safety. The 
PSA is based on the overall plant design and operation and covers all initiating events that are in 
the design bases. It is performed using best-estimate methods and data to demonstrate the 
acceptability of the plant risk. The PSA provides a comprehensive logical analysis of the plant and 
the roles played by the design for safety, the engineered safety systems and the operating 
procedures. The PSA also demonstrates that a balanced design has been achieved. This means 
that no particular class of accident of the plant makes a disproportionate contribution to the 
overall risk. The PSA provides information on the reliability, maintenance and testing 
requirements for the safety and safety-related systems. The techniques used for safety analysis are 
various with fault trees, event trees and FMEA being the dominant methods, and HAZOPS being 
used in fuel reprocessing applications. 

The PSA provides a check on the level of safety achieved in terms of plant risk and provides a 
means of claiming that the risk is lower than the intolerable region established by the NII’s Safety 
Assessment Principles. The PSA can then be used to demonstrate that risks are as low as 
reasonably practicable by investigating the effect on plant risk of modifying the plant safety 
provisions. It follows that levels of unreliability will have been ascribed to the systems that 
determine the overall plant risk, and the achievement of these levels will need to be 
demonstrated in a robust manner in the safety case. However, there are some aspects of safety 
that the Principles recognise as not readily amenable to simple quantification of failure. The role 
of human factors (at an individual, group and organisational level) in achieving safety and 
initiating accidents is hard to quantify meaningfully, especially when knowledge based activities 
are concerned. Similarly the contribution of good management practices is hard to assess, 
although research and some progress has been made in this area. Other areas identified that are 
difficult to quantify, are common mode failures and other types of failure due to design faults or 
specification omissions. The latter are particularly important from the point of view of this report, 
since they include failures due to software faults. 

9.3 Safety categorisation 

Software is a pervasive technology increasingly used in many different nuclear applications, but 
not all this software has the same criticality level with respect to safety. Thereby not all the 
software needs to be developed and assessed to the same degree of rigour. On the contrary, since 
development and V&V resources are always limited, attention in design and assessment should 
preferably be weighted to those parts of the system and to those technical issues that have the 
highest importance to safety. 

We have already discussed in Section 4 why the importance to safety of a computer-based system 
and of its software is essentially determined by the functions it is required to perform in the 
plant. This importance is therefore evaluated by a plant safety analysis with respect to the safety 
objectives and the design safety principles applicable to the plant. It is also determined by the 
consequences of the potential modes of failures of the computer system and of its software. The 
latter evaluation however is usually difficult because software failure occurrences are hard to 
predict. 
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s The distinction between the safety and safety-related classes defined in the introduction is 
essential in the nuclear industry [IAEA 1980, IEC 1993, IAEA 1994]. Safety, design and V&V 
requirements are in principle different for the two classes. In this respect, it is again interesting to 
distinguish the roles played by safety and reliability. The class to which a system belongs is solely 
determined by the importance to safety of its functions, no matter how reliable the system is. 

These categories can be, and indeed are, advantageously used to relax the reliability constraints 
that are imposed on software-based systems. Additional lines of defence - external to the 
software-based system - can and should be used to reduce the importance to safety of these 
systems so that requirements in terms of reliability, availability and security can be lessened. 

There are however serious problems when these classes are applied to determine the expected or 
achieved reliability of a software-based system or its fitness for use in a safety system. The 
difficulty comes from the impossibility of quantifying the ‘quality’ of a piece of software, of 
guaranteeing a given level of quality, and of tailoring and controlling this quality by enforcing 
design and development procedures. If categorisation is used to relax the requirements on the 
quality of the development and V&V processes for lower safety categories, the consequences of 
such relaxations on the eventual reliability of the software is in general unpredictable. 

There are standards that allow certain relaxations of this kind, for instance by requiring the use of 
more stringent test coverage metrics for more critical categories [RTCA 1992, MoD 1997]. There is 
an implication that each additional requirement upon the development and verification process 
tends to demonstrate a reduction in the number of faults of a particular class. The difficulty lies in 
determining what effect such a reduction would have had on the reliability of the software or the 
safety of the system. The exact philosophy for such an approach is not made explicit in the 
standards, but there is a logical case for requiring greater effort to detect possible faults for the 
higher criticality systems. With this interpretation the requirements of the standards are 
consistent with the principles of SFAIRP and with limiting at least some of the causes of 
uncertainty in the risk assessment. 

One is also faced with the problems raised by pieces of software which support functions of 
different criticality and which also must somehow interact, or communicate, or merely coexist on 
the same hardware. If one cannot prove that the less critical parts - whatever their behaviour, 
correct or not - cannot adversely affect the more critical ones, it is a common conservative 
practice to allocate the same highest criticality level to all of them. 

This problem, however, requires more attention and research. There is clearly a balance to be 
achieved here between the amount of design and V&V efforts that results from this conservative 
approach, and the amount that would be needed to obtain evidence that - despite possible 
interactions - the safety cannot be compromised by the behaviour of the less critical parts. 

Many computer system designs seem to ignore the possibility that the effort of the second kind 
may be reduced if the design is adequate. Separate processors coupled with one way simple 
proven protocols could be more advantageously used. It is also often forgotten that components 
can be isolated from one another not only physically but also logically. Logical firewalling can be 
spatial, e.g. through separate virtual memory spaces and protected memory segments, and/or 
temporal by enforcing appropriate time schedules protecting the more critical executions from 
overruns of the less critical ones. 

Other logical mechanisms are worthy of further investigation. An example is the ‘object model’ 
approach to software system structuring, which provides a means of defining software system 
components (‘objects’) and controlling the flows of information between them. Such controls 
could in principle make it feasible to build software systems from components of differing levels 
of criticality, and to restrict the propagation of errors between levels. Advanced architecture 
designs of this kind are under development (see [Hoyne & Driscoll 1992, Bernstein & Kim 1994] 
for avionics examples). 
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10 Safety cases for computer systems 

10.1 Introduction 

Although computer technology changes rapidly in developing increased performance and 
penetrating new applications, it is hardly a new technology anymore. It would seem a reasonable 
aim that the production of software safety cases should become much more part of the overall 
engineering approach and not something that gives rise to undue project or technical risk. 
However, this is not the case at the moment, despite the considerable experience in both the 
nuclear and non-nuclear sectors in developing what are in effect software safety cases (see 
Appendices C, D, E). The problems of software engineering in general are discussed elsewhere in 
this report. In terms of the safety case, past problems have been due to: 

■	 lack of initial explicit definition of the technical approach to be taken in justifying safety 
cases; 

■	 confusion over what is necessary to achieve dependable systems and the evidence to justify a 
system: for example, many standards contain an undifferentiated mixture of project 
development and assurance activities; 

■	 lack of a documented, agreed, accessible engineering process for computer safety cases 
(rather than for their development); 

■	 difficulty in justifying ‘reasonably practicable’ and demonstrating ALARP. 

In this report we discuss a number of areas where greater understanding or consensus is required. 
We now examine in more detail the impediments and how we might address them by improving 
present practice or encouraging specific research. 

10.2 Integration with systems engineering and engineering principles 

The safety case for a computer system cannot be divorced from the safety justification of the 
wider system of which it forms a component. The UK nuclear industry has in the past used 
conservative engineering and design principles (such as the separation of control and protection) 
which enhance safety. It is prudent to maintain these existing principles and if necessary 
reinterpret them as the technologies change. Below we examine areas where some 
reinterpretation is needed: claim limits; PRA; safety case process; diversity; independent 
assessment. 

In considering the reinterpretation of these principles we have studied in some depth the systems 
engineering approaches in different sectors (see Appendices C, D, E). 

10.2.1 Conservative requirements 

One area of conservative design is the use of claim limits. This design principle limits the 
reliability that can be claimed for a redundant system and is important as it can lead to a 
recognition of the need for additional diversity and defence in depth in design. As discussed in 
Section 8.2, there are quite stringent limits to the claims that can be made for the reliability and 
safety of software-based systems. In particular, since there are no accepted means for assuring 
that a software-based system of other than trivial complexity has ultra-high reliability, reliability 
goals for such systems must be sufficiently modest to be achievable and assessable. 
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10
The practice in the UK nuclear industry of limiting claims for non-diverse redundant systems to 

-5 pfd is particularly relevant where identical copies of software are running on redundant 
channels. In fact the claim may need to be more modest, depending upon the complexity and 
novelty of the system. The application of a more modest claim was particularly evidenced in the 
safety case of the Sizewell B nuclear reactor, where identical copies of the software were running 
in a 4-way redundant primary protection system. NII had judged in 1991 [Hunns & Wainwright 
1991] that the reliability of the software of a safety system could be considered comparable to 
less than 10-4 probability of failure on demand (pfd) provided that the software comprehensively 
met the elements of its ‘special case procedure’ (see Appendix A). An unreliability figure set at the 
<10-5 level was considered to require a level of demonstration not judged to be practicable using 
the available techniques - for example, the contribution which might be offered by the application 
of formal methods was restricted by the lack of industrial strength in such techniques at the time. 
This then set a natural claim limit of <10-4 pfd for a software-based system. 

However, it should be recognised that the ‘special case procedure’ represents a stringent set of 
requirements and that any falling away from these requirements challenges that <10-4 claim. 
Moreover, where the application is safety-critical, the demonstration must be such as to provide a 
high confidence that the required integrity has been achieved - i.e. there should be a distinct 
margin of additional demonstration to allow for inherent uncertainty. With this in mind a 
demonstration of the minimum reliability requirements for the computer-based safety and safety-
related systems is sought through an investigation of the sensitivity of the plant risk to variation 
in their reliability. This minimum requirement should, of course, be less than that which is 
targeted by the demonstration. 

The use of claim limits results in the need, in some applications, for diverse systems to meet the 
overall system requirements. However, justification for the use of one software-based system to 
back up another cannot be based upon a reliability calculation which assumes that diversity is 
sufficient to claim independence of failures. The extent of the benefit that will be gained from 
diversity - and thus the level of reliability that can be claimed for the diverse system - depends 
upon the closeness to independence that has been achieved, but this is extremely difficult to 
measure [Eckhardt & Lee 1985, Littlewood & Strigini 1993]. Indeed, a defensible rule of thumb, 
based on some experimental evidence, is to assume that the use of software diversity will achieve 
little more than a single order of magnitude increase in reliability over a non-diverse system 
[Knight & Leveson 1986]. 

In some circumstances, a very simply designed back-up system (possibly hard-wired) may be 
required, since it is only in such cases of extreme simplicity that one could have any confidence 
that the system will be free of some classes of design faults (e.g. algorithmic ones). The 
assessment of the benefit from diversity here, and thus of the overall system reliability, would 
depend upon this claim, rather than on an argument for statistical independence. 

10.2.2 Engineering principles and PRA 

The UK nuclear industry has a very mature systems engineering infrastructure. There is emphasis 
on sound safety engineering principles leading to good design that has the safety margins and 
defence in depth that is required. Probabilistic risk assessment is used to confirm that the design 
is adequate and it is used to balance or optimise the design. 

The extent to which PRA is coupled to the design process, rather than to a certification or 
validation activity, varies between industries and countries. The formal position in the French 
nuclear industry (see Appendix C) is that PRA is not a requirement nor part of the design loop, 
whereas in the UK PRA has a much stronger presence in the design loop. This is in part due to the 
use of ALARP in the UK15. The UK systems engineering approach has led to a greater emphasis in 

15 However, the formal positions may reflect different policy presentations of what, underneath, is a more 

similar approach than the policies indicate. 
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the UK on demonstrating reliability figures for software, either implicitly or explicitly. One can 
also see the difference with the US aerospace industry (see Appendix D). There the justification 
that the system has reached the 10-9 probability of failure per hour target for design errors is 
based, in the first instance, on the application of engineering principles and good process: it is 
only quantified retrospectively when data is available on the safety of a large fleet of aircraft over 
its lifetime. 

10.2.3 Safety case process 

The safety case should be developed in the context of a well-managed quality and safety 
management system and be executed by competent persons (see Section 10.3.4). The delivery of 
the safety case should be phased along with other project deliverables and integrated into the 
design process. 

Evidence to support the safety case is produced throughout the system life cycle, evolving in 
nature and extent as the project progresses. In the earlier phases there will be management 
evidence of plans and high level technical design decisions. Later, design evidence will accumulate 
concerning the features that contribute to the safety of the system (e.g. fault tolerance, fail safety). 
Evidence will also be produced during the development of the software. This will include evidence of 
the process that has been followed, such as the results of reviews and the nature, source and 
method of detection of any faults found. It also includes the results of the verification and 
validation activities including those from simulation, testing, proof and static analysis. Once the 
system becomes commissioned there will accumulate operational evidence of actual experience 
with the system and its maintainability. 

The safety case should be a clear embodiment of the evidence and arguments used, so that 
agreement can be reached on the validity of the conclusions. It is a document with a diverse 
readership, and should be amenable to review by well-informed generalists as well as by 
specialists. This implies that the safety case should be structured to allow access at different 
levels of detail and from different viewpoints, that the documentation should be hierarchical, and 
that the safety arguments should be presented at a number of levels of abstraction. 

The safety case is a living, cradle-to-grave document. Since changes to software are changes in 
design, and have potentially unlimited effect, it is particularly important that there are 
mechanisms for demonstrating the maintenance of safety through all possible changes in the 
computing system and/or the plant it is controlling and/or protecting. 

10.2.4 Independent assessment 

Independent assessment is an accepted part of the system safety case process that has been and, 
we believe, should continue to be applied to computer systems in the UK nuclear industry. 
Indeed, since the assessment of the dependability of software-based systems does not have as 
strong a scientific underpinning as some more conventional technologies, there will probably 
continue to be a large element of expert judgement involved. This element of subjectivity may 
make it more difficult for an assessor to resist any pressure that he may receive, thus increasing 
the relevance of independent assessment. 

Practices vary widely in the extent and organisation of independent assessment. One extreme 
approach seems to be that of the Sizewell B independent design assessment (IDA), where the 
purchaser of the system conducted extensive evaluations comparable to the effort put in by the 
developer. In other sectors, such as defence, one sees a model that seeks to place the 
responsibility on the vendor to provide the evidence [MoD 1996, MoD 1997] and to limit the 
extent of IDA work to perhaps a few percent of the development budget. Similarly we see different 
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s models for the interface between the independent assessors and the regulator. For example, the 
practice in the US aviation industry is for licensee staff to report directly to the regulator (see 
Appendix D). 

It is important not to confuse independent assessment with the use of multiple legs (nor with QA) 
in a safety case. The classical independent assessment will examine, but not produce, the 
different legs of the safety case. In practice, though, these notions can be mixed. The strength of 
the classical view of assessment is that someone is casting a critical and independent eye over 
what evidence is produced. The weakness is that for the assessment to be meaningful the 
assessor needs to do some confirmatory independent analyses to check the results. This analysis 
could be based on different evidence and so the situation could develop where the IDA evidence 
becomes one leg in the safety case. This in fact happened in the case of Sizewell PPS: 
independent assessment was carried out using different techniques and generating different 
evidence from that of the vendor of the system, so that one part of the IDA generated one of the 
independent legs. 

The increased trends to COTS software or PDS (See Section 10.4.1) will require a method for 
judging the worth of independent assessments already carried out. These assessments may range 
from internal independent review within an organisation to third party certification. Some of the 
assessments may be done in the context of formal regulatory approval, others may be generic 
ones commissioned by the vendor. As noted in Section 11, the present state of standards makes 
this particularly difficult to tackle. 

It is not only these industry trends that raise questions about independent assessment. The 
technology of computer systems also brings particular issues to the assessment work. For 
example, there is the issue of what mix of techniques should be used in assessment. There is 
some data, from Sizewell and from software experiments, that scrutiny by experts can be very 
effective at finding faults in code. It is also apparent that there are classes of faults that would be 
very hard to find that way, and that different review techniques seem to catch different types of 
fault [Fenney 1994]. One of the motivations for moving towards mathematical methods is that 
they provide a more rigorous notation for review [Joannou & Harauz 1990]. But again, what level 
of rigour is required? There is some evidence that whenever machine assisted proofs are 
conducted discrepancies are found between the code or hardware design and its specification 
[Rushby 1993]. To what extent are the results of these techniques dependent on an independent 
assessor and how much could be left to the vendor? To what extent is the use of an independent 
tool a substitute for an independent person? 

To sum up, changes to the nuclear industry and the continuing changes in the C&I sector, coupled 
with the particular technical problems of reviewing software meaningfully, raise questions on the 
appropriate extent and organisation of independent assessment. There is a requirement for a 
scientific underpinning that would allow industry and regulators to assess and reach consensus 
on appropriate approaches. 

10.3 Building a convincing and valid argument 

We have discussed above how there is a need to integrate the computer safety case with the 
system engineering approach used in the nuclear industry. It is also necessary to have 
understanding and valid technical arguments at the heart of the safety case. Building a convincing 
and valid argument for the safety case depends on a number of difficult aspects: 

■ the different types of convincing evidence that support the claim being made ; 

■ the combination of evidence to provide a robust safety case; 
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■	 the demonstration that sufficient evidence is available; 

■	 judging the competency of those involved. 

While these are not specifically software related problems, as we have noted above the particular 
uncertainties in our knowledge of software, together with changes to the industry and to the 
market, increase their importance. In our consultation we sought to establish the extent to which 
argumentation in support of the safety case had been adequately studied already. We came to the 
view that it would be helpful to have a more explicit approach to argumentation and a greater 
awareness of argumentation as a subject for study (the role of separate argument legs, etc.). 
These aspects are now examined in turn. 

10.3.1 Types of evidence 

In the safety-critical industries the need for justification for software-based systems has led to the 
development of a variety of different approaches and there is evidence from our studies of 
different industries that the safety cases in one industrial sector might not be acceptable in 
another. We have also found that the relative weight given to evidence of the quality of the 
software production process (compared with a direct evaluation of the reliability of the 
operational version of the software), and the stress on design for assurance, vary considerably 
(see Appendices C, D, E). However, although the different industries put different emphasis on the 
different components of evidence, it is clear from our surveys of practice and other work that the 
evidence comes from a combination of: 

■	 Design features - as in the architectural requirements for diversity, the railways’ attention to 
failure detection [CENELEC 1995] and the nuclear fail-safe systems [Keats 1983]. 

■	 Process - this can be characterised as evidence of the quality of the practices and procedures 
and of the rigour and competence with which these have been applied. It is exemplified by 
the avionics standard [RTCA 1992] - see Appendix D - and generally provides indirect 
evidence of the behaviour of the system. 

■	 Experience - real field experience of systems that are stable and operating continuously can 
provide valuable evidence of their fitness for purpose. For demand-driven systems the 
evidence is far less compelling unless they have received a significant number of demands in 
relation to their reliability requirement, which is not the case for nuclear reactor protection. 
In this case simulated experience is more valuable [Keats 1983, Fenney 1994]. 

■	 Analysis - such as animation of safety properties, formal verification that an implementation 
satisfies a specification, and worst case timing analysis, can be used to show absence of 
certain types of faults and support claims about behaviour. 

It is also clear that different types of evidence convey a different level of conviction. While we have 
found general rules hard to arrive at - there are always counter examples - we believe it is helpful 
to rank evidence as follows: 

■	 deterministic evidence is usually to be preferred to statistical (e.g. a proof that a certain class of 
failure cannot occur may carry more weight than a statistical claim that these failures occur 
at a low rate); 

■	 quantitative evidence is usually to be preferred to qualitative (e.g. numerical data on numbers 
of faults found during analysis and testing may carry more weight than claims for the quality 
of the development processes used); 
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s ■	 direct evidence is usually to be preferred to indirect (e.g. in a claim for a software reliability 
level, a statistical measure based upon operational testing may carry more weight than 
evidence of comprehensive test coverage). 

