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Abstract 

The present study investigated the relationship between category extension and intension for 

eleven different semantic categories. It is often tacitly assumed that there is a (strong) 

extension-intension link. However, a recent study by Hampton and Passanisi (2016) 

examining the patterns of stable individual differences in concepts across participants called 

this hypothesis into question. To conceptually replicate their findings, two studies were 

conducted. We employed a category judgment task to measure category extensions, whereas a 

property generation (in Study 1) and property judgment task (Study 2) were used to measure 

intensions. Using their method, that is, correlating extension and intension similarity matrices, 

we found non-significant correlations in both studies, supporting their conclusion that 

similarity between individuals for extensional judgments does not map onto similarity 

between individuals for intensional judgments. However, multi-level logistic regression 

analyses showed that the properties a person generated (Study 1) or endorsed (Study 2) better 

predicted her own category judgments compared to other people’s category judgments. This 

result provides evidence in favor of a link between extension and intension at the subject 

level. The conflicting findings, resulting from two different approaches, and their theoretical 

repercussions are discussed. 
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Introduction 

In studies of natural concepts, many theories have claimed that in order to categorize, 

people may recognize objects as having shared properties with other objects, and as a result 

group these objects together into the same category. For instance, if you encounter a novel 

object that has fur, four legs, a tail, and barks, you might compare it with objects that you 

know have similar properties, and then you could group this novel object together with other 

similar objects, in this case into the category of dogs. This example shows that concepts have 

two important aspects that play a role in categorization: the intension (the properties that 

define concepts) and the extension (the set of category members)1.  

It has been a long-held belief that category extension and intension are somehow 

related (e.g., Aristotle, 4th century BC/1961; Frege, 1948; for a recent overview see Hampton 

& Passanisi, 2016). As proposed by property-based models (Hampton, 1979; Rosch, 1975; 

Rosch & Mervis, 1975; Smith, Shoben, & Rips, 1974), the world is divided into natural 

categories that are structured by clusters of properties. People use these properties to make 

predictions and to draw inferences in deciding whether an object is a member of a category. 

Thus, an object will be grouped into a certain category if it has necessary and sufficient 

properties (i.e., the classical view) or shares certain properties with other members in the 

category (i.e., the probabilistic view, Smith & Medin, 1981). Such property-based models 

have been used in numerous studies of categorization, many of which conclude or assume that 

category extension and intension are closely related (e.g., Ameel, Malt, & Storms, 2014; 

Caplan & Barr, 1989; Hampton, Dubois, & Yeh, 2006; Murphy, 2002; Verheyen, De Deyne, 

Dry, & Storms, 2011).  

 

                                                           
1 In philosophical semantics, the terms extension and intension refer to different sides of the same coin (i.e., they 
map to each other by definition). Here we follow the psychological literature in which extension usually refers to 
the list of category members that people endorse, whereas intension refers to the properties that they believe define 
concepts.  
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Moving in the opposite direction: Intension is not everything 

 Besides properties as the intensional information, other researchers focused on 

similarity to stored exemplars of categories in predicting category membership (Heit & 

Barsalou, 1996; Nosofsky, 1984). Storms, De Boeck, and Ruts (2000), for instance, found an 

exemplar-based model to be a better predictor of category membership than a property-based 

model.  Furthermore, other studies have found that the relationship between extensions and 

intensions is not as direct as some have claimed. Malt, Sloman, Gennari, Shi, and Wang 

(1999) studied the names of containers in three different languages and argued that 

categorization can also be influenced by the linguistic and cultural histories of the language 

itself. More specifically, they proposed three mechanisms (i.e., chaining, convention, and pre-

emption) that explain why properties alone may be insufficient for capturing the complexity 

of naming choices. These mechanisms may explain why object clustering is not solely based 

on a particular set of properties (see also Ameel, Malt, & Storms, 2008). 

There are also accounts that presume a reverse relationship between exemplars and 

properties (Spalding & Gagné, 2013). In this view, category membership is a given rather 

than guided by the properties an exemplar possesses. Common or defining properties of a 

concept are derived from the exemplars of the category2. Despite their differences, all of these 

theories would expect some kind of (causal) relationship between category extension and 

intension. 

 However, Hampton and Passanisi (2016, henceforth H&P) recently called this 

assumption into question, suggesting instead that in one important respect intension might not 

map onto extension at all. They reasoned that if there is an intension-extension link 

(dis)similarity between individuals in terms of their category intensions should translate to 

(dis)similarity in their category extensions. Using a property importance rating task to 

                                                           
2 We thank Thomas Spalding for bringing this to our attention. 
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measure category intensions and a typicality judgment task for category extensions, H&P 

examined whether individual variation in the representation of category extensions indeed 

maps to inter-individual variability in category intensions. That is, if two persons show 

similar typicality judgments, H&P argued that their judgments of property importance should 

also be similar. Conversely, if two persons weight properties differently, the idea is that their 

category extension (i.e., typicality ratings) should also diverge to a certain extent. For 

instance, if person A considers physical activity to be an important property of sport, whereas 

person B considers having rules to be more important, one would expect their typicality 

judgments to vary correspondingly. That is, hiking would be a more typical sport for person 

A, whereas snooker would be a more typical sport for person B. Analogously, if person A and 

C both consider physical activity to be an important property of sport, one would expect 

similar typicality ratings for hiking (i.e., relatively high ratings) and snooker (relatively low 

ratings).  

