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Abstract 

During the past decades to prevent catastrophic failure of the system, avoiding poten­

tial costs arising from the system downtime and optimize maintenance costs, there has 

been an interest in maintenance optimization problem for repairable systems subject to 

deterioration. 

Here to tackle the maintenance optimization problem two maintenance models for 

deteriorating repairable systems are proposed: optimal preventive maintenance schedul­

ing model tdecision model) and optimal maintenance-r~pa~r and inspection-scheduling 

model (intensity control model). In chapter 4 under both periodic and non-periodic in­

spection policy a novel approach to the determination of optimal repair and replacement 

decision rule subject to system parameters is presented. A renewal argument is used to 

derive expressions for the long-run average cost per unit time under theses two kinds· 

of inspection policy. The second part of the research (see chapter 5) considers mainte­

nance scheduling problem of manufacturing systems whose production process (resulting 

output) is subject to system state. The latter means, resulting outputs (revenue) from 

system depends on the deterioration level of the manufacturing system: the good state 

of the system results in more efficiency of the system and more resulting output (rev­

enue); the bad state of the system leads to system malfunction and less revenue. To 

optimize revenue from the manufacturing system, using optimal intensity control model, 

an optimum repair and inspection policy to balance the the amount of maintenance re­

quires to increase system efficiency against the loss of revenue arising from the system 

malfunction is presented. Our approach rests on assumption that the transition rate 

from good (normal) state to bad (degraded) state is linear/non-linear. 

XIV 



xv 

Deriving expression for long-run average cost per unit of time under both periodic 

and non-periodic inspection policy, applying the repair alert and virtual age process 

model, is the main advantage of the presented decision model to other maintenance 

models. In addition, using intensity control model, optimizing revenue from manufac­

turing systems subject to deterioration is a novel approach to maintenance scheduling of 

manufacturing systems whose production process is subject to the system state and rep­

resent an extension of the known maintenance models in which the maintenance process 

is restricted to inspections. 
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Chapter 1 

Problem Statement 

In this chapter two maintenance optimization problems which are of great practical 

importance are considered: optimal preventive maintenance scheduling problem for a 

stochastically deteriorating system (Decision model) and optimal maintenance schedul­

ing problem for a manufacturing system subject to'deterioration (intensity control 

model).' In both decision and intensity control model to optimize maintenance pro­

cess we provide a solution to the optimal control of amount of maintenance in such a 

way that the maximum revenue from manufacturing system and minimum maintenance 

cost are derived respectively. In the first model (see chapter 5) which is a novel approach 

to the maintenance modeling, using intensity control model, the optimum revenue from 

manufacturing system is achieved by an optimal control (repair degree) process keeping 

a correct balance between revenue from system and amount of maintenance. In the 

second model (see chapter 4), using traditional method (embedded renewal process), 

we find an optimal solution the repair decision thresholds and system parameters. The 

optimal decision thresholds and system parameters as optimal (repair degree) control 

process provide a right balance between amount of maintenance and maintenance cost. 

1 



2 

1.1 Maintenance scheduling problem of systems sub-

ject to non-self announced failure 

Failure of many systems such as protective devices or stored items that are subject to 

random failure is not self-announced and can be found only by inspections which incur 

costs in terms of wage and material. It .stands to clear the ,greater the probability of 

detection of failure, the higher the inspection costs. So, to minimize the cost keeping a 

correct balance between frequency of inspections and inspection costs is essential. The 

literature on the opti.mal inspection problem for systems subject to non-self announced 

failure is vast. Barlow et al (7) given some major assumptions which include the system 

failure is non-self announced and inspections do not impact on the failure characteris-

tics, shows that optimal inspection times are the solution of system of equations. He 
l . 

'proposes an algorithm to numerically solve the system of equations remarked by Barlow, 

Hunter and Proschan algorithm (BHP algorithm for short). The extreme sensitivity of 

the algorithm to initial value tl (first inspection time) is termed as the major problem 

of the Barlow et al model. Keller (37), and Kaio and Osaki (34) model the optimum 

inspection problem with respect to the inspection density that implies the number of 

checks per unit of time. Both Keller's model and the method of Kaio and Osaki to 

evaluate' the inspection time sequence use the assumption that the time between the 

failure and its detection is half of the inspection interval. Lack of required accuracy 

resulting from assumption above is stated as a problem in both models. Munford and 

Shahani (48) define an inspection sequence characterized by the conditional failure prob-

ability of the system. The sequence of inspection times is optimized by minimizing the 

expected total cost. Chelbi and Ait-Kad (11) introduce an improved inspection model 

that the conditional failure probability should be an increasing function of the inspection 



3 

number. Both conditional failure probability based models are known as one-parameter 

optimization models. As mentioned before, at survey times inspections due to either 

certain recovery actions (e.g. some adjustment, or partial repairs) or the system com-

plexity do not impact on the failure characteristics of the system. That means, the 

system state at inspection times leaves unchanged. Such inspection problem which is 

most common in application is addressed by Jiang and Jardine (32). They present an 

optimum inspection schedule subject to an increasing failure rate. It is assumed that 

failures occur at random times and can be detected only through an inspection. Major 

problems of inspection models are that those either are restricted to some assumption, 

computationally complicated or in view point of optimal inspection times do not provide 

good accuracy. In summery the algorithms introduced above do not create an accurate 

solution for the inspection time sequence to the optimal inspection problem. Irrespective 

of the BHP model which "is extremely sensitive to time t1 , it· seems this problem arises 

from some subjective parameters. 

The basic system of equations which is a basis to determine the optimal inspection 

sequence was first developed by Barlow et al (7). Barlow under a set of assumptions 

presents an optimal inspection model for systems which are subject to non-self an­

nounced failure. That means, failures event is rand'om and can be detected only through 

an inspection. Based on Barlow maintenance model, inspections do not affect on the 

failure characteristics, inspection ceases upon detection of failure and at inspection times 

no repair takes place. 

The system of equations associated with Barlow cost model that is 

(l.l.1) 



is given by 

or, equivalently, 

8C =0 
8t, 

1 

0' _ F(tj ) - F(tj-l) _ Cl 

1 - f(t j ) C2 

4 

(1.1.2) 

Vj = 1,2, ... (1.1.3) 

where F(t) is failure distribution function, {tj= 1,2, ... }(to = 0) and OJ = tj+l - tj 

denote the inspection time sequence and inspection interval sequence respectively and 

Cl, C2 refer to the cost per inspection and the cost per unit time of a system being un-

available due to an undetected failure, respectively. 

Barlow to find a solution for the system of equations (1.1.3), which is a sequence of op­

timal inspection time, propose an algorithm widely called Barlow, Hunter 'and Proschan 

algorithm(BHP algorithm). The BHP algorithm is computationally cumbersome and 

has restrictive assumptions, being extremely sensitive to the vaJue of h, the 0rsequence 

generated from equation (1.1.3) is the major problem of BHP algorithm. In preference 

to the Barlow model and a few nearly optimal algorithm, some often methods which fall 

into the categories outlined below are presented: 

• Improvement of the original algorithm (see Nakagawa and Yasui (50)); 

• Approximate methods associated with the concept of an inspection density function 

(see Keller, Kaio and Osaki (34)); 

• One-parameter optimization models. This category contains an assumption on the 

failure model. For example, Munford and Shahani (48) assume that the conditional 

failure probability is constant. Chelbi, Ait-Kadi (11) suppose that the conditional 

failure probability is an increasing function of the inspection number. 
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1.1.1 Improved method of the original algorithm 

The method presented by Nakagawa and Yasui (50) is associated with the parameter 

c E (0, cd C2) and a sufficiently large tn such that 

or, equivalently, 

(1.1.4) 

So, with respect to known values that are C1, C2, tn and c, the equation (1.1.~) gives 

the (n - l)th inspection time t n - 1 and the rest of inspection times tj, j < n - I, can be 

(I recursively evaluat~d from the equation (1.1.3). According to the Nakagawa and Yasui 

model (50), the process carries on ~ntillh(e.g. j=n-K) step where F(tn - K - 1) < 0 or 

tn-K > 2tn-K -1' :Two problems associated with this algorithm are the resulting sequence 

of inspection times is sensitive to the parameter c and the value tn. Besides, if the value 

of t1 resulting from above algorithm is applied in equation (1.1.3), the BHP algorithm 

produces a totally different solution. This deficiency arises from the fact that their 

algorithm introduces an inappropriate condition F(tn - K - 1) < 0 to replace the condition 

to = F(to) = O. 

1.1.2 Approximate method associated with an inspection den-

sity function 

Keller (34) with assumption that the time between the failure and its detection is half 

of the inspection interval, that is, 
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presents the inspection density concept n(t) which denotes the number of checks per 

unit of time. Where t is the failure instant if the failure occurs within (tj, tj+l)' 

According to the Keller model the inspection time sequence in terms of n(t) is obtained 

as 

to = 0, tj = tj-l + 1jn(tj _ 1 ),j = 1,2, ... (1.1.5) 

where n(t) = 2;1(~~2 and r(t) denotes the failure rate function. 

Kaio and Osaki (34) show that the inspection time sequence resulting from the equa­

tion (1.1.5) is not accurate. This problem comes from dependency of tj to the inspection 

intensity n(t) evaluated at the left ending point of the inspection interval (tj - 1 , t j ). To 

resolve the problem following equation to evaluate the inspection time sequence is sug-

gested: 

" l tj 

n(t)dt ~ 1, j = 1,2, ... 
tj-l 

(1.1.6) 

The problem of above method is rack of improvement in accuracy of evaluation of inspec-

tion sequence. Moreover, it is computationally more complicated than BHP algorithm 

in the case that the failure distribution is not Wei bull. 

1.1.3 One-parameter optimization method 

The conditional measure Pj = 1-R(tj)j R(tj- 1 ) which is the probability that the system 

fails over time interval (tj - 1 , tj) given that it survives beyond time t j - 1 is considered 

as a basis to evaluate the inspection time sequence. By assuming above conditional 

probability is constant p, Munford and Shahani (48) define a sequence of inspection 

times. 

Chelbi and Ait-Kadi (11) tackle the case that Pj should an increasing function of the 
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number of inspections (or, failure rate). More precisely, 

l/j. 1 2 Pj = Pl , J = , , ... (1.1. 7) 

In both methods which define an one-parameter optimization model the parameters P 

and Pj are determined such that the minimum expected total cost given by (1.1.1) is 

achieved. 

1.2 Maintenance scheduling problem of systems sub-

ject to self announced failure 

In literature the inspection strategy fo~ system subject to self announced failure is in­

troduced as a key tool to reduce level of the failure rate of the system in the form of 

detection and correction of minor defects before major breakdown occurs. However, 

every inspection also incurs costs. Hence the problem is to determine an optimal in­

spection maintenance strategy, resulting in the best level of system failure rate, which 

minimizes overall costs. The literature on the inspection-based maintenance schedule 

problem is vast. The issue of inspection for a piece of system with constant failure rate 

has been the theme of many research papers published in the literature. Relating sys­

tem failure rate to inspection frequency, Jardine (29) assume that the breakdown rate 

varies inversely with the number of inspections ahd varies directly with arrival rate of 

breakdowns per unit of time when no inspection is made. Another model to consider 

the effect of inspection on failure rate was presented by Rao and Varaprasad (58) who 

assume that the failure rate after inspection is to be a function of inspection frequency 

and its effectiveness. More recently, Locket (45) with the same approach as Jardine (29) 

has assumed a simple inverse relationship between failure rate and inspection frequency. 
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Locket (45) to relate machine type to system failure rate defines a constant" k" which 

can be found from experience. As noted in all of the above cited models, the system 

failure rate over its entire life has a largely constant. But, in the deteriorating state it 

is expected the system has a steadily increasing failure rate. Hence, an optimal model 

for frequency of inspection needs to be time dependent. This ensures that the frequency 

of inspection can respond to variation in the failure rate over time. To meet this defi­

ciency the time dependent inspection factor (IF) is introduced as a key tool to reflect 

variations on the fai.lure rate (Jardine (29); Dhillon (23); Kececioglu (36); Locket (45); 

Wild (76)). It is assumed that the failure rate is inversely related to the time dependent 

inspection factor. This realistic assumption ensures that as inspection is performed and 

the frequency of inspection increases, the failure rate decreases. Several variations in­

cluding the inverse law (Jardine (29); Dhillon (23); Kececioglu (36); Locket (45); Wild 

(76)), negative exponential, increasing influence of hazard rate and decreasing influence 

of hazard rate (Mathew (47)) in defining IF have been examined. 

Nowadays, one of challenges facing industries with heavy utilization of systems (e.g. 

manufacturing systems) which are subject to deterioration is to set an inspection pol­

icy as a key tool to control the deterioration level of the system and balance it with 

economics (revenue). The problem is, on one hand insufficient inspection causes some 

malfunction of the system and may result in complete breakdown of the system. On the 

other hand frequent inspections of components to rectify faults leads to more inspec­

tion costs and loss of production (revenue) arising from the downtime. So, to maximize 

the revenue from the system which is in continuous operation, an inspection strategy 

to give a correct balance between frequency of inspections of system and the resulting 

output (revenue) is required. The literature on the maintenance maintenance scheduling 
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problem of manufacturing systems whose resulting output (production process) is sub­

ject to deterioration is vast. The earlier works on preventive maintenance models with 

production processes with more than one operating state and a failure state are given 

by Derman ((21),(22)), who studies a process that deteriorates moving through a finite 

number of states according to a Markov chain. Derman assumes that the state of the 

process is known with accuracy at all discrete points in time and show that the optimal 

replacement policy is a control limit policy; that is, the equipment should be replaced 

as soon as it is observed to operate in a state worse than some critical state. The same 

result is also obtained by Kolesar (39) for a similar model but with a more general cost 

function. The process operating states can alternatively be expressed by the magnitude 

of the cumulative damage or wear of equipment. The process is asspmed to be subject 

to exterior shocks that damages or causes wear to the equipment, thereby increasing 

its probability of f~ilure. Shock models have been introduced by Taylor (72) and they 

have been studied by Feldman (25), Bergman (8) and Valez-Flores and Feldmanv (73). 

Ariother approach to model the process deterioration mechanism has been suggested by 

Kao (35). Kao uses a discrete time finite state semi-Markov process to formulate the 

problem. This approach can account both for changes in the process state and for the 

ageing process of equipment. Thus, Kao examines state-dependent policies as well as 

state-age dependent policies and proves that under reasonable conditions the optimal 

policy is of the control limit type. More recent literature for semi-Markovian deteri­

orating process can be found in So (69), Lam and Yeh (41) and Yeh (77). Sheu and 

Chen (68) presents an integrated model for the joint determination of both economic 

production quality (EPQ) and level of preventive maintenance (PM) for an imperfect 

production process. Sheu uses an increasing hazard rate to describe the deterioration of 

the production process. Applying the imperfect maintenance concept, Sheu models the 
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effect of PM activities on the deterioration pattern of the process. The model is based 

on assumption that after PM, the aging of the system is reduced proportional to the PM 

level and the state of the production process is improved by minimal repair or stopped 

followed by the restoration work depending on it is in a type I out-of-control-state or 

in a type II out-of-control state. Using examples of Weibull shock models, Sheu shows 

that performing PM will yield reduction in the expected total cost. Wang and Pham 

(75) present a general repair model to maintenance optimization of production systems 

subject to deterioration. The effect of deterioration is reflected in higher production 

costs and lower product quality. To keep production costs down while maintaining good 

quality, Wang and Pham (75) suggest an optimal periodic maintenance 'model in which 

both preventive and corrective maintenance are imperfect. 

Apart from' the maintenance literature, deterioration of the process condition is also 

a standard feature of the' statistical process control model in the quality field. The 

process is assumed to operate in the" good" quality state (in-control) until it shifts to 

an inferior quality state (out-of- control) as a consequence of the occurrence of some 

assignable causes. The time until transition to an out-of-control state (quality shift) is 

usually assumed to be exponentially distributed (Poisson process) but other distribu­

tions have been considered as well (Banerjee and Rahim (6)). In a model of a process 

with non-exponential transition times Rahim and Banerjee (64) introduce the use of the 

preventive maintenance actions to ptotect the equipment against quality shift. In par­

ticular, Tagaras (71) uses a Markovian approach similar to that of Derman ((21),(22)) to 

describe the evolution of production processes characterized by several quality states (a 

single in-control state and multiple out-of-control states) and a single failure state. He 

simultaneously considers quality control and quality control parameters that minimize 

the expected total costs. 
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In preference to above maintenance models, here we present a novel approach to main-

tenance scheduling problem of a manufacturing system subject self-announced failure. 

The model is superior to existing maintenance scheduling models based on inspection 

strategy. The approach rests on assumptions that the resulting output (revenue) from 

system is subject to the system state influenced by repair action and deterioration pro-

cess. Insufficient maintenance leads to an increase in the number of detective items, low 

profit and low maintenance cost; excessive maintenance results reduces the proportion 

of defective items, high profit and high maintenance cost. In chapter 5 to tackle above 

maintenance problem, using optimal intensity control (10), an optimal solution to the 

determination of the amount of maintenance i.e., frequency of inspection and repair de­

gree of the system is obtained. In contrast to former maintenance models, the intensity 
. .' . 

control based mode~ presented in chapter 5 not only does not suffer from sorrie subjectiv:e 

concepts, but also gives an insight into various measures such as prediction of system 

failure, conditional mean time to failure of the system and optimal inspection intensity 

and also optimal production run length of the system. Besides, it has the potential to 

be extended to tackle technical maintenance problems which are common in application 

(see chapter 6). 

The second part of the thesis (see chapter 4) is devoted to preventive maintenance 

scheduling (Decision Modeling) of technical systems subject to' deterioration. The de-

cision modeling refers to determination of an optimal schedule of maintenance actions 

(optimal preventive maintenance (PM) policy) subject to cost aimed at the prevention 

of breakdown and catastrophic failure of the operating system. Precisely speaking, the 

objective is to use the processes in decision models which optimize the sequence of ac-

tions taken when the processes enter critical region. Typically the process crosses a 

critical boundary which represents the limit of acceptable performance and the decision 
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maker must than take action to restore the situation. 

1.3 Preventive maintenance scheduling problem 

Decision modeling for deteriorating systems which is of great practical importance in 

industry have been widely studied in literatures. Jardine (31) under periodic inspection 

policy introduces a condition based maintenance (CBM) model subject to cost. The 

monitoring information to detect the condition of item is incorporated into proportional 

hazard model (PHM) (13) through underlying Markov stochastic process Z(t). Deci-

sion making is given both the age and condition of components at inspection times. 

The basic decision nile which is used immediately after inspection instant is to replace 

the system if the item fails or deterioration level. of the item (ri$k) described by the 

(PHM) (h(t, Z(t))(t 2: 0) exceeds a threshold level (prev'ent,ive replacement); otherwise 

operation can continue (see Figure 1.1) (30). He sh~wed that the optimal replacement 

risk 
h ----------------------

time 

h(t,Z(t)) . hazard function 

h - hazard level 

6 . inspection interval 

tR - preventive replacement 

Figure 1.1: An evolution of the preventive replacement 

policy is a control limit policy with respect to the hazard rate process (h(t, Z(t)), i.e, a 
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replacement is performed either at failure or when failure rate of the system reaches or 

exceeds an optimal failure threshold g*: 

T* = min {T, inf {t ~ 0 : h(t, Z(t)) ~ g*}}. 

Where T and T* denote the failure time and optimal replacement time of the system. 

Newby and Dagg (56) study an optimal inspection policy for a deteriorating system 

whose evolution is described by a stochastic process. The inspections and repair actions 

to avoid catastrophic failure of the system are with respect to warning limits (threshold) 

which classify the state space into some non-overlapping regions. At inspection times 

the decision maker subject to the system state has disposition to leave the system to 

continue to operate or replace it by new one (perfect repair). The cost is considered as 

a criterion to determine an optimal inspection policy. The model represented by (56) is 

appropriate for crack growth models (see (53), (54), (70), (12)) which is a basis for some 

physical phenomenons such as fatigue crack growth problems, offshore structure, and 

coastal flood barriers subject to erosion (57). Roughly speaking this suitability comes 

from the fact that the system is regarded as failed if the system state crosses the failure 

threshold (see Figures 1.2, 1.3). 

Newby and Barker (55) present an approach to maintenance optimization subject to 

complex systems with gradual degradation. The evolution of the system state is charac­

terized by the underlying Bessel process (40). The maintenance process is with respect 

to two critical thresholds ~ and F > f The threshold ~ denotes the repair actions de­

termined by the probability that the process leaves [O,~) and F defines the failure of the 

system followed by replacement. The inspection and maintenance policy is optimally 

determined subject to cost value by crossing the aggregate performance measure i.e. 

Bessel process of a critical threshold. 
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Figure 1.2: An evolution of the system state given Wiener process (65) and maximum 
process (56) 

In chapter 4 we introduce a new approach to decision modeling for a stochastically dete­

riorating system whose state is characterized by bivariate state process (X, V) denoting 

damage and system's virtual age process respectively. The state of the system is re­

vealed at inspection times. Repair and maintenance actions are carried out subject to 

the observed system state and decision thresholds-repair/replacement rule- ~r and ~f' 

The problem is to minimize the long-run average cost subject to the system parame-

ters given periodic/non-periodic inspection policy. Using repair alert model (44), a novel 

approach to formulate time-to next (non-periodic) inspection characterized by state pro­

cess (X, V) is presented. Because new decision model demonstrated under both periodic 

and non-periodic inspection policy allows replacement if the system state crosses ~f' the 

replacement cycles constitute a renewal process. This property which makes our model 



15 

Figure 1.3: An evolution of the system state given Gamma process (74) 

distinguished to the models (55) and (56) is used to derive expressions for the long-run 

average cost based on the decision rules ~T) ~f and the period of inspection/repair alert 

parameter. 



Chapter 2 

Some Fundamental Concepts 

2.1 Introduction 

, ' 

To set up the repair and maintenance models which are preventive maintenance schedul-, 

ing model for deteriorating systems (see Chapter 4) and maintenance scheduling model 

for a manufacturing system subject to deterioration (see Chapter 5) providing some 

mathematical tools is required. Following section is devoted to presenting an informal 

definition of some stochastic notions including intensity process, filtration, and martin-

gale which are the solid basis in stochastic processes theory. The next section is oriented 

to give a formal definition of history of the process remarked by filtration F, stochastic 

process and F-adapted process. Section 4 and 5 give a detailed discussion of univariate, 

multivariate point process and measurability with respect to filtration F. To provide 

fundamental requirements of the research, section 6 and 7 are assigned to give some 

mathematical techniques which are stopping time and martingale theory. Also, in sub-

sequent section a formal definition of stochastic intensity with respect to filtration F 

is given. Finally, to model the failure of the system influenced by some variables such 

16 
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as environmental factors and system's age and repair and maintenance process ,which 

state history of the process, some intensity process models are represented. 