Given the important role of PRA in the UK plant safety case and licensing process, one of the 
sources of evidence for the safety case for reactor protection systems should, we believe, be a 
measurement of software reliability. One way to do this is via observation of failure-free working 
(or at least working free of safety-critical failures) of the software during extensive simulation of 
operational use. In other cases, there may be actual operational experience of the software in 
similar circumstances to those pertaining to the safety case, in which case this should be used to 
evaluate reliability. 

10.3.2 Combining evidence 

One of the key concerns for the safety case is how the evidence is combined together to form a 
valid and convincing argument. A safety case should be deliberately constructed to call upon 
many different types of evidence: i.e. the ‘legs’ that support the argument. While this is intuitively 
appealing it is surprisingly difficult to put on a more formal footing. Work is needed to understand 
and formalise the current intuitive notions of ‘independence’ of evidence and to understand the 
different contribution of elements of the evidence to the acceptability of the case. While the 
multiplicity of different arguments can inject diversity, provide protection against possible failures 
of reasoning or of assumptions, if not well-presented it can also lead to confusion and lack of 
focus in the safety case. 

Different system safety case strategies can be deployed in arguing the acceptance of a component 
of that system. Often our ignorance or uncertainty in the behaviour of a component will lead us to 
adopt a particular approach. For example, uncertainties in the ability of an operator may lead us 
to examine the worst case consequence. Difficulties in estimating the reliability of software may 
lead us to increase the dependence on a physical component such as a valve. Currently, little is 
documented about these different approaches to designing safety cases. In our view, a greater 
understanding is needed of the safety cases for heterogeneous systems that include people, 
software and other equipment. 

Bearing in mind that judgements of the suitability for purpose of software-based systems will 
inevitably continue to be based upon disparate evidence - e.g. logical evidence from formal 
analyses, evidence about aspects of the design such as fault tolerance, direct measurement of 
reliability and/or safety from statistical testing, and so on - we need general, formal ways of 
combining such evidence into an overall evaluation, preferably quantitative, of safety and 
reliability. In the shorter term, more rigorous means of qualitative reasoning are needed. 

Some techniques for increasing the accuracy of human subjective judgements, and for combining 
evidence from different judges, are discussed in the report of the ACSNI Human Factors Study 
Group [ACSNI 1991]. The potential for a more systematic use of these techniques in software 
safety cases should be addressed. 

10.3.3 Determining that sufficient evidence is available 

Having established the main sources of evidence for assuming the fitness for purpose of a 
computer-based system, we need to address how much evidence is required. For this purpose it is 
important to distinguish precisely between what is needed to achieve a specified dependability 
and what is needed to demonstrate that achievement. The former determines the dependability 
which is built into a system, and therefore is subject to ALARP in terms of ‘enough’, whereas the 
latter is associated with ‘demonstration adequacy’, which is a matter for judgement by those who 
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assess the safety case. As such (and quite separate from ALARP) there can be scope with the 
latter for negotiation between licensee and regulator. The extent of evidence required will be 
driven by a number of factors, including the approach taken to judging confidence, and the cost of 
evidence. We now discuss these separate issues in more detail. 

ALARP/SFAIRP 

One area we have already identified as problematic - perhaps because it is so difficult - is the 
consistent application of ALARP/SFAIRP to software-based systems. As we have seen in Section 
9.1 ALARP is a principle applied at a system level to negotiate the extent of further risk reduction
measures. Through a system level discussion of ALARP the reliability of the protection functions 
can be adjusted. Often, as in the case of the Sizewell B PPS, the overall risk may have a range of 
insensitivity to changes in the reliability of individual C&I components because of the redundancy 
that is built into the overall plant design. 

To apply ALARP one needs to know the costs and benefits of changes to the engineering of the 
computer system. This is an area of long standing problems within software engineering. 
However, some dependability enhancing activities (for example, randomised dynamic testing as 
part of the independent validation phase) can be costed since the extent of work required is well 
known in theory and there is now experience with turning this into practical engineering [May et 
al. 1995]. Other similar activities may have a small incremental cost (e.g. using a specific software 
engineering technique if the team involved is already expert in it) and the benefit be 
demonstrable or at least plausible. 

Many of the software engineering options are fault avoiding measures and we will need estimates 
of the impact that these have on reliability (and other qualities). For software reliability the 
problems of judging the impact are well rehearsed, but in terms of a safety case it is often orders of 
magnitude changes in mtbf or pfd that are significant. If we have a set of techniques that we feel, in 
general, can provide us with systems of modest safety criticality (e.g. SIL1 or 2 on the IEC1508 
scale) - which is not unreasonable since there is evidence that typical industrial C&I systems 
achieve SIL 1 (see figure in Section 10.4.1) - we need techniques that are two orders of magnitude 
better to gain the criticality required for some nuclear safety systems (e.g. SIL3 or 4). 

These orders of magnitude improvement offer severe challenges in both achievement and 
assessment. To move from industrial good practice, as described for example in IEC1508 SIL1 to 
two higher SIL levels will, if it is possible at all, probably require a number of special measures. 
So, for example, although the use of COTS software might be the way of the future it is not 
something that is obviously practicable: the amount of additional evidence needed to support the 
required claims may be prohibitively large. 

In practice SFAIRP is used where the risk reduction benefits of a technique are not known or hard 
to quantify. For example, many of the softer non-functional requirements, such as maintainability 
or usability, involve a large degree of subjective judgement, and it is difficult to relate them to risk 
reduction even if the qualitative benefits may be clear. 

However, SFAIRP is also an important principle in its own right in its appeal to generic good 
practice as well as risk reduction. It therefore embodies the traditional engineering approach that 
quality components are needed for safety-critical systems. This is particularly important since in 
well designed redundant systems the overall risk is usually insensitive to variations in a single 
component, so that the decision to adopt a particular measure often revolves around a 
consideration and judgement of reasonableness. Standards, particularly international standards, 
and industry good practice are key to demonstrating what is ‘practicable’. As with ALARP, 
considerations of cost are important once minimum standards have been met. 
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s Confidence 

Application of the ALARP/SFAIRP principle to software-based systems seems to raise some 
special difficulty because the confidence that can be placed in evaluations of their reliability or 
safety is usually less than it would be for more conventionally engineered products. 

There are in fact two ways in which this uncertainty applies. Firstly, there is the question of deciding 
the set (and extent) of production process elements needed to imbue a system with a given level 
of dependability; which, according to costs versus benefits, might be negotiable under ALARP. 
Secondly, there is the extent of evidence of those processes, supplemented by other demonstrations, 
considered necessary to constitute a convincing case; which (as earlier mentioned) is outside the 
ALARP arena, as currently understood. Both aspects, would benefit from further elucidation. 

A recent example of this problem arose in the assessment of the Sizewell B software-based 
Primary Protection System. An assessment of the reliability of the PPS software, based on 
evidence such as the quality of the development process, analysis of delivered product and 
dynamic testing, resulted in a consensus among the safety case assessors, including the regulator, 
that it was sufficiently reliable to satisfy its part of the safety case (10-3 pfd). Others, however, 
believed that greater confidence could have been gained by conducting operational testing based 
upon statistically representative simulated demands, allowing a direct statistical evaluation of the 
probability of failure on demand. The point here was not that such further evidence would allow a 
claim for higher reliability, but that a claim for the same level of reliability could be made with 
greater confidence. In fact, there seemed to be no objective basis (or principle) for settling 
whether or not this extra confidence, via statistical testing, was necessary. 

The above example concerned confidence in quantitative evidence, but as with the case of 
combining evidence discussed above, we also need to be able to deal in valid and defensible 
ways with confidence in qualitative evidence. An example is the situation in which confidence might 
be eroded by a series of problems each of which is, in itself, minor. 

We believe that attention should be given to formally incorporating into licensees’ and regulatory 
guidance a recognition of the importance of the level of confidence that can be placed in 
assessments of risk within the concept of an ‘adequate’ safety case. What is needed is to clarify 
and define the notion of ‘adequacy’ in this context, such that it can be used to guide and justify 
decisions as to the required extent of activities that will establish the level of confidence that can 
be placed in a risk assessment. 

Costs 

We have not addressed the costs of building and assessing safety-critical computer systems in 
any detail. Clearly, however, cost will be an important factor for any system, both direct costs of 
purchasing the system, developing the safety case, and setting the system to work, as well as 
indirect costs arising from ‘time to market’ considerations and impact on plant availability. 

Although a regulator could demand, within the constraints of ALARP, the provision of a given 
safety feature without regard to its cost, the reality is that a cheaper feature is likely to be 
volunteered in those circumstances where there is a choice. In fact, the more expensive provisions 
tempt the mounting of ALARP arguments for their avoidance and, where the arguments appear 
finely balanced, this can lead to extensive discussion. The relatively inexpensive provisions, on 
the other hand, whether finely balanced or not in terms of their benefits, tend to be adopted with 
little or no debate. Thus, in reality, the extent of safety features built into a system, and its safety 
demonstration, are affected by the costs of these features. We are talking here, of course, not 
about ‘absolute’ acceptability, which must always be comprehensively demonstrated: it is the 
margin by which this limit is exceeded which is the potentially vulnerable area. 
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There is a need to be alert to the interplay, which is often subtle, between the costs of alternative 
types of design solution and production method for a system, and those of establishing and 
maintaining its safety case. In the example of the Canadian Darlington protection systems the 
particular design solutions adopted led unfortunately to the position where changes to the 
software, after its commissioning, could not be sanctioned because establishing their benign 
impacts upon reliability was judged infeasible. This had a serious life-time cost implication. In 
general, features which contribute to the achievement of high integrity in the original production 
of a software design will also assist its modifiability. Nevertheless, some features which assist 
design may hinder verification and, in certain cases (e.g. the subsequent unavailability of a tool 
used to generate the code), may make more difficult the later implementation of changes. 

Although the actual costs of different forms of evidence are very project specific, the general form 
of cost functions can be estimated. For example, it is known how the degree of testing required 
for a reliability demonstration varies with integrity level, it is reasonably clear on what scale of 
system formal methods are applicable, and what the costs are of varying degrees of rigour. Some 
Government organisations systematically collect data from projects on such costs. There is thus 
the basis for a more systematic approach to assessing the costs of different forms of evidence and 
different safety case strategies. 

Recent experience in the UK on Sizewell B has been very expensive in terms of the cost per safety 
function given the rather modest integrity that was accepted for the system. Developments in 
industry are aiming for much lower (e.g. orders of magnitude lower) costs in the next five years 
and this may open up new applications in the nuclear industry providing the safety case issues 
have been addressed. 

10.3.4 Training and competency 

The well known difficulty of evaluating the dependability of any computer system, simply by 
examination of the product alone, means that the adjudication of fitness for purpose must take 
into account also the additional evidence of how the system was produced, and hence of the 
inherent quality injected by the production process itself. This fundamentally depends, of course, 
upon the competencies of the contributing individuals, who may well comprise a considerable 
team, especially where large systems are involved and high integrities need to be demonstrated ­
as in the case of a reactor safety system. 

Competency is an individual or team attribute - it might be described as the ability ‘to do’, with 
reference to one or more recognised standards of performance. Thus, we can be generally 
confident that an individual possessing competence in a particular activity will perform in such a 
way as to vest that activity with an expected level of quality. As an entity, competency can involve, 
of course, a complex of many factors, although the possessions of relevant training, knowledge 
and experience are clearly core aspects. 

The evidence of an individual’s formal training is normally available and, to the extent desired, 
can be factually evaluated. The content of the training can be checked for relevance and 
comprehensiveness; and, where there is a record of examination, this indicates the trainee’s 
associated up-take of knowledge and skill. Similarly, an individual’s relevant working experience 
(and demonstrated abilities) can be reviewed, especially where a systematic record of work 
achievements (as well as work areas) has been maintained. Furthermore, the periods and dates of 
the relevant experiences and training will normally be known, and hence can be judged with 
respect to the currency of the associated competencies. 

In principle, this type of objective information (at individual, team or company level) could be 
incorporated as part of a safety case. Naturally, some individuals may question the appropriateness, 
and indeed the value, of utilising their more personal information in this way; nevertheless it 
seems an unassailable principle that professional people should be able at any time to describe 
the competencies which entitle them to function in their given roles. 
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s It is clear, however, that there are other competency-related factors, less readily documentable, 
which can substantially influence the quality of performance achieved by an individual. Important 
among these are the various personality characteristics, such as self-discipline, judgement, 
communication skills, honesty, ability to work with others, responsibility, maturity, flexibility, 
creativity, etc. Similarly, organisational factors (employer expectations, work loadings, rewards and 
sanctions, etc.) exert their influence. There can be no doubt that all of these significantly affect 
how an individual performs, and the quality of the work produced. In some instances it may be 
possible to make subjective evaluations of such factors, and if it could be provided the inclusion 
of a well constructed analysis which appropriately addresses these aspects would weigh positively 
as part of an overall case supporting a high integrity claim. 

Nevertheless, the most objective demonstration of an individual’s competency must be the 
evidence of the relevant training, experience and associated achievements, albeit that even this 
information cannot be used mechanistically to predict the error-freeness (say) of that individual’s 
work. Despite the latter shortcoming, this in no way denies the important, even essential, nature 
of the support to a safety case which this evidence affords. Even though the gearing to ‘integrity 
of product’ may be more directional than specific, it is worth bearing in mind that a strong 
demonstration of competency strength is an equally strong demonstration of lack of weakness. 
Since, particularly for the high integrity applications, the latter might be regarded in many 
quarters as essential, it is this avoidance of the negative rather than the more tenuous evaluation 
of the positive which arguably constitutes the clearer criterion of acceptability. 

Notwithstanding how such information is judged, the evidence of relevant competencies appears 
to be a legitimate and desirable element within any safety case purporting to demonstrate, as 
part of its overall argument, a high quality of production process. The extent of the confidence 
engendered, however, will be maximised if the evidence is developed and presented in a thorough 
and systematic manner. 

It is accordingly recommended that an appropriate method for the formal analysis of 
competencies should be developed and used as a basic demonstration element within any safety 
case which aims to justify a high integrity claim for a computer-based safety16. 

10.4 Future focus and emerging concerns 

There are a number of issues that we judge will have increased importance in the future due to a 
combination of market conditions and technology developments. In this section we focus on 
three of these issues: the use of previously-developed software; the increased perceived and 
actual threats to computer security and the threats this might pose to safety-related systems; and 
the increasing reliance on computer-based tools. 

There are also other changes that we can perceive in the market. The nuclear industry will not be 
a significant market sector for safety-critical software and most developments will be likely in 
sectors such as railways and aerospace. Railtrack alone, for example, is committed to investing 
£2500M in signalling in the next ten years and a significant proportion of this will be on what we 
would classify as safety-critical C&I systems. The nuclear industry is likely, in the next 5-10 years, 
to be solely driven by replacement and refurbishment of existing systems with perhaps some new 
applications as costs and licensing risks are reduced. Other sectors will drive the price of safety-
critical systems down. As in industry generally, the structure of the supply market is likely to 
continue to change as is the structure of the nuclear industry itself. It may therefore be 
appropriate for the nuclear industry to liaise more closely than has traditionally been the case 
with other sectors and to seek partnerships so that appropriate technology is available to it. 

16 A starting point, but no more than that, would be the Software Engineering Institute’s Capability 

Maturity Model [Paulk et al. 1993]. 
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10.4.1 COTS software 

The term pre-existing software, or commercial off the shelf (COTS) software, is taken to mean 
software which is used in a computer-based system, but which was not produced by the 
development process under the control of those responsible for the implementation of the 
system. It may also be described as ‘pre-developed’ software or even ‘software with an uncertain 
pedigree’. The importance of COTS software is recognised internationally and it is being 
considered by the IEC Committee addressing the modernisation of IEC880. 

Typical uses of pre-existing software are: 

■	 software modules serving the same function, but previously produced in another system 
development; 

■	 the run-time software of compiled code; 

■	 components of an operating system, of a data base, graphical user interface, of a 
communications system, an input-output driver; 

■	 the basic software of a general purpose process control system that can be configured for 
different applications. 

The use of pre-existing software can be attractive because it may reduce development costs. 
Besides, if it has been properly validated, and if it has been extensively exercised in other systems 
under operating conditions that can be shown equivalent to the current one, the re-use of pre­
existing software can in principle offer considerable reliability assurance. In some organisations 
COTS software is seen as the answer to the risks and costs of software intensive projects. 

However, the key issue associated with the use of pre-existing software in safety-critical 
applications is whether and how this software can be assessed and demonstrated to meet the 
dependability requirements of the particular application. Its ability to perform the required 
functions correctly must be ensured with the same level of confidence as for the custom-
developed software, if it is not to be a weak link in the system and in the safety demonstration. 
The challenges to be met in making this demonstration is illustrated below from data captured in 
the CEC-sponsored SHIP project [Bishop & Bloomfield 1995]. This shows the mean time between 
failures (mtbf) of industrial and telecommunications software in comparison with IEC 1508 SIL1 
(the middle horizontal band). 

As can be seen from this figure most systems are below SIL2 and many systems fail to meet SIL1. 
However, not all failures will be safety related so there is an element of pessimism in these figures 
as well as an element of under-reporting (only ‘large’ failures get reported or lead to changes). 
What is shown clearly is that some industrial systems, even with many years of experience, do not 
show the reliability growth that might be expected. This is in part due to functionality being 
inevitably added as the system matures: this new functionality diminishes or cancels out the 
reliability growth from increased use. 

If hazard assessment of the potential use of pre-existing software indicates that it is not safety-
critical, and if there is sufficient evidence that it has performed correctly in similar conditions, 
approval of its use may not require access to its code or to its development process. In certain 
cases, one might consider approving the use of a restricted, well-defined set of pre-existing 
simple software functions (e.g. operating system functions) under the sole conditions that they 
are well identified, are always called upon through the same well-defined and tested interface, 
have been extensively exercised under similar or simulated operating conditions, and are well 
isolated in the sense that they cannot in any way be affected by the execution of any other 
function or part of the system. 
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COTS software data from nuclear, chemical and aerospace (control and protection) 
industries. Claimed MTBF is limited to the total usage time. Some systems exhibit growth 
rates 100 times less than the best case. 

More generally, however, if pre-existing software is used in a safety-critical application, and if it 
was not developed in accordance with the relevant standards, it may be extremely difficult or 
impossible to establish its adequacy retrospectively. If the system developer does not hold access 
rights to the pre-existing software, it may be difficult to obtain from the supplier the necessary 
documentation. Even if the documentation is available, it may be inadequate for a posteriori 
verification and validation. In such cases, the software developer has to create all the necessary 
specification and the design documentation, and to apply it to all the analysis procedures 
required by the standard for the new software. A related concern is the quality of the 
documentation of the interface between the pre-existing software modules and the custom-
developed modules. Again the issue arises of what contribution different evidence, or lack of 
evidence, makes to the overall safety argument. In our view, therefore, it should be investigated 
whether it is possible give more guidance on the nature and the amount of combined evidence 
that should be required from pre-existing software, and that could be related to its past usage, its 
development and its code. 

Another key issue is the possibility of maintaining pre-existing software over the required period 
of time. Unless a contractual guarantee of long-term support is established, adequate vendor 
support may not be obtained for a particular version. It may also be impossible to influence the 
form and the quality of further versions that may be needed. Financial and other risks may be 
involved. 
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To sum up, the current reliability of industrial software and the extensive measures that would be 
needed to increase this by several orders of magnitude appear as significant obstacles for the use 
of COTS software in safety-critical applications, especially safety systems. Issues that should be 
addressed include: 

■	 what additional assurance activities are there for COTS software and how can their need be 
assessed (e.g. when to reverse engineer, conduct black box tests); 

■	 how the data reporting and collecting regime can be assessed to ensure the 
representativeness of the data provided (e.g. defence against under reporting of failures); 

■	 how the evolution of the product and different configurations of the product can be taken 
account of in exploiting field experience data; 

■	 how to ensure that changes to the software or the application, and differences between the 
application environment and the proposed one, do not undermine the benefits of COTS 
software and can be justified; 

■	 whether the reliance of field experience as a form of evidence is too restrictive in the event of 
future changes to the software; 

■	 whether type approval by a third part organisation is credible and desirable. 