To formally test this prediction, they constructed two similarity matrices for 

participants, one for extensions (i.e., consisting of all pairwise correlations between 

participants’ typicality judgments) and a second one for intensions (i.e., consisting of all 

pairwise correlations between the same participants’ property importance judgments). They 

then correlated these similarity matrices from the two tasks to test whether there is a relation 

between extensional and intensional representations. Across four studies (with slight 

variations in the methodology), they came to the conclusion that similarity between 

individuals in extensional judgments did not map onto similarity between individuals in 

intensional judgments. Estimates of the correlation between similarity matrices were close to 

zero in spite of test-retest reliability correlations for both matrices obtained in two of the 

studies of around .35, significantly above zero. Put differently, their results contradict the 

widely accepted view that intensions map to extensions. H&P proposed instead that category 
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intension and extension are not integrated, but rather that they are stored independently from 

each other. More concretely, there might be an exemplar-based system underlying extensional 

judgments (see e.g., Storms, De Boeck, & Ruts, 2000) and a theory/schema-driven system 

underlying intensional judgments. Such a hybrid form of concept representation can account 

for H&P’s findings by assuming that the typicality and property importance judgments tap 

into different systems, which are stored separately in semantic memory.  

 H&P’s conclusions have far-reaching repercussions for theories of concept 

representation and category learning, because most theories assume there is a link between 

intension and extension. Hence, the first aim of this paper is to conceptually replicate their 

findings. An important difference from H&P’s experiments is that we employed a category 

judgment task to measure category extensions, and a property generation task (Study 1) and 

property judgment task (Study 2) to measure category intensions. Besides testing whether 

H&P’s findings generalize to other, related measures, we used category judgments instead of 

typicality ratings to address the concern raised by H&P that different properties may 

determine category membership as opposed to typicality judgments (for some concepts). 

Indeed, they speculated that “judgments of feature importance might reflect involvement in 

category membership decisions rather than typicality, so that variability in the two measures 

would not match up” (p. 507). The present set-up allows us to test this possibility. 

A second goal is to compare H&P’s approach with a more direct method to link 

people’s intensions and extensions. Indeed, their (controversial) conclusion might find its 

roots in the nature of the methodology they used. To address this (potential) concern, we used 

a more straightforward measure of the extension-intension relation inspired by Hampton 

(1979). More concretely, we will examine whether a participant’s own properties predict her 

category judgments better than the properties of another participant. 

Study 1 
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Method 

 Participants. Sixteen adults (8 females); ranging in age from 20 to 46 years old (Mage 

= 26.83) performed both a property generation task and a category judgment task. Another 

group of 16 adults (10 females), ranging in age from 20 to 55 years old (Mage = 30.42) 

performed a property applicability judgment task.  

Materials. The stimuli were sets of 15 possible exemplars from each of 8 semantic 

categories. Inspired by Ameel et al. (2008), the categories were chosen in pairs of a 

superordinate (high) level and a corresponding basic (low) level category (specifically, 

clothes-trousers; fruit-berries; musical instruments-guitars; vehicles-bicycles). The exemplars 

were presented in the form of pictures in both the category membership judgment and 

property applicability judgment tasks, whereas in the property generation task only the 

category names were presented. Within each set of 15 items, ten were presumed category 

members and five were presumed non-members (based on discussions of the selected 

materials by two of the authors). Each picture was printed in color on a 11x10 cm cardboard 

form. Figure 1 displays some of the stimuli (see Appendix for all items). Note that there are 

two primary differences with H&P’s study in terms of the materials used: H&P only selected 

superordinate categories, some of which were of a non-physical nature (i.e., sports and 

science) and the exemplars were presented in the form of words instead of pictures. However, 

these variations from H&P’s study were not theoretically motivated. 

----------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 1 HERE 

---------------------------------------------------------------------------------------------------------------- 

Procedure. In a first phase of the study, participants completed the property 

generation task and then continued to the category membership judgment task, within a single 

session. The task order assured that participants’ generated properties were not influenced by 
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the pictures. That is, participants only saw the pictures in the category membership judgment 

task. In a second phase of the study, a different group of participants performed the property 

applicability judgment task, which involved the properties gathered in the first phase of the 

experiment (i.e., in the property generation task).  

In the property generation task, participants were given a MS Excel file that contained 

eight worksheets, one for each category name. Participants were asked to imagine they had to 

explain the terms to someone who did not know their meaning. They performed the task 

individually by typing in the properties. They were instructed to finish one category before 

moving on to the next one. The categories were presented in different random orders to each 

participant with superordinate and basic category pairs (e.g., clothes-trousers) never occurring 

immediately one after the other.  