2.2 An introduction to the basic concepts 

Let Xl, X 2 , ... ,Xn be n (n 2:: 1) (uncensored) continuously distributed survival times 

from a survival function S with hazard rate function a; thus, a = 1/(1 - F) where 

F = 1- Sis the distribution function'and 1 the density of the Xi for i = 1,2, ... , n. The 

hazard rate a completely determines the distribution through the relation 

(2.2.1) 

One can inte'rpret a by the heuristic 

P(Xi E [t, t + dtllXi 2::t) = atdt. (2.2.2) 

Typically, in survival analysis problem, complete observation of Xl, X 2 , ... , Xn is not 

possible. Rather, one only observes (Xi, Di), where Di is a "censoring indicator," a 

zero-one valued random variable describing whether Xi or only a lower bound to Xi is 

observed; namely, 

(2.2.3) 

We shall consider Xl, X2 , ... , Xn as random times; at these times, the value of the cor-

responding Di becomes available, and we know whether the corresponding event is a 

failure or a censoring. Thus, all n survival periods start together at time t = O. 

As an example (see Andersen (3)), Figures 2.1 and 2.2 depict the observations of 10 

randomly selected patients from the right censoring data on survival with malignant 

melanoma: First, in the original caleridar time scale, and second, in the survival time 
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Figure 2.1: Ten observations from the malignant melanoma study, calendar time (years) 
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Figure 2.2: Ten observations from the malignant melanoma study, years since operation 
(survi val time). 
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scale t years since operation. This latter time scale is the one we concentrate in our 

illustration of stochastic process concepts. A line with the filled circle corresponds to 

Di = 1 (a failure), a simple line to Di = 0 (a censoring). 

Further analysis is difficult without an assumption of right censoring. we will make 

the most general assumption which still allows progress: the assumption of independent 

censoring, which means that at any time t (in the survival time scale) the survival ex­

perience in the future is not statistically altered (from what it would have been without 

censoring) by censoring and survival experience in the past. To formulate this notion, we 

must be able to talk mathematically about past and future. This will be done through 

the concept of a filtration or history (Ft )t2:o; F t representing the available data at time 

t. We write F t - corresponding for the available data just before time t. A specification 

of (Ft )t2:o can only be done relative some observer, and different observers may collect 

more or less information. But for all observers, as time proceeds, more information 

become available. 

The notion of a filtration is defined as an increasing family of O'-algebras defined on the 

sample space. In our simple example, we will simply take F t to mean the values of Xi 

and Di for all i such that Xi ::; t, otherwise just the information that Xi > t. For Ft-

the obvious changes must be made: ::; becomes < and the> becomes ~. 

The independent censoring assumption can now be written (still very informally) as 

(2.2.4) 

Compare this to (2.2.2). Replacing the probability on the left-hand side by the expec-

tation of an indicator random variable, and summing over i values, we get 



E (# {i : Xi E [t, t + dt), Di = 1 } IFt- ) = # {i : Xi 2: t} atdt 

= Yt,atdt 

= Atdt , 

which we have defined the processes Y and A by 
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(2.2.5) 

the number at risk just before time t for failing in the time interval [t, t + dt), or the size 

of the risk set, and 

where # is a counting notation. 

Now formula (2.2.5) can be interpreted as a martingale property involving a certain 

counting process (3); in this case, the process N = (Nt)t?o counting the observed failures 

Nt = # { i : Xi ~ t, Di = 1 } 

and its intensity process A. Let us write dNt or N(dt) for the increment NHdt- - Nt-

of N over the small time interval [t, t + dt). Therefore, we can rewrite (2.2.5) as 

(2.2.6) 

Note that the intensity process is random, through dependence on the conditioning ran­

dom variable F t -. 

To explain the meaning of the martingale property, first define the integrated or cumu­

lative intensity process A by 

t 2: 0, 
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and the compensated counting process or counting process martingale M by 

Or, equivalently, 

(2.2.7) 

Consider the conditional expectation, given the strict past F t -, of the increment (or 

difference) of the process M over the small time interval [t, t + dt); by (2.2.7), we find 

E(dMtIFt-) = E(dNt - dAtIFt-) = E(dNt - AtdtIFt-) 
(2.2.8) 

~ E(dNtIFt-) - Atdt = 0, 

. where the last step is precisely the equality (2.2.6), noting that At is measurable with 

. \ respect to the filtration F t -. Now, relation (2.2.8) says that A is the compensator of N, 

or that M = N - A is a martingale for all t. 

In wide generality, we have that any counting process N, that is, a process taking the 

values 0,1,2, ... in turn and registering by a jump from the value (k - 1) to k the time 

of the kth occurrence of a certain type of event, has an intensity process A defined by 

Atdt = E(dNtIFt-). The intensity process is characterized by the fact that M = N - A, 

where A is the corresponding cumulative intensity process, is a martingale remarked 

by a fair game (see section 2.7). The martingale property says that the conditional 

expectation of increments of M over small time intervals, given the past at the beginning 

of the interval, is zero. This is (heuristically at least) equivalent to the more familiar 

definition of a martingale 

(2.2.9) 

for all 8 < t, which, in fact, just requires the same property for all intervals (8, t]: for 

adding up the increments of M over small subintervals [u, u + du) portioning [8 + d8, t + 
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dt) = (5, t], we find 

= 1 E (E(dMul.1'u-I.1's)) 
s<u:::;t 

(2.2.10) 

= 0. 

Version (2.2.9) of the martingale property is much easier to make the basis of a mathe­

matical theory. 

2.3 Filtration 

We are going to model the occurrence in 'time of random events;in fact, discr;ete events 

occurring in continuous time. So we fix a continuous time interval 

'r/ = [0, T) or [0, T] 

For a given terminal time T, ° < T ~ 00. Note that the terminal time point T mayor 
I 

may not be included; this varies from application to application. We write fj = [0, T], 

the time interval augmented with its endpoint if it was not first present. 

Definition 2.3.1. (Filtration) (3) Let (D, .1', P) be a probability space. A filtration 

Also called a history, is an increasing right continuous family of sub-O'-algebras of .1'. 

In the standard theory we use, it is often assumed also to be complete in the strong 

sense that, for every t, the O'-algebra .1't contains all P- null sets of .1'. However, the 

assumption can be safely omitted, subject only to a very minor reformulation of the 
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results of the standard theory. 

When the complete set of assumptions hold, we say that (Ft ) satisfies the usual condi-

tions: 

F8 ~ Ft ~ F for all s < t (increasing) 

F8 = n Ft for all s (right continuous) 
t>8 

A c B E F, P(B) = 0 =? A E Fo (complete) 

(2.3.1) 

The O"-algebra F t is interpreted as follows: It contains all events (up to null sets) whose 

occurrence or not is fixed by time t. There is also a pre-t O"-algebra containing all F 8 , 

s < t; it contains events fixed strictly before t . 

. " It is most common the filtration to be described as the history generated by a stochas­

tic process. X. This means that F t is the O"-algebra generated by X 8 , s ::; t. 

Definition 2.3.2. (Stochastic process) (5) A collection of random variables X = X t , t ~ 

o defined on the same probability space (Sl, F, P) is called a stochastic process. 

For any fixed w E Sl the real function X (., w) is called the path of a stochastic process 

X. 

Definition 2.3.3. (F-adapted) (5) A stochastic process is adapted to the filtration F 

if for any fixed t ~ 0 the random variable X t is F t measurable, i.e. for any Borel set B 

of IR the event {Xt E B} EFt. 

2.4 Point Processes 

Definition 2.4.1. (Univariate counting Processes) (10) A realization of a point process 

over [0, (Xl) can be described by a sequence Tn in [0, (Xl) such that 

To = 0, 



This realization is, by definition, nonexplosive iff 

Too = lim Tn = 00. 
n ..... oo 

To each realization Tn corresponds a counting function Nt defined by 

Nt = { n 
+00 

if t E [Tn, Tn+1) , n ~ 0; 

if t ~ Too. 
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(2.4.1) 

Nt is therefore a right-continuous step function such that No = 0, and its jumps are 

upward jumps of magnitude 1 (see Figure 2.3). In addition, if E[Ntl is finite for all t 

then the point process is said to be integrable. 

N, 
; 

T, T, 

Figure 2.3: An evolution of the counting process Nt 

T, 

Definition 2.4.2. (Multivariate Counting processes) (10) Let Tn be a point process 

defined on (D, F, P), and let (Zn' n ~ 1) be a sequence of 1,2,3, ... , k-valued random 

variables, also defined on (D, F, P). Define for all i, 1 ::; i ::; k, and all t ~ 0: 

Nt(i) = L 1 (Tn ::; t)J(Zn = i). (2.4.2) 
n2:1 



25 

Both the k-vector process Nt = (Nt(1), ... Nt(k)) and the double sequence (Tn, Zn, n ~ 1) 

are called k-variate counting processes. 

As noted the Nt (i)' s have no common jumps. In general we say that two point pro-

cesses N t(1) and N t(2) defined on (0, F, P) have no common jumps if 6. Nt (1)6.Nt(2) = 

0, t ~ O,P-a.s. 

Following examples show application of both univariate and multivariate point process 

to the renewal process and Markov renewal process modeling. 

Example 2.4.1. (Renewal Process) Let {Tn}, n = 0, I, 2, ... denote a sequence of non­

negative random variables defined on (0, F) and To = O. We introduce Xi = Ti - ~-1' 

i = 1, 2, ... as ith independent inter-arrival times distributed identically with finite mean 

value E(X) < 00. It means after each renewal the process r~starts. It is easy to see :that 

the counting process Nt: 

I 

Nt ;= I:~=11(Tn ::; t) 

as a univariate point process or renewal process counts the number of renewals in [0, t]. 

Example 2.4.2. (Markov Renewal Process) Let Jo denote the initial state of a repair 

process; and for n ~ 1, let I n be a Markov chain with transition probabilities Pij denoting 

the repair state of the process following nth repair and maintenance action (transition). 

So, the process I n, n = 1,2, ... that can be called as the External Process is a Markov 

chain controlled by the transition probabilities Pij' 

Now, let Ni(t) refer to the number of repair times at which post repair states that are at 

disposition of a controller are i (i = 1,2, ... , k) value over time interval (0, t]. Now, if 

Then clearly, the process Z(t) known Semi-Markov Process and given by 
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Z(t) = IN(t) 

can be treated as the repair state of the process at time t and the set 

named a Markov Renewal Process can be treated as a k-variate counting process. 

The Figure 2.4 shows an evolution of the multivariate counting process given k = 3. 

N(t) 

o .. 

+ .... + .................. + .... . + ..... . 

IL-______ ~ ______ -L ______ ~ ________ L_ ______ ~ ______ __ 

o 0.5 1.5 2.5 

Figure 2.4: A realization of a 3-variate counting process 

2.5 Measurability with respect to Filtration F 

Definition 2.5.1. (F-Progressive) (4) A stochastic process X is F-progressive or pro­

gressively measurable, if for every t the mapping (s,w) --t Xs(w) on [0, t] x n is mea­

surable (see definition 2.3.3) with respect to the product O'-algebra B([O, t]) ® Ft, where 
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B([O, t]) is the Borel O"-algebra on [O,t]. 

Obviously, every left-or right continuous adapted process is progressively measurable. 

A more measurability restriction over the stochastic processes leads to the subsequent 

definition. 

Definition 2.5.2. (F-Predictable) (4) Let F be a filtration on the basic probability 

space and let P(F) be the O"-algebra on (0,00) x n generated by the system of sets 

(8, t] x A, a :s; 8 < t, A E Fs, t > o. 

P(F) is called the F-predictable O"-algebra on (0,00) x n. A stochastic process X = (Xt ) 

is called F-predictable, if Xo is Fa-measurable and the mapping (t, w) --t Xt(w) on 

(0, (0) x n into R is m~asurable with respect to P(F). 

To get an impression on predictability of a stochastic process with respect to filtra-
. . 

tion, let 

Then, it is said to be stochastic process X t an F-predictable process if it is measurable 

from information available just before time t i.e. F t -. In other words, 

Some further important terms on predictability of stochastic process are as follows: 

• if the stochastic process X t is predictable then it is measurable with respect to the 

O"-algebra on [0,(0) x n generated by adapted left-continuous processes 

• if X is a predictable process then the random variable X t is F t- measurable. 
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• The value of a predictable process is known at the moment t if the history in the 

time interval [0, t) is known . 

• Every left-continuous process adapted to F is F-predictable. 

2.6 Stopping Time 

Before giving a formal definition of Stopping time, let have following example concerning 

the risk theory. Suppose the Ft adapted net profit rate R = (Rt ), t E 1R+, which is non­

increasing in time, denotes the difference between the flow of the income resulting from 

a deteriorating system and the total maintenance costs up to time t. The question is 

when to stop processing the system (optimal operating time) so that a correct balance 

between rewards fforn system and the increasing maintenance costs due to repair and 

maintenance actions which results in the maximum revenue is derived. A reasonable 

candidate for optimal operating time of the system is 

T = inf {t : Rt :::; O} 

which is the first time the risk process Rt falls below zero. The time T which in risk theory 

is known the time to ruin and characterized by the information level F t is informally 

called IF-stopping time. Obviously, this time point at which the stochastic process R = 

(Rt ) hits the certain level (0) is random, because its occurrence depends on evolution of 

the process. Formally, such random times which are based on the information level not 

anticipating the future are defined as follows. 

Definition 2.6.1. (Stopping Time) (4) Suppose IF = (Ft ), t E 1R+, is a filtration on the 

measurable space (D, F). A random variable T : D ~ [0,00] is said to be a stopping 

time if for every t E 1R+, 
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{T::; t} = {W: T(W) ::; t} EFt 

2.7 Martingale Theory 

In addition to the predictable processes explained above, the other kind of stochastic 

processes known as Martingales (4) or a pure noise part of a stochastic process plays a 

fundamental and complementary role in the general theory of stochastic processes. In 

subsequent section under Doob Meyer Decomposition Theorem (see Bagdonavicious (5)) 

we see how martingales are constructed through subtracting an increasing process At 

from a stochastic process Xt known as the sub-martingale. Roughly speaking, if X t is a 

stochastic process then it can be decomposed as the sum of a drift or regression part At 
I 

and an additive fluctuation described by a martingale M( 

Also, in a slightly weakened version of Doob Meyer decomposition called Smooth Semi­

Martingale (SSM) (see Jensen (4)), this notion is considered as unpredictable noise 

term with zero-mean value resulting from the subtraction of a stochastic process, and a 

smoothly increasing process. 

Definition 2.7.1. (Martingale) (4) An integrable IF-adapted process X = (Xt ), t E lR+, 

is called a martingale if 

for all s ~ t, s, t E lR+. A super-martingale is defined in the some way, except that 

above equality is replaced by 
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and a sub-martingale is defined with above equality being replaced by 

With taking expectation of both sides of the (in)equality it is followed E(Xt ) = (2': 

,~)E(Xs) which state 

• A martingale is 'constant' on average, and models a fair game 

• Sub-martingale (Super-martingale) is increasing (decreasing) on average. 

• X is a sub-martingale (super-martingale) if (-X) is a super-martingale (sub­

martingale) . 

Example 2.7.1. Let X be an integrable F -adapted process. Suppose that the increments 

X t ,- Xs are independent of Fs for all t > s, s, t E lR+. If Xo = 0 and the 'increments 

X t - Xs follow a poisson distribution with mean t :..- s for t > s, then X is a Poisson 

process. Now X is a sub-martingale (or, increasing on average) because of 

On the other hand we have 

that means (Xt - t) is a martingale Mt : 

As seen the martingale term X t - t is subtraction of a sub-martingale i.e. X t and an 

increasing process t known as compensator (systematic term) of the sub-martingale pro­

cess X t . Such representation simply results from Doob-Meyer Decomposition Theorem. 
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Theorem 2.7.2. (Doob-Meyer Decomposition) (5) Let X be a right continuous non­

negative IF sub-martingale. Then there exists a right continuous martingale M and an 

non-decreasing right continuous predictable process A such that E(At) < 00 and 

for any t ~ o. If A(O) = 0 a.s. then this decomposition is a.s. umque, z.e. if X t = 

Mt + A; for any t ~ 0 with A*(O) = 0, then for any t ~ 0, 

The process A is called the compensator of the submartingale X. 

Following a slightly weakened version of the Do.ob Meyer Decomposition T~eorem 

termed as S.mooth semi-martingale (SSM) representation is introduced. SSM representa­

tion which plays a: key role to set up the maintenance models (see Chapter 4,5), allow the 

process to be decomposed into a drift part and an additive random fluctuation described 

by a martingale. 

Definition 2.7.2. (Smooth Semi-Martingale) (4) 

A stochastic process Z = (Zt), t E lR+, is called a smooth semi-martingale (SSM) if it 

has a decomposition of the form 

where f = (ft),t E lR+, is a progressively measurable stochastic process with 

E it I fs I ds < 00 Vt E lR+ 

and E IZol < 00 and M = (Mt) E Mo where Mo denotes the class of cadlag 1 martin­

gales with Mo = o. Short notation: Z = (f, M). 

1 A process with almost right continuous and left-limited paths 
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So, because the martingale term is a mathematical model of a fair game with con­

stant expectation function E(Mt) = E(Mo) = 0, the stochastic process Zt, t E lR+ can 

be considered as a diffusion, which varies randomly around the regression term with 

expected value zero. 

Theorem 2.7.3. (Smooth Semi-Martingale) (4) Let Z = (Zt), t E lR+, be a stochastic 

process on the probability space (0, F, P), adapted to the filtration F. If G1 , G2 and ~ 

C3 hold true, then Z is an SSM with representation Z = (f, M), where f is the limit 

defined in G1 and 1111 is an IF -martingale given by 

And G1 , G2 , and G3 with assumption of 

are 

C1 . For all t, h E lR+ versions of the conditional expectation E[Zt+hIFtl exist such that 

the limit 

ft = limh->o+ D(t, h) 

exists P - a.s. for all t E lR+ and (ft), t E lR+, is F -progressively measurable with 

E J; Ifsl ds < 00 for all t E lR+. 

C2 . For all t E lR+, (hD(t, h)), h E lR+, has P-a.s. paths, which are absolutely continu-

ous. 

G3 . For all t E lR+, a constant c > 0 exists such that {D(t, h) : 0 < h ::; c} is uniformly 

integrable. 
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One of the simplest example of a process with an SSM representation is the Poisson 

process (Nt), t E lR+ with constant rate A > O. To determine (SSM) representation of 

(Nt), using independent and stationary increment property of (Nt), it can be simply 

shown that 

is a martingale term with respect to filtration :Ft = CJ(Ns : 0 < s :::; t). On the other 

hand from the condition C1 of the Theorem 2.7.3 the compensator of (Nt) is 

it = lim D(t, h) 
h-->O+ h 

= lim E(Nt+h - NtlFf) ::: lim E(Nt+h - Nt) 
h-->O+ h h-->O+ . h 

(2.7.1) 

= lim E(Nh ) == A. 
h-->O+ h . 

Therefore, since the conditions C1 - C3 are satisfied with it = A, Nt admits following 

(SSM) representation 

The Figures 2.5 and 2.6 show an illustration of the counting process Nt, its compensator 

and the martingale term M t for n = 51 identically independent lifetimes which are 

simulated of Poisson distribution with hazard A = 1. 

In the next section a general definition of intensity of a counting process Nt is given. 

2.8 Stochastic Intensity 

Definition 2.8.1. (Stochastic Intensity) (10) 

Let Nt be a point process adapted to some filtration Ft, and let At be a nonnegative 

Ft-progressive process such that for all t 2: 0 
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Figure 2.5: Counting process Nt and its compensator At, based on n = 51 identically 
independent lifetime simulated of Poisson distribution with hazard A = 1 

Martingale M(t)=N(t)-A(t) based on the simulated data as in Figure 2.5 
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Figure 2.6: Martingale Mt = Nt - At based on the simulated data 
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. t 
fo Asds < 00 P - a.s. 

If for all nonnegative Ft-predictable processes Ct , the equality 

(2.8.1) 

is verified, then we say that Nt admits the Ft-intensity At. Also, At is so-called the 

compensator of Nt with respect to F. 

Next example shows how the general definition of the stochastic intensity is used as 

a key tool to solve an optimal stopping problem. 

Example 2.8.1. Let Nt be a Poisson process with intensity A and let T be a fixed time 

(the terminal time): Let· ( be the class of all IFf -stopping time T bounded by, T.· Find 

T* E ( such t~at E[NT* (T - T*)] ~ E[NT(T- T)] fO,r all T E (. Note that Nt can be 

interpreted as follows: it is the counting process of a flow of goods, or items, entering a 

warehouse. For any given item sojourning a time x in the warehouse, a fee proportional 

to x must be paid. At time T, the owner of the goods will take them back to the factory or 

dump them, so that there are no storage expenses after T. At an intermediary time T, the 

owner of the goods has the option of removing the Nt items presenting in the warehouse, 

thus saving an amount of money proportional to NT (T - T). The time T is chosen 

according to the observation of Nt and cannot anticipate on the future observations, 

therefore it has to be a IFf -stopping time. 

Integration by parts follows 

Since the intensity of Nt is A from definition 2.8.1 with substituting the predictable process 

Ct = 1(t ::; T)(T - t) we have 
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E[Nr(T - T)] = E U; (A(T - s) - Ns) ds] . 

The integrand A(T - t) - Nt that can be realized as the saving rate per unite of time is 

decreasing and takes the value AT > 0 at time t = O. Therefore a reasonable candidate 

for an optimal IFf' -stopping time (T*) is the first time at which the integrand crosses the 

horizontal line zero) or equivalently) 

T* = inf {t : A(T - t) - Nt ::; O} 

······1 

T 

Figure 2.7: The Optimal Stopping Time T* 

The Figure 2.7 shows an illustration of the stopping time T*. As noted in addition to 

the conditions 0 1 -03 ) the general definition of intensity process (2.8.1) is an alternative 

method to determine the compensator of a point process. 
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2.9 Intensity Process Models 

In this section to model failure process of systems subject to repair and maintenance 

actions, a class of intensity process models characterized by repair and maintenance 

factors is presented. It will be shown the repair and maintenance factors known as 

multiplicative, additive or age reduction factors through incorporating into failure in­

tensity function playa main role to adjust failure process of systems. Before introducing 

intensity process models, let have following example. 

Example 2.9.1. Suppose the system under study is a repairable system with lifetime 

distribution F(t), t E lR+ and corresponding bp'seline f~2lure rate r(t) = I-ht) d~~t). We 
. . 

introduce the nonnegative measure An as repair random variables which represent the 

virtual age or effective age of the system just after nth repair and 'maintenance action: 

where To = 0, Ao = 0 and ~n denoting the repair degree reflects the effect of repair 

just after nth repair time. To be more precise, if the system is replaced by new one at 

repair times (as good as new) then ~n (An) take zero value, also ~n > 0 (An> 0) can be 

interpreted as the virtual age following nth repair. Now, let JFN be O'-algebra generated by 

repair point process Nt and the sequence of nonnegative random variables An be adapted 

to FI{.. It can be shown that (see (4, p. 55)) the JFN-intensity of N is given by 

00 

At = L r(t - Tn + An)I(Tn < t ::; Tn+1) Ao = To = O. (2.9.1) 
n=O 

Where Tn refers to nth repair tome. In particular case, let 

• ~n = 0 for all n EN, then N recalls the renewal process with inter-arrival time 

distribution F 
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• ~n = 1 for all n E N. Then N represents minimal repairs with intensity r(t). 