10.4.2 Security 

Over the past decade much attention has been given to computer and communications security 
mechanisms and procedures, with numerous initiatives at the national, European and 
international levels to develop standards and technical solutions. There are however broader 
problems than just security of information. In the USA a Presidential Commission on Critical 
Infrastructure has been established following concern that certain national infrastructures 
(including electrical power systems) are so vital that their incapacity or destruction would have a 
debilitating impact on the defence or economic security of the United States [DoD 1996]17. Threats 
of electronic, radio-frequency, or computer-based attacks on the information or communications 
components that control critical infrastructures (‘cyber threats’) were identified as an important 
concern. 

Such attacks may be regarded as, in effect, another cause of faulty behaviour by a system through 
(i) exploitation of a previously unrecognised design fault (i.e. deliberate activation of some pre-
existing part of the system in some way that was unanticipated by the system designers), and/or 
(ii) introduction of a new fault into a system (e.g. surreptitious insertion of so-called ‘Trojan 
Horse’ code, despite whatever precautions were taken to prevent such insertions). Evidently, if 
such attacks cannot be prevented from occurring and affecting the system, or their consequences 
are not protected against by adequate defensive measures in the system design, system failures 
might be provoked. 

The set of engineered provisions which together determine the dependability of a computer 
system (and the related risk from the parent plant) thus may include a subset of provisions which 
specifically covers security - and which features accordingly in the plant’s ‘security case’. It will be 
apparent that the form and content of a security case have much in common with (and indeed 
may overlap) those of a safety case. 

Extensive information about the Commission and its activities are available at its Web site Home Page: 

http://www.pccip.gov/ 
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s Although any specific consideration of how computer systems security is assured has been 
outside the scope of this report, it is our broad understanding that the security of computer-based 
safety systems in the UK nuclear industry, and of the computer systems supporting their design, 
relies (amongst other measures) upon traditional defensive practices, which have been adapted 
as appropriate to keep pace with, and to capitalise upon, ongoing technological developments. 
Especially bearing in mind the growing concerns about cyber-threats it is obviously important to 
be assured that current practices remain fully in tempo with evolving threats and the most up-to-
date security advances. Furthermore, given the trend of increasing dependence upon computers 
(plant modifications and upgrades, etc.), it is equally important to be assured that such security 
practices are systematically and effectively applied to identify and cover all instances of where 
computer systems are employed in safety-critical roles within the UK’s nuclear plants. 

In the face of the potential new types of ‘cyber threat’ it is important to ensure that appropriate 
design features, production practices, and operational controls are in place which will be effective 
in countering such (and similar) threats to the dependable operation of a computer system 
important to safety on a nuclear power plant. We believe that the HSE should be requested to 
confirm to NuSAC its satisfaction with the current arrangements for ensuring adequate computer 
systems security on the UK’s nuclear installations. 

10.4.3 Tools 

The use of appropriate automated tools has the potential to increase software product reliability 
and the feasibility of establishing the product’s fitness for purpose. Tools can assist in the 
elicitation of requirements, generate code from specifications, reverse engineer the code, 
automatically check for adherence to rules of construction and standards, generate proper and 
consistent documentation, support change control, etc. 

However, the production of safety-critical software may be adversely affected by the use of tools in 
several ways. For example, transformation tools may introduce faults by producing corrupted 
outputs; and verification tools may fail to reveal faults that are already present. In addition, faults 
introduced by tools may lead to common cause failures. 

The level of qualification required from a tool is not easy to determine. Essentially, it will depend 
on the safety category for which the tool is being used, and on the consequences of an error in 
the tool. Thus, there is a need for better tools which can cross-check and validate each other, for 
methods to determine the level of qualification required from a tool, and for a better definition of 
the evidence required to demonstrate that a tool provides the adequate level of dependability. 

There is evidence of the need for more and better tools to support the development of safety-
critical software. In particular, there is a shortage of tools which support the real-time aspects of 
software. Tools are also needed to enable audits to be performed more efficiently so that the 
frequency of audits can be increased. 

There is also the issue of tool support for the safety case itself. The increased trend to more 
explicit argumentation, and the large amount of documentation associated with a safety case, 
lend themselves to computer-based support. The ability to link, search, select and annotate 
documentation could add to the reviewability of the safety case and support the corporate 
memory of those organisations involved. 

10.5 Conclusions 

Although computer technology is continually evolving it is hardly a new technology anymore. It 
would seem a reasonable medium term goal that the production of software safety cases should 
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become much more part of the overall engineering approach and not something that gives rise to 
undue project or technical risk. The industry should be able to move to a regime where: 

■	 the safety case process is more repeatable and predictable; 

■	 there is a cross-industry and international consensus on the technical bases for judging 
validity of the safety case; 

■	 the costs and benefits of the different safety case options (e.g. regarding type of evidence) 
are understood; 

■	 the project risks can be identified and mitigated. 

The goal of achieving a more normative approach to computer safety cases must be seen in the 
context of the continuing changes to the nuclear industry and supply-side structure and the 
insignificance of the nuclear C&I market to the overall safety-critical market. 

The main impediments to achieving these goals have been discussed and are: 

■	 the need to reinterpret the conservative design and engineering principles for the their 
application to computer systems - in particular the use of claim limits; PRA; diversity and 
independent assessment; 

■	 the need for a convincing and valid argument to demonstrate that the software is adequately 
safe. 

We make a number of specific recommendations to address these impediments; these are 
detailed in section 12. 

11 Standards and regulatory consensus 

In this section we consider two different aspects of international collaboration: regulatory 
consensus and standards. 

11.1 Benefits of regulatory consensus 

The very significant cost to the licensee (and also the complementary regulatory effort required) of 
achieving an acceptable demonstration of fitness for purpose of Sizewell B’s computerised 
primary protection illustrates the level of resource which may be needed in order to demonstrate 
the acceptability of safety-critical software even against a relatively modest reliability target. 

Every aspect of the production process, from the initial requirements specification through to the 
final on-site commissioning, has to be subjected to an appropriate level of examination and 
analysis so that the required confidence in the system can be secured. 

As discussed earlier, the supplier market for engineering systems of this kind is now very much an 
international one. Moreover, with the substantial fall-off in the growth of the nuclear industry 
across the world, the ability of the nuclear sector to command bespoke designs is greatly 
diminished. Hence, for future new plant and for upgrades to existing plant, the available 
platforms for safety-critical applications are likely to be those which have been produced for the 
general market and which, accordingly reflect non-sector-specific production standards - such as 
the emerging IEC 1508. 
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s It is thus more than ever desirable that the national nuclear regulators attempt to establish, and 
promulgate widely, a consensus on what they would all expect to see as constituting an 
acceptable demonstration of fitness for purpose for a computer system in a nuclear power plant 
safety role (see Appendix D for a description of the extensive regulatory consensus that has been 
achieved in the civil aircraft industry). By so doing, this establishes an authoritative world-wide 
reference, which should communicate to suppliers, buyers and safety case writers alike. By so 
setting the base-line expectation, this should assist the industry to plan and organise ahead, 
confident in the knowledge of what is required when embarking upon the provision of a system of 
this kind. 

The process of achieving consensus is, itself, a formative and educative exercise, not the least 
because it provides the opportunity for each national regulator to test in debate the strength of its 
own particular approach. Experience of this activity has shown that although individual regulators 
have national constraints, outside their control, on the flexibilities which they can offer, 
nevertheless it has proved possible to reach commonly acceptable positions even in the areas of 
greatest potential difference. 

There are several good reasons for striving to achieve the widest possible international regulatory 
consensus on this topic. Most important are the likely progressive infiltration on existing nuclear 
power plants of software-based technology for up-grades and improvements, and the loss (due to 
the diminished construction programme) of the nuclear sector’s commercial base for influencing 
the C&I systems’ suppliers. Consensus would enable the testing and refining of national ideas 
within an international debate. It would bring the clarity and authority to the international nuclear 
industry (licensees and their chosen suppliers) of a multi-national, regulatory statement of the 
elements needed to achieve an acceptable safety case for a software-based system in a safety-
critical nuclear application. 

Having once achieved a round of consensus, however, this cannot be regarded as a one-off 
exercise. Inevitably, the technology as well as the associated nuclear-sector applications will 
evolve, and commensurably the consensus achieved must be routinely reviewed as an ongoing 
commitment into the future. 

11.2 Standards 

In the course of the industrial visits undertaken as part of this work we have investigated the use 
of standards. In addition we commissioned a review of some twenty-four national and 
international standards with a view to determining how they might enhance the approaches and 
practices of the UK nuclear industry when producing and assessing safety-critical, software-based 
systems requiring high integrity. Particular attention has been given to standards from the 
aviation industry, the railways industry and the UK defence industry. The review has also included 
the current draft IEC standard IEC 1508 plus a number of in-house Canadian nuclear industry 
standards that are in the public domain. 

The UK nuclear industry has traditionally supported and followed the International Atomic Energy 
Agency’s (IAEA) Nuclear Safety Standards (NUSS) guides and the International Electrotechnical 
Commission’s (IEC) range of standards. Standards, particularly those from the IEC, are important 
as they provide an authoritative basis for negotiating an agreed approach among all interested 
parties for a particular system. 

The particular IEC standards specific to the nuclear industry are IEC 880 for the software of safety-
systems (i.e. those with the highest integrity requirements), IEC 987 for the hardware and IEC 
1226 for the classification of the systems. However the current IEC standard for nuclear reactor 
software does not reflect the safety case-based approach used in the UK and the application of 
ALARP, and this has reduced its value in recent applications in the UK and also in France. Also 
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IEC 880 does not take into account current technologies for building systems nor, most 
importantly, the fact that most systems to be licensed in the future will be a heterogeneous mix of 
new software, configured software and previously-developed software. While there are attempts 
within the standards process to address these shortcomings for the nuclear industry, the 
international standards process is unlikely to produce timely results of the required technical 
quality. 

The emerging generic standard (IEC 1508) is to be welcomed as it will have a significant impact in 
raising awareness in the market place but, as with IEC 880, it does not reflect the UK safety case-
based approach. However, it is necessary to recognise certain difficulties. Because of the 
comparatively rapid changes in computer technologies and the ponderous nature of international 
standards making, standards tend to lag further behind good practice than in other branches of 
engineering. It is not feasible to expect the international standards process to produce the 
required results in a timely manner: these criticisms of the standards process and the quality of 
its products are not new. Means of closing this gap, whilst retaining the powerful normative 
pressure of standards, should be encouraged. Examples include the use of international 
‘agreement groups’ which aim to interpret and augment current standards for use in a specific 
application. 

With all standards there is generally insufficient information or guidance on the criteria for 
demonstrating compliance: such a demonstration is, of course, an important element of a safety 
case demonstration. In addition, there is a lack of direction on the production of an acceptable 
safety demonstration for a system in terms of evidence and reasoning required. Of particular 
importance in the presentation of this evidence and reasoning is its reviewability: again specific 
requirements are not available. 

Many current systems are based on generic software that is customised for a particular 
application. Current nuclear standards provide no requirements or guidance for such ‘data driven’ 
designs. From our review of standards we feel that such requirements and guidance should be 
produced for the nuclear field: and to this end we recommend that standards such as those of the 
railway and aviation industries, which treat this topic quite well, should be used as baseline 
material. 

The nuclear industry should be encouraged to use generic standards where possible and the 
current emerging generic standard (IEC 1508) could be very significant. The development of IEC 
1508 and the amendments to IEC 880 should be tracked and representations made to the 
standards bodies on possible amendments that would provide ‘hooks’ into the UK approach and 
ensure that the international standards reflect as far as possible UK needs. Guidance should be 
developed and promulgated based on best safety case practice in UK industry. This could be of 
benefit to other industrial applications not just the nuclear industry. 

As with many markets, the structure of the industrial safety and control equipment market is 
changing with alliances and amalgamations of vendors. The effect of the single market is 
encouraging reuse of applications in different sectors, and vendors are seeking certification of 
products in one application, or by one authority, to be recognised elsewhere. This mutual 
recognition is based on claims of conformance to standards. This provides both an opportunity 
for reduced cost (e.g. by spreading the cost of assessment via type approval) and a threat in that 
present standards are too weak for an assessment of conformance to be taken to mean fitness for 
purpose. 

Allied to the issue of conformance to standards is the issue of how the safety criticality of systems 
and their components is classified. Currently there are a variety of schemes and it difficult to 
understand whether a level B avionics software product is equivalent to a safety-related nuclear 
one or SIL 2 in the generic standard. The assessment of the safety criticality of tools used in the 
software engineering process has become important as developments become more dependent 
on tools. 
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s 12 Conclusions 

In this section we summarise, as brief bullet points, our conclusions from this study. Whilst much 
of this material applies principally to computer systems, readers will also encounter much that 
applies more generally to other systems. We include this material not only for completeness, but 
because we believe that many of these issues apply a fortiori to computer systems: for example, the 
dangers of unwarranted complexity. Similarly, the material here addresses the problems of safety-
critical computing quite widely, and we do not restrict ourselves to those issues that are of 
importance to the nuclear industry: our recommendations concerning these can be found in 
Section 13. 

12.1 Recent practice and how it can be improved 

12.1.1 Computer system design and software engineering

■	 Digital computer systems can bring many advantages through their (hardware) reliability and 
their potentiality to provide extensive - often novel - functionality (via software). Whilst these 
advantages are usually obvious in terms of commercial benefits, for example in control and 
information processing systems, they can also bring benefits of increased safety, not least in 
diagnostic testing and more extensive safety functions, for example in protection systems. 

■	 Problems can arise in the use of digital computer systems when their discrete nature is 
accompanied by great complexity. Complexity is a source of error and unreliability. Simplicity 
of requirements, design and implementation will facilitate successful assessment: the safest 
design is generally the simplest overall solution for a particular requirement. 

■	 Some of the most important decisions in system design concern the early allocation of 
responsibilities for different tasks to computers, humans and mechanical and electrical 
hardware. 

■	 There is a need for design for assurance (i.e. designs amenable to dependability 
demonstration), particularly at the architecture level of systems. 

■	 The design should take account of the potential for any one design error, no matter how trivial 
in cause, to result in a catastrophic defect in the product (e.g. by using design fault tolerance). 

■	 Software fault tolerance via design diversity can be an effective means of achieving increased 
reliability. However, evaluation of the achieved reliability in a particular instance is hard, 
since independence of version failures cannot be assumed. 

■	 More emphasis should be placed on structuring safety-critical systems so as to achieve a 
high degree of isolation between the implementation of the most critical requirements (e.g. 
trip function), and all others. 

■	 Real-time systems, and highly concurrent/distributed systems, are particularly difficult to 
validate and assess: many current techniques and tools are adequate only for software 
components that do not have these characteristics. More generally, immaturity in 
technologies, methods, techniques, tools and human expertise should be regarded as a 
threat to safety. 

■	 In order to reduce the number of errors introduced, planning and using a well-defined 
software development process are essential. Errors in the planning, requirements definition 
and design concept phases are of most concern in managing the software development. 
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■	 Quality Assurance (QA) will not compensate for poor design. 

■	 Current attempts to characterise the capability of software development organisations are 
too immature, and lack a sufficiently firm scientific underpinning, for their use as a predictor 
of high integrity in safety-critical applications. 

12.1.2 Safety cases

■	 There is evidence from our studies of different industries that the safety cases in one 
industrial sector in the UK might not be acceptable in another. The reasons for this need to 
be investigated and understood. One area we have already identified as problematic ­
perhaps because it is so difficult - is the consistent application of ALARP/SFAIRP to software-
based systems. Guidance should be developed on how the ALARP/SFAIRP principles can be 
applied to computer based systems. 

■	 Steps should be taken to develop and maintain international consensus to ameliorate the 
problems of licensing systems approved by other national agencies. This issue would 
become crucial if there were requirements in future to license foreign reactors. 

■	 The existing nuclear design and engineering principles should be interpreted for computer 
based systems and guidance developed for computer aspects of a safety case. This should 
capture current best practice and lessons learnt from recent UK and international 
experiences. 

■	 The current practice of requiring safety cases to have several separate, ideally independent, 
chains of argument (‘legs’) is to be welcomed. However, the current regulatory practice allows 
for many different approaches and interpretation. It would be beneficial to explore these 
further with the aim of identifying those strategies which are optimal, firstly in terms of safety 
benefit and then with regard to cost effectiveness. 

■	 The safety case should recognise that, all other things being equal, different types of 
evidence will have varying value for a given claim: 

- deterministic evidence is usually to be preferred to statistical; 

- quantitative evidence is usually to be preferred to qualitative; 

- direct evidence is usually to be preferred to indirect. 

■	 There is inevitable uncertainty in the failure process of faulty software, so probability-based 
measures must be used to express its reliability. 

■	 One of the sources of evidence for the safety case should be a measurement of software 
reliability. This could be via observation of failure-free working during testing, or from actual 
operational experience. 

■	 There are quite stringent limits to the claims that can be made for the reliability and safety of 
software-based systems. Reliability goals for such systems must be sufficiently modest to be 
achievable and assessable. 

■	 The practice in the UK nuclear industry of limiting claims for non-diverse redundant systems 
to 10-5 pfd should continue where identical copies of software are running on redundant 
channels. In fact the claim may need to be more modest, depending upon the complexity 
and novelty of the system. 

T
h
e 

u
se

 o
f 

co
m

pu
te

rs
 i

n
 s

af
et

y-
cr

it
ic

al
 a

pp
li
ca

ti
on

s 

53 



T
h
e 

u
se

 o
f 

co
m

pu
te

rs
 i

n
 s

af
et

y-
cr

it
ic

al
 a

pp
li
ca

ti
on

s ■	 In some circumstances, a very simply designed back-up system (possibly hard-wired) may be 
required, since it is only in such cases of extreme simplicity that it may be plausible to claim 
that the system will be free of some logical design faults. 

■	 The issue of confidence in the accuracy of the risk assessment (i.e. measures may have to be 
taken that increase confidence but do not necessarily increase the safety of the system) 
should also be addressed. 

■	 The safety case is a living, cradle-to-grave document. The lifetime costs of different forms of 
evidence should be evaluated and taken into account (e.g. what is most cost-effective for the 
initial assessment of a system may not be most cost-effective at later stages of its life). 

■	 Since changes to software are changes in design, and have potentially unlimited effect, it is 
particularly important that there are mechanisms for demonstrating the maintenance of plant 
safety through all possible changes in the computing system and/or its environment (the 
plant it is controlling and/or protecting). This applies in equal measure to so-called 
recalibration ‘data’, since these are just another form of software. 

■	 The safety case is a document with a diverse readership, and should be amenable to review 
by well-informed generalists as well as by specialists. This implies that the safety case should 
be structured to allow access at different levels of detail and from different viewpoints. 

■	 The safety case should be developed in the context of a well managed quality and safety 
management system and be executed by competent persons. In order to ensure the effective 
delivery of the safety case, integrated into the design process and phased along with other 
project deliverables, it is necessary for early agreement to be secured between licensee and 
regulator on the composite elements and associated acceptance criteria. 

■	 Recent experience in the UK has been very expensive in terms of the cost per safety function 
given the rather modest integrity that was accepted for the system. Developments in industry 
are aiming for much lower (e.g. orders of magnitude lower) costs in the next 5 years and their 
potential applicability to the nuclear industry should be investigated. 