After completing the property generation task, participants were given a link to an 

online survey (i.e., the category membership judgment task) where each set of 15 pictures was 

presented and they were asked to click on the pictures of exemplars they judged to be 

members of the category mentioned above the picture set. Each category name was embedded 

in a question, for instance, “which pictures below are members of the category fruit?” The 

category name was written in bold and underlined. All 15 pictures were presented in three 

rows of five, so that participants could see all the pictures on their computer screen at the 

same time. Participants were also always able to see the target category name when they were 

selecting pictures. Before moving on to the next category, participants were asked to check 

whether they were sure of their answers. If they did, they were allowed to click the ‘next’ 

button to continue to the next category. In the survey, each participant received a different 

random order of the categories and pictures. 

To select the properties for the property applicability judgment task, we followed the 

procedure described in McRae, de Sa, and Seidenberg (1997). First, all generated properties 
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were simply tallied for each category name. Synonym properties (i.e., properties that have 

essentially the same meaning, e.g., to produce music and to make music) were given an 

identical code. Properties phrased with an adjective-noun combination (e.g., heavy iron) and 

conjunctive properties (e.g., red and small) were split and treated as separate properties if 

they provided different information. Redundant quantifiers (e.g., most of them) were dropped 

and properties which only mention exemplars of the category (e.g., apple for the category 

fruit) were eliminated. The total number of properties (i.e., the number of types, not tokens) 

generated across participants for each category ranged from 39 to 53 (see Table 1 for the 

average number of tokens of generated properties per category). In a next step, the 15 possible 

exemplars per category were combined with the generated category properties to form 

property by exemplar matrices. Thus, every matrix consisted of 15 columns, one for every 

exemplar, and 39 to 53 rows, one for every generated property. 

----------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 1 HERE 

----------------------------------------------------------------------------------------------------------------- 

In the property applicability judgment task, a different group of participants 

individually received an excel file in which they indicated whether the exemplars possessed 

the properties by entering a 1 if the property applied to the exemplar, or a 0 if not. Each 

participant was randomly assigned to fill in the matrices for two categories. In total, four 

participants were assigned to each category. All the tasks were conducted in Dutch and none 

of the tasks had a time limit. 

Results 

 The results are structured as follows. First, we will describe the intensional and 

extensional measures and explain how these were transformed into similarity matrices. Then, 

we will test whether similarity between individuals for extensional judgments maps onto 
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similarity between individuals for intensional judgments by correlating extension and 

intension similarity matrices (i.e., H&P’s approach). Finally, we will introduce a new method 

using an individual’s properties to predict her own category judgments and compare the 

results.  

Extension similarity matrix. The category judgments were first quantified by scoring 

each decision as 0 or 1, depending on whether the item was judged a non-member or a 

member of the category (see Table 1 for the mean and standard deviation of the category 

judgment scores, the proportion of yes responses, per category). These scores were then 

tabulated for each participant in each category. To measure between-participant consistency, 

Cronbach’s alpha reliability coefficients (Lord, Novick, & Birnbaum, 1968) were calculated 

for the category judgment scores. Agreement between people (and a large sample size) 

translates into a high alpha. The reliability coefficients obtained in the present study varied 

between .92 and .99 across the eight categories. For each category, a participant by participant 

(16x16) similarity matrix was then constructed with the correlations between participants’ 

category judgments. This matrix shows the similarity between all pairs of participants in their 

category judgments. 

Intension similarity matrices. Based on the property generation task, we constructed 

two intension similarity matrices. The first one was a property overlap measure and the 

second one was derived from the property applicability scores.  

For the first matrix, property overlap scores were computed (see Tversky, 1977). That 

is, for every two participants and every category, the number of common properties (i.e., 

properties that were generated by both participants) was divided by the sum of common and 

distinctive properties (i.e., the number of unique properties from both participants). For each 

category, we then constructed a 16x16 similarity matrix with participants’ property overlap 

scores. This matrix will be termed the “property overlap similarity matrix”.  
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For the second matrix, summed property applicability scores were computed for each 

exemplar separately for each participant based on the properties that she herself generated. 

The idea is that if an exemplar possesses many of the properties generated by person X (i.e., 

the exemplar has a high property applicability score), it is more likely to be included as a 

category member by that person. The procedure to calculate the property applicability scores 

is illustrated in Figure 2 for the category fruit (the same holds for the other seven categories). 

The applicability judgments (0 or 1) for each property × exemplar combination were first 

summed over the four participants who completed the property applicability judgment task, 

resulting in property applicability scores that ranged from 0 to 4. The Cronbach’s alpha 

reliability coefficient for these property applicability judgments varied between .78 and .90 

across the eight categories. Using the specific properties a participant generated (i.e., 

individual properties), summed property applicability scores were then calculated by adding 

the property applicability scores of the individual properties for each of the 15 exemplars 

separately. For instance, to calculate the summed property applicability score of the exemplar 

banana for participant X, the applicability scores for banana were summed across all the 

properties generated by participant X (see the vertical box under the exemplar banana in 

Figure 2). This procedure was carried out for all the 15 exemplars separately and for every 

participant using her own individual properties. The result is a vector with 15 elements for 

each participant × category combination, representing the degree to which each exemplar 

possesses the properties generated by that participant. Finally, a 16x16 similarity matrix for 

participants was constructed using the correlations between participants’ summed property 

applicability scores. To avoid confusion, this matrix will be termed the “property applicability 

similarity matrix”. Thus, both the property applicability and the property overlap similarity 
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matrices provide some insight into how similar or dissimilar participants are in terms of their 

category intensions3. 