As seen the repair degree ~n simply acts as an age reduction factor where through 

incorporating into baseline failure rate adjusts the age of the system. 

2.9.1 Proportional Intensity Model (PIM) 

Based on (PIM) well known as Cox model (14, p. 55-66), the intensity process is the 

multiplication of a deterministic baseline intensity function AO dependent only on the 

age of the system and a positive fu~ction W formulated in terms of the time dependent 

covariates values. Hence, if z(t) is the vector of covariates values, the (PIM) can be 

expressed as 

A(t) = AO(t)W(z(t)), (2.9.2) 

where usually w(z(t)) is represented as exp(')'z(t)) that'Y is a veCtor of possible param­

eters. Besides, the trend of the baseline intensity function can be formulated as the 

power-law form, that is, AO(t) = aj3tf3 - 1(a > 0, j3 E lR), the log-linear form AO(t) 

aj3t(a, j3 > 0), and the constant form AO(t) = a(a > 0). 

2.9.2 Percy Model (Partial Repair) 

Percy (62), to model the failure behavior of the repairable systems, considered an ex­

tension of the non-homogeneous Poisson process (NHPP). According to the Percy's 

approach the baseline intensity function is improved at each corrective maintenance 

by some measures well-known as intensity scaling factors. Theses factors are applied 

as tools to reflect the improving and deteriorating trend of the system over the repair 



process. This model is stated as 

N(t) 
A(t) = AO(t) II 8i, 

i=l 
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(2.9.3) 

Where 8i > 0 denote intensity scaling factors with constant values and Ao(t) is the 

baseline intensity function. In specific case, it can be assumed that 8i take equal values 

i.e., 81 = 82 = ... = 8N(t) = (J" for some unknown parameter (J". 

2.9.3 Generalized Proportional Intensity Model (GPIM) 

Generalized proportional intensity model (60), which is a generalization of both models 

i.e. prentice (63), percy et.al. model (62) and also (PIM), offers much potential for 

maintenance decision making not only by incorporating covariates, and the aging factor 

of the system, but also through \ntroduc~ng intensity scaling factors ri and 8i being 

respectively effects of the preventive and corrective maintenance actions over the repair 

process. According to the generalized version of the percy model we have 

{

M(t) } {N(t) } 
A(t) = Ao(t) g ri g 8i exp(--yz(t)) , (2.9.4) 

where M(t) and N(t) refer to the number of Preventive Maintenance (PM) and (eM) 

actions respectively in the time interval (0, t]. In especial case, let 8i take constant values 

(J" for i = 1,2, ... , N(t) and also ri = P for i = 1,2, ... , M(t). Then the equation (2.9.4) 

reduces to 

A(t) = Ao(t)pM(t)(J"N(t) exp(--yz(t)) , (2.9.5) 

Percy (60) with a numerical example, to analysis oil refinery pump data, shows that the 

intensity process with log-linear baseline intensity function in viewpoint of the estimated 

log likelihood is more admissible than that with constant or power law form. Further­

more, it is shown that the estimated intensity scaling factors corresponding to (PM) 
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(p) is less than 1 which is an indicative of the key role of (PM) in reducing the failure 

intensity and consequently substantial savings. Also, Percy (61) with a new approach, 

to make a more flexible maintenance model to (GPIM) in viewpoint of adjusting the 

failure intensity, introduces a new model based on random scaling factors, deterministic 

scaling factors which are the specific functions of i and j or ti and tj referring the (PM) 

and (eM) times respectively, and also random variables with evolving means (combined 

scaling). For example, in the random scaling case a suitable random form corresponding 

to (eM) might assume conditionally independent exponential random variables 

(2.9.6) 

For j = 1,2, ... N(t) with (J > O. Moreover, in such case conditionally independent 

gamma or log-normal random variables are the other options that might be considered 

as stochastic scaling factors. IJ;l determiriist"ic sense, when intensity. scaling factors (Sj) 

follow a increasing trend over the repair process, we have 

(2.9.7) 

where (J > O. According to the equation (2.9.7), the successive repairs have decreasing 

multiplicative effect over the intensity function. If Sj are given by 

(2.9.8) 

then successive repairs have decreasing multiplicative effect over the intensity function. 

Note that for both equations (2.9.7), (2.9.8), 0 < Sj < 1 is an indicative of the effective 

role of (eM) in reducing the failure likelihood of the system. Finally, in the combined 

scaling case, which may be the most realistic form in practice, intensity scaling factors 

corresponding to (eM) might be distributed exponentially with mean increasing over 



41 

time, namely, 

(2.9.9) 

Such that OJ = a~tj for j = 1,2, ... , N(t) with 0 > O. In practice, to fit (GPIM) based 

on presented intensity scaling factors, Percy (61) uses the oil pump data A - D gathered 

over a period of nearly seven years of the oil refinery. Each of these pumps perform the 

same function but the working conditions are different. With assumption of the log­

linear form for baseline intensity function, the deterministic sense Sj = e exp( -jo) + <p 

for (eM), and also the constant (PM) scaling factor, it is shown that the estimated 

value of p is less than one for pumps A and D indicating (PM) has a basic role to reduce 

the failure intensity. On the other hand, the estimated value p for the other pumps is 

greater than one that means to avoid unnecessary expenses, decreasing the frequency of 

(PM) is recommended. 

2.9.4 Age Reduction Models 

In this section we introduce some intensity process models well-known as age reduction 

models. As noted before, to reflect the effect of the repair at intervention times, inten-

sity scaling factors in a multiplicative way have adjusted the failure rate. But, what 

distinguishes the age reduction models from the others is that the age reduction factors 

directly influence the global time in an multiplicative or additive manner. For instance, 

based on the multiplicative and additive type (see (24), (28)), the failure intensity may 

be stated as 
n 

A(t) = AO(t II Si), (2.9.10) 
i=l 

and, 
n 

A(t) = AO(t - LSi)' (2.9.11) 
i=l 
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respectively where constant values Si are named age reduction factors, and AO(t) is the 

baseline failure intensity. 

The other maintenance model which put in this class is known as Kijima type repair 

models (38). Assume that tk and ~k are the time of kth event and the degree of the 

repair at that time respectively so that 0 ::; ~k ::; 1 and k ;::: 1. Based on Kijima type 1 

model we have 

(2.9.12) 

that Ak+l(t) and Vk = Vk-l + ~k(tk - tk-l) are considered as the intensity of the failure 

and the virtual age of the system just after kth repair. The expression (2.9.12) shows at 

kth intervention, irrespective of existing damage up to the last cycle, just the damage 

created over kth sojourn is removed. But, on the basis of the Kijima type 2 repair model 

the virtual age is represented as 

As noted, based on the Kijima type 2 repair model the repair and maintenance action 

removes entire damage created up to the kth sojourn. The process defined by 

V(t, ~k' k = 1,2, ... ) = t - tk + Vk, 

for tk ::; t < tk+l, k ;::: 0 is called the virtual age process. 

2.9.5 Modeling the Intensity Function Based on Repair and 

Mairitenance Indicators (RMI) 

In this section, using repair and maintenance indicators (RMI) presented by Jardine (46), 

some intensity process models are studied. Theses repair and maintenance indicators 

acting as intensity scaling factors or age reduction factors can be ideally incorporated 

I 
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into the failure intensity to adjust failure intensity of the system at repair times. 

Assume that a system consists of k parts, and Ni (t) (i = 1, 2, ... , k) are counting pro­

cesses that count the number of interventions/repairs of the part i in time interval [0, t]. 

Moreover, assume that TNi(t) refer to Ni(t)th intervention time for the part i. If the 

weight Wi is considered as the importance of ith part within the system, then the RM Ia 

is formulated as 
k 

RM Ia(t) = L WiSi(t) (2.9.13) 
i=l 

so that, 

(2.9.14) 

where ei(t) is the accumulated operating time, or the virtual age on the ith part replaced 
. \ 

at the moment of Ni(t)th repair and maintenance action. So, if tis treated as .the global 

age of the system, RM Ia(t) could be considered as the virtual age of the system. Subject 
I 

to the RMI's structure it is clear that 0.::; RM Ia(t) ::; t where it reaches th.e lower bound 

if and only if all parts are replaced by new one (ei(TNi(t») = 0) and RM1a = t when all 

parts are replaced by ones as old as the whole system (ei(t) = TNi(t»). 

The other type of RM I which reflects both repair action and ageing process of the 

system is the repair and maintenance indicator type b i.e. RM h. This indicator which 

can be considered as the state of the system at each moment of time is influenced by 

both global time t and the virtual age of the system measured by RM Ia. More precisely, 

according to the definition of Jardine (46), we have 

j (t) 
RM Ib(t) = 1 - RMI (t)' 

[l+g(t)] a 

(2.9.15) 

where j(t) = j(t, ()) is a non-increasing function in t, g(t) = g(t, ()) is a non-decreasing 

function in t, j(O) = l,j(oo) = c,O ::; c::; l,g(O) = O,g(oo) = 00, and () is a vector of 

parameters. As noted RM Ib(t) is an increasing function of t such that 0 ::; RM h ::; 1 



44 

where RM h(t) = 0(1) denotes the best (worst) state of the system. Finally, the repair 

and maintenance indicator type c, RM Ie', in terms of RM Ia is defined as 

RMI ( ) = 1 _ RMla(t) 
e t RM Ia(t - 0)' (2.9.16) 

which RM Ia(t - 0) is the left limit of the RM Ia. So, 1 - RM Ie(t) can be interpreted 

as ratio of the virtual age of the system just after repair time RMla(t) and the virtual 

age of the system at repair time RM Ia(t - 0). It is easy to see the greater values of 

RM Ie( t) imply the better quality of the repair. For example, if all parts are replaced 

by new ones then RMla(t) = O,and RMla(t - 0) > 0, so RMle(t) takes value one. If 

we have minimal repair corresponding to each ~art then RMla(t) = RMla(t - 0) that 

is RM Ie(t) = O. Obviously, 0 ::; RM Ie(t) ::; 1 if just a number of parts are replaced, or 

the repair action can not have ,a significant 'effect to reduce the accumulated operating 

time of the parts. 

Some Intensity Process Models Based on RMI 

• Incorporating the (RMI) as an Additional Covariate 

In order to reflect the effect of the repair at intervention time, let RM Ia as a repair co­

variate is incorporated into the exponential multiplicative factor of the intensity function 

that is 

A(t) = AO(t) exp[rz(t) + aRM Ia(t)], (2.9.17) 

where a > 0 denotes the regression parameter. From the equation (2.9.17) we have 

Anr(t) ::; A(t) ::; Anr(t) exp(at) where Anr(t) = AO(t) exp ("z(t)) is a function of both 

the global age of the system, and the virtual age process RMla(t). So, the term 

exp (aRM I a (t)) can be considered as the repair covariate expressing the history of RM A 
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during the repair process. As seen in special case when all new parts are used at RM A 

time the intensity function reduces to A(t) = Anr(t) which is Cox model (15), if all parts 

are restored to their conditions just before repair and maintenance action (minimal 

repair), then the failure intensity increases to Anr (t) exp ( at) . 

• Incorporating the (RMI) as a Non-exponential Multiplicative Factor 

The RM 1's role as a non-exponential multiplicative factor can be compared with the 

function of intensity scaling factors in the Percy model (60). In both models the aim 

followed is to reflect the repair effect on the failure intensity. If RM h is considered as 

a multiplicative factor, then 

(2.9.18) 

Now let j(t) = 1, and all parts are replaced by new ones then the failure intensity can 

take zero value . 

• Incorporating the (RMI) Through the Virtual Age (VA) Concept 

To reflect the effect of repair and maintenance action and adjust the intensity of failure 

RM fa can be incorporating into the baseline intensity function of the PIM as an age 

reduction factor. In other words, 

A(t) = Ao(RMfa(t)) exp (rz(t)) , (2.9.19) 

As seen the effect of repair and maintenance action is reflected in the intensity process 

through shifting the time origin in the baseline intensity function. On the other hand, 

the values of the RM fb'S varies between zero and one, and the failure intensity can 

be expressed in terms of the V A concept. In such sense, the global age of the system 
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reduces through incorporation of the RM Ib into the baseline intensity function, that is, 

A(t) = Ao (tRMh(t)) exp (-yz(t)) , (2.9.20) 

As shown, the virtual concept can be easily incorporated into the baseline intensity 

function by changing the system's age. Also, on the basis of Kijima's repair model we 

can write 

A(t) = AO(V(t)) exp (-yz(t)) , (2.9.21) 

Where V(t) denotes the Kijima's virtual age in terms of the repair degree ~n (see section 

2.9.4). Because the RM Ie expresses the quality of the repair, it can be taken into account 

as an ideal measure instead of the repair degree ~n. More preciselY,~n == 1 - RM Ie(tn) 

which tn refers to the nth RMA time. 



Chapter 3 

Stochastic Process Models 

3.1 Introduction 

This chapter is assigned to provide an overview of some stochastic notions which play 
. . 

a fundamental role to IIiod«l the occurrence of events whose intensity is' driven by a 

stochastic process, a phenomenon which is most common in application. Consider a 

manufacturing system (e.g. robot) whose failure intensity depends on type of part made 

(see section 3.2), or a deteriorating system whose inspection frequency is associated with 

the system state. In both cases, the intensity of occurrence of failure and inspection is 

determined by type of part made and the state of the system respectively which are un­

known over time. To tackle this kind of problem which is typically raised in modelling 

repair and m~intenance process of systems operating in a stochastic environment, Cox 

process (18), alternative Cox process (10), or Markov modulated Poisson process (4) so 

called minimal repair process (MRP) (4) are asset to be used. 

The next section describes the Cox process known as a Doubly Stochastic Poisson Pro-

cess. In this section we study a generalized of Poisson process with non-deterministic 

intensity, a random variable which is known at the time origin. More precisely, the 
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intensity function At is a stochastic process which is measurable at initial time (Fo­

measurable) where Fa = a(As, S E lR+). In the next section, an alternative definition of 

Cox process which is more adapted for modelling occurrence of events is presented. In 

the modified version, the stochastic intensity At is not measurable at initial time, but it 

is adapted to the filtration Ft = a(As : 0 ::; s ::; t). In section 4 we give a brief descrip-

tion of a Markov modulated Poisson process in which intensity of occurrence of events 

At = f(t, Yt) is linked by a stochastic process driven by Markov process Yt. Finally, 

subject to the stopping time notion a class of stochastic processes including (alterna­

tive) Cox p~ocess and Markov modulated Poisson process which is remarked by minimal 

repair process (MRP) is presented. 

3.2. Cox Process 
, \ 

A Cox Process, also known as a Doubly Stochastic Poisson process, or Conditional 

Poisson process is a stochastic process which can be described as a non-homogeneous 

Poisson process with stochastic intensity function. Extending the discussion of the 

Poisson process from both applied and theoretical viewpoint can be found in Cox and 

Lewis (16) and Cramer (17). Before formulating the structure of the Cox process, let 

us have a brief look at its applicatioR in financial mathematics, especially in insurance 

modeling. As known, in insurance modeling, the Poisson process plays a main role to 

build up the claim arrival process. Clearly, in the case that the claims depend on the 

intensity of natural disasters (e.g. flood, windstorm, hail, earthquake) to model the 

claim arrival process the Poisson process whose intensity is deterministic does not meet 

our desire. For instance, in insurance modeling one of the criteria used to determine the 

effect of catastrophic events, is the intensity function, or the shot noise process. This 
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process is useful to measure the frequency, magnitude and the time period needed to 

determine the effect of catastrophic events. As time goes on in the shot noise process 

the frequency of claims decreases and this trend carries on till another catastrophic 

event which will lead to a jump in the claim intensity. Therefore, the claim intensity 

function can be treated as the stochastic measure that generates the humber of claims 

resulting from catastrophic events. To overcome this deficiency, that is, the deterministic 

motion of the intensity D. Cox (16) presented the Doubly stochastic Poisson process. 

What distinguishes this process from other point processes (e.g., Poisson process) is the 

flexibility of the intensity function in that not only it can be considered as a function of 

the time but also its structure, which is mostly modeled by a driving process, allows the 

intensity 'of the eve~ts arrival process to have a stochastic behavior. Roughly speaking, 

the Cox process can be realized as a two steps randomization procedure. In the first step 

one draws at random the trajectory of a "driving process", say yt, and once the whole 

trajectories are selected, one matches a Poisson process of intensity f(t, yt) to these 

trajectories. To get more insight into the Cox process consider an example presented 

by D.P. Heyman and M.J. Sobel (27). Assume that X is a random variable with 

distribution F"'((x) that depends on parameter a 'Y. Suppose that 'Y is a random variable 

with distribution G. If x'is treated as a random variable indexed by the parameter 'Y, 

then the distribution function of X' can be stated as 

So, X'is X with its parameter 'Y randomized by G. For example, if X is distributed 

normally with mean value 'Y, then X'is a normal variable with a randomized mean or 

in generalized case if the counting process Nt is distributed by Poisson process with 

stochastic process 'Yt, then N,. is a Cox process with stochastic mean value. Now, to 
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have an example let the stochastic process (Ut)t?o be realized as the type of the part 

made by a robot at time t in a manufacturing plant, and the counting process Nt denote 

the number of the robots' failures up to time t so that when it is used on a specific job 

of type u, the number of failures is modeled by a Poisson process with constant rate 

A(U). In particular, as the production schedule is specified by a non-random function Ut, 

denoting the type of part being produced at time t, the counting process Nt is modeled 

by a non-homogeneous Poisson process with deterministic measure 

In general, if the production scheme is a stochastic process {Ut ; t 2: O} which is not 

influenced by failures, then the fail.ure process Nt is a Cox process: 

In such sense At is a randomized case of the previous one and can be interpreted as the 

stochastic intensity of a non-homogeneous Poisson process. Note that if the production 

schedule at origin of the time is specified then it is said that the intensity function is 

measurable at origin of time. 

The following definition is based on Bremaud (Point Processes and Queues (10)). 

Definition 3.2.1. (Doubly Stochastic or Conditional Poisson Process) (10) 

Let Nt be a point process adapted to a filtration :Ft , and let t be a nonnegative measurable 

process. Suppose that At is :Fo- measurable Vt 2: 0 and 

it Asds < 00 P - a.s., t 2: 0, (3.2.1) 

where :Fo = () {At : t 2: O}. 

If for all 0 ::; s ::; t and all U E R the term 
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denotes the characteristic function of the conditional distribution (Nt - Ns) given filtra-

tion Fs , that is, 

E[eiU(Nt-Ns)IFs ] = exp {(eiU - 1) it )"vdv } , (3.2.2) 

Then Nt is called a (P, Ft)-doubly stochastic Poisson process or a (P, Ft)-conditional 

Poisson process with the stochastic intensity )..t. 

The above assumptions imply (Nt - Ns) for all 0 ~ s ~ t is P-independent of Fs 

given Fa. The above result comes out of this fact that the right hand side of (3.2.2) could 

be stochastic just through the Fa-measurable intensity )..t. Also, since right hand side 

of (3.2.2) denotes the characteristic function of the conditional distribution (Nt - Ns) 

given filtration Fs,then for all 0 ~ s ~ t and all k ~ 0 it follows 

. e- J: )"udu(jst )"udu)k . 

p(Nt - NsIFs) = k! (3.2.3) 

Now in the sequel let us focus on some special cases of the Cox process. If 

Case1: At is deterministic, or more precisely, it is treated as the non-randomized function 

)..t == A(t), then Nt is said to be a (P, Ft)-Poisson process, in addition 

Case2: F t == Ft, then the (P, Ft)-doubly stochastic Poisson process reduces to the non-

homogeneous Poisson process, 

Case3: )..(t) = ).. for all t ~ 0, then it reduces to the homogeneous Poisson process, 

Case4: )..t = A for all t ~ 0, where A is non-negative Fa-measurable random variable, 

then Nt is called a homogeneous doubly stochastic Poisson process, 

Case5: )..t is formulated as )..t = f(t, Yt) for some appropriately measurable non-negative 

function f and for some measurable process Yt adapted to Fa that F'to ~ Fa, then Nt 

driven by the driving process, or environmental process Yt is called a doubly stochastic 
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Poisson process. 

Following we will give an alternative definition of the Cox process presented by A. Dassios 

and J. Jang (18) on which the driving process yt is not necessarily measurable at origin 

of time what is the most common in application. For example, let the process under 

study be a sequence of repair and maintenance actions so that the intensity of occurrence 

of repairs depends on the process state,more precisely At = f(t, X t) where X t denotes 

the system state at time t. In such case since the flow of the process over inter-arrival 

time is influenced by some environmental factors, obviously the whole trajectories of the 

driving process i.e., X t are unknown at origin of the time, and consequently, Cox process 

is not efficient to model above maintenance process. 

3.3 Alternative Cox Process 

Definition 3.3.1. (Alternative Cox Process) (18) Let (S1, F, P) be a probability space 

with information structure given by F = {Ft; t E [0, T]}. Let Nt be a point process 

adapted to F, and At denote a non-negative process adapted to F such that 

J~ Asds < 00 a.s . 

. If for all 0 :::; s :::; t, and u E R 

(3.3.1) 

then Nt is called a Fcdoubly stochastic Poisson process with intensity At where 

F/' = (J' {As : s :::; t} 

Clearly, above equation gives us 

(3.3.2) 
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and 

(3.3.3) 

where Tk denotes the inter-arrival time between the (k - 1)th, and kth time point. 

Also, under alternative Cox process definition, the survival probability is equal to 

p(T1 > tlAo) = E {exp (- J~ Audu) lAo} = E(e-AtIAo) 

where At = J~ Asds and T1 = inf {t : Nt = 11No = O} denotes the first jump arrival time 

of the Cox process Nt. Also, from (3.3.3) it is easy to show that 

The above equation states that the evaluation of distribution of Nt is equivalent to 

finding the distribution of A~ such that probability generating function of Nt yields the i 

moment generating function of At and vice versa. 

Now to get insight into alternative Cox process, let the process under study is a repair , 

and maintenance process in such away that the intensity of occurrence of repairs depends 

on the system state X t controlled by a homogeneous Markov process. More precisely, 

the intensity of the process is driven by U-values Markov process X t as At = f(t, X t). 