■	 In building computer systems for safety-critical applications, there are typically components 
and tools in whose construction the system designers are not involved. The steps taken to 
compensate, so as to guarantee the requisite safety levels, should be explicitly stated in the 
appropriate safety case. Guidance should be developed on the use of COTS software both for 
use in the nuclear industry and to express the industry’s concerns and requirements to the 
wider industry. 

■	 In the face of the potential new types of ‘cyber threat’ it is important to ensure that 
appropriate design features, production practices, and operational controls are in place 
which will be effective in countering such (and similar) threats to the dependable operation 
of a computer system important to safety on a nuclear power plant. We believe that HSE 
should be requested to confirm to NuSAC its satisfaction with the current arrangements for 
ensuring adequate computer systems security on the UK’s nuclear installations. 

12.1.3 Safety standards

■	 Current activities aimed at achieving international regulatory consensus for safety-critical 
computing systems are welcomed and further work in this direction should be encouraged. 

■	 Standards, particularly those from the IEC, are important as they provide a basis for 
negotiating an agreed approach among all interested parties for a particular system. 
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■	 The current emerging generic standard (IEC 1508) and the amendments to IEC 880 should be 
monitored and representations made to the standards bodies to ensure that the 
international standards reflect as far as practicable UK needs. 

■	 Given the difficulty of influencing international standards, guidance should be developed 
that would address the needs of the UK nuclear industry and promulgated as an 
interpretation of IEC 1508 based on best safety case practice in UK industry. 

■	 An alternative strategy should be developed in case the development of IEC 1508 and 
additions to IEC 880 are subject to further delays and uncertainties. 

■	 Current standards are not of sufficient technical quality that they can be used as the basis for 
certification. 

■	 The third party assessment against standards provides the opportunity of reducing both 
licensing costs and the threat of inappropriate approvals. The claims made of ‘approval to 
IEC 1508’ by third party agencies should be carefully monitored and assessed for adequacy. 

■	 Current standards do not reflect the UK safety case-based approach, nor the application of ALARP. 

■	 Current standards do not adequately address the use of previously-developed software, nor 
technologies such as formal methods and statistical testing. 

■	 There is a need to understand and document the different industrial approaches to safety 
classification. 

12.2 Open topics for research or study

12.2.1 Computer system design and software engineering

■	 A better understanding is needed of the different strengths and weaknesses of humans, 
computer systems and mechanical and electrical hardware. 

■	 Further investigation is needed of system architectures which have all the advantages of 
extensive functionality (including some extra safety advantages) of software, without 
incurring insurmountable difficulties in ensuring overall system safety. 

■	 Investigation is needed of the adequacy of present techniques for concurrent and distributed 
systems, to identify areas for further research and provision of tool support. 

■	 More empirical evidence is needed of the efficacy of software engineering techniques, to 
support ‘good practice’ in the design and building of critical software-based systems, and to 
provide measures of the confidence we might place in a system that has been developed 
using such good practice. 

■	 Better mechanisms are needed for collecting and disseminating field experience of software-
based systems. 

■	 Some techniques show particular promise for achieving and/or assessing safety and 
reliability in critical software-based systems, but would benefit from further investigation. 
Examples include: 

- fault tolerance via design diversity; 

- probabilistic and statistical techniques for quantitative evaluation of safety and reliability; 

- formal methods for specification and verification of system properties. 

T
h
e 

u
se

 o
f 

co
m

pu
te

rs
 i

n
 s

af
et

y-
cr

it
ic

al
 a

pp
li
ca

ti
on

s 

55 



T
h
e 

u
se

 o
f 

co
m

pu
te

rs
 i

n
 s

af
et

y-
cr

it
ic

al
 a

pp
li
ca

ti
on

s ■	 There would be benefit in identifying and classifying in a systematic manner the 
competencies that should be exhibited by practitioners and organisations working in the area 
of safety-critical computer systems. 

■	 Greater clarity is needed of the relative contributions of testing and formal proof to the 
validation and verification process. 

■	 Better software tools are needed, as well as better means of qualifying the tools for use on 
safety-critical system development. 

■	 Better methods are needed for determining the amount of test coverage needed to meet the 
required integrity level for a system, and the degree of re-testing (and other measures) 
needed to restore confidence following the detection and correction of a fault. 

■	 Better methods are needed to identify the modes and assess the consequences of software 
failures. 

12.2.2 Safety cases

■	 We need a greater understanding of the safety cases for heterogeneous systems that include 
people, software and other equipment. 

■	 A better understanding is needed of what makes a safety case well-structured, of the properties 
it should exhibit and of the checks that should be made to ensure that these desirable 
properties are present. Having identified these, there then arises the question of what methods 
and techniques can best contribute to presenting and reasoning about the safety case. 

■	 A better understanding is needed of what can be claimed from multiple diverse arguments 
for the reliability of software-based systems: this needs to address the number of arguments 
required, the strength of the individual arguments, issues of dependence between 
arguments, and issues of how to combine disparate evidence. 

■	 There should be an investigation of means of making demonstrably conservative claims for 
software, similar to those that can be made in certain other branches of engineering. 

■	 More work is needed to understand what measures would be needed to make software 
acceptable beyond the present claim limit of 10-4 pfd. 

■	 More work is needed to understand the extent and nature of diversity and to address the 
difficult problem of the degree of independence achieved. 

■	 A better understanding is required of the contribution of commercial off-the-shelf software to 
a safety case. 

13 Recommendations 

The Study Group believes that computer systems can bring many advantages in safety and cost 
reduction to the nuclear industry. There is empirical evidence, after the fact, that their use in 
safety-critical operations has been successful (although complacency is inappropriate since the 
amount of operational evidence so obtained is far from sufficient to justify a conclusion that any 
of these systems will never fail). On the other hand, it has often proved difficult and expensive to 
demonstrate at the time of licensing that software-based systems would be sufficiently 
dependable in operation, so many of the recommendations that follow concern improvements in 
ways of establishing safety claims. 
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Regulatory practice 

1	 There is evidence from our studies of several different industries that the safety cases in one 
industrial sector, even just within the UK, might not be acceptable in another. The reasons for 
this need to be investigated and understood. One area we have already identified as 
problematic - perhaps because it is so difficult - is the application of ALARP/SFAIRP to 
software-based systems. 

2	 There are considerable benefits to be gained from international regulatory consensus 
concerning the demonstration of fitness for purpose of future safety-critical computer 
systems. Current activities to this end are welcomed and should continue to be supported. 

3	 There should be a review of the current organisational and technical approach to 
independent assessment of computer-based systems in the UK nuclear industry, taking 
account of the experience of different practices in other industries, e.g. the DER (Designated 
Engineering Representative) system in operation in the US aircraft industry. 

Safety cases 

4	 Current guidance, based upon appropriate empirical and theoretical support, should be 
further developed for the structure and content of safety cases for software-based systems. 
This guidance should address the somewhat different problems of new applications software, 
previously-developed software (PDS), and commercial off-the-shelf (COTS) software. 

5	 The design of the system and its safety case should be robust to such changes that are 
proven to be necessary throughout the anticipated life of the system. 

6	 The reliability levels that can be demonstrated for software are quite modest, and safety 
cases should not require levels of software reliability beyond these. 

7	 Although the use of software design diversity may have positive benefits, claims for 
statistical independence from diversity should be treated with great caution. In particular, 
claims for extremely high reliability levels based upon assertions of complete independence 
of failures in two or more diverse software systems are not believable (with the attendant 
implications for assessing systems in which one software system backs up another). More 
work is needed to understand the extent and nature of diversity and to address the difficult 
problem of evaluating the degree of dependence present in particular cases. 

8	 Confidence in assessments of software-based systems is usually less than for more 
conventionally engineered systems. We believe that attention should be given to 
incorporating formally in licensees’ and regulatory guidance a recognition of the importance 
of the level of confidence that can be placed in assessments of risk within the concept of an 
‘adequate’ safety case. What is needed is to clarify and define the notion of ‘adequacy’, such 
that it can be used to guide and justify decisions as to the required extent of activities that 
will establish the level of confidence that can be placed in a risk assessment. 

9	 An appropriate method for the formal analysis of competencies should be developed and 
used as a basic demonstration element within any safety case which aims to justify a high 
integrity claim for a computer-based safety. 

10	 In the face of the potential new types of ‘cyber threat’ it is important to ensure that 
appropriate design features, production practices, and operational controls are in place 
which will be effective in countering such (and similar) threats to the dependable operation 
of a computer system important to safety on a nuclear power plant. 
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s Computer system design and software engineering 

11	 Attention should be given to better practices for the elicitation and specification of computer 
system requirements, since it is errors made at this early stage in system life that generally 
have the most serious impact. 

12	 Consideration should be given to the problems of safety demonstration from the very earliest 
stages of system design. Further work is needed on the development of designs for software-
based systems (in particular those incorporating COTS software) that make them amenable 
to safety demonstration. Practical methods for documenting requirements, design and 
implementation, which allow safety requirements to be traced and verified through these 
stages, need to receive more attention. 

13	 Careful consideration should be given to the allocation of responsibilities between 
computers, humans and (conventionally engineered) hardware, and to interactions between 
these (particularly the impact of the introduction of computers upon operators). This 
allocation should be justified in the safety case. 

14	 One important guiding principle in the design of computer systems should be the avoidance 
of unnecessary complexity, whether this comes from the provision of unnecessary 
functionality or from the use of inappropriate structuring in the design. The safety case 
should contain rigorous justification of the functionality of the system and of its structure. 
Much more emphasis should be placed on structuring systems so as to achieve a high degree 
of isolation between the implementation of the most critical requirements, and all others. 

15	 Some techniques show particular promise for achieving and/or assessing safety and 
reliability in critical software-based systems, but would benefit from further investigation. 
Examples include: 

- fault tolerance via design diversity; 

- probabilistic and statistical techniques for quantitative evaluation of safety and

reliability;


- formal methods for specification and verification of system properties. 

16	 Better tools, together with methods for qualifying them, should be developed to support the 
development and assurance of high integrity real-time software, including the difficult 
problems associated with concurrency and distributed systems. 

Standards 

17	 Present standards are not of a form and content that would allow a positive assessment of 
conformance on its own to confirm fitness for purpose. Whilst standards are important, 
current ones do not reflect the UK safety case approach and ALARP, nor do they take 
adequate account of existing technologies and industry trends such as increased use of COTS 
software. The emerging generic standard, IEC 1508, and the standards for nuclear computer-
based systems being developed by TC45A, should be reviewed and efforts made to negotiate 
amendments which would take account of these deficiencies. The UK nuclear industry and its 
regulator are urged to maintain active participation generally in the ongoing developments of 
standards relating to computer-based safety-critical systems. 
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Research 

18	 The recent experience of the different organisations involved in those aspects of the Sizewell 
B licensing that concerned the computerised primary protection system has valuable lessons 
for similar exercises in the future - both in the nuclear industry and in other industries. This 
experience should be recorded in as much detail as feasible whilst the collective memory 
remains fresh, perhaps as a project within the Nuclear Safety Research programme. 

19	 In our report we have identified several areas where technical progress is needed to maintain 
and improve our ability to design, build and evaluate safety-critical software-based systems. 
We are encouraged to see that many of the issues of most relevance to the UK nuclear 
industry are already being addressed as part of the UK nuclear research programme, and via 
links to programmes elsewhere. We recommend that NuSAC’s Sub-Committee on Research 
use our report as a template for its on-going review of this part of the research programme. 
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Appendix A: The UK regulatory approach 

A1 Introduction 

In general, health and safety at work in the United Kingdom is governed by the Health and Safety 
At Work etc. Act 1974 [HSWA 1974]. The particular type of regulatory regime which is applied to 
premises varies with the natures of the business and the risks which are involved. Many premises 
where work with radioactive substances or generators of ionising radiation is undertaken are 
regulated through the HSW Act and the Ionising Radiation Regulations [IRR 1985]. However 
where inventories of nuclear matter are large, the associated operations are subject to a licensing 
regime. This licensing regime is enacted in the UK through the Nuclear Installations Act 1965 (as 
amended) [NIA 1965] - a statutory provision of the HSW Act and subsidiary to it. The NI Act 
stipulates that, with certain exceptions, a licence, granted by the Health and Safety Executive 
(HSE), is required before a site may be used for the purpose of installing or operating any nuclear 
facility such as a nuclear power station, a nuclear reprocessing facility or a nuclear fuel 
manufacturing and isotope production facility. An important section in the NI Act empowers the 
Executive to attach at any time to the nuclear site licence conditions which they deem to be in 
the interests of safety. These conditions apply to the design, siting, operation, maintenance and 
decommissioning of any plant or other installation on, or to be installed on the site. 

The Nuclear Installations Inspectorate (NII), part of HSE’s Nuclear Safety Directorate, has the 
responsibility for granting nuclear site licences and attaching the conditions. Licence Conditions 
provide the NII with the powers to require the licensee to produce documents and have them 
approved by NII; to require consent from NII before performing certain operations, or starting 
nominated phases of new plant construction; and to enable NII to direct the licensee to carry out 
specified actions. 

This legislation, however, places the primary responsibility for safety with the licensee. The 
licensee must ensure that any plant or activity is safe so far as is reasonably practicable (SFAIRP) - i.e. 
where the risk from the plant has been reduced to the point where the cost of further reduction 
becomes grossly disproportional to the safety benefit achieved. This is done by producing a safety 
case which demonstrates firstly that the risks involved are tolerable, i.e. below specified limits. It 
must then demonstrate that all that is reasonably practicable has been done to reduce the risks. 
The regulator’s role, in respect of these licensed sites, is to ensure compliance with the site 
licence and any other relevant statutes, and to review the safety case and assess its acceptability. 

A2 The assessment of a safety case 

The design of a nuclear plant is based on design guides, codes of practice, sound safety 
engineering principles and, where necessary, supporting research and development activities. NII’s 
assessment of the associated safety case is undertaken with reference to a set of Safety 
Assessment Principles (SAPs) [HSE 1992a]. These Principles do not have a statutory status in the 
legal sense but NII nevertheless uses them as its yardstick for judging the acceptability of the 
safety case for a nuclear plant, and for consenting to that plant’s operation (submissions which 
differ from these principles will be considered, however, if supported by a suitable justification). 
In certain cases these principles require further interpretation, therefore Assessment Guides may 
support the regulator in assessing the degree of compliance with the SAPs. 

The safety case will need to contain an analysis of the safety of the nuclear plant based on the 
above design. This usually starts with a list of all the known possible initiating faults due to 
internal and external hazards, and personnel errors, and is followed by details of the safety 
systems incorporated to protect against those initiating faults whose expected frequency is 
greater than an agreed figure: these are known as design basis initiating faults. In the case of the 
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s NII’s SAPs, this figure is set at 10-5 per annum. Fault sequences beyond the design basis also need 
to be analysed to determine their effects on the plant. This latter analysis should then be used to 
formulate accident management strategies. 

A3 Probabilistic Safety Analysis 

Additionally, NII seeks a Probabilistic Safety Analysis (PSA), based on the overall plant design and 
system of operation, and covering all initiating faults. The PSA is a methodical accident analysis 
which produces a numerical estimate of the risk from the plant. It provides a comprehensive, 
systematic and logical analysis of the potential for things to go wrong on the plant, which in turn 
determines (or confirms) the roles to be played by the safety provisions. It also provides the 
means of showing that a balanced design has been achieved such that no particular class of 
accident or feature of the plant makes a disproportional contribution to the overall risk. As well, 
the PSA provides information on the maintenance and testing requirements for the safety and 
safety-related systems. Finally, in addition to demonstrating that the risk is lower than the 
intolerable region (see paragraph 4 of the SAPs), the PSA should also be used, where applicable, 
to justify that risks are as low as reasonably practicable (ALARP), e.g. by investigating the effect on 
plant risk of modifying the plant safety provisions. 

A4 Sensitivity analysis 

Despite the difficulty of quantifying the reliability achieved by the computer-based, safety 
provisions, it is nevertheless possible to make helpful use of the PSA via the facility of sensitivity 
analysis - i.e. the demonstration of the minimum reliability requirements (in terms of tolerable 
plant risk goals) for the computer-based, safety and safety-related systems through an 
investigation of the sensitivity of the plant risk to variations in their reliability. 

A5 Categorisation 

Whilst the above probabilistic analysis plays a significant role in the safety case, the SAPs require 
a demonstration that the plant is based on sound engineering principles. These deterministic 
principles, which lay down proven good practice developed over time, are delineated in the SAPs 
and, in fact, form the major part of them. One particular principle, P69 (see paragraphs 116 and 
131), has relevance in the context of computer-based systems. This principle requires that all 
structures, systems and components should be allocated a safety category which takes account of 
the consequence of their potential failure and of the failure frequency requirements placed on 
them in the safety analysis. Hence all structures, systems and components should be designed, 
constructed, inspected and tested to the highest standards commensurate with their safety 
categorisation. This safety categorisation is determined on the following basis: 

Category 1 - any structure, system or component which forms a principal means of ensuring 
nuclear safety; 

Category 2 - any structure, system or component which makes a significant contribution to 
nuclear safety; 

Category 3 - any other structure, system or component. 

For a safety category 1 system, conservative design and construction standards are sought 
together with a strict interpretation of the SAPs in line with the ALARP requirement. This means 
that the desirable high level of confidence in its claimed dependability can be assured. Most 
safety systems fall into this category although there can be circumstances (e.g. a secondary safety 
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system, say, with a very modest reliability requirement) where a lesser safety category allocation, 
and the corresponding less demanding standards of engineering, will be justified. Equally where a 
safety-related component - for example a reactor pressure vessel - is in an application for which 
the provision of a safety system is not practicable, this single system, as the principal means of 
ensuring nuclear safety, may then need to adopt the safety category 1 mantle. 

A6 The required safety demonstration for computer-based systems 

As stated above, the SAPs require that all computer-based systems in a nuclear installation be 
allocated a safety categorisation in accordance with the principles set down in the SAPs. The 
design, construction and testing of these systems should then be in accordance with the assigned 
category. 

However, in order to demonstrate that risks have been reduced so far as is reasonably practicable 
(SFAIRP), as a rule the safety cases of all computer-based systems associated with a nuclear 
installation should contain evidence that generally accepted good software engineering practice 
have been followed. Hence, commensurate with the allocated safety categorisation, all reasonably 
practicable measures and techniques should have been employed such as will (a) militate against 
the introduction of errors, (b) aid in their detection and correction, and (c) ensure that any 
remaining errors are tolerated. Since the effect of such measures on the overall plant risk cannot 
be evaluated at present in a quantitative way, the criteria for determining whether a measure is 
reasonably practicable (the ALARP principle) has to be based on accepted good practice and 
engineering judgement. More generally, the rigor sought in the safety case for any system in a 
nuclear installation (computer-based or otherwise) will depend on the influence of the reliability 
of that system on the overall plant risk; the greater the influence, the more robust must be the 
safety case demonstration. This, of course, will be reflected in the allocated safety categorisation. 
For the purposes of the next discussion it will be assumed that category 1 equates to safety 
systems and category 2 equates to safety-related systems since, as was pointed out above, this is 
generally the case. 

A7 Computer-based safety systems 

Safety systems rate the highest level of importance since they are designed to detect potentially 
dangerous fault sequences, and implement appropriate safety actions, that is, they serve to 
terminate a fault sequence or mitigate its consequence. It follows that the safety case of any 
computer-based, safety system designated as safety category 1 will need to withstand a most 
critical examination (comparable for example with that of the Sizewell B computer-based 
protection system). Such an examination should ensure that the safety case provides an adequate 
demonstration, through the provision of sufficient18 evidence and associated reasoning, that: 

the safety system has achieved the level of reliability required to ensure that plant risk is in 
the tolerable region; 

and the probability of the safety system’s failure has been reduced so far as is reasonably 
practicable in relation to overall plant risk. 