-----------------------------------------------------------------------------------------------------------------

INSERT FIGURE 2 HERE 

----------------------------------------------------------------------------------------------------------------- 

Correlation between similarity matrices. In order to discover whether there is a link 

between extension and intension, we correlated, for each category, the lower triangular 

extension similarity matrix with the corresponding property applicability and property overlap 

similarity matrices. Before extension and intension similarity matrices were correlated, the 

central tendency and variability of the similarities was checked. Table 2 shows the average of 

each of the three similarity measures per category, whereas Figure 3 shows the distribution of 

these measures across all eight categories. Because our data were non-normally distributed 

(with skewness of the similarities from the category judgment, property overlap, and property 

applicability matrices: -1.93, 1.00, and -1.17, respectively), we used Spearman’s non-

parametric rank-order correlation to examine the correspondence between the extension and 

intension matrices4.  

----------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 2 HERE 

----------------------------------------------------------------------------------------------------------------- 

----------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 3 HERE 

----------------------------------------------------------------------------------------------------------------- 

                                                           
3 One could argue that property applicability similarity is an imperfect reflection of intensional similarity. Two 
people might generate completely different properties, yet if these yield similar amounts of evidence for a given 
set of exemplars belonging in the category, the property applicability scores could be strongly correlated. It 
should be noted that property applicability similarity does correlate reliably with property overlap similarity, as 
will be shown later.  
4 All correlations used to construct similarity matrices are Pearson product-moment correlations. 



12 
 

 For each category, we first calculated the correlations between the extension similarity 

matrix and the two different intension matrices (see the first and third columns of Table 3 

under the subheading “Within-category”). Collapsing across categories, the average 

correlations were close to zero: M = .03 for property applicability and M = -.07 for property 

overlap. Following H&P, we also correlated the extension similarity matrix from a particular 

category (e.g., clothes) with the intension matrices from the other seven categories (see 

columns with subheading “Between-category”). This procedure provides a control for non-

specific similarities in how people may be approaching each task. Mean correlations were 

very close to zero. Using independent samples t tests to compare the (Fisher’s Z transformed) 

eight within- and 56 between-category correlations, we found no significant difference for 

category judgment – property applicability (p = .97) and category judgment - property overlap 

(p = .18). These results conceptually replicate H&P’s findings and might thus suggest that 

there is no clear link between people’s individual category extension and intension.  

 For completeness sake, Table 3 also shows the correlations between the two different 

intensional matrices. Seven of the 8 categories showed significant positive correlations, with a 

mean of .41. This result is to be expected, given how the matrices were constructed. 

----------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 3 HERE 

----------------------------------------------------------------------------------------------------------------- 

Predicting category judgments from individual properties. The previous analyses 

showed correlations between intension similarity matrices and extension similarity matrices 

that were close to zero. This could mean that participants’ category judgments were not based 

on their own properties. It is, however, possible that properties from other participants contain 

useful information for the prediction of one’s own category judgment. In other words, it is 

feasible that people use properties in judging category membership that they do not come up 



13 
 

with in a property generation task (Bellezza, 1984), but that are nevertheless generated by 

other participants. Thus, a mixed effects logistic regression analysis was run to investigate to 

what extent the particular properties that a person generated (i.e., the individual properties) 

contribute to his/her own particular category judgment. 

The analyses were carried out in R (version 3.1.2) using the lme4 package (Bates, 

Maechler, Bolker, & Walker, 2014). Category judgment of a given individual to a given 

exemplar, a binary variable, was included as the response of interest and two fixed effects 

were included. The first one comprised the individual property applicability scores (i.e., based 

on the set of properties that that specific participant generated, see Figure 2) and the second 

predictor contained the residual property applicability scores (i.e., based on the properties that 

were generated by the other participants, see Figure 2). For each participant × category 

combination, we z-transformed both the individual and residual property applicability scores. 

In addition, category level (basic and superordinate levels of a category) and domain 

(clothes, fruit, musical instruments, and vehicles) were included as dummy-coded covariates 

(these effects are not the main interest of the analyses). Random effects for participants and 

items (i.e., the 120 different pictures) were also included. Following the suggestion from Barr, 

Levy, Scheepers, and Tily (2013), the random effects structure was maximal except when it 

concerned the control variables category level and domain, and random correlations were 

excluded as well5. The analysis revealed that individual properties have a significant 

contribution to the prediction of the person-specific category judgments (β = 0.87, SE = 0.16, 

χ²(1) = 20.20, p < .001). This might lead to the conclusion that people’s own properties are 

directly linked to their category extension. We also found a significant effect of the residual 

properties (β = 2.02, SE = 0.26, χ²(1) = 50.70, p < .001). This means that properties that 

participants did not generate also play a role in predicting category judgment.  