Thus the filtration generated by the intensity measure At is equivalent to the filtration 

Ff where 

Ff = () {Xs : 0 :::; s :::; t} 

and from (3.3.1) we have 

E {eiu(Nt-Ns)IF{} = exp {(eiU - 1) it f(v, Xv)dv } 

~ exp {(eiU 
- 1) l' ~ 'P.(u)f(v, u)dv } 

(3.3.4) 
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Where <Pv (u) refers to the stochastic indicator of the system state at time v 2: 0 i.e., 

CPv(u) = I(Xv = u). In special case given a known value of the system state CPv(u) == <Pv 

the alternative Cox process reduces to a Ft-non-homogeneous Poisson process. Note 

that the left hand side of the above equation is stochastic just through the intensity 

function, or the system state X t . If the stochastic part, that is, CPv can be estimated by 

sub-filtration At C Ff including the observed history of the maintenance process then 

we have an estimated version of the alternative Cox process as 

E {eiu(Nt-Ns)IAt} =. exp {(eiU - 1) J: 2:u CPv(u)f(v, u)dv} 

where CPv(u) = E(<Pv(u)IAv) = p(Xv = ulAv) \Iv 2: 0, and u E U. In such case the 

alternative Cox process reduces to ArAlternative Cox process. 

In the next section we study a special case of the alternative Cox process known as 

Markov-Modulated Poisson process. 

3.4 Markov Modulated Poisson Process 

As mentioned above the intensity function of the Alternative Cox process can be driven 

by a stochastic process, that is, At = f(t, It). In particular case, let the flow of the 

driving process It over time is controlled by a homogeneous Markov process. In such 

sense the alternative Cox process reduces to the repair model well-known as the Markov­

Modulated Poisson process. Also, the presented repair model can be treated as a gener­

alized version of the Poisson process whose intensity is indexed by driving process It = i, 

i E E {I, 2, ... , m} varying randomly. This case is common in application. For instance, 

Jensen (4) applies Markov Modulated Poisson process to model intensity of occurrence 

of minimal repairs of a deteriorating system subject to failure. Jensen models the in­

tensity of minimal repairs events Nt by an (stochastic) function /-tXt which is driven by 
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the Markov process X t describing the state of the system. More precisely, it is assumed 

that Nt admits the following F-SSM representation: 

where 0 < /-Li < 00, i E S = {I, 2, ... , N} and Mt is an Frmartingale. 

3.5 Minimal Repair Process 

In this section we focus on considering the some repair models in view point of the Min­

imal repair Process concept. To clarify this notion informally, let us restrict ourselves 

to a simple case of the minimal process, that is., the ?asic statistical minimal repair 

model. As known on,' the basis of the statistical minimal repair model not only the 

age or more precisely, the failure interisity of the system as a result of minimal repairs 

leaves unchanged, but also the inter-arrival failure intensity, corresponding to the non­

homogeneous Markov process, is time dependent deterministic. To get an insight into 

minimal repair concept, let the system under study be a complex system such as T.V. 

consisting a great number of components. It is expected after replacing a single tube 

in the T.V. set, the set as a whole will be prone to failure before the tube fails. There­

fore, with respect to what mentioned above, the time points of repair and maintenance 

actions based on the information level, obtained through the intensity measure, are not 

identifiable, or in terms of the stopping time notion the minimal repair times denoted by 

{Tn} (Vn > 0) are not measurable with respect to CT-algebra generated by the intensity 

function F/'. In other words, 

{Tn ~ t} = {w E S1 : Tn (w) ::; t} tf. Fl' Vt E R 
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So, the stopping times {Tn} ('lin> 0) can be determined under one filtration but not 

under the finer one. In the case that the system at failure times Tn (n ~ 1) is replaced 

by new one, then in terms of the hazard rate function of inter-arrival times which is r( u), 

u E (0, Tn - Tn-I) where To = 0 the failure intensity of the system can be represented 

as 

It is easy to see that the information generated by the intensity measure At up to time 

t includes the number of repair actions Nt where can be represented as follows 

and it follows that the renewal process does not put in the class of the minimal repair 

process. As seen minimal repair models are simply characterized by level of information 

generated by intensity function. If intervention times Tn (n > 0) are not identifiable 

(measurable) with respect to At then the repair model is minimal. 

Following to characterize minimal repair models, a definition of minimal repair model 

presented by Aven and Jensen (4) is given. 

Definition 3.5.1. Let (Tn), n E N be a point process with integrable counting process 

N and corresponding F-intensity A. suppose that FA = (F/), t E R+, is the filtration 

generated by A: FtA = CT(As : 0::; s ::; t). Then the point process (Tn) is called a minimal 

repair process (MRP) if none of the variables Tn, n E N, for which P(Tn < (0) > 0 is 

an FA-stopping time, i.e., for all n E N with P(Tn < (0) > 0 there exists t E R+ such 

that {Tn} ::; t tf. F{ 

Above definition comes from this fact that just after minimal repairs deterioration 

level and consequently the failure intensity of the system at stopping times {Tn} n>O leaves 
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unchanged. So, since the system undergoing minimal repairs can be treated identical in 

law to one of the same age which has not undergone any failure or repair, the minimal 

repair times {Tn} n>a with respect to the failure intensity trend of the system i.e . .At are 

not identifiable. 

In the sequel, we will have a study on Cox process, the Alternative Cox process, and also 

Markov modulated Poisson process in viewpoint of the minimal repair process notion. 

As mentioned before, the intensity function of the Cox process is set up at origin of 

the time, or more generally the stochastic process ~t is Fa-adapted for all t E R i.e., 

Fa = O'(.As ; S E R+). So, since the trajectories of the driving process are identifiable 

before starting the process, it means we say the process at time points Tn (n > 0) is 

restarted to the state in which the events have occurred. To get a sense of minimal 

repair processes (MRP), let us have following example. As before suppose that the 
\ 

production scheme of a robot, operating in a manufacturing plant, is set at initial time. 

So, under this assumption the production process is not affected by robot failures and 

consequently, the failure intensity of the robot, marked by the job type under which it 

is working at failure time points, leaves unchanged. In other words, if F t denotes the 

history of the process up to time t then 

Also we have 

.1'/' = O'(.As : 0 ~ S ~ t) c Fa 

and {Tn} are not Fa-adapted. So, it follows {Tn} (Vn > 0) are no FA-stopping time, or 

equivalently, the Cox process is an (MRP). 

Also, the Markov-modulated Poisson process can be considered as a minimal repair 
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process if just after each repair and maintenance action the process is restored to the 

state in which the event (e.g. failure) has occurred. In such case the intensity measure 

indexed by the stochastic process does not include any information about event time 

points {Tn}. More precisely, time points of events under filtration F/' for all t > 0 are 

not measurable, namely, 

Where Yt (t 2:: 0) is a stochastic process steered by the homogeneous Markov process. 

However, it is necessary to be pointed out, in the case that the process at some time 

points asa result of repair and maintenance action is adjusted then the (MRP) property 

for Markov modulated Poisson process is not satisfied because 

Where Nt counts the number of repairs up to time t. 

Following theorem gives another characterization of an minimal repair model (MRP). 

Theorem 3.5.1. Assume that P(Tn < (0) = 1 for all n E N and that there exist version 

of conditional probabilities Ft(n) = E[I(Tn ::; t)IF/'J such that for each n E N (Ft(n)), 

t E R+ is an (FA-progressive) stochastic process. 

(i) Then the point process· (Tn) is an (MRP) if and only if for each n E N there exists 

some t E R+ such that 

P(O < Ft(n) < 1) > O. 

(ii) If furthermore (Ft) = (Ft(1)) has P-a.s. continuous paths of bounded variation on 

finite intervals, then 



Chapter 4 

Optimal Maintenance Policies for 

Stocha~tically Deteriorating 

Systems' Subject to Bivariate 
, 

Stochastic Process 

4.1 Introduction 

The maintenance decision policy for a repairable system has aroused great attention. 

Bergman (8) studies an optimal replacement problem with a non-decreasing damage 

process. He shows that the optimal replacement policy is a control limit policy with 

respect to the damage process. Makis and Jardine (31) address an optimal replacement 

problem for a deteriorating system subject to random failure. The proportional hazard 

model (see Cox (13)) has been used to describe the failure rate of the system which is 
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function of both the system age and a stochastic (damage) process. It is shown the op­

timal replacement policy is a control limit rule with respect to the proportional hazard 

process. Newby and Dagg (56) in a maintenance decision framework tackle the problem 

of determining optimal inspection and maintenance policies for a system with perfect 

repair whose performance is described by a stochastic process. With the same approach 

as Newby and Dagg (56), Newby and Barker (52) under both periodic and non-periodic 

inspection policy present an extension of decision models which use the first hitting time 

of a critical level as a definition of failure. The inspection and maintenance policy is 

determined by the crossing of a critical threshold by an aggregate performance measure. 

To extend the model to non-periodic inspection policy, they apply a scheduling func­

tion m(x) (Grall et al. (1)) which determines the time to the next inspection based on 

the observed systerp. state x. Recently, using the .extended proportional hazards model 

(EPHM), You, Li and Meng (49) develop two component-level c6ntrol-liniit preventive 

maintenance (PM) policies for systems subject to the joint effect of partial recovery PM 

acts (imperfect PM acts) and variable operational conditions. 

In this chapter under both periodic and non-periodic inspection policy we present a new 

approach to maintenance optimization of a stochastically deteriorating system which is 

subject to repair and maintenance. The state of the system is determined by the failure 

probability measure R~x,v), t E 1R+ described by a general stochastic process (damage 

process) X with monotone paths and a virtual age process V induced by repair. The 

structure of the optimal maintenance strategy is formed under periodic and non-periodic 

inspection policy. Under non-periodic inspection policy, by using repair alert model time 

to next ((n + 1)th) inspection Tn+l == T(Xn' Vn; 13) (n ~ 0) is formulated to provide an in­

spection schedule based on the known bivariate state process (Xn, Vn) = (xn, vn) updated 

just after nth repair. The damage state process is revealed by inspections at non-periodic 
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times X Tn+1 = X n + 1 f---t X n+l. At inspection time Tn+l the decision to perform (n + 1)th 

repair action is taken with respect to the failure state process Rk:i1,vn) characterized by 

the known bivariate state process (Xn+l' vn ) just before repair, inter-arrival inspection 

time Tn+! = T(Xn' Vn ; (3) and decision thresholds ~Tl ~f which respectively refer to the 

preventive partial repair and replacement rule. The decision maker has disposition to 

adjust the virtual age process V (imperfect repair), leave it unchanged (minimal repair) 

or replace the system by new one (perfect repair). The critical threshold '~Tl is used as 

definition of partial repair action. If the system state process .mx,v) crosses the bound-

ary ~r a partial repair is made. The acceptance performance of the process is limited 

by the critical level ~f' (0 < ~r < ~f < 1). The threshold ~f is the level at which failure 

and replacement occur.· The replacement action (renewal) is determined by the first 

hitting time to the failure threshold ~f' The problem is to minimize the long-run aver­

age cost subject to the preventive maintenance decision rules ~r and ~J' and the repair , , 

alert-parameter (3. Because the model presented allows replacement if the system state 

crosses ~f' the replacement cycles constitute a renewal process. This embedded renewal 

process is used to derive expressions for the long-run average cost based on the repair 

alert parameter (3 and decision rules ~Tl ~f' To demonstrate the use of this maintenance 

policy in practical applications, using Gamma process describing evolution of damage 

process X, an analytical method applied for non-periodic inspection policy is presented. 

The simple change to the model Tn f---t T allows us to represent a maintenance policy 

under periodic inspection strategy. To demonstrate the use of this maintenance model 

in practical applications, employing the modified analytical method, a solution to the 

optimal decision rules ~;, ~j and the period of inspection T* is derived. 
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4.2 Model 

Let X = {Xt : t ~ O} be a stochastic process with monotone paths which can influence 

time to failure of the system. The process X is a damage process which reflects the 

effect of the operating environment on the system. The state of the damage process 

X is determined by inspections which occur at times {Tn: n = 0, 1,2, ... }, To = 0 with 

inter-arrival times Tn+1 = Tn+1 - Tn, (n ~ 0). The only available information is given by 

the history of the damage and virtual age proce?s at inspection times just after repair 

action, i.e.· 

where X Tk and VTk denote the damage process and virtual age process just after kth 

repair action. Since the values of X are known only in some discrete points of time 

Tn (n ~ 0), with the saine approach as Makis and Ja~dine (31) we approximate the 

stochastic process {Xt , t ~ O} by the right continuous jump process {X;, t ~ O} which 

increases by jumps at intervention times, otherwise is constant. More precisely, 

This assumption implies that if f is a function defined on lR~, then f(Xt , Vt) for t E 

[Tn, Tn+1 ) is measurable with respect to the filtration An. In other words, 

(4.2.1) 

The link between the lifetime indicator process Zt = J(T :::; t) adapted to the filtra­

tion IF = (Ft ) (An eFt) and the bivariate state process (Xt, Vt) is modeled by the 

proportional intensity model (PIM) (see Cox (13)) 

(4.2.2) 
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which is product of a baseline intensity >'0 dependent on the age of the system defined 

by the virtual age process V = {lit : t ~ O} and a positive and increasing function 'l/J 

dependent on the stochastic process X. More precisely, it is assumed that Zt admits the 

following semi-martingale representation: 

where M t is an :Ft martingale. Obviously Z is the counting process corresponding to 

the simple point process (T~) with T = T{ and T~ = 00 for n ~ 2. Processes of this 

kind are a realization of Cox processes or conditional Poisson processes if >'(t, X t , lit) is 

:Fo measurable for all t E lR+ (see Serfozo (67) and Bremaud (10)). Using the projection 

theorem (see A ven and Jensen (4)) we obtain for Tn :S t < Tn+l, 

1 _ p(Xt,vt) 
t 

it p,;(Xs, Vs)ds + Mt 

where Mt is an An martingale, for t E [Tn, Tn+1), 

F?t,vt) = E[I(T > t)IAnl = P(T > tlAn) 

and 

(4.2.3) 

Since >'0 (1It)'l/J(Xt), t E [Tn, Tn+l) , is measurable with respect to the filtration An (see 

equation (4.2.1)), it follows 

>'o (IIt)'l/J(Xt)E[I(T > s)IAnl 

>'0 (1It)'l/J (Xt) Ft(Xt, Vt) 

By substituting the intensity measure (4.2.4) into the equation (4.2.3) we get 

Ft(Xt,vt) = it >'0 (Vs)'l/J(Xs)Fs(x·,,v')ds + Mt 

(4.2.4) 

(4.2.5) 

(4.2.6) 
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From equation (4.2.6) it is easy to see that for t E [Tn, Tn+1) , (n 2:: 0) 

that In = Tn - Vn. Using the fact that Ft(Xt,Vt) on {Tn::; t < Tn+1} has continuous paths 

of bounded variation, it follows that Mt = 0 and 

(4.2.7) 

Simply, it can be shown that the solution of the resulting integral equation (4.2.7) for 

t E[Tn, Tn+1) is 

(4.2.8) 

or, for u E [0, Tn+l) 

P (T > Tn + ulT > Tn, An) 

exp( -1j;(Xn) [Ao(Vn + u) - A(Vn)]) 

(4.2.9) 

where Ao(u) = Iou Ao(s)ds. The failure state process (4.2.9) can be viewed as a sequence 

of survival functions updated by each intervention. From equation (4.2.9) it simply 

follows for Tn ::; t < Tn+ 1, (n 2:: 0) 
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which is a sequence of truncated hazard rates updated by virtual age Vn induced by 

repair action. 

Using the observed damage state process X n+1 at inspection time Tn+1, the decision to 

perform repair is made at Tn+! based on the A;:;-+l-adapted failure state process m:;:l,vn) 
where A;:;-+! (n 2: 0) includes the history of damage and virtual age processes up to time 

Tn+1,just before (n + l)th repair action, i.e., 

The decision maker with respect to repair and failure threshold ~Tl ~f' (0 < ~r < ~f < 1) 

and th~ system failure state process m:;:l,vn) has disposition to adjust the virtual 

age of the system (imperfect repair) 1 return the system to the 'good as new' state 

(perfect repair), or restore the system to its condition just prior to-,inspection (minimal 

repair). The first failure and replacement time of the system Tg'v) is defined as the 

first inspection time the failure process m:;:l,vn), (n 2: 0) reaches or exceeds a given 

threshold ~f (0 < ~f < 1): 

Thus, the perfect repair is decided according to whether at (n + 1)th inspection time the 

system has failed 

or, is still working 

The imperfect repair mechanism based on the failure state process R~;:l,vn), (n 2: 0) 

and the repair and failure threshold ~Tl ~f (0 < ~r < ~f < 1) is as follows: If at (n + 1)th 

inspection time m:;:l,vn) < ~r (n 2: 0) then the system is restored to its condition just 
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prior to inspection (minimal repair), and the updated bivariate state process just after 

minimal repair i.e. (Xn+1) Vn +Tn+l) is incorporated into the equation (4.2.9) to evaluate 

the failure state of the system for u E [0, Tn+2)' If 

an imperfect repair just after (n + l)th inspection time is performed. The repair action 

updates the virtual age of the system Vn + Tn+l f--t Vn+1 and 

where V~+l = Vn+1 - Vn s.t. V~+l < Tn+l. By incorporating the post repair bivariate 

state process (Xn+l' Vn +v~+1) into the equation (4.2.9), an estimate of the failure state 

of the system for it E [0, Tn+2) is provided. 
/ 

-The improvement of the system via the imperfect repair is reflected in an age reduction 

factor (repair degree) which serves to adjust the virtual age of the system in a Kijima's 

type I manner (see Kahle (33)). In Kijima's type I model it is assumed that the repair 

action could remove damage created in the last sojourn. Precisely speaking, the virtual 

age of the system just after nth repair action, Vn, is determined by Vn = Vn- 1 +~nTn, (n 2: 

1) where Tn = Tn - Tn- 1 and ~n' (0 :S ~n :S 1) denotes the repair degree at nth inspection 

event. 

As noted such repair can reset the virtual age of the system to that of a partially repaired 

system if 0 < ~n < lor restore the system to its condition just before inspection (minimal 

repair) if ~n = 1. So, by using this fact given that 

~n = ~ s.t. ~ E (0, I), Vn 2: 1 (4.2.10) 

the virtual age of the system just after nth repair action with respect to the failure 

process at nth inspection time R~:n,vn-l) and decision thresholds ~Tl ~f can be expressed 
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as 

{

IT + (: 'f (: < R-(Xn,vn-tl (: Vn-l '> Tn, 1 ,>r _ Tn < '>f; 
Vn = IT + 'f i5(Xn,vn-tl (: vn-l Tn, 1 lLrn < ,>r' 

where the parameter ~ denotes the degree of imperfect repair. The condition (4.2.10) 

ensures that over the replacement cycle the system gradually deteriorates and becomes 

obsolete with time. By using the monotone property of 'ljJ, the virtual age Vn can be 

represented as 

where 

'ljJ(Tn,Vn-tl = 'ljJ-l { -In(1 -{r(J») .} 
~r(J) AO(Tn + Vn- 1 ) - Ao(Vn-d . 

Briefly, the decision and action process are built up in following way: starting from state 

process (Xn- 1, Vn- 1) = (Xn-l, Vn-l) (n 2:: 1) evaluated just after (n - 1)th repair, the 

nth inspection is made at Tn. Inspection at time Tn reveals Xn I---t Xn. To perform a 

repair, the decision maker subject to the decision thresholds ~r, ~f and the failure state 

process R~~n,Vn-l) driven by the known bivariate state process (Xn, Vn- 1) = (xn, Vn-l) 

either restore the system to its condition just prior to inspection that is (xn, Vn-l + Tn), 

adjust the system's virtual age Vn-l + Tn I---t Vn-l + ~Tn' or return the system to the 

regeneration state (Xo, Va) = (x, v). The repair action determines the virtual age of the 

or, equivalently, 

(Xn,V;) , 

(Xn,V~) , 

(x, v), 

(Xn,v;) , 
(Xn, V~) , 
(x, v), 
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where v~ = Vn-l + Tn and v~ = Vn-l + ~Tn. If renewal does not take place at inspection 

time Tn, i.e. 

or, 

then starting from state (Xn' Vn ) = (xn, vn ), similarly as above the (n + 1)th decision 

and action process are carried out at Tn+l and this process continues. As noted, the 

decision at inspection time based on last virtual age and current observed damage state 

determines a repair action and resulting action updates the virtual age. This series of 

decision and action events makes a sequence of bivariate state process (xn, vn ), (n 2:: 1). 

Specifically; let the process starts in state (Xo, Va) = (x, v), and decisions can be made 

at periodic times kT, (k = 1,2, ... ). Then, the virtual age ()f the system just after first 

repair action at time T, VT(x,v), is 

VT(X,v) = { v + ~T, if a ::; X T < b; 
v + T, if X T < a. 

where a = 'lj.;~T,V) and b = 'lj.;~T,V). 
- ~ ~f 

In the following section under periodic inspection policy an expression for the long-run 

average cost based on the decision thresholds ~r' ~f and the period of inspection T is 

obtained. 

4.3 Long-run average cost given periodic inspections 

policy 

4.3.1 Expected cost per cycle 

Let C$x,v) denote the cost of repair and maintenance actions per cycle starting from 

initial state value (Xo, Va) = (x, v): the system is instantaneously replaced by a new one 
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at cost Cf and each (partial or minimal) repair and maintenance action incurs a cost 

determined by a random cost function C~(VT)' i.e. 

if a ::; X T < b; 

if X T < a. 

where the bounded cost measures C, C~(v + T), C~(v + ~T) respectively denote the 

inspection cost, the minimal repair cost and imperfect repair cost to adjust the system 

age V+T 1---+ v + ~T, (0 < ~ < 1). It is assumed that the imperfect repair cost C~(V+~T) 

is a non-increasing function of the reduction factor~. That means, better repair induces 

higher cost of repair. Then a renewal type argument yields 

C(x,v) = C I (x > nl,(T,V)) + (CV(\!:) + C(Xr,vr)) I (X < n.I' (T,V)) T f· T - 'fief r T T T 'fief (4.3.1) 

Or, 

C(x,v) = (C(Xr,vHT) _ C(Xr,V+T)) I (nl,(T,V) < X < nl,CT,V)) 
T T T 'fIer - T 'fief 

+ C I (x > nl,(T,V)) + C (v' C)I (nl,(T,V) < x < "I,(T,V)) f T - 'fief r, ':, 'fIer - T 'fief 

+ (C + C~(v + T)) I (XT < 'ljJt,V)) + C~Xr'V+T) I (XT < 'ljJt,V)) 

where I ( .) is the indicator function and 

Cr(V;~) = C~(v + ~T) - C~(v + T). 

Let T~~~~2) denote the first time the damage process X t , t E lR+ crosses the imperfect 
~r(f) 

repair (failure) limit 'ljJ~T'V): 
~r(f) 

T(x(~v2) = inf {t : X t > 'ljJ~T,v)I(Xa, Va) = (x, v)} 
'if; , - ~r(f) 

~r(f) 

then, using the fact that 
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c~X'V) can be represented as 

c(X,v) = (C(XT,VHT) _ C(XT,V+T») 1 (nl,(T,V) < X < nl,(T,V») 
T T T 'f'~r - T 'f'~f 

C 1 (T
(X,V) ) C- ( 1':)1 (T(X,V) < T(x,v) ) + f (T,V) ::; T + r v; ':, (T,,,) _ T < (T,V) 
~f ~ ~ (4.3.3) 

+ (C + CV(v + T)) 1 (T(X,V) :> T) + C(XT,V+T) 1 (X < nl,(T,V») r ,p(T,V) T T 'f'~f 
~f 

Without loss of generality assume that the damage process X t is a continuous-time 

process with continuous space state. The expected cost per cycle J-Ldx,v) is 

(4.3.4) 

where' 

and fT(ylx) is the transition density of the damage process X t from Xo = x to XT = Y 

and FlT,V) , F,p(T,V) that F = 1-P denote the distribution functions of the stopping times 
~r ~f 

T (x,v) T(x,v) t' 1 
(T,V) , (T,V) respec lye y. 