Principle P83 in NII’s SAPs explicitly calls for the use of ‘conservative design and construction 

standards’ for safety category 1 systems. The general theme of demonstrable safety margin recurs 

throughout the engineering SAPs. Hence ‘sufficient’ in this context may be interpreted to mean the 

amount and quality of evidence and associated reasoning as will provide a high degree of confidence in 

the achieved reliability.  This may be regarded as applicable to safety systems generally. 
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s A robust safety case capable of withstanding this examination thus requires the application of 
basic safety principles, such as simplicity, redundancy, segregation, diversity and fail-safe design 
(see Principles 77 to 81 of the NII’s SAPs). However, the particular demonstration, by predictive 
analysis, that the system meets its specified reliability target is not achievable by today’s 
techniques in the case of a software-based design: nor, so far, is any dynamic demonstration of 
numerical reliability sufficiently proven to be definitive for such quantification. This, then, throws 
the weight of the safety demonstration onto the qualitative deterministic approach, making the 
case more difficult to establish for systems requiring particularly high integrity. 

NII’s approach in such circumstances is to involve the SAPs’ Special Case Procedure as the basis 
of assessment (see paragraph 240). This Procedure is used where a particular plant item, 
important to safety, has characteristics inherent to its technology/manufacture which render it 
unamenable to the traditional means of integrity justification. In such cases it becomes necessary 
for the licensee to establish an alternative, and usually a multi-legged, basis of demonstration. 
The Special Case Procedure, developed in NII’s SAPs for software-based safety systems (see 
Principle P179), itemises the general aspects which a multi-legged demonstration would be 
expected to cover. It is clearly for the licensees, aware of the thrust of NII’s assessment, to 
propose and acceptably justify their chosen basis of demonstration. 

For its part, within the elements of this Procedure, NII would typically seek acceptable 
demonstrations with respect to: 

■	 the application of accepted international standards - e.g. IEC 880 [IEC 1986] for software; 

■	 the implementation of an appropriate QA programme and plan; 

■	 the correctness of the requirements specification, and of its subsequent refinement into the 
detailed design requirements - here the traceability of design features to requirements is 
considered important and any functionality added during the refinement phase should be 
reflected in the requirements specification; 

■	 the use of independent verification and validation with a clear demonstration of the 
traceability of the analyses, tests and inspections to the requirements specification; 

■	 a comprehensive commissioning test programme for the system as an integrated part of the 
overall plant; 

■	 the establishment of a sound arrangement for the implementation of modifications to the 
software and hardware; 

■	 the carrying out of a comprehensive independent assessment activity, applied to the final 
product and devised to mount a level of examination sufficient to show confidently whether 
or not the required integrity has been delivered (this activity would be expected to involve 
manual and tool-assisted analysis techniques, review of test coverage and change process 
adequacy, confirmation of the adequacy of tools - especially those ‘in-line’, examination of 
the supporting documentation and a programme of dynamic testing of the integrated 
hardware/software system using signal trajectories selected from the operational input 
space). 

This set of requirements, quite obviously, represents a heavy burden in terms of safety 
demonstration. 
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A8 Computer-based safety-related systems 

Where the computer systems are not the principle means of ensuring nuclear safety, e.g. safety 
category 2 control, surveillance and general data processing systems, the safety demonstration 
requirements may be less stringent. In each case the contribution to the overall risk needs to be 
assessed and a safety demonstration commensurate with that risk developed. Such systems 
should be designed, constructed, inspected and tested to the appropriate national or 
international standards, commensurate with their particular roles and functions. The use of good 
quality process control equipment for the majority of duties in this category, where the reliability 
requirements are very modest, has long been accepted by the UK regulators. However, it has to be 
recognised that safety-related systems require a higher reliability, albeit not as high as that of the 
safety system, for certain duties associated with accident management, e.g. the monitoring of a 
reactor protection system’s status or the supporting of the equipment required to achieve and 
monitor safe shutdown. Such reliability cannot be assumed for general commercial computer-
based equipment, hence it may even be necessary to use hardwired controls and indications to 
achieve the overall plant risk goals. The adequacy of the total accident management provisions 
has also to be demonstrated in terms of the amount of monitoring provided, and the ability of the 
computer-based, safety-related system to handle the data rates that might be generated under 
accident conditions. 

An important deterministic principle in any safety case is the demonstration of the separation, 
both functionally and physically, between protection and control since this reduces the potential 
for common mode failures. This division is sought since it also enables the safety categorisation 
of the control aspect to be demoted thus enabling greater resources to be concentrated on the 
safety demonstration of the safety-category-1, safety systems. 

As part of the safety demonstration, the SAPs call for an analysis of the foreseeable ways in which, 
under fault conditions (including multiple faults), the control systems could place demands on 
the safety systems. Such failure modes might be assessed, for example, by notionally failing the 
outputs of the plant in such ways as to represent the worst case scenarios (including unstable 
behaviour), together with the use of a conservative frequency of occurrence. The safety case would 
then need to show that the associated safety system is designed to protect against these faults 
and that the frequency of occurrence of the control system failures, causing protection demands, 
is not excessive. Additionally, the safety demonstration should contain an analysis of the amount 
of failed safety-related control and instrumentation equipment that can be tolerated before the 
plant must be shut down. 

Human operator advisory systems and safety support systems again need determinations of their 
contributions to plant risk, and appropriate levels of safety demonstration. Their roles in the 
management of accidents require systematic analysis, and demonstration of adequacy since, 
through incorrect advice, they could increase the severity of the consequences. Obviously, 
properly designed and validated advisory systems should reduce the frequency of demands on the 
safety systems. However, it is considered important that the means be identified and provided by 
which such advice may be checked before the operator takes action on it since erroneous operator 
action might result in the defeating of correct protective action, or the placing of unusual or more 
frequent demands on the safety system. 

A9 Concluding comments 

The foregoing represents a general outline of NII’s approach with respect to judging the 
acceptabilities of computer-based systems proposed for main-line or indirect safety roles on 
nuclear power plants. It should be emphasised that the nuclear regulatory regime in the UK is 
essentially non-prescriptive - i.e. the safety performance requirements are clear but there is 
flexibility for a licensee to propose the means, in each particular instance, of meeting them. Such 
means, however, must be acceptably justified, with due reference to the legally established 
principle of ‘reasonable practicability’. 
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s Appendix B: Standards 

A review of relevant standards was conducted by the HSE for the Study Group, and informed its 
subsequent discussions. The following is a list of the standards that were considered. 

B1 National and international standards 

Aerospace 

RTCA/DO-178B Software considerations for Airborne Systems and Equipment Certification, 
Requirements and Technical Concepts for Aeronautics, 
Washington, DC, 1992. 

PSS-05 ESA Software Engineering Standard, European Space Agency, 1994, 
ISBN 0-13-106568-82 

Automotive 

MISRA Development Guidelines for Vehicle Based Software, the Motor Industry 
Software Reliability Association, November 1994, ISBN 0 
9524156 07. 

Diagnostics and Integrated Vehicle Systems, MISRA Report 1, February 
1995. 

Integrity, MISRA Report 2, February 1995. 

Noise, EMC and Real-Time, MISRA Report 3, February 1995. 

Software in Control Systems, MISRA Report 4, February 1995. 

Software metrics, MISRA Report 5, February 1995. 

Verification and Validation, MISRA Report 6, February 1995. 

Subcontracting of Automotive Software, MISRA Report 7, February 
1995. 

Human Factors in Software Development, MISRA Report 8, February 
1995 

Defence19 

Def Stan 00-55 The Procurement of Safety-critical Software in Defence Equipment, Parts 
1 & 2, Ministry of Defence, London, 1993. 

Def Stan 00-56 Hazard Analysis and Safety Classification of the Computer and 
Programmable Electronic System Elements of Defence Equipment, 
Ministry of Defence, London, 1993. 

19 Later versions of the following standards are now available: see [MoD 1996, MoD 1997]. 
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Medical 

IEC 601-1-4 Medical Electronic Equipment, Part 1: General requirements for Safety. 4 
Collateral standard: Safety requirements for Programmable Electronic 
Medical Equipment, International Electrotechnical Commission, 
SC62(sec)73, July 1994 (Secretariat draft). 

Nuclear 

IEC 880 Software for Computers in the Safety Systems of Nuclear Power Stations, 
International Electrotechnical Commission, 1986 (Basic nuclear 
sector standard). 

IEC 880 Supp 1 Software for Computers Important to Safety for Nuclear Power Plants as a 
First Supplement to IEC 880, International Electrotechnical 
Commission, IEC TC45A(Secretariat)189, July 1994 (Secretariat 
draft). 

IEC 987 Programmed Digital Computers Important to Safety for Nuclear Power 
Stations, International Electrotechnical Commission, 1989 (Basic 
nuclear sector standard). 

IEC 1226 Nuclear Power Plants - Instrumentation and control systems important for 
safety - Classification, International Electrotechnical Commission, 
1993 (Basic nuclear sector standard). 

ANSI-7-4.3.2 IEEE Standard criteria for Digital Computers in Safety Systems of 
Nuclear Power Generating Stations, American National Standards 
Institute/Institute of Electrical and Electronic Engineers, 1993. 

NUREG/CR-4640 Handbook of Software Quality Assurance Techniques Applicable to the 
Nuclear Industry, United States Nuclear Regulatory Commission, 
August 1987. 

Railways 

prEN-50126 Railway Applications - The specification and demonstration of 
dependability, reliability, availability, maintainability and safety (RAMS), 
European Committee for Electrotechnical Standardisation 
(CENELEC), TC9X draft, November 1995. 

prEN-50128 Railway Applications - Software for Railway Control and Protection 
Systems, European Committee for Electrotechnical 
Standardisation (CENELEC), Draft No. CLC/SC9XA/WG1(sec)78, 
February 1994. 

prEN-50129 Railway Applications - Safety-related Electronic Railway Control and 
Protection Systems, European Committee for Electrotechnical 
Standardisation (CENELEC), Draft No. CLC/SC9XA/WG2(sec)79, 
December 1993. 

Other 

ISO 9000-1 Quality Management and Quality Assurance Standards - Part 1 ­
Guidelines for Selection and Use, International Standards 
Organisation, 1994. 
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s ISO 9000-2 Quality Management and Quality Assurance Standards - Part 2 ­
Generic Guidelines for the application of ISO 9001, ISO 9002 and ISO 
9003, International Standards Organisation, 1993. 

ISO 9000-3 Quality Management and Quality Assurance Standards - Part 3 ­
Guidelines for the Application of ISO 9001 to the development, supply and 
maintenance of Software, International Standards Organisation, 
1995. 

BS EN ISO 9001 Quality systems: Model for quality assurance in design, development, 
production, installation and servicing, British Standards Institution, 
1994. 

UL 1998 Standard for Safety Related Software, Underwriters Laboratory, 
January 1994, ISBN 1-55989-550-0. 

Draft IEC 1508 Functional Safety: Safety-related Systems; 

Part 1: General requirements; 

Part 2: Requirements for electrical/ electronic/ programmable electronic 
systems; 

Part 3: Software requirements 

Part 4: Definitions and Abbreviations of Terms: 

Part 5: Guidelines on the application of Part 1; 

Part 6: Guidelines on the application of Parts 2 and 3; 

Part 7: Bibliography of techniques and measures; 

International Electrotechnical Commission, Technical 
Committee No. 65: Industrial - Process Measurement and 
Control, Sub-Committee 65A: System Aspects, 1995. 

B2 Company Standards 

The following company standards in the review were from Atomic Energy of Canada Limited (AECL) 
and the Canadian utility Ontario Hydro, since these high level standards are effectively in the public 
domain. In the UK the nuclear industry standards are not in the public domain. The Study Group 
commissioned from HSE a review in which the reviewer had access to the company standards used 
by BNFL, Magnox Electric and NE. The Study Group itself had access to the NE approach through 
[Hughes & Hall 1992] and received a copy of the Magnox Electric guidelines at a late stage. 

AECL	 Standard for Software Engineering of Safety-critical Software, Atomic 
Energy of Canada Limited/Ontario Hydro standard, Rev 0, 
December 1990 

Guidelines for Categorisation of Software in Nuclear Power Plant Safety, 
Control, Monitoring and Testing Systems, COG-95-264 Rev 1 1995. 

Ontario Hydro	 Guideline for Computer System Engineering, Rev 0, No. 907-C-H-
69002-0203, April 1993. 
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Software Engineering of category II Software, Rev 0, No. 907-C-H-
69002-0100, May 1993. 

Software Engineering of category III Software, Rev 0, No. 907-C-H-
69002-0200, May 1993. 

Guidelines for the Application of Software Engineering Standards to 
Configurable Software, Rev 0, No. 907-C-H-69002-0204, April 1993. 

Guidelines for the Modification of Existing Software, Rev 0, No. 907-C-
H-69002-0205, April 1993. 

B3 Additional Material 

S. Bhatt, L. Chanel. Comparison of International Standards for Digital Safety System Verification and 
Validation, IAEA specialist meeting on ‘Software Engineering in Nuclear Power Plants’, Chalk River, 
Canada, 1992. 

D. S. Herrmann. “A methodology for evaluating, comparing and selecting software safety and
reliability standards”, Proceedings COMPASS 1995, Washington, IEEE 1995.


Safety Assessment Principles for Nuclear Plants, HMSO 1992, ISBN 0 11 882043 5.


Tolerability of Risk from Nuclear Power Stations, HMSO 1992, ISBN 0 11 886368 1.


Railway Safety Cases, Railways (Safety Case) Regulations 1994, Guidance on Regulations, HMSO 1994, ISBN

0 7176 0699 0.


IEEE Standards collection, Software Engineering, IEEE 1994, ISBN 1 55937 442 X.


Title 10, Code of Federal Regulations, Part 50, Domestic Licensing of Production and Utilization Facilities, USA.


International Atomic Energy Agency, Safety Standards: Code on the Safety of Nuclear Power Plants: Design,

Safety Series No. 50-C-D (Rev1), 1988. 
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s Appendix C: The French nuclear industry 

C1 Introduction 

What follows is a comparison between the French and UK approaches to the use of computer-
based systems in nuclear power plants. Four members of the Working Group - P.-J. Courtois, R. 
Bloomfield, B. Littlewood and N. Wainwright - visited the French ‘Institut de Protection et de 
Sûreté Nucléaire’ (IPSN) on June 30th 1996, where discussions were held with Mme Soubies and 
Mr J.-Y. Henry from the Institute, and with Mr. Féron from the ‘Direction de la Sûreté des 
Installations Nucléaires’ (DSIN). We are grateful for the openness of these discussions, which 
have greatly informed the contents of this Appendix. Readers should note, however, that the views 
expressed here are solely the responsibility of the authors. 

C2 Industrial and regulatory framework 

Electricité de France (EDF) is the owner and operator of French nuclear power plants (NPPs) and 
applies for the licenses. Framatome is the main contractor and designer of the nuclear safety 
systems. The Schneider company, Merlin-Gerin, is a Framatome subcontractor, and is the designer 
of the Digital Integrated Protection System SPIN (Système de Protection Intégré Numérique). 

EDF has three main departments: R&D, Design, Operations & Distribution. Transfer of 
responsibilities from the design to the operations & distribution department takes place when the 
reactor reaches criticality for the first time. 

DSIN, the regulator, deals only with the EDF operations & distribution and design departments. 
DSIN works for the Industry and Environment ministries, and co-ordinates all the procedures to 
start a new plant. Furthermore, DSIN is entrusted with definition of the regulations and their 
application to the main permanent nuclear installations. A standing advisory group, the ‘Groupe 
Permanent Réacteurs’ (GPR), is consulted by the DSIN on the most important matters 
(examination of preliminary and final safety analysis reports, major modifications to plants). GPR 
consists of representatives from EDF, ministries, IPSN and others, named for their personal 
competencies. 

IPSN (Institut de Protection et de Sûreté Nucléaire) is the technical support organisation. It is 
consulted and responds to requests from DSIN on technical matters and submits reports and 
analyses to GPR. IPSN may also raise issues in its own right which are then for DSIN, at its 
discretion, to take forward. There is no legal obligation for DSIN to consult IPSN. 

The IPSN was constituted by law in 1976, and is part of, and (for convenience) administered by, 
the Commissariat à l’Energie Atomique (CEA), but is functionally independent. The IPSN budget 
is voted by the national assemblies and is separated from the CEA budget. However, there is 
discussion in France regarding the true extent of the independence of IPSN, so much so that 
some people think that the Institute should be taken out of CEA, and made an independent 
public agency. 

IPSN is entitled to ask EDF for all documents deemed necessary for its missions. For the SPIN 
software, IPSN analysed and assessed the documentation, the methods used for specification, 
design, programming and testing, carried out some structural analysis of selected representative 
parts of the software to assess its conformance with programming rules, and carried out a 
software FMEA for some selected critical functions. 

The position of IPSN, with its direct funding from parliament which protects it from interference, 
contrasts with the situation in the UK where the technical support comes from private sector 
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organisations which are acceptable to the nuclear regulator for carrying out specific independent 
assessment work. This UK modus vivendi offers flexibility for securing the most appropriate experts 
and tools for every single V&V task. The complexity and the specificity of these tasks may indeed 
require more resources than can be expected from a single nuclear safety technical organisation, 
whose primary specialism is nuclear safety analysis, not computer technology. IPSN or DSIN may 
also, if necessary, subcontract to third parties. 

On the other hand, when validation work is allocated to private independent organisations, the 
regulator is obliged to conduct repeated evaluations of suitability and competency. Other 
considerations include, access to confidential information, understanding and familiarity with the 
system being validated. 

The use of independent V&V is essential for high integrity system development. However, it is 
difficult to establish the appropriate level of independence between the design and the V&V 
teams who must themselves have suitable levels of understanding of the system requirements, 
design, documentation, test tools and oracles. 

Independent V&V carried out by an organisation completely separate from the designer is an 
object of debate in the nuclear sector. The cost-benefit ratio of this practice is perceived 
differently by nuclear manufacturers, utilities and regulators ([CNRA 1997]). When the independent 
assessor is the technical support of the nuclear safety regulator, there arises the issue of who 
qualifies the tools used by this assessor for the V&V tasks; where is the reference basis? 

The ‘Designated Engineering Representative’ approach followed by the US aerospace industry 
(discussed in Appendix D) might be a viable compromise, although there is no a priori guarantee 
that it combines all the advantages, and none of the disadvantages, discussed above. 

IPSN assesses EDF quality assurance, verification and validation plans at a very early stage of a 
project, allowing the licensing to proceed more smoothly once those plans are approved. This is 
also to be contrasted with the UK, where the safety case is presented by the licensee and seems 
to be much more ‘evolving’ in time. 

This does not mean, however, that everything can - or even should - be frozen before the project 
starts. IPSN is still today, for instance, issuing requests to EDF for complementary documentation 
and actions to be taken regarding the SPIN development and validation. 

C3 	French digital protection systems 

The first French 1300 MW unit (Paluel) started up in 1984 and was from the beginning equipped 
with a digital integrated protection system (first generation SPIN), digital logic controls 
(Controbloc N20) and plant computers used for information processing and alarm filtering. On 
the new series of plants (1400 MW N4 units), the reactor protection equipment supplied by 
Framatome/Merlin Gerin comprises mainly three systems: 

■	 The nuclear instrumentation system which provides other equipment with signals from 
excore nuclear detectors. Nuclear flux measurement equipments are classified 1E. Equipment 
delivering signals to the control systems and to the core monitoring units are not classified. 