                                                           
5 The analysis code can be found on Open Science Framework 
(https://osf.io/8vewz/?view_only=1b287bc02fab49fdbbbfe923332f1cd0).  
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However, if all properties are (to some extent) predictive for category judgments, it 

shouldn’t be a surprise that we found a significant effect of the individual property 

applicability scores in the previous analyses. Indeed, these results did not prove that one’s 

own properties are special. Thus, in an additional analysis, we sought to compare how well a 

person’s properties predict their own category judgments as opposed to other people’s 

category judgments. To examine whether intension predicts extension at the individual-

specific level, we conducted a similar analysis, except that we now shuffled the category 

judgments of all participants. That is, each participant’s individual property applicability 

score was paired with another participant’s category judgments. For example, the category 

judgment scores of Participant 1 were paired with the individual property applicability scores 

of Participants 2, 3, 4,…., or 16 (there were 16 participants in total – see Table 4 for a 

simplified illustration). In the previous analyses a person’s category judgments were predicted 

by the specific properties she generated and the properties generated by the remaining 15 

participants. Now, a person’s category judgments will be predicted by a different person’s 

properties and the 15 other participants’ properties. The latter entails that a person’s own 

properties are now included in the residual property applicability scores. 

----------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 4 HERE 

----------------------------------------------------------------------------------------------------------------- 

A similar mixed effects logistic regression analysis was again run, but this time, 

instead of using category judgment as the dependent variable, we used the shuffled category 

judgments data as the response of interest. We repeated this procedure for 1,000 random 

shuffles of the category judgment data. Each time we compared the regression weights 

obtained from this model with the regression weight obtained from the previous analysis (i.e., 

using the original non-shuffled category judgment data). If there is a link between someone’s 
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category intension and extension, we would expect that the regression weight of the 

individual property applicability scores would be higher in the original analysis compared 

with the shuffled data. In contrast, we expect that the regression weight of the residual 

property applicability scores would be higher with the shuffled data, because a participant’s 

own properties are now actually included in the calculation of the residual property 

applicability scores. We found that for 98.69% of all the simulations, as expected the original 

regression weight of individual property applicability scores was higher than the one obtained 

using the shuffled data. We also found that in 97.78% of all the simulations, the regression 

weight of residual property applicability scores was lower than the one obtained using the 

shuffled data6. Taken together, these results do provide evidence that there is a relation 

between people’s category extensions and their intensions, for certain categories at least.  

Study 2 

In order to replicate and extend the findings of Study 1, Study 2 was conducted using a 

larger sample (i.e., 80 participants and 24 exemplars per category). The same methods, 

correlating extension and intension similarity matrices and mixed effects logistic regression 

analyses, were again used to examine the extension-intension relation. There were a few 

differences compared to Study 1. First of all, we employed a property judgment task instead 

of a property generation task to measure category intension, and hence the calculation of the 

property applicability scores was slightly different from Study 1. The reason was that, during 

a property generation task, people may forget to mention certain properties or give properties 

they are not actually using when judging category membership. Although their own properties 

may still predict their category judgments to some degree, there is ample room for 

improvement. The latter statement is supported by the finding in Study 1 that residual 

properties (i.e., properties generated by other individuals) were predictive for person-specific 

                                                           
6 In some cases the shuffling caused convergence problems during the mixed effects logistic regression analysis. 
These were removed from the analyses.    
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category judgments too. In other words, the few properties a person generates play a role in 

their category judgments, but properties they do not generate are an even bigger factor. The 

notion that people fail to generate some crucial properties may make it difficult to obtain a 

reliable intension similarity matrix. As found in Bellezza’s (1984) study, the test-retest 

reliability of generating properties for category terms can be quite low. He argued that since 

there is no well-defined meaning of a word, it is difficult to retrieve the same information on 

different occasions. This could in turn explain why we did not find a correlation between 

extension and intension similarity matrices.  

So, in order to address the concern that people cannot consciously access all relevant 

properties that they employ to define a concept, we used a property judgment task instead of a 

property generation task. If people tacitly “know” which properties to use when making a 

category decision, they may be able to recognize them in a property judgments task even 

though they (partly) fail to retrieve them during a property generation task.  

A second difference with respect to Study 1 is that we now added a filler task (i.e., 

solving analogies), between the property judgment and category judgment task, in order to 

eliminate or at least reduce any potential carry-over effect. Finally, we selected three different 

categories for this study, from Verheyen and Storms (2013), which were also used by H&P 

(as opposed to the eight categories used in Study 1): insects, tools, and sciences. The 24 items 

per category, including clear members, clear non-members, and borderline cases, were also 

taken from Verheyen and Storms as were the property applicability matrices. This study was 

pre-registered on Open Science Framework (OSF, 

https://osf.io/bqekx/?view_only=15f087a23f8f4a7bbc417c7b030c7c5f), and all data and 

analysis code, can be found using this link 

(https://osf.io/8vewz/?view_only=1b287bc02fab49fdbbbfe923332f1cd0). 

 

https://osf.io/bqekx/?view_only=15f087a23f8f4a7bbc417c7b030c7c5f


17 
 

Method 

 Participants. Eighty participants (50 females), ranging in age from 18 to 32 years old 

(Mage = 19.05) performed a property judgment task and a category judgment task. They 

participated voluntarily or received study credit for their participation. Five participants 

unexpectedly showed no variability in their property or category judgments for at least one 

complete category, so they were excluded from the analyses7.  