,p~r ,p~f 

4.3.2 Expected length per cycle 

The expected length of a cycle is obtained similarly. The length of a cycle, L~x,v), is 

L(X,V) = T(x,v) 1 (X > nl,(T,V») + (T + L(XT,vT») 1 (X < nl,(T,V») 
T ,p(T,V) T - 'f'~f T T 'f'~f 

~f 

(4.3.5) 

But, 
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Thus, 

L(X,V) = T(x,v) I (X > nl,(T,V») + (7 + L(Xr,v+T») I (X < nl,(T,V») 
T 1j;(r,v) T - 'f/~f T T 'f/~f 

~f 

+ (L(Xr,vHT) _ L(Xr,v+T») I (nl,(T,V) < X < nl,(T,V») 
T T 'f/~r - T 'f/~f 

(4.3.6) 

Or, equivalently 

L(X,V) = T(x,v) I (T(X,V) < 7) + 71 (T(X,V) > 7) + L(Xr,V+T) I (X < nl,(T,V») 
T 1j;(r,v) 1j;(r,v) - 1j;(r,v) T T 'f/~f 

. ~f ~f ~f (4.3.7) 
+ (L(Xr,vHT) _ L(Xr,v+T») I (nl,(T,V) < X < nl'<T'~») 

T T 'f/~r - T 'f/~f 

The expected length per cycle, f..L L~x,v), is 

(4.3.8) 

where 

4.3.3 Long-run average cost 

Now, the problem is to minimize the long-run average cost per unit time subject to the 

period of inspection 7 and the preventive partial repair and the preventive replac~ment 

rule ~r, ~f' 

Let f..L~x,v) be the long-run average cost per unit time given the start state (Xo, Va) 

(x, v). Because given the assumptions (4.2.10) the virtual age process Vn is increasing 

in the number of both minimal and imperfect repair events, i.e. 
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the failure process R~Xn+l,vn) tends to 1 as n ~ 00. This property subject to the failure 

threshold ~f that 0 < ~f < 1 implies the existence of regeneration time points Tg'v): 

Since, the sequence of failure and replacement times Tg'v) forms a regenerative pro­

cess, the inter-arrival time between two consecutive replacements is a regenerative cycle. 

Theses regeneration cycles form an embedded renewal process. As noted our process is 

based on a renewal reward argument with policy {T1 < T2 < ... < Tn < Tn+l < ... } with 

possibly irregularly spaced inspections. In the case that the catastrophic failure of the 

system occurs within the nth interval, T E [Tn, Tn+l)' because the failure p~obability of 

the system i~ large enough, R~~7(n) ~ 1 for t E [Tn, Tn+1)' the reliability threshold ~f is 

achieved at subsequent inspection time Tn+l after system failure time T E [Tn' Tn+d and 
. . . ( 

renewal (replacement) takes place. The replacement instants in both the periodic and 

non-periodic (see section 4.6) define the embedded renewal process. This implies that 

modelling includes the probability of failing within interval. This approach to failure 

modelling has been addressed by Newby and Dagg (56) and Newby and Barker (55). 

According to the standard renewal reward theorem (see Ross (66)), we have 

(4.3.9) 

where regarding equations (4.3.4) and (4.3.8), expected cost per cycle Ilc (x,v) and ex-
. r 

pected length per cycle IlL~x,v) are solution of following integral equation: 

(4.3.10) 
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where 

(4.3.11) 

and 

(4.3.12) 

that 

(4.3.13) 

Starting in state (Xo, Va) = (0; 0), the optimal period of inspection and repair and failure 

threshold can be determined as 

(T*, C, ~j) = arg min {f.l~o,o)} . 
(T'~T'~f )EIR+ x [O'~f) x [0,=) 

Thus, the optimal maintenance policy characterized by the optimization of the long-run 

average cost per unit time will lead to an optimal inspection policy T* and preventive 

maintenance rules -repair/replacement policy- ~; and ~j. 

4.3.4 The long average cost under minimal repair and replace-

ment policy 

In particular case, let the virtual age of the system just after partial repair leave un­

changed (minimal repair) or precisely speaking, parameter ~ which reflects the degree of 
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partial repair be large enough: ~ --t 1. Given above assumption which restricts the re­

pair action space to just minimal repair and replacement, the integral equations (4.3.10) 

and (4.3.12) respectively reduce to the following integral equations 

(4.3.14) 

and 

( 4.3.15) 

with corresponding long-run average cost per unit time 

(4.3.16) 

where 

and 

So, the optimal maintenance policy characterized by the optimization of the long-run 

average cost. per unit time will lead to an optimal inspection policy T* and replacement 

policy ~j: 

4.3.5 The long average cost under partial repair and replace-

ment policy 

In the case that the partial repair limit is small enough: 1/J~r --t x, the action space 

reduces to the partial repair and replacement. Provided this assumption the integral 



equations (4.3.10) and (4.3.12) respectively reduce to 

and 

'" L\"'" = h L\" ", + l'k ;'" '" L\",H<' IT (y I X) dy 

with corresponding long-run average cost function 

where 

and 

i
T i 

_ -(x,v) 
hL(x,v) - F (.,.,v) (u)du . 

.,. 0 'Ij;~f 
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(4.3.17) 

(4.3.18) 

(4.3.19) 

As above the optimal maintenance policy is characterized by the optimization of the 

long-run average cost per unit time with respect to inspection time T and replacement 

threshold ~f: 

( T* , ~j) = arg min {tL~O,O)} . 

(T'~f )ElR+ x [0,00) 

Clearly, if the repair degree ~ is large enough: ~ --+ 1, ,then the long-run average 

cost (4.3.19) approaches to the equation (4.3.16). 

In the following section, an analytical method to solve the maintenance optimization 

problem is proposed. 
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4.4 A numerical iteration algorithm to solving opti-

mization problem 

To find a solution to optimization problem of p,~x,v) (see equation (4.3.9)), let ¢c(x, v) 

and ¢1(X, v) respectively denote the expected cost and expected length per cycle given 

initial state (Xo, Va) = (x, v). It is easy to see from equations (4.3.10) and (4.3.12), both 

¢c(x, v) and ¢1(X, v) are solution of following integral equation: 

¢(x, v) =f(x, v) + 1;;':,"' j,(ylx )q,(y, v HT)dy + 1<1;'"' j,(ylx )q,(y, v + T)dy (4.4,1) 

where f (i, v) refers to 9 dx,v) or h L~x,v) . 

To present a solutiqn to the integral equation (4.4.1), let (Xk' Vk) (k = 0, I, ... ) imply the 
) 

state of the process just after kth inspection. Given starting state (Xk' Vk) = (Xk' Vk), 

from equation (4.4.1) the ¢(Xk' vic) can be expressed as 

(4.4.2) 

with 

1j;(T,Vk ) 

¢~k) = 1 ef fr(yIXk)¢(k+l)(y, Vk + ~T)dy, 
1j;(T,1!k) ~ 

er Vk+l 

1j;(T,Vk ) 

¢~k) = 1 er fr(yIXk)¢(k+l)(y, Vk + T)dy, 
Xk ~ 

Vk+l 

( 4.4.3) 
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By conditioning on the value of the damage process at (k + 1)th inspection time, X k+1 = 

Xk+l, the equation (4.4.2) can be represented as 

(4.4.4) 

where j,(k) - ",(k) + ",(k) and ",(k) - ",(k) + ",(k) Assume that m - 1 (m > 1) and n - m 
'P12 - 'PI 'P2 'P13 - 'PI . 'P3 . -

(n ~ m) respectively denote the number of minimal and partial repair(s) and Tm and 

Tn are the first time the damage process X t (t E ~+) reaches or exceeds a given partial 

repair and failur~ threshold 'lfJt'v t
) and 'lfJt,vt

) respectively: 

(4.4.5) 

T = inf {t E iR. : X > nl,Cr,vt)} = inf {T : X > nIJr,vk
-

1
)} • 

n, + t - 'P~f k kr - 'P~f ' 
. . 

(4.4.6) 

. where n - 1 (n ~ 1) denote the whole number of minimal and partial repairs. Given 

starting state (Xn - I , Vn - I ) = (Xn-I, vn-d, from equations (4.4,2) and (4.4.6), it is easy 

to see that 

",(n-I)( ) - f( ). 'P Xn-I, Vn-I - Xn-I, Vn-I , n -1 ~ m, (4.4.7) 

Given that just after (n - 2)th inspection a partial repair is performed i.e. m ::; n - 2, 

since Vn-I = Vn -2 + ~T (see equation (4.4.3)), from equation (4.4.4) we have 

¢(n-2) (Xn -2, Vn-2) = f(X n -2,Vn-2) 

1/J(T,Vn - 2 ) 

+ 1 ~f fr(ylx n _2)¢(n-I)(y, Vn -2 + ~T)dy 
1/J(T,Vn -2) ~ 

~r Vn-l 

But, in terms of initial condition (4.4.7), equation (4.4.8) can be represented as 

( 4.4.8) 

(4.4.9) 



Thus, recursively cP(n-i) (Xn-i, Vn-i) for 1 :S i :S n can be calculated as 

where 

Vn-i+1 = 

,;..(n-i) 
'1"1 , 

,;..(n-i) 
'1"12 , 

,;..(n-i) 
'1"13 , 

i = 1; 

2 :S i :S n - m + 1; 

n - m + 2 :S i :S n. 

{ 
Vn-i + ~T, 2:S i :S n - m + 1; 

Vn-i + T, n - m + 2 :S i :S n. 

78 

(4.4.10) 

(4.4.11) 

As seen, given starting state (Xo, Va) = (x, v), equation (4.4.10) recursively gives a 

solution to both expected cost cPc(x, v) and expected length per cycle cPt(x, v) which are 

function of control parameters: 

(x,v) _ cPc(x, v) 
f-lT - ( ) . . cPt x,v 

From recursive relation (4.4.10) it is easy to see that both cPc(x, v) and cPc(x, v) are 

bounded. This comes from the fact that for ~r E (0, ~f)' ~f E(O, 1) integrands 

f (I ),;..(n-i+1) ( ) 
T Y Xn-i 'I" Y, Vn-i+1 , 

are continuous on the closed, bounded intervals 

2:Si:Sn-m+1 

and 

and functions !c(Xn-i, Vn-i) and !t(Xn-i, Vn-i) corresponding to cPc(x, v) and cPt (x, v) 

Vi E {1 : n} are bounded, i.e. 
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where M:;-i = C + Cf + c~n-i(vn_i + ~T) and for Co E (0, T) 

which implies that the long-run average cost per unit time is bounded: 

o < J.l~x,v) < 00. 

In the next section, using the recursive procedures (4.4.10), numerically such a preventive 

maintenance policy subject to the decision thresholds ~T) ~f and the period of inspection 

T is illustrated. Numerical result is based on Gamma process describing damage state 

process X t (t ~ 0). 

4.5 Optimizing, model 

4.5.1 Deterioration model based on Gamma process 

Let the damage process X t be described by a stationary Gamma process with shape 

parameter 'Y > 0 and scale parameter 5: 

and 

where shape parameter is linear in t, 'Y(t) = 'Y x t. 

The transition probability density function fT(Ylx), the density of X T given Xo = x, is 

the gamma density 

(4.5.1) 
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If the state of the process at initial time is (Xo, Va) = (x, v), the cumulative distribution 

of the hitting time T(~~v2) of the partial repair (failure) barrier at 7/Jt'v) is 
1/J{r(f) r(J) 

p(X,v) (t) = P(T(x,v) < t) = P(X > ",,(r,v) IX = x) = roo f(3(ylx)dy. 
1/Jk

T
,v) 1/Jt,v) - t 'f/er(f) ° J,L (T,V) 

ref) r(J) 1/J{r(J) 

(4.5.2) 

The distribution of T(~~~2) can be expressed as ratio of an incomplete gamma function: 
1/J{r(f) 

f( t· b(",,(r,v) x)) 
p(x,v) (t) = 'Y , 'f/er(J)-

1/J(T,V) f(rvt) 
{r(J) I 

(4.5.3) 

where f(,,/; xo) is an incomplete gamma function as 

From stationary and independent increments property of Gamma process it is easy to 

show that an'smooth semi-martingale representation of X t is 

(4.5.4) 

which M t is an F-martingale. 

Let T(~;,~:k/ (0 ::; k ::; m - 1) denote the partial repair stopping time given starting state 
1/J{r 

(Xk' Vk)' Using equation (4.5.4) an Ak-SSM representation of the damage process at 

stopping time T(Xk,Vk ) is 
.,,(T,Vk) 
'P{r 

(4.5.5) 

Applying the optional sampling theorem (see Aven and Jensen (4)) to the Ak-martingale 

term 
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we have 

(4.5.6) 

Since X k and 1/Jt,Vk) are measurable with respect to Ak it follows 

(4.5.7) 

From equation (4.5.7), a random measure of the mean hitting time to partial repair 

threshold 1/Jt,Vk) given starting state (Xk , Vk ) (0 S; k S; m - 1) is 

(4.5.8) 

Since, 

starting in state (Xk , Vk ) = (Xk, Vk) an estimate of the mean time to partial repair can 

be evaluated by 

A(J.Lk,Vk) _ <5 (-In(1-~r) ) 
f-L.,,(r,vk) - - A ( +. ) A ( ) - f-Lk 

'¥~r 'Y 0 7 Vk - 0 Vk 
(4.5.9) 

Because Tm - 1 = (m - 1)7 is the last inspection time before the damage process reaches 

or exceeds the partial repair barrier 1/Jt'vm-l) (see equation (4.4.5)), we have 

(4.5.10) 

Or, equivalently 

(4.5.11) 
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So, the minimum number of inspections required to exceed the partial repair threshold 

is 

(4.5.12) 

where l·J is the floor function. 

With the same argument as above, starting in state (Xk' Vk) for m ::; k ::; n - 1, mean 

time to reach failure threshold 1/Jt,vk
) is 

(4.5.13) 

where for m ::; k ~ n.- 1, 

Vk = (m - 1)T +(k - m + 1)~T 

is the virtual age of the system just after kth inspection. 

Since, 

starting in state (Xk' Vk) = (Xk' Vk) an estimate of the mean time to failure is 

(4.5.14) 

Clearly, for k = n - 1, using equation (4.4.6), we have 

Or, equivalently 

(4.5.15) 
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Thus, the minimum number of inspections required to exceed the failure threshold is 

(4.5.16) 

In particular, to get an evolution of the mean hitting time subject to state process 

(f-tk, Vk), let T = 0.32, (~T) ~f) = (0.3, 0.8), ~ = 0.8, 'lj;(x) = x, AO(t) = t and 6 = 2')'. Using 

equation (4.5.12) and (4.5.16), the least number of inspections to exceed partial repair 

and failure threshold are m = 5 and n = 11. Figure 4.1 illustrates an evolution of mean 

hitting time to partial repair threshold ~r = 0.3 (right sub-figure) and failure threshold 

~f = 0.8 (left sub-figure) given bivariate state process (f-tk, Vk), for k = 0,1, .. , 10. As 

shown the mean time to hit the partial repair and failure threshold 'lj;~T'Vk) decreases as 
<'r(f) 

a function of number of inspections and bivariate state process (f-tk, Vk). 
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Figure 4.1: Mean hitting time to partial repair and failure threshold ~r = 0.3, ~f = 0.8 as 
a function of bivariate state process (f-tk, Vk), given T = 0.32, ~ = 0.8 and (m, n) = (5,11). 
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4.5.2 Maintenance optimization methodology 

Following subject to the system parameters (~r, ~f) and the period of inspection time T 

a solution to optimization problem of the long-run average cost per unit time fJ,~0,0) is 

proposed. For fixed number of inspections (mo, no) (1 ~ mo ~ no), let 

(0,0) _ (0,0) (C( )) 
fJ,T - fJ,T(mo,no) ~ mo, no , 

where 

Applying recursive r~lation (4.4.10), an optimal solution to the period of inspection 

T*(mo, no) and the repair and failure threshold parameters {*(mo, no) is obtained such 

that. 

(T*(mO,no),C(mo,no)) = argmin fJ,~0,0) 
iT(mo,no)EST 

that r(mo, no) = (T(mo,no),{(mo,no)) and ST = ~+ x [O'~f(mo,no)) x [0,(0). 

(4.5.17) 

If for fixed number mo and no, T* (mo, no) and ~;(f) (mo, no) do not satisfy the equa­

tions (4.5.12) and (4.5.16) i.e., mo or no greater (less) than the optimal inspection 

frequencies LC where 
r(J) 

L 
- 'YT*(mo,no) - <"r 0, 0 l (j In(1 c*(m n)) J 

~* = + 1 
r Ao(T*(mo, no) + Vmo-l) - AO(Vmo-l) 

and 

l -'YT*(~o,no) In(1 - ~j(mo, no)) J 
LC = + 1. 

f Ao(T*(mo, no) + Vno-l) - AO(Vno-l) 

an optimal solution to the system parameters 
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or 

T(mo, no - 1), ~r(f)(mo, no - 1) 

is derived. Using above exploration method, the optimum number of inspections (mo, no) 

which are required to exceed partial repair and failure threshold are determined such 

that (mo, no) = (Le;, Lej )· The optimal inspection frequency (mo, no) give a solution to 

the optimal inspection time T* and repair and failure threshold ~; and ~j such that 

and 

for all (mo, no) EN x N. 

Following a numerical example is provided to illustrate the proposed maintenance model. 

4.5.3 Numerical results 

To optimize the model with respect to the system parameters, let 'l/J(x) = x and >.(t) = t. 

The choice for the maintenance costs, degrading and maintenance model's parameters 

are 

(0, O~(v + T), O~(v + ~T), Of) = (20,60,80,150), 

0= 2')' and ~ = 0.8. Using the optimization method proposed above, the optimal system 

parameters (T, ~r, ~f) for different inspection frequency values (mo, no) have been derived 

(see Table 4.1). As illustrated given inspection frequencies (mo, no) = (1,3), the optimal 

parameters which satisfy the equations (4.5.12) and (4.5.16) i.e. (mo,no) = (Le;,Lej ) 

are (T*,~;,~j) = (T*(1,3),f(I,3)) = (1,0.2,0.73) with corresponding optimal expected 
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(2,2) 
(1,2) 126.51 
(2,3) 82.89 

(3,3) 79.79 

(1,3) (1,0.2,0.73) 100.00 

Table 4.1: Optimal system par~meters and inspection frequencies for different (mo, no) 

cost per unit time J-L~o,o)* = 100. The optimum values (mo, no) = (1,3) give a solution to 

the optimum inspection frequency no = 3 and the number of minimal and partial repairs 

which are mo - 1 = 0 and no - mo = 2 respectively. The optimal system parameters 

provide the basic partial repair and replacement decision rule subject to the failure state 
\ 

and the damage process. The optiqal partial repair and failure decision rule \. 

and 

T (O,O) 
(; 

inf { nT* : R~~n'Vn-I) ~ 0.8 } 

inf { nT* : Xn ~ ?fJ~r ,Vn-I) } 

T(j'O) inf { nT* : R~n'Vn-I) ~ 0.27 } 

inf { nT* : Xn ~ ?fJg* ,Vn-I) } 

(4.5.18) 

(4.5.19) 

respectively are used just after each inspection instant: if R~~n'Vn-I) E (0.2,0.73) par­

tial repair should take place; otherwise operation with minimal repairs continues, if 

R~~n'Vn-I) ~ 9.8, replacement occurs if R~~n'Vn-I) ~ 0.27. Equivalently, the decision 

process can be made subject to the damage state process Xn and the optimal decision 

thresholds ?fJt; ,Vn-I) and ?fJt;tn- I ): if Xn E (V)t; ,Vn-I), ?fJt;tn- ll ) partial repair should 

take place; otherwise operation with minimal repairs continues, if Xn < ?fJt; ,Vn-I), re­

placement occurs if Xn ~ ?fJt;tn- ll . 
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To get an insight into the decision and action process, using the estimate of the dam­

age state process /-L~ = ~nT*, an evolution of the failure state process as the function 

of bivariate state process just before repair (/-Ln, v;:;) i.e. Rr:.n,Vn-l) and just after re­

pair (/-Ln,vn) i.e. R~~~:=~) given optimal system parameters (T*,~;,~j) = (1,0.2,0.73) 

has been illustrated (see Table 4.2) where Vn - Vn-l = 0.8T*. From equations (4.5.18) 

and (4.5.19) it is easy to see that the optimal decision times to perform partial repair 

and replacement are Tg,O) = T* and TJrO) = 3T* respectively. 

Table 4;.2: An illustration of decision process and action process subject to the failure 
state p~ocess given optimal system parameters (T*,C,q) = (1,0:2,0.73) 

Table 4.3 summarizes the decision process subject to the estimated damage state pro­

cess /-L~ at nth inspection time given optimal system parameters (T*,~;, ~j) = (1,0.2,0.73) 

and optimal decision thresholds 

I Jln 

1 I (0.45,2.62) I 0.5 E (0.45,2.62) I 

2 I (0.17,1.0072) lIE (0.17,1.0072) I 
3 I (0.1062,0.6235) I 0.6235 < 1.5 I 

Table 4.3: An illustration of decision process subject to the estimated damage state 
process /-L~ given the optimal decision thresholds 
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In the following section under non-periodic inspection policy an expression for the 

long-run average cost per unit time is derived. Using the repair alert model presented 

by Lindqvist (44), we introduce a scheduling function Tn+1 = T(Xn, vn ,(3) which deter­

mines the time to the next inspection based on the bivariate state process (Xn' Vn) = 

(xn' vn) (n ~ 0) and repair alert parameter (3. 

4.6 Optimal decision policy with non-periodic in­

spection 

Lindqvist(44) presents a repair alert model for a repairable system which is subject to 

failure and possiQle preventive maintenance (PM). The Lindqvist model under a set of 

assumptions (se,e Definition4.6.1) defines a so-called repair alert function which describes 

the alertness of the maintenance crew as a function of time. The repair alert model is 

used to schedule non-periodic inspection times. 

Definition 4.6.1. (Lindqvist et al. 2006) Let the random variables Y and Z denote 

failure time and preventive maintenance time of a repairable system. The pair (Y,Z) of 

life variables satisfies the requirements of the repair alert model provided the following 

two conditions both hold: 

• The event {Z < Y} is stochastically independent of Y (i.e. Z is a random signs 

censoring of Y). That means the event that the failure of the component is pre­

ceded by PM, is not influenced by the time Y at which the component fails or 

would have failed without PM, or the conditional probability 

q = P(Z < YIY = y) 

does not depend on the value of y. 
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• There exists an increasing function G with G(O) = 0 such that for all y > 0, 

G(z) 
P(Z :::; zlZ < Y, Y = y) = G(y) , 0 < z < y,. 