■	 The control rod system which comprises the 1E rod position indication system (protection 
algorithms make use of rod positions) and the non-classified rod drive controls. 

■	 The reactor protection system (new generation SPIN) which consists of four data acquisition 
and processing units and two logic output units which generate reactor trip and safeguard 
actuation signals. 
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s In comparison with the first generation SPIN, the architecture remains similarly based on 2/4 
logic: 4 protection channels, 2 output logic protection units, 8 reactor trip breakers. Motorola 
32-bit microprocessors are used and programmed in C. Communications between units use local 
area networks. 

C4 	Licensing approach 

As in the UK, where the licensee presents his safety case, in France EDF produces a provisional 
safety analysis report describing the planned design together with a demonstration of its safety. 
The demonstration follows a rather standard pattern, structured into chapters and sections 
covering well-defined topics and similar to the safety analysis report in the US and other 
countries. This report is assessed by IPSN. 

The demonstration aims at establishing compliance of the system with safety rules (the ‘Règles 
Fondamentales de Sûreté’) and is essentially based on two types of arguments: 

■	 compliance with design criteria such as the single failure criterion, and arguments of 
diversity; 

■	 the construction and design basis which explains which standards, and how applied. 

French law requires preliminary, provisional and final versions of the safety report. DSIN asks the 
GPR advice on the safety of the installation, and IPSN acts as rapporteur to present the case, its 
conclusions and recommendations to the GPR. To resolve misunderstandings, EDF and IPSN hold 
meetings before presentation to GPR. In case of disagreement the GPR makes a decision, and the 
DSIN may decide to follow or not. 

C5 	Reliability quantification 

The French approach is basically deterministic and supplemented by PSAs. PSAs are not 
requested before licensing: they are used only to gain a global overview of the plant safety and to 
determine possible weaknesses. Besides, the PSAs do not cover software. 

EDF gave IPSN convincing arguments that due to the high quality of the software design and of its 
V&V process the software installed in NPPs is of a much higher quality than commercial software. 

EDF was asked to inform DSIN on the ability and possibilities of quantifying software reliability. 
They convinced IPSN that, at the present time, no reliability figures for safety software can be 
meaningfully produced. Research is nevertheless continuing. 

A sensitivity analysis was also carried out by EDF. As a reliability figure of 10-5 was claimed for 
hardware, a figure of 2x10-5 including the software was assumed for computer based systems in 
this study. EDF was furthermore asked to analyse the sensitivity of the plant risk to this 
assumption by considering the most important potential failure sequences with an initiating 
event frequency higher than 10-3 which place demands upon the software-based protection 
system. Results have not been issued yet. This analysis is typical of the use of PSA in countries 
that strictly follow deterministic safety design and assessment approaches. 

C6 	Requirements specifications 

The issue of how requirements for safety-critical C&I systems are specified and approved was 
discussed in our meeting. Specifications in natural language accompanied by diagrams - using 
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e.g. AND/OR gates - are usually produced by Framatome. They are used as ‘top level’ software
specifications. The bidding manufacturer has to conform to those diagrams. He must re-express 
what is his understanding of the requirements, and this reformulation is checked against what 
Framatome originally asked. The bidding manufacturer must also define how he is going to design 
and to apportion the hardware and software. 

As a result of a bid, different solutions may appear. In the case of the N4, Framatome chose the 
Merlin-Gerin solution, and ‘everything with it’. Framatome re-wrote what they understood from 
Merlin-Gerin and asked for confirmation in order to close the ‘loop’ in the requirements 
specification approval process. The documents including the Merlin Gerin solution re-written by 
Framatome were forwarded to the DSIN. 

The manufacturer has to show that his solution complies with safety, and in particular with non­
functional requirements (Note: these do not include software reliability figures). The DSIN does 
not give early approval with regard to requirements and design options, except if explicitly asked 
to do so. 

Non-compliance with the single failure criterion would be a strong concern. This criterion is 
applied in France to systems, including systems containing software; it has not been applied to 
software alone. 

C7 Verification and validation 

The 1300MWe SPIN system is considered by DSIN and IPSN as being ‘good’. This judgement is 
based on three things: operational feedback; the assessment of the design and of the 
development process; the tests that have been made. 

As far as operational feedback is concerned, the system has been working well for many years. It 
has gone through several versions, but the same architecture and the same design have been 
maintained (the SPIN system is now in its 9th version since first operation, essentially because 
changes were necessary in safety margins). The number of actual trips is about one per year per 
unit, and four times per year with periodic tests which do not provoke actual trips. In addition, 
spurious trips are also of the order of 0.1 per year per unit. Spurious activations of ESFAS are of 
the order of 0.2 per year per unit. 

It was stated, however, that field experience is only considered as a ‘plus’ in the safety case, not as 
a substitute for other arguments. 

For the N4 series, Hartmann and Braun produced experience from use of Contronic E in Germany 
(not in nuclear plants) to show that they were able to handle software modifications. This is 
considered by IPSN as a sign of vendor ability to handle modifications and evolution, but not as a 
means of supporting software reliability claims. 

The non-acceptance of evidence from previous use in non-nuclear systems is often in contrast 
with the willingness to take into account the general efficacy of the design process. It would be 
interesting to analyse the reasons which justify this somewhat counter-intuitive position: it seems 
at least as important to know that a system has worked well in the past, albeit in slightly different 
circumstances from the ones of interest, as to know that the development process is good. The 
latter is a judgement which could be valid even if it is based on the experience of the application 
of this process on completely different systems. One possible explanation is that the Merlin Gerin 
development process has already been applied on different variants of nuclear protection systems. 

On the question of testing, for the 1300 and 1450MWe series IPSN made tests additional to those 
made by EDF. Complementary tests were made to verify some software self-testing mechanisms 
because testing of these facilities had not been properly covered. IPSN also carried out for the N4 
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s series some software FMEA analysis to analyse the propagation of certain failure modes, establish 
the criticality of certain failures and study their impact on the most important protection functions. 

However, neither statistically representative dynamic testing as in Sizewell B, nor quantitative 
estimation of the test coverage, were made. Nonetheless, for the N4 series an analysis of the 
manufacturer’s test coverage of the set of software functional paths was carried out on part of the 
SPIN software. This was not intended as a basis for further statistical analysis but as part of the 
determinisitc demonstration. 

C8 	Tools used for the N4 series software assessment 

The SAGA tool [Bergerand & Pilaud 1989], based on the LUSTRE language [Caspi et al. 1987], is an 
industrial tool which has been used for some time by Merlin-Gerin for software development. 

Two facilities provided by SAGA are of concern to IPSN: 

■	 Validation facilities: Certain checks, like type checking, are automatically done by the tool. This 
is used as an argument by Merlin-Gerin not to have these checks repeated by the V&V teams. 
Merlin-Gerin had to provide evidence that these facilities were indeed efficient and sufficient. 

■	 Automatic Code Generation: SAGA produces some code (C) automatically. Originally problems in 
the tool were found by checking against the code (about 100 lines each) - 250 ‘views’ were 
independently generated. These problems have been corrected and Merlin-Gerin now argue 
that their feedback of two years experience with non-nuclear systems have stabilised the 
tool. Integrating manually produced code with code produced by SAGA did not show any 
problem. IPSN is not entirely satisfied with this situation, but did not find errors in the 
samples of the code they reviewed. IPSN uses the CLARE tool as a cross-check. 

Furthermore, the static analysis tool MALPAS was used by IPSN to analyse certain characteristics 
(control and data flow) of a part of the C code manually produced (in the same way as the 
LOGISCOPE tool could be used). MALPAS was also used to focus attention on some parts of the 
C code and to translate them into the MALPAS tool’s Intermediate Language (IL). It was also used 
to verify the C code of one simple functional sequence (the pressuriser level), to produce back 
(reverse engineer) the original equations and to compare them with the specifications entered 
into SAGA. 

MALPAS was certainly not used by IPSN as extensively as by NE on Sizewell B PPS. There may be 
several practical reasons for this, one of them being the considerable investment of effort which 
large-scale use entails. Certainly it does not automatically imply that NII may have asked for too 
much MALPAS analysis. 

C9 	Common mode failures and diversity 

Two diverse (hardware and software) computerised systems are implemented in French NPP N4 
units: The SPIN in charge of the reactor trip and ESFAS (Engineered Safety Features Actuation 
System) functions, and the Contronic E system in charge of most C&I unclassified or 2E classified 
functions. 

In 1982, during the run-up to the ‘first criticality’ for Paluel, the PSA had confirmed that sensors 
and actuators were failing at a frequency higher than required by the reliability of the scram 
function (10-5 per demand). It was decided to have a back-up secondary system with specific 
sensors (related to steam generator water levels) and using specific tripping logic and actuators. 
In case of absence of trip, this system would be in charge of the more likely incidents - namely 
those of category II whose occurrence frequency is in the range of 1 to 10-2 per year. 
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EDF proposed to use the PWR 1300 Controbloc, which is of a different technology. While the SPIN 
is based on Motorola 6800 microprocessors, the Controbloc system used wired logic controllers. 

Later, for the N4 1400 units, EDF proposed new instrumentation principles but also to repeat the 
same approach for the SPIN back-up. This was agreed by DSIN. EDF proposed the Controbloc P 20 
system from Cegelec. The software of this system - because of its complexity - could not be 
successfully developed and was abandoned by EDF. The existing Hartmann and Braun Contronic 
E control system was chosen as a replacement. The H&B Contronic E had not been qualified for 
1E functions and had not been previously used in nuclear plants; hence, it could not be claimed 
to sustain the same level of reliability as the SPIN. 

The SPIN system software is designed ‘to ensure a high degree of quality and a virtual absence of 
defects’ (F. Féron, ‘Overview of N4 series C&I system’, [CNRA 1997]). However, a common mode 
failure of this software is postulated and a diverse system was felt necessary. The diverse system 
(ATWS: anticipated transient without scram) is provided by separate equipment, the SCAT system, 
using the Contronic E technology. This palliative system, designed by EDF, acts as a diverse 
system of the SPIN system for postulated initiating events of class II (frequency higher than 10-2). 
While the US NRC does not require the ATWS system to be safety graded, France does. 

For classes III and IV postulated initiating events (frequency of at most 10-2 and 10-4 respectively), 
the SPIN alone is in charge. This is summarised in the table below. One could conclude from this 
table that the ‘implied pfd’ of the safety subsystems in charge is the reliability claimed from the 
combination of these subsystems to achieve an unconditional pfd of 10-6, considering the median 
value of the PIE frequency range. 

Classes of Postulated PIE Frequency (per year) Safety Subsystems in Charge 
Initiating Events (PIE) (implied pfd) 

Class I Normal Conditions _ 

Class II 10-2 to 1 -5) 

Class III 10-4 to 10-2 SPIN alone (10-3) 

Class IV 10-6 to 10-4 SPIN alone 

SPIN or ATWS (10

C10 Deterministic versus probabilistic safety evaluation 

Although the PIE (Postulated Initiating Event) classification is widely accepted in the nuclear 
industry, its interpretation and use for design and safety demonstration purposes may differ 
between countries depending on whether probabilistic safety goals are being adopted or not. 
Besides, these differences are not always clearly understood. 

The PIEs are classified according to their anticipated frequencies of occurrence. These frequencies 
are estimated from operational experience data from similar plant designs across the world. The 
PIEs correspond to single well-defined types of initiating faults (e.g. a pipe break). To each class 
are associated upper limits on the radiological consequences of any single PIE of the class. The 
basic principle is that the most frequent occurrences must yield little or no radiological risk. 

In most countries (e.g. France, Germany, Belgium), the PIE categories are used deterministically. 
For every postulated initiating fault, including the failures directly caused by the PIE, a worst single 
failure is postulated in the safety systems, together with other conservative assumptions. It is 
then required to demonstrate that following this fault sequence no release can occur beyond the 
limits accepted for the class to which the PIE belongs. These analyses are done for every PIE. They 
do not require probabilistic safety arguments. They do not make assumptions on PIE occurrence 
frequencies. 
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s This approach is different from an approach based upon an accepted probability requirement (as 
in [HSE 1992a] p44, or in the Netherlands) that may use the same PIE categories. The probability 
requirement may be that the total anticipated frequency of accidents that could give rise to a large 
uncontrolled release should have a frequency less than say 10-7 per year, or may impose upper 
limits on the total anticipated frequencies of accidents which could deliver predetermined dose 
ranges to persons outside the site ([HSE 1992a], p42). Then, the PIE classification could be used 
to impose upper limits on the rate of failure per demand of the equipments and systems in 
charge of controlling and mitigating the consequences of the initiating events. For example, in the 
situation discussed above, such probabilistic requirements could imply - as indicated in the table ­
that the SPIN should have a pfd less than approximately 10-3. Such requirements should result 
from PSAs based on PIE anticipated frequencies and fault sequence frequencies that are 
combined into total accident frequencies. 

C11 Concluding comments 

French nuclear safety analysis is based on deterministic arguments, which are similarly applied to 
their digital systems. However, as explained above, the deterministic versus probabilistic dichotomy 
is probably not by itself the best ground to analyse the differences between the French and the 
UK safety approach, since both countries associate large dose releases with small frequencies. 

More significant is probably the fact that many countries consider that, taking into account the 
uncertainties in the evaluation of the occurrence probabilities of rare events and in the evaluation 
of the reliability of systems designed to have a very low failure rate, it is extremely difficult - if not 
impossible - to set global risk criteria that have a practical and industrial meaning. Thus, distinct 
uses and interpretations are made of the notions of single initiating event and of maximum 
release associated to its class, on the one hand, and of maximum total predicted frequency of 
accidents giving rise to a maximum release on the other hand. 

In particular, certain countries (e.g. France, Belgium) have no legal basis for nuclear quantitative safety 
goals, and in particular no legal basis for radiation dose limits (the figures used in France have 
been proposed by EDF and endorsed in the safety assessment by IPSN/DSIN). They hold the view 
that quantitative safety goals should only be used together with a detailed specification of the 
method to be followed to show compliance. As no PSA methodology has yet been standardised, 
and considering the intrinsic limitations of PSA approaches, they find it adverse to safety to 
reduce assessment just to PSA calculations. 

It is also interesting to put this discussion in perspective with the so called ‘non-prescriptive’ 
regime of certain regulators - NII for instance - who state (cf. appendix A of this report) that: ‘... 
the safety performance requirements are clear but there is flexibility for a licensee to propose the 
means, in each particular instance of meeting them. Such means must be acceptably justified, 
with due reference to the legally established principle of “reasonable practicability”’. This position 
does not specify how to proceed when no consensus yet exists on the means or methods to 
follow, and would therefore be a potential source of difficulties for any licensing approach based 
on the quantitative safety goals discussed above. 

Although the approach to demonstrating nuclear safety in the UK, unlike in France, makes formal 
use of PSA as a supplement to the safety case, nevertheless the deterministic basis of the case is 
comparable in both countries. Furthermore, both countries apply independent assessment (albeit 
in different ways) where a computer safety system is depended upon to protect against plant 
faults of the most frequent kind. 
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Appendix D: The US aircraft industry 

This note is based upon visits by some members of the Study Group to Boeing Commercial 
Airplane Group and the FAA in the US, and to GEC-Marconi Avionics in the UK. 

D1 Overview of the aircraft industry and certification 

The airline and aircraft industry is necessarily international. Not only do airlines operate across 
international boundaries, they purchase aircraft and equipment from world-wide suppliers. Major 
new aircraft developments are also multi-national projects. Clearly, the industry could not operate 
without a consensus - international traffic requires that an aircraft which is considered 
operational in one country should also be allowed to operate in other countries. In practice this 
requires both high level and detailed discussion between regulators in different countries and 
consensus guidelines such as RTCA/DO-178B20 [RTCA 1992] (see later). 

Each country has an established legal framework for regulation of the industry, which includes an 
authority, such as the Civil Aviation Authority (CAA) in the UK and the Federal Aviation 
Administration (FAA) in the USA. The airframe supplier, such as Boeing, is responsible for 
ensuring that the aircraft as a whole is airworthy. This is achieved by means of a certification 
process, during which the supplier presents evidence for airworthiness to the authority. Note that 
certification of the aircraft by the authority does not imply that the authority is in any way 
responsible for the safety of the aircraft. That responsibility remains with the aircraft supplier and 
operator. The main role of the authority is to ensure that the companies involved have the right 
culture, procedures and processes so that they will be capable of producing and operating aircraft 
which satisfy the airworthiness requirements. 

There are some differences between the various authorities and their approach to regulation and 
certification. The European aviation authorities together form the Joint Aviation Authorities (JAA), 
which issue requirements in the form of JARs. These requirements are adopted under national 
laws of the JAA member states to become their airworthiness codes. The FAA produces 
equivalent regulations (FARs) which differ slightly in that they are in themselves legal 
requirements. 

The JAA approach to certification is via a series of reviews of the evidence. The investigation for 
certification of an aircraft type is performed by a multi-national team following JAA agreed 
procedures. The findings and recommendations will be put to the member states with a 
recommendation, where appropriate, for certification by each of the members. The FAA mainly 
works through the DER (Designated Engineering Representative) system, which is described later. 
Other nations follow either the JAA or the FAA approach, but it can be necessary for suppliers to 
consider cultural differences in attempting certification elsewhere. It is also possible for mutually 
exclusive certification conditions to be imposed i.e. for an authority in one country to require a 
particular piece of equipment to be fitted to the aircraft of its national airlines, while another 
authority will not permit the same piece of equipment to be fitted. In order to manage such 
differences, the other authorities will take an interest in the certification process of the first of a 
new model and they may, at the beginning of the certification process, impose the certification 
conditions which would be required within their jurisdiction. In the remainder of this discussion 
we will concentrate on certification under the FAA. 

The FAA operates under a public charter and is answerable to Congress. It is responsible both for 
promoting safety and for promoting the aviation industry. The wording of the charter is that it is 

The European version of this is EUROCAE ED 12B, which is technically identical: the documents were 

produced by a joint EUROCAE/RTCA committee in a co-operative process. 
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s responsible for promoting the ‘highest public perception of confidence in safety’. This dual role 
contrasts with the ALARP principle applied in the UK in some other industries. However, if there 
were to be problems with safety in the US aircraft industry, this would affect public confidence 
and hence damage the industry. On the other hand, this dichotomy of interest will tend to 
increase pressure for rapid conclusions to any investigations into safety. 

D2 The Boeing 777 Primary Flight Control System 

Much of our discussion with representatives of Boeing centred upon the software for the PFC of 
the 777; accordingly, much of the discussion here will use this as a case study. 

Before describing this system briefly, it is worth remarking that this avionics application differs 
markedly from safety systems, such as nuclear reactor protection systems. Most importantly, this 
is a critical control system, and there is no equivalent to the rigorous separation of protection and 
control that we see in the UK nuclear industry. For an aircraft, the only safe state is stationary on 
the ground, and a control system, which must operate continuously, is required at all other times. 
It is claimed that in current aircraft one could lose most of the functionality of the control systems 
in straight and level flight and not lose the aircraft, provided that the control systems can be 
restarted successfully. However, such arguments are not generally relied on as part of the 
certification process and in any case, there are critical parts of the flight, such as take-off and 
landing, where such margins are not available. 

This 777 PFC was developed for Boeing by GEC-Marconi Avionics Limited in Rochester in the UK, 
but close relationships between the two companies were maintained as part of the Boeing 
philosophy of ‘working together’. The formal programme for the 777 began in 1990, but there was 
a preceding prototype programme (called the 7-7) which began in 1981. The first flight of a 777 
was on June 12, 1994, with the certification being completed in April 1995 and the first 777 
entering service in May 1995. 