Materials. As in H&P, the materials were taken from Verheyen and Storms’ (2013) 

study. In the latter, eight categories were used, representing four different category types 

(animals: fish and insects; artifacts: tools and furniture; activities: sports and sciences; and 

borderline artifact-natural-kind categories: fruit and vegetables). To keep the task practically 

feasible for participants, we reduced the number of categories to three, based on these criteria: 

(1) we wanted to have one category from each type, except for the artifact-natural-kind group, 

because the category fruit was already included in Study 1; (2) since the main aim of our 

study is to investigate consistency between extension and intension, inter-individual diversity 

is important. To determine this, we used the category judgment data from Verheyen and 

Storms (2013). After case-wise removal of missing data and exclusion of participants without 

any variability in their category judgments, we calculated Cronbach’s alpha and average pair-

wise correlations (i.e., correlations between subject X’s category judgments and subject Y’s 

category judgments). The following categories demonstrated the most inter-individual 

variability (from high to low): sciences, insects, sports, and tools. As we wanted one category 

per type, we ultimately selected sciences (activities), insects (animals), and tools (artifacts).  

Verheyen and Storms selected 24 items per category, comprising clear members, clear 

non-members and borderline cases, all of which were used in the category judgment task. In 

                                                           
7 We did not take into account the possibility that some participants would give the same response to all 
questions, which is why this exclusion criterion was not mentioned in the pre-registration plan. Showing no 
variance across items rendered it impossible to compute correlations with other participants. 
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addition, they gathered property generation data as well as property applicability judgments 

for all categories. All resulting properties (i.e., 39 for sciences, 35 for insects, and 34 for 

tools) were included in the property judgment task. In contrast to Study 1, exemplars were 

presented as words instead of pictures. 

Procedure. Each participant was given a link to an online survey consisting of three 

tasks presented in the following order: a property judgment task, an analogy test (i.e., a filler 

task), and a category judgment task. Participants were tested in one session. 

In the property judgment task, participants were shown a list of properties underneath 

a category name. They were asked to judge whether each property was true for that category 

name by clicking a “yes” button or a “no” button. They could only continue to the next 

category if they had given a response to all the properties. The order of the categories and the 

properties within a category were randomized for each participant. 

A similar procedure was used in the category judgment task. However, instead of a list 

of properties, participants were shown a list of exemplars (presented as words) and they had 

to judge category membership of each exemplar by clicking a “yes” button if they thought 

that the exemplar belonged to that category or a “no” button if they thought it wasn’t a 

member of the category. They had to give a response to all 24 exemplars before they could go 

on to the next category. Each participant received a different random order of categories and 

exemplars within a category. 

The analogy test consisted of 10 multiple choice questions such as “wrist : elbow :: 

ankle : ? ”  (where the correct response was knee in this case). All tasks were conducted in 

Dutch and none of the tasks had a time limit. 

 

Results 
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Extension similarity matrix. Again, category judgments were quantified by giving a 

score of 0 or 1, based on whether the item was judged a non-member or a member of the 

category. Table 5 shows the mean and standard deviation of the category judgments scores 

(the proportion of yes responses) per category. Cronbach’s alpha reliability coefficients for 

the category judgment scores were .99, .99, and .98 for the categories insects, tools, and 

sciences, respectively. A participant by participant (75x75) similarity matrix was then 

constructed for each category with the correlations between participants’ category judgments. 

----------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 5 HERE 

----------------------------------------------------------------------------------------------------------------- 

Intension similarity matrices. Two intension matrices were constructed, the first one 

was based on property judgments and the second one was based on property applicability 

scores. To construct the first matrix, the property judgments were quantified by giving a score 

of 1 if the property was judged to apply to the category and a score of 0 if not (see Table 5 for 

the mean and standard deviation of the property judgments, expressed as the proportion of 

properties judged to be true of the category). These scores were then tabulated for each 

participant in each category. Cronbach’s alpha reliability coefficients for the property 

judgment scores were .96, .97, and .97 for the categories insects, tools, and sciences, 

respectively. A participant by participant (75x75) similarity matrix was constructed for each 

category by correlating participants’ property judgment scores, which we will call the 

“property judgment similarity matrix”. 

To construct the second intension matrix, a similar procedure as in Study 1  was 

employed to compute the individual summed property applicability scores (see Figure 4), 

only this time, the property scores were taken from Verheyen and Storms (2013). Unlike 

Study1, the individual properties were those properties that were considered to apply to a 



20 
 

category according to a particular participant. Using these individual properties, summed 

property applicability scores were then calculated by adding the property applicability scores 

for the properties of each of the 24 exemplars separately. A 75x75 similarity matrix was 

constructed with the correlations between participants’ summed property applicability scores. 

This matrix will be termed the “property applicability similarity matrix”. 