The function G is called the cumulative repair alert function. Its derivative g is called 

the repair alert function. 

The second part of the above definition means. that, given that there would be a 

failure at time Y = y and the maintenance crew will perform a PM before that time 

(i.e. Z < Y), the conditional density of the time Z of the PM is proportional to the 

repair alert function g. Lindqvist shows that given the increasing repair alert function 

G, which reflects the reacti?n of the maintenance crew as a function of time, mean time 

to preventive maintenance before the system failure is 

M(Y) 
E(ZIZ < Y) = E(Y) - E[ G(Y)] 

where M(y) = J~ G(t)dt. In particular case when the cumulative repair alert function 

G(t) = t f3 , it simply results that the mean time to preventive maintenance before the 

system failure is proportional to mean time to potential failure of the system. In other 

words, 

E(ZIZ < Y) = I! (JE(Y) (4.6.1) 

Following to find an expression for long-run average cost under non-periodic inspection 

policy, using the result of repair alert model (see equation (4.6.1)), imposing some con-

ditions on the sequence of preventive maintenance times Tn and elapsed system lifetime 

{Yn = T - Tn-d (n ~ 1) between (n - l)th and nth inspection are required: 

• Given partial information An the potential failure times just after (n - l)th pre­

ventive maintenance i.e. {Yn = T - Tn- 1 } (T ~ Tn-d (n ~ 1) are a random signs 
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censoring of preventive maintenance times (Tn) (n 2: 1). That means, the nth 

preventive maintenance event, {Tn < Yn}, are stochastically independent of the 

potential failure time (Yn)' and 

• An increasing function G defined on [0,00) with G(O) = 0 exist such that for all 

Yn > 0 (n 2: 1) and 0 < Zn ~ Yn, 

In Following example which is a simple generalization of the example given in Lindqvist (43) 

we shows that provided some assumptions, the pair (Yn, Tn) (n 2: 1) of life variables sim­

ply satisfies the requirements of the repair alert model. 

Example 4.6.1. Models which satisfy the repair-alert model assumptions can' be con­

structed by imitating the derivation of conditionally conjugate prior distributions in 

Bayesian analysi$;'the use of the normal-inverse gamma in normal models illustrates 

the approach (9) Section 5.2 fj Appendix A). Let (Yn,Tn) (n 2: 1) be a pair of lifevari-

able just after (n - 1) preventive maintenance at inspection time Tn· with conditional 

joint density parameterized by 0 < qn < 1) 

f(Yn,Tn) (Yn, znlAn) = q;13z~-l'ljJ(Xn»,o(Yn + Vn) exp (-'ljJ(Xn) [Ao(Yn + Vn) - Ao(Vn)]) , 
Yn 

where Yn > 0) 0 < Zn < ~:. From equation (4·2.9) the marginal distribution of Yn given 

An is the exponential distribution with density 

while the conditional distribution of Tn given Yn = Yn and An is the power distribution 

with density 

Otherwise. } qn (13 zi3-1 ) :;I n , o < Zn < 1//3; 
qn 

, I 
I 
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From this we obtain P(Tn < YnlYn = Yn, An) = qn for all Yn > 0 and n ~ l. That means) 

the event {Tn < Yn} is independent of Yn and the first assumption of repair alert model 

(random sings censoring of (Yn, Tn)) is satisfied. Since the system deteriorates over time 

it is assumed that for n ~ 1) (qn+l < qn). This assumption implies that the probability of 

occurrence of preventive maintenance before system failure time is decreasing function of 

inspection events. The following calculation shows that the second assumption of repair 

alert model holds as well. Let 0 < Zn < Yn for n ~ 1. Then 

I ) P(Tn ~ Zn, Tn < YnlYn = Yn, An) 
P(Tn ~ Zn Tn < Yn, Yn = Yn, An = P( Yo IYo - An) Tn ~ n n - Yn, 

P(Tn ~ znlYn = Yn, An) 
qn 

(4.6.2) 

= q~(Zn/y~)f3 = (n)f3 
qn Yn 

which denotes the second assumption of the repair alert model with increasing cumulative 

repair alert function G(t) = tf3. 

Provided assumptions of Definition 4.6.1, applying equations (4.2.9) and (4.6.1), the 

mean time to the first inspection given (Xo, Va) = (x, v) can be calculated as 

(3 
T(X, v; (3) = 1 + (3E(T) 

(3 100 

= --(3 exp (-1P(X) [Ao(v + t) - Ao(v)]) dt 
1 + 0 

(4.6.3) 

Let the system state just after nth inspection is (Xn, Vn). Then, by applying equa-

tion (4.2.9) the mean time between nth and (n + 1)th inspection given An is 

(3 
T(Xn, Vn; (3) = -(3E(T - Tnl T > Tn, An) 

1+ 

(3 100 

= -(3 exp (-1P(Xn)[Ao(t + Vn) - Ao(Vn)]) dt, 
1 + 0 

n~1 

( 4.6.4) 

As shown, given repair alert parameter (3 the subsequent inspection ((n+l)th inspection) 

is scheduled only by using the last state just after nth repair, i.e. (Xn' Vn). Thus, subject 
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to the equations (4.6.3) and (4.6.4) the sequence of inspections can be planed in following 

way: starting from initial state (Xo, Va) = (x, v), with probability q1 the first preventive 

maintenance is performed before potential failure time U1 = T, at a time which for given 

U1 = U1 is distributed as power. Using scheduling function (4.6.3) the first inspection is 

made at scheduled time T(X, v; (3). Inspection at T(X, v; (3) reveals X r (x,v;,6). The decision 

maker subject to the decision thresholds 'lj;~~,v), 'lj;~j'v) and X r (x,v;,6) either restores the 

system to its condition just prior to inspection that is (Xr (x,v;,6) , v + T(X, v; (3)), adjusts 

the system's virtual age v + T(X, v; (3) f---+ V + ~T(X, v; (3), or returns the system to the 

regeneration state (x, v), i.e. 

·f X n/,(,6,v) 
1 r(x,v;,6) < If'~r ; 

·f n/,(,6,v) <" X n/'(,6,v). 
1 If'~r - r(x,v;,6) < If'~f ' 

·f n/,(,6,v) < X 
1 If'~f _ r(x,v;,6)· 

where n/,(,6,v) = n/,-l { -In(l-~r) } and n/,(,6,v) = n/,-l { -In(l-~f) } If re- " 
If'~r If' Ao(r(x,v;,6)+v)-Ao(v) If'~f If' Ao(r(x,v;,6)+v)-Ao(v)· 

newal does not take place at first inspection time T(X, v; (3), i.e. X r (x,v;,6) < 'lj;~j'v), then 

with probability q2 (q2 < q1) the second PM is performed before potential failure time 

U2 = T - T1 . By using the scheduling function (4.6.4) next inspection is determined 

with respect to the state (Xl, Vi) = (Xr (x,v;,6) , V}~~J;,6)) and above process continues. 

This series of decision and action events subject to the state process (X, V) makes a 

sequence of inspection times. 

In the particular case, let AO(t) = t. From equation (4.6.4) it follows 

n~O 

(4.6.5) 

Where <I> denotes the standard normal distribution function. Applying the equation (4.6.5), 

given AO(t) = t, (3 = 1 and 'lj;(x) = x an evolution of expected time to next inspection, 
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o 

v >, 

Figure 4.2: An evolution of expected time to inspection given the start state (Xo, Va) = 
(x, v), for 'ljJ (x) = x, AO (t) = t and (3 = 1. 

i.e. T(X, v; 1) subject to the starting state (Xo, Va) = (x, v), (x, v > 0) is illustrated (see 

Figure (5.2)): 

1 (XV2) fh T(X, v; 1) = 2 exp 2" V -;- [1 - <I> (vJX)] 

As shown, mean time to next inspection is a non-increasing function in both x (damage) 

and v (virtual age) process. That means, with increasing degree of deterioration of the 

system the reaction of the maintenance crew to make an inspection increases. 

In the following section under non-periodic inspection policy an expression for the long­

run average cost per unit time is derived. The time to inspection event is formulated 

by the sequence of non-periodic inspection times T(Xn, Vn; (3) (n ~ 0) which can be 

evaluated by the equations (4.6.3) and (4.6.4). 
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4.7 Long-run average cost given non-periodic inspec-

tions policy 

4.7.1 Expected cost per cycle 

Let G~x,v) and T(X, v; j3) respectively denote th~ cost of repair and maintenance actions 

per cycle and the mean time to the first inspection starting from initial state value 

(Xo, Va) = (x, v): the system is instantaneously replaced by a new one at cost Gf and 

each (partial or minimal) repair and maintenance action incurs a cost 'determined by a 

random cost function G~ (Vr ), i,e. 

GV(\I: ) _ . + ~ v + '> T x, v; ,1 'f/(r _ r(x,v;{3) < 'f/(f; 
{G 

G ( ' C ( j3))'f o,,({3,v) < X o,,({3,v) 

r r(x,v;{3) - 'f X o,,({3,v) 
" G+G~(V+T(X,V;j3)), 1 r(x,v;{3) <'f/(r . 

where the bounded cost measures G, G~(v + T), G~(V + ~T(X, v; j3)) respectively denote 
, ' 

the inspection cost, the minimal repair cost and imperfect repair cost to adjust the 

system age v + T 1-+ V + ~T(:r, v; j3), (0 < ~ < 1). 

It is assumed that the imperfect repair cost G~( V+~T(X, v; j3)) is a non-increasing function 

of the reduction factor~. Then a renewal type argument yields 

Or, 

(4.7.1) 

dx,v) = C (v' C)I (o,,({3,V) < X ' < o,,({3,V)) + G(X,.(x,v;(3),v+r(x,v;{3)) 
{3 {3, '> 'f/(r - r(x,v,{3) 'f/(f {3 , 

.1 (Xr(X,V;{3) < 1fJg,V)) + Cr(v;~, j3)I (1fJt,V) :S X r(x,v;{3) < 1fJ~j'V)) 

+ (G + G~(v + T(X, v; j3))) I (Xr(X,V;{3) < 1fJ~j'V)) + GfI (Xr(X,v;{3) ~ 1fJ~j'V)) 
(4.7.2) 

! I 
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where 

C (v' t) = C(XT(x,v;{3),v+er(x,v;(3)) _ C(XT(x,V;{3),v+r(x,v;(3)) (3 ,.., (3 (3 . 

and I (-) is the indicator function. Let the stopping time(s) T(~~~~) be defined as 
. 1j;~rU) 

T(~~v~) = inf {t : X t > v;~(3,v)I(Xo, Va) = (x, v)} 
1j;. ' - ~rU) 

'r(f) 

Because 

T(X,v) < T(X V' (3) {:} X > n,,«(3,v) 1j;({3,v) - " r(x,v;(3) - 'PerU) 
~r(f) 

the cost per cycle Cbx,v) can be built up as 

Cbx,v) = C(3(v; ~)I (v;~~,V) :::; X r(x;v;(3) < v;~j'V)) 

+ (C + 6~(v + i(x, v; (3))) I (T(~~:~) > ~(x, v; (3)) 
1j;~f 

+ CfI (T~~f~) :S T(X, v; (3)) + C~XT(X'V;{3),v+r(x,v;(3)) 
(4.7.3) 

.I (Xr(X,v;(3) < v;~j'V)) + Cr(V;~,(3)I(T~~~~~) :::; T(X,V;(3) < T~~~~~») 
. ~ 0 

that T(X, v; (3) is derived from the equation (4.6.4). By taking expectation from both 

sides of the equation (4.7.3), the expected cost per cycle J-Lc(x,v) is 
(3 

J-Lc<x,v) = 9c (x,v) + r1j;~~'V) J-Lc<y,v+T(x,v;{3)>i(3(ylx)dy 
{3 T io (3 

+ 1.~:~')V) flc{3(y;v,~)f(3(ylx)dy 
'P~r 

(4.7.4) 

where flc{3 (y; v,~) = J-LC(y,VHT(X,V;{3» - J-LC(y,V+T(X,v;{3» and 
{3 (3 

9c (x,v) = Cf F1j;({3,v) (T(X, v; (3)) 
{3 ~f 

+ (C + C~( v + T(X, v; (3))) F1j;({3,v) (T(X, v; (3)) 
~f 

(4.7.5) 

+ Cr(v;~,(3) (F1j;({3,v) (T(X, v; (3)) - F1j;({3,v) (T(X, v; (3))) 
~f ~r 
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and /6(ylx) is the transition density of the damage process X t from Xo = x to X r (x,v;,6) = 

y. 

4.7.2 Expected length per cycle 

The expected length of a cycle is obtained similarly. The length of a cycle, L~x,v), is 

L(x,v) - r(x,v) I (X > n/,(,6,V)) 
,6 - 1/J({3,v) r(x,v;,6) - 'P~f 

~f 

+ (r(x v' (3) + L (X,,(X,V;{3),v,,(X,V;{3»)) I (X . < n/,(,6,V)) 
, ',6 r(x,v,,6) 'P~f 

But, 

{ 

L (X,,(x,v;{3),vHr(x,v;,6)) 'f n/,(,6,v) < X . n/,(,6,v). 
L~X"(X'V;{3),v"(X,v;{3, »), =,6 , 1 'P~r - r(x,v;,6) < 'P~i ' 

fJ L' (X,,(x,v;{3),v+r(x,v;,6)) 'f X n/,(,6,v) 
,6 , 1. r(x,v;,,6) < 'P~r . 

Thus, 

L (x;v) - (( . (3') +' L(X"(X,V;{3),v+r(x,v;,6))) I (X < n/,(,6,V)) 
,6 - r x, v, f3 r(x,v;,6) 'P~f 

T (x,v) I (X n/,(,6,V)) L- ( C)I (n/,(,6,V) < X n/,(,6,V)) + 1/J~~'V) r(x,v;f3) ~ 'P~f +,6 v;.., 'P~r - r(x,v;,6) < 'P~f 

Or, equivalently 

L~x,v) = L,6( v; ~)I (~~~,V) ::; X r (x,v;,6) < ~~j'V)) 

+ (L (X,,(x,1I;{3) ,v+r(x,v;,6))) I (X . < n/,(,6,V)) 
,6 r(x,v,,6) 'P ~f 

+ Tg'v) I (Tg'V) ::; r(x, v; (3)) + r(x, v; (3)I (rg'V) > r(x, v; (3)) 

where 

The expected length per cycle J-LL(x,v) is 
{3 

(4.7.6) 

(4.7.7) 

(4.7.8) 

(4.7.9) 
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where 

and 

I
T (X,V;{3) 

h L(x,v) = F.p({J,v) (u )du. 
{3 ° ~f 

(4.7.10) 

4.7.3 Long-run average cost per unit time 

Now, the problem is to minimize the long-run average cost per unit time subject to the 

repair alert parameter (3 and the preventive partial repair and the preventive replacement 

rule ~r' ~f' 

Let f..L~x,v) be the long-run average cost per unit time 'given the start state (Xo, Va) 

(x, v). Because given the assumptions (4.2.10) the virtual age process Vn is increasing 

in the number of both minimal and imperfect repair events, i.e. 

the failure process R~Xn,vn) tends to 1 as n -t 00. This property subject to the failure 

threshold ~f that 0 < ~f < 1 implies the existence of regeneration time points Tg'v): 

where Tn+l = T(Xn' vn ; (3). Since, the sequence of failure and replacement times Tg'v) 

forms a regenerative process, the inter-arrival time between two consecutive replacements 

is a regenerative cycle. Theses regeneration cycles form an embedded renewal process. 

Then according to the standard renewal reward theorem (see Ross (66)), we have 

(x,v) 
f..L{3 

f..Lc<x'v) 
(3 

f..LL(x,v) 
{3 

(4.7.11) 
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where the expected cost per cycle J-ldx,v) and expected length per cycle J-lL~x,v) are solution 

of the integral equations (4.7.4) and (4.7.9). 

Starting in state (Xo, Va) = (0,0), an optimal measure of repair alert parameter and 

repair and failure threshold can be determined as 

((3* C* c*) . { (0,0) } '':,r, <'f = arg mm J-l(3' 
«(3,/;r,/;! )EIR+ x [O,/;!) x [0,00) 

Thus, the optimal maintenance policy characterized by the optimization of the long-run 

average cost per unit time will lead to an optimal repair alert parameter (3* and the 

preventive maintenance rules ~: and ~j. 

4.8 A numerical iteration algorithm to solving opti-

mization problem 

To find a solution to optimization problem of J-l1
x

,v) (see equation (4.7.11)), let ¢c(x, v) 

and ¢l(X, v) respectively denote the expected cost and expected length per cycle given 

initial state (Xo, Va) = (x,v). It is easy to see from equations (4.7.4) and (4.7.9), both 

¢c( x, v) and ¢l (x, v) are solution of following integral equation: 

¢( x, v) ~ J (x, v) + l'l:") Jp(Ylx )¢(y, v + T( x, v; /3) )dy 

+ r'l/J~~'V) J(3(ylx)¢(y, v + ~T(X, v; (3))dy 
j,b({3,v) 

'f'~r 

where J(x,v) refers to 9c<x,v) or hL(x,v). 
{3 {3 

(4.8.1) 

To present a solution to the integral equation (4.8.1), let (Xk' Vk) (k = 0, I, ... ) imply the 

state of the process just after kth repair. Given starting state (Xk' Vk) = (Xk' Vk), from 

equation (4.8.1) the ¢(Xk' Vk) can be expressed as 

(4.8.2) 



with 

1/J({3'Vk ) 

cp~k) = l~;':k) !(J(yi Xk)cp(k+l) (y, yk + ~T0:k' Vk; (3))dy, 

Vk+l 
1/J({3,vk ) 

cp~k) = lk {r /(J(yiXk)cp(k+l) (y, yk +T(X} , Vk; (3))dy, 

{ 
+ ( (3) X <x < nl,((J,Vk). 

Vk T Xk, Vk; , k k+l 'f'~r ' 
Vk+l = ( ) ( ) 

Vk + ~T(Xk' Vk; (3), 'ljJ~~'Vk ::; Xk+l < 'ljJ~j'Vk . 
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(4.8.3) 

By conditioning on the value of the damage process at (k + l)th inspection time, Xk+l = 

Xk+l, the equation (4.8.3) can be represented as 

(4.8.4) 

(n 2: m) respectively denote the number of minimal and partial repair(s) and Tm and 

Tn are the first time the damage process X t (t E lR+) reaches or exceeds a given partial 

repair and failure threshold 'ljJt,Vt) and 'ljJ~j'Vt) respectively: 

To = inf {t E lR : X > nl,((J,Vt)} = inf {r : X > nl,((J,Vk-l)} 
m + t - 'f'~r k Tk - 'f'~r ' (4.8.5) 

To = inf {t E lR : X > nl,((J,Vt)} = inf {T : X > nl,((J,Vk-l)} 
n + t - 'f'~f k Tk - 'f'~f ' (4.8.6) 

where n - 1 (n 2: 1) denote the whole number of minimal and partial repairs and 

k 

Tk = L T(Xi' Vi; (3). 
i=l 
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Given starting state (Xn - 1, Vn-J = (Xn-l, Vn-l), from equations (4.8.4) and (4.8.6), it 

is easy to see that 

",(n-l)( ) - f( ). '+' Xn-l, Vn-l - Xn-l, Vn-l , n -12: m, (4.8.7) 

Given that just after (n - 2)th inspection a partial repair is performed i.e. m ::; n - 2, 

since Vn -1 = Vn -2 + ~T(Xn-2' Vn -2; 13) (see equation (4.8.3)), from equation (4.8.4) we 

have 

But, in terms of initial condition (4.8.7), equation (4.8.8) can be represented as 

Thus, recursively cP(n-i) (Xn-i, Vn-i) for 1 ::; i ::; n can be calculated as 

where 

",(n-i) 
'+'1 , 

",(n-i) 
'+'12 , 
",(n-i) 
'+'13 , 

i = 1; 

2 ::; i ::; n - m + 1; 

n - m + 2 ::; i ::; n. 

{ 

Vn-i + ~T(Xn-i' Vn-i; 13), 2::; i ::; n - m + 1; 
Vn -i+1 = 

. Vn-i + T(Xn-i, Vn-i; 13), n - m + 2 ::; i ::; n. 

(4.8.9) 

(4.8.10) 

(4.8.11) 

As seen, given starting state (Xo, Va) = (x, v), equation (4.8.10) recursively gives a 

solution to both expected cost cPc(x, v) and expected length per cycle cPl(X, v) which are 

function of control parameters: 

(x,v) 
/-L(3 
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From recursive relation (4.8.10) it is easy to see that both cPc<x,1)) and cPL(x,v) are bounded. 
{3 {3 

This comes from the fact that for ~r E (0, ~f), ~f E (0,1) integrands 

f (I )A,(n-i+l) ( ) 
. (3 Y Xn-i 'f' y, Vn-i+l , 

are continuous on the closed, bounded intervals [Xn-i, 1/J~~,vn":'i)] (2 :S i :S n - m + 1) and 

[?j;t,vn-i),1/J~j'Vn-i)] (n-m+2:S i:S n) and functions !c(Xn-i,Vn-i) and !1(Xn-i,Vn-i) 

corresponding to cPc<x,v) and cPL(x,v) for all 1 :S i :S n are bounded, i.e. 
{3 (3 

where M:;--i = 0 + Of + c~n-i(Vn_i + ~T(Xn-i' Vn-i; ;3)), 

0< Ci (P..p({3,Vn-i) (co) - P..p({3'Vn_i)(T(X~-i'Vn-i;;3))) 
~f ~f (4.8.12) 

where Ci E (0, T(Xn-i, Vn-i; ;3)). This implies that the long-run average cost per unit time 

is bounded: 

O < (x,v) < 
J.L(3 00. 

In next section based on Gamma process describing the damage process X t , t E lR+, 

using the numerical integration algorithms (4.8.10), a solution to the optimization prob-

lem (4.7.11) is proposed. 

4.9 Deterioration model based on Gamma process 

Let the damage process X t be described by a stationary Gamma pro-cess with shape 

parameter I > 0 and scale parameter 8: 

X t - Xs rv G('y(t - s), 8) 
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and 

where shape parameter is linear in t, 'Y(t) = 'Y x t. 

The transition probability density function f,e(ylx), the density of Xr(x,v;,B) given (Xo, Va) = 

(x, v), is the gamma density 

(4.9.1) 

If the state of the process at initial time is (Xo, Vo) = (x, v), the cumulative distribution 

of the hitting timeT(7bv~) of the partial repair (failure) barrier at 1/J~,e,v) is 
'Ij;< ' l ~r(f) 

"r(f) . 

(4.9.2) . 

" 
The distribution of T(7b~~) . can be expressed as ratio of an incomplete g~mma function: 

( 'Ij;~r(f) 

f(rvt· 6(o',(,e,v) x)) 
F(x,v) (t) = I , 'I-'~r(f)-

'Ij;({J,v) f(rvt) 
~r(f) I 

(4.9.3) 

where f( 'Y; xo) is an incomplete gamma function as 

From stationary and independent increments property of Gamma process it is easy to 

show that an smooth semi-martingale representation of X t is 

(4.9.4) 

which M t is an oF-martingale. 