The Primary Flight Control System is responsible for the control of the primary control surfaces of 
the aircraft - the flaperon, spoilers (7 per side) and outboard aileron on the wings and the 
stabilisers, elevators and rudder at the tail. 

The system is triplicated for robustness reasons, with each channel using two sets of buses. One 
bus is used for critical data (the flight control bus); the other bus (the systems bus) serves the 
Airplane Information Management System (AIMS). 

Flight crew commands are routed to the PFC via Actuator Control Electronics (ACE) units. The 
ACEs convert the analogue signals from transducers on the flight controls (column, wheel and 
rudder pedals) into digital signals on the databuses. The PFC uses these digital signals and in 
turn transmits control commands back to the ACEs. These control commands are used to drive 
the control surfaces, together with actuators on the flight controls which provide feedback to the 
pilot. 

This digital control system permits additional functionality to be provided, compared with a 
conventional system, including: 

■ Bank angle protection; 

■ Turn compensation; 

■ Stall and overspeed protection; 

■ Pitch control and stability augmentation; 
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■ Thrust asymmetry compensation (in the event of one engine failure); 

■ System health monitoring; 

■ Aircraft maintenance support; 

The system has fall back modes of operation. Secondary mode is invoked if primary sensor data is 
lost. In this mode, the PFCs supply commands to the ACEs but envelope protection and autopilot 
are not available. Should there ever be a total failure of all three channels, loss of all bus data or 
the pilot invoke the PFC disconnect, a third direct mode is automatically invoked. In this mode, 
analogue control commands are routed directly from the cockpit controls via the ACEs to the 
control surfaces. This mode is not part of normal operating procedures, nor is a further degraded 
mode which uses an independent mechanical path to the stabiliser trim and one pair of spoilers. 

The system is not configurable. Modifications would be required for anything that changes the 
control laws (for example increased gross weight). It is intended to adapt the system for the 747-X 
(the next generation of the 747), but software and hardware modifications will be required as the 
747X has more control surfaces. 

The development of the PFC required considerable effort (over a hundred people for the major 
part of the programme, the majority of whom were involved in software development and 
assessment). It would be hard to estimate the functionality from the control requirements as the 
engineers estimate that only about 20% of the software implements the control laws - the rest is 
concerned with redundancy management and ground maintenance. Overall the PFCs contain 
about 2500 modules of Ada containing about 250K lines of code. There are also about 20 lane-
specific modules, some of which include assembler code. The software for each lane takes 
between 1 and 2 Megabytes. 

D3 The certification approach: RTCA/DO-178B ‘Software Considerations in 
Airborne Systems and Equipment’ 

We shall concentrate here upon the main avionics software standard, RTCA/DO-178B [RTCA 
1992]21. However, it should be noted that other systems and hardware standards form the context 
in which this is operated. These standards are not mandatory, but are recommended practice and 
represent an international consensus of the avionics industry. This means that all of the suppliers 
in even a long supply chain will have a commonality of approach, although they may well differ in 
detailed application. If the supplier is unable to comply with the standards in some respect then 
it will be necessary to propose some alternate means of compliance and to demonstrate to the 
certification authority that this alternate means is at least as good, for this particular case, as the 
method required by the standard. 

DO-178B represents a consensus view of an approach that produces safe systems and is 
reasonably practical. The FAA took part in the development of the standard and have agreed that 
this process will produce software suitable for certification as part of avionics equipment and 
systems. There is, of course, no independent evidence that confirms whether the objectives set 
out in DO-178B are necessary and sufficient to produce airworthy software, other than the 
experience of the practitioners. However, there are plans to collect data and experience on using 
the standard. 

During the certification process, the FAA will verify that the supplier has a process that results in 
software that complies with DO-178B. The FAA does not merely verify that the software complies 

The Boeing 777 PFC was subject to the earlier guidelines of DO-178A, because of the date of


application, but many of the principles of DO-178B were applied.
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s with DO-178B. If the FAA finds a fault in the software they would regard it as indicative of a class 
of faults because of a weakness in the process and expect the loophole to be closed, not just the 
particular fault to be fixed. 

DO-178B categorises software into levels A to D according to the severity of the consequence of a 
software failure on the airworthiness of the aircraft. Level A is the most onerous in certification 
requirements and relates to software whose failure could result in the loss of the aircraft. The amount 
of testing, configuration control (including change control and traceability) and reviewing required, 
as well as the degree of independence needed for the verification activities, varies across the levels. 

DO-178B states what should be achieved, but leaves the choice of how to do this to the 
implementors. The requirements of the standard are summarised in a table of over 60 objectives. 
About 60% of the standard relates to process attributes, for example: quality assurance, 
configuration control, documentation, planning, design. The requirements for Level A software in 
this area, although they would appear very onerous to an organisation not used to developing 
critical software, are similar to the sorts of requirements in safety-critical standards in other 
industries. The remainder of the objectives relate more directly to the product of the development, 
for example: the extent of the testing including structural coverage and robustness testing. 

DO-178B does not mandate or even recommend formal methods, although implementors could 
offer them under alternate methods of compliance. They may be included in a future version, 
although to be included, there would first need to be experience of using them, and their 
procedures and tools, within the avionics industry. DO-178B is intended to be a compromise 
between absolute proof of correctness (which no-one can provide) and every case being left to 
individual judgement. While no-one believes that exhaustive testing of such software systems is 
possible, the process required by DO-178B means that the functionality of the software has been 
extensively demonstrated. 

In theory, DO-178B defines a process, which if followed will produce certifiable software. In 
practice, suppliers need to interpret it and to provide their own judgement in how they will apply 
it, and whether the letter of DO-178B is sufficient. Avionics suppliers therefore discuss and agree 
their proposed approach with the customer and FAA throughout the development process. 

The key certification documents are the Certification Plan (this is roughly equivalent to a software 
safety plan) and the Accomplishment Summary (equivalent to a software safety case). These refer 
to other documents and configuration items which are produced as part of the development 
process. The accomplishment summary will include justification of the alternate means of compliance, 
which will include deviations from the planned approaches and any necessary work-arounds. 

Traceability back to the specification is considered one of the major strengths of the RTCA/DO-
178B approach. Detailed traceability is applied at all stages of the lifecycle, from specification, 
through design, to code. Where the customer’s requirement is abstract (e.g. for redundancy 
management), the supplier traces the abstract requirement through to ‘derived requirements’ (i.e. 
the strategy for achieving the customer’s requirement). All testing also has detailed traceability 
back to the specifications. 

D4 The certification process: the Designated Engineering Representative (DER) 

The FAA does not have the resources to perform the detailed compliance checking which it 
regards as necessary for certification. It therefore uses DERs (Designated Engineering 
Representatives). DERs are employed by the large companies such as Boeing which require 
certification, or they are self-employed consultants who are hired by companies (usually smaller) 
that do not have their own company DERs. However, each DER is individually approved and 
appointed by the FAA and has a direct reporting line to the FAA, via one of the six regional 
Aircraft Certification Offices (ACOs). 
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The criteria for appointment as a DER are defined in [FAA 1995]. The selection by the FAA is by CV 
and interview based on experience, ability and personal characteristics (communication skills and 
professional integrity are requirements for selection). Eight years of relevant engineering experience 
is required, but four of these may be as part of a University degree course. In the case of company 
DERs, the FAA also has to approve the company which employs the DER. DERs are monitored 
annually and must conduct some activity as a DER each year to maintain their appointment. 

DERs are not allowed to interpret policy, for example to make decisions on new technology. Thus 
issues which are not explicitly covered by DO-178B, and precedents such as the use of software 
diversity, would not be left to DERs. This results in three types of project: 

■	 FAA project, where the FAA does the review alone; 

■	 DER project, where the DER approves the certification evidence with no further FAA review 
(In practice, in almost all projects, the FAA reviews the certification plan and the 
accomplishment summary and hence confirms that there are no policy decisions required); 

■	 DER assisted project in which the FAA reserves the right to approve the certification evidence 
(In practice the FAA will approve the certification plan and the accomplishment summary and 
will mandate the evidence required for new policy areas; the DER will be entrusted to obtain 
the evidence and ensure compliance). 

In the case of the Boeing 777 PFC there was a policy in place for everything except for the original 
proposal for dissimilar software, or dissimilar processors as it became in the final 
implementation. In fact, the FAA at present has no policy for assuring processors (there is a 
committee working on it). Therefore DERs cannot make decisions on this. 

Note that FAA review usually involves one FAA officer who is assigned to the job. In general on 
novel or difficult areas of interpretation other FAA or external experts would be consulted. There 
are presently no criteria to state the competence or otherwise of an FAA reviewer to approve 
software documentation. 

In the case of the PFC, there were four DERs involved. Their role was to ensure compliance with 
DO-178B, so as to be able to recommend certification to the FAA. Typical activities included 
carrying out walkthroughs, running random tests, following random paths through the supporting 
documentation, etc. However, it was reported that very little formal documentation was submitted 
by the DERs to the FAA. 

The activities of the DER are varied. For example, the DER will take a view about the general 
planning of a project, e.g. that resources are inadequate in the widest sense. If these are deficient 
then the DER can take appropriate action. With software in particular there is a recognition that 
many issues need to be addressed at an early stage of the life-cycle. 

The DER will not be prescriptive unless a compliance issue is involved. If the DER does not fully 
understand some technique this can lead to a need to attend courses or for other such action. 
When new methods are suggested by the implementation team, the DER tends to use criteria 
such as: are the methods feasible, are they well understood, are they well designed, what are the 
management procedures to deal with them, is the tool environment mature? If there are any 
deficiencies in these areas, this can impact safety. 

This DER procedure has been in place for many years, and experience of it by both Boeing and 
the FAA has generally been a good one, and the system has passed three government reviews. 

There seem to be several advantages in the procedure. The legal status of the DERs, and their 
direct reporting line to the regulator, the FAA, is very important - it contrasts strongly with an 
internal independent design assessment team reporting to internal company management. Being 
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s familiar with company practices and procedures, and usually being present from project inception, 
the DERs can be expected to have a greater knowledge of what is really going on than an outsider. 

Possible disadvantages may lie in threats to independence. These are not likely to be overt - it is 
unlikely that companies would put direct pressure on DERs to respond to project needs - but may 
arise from possible divided loyalties on the parts of the individuals themselves. However, it 
should be noted that DERs are not supposed to have project management responsibilities in 
addition to their DER role, thus lessening the chance of a conflict of interest. Furthermore, DERs 
appear to have high status in their companies (in the case of the 777 PFC, the Chief Designer, Jim 
McWha, had himself been a DER), and are respected for their technical abilities. The FAA 
conducts continuous monitoring of DERs, and appointments come up for renewal each year; there 
have been cases (in other companies) where this has resulted in termination of DER status. 

Of course, the very intimacy of the involvement that the DERs have with a project may preclude 
their having a fresh viewpoint, as an outsider might be expected to have. In our view, this risk 
seems to be outweighed by the advantages of their greater knowledge of the project - although 
there is no reason why a further layer of external independent review could not be added to the 
DER system to strengthen it (the FAA themselves already play this role to some degree). 

D5 Reliability quantification 

Reliability targets for whole aircraft are determined such that the reliability of a new craft will not 
be less than those already in service. As the overall accident rate for commercial aircraft is of the 
order of 10-6 per flying hour, this is set as the industry target. To place these figures in context, the 
overall human mortality rate in the West is about 1.6 x 10-6 per hour. Newer, large civil transport 
aircraft are in fact now achieving significantly better than this - typically 3.0 x 10-7 per hour. The 
Certification Authorities (FAA, JAA), after consultation with the industry, decreed that system 
failures should contribute no more than 10% of the accident rate and therefore the probability for 
catastrophic failures due to systems failure shall be less than 10-7 per hour. With something of the 
order of one hundred critical systems on an aircraft, this implies that the contribution to the total 
(catastrophic) failure rate of any single system shall be less than 10-9 per hour. 

These targets are also subject to the single failure criterion, that “No single failure, however 
remote its probability of occurrence, can be allowed to have a catastrophic effect”. Such failure 
conditions must either be designed out of the system or be protected by redundancy so that 
multiple faults are necessary to cause a catastrophic effect. 

There is an awareness within the aircraft industry that public confidence in flying could be 
damaged if the absolute number of accidents reported were to increase each year. Therefore, as 
the number of flying hours of commercial aircraft increases each year, the targets are gradually 
becoming even more onerous. 

Clearly, achieving a failure rate of 10-9 per hour for any system is very difficult; demonstrating its 
achievement in a particular case is probably much harder. Even for conventionally engineered, 
highly redundant systems, it is hard to justify claims for complete statistical independence 
between failures, and it is for this reason that some industries, including the UK nuclear industry, 
place a limit upon what can be claimed for them. The problem is even more acute in the case of 
software-based systems, for the reasons that are discussed in the main body of this report: i.e. 
simple replicative redundancy will provide no protection from design faults, and there is strong 
evidence that design diversity does not succeed in providing complete independence in the 
failure behaviours of different versions of a program. 

Nevertheless, there does seem to be a requirement that critical software-based systems, such as 
the 777 PFC, have a failure rate better than 10-9 per hour. Since the software forms a single point 
of failure in such a system, the reliability requirement for the software must be even more stringent. 
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There seems to be an ongoing debate in the aircraft industry on the issue of software reliability 
quantification, as there is in other industries. There is general agreement, expressed in DO-178B 
for example, that a level of 10-9 per hour cannot be measured in any scientifically convincing way. 
This leads some to argue that the requirement should be a zero failure rate for software, and that 
verification and validation procedures should aim to provide a deterministic (non-statistical) 
argument to support such a claim. We understood this to be the position of the Boeing 
representatives to whom we spoke. 

The position in the aircraft industry with respect to reliability quantification for software-based 
systems contrasts with that in the UK nuclear industry. There the required reliability levels have 
been more modest - of the order 10-3 to 10-4 probability of failure on demand - and are amenable 
to direct measurement via statistically representative testing [May et al. 1995], as well as to 
indirect qualitative arguments. 

D6 Design diversity and fault tolerance 

The use of software diversity within the PFC was considered in the early stages of its development, 
but it was finally decided to build only a single version. There were several reasons for this decision. 

In the first place, the academic studies of the efficacy of software diversity seem to have had a 
great influence on the whole industry. There is a perception that the increased complexity of a 
diverse architecture may not be counterbalanced by a sufficiently large increase in reliability over 
what could be attained from a single version. This problem of complexity may be more serious in 
aircraft control than it is in other applications because of the absence of a safe state: there is no 
equivalent of a simple trip command in the event of disagreement between version outputs. 

On a more practical level, it was felt that the management problems posed by a three-fold 
development of diverse versions were likely to be extremely hard to control. Identifying three 
independent teams of developers, and three teams of verifiers, and then controlling the whole 
process so that they produced versions that were dissimilar yet had the same functionality, was 
regarded as a daunting task. There was a suggestion that in earlier applications of diverse 
software in the industry, the degree of diversity actually achieved may have been quite low: a 
figure of up to 80% commonality between ‘dissimilar’ versions was mentioned. 

Finally, there was a view that the maintenance of dissimilar source code could be prohibitively 
expensive. 

Whilst Boeing decided against the use of complete dissimilar software channels for the 777 PFC, 
dissimilarity was used in other areas. For example, the three lanes in each channel of the PFC use 
dissimilar processors and different compilers. Interestingly, Boeing found about 10 compiler 
problems in each case - i.e. instances where the compiler did the wrong thing and thus may have 
introduced a fault into the executable code - but there appeared to be no commonalities between these. 

D7 Formal methods 

Formal methods are not mandated in DO-178B, but there are static analysis requirements. Where 
formal methods have been used, they have been seen as complementary to testing. 

GEC-Marconi Avionics are convinced of the benefits of both static and dynamic analysis. They 
applied formal methods to certain critical algorithms in the Boeing 777 PFCS. Formal 
specification was beneficial in some of the simpler algorithms, and problems were identified and 
resolved. However, formal proof was less beneficial in the same algorithms. The task was labour 
intensive of the highest grade of effort. Attempts to apply formal methods to more complex 
algorithms also required high grade effort and produced no useful result. The company have not 
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s been able to perform any confirmatory, parallel experiment but suspect that the same results 
could have been achieved by conventional methods given the same level of effort. Their general 
conclusion based on this experience was that formal methods had limited applicability. 

The FAA’s position on formal methods is currently similarly sceptical, and their policy seems to be 
to keep a watching brief. They are aware of the understanding and training problems associated 
with tools: there seem to be too few people who can use them effectively, and their economic 
feasibility is questionable. They also point out that the empirical evidence for the efficacy of 
formal methods is rather weak: in particular, they have not been shown to produce demonstrably 
safer systems than other methods. The FAA does not wish to be at the cutting edge of software 
technology, rather they need a well-founded confidence that methods actually work. 

D8 Discussion 

Flight critical aircraft control systems and nuclear safety systems clearly pose rather different 
problems to their designers and evaluators. The necessity for continuous control in the former 
case, compared with the need to respond only occasionally to reactor demands in the latter, mean 
that the reliability requirements differ by several orders of magnitude. Thus the reliability of a 
flight control system cannot be evaluated directly to confirm that the required goal has been 
achieved, whereas for the modest levels required in the nuclear case this kind of quantitative 
confirmation may be possible. 

An impressive aspect of the 777 development was the role played by extremely extensive 
simulation. The aircraft industry seems to have a very detailed understanding of the flight 
conditions that its aircraft will meet, and can test against these in simulation without having to 
place a real aircraft at risk. The results of these simulations, together with considerable flight 
testing, must be a significant source of confidence in the safety of new aircraft, even though the 
intention is not to conduct a direct evaluation of the achieved reliability. There has been 
considerable progress in recent years in developing similar systems to test and evaluate nuclear 
protection systems, this work should be encouraged. 

Notwithstanding the differences between the applications, some of the experiences in the aircraft 
industry may be relevant to the nuclear industry. An outstanding example is the high level of 
international regulatory consensus that is represented by DO-178B. This lies at the heart of a 
system that enables aircraft to be accepted as safe to fly in all countries around the world. If a 
similar regulatory consensus could be reached in the nuclear industry there would be 
considerable advantages in economy and possibly in enhanced safety. 

The role of independent assessment in the US aircraft industry, through the DER system, is 
interesting and may be worth further study by the UK nuclear industry and regulators. The key 
components seem to be the formal legal basis of the reporting by the DERs to the FAA, coupled 
with the intimate knowledge of the development that comes from their day-to-day presence in the 
company building the aircraft. It is interesting to compare the DER system with the internal 
Independent Design Assessment (IDA) team set up by NE to evaluate the Sizewell B PPS. Whilst 
this team appeared to have the technical competence and access that were a feature of the DER 
process, their responsibilities lay solely with NE, and there was no legal obligation for them to 
report independently to the regulator (although the regulator has the legal right to inspect the 
licensees’ documents at any time). 
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Appendix E: The UK railway industry 

This note provides a partial review of practices in the railway industry focusing on concerns of 
interest to the Study Group. It has been developed from a visit to a vendor by members of the 
Study Group and from an informed interpretation of published literature. 

E1 Licensing approach, safety management and standards 

The railway signalling and control market is undergoing substantial structural change in response 
to the European open market and the privatisation in the UK. The renaissance in the railway 
industry is leading to ambitious plans for investment in new signalling equipment. In the UK 
Railtrack is committed to spending £2500M over the next ten years, a significant proportion of 
which will be on computer based equipment. This could have implications for the nuclear market 
as it may well be that procedures and innovations in the railway industry will drive the safety-
critical computer market. 