----------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 4 HERE 

----------------------------------------------------------------------------------------------------------------- 

Correlation between similarity matrices. As in Study 1, the similarity matrices from 

each task and each category were correlated. Before doing so, the central tendency and 

variability of the similarities was first checked. Table 6 shows the average of each of the three 

similarity measures per category, whereas Figure 5 shows the distribution of these measures 

across all categories. Spearman’s non-parametric rank-order correlations were again used to 

measure the relation between extension and intension, since our data were non-normally 

distributed (with skewness of the similarities from the category judgment, property judgment, 

and property applicability matrices: -0.19, -0.12, and -2.81, respectively). 

----------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 6 HERE 

----------------------------------------------------------------------------------------------------------------- 

----------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 5 HERE 

----------------------------------------------------------------------------------------------------------------- 

Table 7 shows the correlations between the extension similarity matrix and the two 

different intension matrices per category. Collapsing across categories, the mean correlations 

were again found to be close to zero (see the first and third columns of Table 7 under the 
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subheading “Within-category”): M = .03 for property judgments and M = .06 for property 

applicability8. These results, again, confirm H&P’s findings, suggesting that there is no 

(strong) link between a person’s category extension and his/her intension. 

----------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 7 HERE 

----------------------------------------------------------------------------------------------------------------- 

Predicting category judgments from individual properties. A mixed effects logistic 

regression analysis was again run to investigate to what extent the properties that a person 

considers applicable to a category (i.e., the individual properties) can predict his/her own 

category judgment. Analogous models as in Study 1 were used in the analyses. Category 

judgment was the response of interest and two fixed effects were included. The first one 

consists of the individual property applicability scores (i.e., based on the properties that apply 

to a category according to a participant), and the second one contained the residual property 

applicability scores (i.e., based on the properties that were not endorsed by a given 

participant). These can be considered residual properties because they were responses from 

participants in Verheyen and Storms’ (2013) property generation task. For each participant × 

category combination, we once again z-transformed both the individual and residual property 

applicability scores. In addition, category (with levels insects, tools, and sciences) was 

included as a covariate and the same random effect structure as in Study 1 was used. 

The analysis revealed that individual properties contribute significantly to the 

prediction of the person-specific category judgments (β = 2.11, SE = 0.22, χ²(1) = 67.00, p < 

.001), whereas the residual properties did not (p = .30). These findings seem to support the 

                                                           
8 Because people presumably endorsed properties that they may have failed to come up with during the property 
generation task (Study 1), the resulting applicability scores are more similar. However, the results showed 
comparable correlations with the other measures of intensional similarity (.41 in Study 1 and .37 in Study 2), 
mitigating concerns about potential ceiling effects. The high values should not come as a surprise, given that 
people generally agree on category extension (see Verheyen & Storms, 2013 and the high Cronbach's alpha for 
category judgment). 
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conclusion that people’s set of properties are directly linked to their category extension. They 

also suggest that, when presented with potential properties, participants are able to select 

those properties that drive their category membership judgments. In contrast, when people 

have to generate properties themselves, as was the case in Study 1, they only come up with a 

subset of all properties that they actually take into account when making category 

membership decisions. That is probably why residual properties significantly predicted 

category judgments in Study 1, but not in the present study.      

Finally, the same shuffling procedure as in Study 1 (see Table 4) was run to compare 

how well a person’s intension predicts her own category judgments as opposed to other 

people’s category judgments. The results showed that the original regression weight of the 

individual property applicability scores was higher than the one obtained using the shuffled 

data in 100% of the simulations. Similarly, the regression weight of the residual property 

applicability scores was lower than the one obtained using the shuffled data in 99.90% of the 

simulations. These results strongly suggest that there is a relation between people’s category 

extensions and their intensions. 

General Discussion 

Across two studies, we investigated the relationship between category extension and 

intension in eleven semantic categories. It is often tacitly assumed that there is a (strong) 

extension-intension link, yet, a recent study by H&P called this hypothesis into question. 

They found that systematic inter-individual variability in extensional beliefs did not 

significantly correlate with inter-individual variability in intensional beliefs.   

Because of the theoretical importance of these findings, we sought to extend H&P’s 

findings using other measures of category extension and intension. To capture category 

intension we asked participants to describe categories based on their own perspective (Study 

1) or to judge whether a set of properties are true for a particular category (Study 2). In 
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addition, instead of typicality judgments, we used a category judgment task to measure 

individuals’ category extensions. Although typicality judgments are a common and valid 

measure of category extension, it is a gradual measurement that allows members of a category 

to vary in how good they are as an example of a category or how typical they are of the 

category. On the other hand, category judgment is a more decisive binary measurement, 

which might capture different information. More specifically, H&P raised the possibility that 

different properties may determine category membership as opposed to typicality. So to rule 

out the possibility that H&P’s findings were merely caused by the use of typicality ratings, we 

employed category judgments as a measure of extension. 

Using H&P’s method (i.e., correlating extension and intension similarity matrices) in 

both studies, we found evidence suggesting that similarity between individuals for extensional 

judgments did not map onto similarity between individuals for intensional judgments. These 

findings indicate that H&P’s results were not merely a product of the particular intensional 

and extensional measures they used. So contrary to popular belief, it may appear that there is 

a disconnection between category extensions and intensions. However, H&P’s approach is a 

bit unconventional as it does not directly compare an individual’s intension with her 

extension. As we will discuss later, the nature of this procedure brings about some 

methodological concerns that may invalidate their conclusions.    