Let T~7;:~k"} (0 :S k :S m - 1) denote the partial repair stopping time given starting state 
~r 
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(Xkl Vk). Using equation (4.9.4) an Ak-SSM representation of the damage process at 

stopping time r(Xk,Vk) is 
o,.({J'Vk) 
'f'~r 

(4.9.5) 

Applying the optional sampling theorem to the Ak-martingale term 

we have 

(4.9.6) 

Since X k and W~~'Vk) are measurable with respect to Ak it follows 

(4.9.7) 

From equation (4.9.7), a random measure of the mean hitting time to partial repair 

threshold 'l/Jt,Vk) given starting state (Xkl Vk) (0 ::; k ::; m - 1) is 

(4.9.8) 

Since /-Lk = E(Xk) = 'jkT? starting in state (Xkl Vk) = (Xkl Vk) an estimate of the mean 

time to partial repair can be measured by 

(4.9.9) 
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Because 
m-l 

Tm- 1 = 2: T(Xi, Vi; /3) 
i=l 

is the last inspection time before the damage process reaches or exceeds the partial repair 

barrier 'IjJ~~,vrn-l) (see equation (4.8.5)), we have 

(4.9.10) 

Let T(f..Lm-l,vm-l;/3) be an estimate of T(Xm-l,vm-l;/3). Then from equation (4.9.10) 

we have 

(4.9.11) 

Or, equivalently 
_ 0 In(l _ ~ ) 

"(7"(/-irn-l,vrn -d3) 7" < m 
AO(T(f..Lm-l, Vm-l; /3) + vm-d -.AO(Vm-l) -

(4.9.12) 

So, the minimum number of inspections required to exceed failure threshold is,~ 

m = . "(7"(/-irn-l,vrn -d3) + 1 l. - 0 In(l - ~7") j 
. AO(T(f..Lm-l, Vm-l; /3) + Vm-l)- AO(Vm-l) 

(4.9.13) 

where l·J is the floor function. 

With the same argument as above, starting in state (Xk , Vk ) for m ~ k ~ n - I, mean 

time to reach failure threshold 'ljJt,vk
) is 

(4.9.14) 

w here for m ~ k ~ n - 1, 

Vk = (m - l)T + (k - m + l)~T 
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is the virtual age of the system just after kth repair, or (k - m + 1) th partial repair action. 

Since fJk = E(Xk) = 'JkT, we have 

'(J.Lk,Vk) _ 6 ( -In(l - ~f) ) 
fJ 1j;k~'Vk) - ~ Ao( T(fJk, Vk; (3) + Vk) - AO(Vk) - fJk 

(4.9.15) 

Clearly, for k = n - 1, using equation (4.8.6), it follows 

Or, equivalently 
- 8 In(l - ~f) 

-yr(J.Ln-l,vn-l;,6) < n 
AO(T(fJn-l, Vn-l; (3) + vn-d - AO(Vn-l) -

(4.9.16) 

So, the minimum number of inspections required to exceed failure threshold is 

( 4.9.17) 

4.10 Maintenance optimization methodology 

Following subject to the system parameters (~Tl ~f) and the repair alert parameter (3 

a solution to optimization problem of the long-run average cost per unit time fJ1°'0) is 

proposed. For fixed number of inspections (mo, no) (1 ::; mo ::; no), let 

(0,0) _ (0,0) (( )) 
fJ,6 - fJ,6(mo,no) ~ mo, no , 

where 

Applying recursive relation (4.8.10), an optimal solution to the repair alert parameter 

(3* (mo, no) and the repair and failure threshold parameters f(mo, no) is obtained such 

that 

((3*(mo,no),C(mo,no)) = argmin fJ~'O) 
f/(mo,no)ESi3 

(4.10.1) 
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If for fixed number mo and no, j3*(mo, no) and ~;(f)(mo, no) do not satisfy the equa­

tions (4.9.13) ((4.9.17)) i.e., mo or no greater (less) than the optimal inspection frequen-

cies Uc where 
r(J) 

and 

U - ,),1"(J.Lno-l,Vno -l;/3*(mo,no)) f, 1 l - " In(1 - C(mo no)) .j 
C -. + 

f AO(T(fJ,no-l, Vno-l; j3*(mo, no)) + Vno-l) - AO(Vno-l) 

using the recursive equation (4.8.10), an. optimal solution to the system parameters 

j3(mo - 1, no), ~r(f)(mo - 1, no) . 

or 

((j3(mo,no + 1),~r(f)(mo,no + 1))) 

is derived. Using above exploration method, the optimum number of inspections (mo, no) 
which are required to exceed partial repair and failure threshold are determined such 

that (mo, no) = (UG , UEj )· The optimal inspection frequency (mo, no) give a solution to 

the optimal repair alert parameter j3* and repair and failure threshold ~; and ~j such 

that 

(4.10.2) 

and 

(j3*( * *) c*( *) c*( *)) . (0,0) mo,no ,'>r mo ,'>f no = argmm fJ,/3 ' 
i f3 (mo,no)ESf3 

(4.10.3) 

for all (mo, no) EN x N. 

! 
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Remark 4.10.1. The Maintenance model presented here outlines a repair approach which 

can be simply extended by incorporating modified bivariate state process (X V
t

, \it) into 

failure distribution function 

where X Vt denotes the damage process controlled by the virtual age process \it. The 

modified setting provides a generalized approach to the current repair policy in the sense 

that the system state can be reseted at repair times by adjusting not only system age 

t'\, \it, but also damage process X t '\, XVt which is induced by the repair degree (time 

shift factor) ~. 

4.11 Conclusion 

In this chapter we have shown how to formulate an inspection and maintenance model 

with in a very general form for both periodic and non-periodic inspeCtion policies. The 

standard renewal-reward argument coupled with the identification of regeneration points 

provides the basis for the analysis of the process. the solution of a numerical example 

illustrates how the approach can be applied in a particular case. Optimization with 

respect to various system parameters has been demonstrated so that different scenarios 

can be explored. 

The model outlines a systematics approach and structure which can be applied to both 

periodic and non-periodic inspection policy. Using the repair alert model, the extension 

to non-periodic policy shares many features with the periodic policy. The model has 

potential to provide a flexible approach to the repair by incorporating modified bivariate 

state process. The model shows the feasibility of this programme. 



Chapter 5 

Optimal Maintenance Scheduling 
for a Manufacturing System Subject 
to Deterioration 

5 .1 Introduction 

Nowadays one of challenges facing the manufacturing industry characterized by heavy 

production of items is to optimize revenue from manufacturing systems whose resulting 

output measures are not identifiable. Examples of output (product) measures include 

defective items produced and products quality. These unidentifiable measures associated 

with output which cause the underestimating quality incur an invisible quality cost and 

consequently overestimation of revenue. This implies that the true measure of revenue 

over production process is unknown. Here to overcome this inefficiency and get a precise 

measure of revenue, a state dependent measure of revenue is presented. More precisely, 

since product quality is usually a function of system deterioration state, revenue from 

system is linked by physical (damage) state of the system described by unobservable 

stochastic damage process X t . This approach is based on the realistic assumption that 

operation of the system in either one of the normal state (Xt = 1) or degraded state 

108 
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(Xt = 2) generates income, which is higher in the normal state. But, due to the fact 

that the quality of resulting output is subject to system deterioration state, to optimize 

revenue from system, an appropriate maintenance strategy for such systems is essen-

tial. Insufficient maintenance leads to an increase in the number of defective items, low 

product quality and low maintenance cost; excessive maintenance results in a reduc-

tion in the proportion of defective items, high product quality and high maintenance 

cost. Therefore to optimize revenue an optimum maintenance policy which balances the 

amount of maintenance is required. Here by joint determination of optimal inspection 

and repair policy, using intensity control model, a more realistic approach to mainte­

nance optimization of manufacturing systems resulting from optimal control the failure 

rate of the system (system state) is preseI).ted. More Specifically, the r:r:aintenance opti-
. . 

mization model is pr~sented in the following setting: 

The maintenance model is given partial information. That means the state and true 

'quality of production process from system is unknown and only available information 

is given by the history of inspection times. This assumption implies that revenue from 

system due to invisible quality costs is not measurable from production process. It is 

supposed that revenue is inferred from system state which is unobservable and can be 

estimated from partial information. This is the case which is common when revenue 

from production process due to invisible costs (e.g. defective items costs, internal ineffi-

ciencies costs and hidden quality costs) is not easy to measure (see (26),(42)). Examples 

of hidden quality costs include the cost to society and goodwill which may cause the 

underestimating of quality. The cycle begins with the system in the as-good-as-new 

(stable) condition producing items of high or perfect quality ("in-control" state). At 

some random point in time the system state described by its failure rate may shift to an 
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out-of-control state (quality shift), characterized by a lower revenue and higher prone­

ness .to failure. The lower revenue may be due to the system malfunction resulting in 

the production of items which are defective or of substandard (lower) quality. Since the 

system state (or, production process) is subject to deterioration resulting from environ­

mental factors, inspection and repair are scheduled to prevent system breakdown and 

increase the reliability of the system which leads to improving the product quality and 

increasing revenue from system. To detect and rectify any minor defects which may 

eventually cause complete breakdown of the system, the maintenance crew inspects the 

system from the beginning of the production run, at random times Tn (n > 0) during a 

production run of T'time units. These inspections incur cost in ter~s of materials and. 

wages. Also, the maintenance crew has disposition to perform repair. In this concept, it 

is assumed that after performing repair, the damage incurred by environmental factors 

during the time (or, departing failure rate process from in-control state to out-of-control 

state) is adjusted proportional to the repair level. The model is based on the realistic 

assumption that greater level of inspection and repair leads to the greater inspection 

and repair cost. But there is a greater chance that potential breakdown will be detected 

by inspections and the system performs more reliable and efficient resulting in better 

quality of output or more revenue. Thus, the maintenance procedure is faced with the 

dilemma of either excessive repair and inspection which leads to more revenue and repair 

and inspection cost or insufficient repair and inspection which results in less revenue and 

repair and inspection cost. In this case a balance would be required between the costs 

of the various possible degree of repair and inspection and revenue from system. In this 

paper using modeling intensity control given partial information we determine an opti­

mal repair and inspection policy which gives a correct balance between the frequency of 

inspection repair level and the resulting output. 
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Before proceeding to the model development, under above maintenance policy, the un­

derlying process of the model is formulated as follows: 

The underlying deteriorating (system state) process is described by the proportional 

intensity model (PIM) (see (13)) dependent on the damage process and the system 

age. That means the time to shift to the out-of-control state from in-control (stable) 

state of the system is distributed continuous random variable. It is assumed that the 

deterioration rate of the system is increasing in both system age and damage process. 

The non-homogeneous Markov process is used to describe the underlying physical state 

process (damage process) which reflects the effect of the operating environment on the 

system. The evolution of damage process is chaq1cterized by two physical states, a 

normal state (state 1) and degraded state (state 2). The Weibull/generalized Pareto 

distribution used in accelerated failure time (AFT) model is proposed .to model the 

transition rate of the damage process. Mbre precisely it is assumed that the time until 

transition to .the degraded state is a Weibull/two parameters generalized Pareto dis­

tributed random variable with time dependent transition rate Q12(t). The model based 

on the assumption that the transition rate is non-decreasing in time which incurs the 

transition from normal state to degraded state of damage process and consequently time 

to shift to the out-of- control state of the production process increases over time. So, 

as time goes on the process deteriorates resulting in the production of items which are 

defective or of substandard quality (less revenue). Since the system is subject to deteri­

oration, to prevent the system breakdown, it is inspected and repaired. Inspections are 

made according to a modulated Poisson process (59) with a stochastic intensity func­

tion. The intensity of occurrence of inspections is linked by the unobservable damage 

process X t . It is assumed that inspection intensity increases in X t . This setting en­

sures that not only the frequency of inspections is to be time dependent, but also the 
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inspection intensity when operating in the degraded state with system age t (t ;::: 0) is to 

be larger or equal to the inspection intensity in the normal state with the same system 

age. Due to fact that, the production process is a function of the system state, to raise 

the system reliability resulting in improving productivity of the system and increasing 

revenue, the maintenance crew has disposition to repair the system. The effect of repair 

which leads to adjusting departing deterioration rate process from in-control state to 

the out-of-control state is reflected by repair degree process (control process) u E (0, 1] 

through incorporating into transition rate q12(t) -t q12(t). It is shown the repair de­

gree process by incorporating into Weibull/generalized Pareto "distribution as the scale 

parameter provides an accelerated failure time (PH) / (AFT) model. The I repair degree 

is either partial (u E (0,1)) returning the system to a state which may not be perfect, 

or minimal (u =1) which returns the system toa functioning state but'equivalent to 

the state it was in just before the repair. Since, the underlying damage process X t is 

not observable, by projection on observed history, the above partial information control 

problem is converted into a complete information problem. This results in an estimate 

for the indicator function of the state i E S = {I, 2} of the damage process X t (t ;::: 0) 

i.e. 

<p( n, t; i) -t rp( n, t; i) 

<p(n, t; i) = I(Xt = i)I(Tn ~ t < Tn+d, where through transition rate function Q12(t), is 

influenced by the repair degree (control) process u (rp( n, t; i) -t rpU( n, t; i)). It is easy to 

see that, since the underlying deteriorating process describing the system state depends 

on the damage process X t , given partial information the resulting output (revenue) from 

system through time dependent repair and inspection factor (RIF ) i.e. rpU(n, t; i) is con­

trolled by both repair factor Ut and inspection frequency factor Nt. 
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As mentioned before, the model is based on the realistic assumption that the greater 

level of repair and inspection, the greater repair and maintenance cost. That means, 

the small (large) values of the repair degree process u leads to an increase (a decrease) 

in both maintenance (repair and inspection) cost and revenue. So, to keep a correct 

balance between revenue from system and maintenance costs, choosing an optimal con­

trol strategy u; is essential. By using an intensity control model (see Bremaud (10)) 

adapted to partial information, a solution to the optimal maintenance scheduling prob­

lem is derived. Also, it is shown that the optimal replacement policy resulting in an 

optimal production run length is a control limit policy; that is, the system should be 

replaced if the failure intensity of the system reaches an optimal critical threshold. 

5.2 Modelling Deterioration (Linear Transition rate) 

Consider a manufacture system whose resulting output quality (or revenue) is subject 

to system state. At the start of the production cycle, the system is in an "in-control" 

(stable) state, producing items of acceptable quality. After producing for some period 

of time since the system deteriorates as time goes on, the system state may shift to an 

"out-of-control" state which results in the production of items which are defective or of 

substandard quality. From that point on, it is realistic to be assumed that revenue from 

system when operating in the out-of-control state is less than that as working in an in­

control state. We suppose that the system state is influenced by the system age and the 

physical state (damage) process X t (t ~ 0) with state space S = {1, 2} which reflects the 

effect of the operating environment on the manufacturing system. To model the system 

state, we consider the proportional intensity model (PIM) (13) which is product of a 

baseline failure rate AoU dependent on the age of the system and a positive function 
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'l/J(-) dependent on the values of the damage process X t . More precisely, 

(5.2.1) 

where functions Ao (t) and 'l/J( x) are non-decreasing, which means that the system deteri­

orates with age and the failure rate of the system is non-decreasing function of the dam-

age process X t . The transition between physical states is driven by a non-homogeneous 

Markov process whose sojourn time in normal state (state 1) is described by a Weibull 

distri bu tion 

F(t) = P(Td ::; t) = 1 - exp { -fat Q12(V)dv }, t> 0 

= 1 _ exp ( _;2) , (5.2.2) 

where Td is the passage time from state 1 to state '2, 

Td = inf {t !Xt = 2} . 
tEIR+ 

This implies that the transition rate from normal state (state 1) to degraded state (state 

2) is a linear function of t as 

The rate Q12(t) is non-decreasing on [0,(0) which means the intensity of leaving the state 

one increases with time. 

5.3 Modelling Maintenance 

It is assumed that the manufacturing system is subject to repair and inspection. To 

model repair let {Ut : t E lR.+} be the control process with state (or action) space U = 

(c, 1) U {I}, (c E (0, 1)) where Ut = U represents the decision at time t to perform a 
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repair with repair degree u. The controller can influence the productivity of the system 

by adjusting the deterioration level of the system (partial repair) (c < u < 1), or 

with a minimal repair (u = 1) the system continues in operation with no change in 

performance. The repair cost is non-increasing in control values u E U, small values 

of control (repair degree) process u are more expensive than large values. The repair 

actions are assumed to impact the failure intensity by adjusting the intensity of leaving 

state one q12 (t) H q12 (t) reflected by the repair degree (control) process u E (a, 1]. 

Example 5.3.1. Suppose that ql(t) = u.t and PU(t), mU(t) denote the waiting time, 

distribution and mean residual waiting time in the state one associated with the control 

process Ut. Clearly, 

(5,3.1) 

and 

(5.3.2) 

By using the equation (5.3.8) an evolution of mU(t) is illustrated (see Figure 5.1). As 

shown at fixed time t with decreasing the (repair degree) control value u : 11-+ {a.5, a.1} 

the mean residual waiting time in the state one (good state) increases that means smaller 

value of the control process Ut leads to the less deterioration of the system. It is clear 

that the control Ut determines a stochastic order in the sense that 

(5.3.3) 

when u ::; v. The system is inspected from time to time. The inspection includes de-

tection and correction of minor defects is done by trying to prevent system downtime, 

major breakdown or failure of the system. Because the model is given the partial in-

formation including only the history of inspection times, to take decision based on the 
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Figure 5.1: ,An evolution of the mean residual waiting times III the state one given 
qf(t) = u.t and control values u = 0.1,0.5,1. 

system state X t (t ~ 0) for sch~duling subsequent inspection time, the real state of the 

system at current inspection time is not observable. Here to schedule inspection times 

based on the system state, beautifully the intensity of occurrence of inspection is linked 

by the system state, "(Xt, where "(1 ~ "(2. This setting provides an ideal condition under 

which the intensity of occurrence of inspections is influenced by the system state process 

X t in such a way that the inspection intensity when operating in the degraded state is 

larger than the inspection intensity in the normal state, or equivalently; as the failure 

rate dependent on the system state increases the frequency of inspections increases. The 

stochastic intensity modulated by the driven process X t implies distribution of time in-

spection as Markov modulated Poisson process. To schedule inspection times the mean 

time to the next inspection as the time to inspect is used. Given partial information 

Ff = (J {Ns : 0 ~ s ~ t}, including the history of inspections times, the mean time to 

the next inspection provides an schedule function TJn+1 (n ~ 0) (see equation 5.3.8) 

characterized by the frequency of inspections Nt = n. 



To formulate the underlying inspection process, let the stochastic process 

Nt = L I{Tn:St} 
n~1 
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defined on a measurable space (D, F) denote the total number of inspections until time t. 

The inspection of the system is performed from the beginning of the production run ac­

cording to a modulated Poisson process (59) at random times Tl < T2 < ... , limn->oo Tn = 

00 (nonexplosive). The modulation is done via the environmental (damage) process X t 

with the state space S = {I, 2} where X t describes the state of the damage process at 

time t. The rate of occurrence of inspections at time t is modeled by IXt' It is assumed 

that while the state of the damage pro<;:ess is i E S inspections occur according to an 
c, 

ordinary Poisson process with intensity Ii. Thus, the number of inspection until time t 

(Nt) c'an be expressed in a smooth semi-martingale form (see Aven and Jensen (4)) as 

N, ~ l' 'X.dB + M, 

t 2 " 

= .l ~ liCP(S; i)ds + JI/It, MEMo, 

(5.3.4) 

where 0 < 11 < 12 < 00, cp(t; i) is indicator function of the state process X t at time 

t and Mo refers to the class of F-martingales (with Mo = 0). This setting provides 

an ideal condition under which the intensity of occurrence of inspections is influenced 

(modulated) by the damage (environmental) process in such away that the inspection 

intensity when operating in the degraded state with system age t (t ~ 0) is larger than 

the inspection intensity in the normal state with the same system age. 

Let the distribution of the (n + 1)th inter-arrival inspection time Vn+1 = Tn+l - Tn, 

(n ~ 0) (To = 0) be modeled by Fn(v) adapted to the observed information 
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including the history of inspection events. In other words, 

( l Tn+v ) 
= exp - L ri<j;( n, t; i)dt 

Tn iES 

(5.3.5) 

where it(n) = i(n, t) and <j;(n, t; i), (i E S) denote the inspection intensity and the 

probability measure of the physical state (damage) process X t (see section 5.4) over 

inter-arrival inspection times: Tn ::; t < Tn+1, (n ~ 0) given partial information :Ft 

respectively. More precisely, 

<j;(n, t; i) ~ E (<p(n,t; i)I.1t) 

that 

<p(n, t; i) = I(Xt = i)I(Tn ::; t < Tn+l)' 

In following sections, incorporating the repair degree (control) process Ut into the prob­

ability measure <j;(n,t;i) --+ <j;U(n,t;i), it will be shown how <j;U(n,t;i) serves as repair 

and inspection factor (RIp) to influence both underl'ying inspection intensity and dete-

riorating process. 

In particular case n = 0 equation (5.3.5) reduces to the first inspection time law. 

Fo(v) = p(Vi ~ vlit(O)) 

= exp (- r L ri<j;(n, t; i)dt) . 
Jo iES 

(5.3.6) 

To get the mean times between inspection let fJn+l denote the expected value of (n+ l)th 

interval between inspections. Then from equation (5.3.5) 
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fJn+l = 100 

Fn(V)dv 

100 (1~~ ) = exp - L "!iCp(n, t; i)dt dv 
o Tn iES 

(5.3.7) 

Because the integral term depends in (5.3.7) on the inspection time Tn(n 2: 0), fJn+l 

is not measurable. To settle this problem, an estimated version of fJn+l for n 2: 1 is 

presented 

roo ~ 
,TJn+l = io Fn(V)dV 

100 (r~~ . ) 
=. exp - in L lirp(n, t; i)dt dv 

o J.Ln iES 

where, 

ILl = 1OOpo(v)dv 

= roo exp (- r L lirp(~, t; i)dt) dv 
io io iES 

and fln+l denotes the (n + l)th expected inspection time 

n+l 

ILn+1 = E(Tn+l) = L TJn+l . 
k=l 

(5.3.8) 

(5.3.9) 

Next the filtering theorem provides an estimate of the damage process X t given partial 

information FN. 

5.4 Damage Process X Given Partial Information 

The goal of filtering is to estimate the stochastic process X t based on all observations up 

to the moment. In the argument below, Bremaud's treatment of filtering is applied as 
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a key tool to estimate the underlying damage process X t based on history of inspection 

events Ft. Bremaud (10), deals with estimating the position of stochastic processes by 

the technique of filtering. Using quadratic criterion, filtering theorem provides a recur­

sive estimate of the quantity of interest based on the point process observations Ft. 