It was recognised by the industry and by HSE that the privatisation of the railways and the move 
away from a vertically integrated industry would lead to new arrangements for ensuring safety and 
these were formalised in the Railways (Safety Case) Regulations 1994. These govern the overall 
content of safety cases in the railway industry. There is substantial guidance available from the 
HSE [HSE 1994] on how these regulations should be followed in practice, in particular the 
handling of safety responsibilities between the infrastructure company (primarily Railtrack) and 
the operators. The guidance also advises on co-operation between different operators and their 
mutual responsibilities. Signalling systems, rolling stock and other equipment is subject to the 
Railways and Other Transport Systems (Approval of Works, Plant and Equipment) Regulations 
1994. These require the approval of HM Railway Inspectorate, acting on behalf of the Secretary of 
State for Transport, of new or altered systems that may affect the safe operation of the railway. 

The railway industry has a long tradition of attention to safety and learning from experience. This 
has led to the development of many (thousands of) industry specific standards, procedures and 
specifications that define requirements to be followed. Following privatisation there has been a 
large effort to review these documents and convert them to goal-based, performance standards 
that can be used effectively in the present contractual regime. These would provide requirements 
for the context in which computer systems might be used (e.g. physical and functional interface 
specifications, requirements for Electro-Magnetic Compatibility). However, because historically 
British Rail undertook much of the systems engineering and design work itself, there is a lack of 
standards on system aspects and, for example, the overall system design rationale and safety 
targets. 

Partly in response to the market and regulatory developments there has been a considerable 
investment by both Railtrack and equipment suppliers in European standards being developed by 
committees in CENELEC TC9X [CENELEC 1993, CENELEC 1994, CENELEC 1995]. These 
standards broadly follow the IEC1508 model but differ in the approach to ‘baskets’ of techniques 
and in the emphasis on a data lifecycle as well as a software lifecycle. As many of the railway 
applications are configured by application-specific data (e.g. for a particular geographical layout) 
the specification, implementation, verification, validation and maintenance of the data is just as 
an important as that for the algorithmic part of the software. They also pay considerable attention 
to railway-specific approaches to computer system architecture and error detection. Unlike IEC 
1508, they recognise explicitly the need for a safety case and provide useful guidance on how the 
development of a safety case fits into the system safety lifecycle. It was pointed out to us in the 
course of our consultations that, because of mutual recognition, the standards need to be 
sufficiently tough to exclude undesirable equipment from the marketplace but low enough to be 
practicable. 
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s In order to address, and to be seen to be addressing, its safety responsibilities, Railtrack has been 
developing its own internal safety management systems. Recently, the directorate responsible for 
control and signalling systems published their Engineering Safety Management System [Railtrack 
1997c, Railtrack 1997b, Railtrack 1997a, Railtrack 1997d]. This has a similar basis to those used in 
defence and nuclear applications (e.g. it contains very similar risk classification tables and text to 
those in Def Stan 00-56) but with additional supporting detail, procedures and work instructions. 
It does not provide much specific guidance on the content of safety cases for computer-based 
systems but does describe the generic assessment procedures. 

There has not been a long tradition of QRA- or PRA-informed safety cases in the railway industry. 
The guidance from HSE does not address the overall safety targets for the industry - there is not a 
railway specific TOR document - but it does discuss the need to show that operations are as safe 
as they have been historically. However the recent Railtrack safety management principles adapts 
figures from the TOR report [HSE 1992b]. 

The translation of these overall figures into quantified performance targets for pieces of 
equipment remains problematic. The original safety management guide on risk assessment 
provided illustrative targets but acknowledged that the figures quoted for widely used equipment 
of 10-9-10-12 probability of occurrence per hour are not practical to demonstrate. The draft 
European standard [CENELEC 1995] also provides illustrative figures of 10-11 failures/hr/system 
element for signalling systems. It would appear from our consultations that the approximations 
used in the derivation of the risk targets, especially the lack of detailed consideration of the 
mitigations between the signalling equipment failure and an accident, have led to this very high 
reliability figure (e .g 10-11 failures/hr/system element). 

Although the comparison between the required reliability figures for railway signalling is difficult 
it would appear that the railway signalling requirements are at least as onerous as those for a 
single reactor protection system. It also appears that the railway industry will accumulate, 
because of the greater number of systems deployed, evidence to support or weaken the assumed 
conservative assumptions used in the nuclear industry on both the limits of reliability that can be 
claimed for computer systems and also for the general common mode failure rate cut-off rate. 

The issues of assessment of fitness for purpose and the use of standards as the basis for 
certification are important as more systems become variants of already approved systems, and 
suppliers work with railway authorities in different countries. It is particularly important in the 
light of the significant planned investment and the known problems in developing safety cases for 
COTS software products (see Section 10 of this report). 

E2 Present computer applications 

Computers have been used in the railway industry since the mid 1980’s for critical signalling and 
interlock applications. As in the nuclear industry there are also many other less critical but 
nevertheless safety-related systems. Extensive use is made of information and management 
systems whose failure can potentially initiate safety incidents or which can play an important role 
in mitigating or managing accidents (e.g. in provision of information to passengers). In this review 
we concentrate on the more critical applications. 

The railway industry have a very successful record of computer application to critical systems. 
However we have been told privately of two safety-related faults found in equipment in another 
country with a highly advanced railway system. We also know of unexpected but apparently non-
safety-related problems found by mathematical analysis of the software of a system currently 
extensively deployed. 
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Requirements specification 

A notable feature of railway signalling systems is the use of traditional graphical specification 
languages that the railway signal engineer can use. There have been developments to enable 
configuration data to be automatically generated from these diagrams. Attention had been given 
to the assurance of these software data preparation tools that are judged SIL 2. There is also 
human factors based research looking at the loss of diversity that automated generation might 
bring. The resulting concept of cognitive diversity is novel and has potential application in the 
nuclear industry [Westerman et al. 1995]. The issue of tool integrity has also been a concern in the 
use of Atelier B and the theory base used by the tool has been the subject of independent review 
and analysis. 

There have also been examples of work in which developments in computer science have been 
applied to the modelling and validation of signalling requirements. For example special purpose 
theorem provers have been used in Sweden to model specifications [Eriskon 1996], and some 
protocols have been analysed in detail with the HOL theorem prover as part of academic research 
[Morley 1993]. Network SouthEast also commissioned a large formal specification of a signalling 
control system. The ability to model the railway signalling philosophy and demonstrate with high 
confidence that changes to it are consistent and safe may be an important tool in facing the 
future challenges of new and hybrid control regimes. 

Design for assurance 

One of the noteworthy aspects of the railway signalling and control systems reviewed is that there 
is a concentration on designing for safety, on acceptable architectures that provide defence in 
depth and on a close coupling of the hardware and software safety cases. (This seems to us to be 
rather in contrast with the comments on the nuclear industry - see Section 7.2). Another 
important point is that designs of the signalling systems are often conservative and small 
(~64 Kbytes per module) with small teams of people involved. 

One of the first computer-based signalling interlock systems in the UK was the SSI (Solid State 
Interlocking) system developed by British Rail and then licensed to equipment manufacturers to 
supply. SSI was developed by a small team, was written in assembler and received much scrutiny. 
This is not unlike the early approaches in the aerospace industry on engine controllers, apart from 
the lack of tool-based static analysis. In the defence industry these historical levels of scrutiny 
were not repeatable and this led the MOD to set down its requirements in a market shaping 
standard for safety-critical software that has now been issued and is being applied. 

In other railway products one can see a continuation of the design for assurance concerns. 
Examples are the introduction of diversity in the design by using different normal forms for the 
logic, and different compiler options to give some protection against compiler faults. Other 
manufacturers use a form of encryption and special purpose hardware - the Vital Coded Processor 
[Chapront 1992] - as a defence against compiler and hardware faults. In all the systems reviewed 
the basic critical architectures use a small number of processors. 

Software engineering 

There are considerable differences between the software engineering approaches used in the 
railway industry by different contractors and the practices of the nuclear industry. For example in 
some current railway products the software was developed to good industry practice using JSD 
and Pascal and more recently, for less critical systems, some object-oriented techniques. There 
was some limited use of static analysis for control and data flow analysis. In contrast, there are 
examples from GEC-Alsthom in France of extensive use of formal methods and machine assisted 
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s mathematical verification. The use of formal methods originated in 1988 and has led to an 
increasing scope in their use, greater machine support achieved by the development of the B 
Method and the Atelier B toolset, and more recently the integration of the formal methods with 
the requirements engineering process. It has been applied to a number of train protection 
products (e.g. those used on the Cairo and Calcutta Metros) [Craigen et al. 1993]. The 
development of the B process and tools has been supported by the French Railways and Paris 
Metro. Interestingly, the regulators require the delivery of the proof file from Atelier B which they 
peruse. 

Software reliability evaluation 

None of the applications we reviewed had considered the use of statistical testing for software 
reliability evaluation. There is a general belief that the requirements derived from PRA would be 
too onerous for statistical testing and we did not find any systematic use of field data in software 
safety cases. 

Licensing 

It would appear from our brief review that some computer-based safety-critical systems would not 
be licensable in the nuclear industry for reactor protection. The reason for this and the policy 
implications for the HSE should be examined. 

E3 Present and future challenges 

Apart from the need to refurbish many of the existing non-computer-based signalling systems, 
there are some fundamental changes to the way in which train networks will be controlled. There 
is a general move world-wide to deploy transmission-based ‘moving block’ signalling systems that 
do away with the familiar signals at the side of tracks. These moving block systems, pioneered on 
the Paris RER system [Guiho & Hennebert 1990], allow for higher traffic densities, more flexible 
management and enhanced safety through the ready provision of automatic train control and 
protection. Transmission based systems also promise reduced costs on rural lines: a particularly 
attractive approach in the US where they will be combined with satellite based (GPS) positioning 
technology. There are also European studies examining driver-less freight wagons that move 
opportunistically around the network. 

These developments, particularly the move to transmission based systems, have had a long 
gestation period and there has been much European research aimed at providing a standardised 
and progressive application of the technology [Brandi 1996]. In the UK the modernisation of the 
West Coast Mainline will be the first large scale application and major feasibility studies have just 
been completed. Even without innovation these new systems will pose significant challenges for 
the safety case and for the process of regulation. The systems will contain much safety-related 
software and a considerable amount of this is based on existing systems (e.g. digital telecomms). 
It will be interesting to see how the industry deals with the transition from modest systems, 
developed by small teams with an emphasis on design for assurance, to the new architectures. 

The new systems will also introduce new failure modes. For example, security attacks are an 
obvious source of failures in transmission based systems. While confidentiality and integrity of 
data may be assured by encryption techniques, denial of service attacks will be much harder to 
counter. These are quite plausible, given experiences in other domains, and the traditional fail-
safe response of stopping all trains may not be acceptably safe and certainly not secure. The role 
of the railways as a critical national infrastructure may lead to yet more onerous security 
requirements (See Section 10.4.2) 
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It may well be that the railway industry solves many of the problems facing the nuclear industry 
(i.e. in developing standards, applying COTS software, establishing the role of formal methods). It
would be beneficial for the nuclear industry to establish more formal mechanisms for monitoring, 
evaluating and sharing experience with the railway industry. 

E4 	Conclusions 

Current railway signalling systems are similar in the scale of their functional requirements to 
those for nuclear reactor protection. The railway industry also follows, and is required to follow by 
legislation, a safety case approach. So it is germane to compare experiences in the two industries. 
However, the comparison is complicated by the different applications and the difficulty in 
comparing the safety targets in the two industries. 

There is considerable experience with safety-critical computer applications in the railway industry 
and there are some interesting aspects to the design and verification of signalling systems that 
should be noted by the nuclear industry: 

■	 The emphasis on design for assurance is particularly important as is the small scale of the 
systems and the small teams involved. 

■	 The adoption of formalised domain specific languages to express the requirements for 
signalling systems is seen as an important strength. 

■	 The use of machine-checked formal methods is some of the most advanced in the world in 
terms of rigour and scale of application, and would appear applicable to some of the 
applications found in nuclear protection. There are also significant applications of theorem 
proving to model system specifications and requirements. 

■	 There seems to be potential for making use of field data and/or statistical testing in justifying 
software reliability. While this may not form part of the current railway industry safety cases, 
the data could be of great interest in providing firm evidence in the safety-critical COTS 
software debate. 

■	 The approach to tool integrity and the use of the concept of cognitive diversity may have 
application in the nuclear industry. 

On the whole the industry appears to adopt processes and techniques which are conservative. 
Being cautious about change is one of the cornerstones of safety engineering yet this 
conservatism brings with it problems in judging SFAIRP, especially if one examines other industry 
sectors in defining good practice. However, it would appear from this limited review that some of 
the systems accepted for safety-critical applications in the railway industry would not be 
acceptable in nuclear ones. The reasons for this should be better understood. 

To conclude then, the railway industry is facing many similar challenges to those anticipated in 
the nuclear sector and appears to have far greater resources to solve them. It would be beneficial 
for the nuclear industry and its regulators to establish more formal mechanisms for monitoring, 
evaluating and sharing experience with the railway industry. 
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s Appendix F: The UK nuclear industry’s research programme 

F1 Introduction 

Although the UK’s major licensees (British Nuclear Fuels, Magnox Electric, Nuclear Electric and 
Scottish Nuclear) have responsibility for commissioning and managing the majority of safety 
research for their nuclear power stations, the Nuclear Safety Advisory Committee (NuSAC) is 
tasked by the Health and Safety Commission (HSC) with ensuring that the programme (known as 
the HSC Co-ordinated Programme) is adequate and balanced. This task is discharged through 
NuSAC’s Sub-Committee on Research (SCR) which meets with the Industry Management 
Committee (IMC) and representatives of NII about three times each year. The research programme 
is directed via NII’s Nuclear Research Index (NRI), which records the generic safety research issues 
considered to be significant by NII and the SCR. The industry’s major licensees then use this 
index as the vehicle for commissioning nuclear safety research. The research programme is 
supplemented by the licensees’ own research programmes, and research directly commissioned at 
the request of NII (funded through the HSE Levy Programme - a levy on the licensees for this 
purpose). 

In July 1997, a small sub-group of the main Study Group met with an NII representative to discuss 
the nuclear safety research programme. This representative has responsibility for the control and 
instrumentation (C&I) aspects of the NRI and meets regularly with IMC’s C&I Technical Working 
Group. He was thus considered best able to inform the Study Group’s Research Sub-Committee 
about the current and past programme, and discuss any future proposals. The result of this 
discussion is captured below. 

As with any research programme in leading edge technologies, there is always a difficulty in 
ensuring that research is sufficiently pragmatic to generate viable solutions without constraining 
potentially useful research avenues. Inevitably, some of the research goes no further than the 
technical report which documents the results, but the programme does have a facility for 
searching through previous results, before commissioning new work. 

The research programme is also constrained by the lull in investment in new plant. There is 
currently little value in researching topics which are relevant only to new stations. Research topics 
of interest are those which are applicable to current instrumentation or which have potential in 
retrofit programmes. 

In addition to its own programmes, the industry also takes part in European Research projects 
such as Halden and FASGEP. 

The programme has recently adopted a policy of requiring the first task in each research project to 
be to produce a summary of the state of the art and the issues relating to the problem. In this way 
the research programme generates a set of reference knowledge which has value independent of 
its use in assessing the results of the research project. 

F2 Research topics 

There are two current projects which were seen as particularly high value in generating useful 
results which would be directly applicable. These are a project studying techniques for impact 
analysis in software change control and one studying concurrency. 

Topics currently within the research programme include: 

■ A study of designs amenable to safety case demonstration. This topic is mainly aimed at 
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distributed control systems such as might be used for safety integrity level 1 or 2 systems for 
control as opposed to protection systems. The topic is linked to the Advanced Control 
Programme of Strathclyde University. 

■	 The topic of diversity is being revisited with a study of both diversity in the wider sense and 
in the specific sense of software diversity. 

■	 The programme is a member of PRICES, which considers the role of humans in specifying 
and producing systems. 

■	 Concurrent communicating processes are being studied, including both concurrency 
methods for software and the disconnect between the concurrent nature of control problems 
and the, often, sequential implementation of the solution. 

■	 The problem of ASICs is being addressed with a prototype project where the regulator and 
supplier are exploring the regulatory context for ASICs by developing a real ASIC and 
exploring how it could be assessed. 

■	 Replacement of legacy systems is being studied, using as an example a real system which 
will shortly become obsolete. The real example is being used to explore generic issues. 

■	 Reliability and maintainability improvement is being addressed by a programme to update 
the industry PES guides, to take account of issues such as COTS software, IEC 1508 and 
smart sensors. 

■	 There is a topic on statistical systems testing, which is working with the software diversity 
project and is building on the generic dynamic testing performed after the Sizewell PPS 
testing. 

■	 There is a topic addressing smart sensors, and how software is being used to enhance sensor 
capability, but also considering the impact on the regulatory process. 

F3 	Relevance to the recommendations in this report 

It is clear that the research programme is attempting, or has attempted, to address the topic areas 
which need further research. In some cases, the specific projects have not yielded promising 
results, but it may be that re-addressing the topic, in the light of subsequent experience or from a 
different viewpoint may now be needed. However, it should be noted that the topics are 
inherently difficult problems and there are no easy solutions. Furthermore, most of the topics 
relate to systems engineering and software engineering problems with far wider relevance than he 
nuclear industry alone. The nuclear industry can and does contribute to wider research 
programmes which seek to address such general problems. 

The recommendations of the Study Group’s report are now being used to influence proposals for 
research topics, which may include revisiting from a new direction previous research topics. 
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List of acronyms


ACE Actuator Control Electronics 

ACSNI Advisory Committee on the Safety of Nuclear Installations 

AI Artificial Intelligence 

AIMS Airplane Information Management System 

ALARP As Low As Reasonably Practicable 

ATWS Anticipated Transient Without Scram 

BSI British Standards Institution 

C&I Control and Instrumentation 

CAA Civil Aviation Authority 

CEA Commissariat à l’Energie Atomique 

COTS Commercial Off-The-Shelf 

DER Designated Engineering Representative 

DSIN Direction de la Sûreté des Installations Nucléaires 

EDF Electricité de France 

FAA Federal Aviation Administration 

FAR Federal Aviation Regulation 

FMEA Failure Modes and Effects Analysis 

GPR Groupe Permanent Réacteurs 

HSC Health and Safety Commission 

HSE Health and Safety Executive 

HSWA Health and Safety at Work Act 

IAEA International Atomic Energy Agency 

IDA Independent Design Assessment 

IEC International Electrotechnical Commission 

IEE Institution of Electrical Engineers 

IMC Industry Management Committee 

IPSN Institut de Protection et de Sûreté Nucléaire 

IRRs Ionising Radiation Regulations 

JAA Joint Aviation Authorities 
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s JAR Joint Aviation Requirement 

LED Light Emitting Diode 

LOCA Loss Of Coolant Accident 

MTBF Mean Time Between Failures 

NII Nuclear Installations Inspectorate 

NRC Nuclear Regulatory Commission 

NRI Nuclear Research Index 

NSD Nuclear Safety Directorate 

NuSAC Nuclear Safety Advisory Committee 

NUSS Nuclear Safety Standards 

PFC Primary Flight Control system 

Pfd Probability of failure on demand 

PIE Postulated Initiating Event 

PPS Primary Protection System 

PRA Probabilistic Risk Assessment 

PSA Probabilistic Safety Analysis 

PTSN Public Telephone Switched Network 

QA Quality Assurance 

RTCA Requirements and Technical Concepts for Aeronautics 

SAPs Safety Assessment Principles 

SCR (NuSAC’s) Sub-Committee on Research 

SEI Software Engineering Institute 

SFAIRP So Far As Is Reasonably Practicable 

SIL Safety Integrity Level 

SPIN Système de Protection Intégré Numérique 

TOR Tolerability Of Risk 

V&V Verification and Validation 

VDM Vienna Development Method 

VLSI Very Large Scale Integration 
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