A match made in heaven after all? 

  In a follow-up analysis, we directly related people’s category judgments to the 

properties they themselves generated or endorsed for a certain category. The latter analysis, 

however, provided evidence in favor of a link between intension and extension. That is, the 

properties a person generated (Study 1) or endorsed (Study 2) were generally a better 

predictor of her category judgments than of the category judgments of other people. The 

question is, why do both approaches, using the same dataset, lead to conflicting findings? And 
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what should we actually conclude about the relation between a person’s category intension 

and his/her extension? 

We see three possible explanations for these differences. First, even though the 

reliability coefficients for the property applicability judgments were high (e.g., in Study 1, 

they varied between 78 and .90), there seems to be some disagreement among participants as 

to which properties apply to which exemplars. This could be an issue for H&P’s method, 

because two people with the same category intension, may disagree about which exemplars 

possess certain properties resulting in (partly) different category extensions (and vice versa). 

Thus, intensional similarity does not necessarily translate into extensional similarity. Note 

that every participant with “atypical” property applicability views can influence N - 1 data 

points in the property applicability similarity matrix (i.e., all similarities with the other 

participants). This could be one of the reasons why both H&P and the present study showed 

non-significant correlations between intensional and extension similarity.  

On the other hand, the mixed effects logistic regression method might not be affected 

by idiosyncratic property applicability views to the same extent. If a person holds 

unconventional beliefs about which exemplars possess which property, her individual 

property applicability scores will be inaccurate. Whereas the appropriate, yet unknown, 

property applicability scores of that participant may predict her category judgments, the 

derived applicability scores may not. This would in turn decrease the fit of the mixed effects 

logistic regression model, but the relation between the derived applicability scores and the 

category judgments will still hold for the average person. Hence, the regression weight of the 

person-specific properties will differ significantly from zero, as was the case in both Study 1 

and 2. Furthermore, because the subsequent shuffling procedure considers all participants 

simultaneously, atypical participants will literally get lost in the shuffle. That is to say, if the 

category judgments are shuffled, nothing changes for participants whose derived applicability 
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scores are an imperfect reflection of their true applicability scores: on average, the derived 

applicability scores will predict someone else’s category judgments equally badly compared 

to their own category judgments (or even slightly worse). The story is different for the other 

participants (the majority in all likelihood), whose derived applicability scores more 

accurately reflect their true applicability scores. On average, their derived applicability scores 

will predict someone else’s category judgments considerably worse than their own, assuming 

of course that there is an intension-extension link and inter-individual variability in both 

measures. So that is probably why, as a whole, individual property applicability scores are a 

better predictor of one’s own category judgments as opposed to someone else’s judgments. 

More generally, because this procedure considers all participants at the same time, it is 

probably more likely to detect subtle effects. 

A second reason why the two approaches may lead to different conclusions has to do 

with the reliability of the similarity matrices. More precisely, the correlation between the 

extension and intension similarity matrices is necessarily constrained by the reliability of the 

two matrices. Our data do not allow us to estimate the reliability of the similarity matrices 

(since, unlike H&P, our participants performed every task just once), but in H&P’s data, the 

reliability estimates were rather low (ranging from .18 to .51). If one takes this unreliability 

into account, for instance by applying Spearman’s correction for attenuation formula, the 

resulting correlations are considerably higher. On average, the resulting corrected correlation 

was .35, which seems to suggest that there might be a (weak) relation between extension and 

intension after all. On the other hand, H&P’s meta-analysis of their effect sizes suggested a 

95% CI for the correlation of between +0.1 and -0.1 which is a very small effect. 

Finally, based on the literature (Ameel et al., 2008; Malt et al., 1999), there is arguably 

no perfect link between extension and intension. This notion likely compounds the reliability 

issue. If on the one hand, the extension and intension similarities are not very reliable, and on 
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the other hand, the link between extension and intension is, at the very least, imperfect, one 

may have trouble finding significant correlations between the intension and extension 

similarity matrices. Furthermore, there may be inter-individual variability in the extension-

intension link. Put differently, some people may be very consistent in their category 

extensions and intensions, whereas other people may have a weaker link between their 

extensions and intensions. In conclusion, the present study confirms H&P’s results in that 

extensional similarity does not necessarily map onto intensional similarity. Taken at face 

value, they may challenge the long-held belief that there is a direct, but perhaps imperfect, 

relation between category intension and extension. However, the method of correlating 

intensional and extensional similarity matrices is a rather indirect way to test whether 

intensions and extensions are connected. The outcome critically depends on a) agreement 

about which properties apply to which exemplars, b) the reliability of both similarity matrices, 

c) the strength of the extension-intension link, and d) inter-individual variability in the 

strength of the extension-intension link. The combination of these factors might result in very 

low and even negative correlations (the latter due to random noise). In contrast, directly 

predicting a person’s category judgments from the properties she generated or endorsed does 

not suffer (to the same extent) from these issues. Using this, presumably more sensitive 

method, we did find a significant relation between a person’s category intension and his/her 

extension, indicating that properties are important even though they might not tell the whole 

story (Ameel et al., 2008; Malt et al., 1999). 
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