To get an estimate of the unobservable state process X t and then convert partial infor-, 

mation control problem into a complete information problem, let 

which is the probability of the state i, (i E S) at time t given partial information 

Ft = (J {Ns : 0 ::; s ::; t} . 

Using a Corolla~y of the filtering theorem (10)[Chapter IV: R4 Result], the filter «;t(j) 

with respect to the point process observation Nt is given by 

(5.4.1) 

Or equivalently, the equation (5.4.1) after some calculations can be reformulated as 

«;t(j) =«;o(j) 

... + r (I: <{;s (i) {qij (s) + <{;s (j)(rYi - 'Yj )}) ds 
Jo iES (5.4.2) 

,,( A (.) 'Yj<{;T;:; (j) I ) ... + L.- -CPT;:; J + ",m . A _ (i) {Tn::::t} , 
n::::l L....t=l 'YtCPTn 

Since over the inspection intervals Tn ::; t < Tn+l the increment dNt = 0, from equa-

tion (5.4.1) the estimator «;t(i) of cpt(i) illustrated by 



can be expressed as 

(P( n, t; j) = (p(n, Tn; j) 

+ t (L(P(n,S;i){qij(S)+(p(n,S;j)(rri-/,j)}) ds 
JTn iES 
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(5.4.3) 

and at inspection times Tn (n ~ 1) we have dNTn = 1. Using the equation (5.4.1), an 

estimate of the damage indicator process at inspection times is 

A (.) _ /'j(PT;; (j) . S 
rpTn J -" A ( .) , J E , 

DiES /'irpT;; 'L 
(5.4.4) 

where (Pt- (j) refers to the left limit. 

To get an explicit solution of (Pt(i) , let the transition rate matrix of the dama~e process 

X t be as 

Q(t) = (-q~(t) ql~(t)) 

where for 0 ':5:. t < 00, q12(t) = t. 
I 

The integral equation (5.4.3) can be solved by taking the derivative of each side and 

solving the resulting differential equation. Using the differential equation, an explicit 

solution of (P( n, t; 1) is given by 

A( t.1) = exp (- ley + q1(t))dt) 
rp n, , A(n, t) , (5.4.5) 

where 

exp [- I (~+ q1(t)) dtL_T rt (r ) 
A(n, t) = 1 _ (PTn(2) - n - JTn 1exp - Jo (1 + q1(S)) ds dv 

and 1 = /'1 -/'2· From the equation (5.4.5) it can be simply shown that given q1(t) = t, 

the probability of state one (p(n, t; 1) for t E [Tn, Tn+1), (n ~ 0) is represented as 

(5.4.6) 
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where Tn for n 2 ° (To = 0) denote nth inspection time. To consider the effect of control 

process u E U on cp(n, t; 1), in particular case let n = ° and qf(t) = ut. Then from (5.4.6) 

for t E [0, T1) we get 

(5.4.7) 

Where Tl denotes the time to the fist inspection event. Following an evolution of the 

probability of state one cpU(O, t; 1) given control (repair degree) values u = 0.1,0.5,1 is 

illustrated (see Figure 5.2). The stochastic ordering of the sojourn time distributions 

determined by the repair degree values u : 1 f-+ {0.5,0.1} is clear to see. From equa-

1.4.---,---,-------,---~-~-____, 

.$ 
s 
'" Q) 0.6 
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o 
'" ~ 0.4 
.c 
1l e 
0.. 0.2 
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, 

1 2 3 
t 

1- -~ ~~~.51 
....... u=0.1 

, -- - - - -
4 5 6 

Figure 5.2: An evolution of the probability of the state one of the process given qf(t) = 
u.t, An = 1 and the control values u=0.1,0.5,1 

tion (5.8.4) it is easy to see that both time dependent inspection frequency Nt = nand 

repair process Ut have a dynamic relationship with the probability function of damage 

process cpu (n, t; 1) (i E S). As repair is performed and the degree of repair Ut decreases 
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the probability of the sojourn time in normal state (state 1) r.j;U(n, t; 1) proportional to 

the level of repair increases. This occurs by removing damage of the system created 

over time. Also, changes in inspection frequency Nt = n affect the r.j;U(n, t; 1). The 

function r.j;U(n, t; i) (i E S) is driven by bivariate stochastic process (Ut, Nt) which are 

repair and inspection frequency factor respectively is remarked by (RIF for short). It is 

clear that the funct~on r.j;U( n, t; i) (i E S) influenced by bivariate repair and inspection 

factor (Nt, Ut) provides a superiority to previous works in which either the frequency 

of inspection is not time dependent or the inspection factor (IF) is not affected by the 

repair factor. 

To get an insight into impact of repair on RIF an evolution of the probability of being 

in normal state (state I), r.pU(O, t; I), with control (repair degree) values U = 0.1,0.5,1 

is illustrated (see Figure 5.2). As seen, the control process Ut as described by (5.3.3) 

determines a stochastic ordering of the sojourn time distribution in. the sense'that a de­

cline in the repair degree v '\" U (u, v E U) results in a decrease in intensity of departing 

damage process X t from normal state (state 1) to the degraded state (state 2). More 

precisely, for 0 ::; t < Tl and U ::; v, 

(5.4.8) 

where Td denotes the sojourn time in state 1. 

Following we show that given partial information F/!, the repair and inspection factor 

(RIF ) r.j;( n, t; i) serves as a key tool to reflect the effect of repairs on the underlying dete­

riorating process. From equation (5.2.1) it is easy to see that the failure rate dependent 

on the unobservable (damage) process X t is not measurable given partial information 

F/!. To get an estimate of the underlying deteriorating process with respect to the par­

tial information F/! let, A(n, t) denote the failure rate of the system over nth inter-arrival 
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inspection time i.e. 

By projection on partial information F{', since inspection times (Tn) (n 2: 0) are mea­

surable subject to F{', it simply follows that 

;(n, t) = E (>'(n, t)IFt) = L >'(n, t, i)rp(n, t; i)I(Tn :s t < Tn+1) 
. iES 

where ;(n, t) is an F{' adapted measure of >'(n, t). By incorporating repair degree 

process u into the probability measure rj;( n, t; i) 1-+ rj;U( n, t; i) (i E S) it is easy to see 

that the underlying deteriorating process is influenced by the repair action ;(n, t) 1-+ 

;(n, t; u): 

iES 

Hence, the repair resets the intensity of failure proportional to the damage. By removing 

damage accumulated over time, such repairs can reset the system failure rate (system 

state) to somewhere between that of a partially restored system if U E (0,1) and a 

minimally repaired system if u = 1. That means, repair degree process Ut determines a 

stochastic ordering of the failure rate in the sense that 

;(n,t;u) < ;(n,t;v) 

when u < v (u,v E U). 

5.5 Modelling Intensity Control 

5.5.1 Control, Cost Structure 

Let U be the set of measurable processes Ut, t E [0, T] adapted to the partial information 

F{' and taking values in (0,1]. To each control U E U, we associate a probability Pu on 
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([2,.1') such that frequency of inspections Nt admits the (Pu , .1't)-intensity I't(u). Each 

inspection incurs an instantaneous cost K - C or K (0 < C < K) dependent on the 

damage process is either in the normal state (state 1) or in degraded state (state 2). More 

precisely, with perfect information .1't the inspection cost at time t, kt is kt = K -C<p(t; 1) 

where <p(t; 1) is the indicator function of the state one. The repair action per unit of 

time with repair degree u E U incurs a repair cost kE(t, u) = c(l - u)t (c > 0) which is a 

decreasing (increasing) function of the repair degree process u E U (scale parameter c). 

As noted, the repair cost per unit of time 

k' ( ) - dkE ( t, u) - (1 _ ) ~tu- -E u 
~ , dt 

is proportional to the scale parameter E and it varies somewhere between zero if the. 

system is restorE;)d to a .minimally repaired system (u = 1) and E if the system is restored 

to a perfectly repaired system (but not as good as new system) (as u -t'0).80, E value 

determines the "scale" or dispersion of the repair cost that is 

o ::; k' E (t, u) < E 

If E is large, then the repair cost domain will be more spread out; if E is small then it 

will be more concentrated. 

The model is based on the assumption that the the true measure of revenue over produc-

tion process is unknown. This is the case which is common when resulting output mea-

sures including defective items produced and product quality is not identifiable. These 

unidentifiable measures associated with output cause the overestimating the quality and 

incur an invisible quality cost and consequent overestimation of revenue. To overcome 

this inefficiency and get a precise measure of revenue, since product quality is a function 

of system deterioration state, the revenue from system is linked by unobservable physical 
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state (damage) process X t . More precisely it is assumed that revenue from system per 

unit of time is damage state dependent on /1Xt with /12 < /11' These conditions imply 

that, operation in either one of the physical states, normal state or degraded state, gen-

erates revenue which is higher in normal state. It is assumed that the cost incurred on 

replacement at the terminal time T is dependent on the physical state as q/XT ((Pt < ¢2). 

To each u E U there is a performance measure J(u): 

(5.5.1) 

To convert the partial information control problem into a complete-information prob-

lem, let 

(see equation (5.8.2)). Then the (Pu , Ft)-:intensity of Nt is 

2 

i't(U) = Eu (l'x t IFt) = L l'iCPr(i) 
i=l 

Given partial information Ft, an Ft adapted measure of inspection cost and the 

final cost are given by 

k(t, Nt, u) = K - Ccp(Nt, t; 1) 

and 
2 

¢t(u) = L ¢iCPr(i) 
i=l 

respectively. Since k(t, Nt, u) is Ft -predictable the integration theorem (see Bremaud 

(10)) gives the Ft measure of the value function 
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J(u) = Eu [ {T (:L ,ui~f(i) - ke(t, u) - k(t, Nt, U)it(U)) dt - ~ ¢i~~(i)] 
io tEl tES 

= Eu [ {T (:L ,ui~~(i) - ke(t, u) - k(t, Nt, u) :L 'Yi~f(i)) dt (5.5.2) 
io iES iES 

... - :L ¢i~~(i)] 
iES 

The control problem above is Markovian with respect to Nt. In a Markovian control 

problem the value function J(u) is path independent and J(u) the corresponding control 

process u is of the form f(t, Nt) where f(t, n) for each n E N+ is an JR.-valued measur-

able deterministic function. The problem can now be re-formulated as a deterministic 

:fIamilton-Jacobi problem over a finite time horizon {u; == u;(t,n) : u; E U}: 

J(u*) = sup J(u). 
uEU 

The required result is found in Bremaud (10) [Chapter VII: Corollary C2]. 

C2 Corollary Suppose thati(t,n,u), ~r(i) = ~(t,n,u)(i) (i E S) and k(t,n,u) do not 

depend on w, and that there exists for each n E N+ a function V(t, n) such that 

aV~t, n) + sup {i(t, n, u) [V(t, n) - V(t, n - 1) - k(t, n, u)] 
t uEUt . 

. . . + :L ,ui~(t, n, u)(i) - ke(t, u) } = 0, 
iES 

(5.5.3) 

V(T, n) = inf ¢(T, n, u) 
uEU 

where 

¢(T, n, u) = :L ¢i~Hi). 
iES 
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Suppose also that there exists jar each n E N+ a measurable IR+ valued junction 

u· (t, n) such that 

u*(t, n) E U, t E [0, TJ, 

and 
1 

u*(t,n) = argmax{"Y(t,n,u) [V(t,n) - V(t,n -1) - k(t,n,u)] 
uEUt 

... + L f.LiCP(t, n, u)(i) - k£(t, U)}, 
iES 

(5.5.4) 

Then u; defined by 

u;(w) = u*(t, Nt(w)) (5.5.5) 

jar wEFt is an optimal solution. 

In the 'next section, using Hamilton-Jacobi equations (5.5.3), a numerical solution 

to the optimal (repair degree) control problem {u; : t E [0, T]} Stnd optimal inspection 

frequency of the system are derived. Finally, given u; an optimal decision rule for 

production run length of the system is obtained. 

5.6 Numerical example 

Using corollary C2 the optimality condition for the control problem is 

aaV 
(t, n) + sup {C1(CP(t, n, u)(1))2 

t uEUt 

+ cp(t, n, u)(l) [(f.Ll - f.L2) + C"!2 + (V(t, n) - V(t, n - 1) - K) 1] (5.6.1) 

+ '\2 [V(t, n) - V(t, n - 1) - K] - k£(t, u) + f.L2} = 0, 

¢(T, n, u) = L ¢icpY(i). (5.6.2) 
iES 
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The optimal control process u*(t, n) is given by 

u*(t, n) = argmax {Ci (j;(t, n, u)(I))2 
uEUt 

+ (j;(t, n, u)(I) [((f.t1 - f.t2) + C,2 ) (V(t, n) - V(t, n - 1) - K) i] (5.6.3) 

+ A2 [V(t, n) - V(t, n - 1) - K] ~ ke(t, u) + f.t2 } 

Numerical values are chosen for the parameters to illustrate the solution of the ordinary 

differential equation (5.6.1) and the determination of the corresponding optimal control 

process u(t,n), (n ~ 0). Let T = 15, K = 2, C = 1, f.t1 = 2, f.t2 = 1, 12 = 2, 11 = 1, 

A1 = 1, A2 = 2, a = 2, (3 = V2, (Pt = 1, (P2 = 2 and E = 0.15.' By using equation 

(5.3.8) to estimat~ mean inspection times !in, n ~ a and the Euler method with step 

size h = 0.1 an evolution of the optimal expected revenue V(t, n) (see Figure 5.3) for 

o ~ n ~ 12 are derived. 
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Figure 5.3: An evolution ofthe optimal expected revenue V(t, n), t E [0,15]' (0 ~ n ~ 12) 

As illustrated (see figure 5.3), the optimal expected revenue V(t, n) for t E [0,8.63] 

is non-decreasing in the number of inspections, at 11th inspection the revenue reaches 
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to the maximum value, then for t E (8.63,15] it follows a decreasing trend. 

Also, corresponding to nth inspection event (n = 0,1,2, ... 12), the Table 5.1 illustrates a 

sequence of the expected revenue V;, expected inspection times {tn, mean time between 

inspections (MTBI) 6.{tn, and the optimal control process uCt,n) where 

v; = max{Ln995 V(t, n), O:S n :S 12 

As seen, the optimal control sequence u(t,n) for n = 0,1, ... ,4 take the boundary values 

{0.1, I} of the constraint set [0.1,1]' and from fifth inspection on i.e. (5 :S n :S 12), uCt,n) 

chooses just the upper endpoint 1. The second column of the Table describes an evolution 

of the expected revenue V; which is concave in the number of inspections n. As shown, 

V; takes the rp.aximum value V* = maxn V; = Vtl = 14.8487, then for (n ~ 12) follows 

an decreasing trend. So, the sequency of V; not only gives/us a solution to the optimal 

(repair deg:ee) control process u~ and optimal inspection problem which is the optimum 

frequency of inspections, but also provides a solution to the optimal run length of the 

system. More precisely, the optimum maintenance policy includes an optimal stopping 

rule to replace the system at 11th inspection event which is T* = {tu =8.63 and a 

sequence of the optimal inspection times {tn for n = 1, 2, ... , 11 driven by the optimal 

control process u~, t E [0, 8.63] wh~ch is bang-bang in the sense that it takes the boundary 

values {0.1, I} that is 

U~ = 0.1I(0 :S t :S 5.88) + 1(5.88 < t :S 8.63). 

Following, a sequence of the mean time between inspections 6.{tn = {tn - {tn-l (0 :S n :S 

12)({to = 0) is shown (see Figure 5.5). As expected, mean time between inspections 

decreases as the number of inspections increases. This results from inspection intensity 

i'(n, t, u*) which is increasing in the number of inspections n and time t (see Figure 5.4). 
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n V* n jln !::litn U(t,n) 

0 1.5 0 - 0.11(0 ::; t < 8.8) + 1(8.8 ::; t < 15) 
1 3 1.36 1.36 0.11(1.36 ::; t < 8.4) + 1(8.4 ::; t < 15) 
2 4.4998 2.63 1.269 0.11(2.63 ::; t < 8.4) + 1(8.4 ::; t < 15) 
3 5.9992 3.79 1.165 0.11(3.79 ::; t < 8.3) + 1(8.3 ::; t < 15) 
4 7.4974 4.87 1.081 0.11(4.87::; t < 7.9) + 1(7.9::; t < 15) 
5 8.9937 5.88 1.017 1(5.88 ::; t < 15) 
6 10.4878 6.36 0.48 1(6.36 ::; t < 15) 
7 10.9757 6.83 0.452 1(6.83 ::; t < 15) 
8 11.9662 7.28 0.451 1(7.28 ::; t < 15) 
9 13.3437 7.73 0.451 1(7.73 ::; t < 15) 
10 13.8464 . 8.18 0.451 1(8.18 ::; t < 15) 
11 14.4887 8.63 0.451 1(8.63 ::; t < 15) 
12 14.2907 9.087 0.45 1(9.08 ::; t < 15) 

Table 5.1: An evolution: of optimal expected revenue V*, mean inspection times it and 
mean time between inspections !::lit given the optimal control process u* and linear 
transition rate 

1.8 

1.6 --
1.4 --

0.8
0
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Figure 5.4: An evolution of the inspection intensity i(n, t, u*) given the optimal control 
process u~ 
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Figure 5.5: An evolution of the mean time between inspections (MTBI) given the optimal 
control process u; 

So, with ~espect to the optimal control process u;, t E [0,8.63] and results above, 

the optimal maintenance schedule is established as follows: from initial time ° to 5.88 

unit of time the system is repaired with repair degree u* = 0-:1. The system is inspected 

at optimum scheduled times {1.36, 2.63, 3.79, 4.87, 5.88}. Just after t = 5.88 to t = 

8.63 the system is repaired minimally and inspections takes places at scheduled times 

{6.36, 6.83,7.28,7.73, 8.l8}. So, for 2.75 unit of operating time the deterioration level 

of the system leaves unchanged. At 8.63 unit of time of operation (optimal production 

ruri length) the system is renewed. 

Finally, to have a realization of the prediction of the system failure, let 'ljJ(x) = x and 

the baseline function be distributed Weibull with intensity function 

\ () Qt,,-l ° /\0 t = IF' = t t ~ 

Finally, figure 5.6 beautifully give us a rule to optimal run length of the system based 
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on the failure intensity ~(n, t, u*) that is 

T* = inf {t 2 0 : ~(n, t, u*) 2 c, P,n ::; t < P,n+1} ,(n ~ 0) (5.6.4) 

where c denotes the optimum threshold deterioration level at which the system is re-

placed. Subject to the optimal replacement time T* = 8.63, the threshold level is given 

by 

c = ~(10, 8.63, u*) = 17.26. 
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Figure 5.6: An evolution of failure intensity ~(n, t, u*) given the optimal control process 
u; 

5.7 The Model (Nonlinear Transition Rate) 

As above let the physical state of the system is described by a stochastic process X = 

{Xt, t ~ a}. with the state space S = {I, 2}. It is assumed that the transition between 
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states is driven by a non-homogeneous Markov process whose sojourn time in state one 

is described by a two-parameter generalized Pareto distribution 

( b) 1+~ 
F(t) = 1- --

at + b 
t"2 0, 

b 
0< t < --. - a (5.7.1) 

The transition intensity from state one (normal state) to state 2 (degraded state) is 

b 
0< t < --

- a 

with parameters -1 < a < 0 and b > O. The rate q12(t) is non-decreasing on [0, -~) 

with escape at t = -~. 

The repair actions change the sojourn distribution in state one as in (5.7.1) 

. ('b) 1+1. pu (t) = 1 - . , b CL , 

aut + t"20 (5.7.2) 

The transition rate is 

u u(a + 1) -
q12 (t) = b = U q12 ( ut) 

aut + 
Given parameters values a = -0.25 and b = I, following an evolution of the first 

passage time distribution of the damage process X t is illustrated. As shown, with de­

creasing control (repair degree) values u : 1 f--t {0.8,O.4} intensity of leaving state one 

(normal state) decreases. 

5.8 Damage Process X Given Partial Information 

As shown before (see equation (5.4.5)), using the differential equation, an explicit solu­

tion of cj;( n, t; 1) is given by 

A( .) _ exp (- fey + ql(t))dt) 
r.p n, t, 1 - A(n, t) , (5.8.1) 
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Figure 5.7: An evolution of sojourn time distribution of the damage,processXt in state 
one given control (repa~r degree) values u = 0.4,0.8,1 and parameters a = -0.25, b = 1. 

where 

exp [- J (-)i + ql(t)) dtL_T it (lV 
) 

A(n,t) = A (2) - n - ryexp - (ry+ql(s))ds dv 
1 - 'PTn Tn 0 

and ry = 1'1 - 1'2· Clearly, in terms of the sojourn time distribution in state one 

( b) l+~ 
P(t) = at + b 

The probability 0( n, t; 1) can be expressed as 

0(n, t; 1) = exp (-ryt) P(t) 

{
exp(-ryTn)P(Tn) it - (- )F-( )d }-l 

x 1 _ A (2) - l' exp -1'V v V 
'PTn Tn 

(5.8.2) 

Given a = -0.25, b = I, from equation (5.8.2) it can be shown that the probability of 

being in state one 



cp(n, t; 1) for t E [Tn' Tn+l) , (n ~ 0) is 

cp(n, t; 1) = (1- ~t) 3 exp(t)x 

{ 
exp(Tn)(l - ~tn)3 ( ) 

... 1 _ CP
T
n(2) + exp t 

3 3 ... - 4 [texp(t) - exp(t)] + 16 [exp(t)t2 - 2texp(t) + 2exp(t)] 
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· .. - 6
1
4 [t3 exp(t) - 3t2 exp(t) + 6t exp(t) - 6 exp(t)] (5.8.3) 

3 
· .. - exp(Tn) - 4 [Tn exp(Tn) - exp(Tn)] 

· .. + 136 [T~ exp(Tn) - 2Tn exp(Tn) + 2 exp(Tn)] 

1 ' }-1 
· .. - 64 [T~ exp(Tn) - 3T~ exp(Tn) + 6Tn exp(Tn) - 6 exp(Tn)] /, ; 

where Tn for n ~ 0 (To = 0) denote nth inspection time. Let cpU(n, t; 1) denote the 

probability of the state (damage) process X t adjusted by the repair degree process u E U 

(F(t) ~ PU(t)). From (5.8.2) we have 

cpU(n, t; 1) = exp (-it) PU(t) x 

{ 
exp (-iTn) PU(Tn) ~ jt _ ( __ ) F-U( )d }-1 

1 _ ~u (2) I exp IV v V 
<PTn Tn 

(5.8.4) 

In particular case, let n = o. Then equation (5.8.4) for t E [0, T1] (0 < Tl < 4) reduces 

to 

cpU (0, t; 1) = exp ( t) (1 - ~ u t) 3 X 

'{ 3 ... exp(t) - 4u [texp(t) - exp(t)] 

3 ... + 16u2 [t2 exp(t) - 2texp(t) + 2exp(t)] (5.8.5) 

1 
... - 64 u3 [t3 exp(t) - 3t2 exp(t) + 6t exp(t) - 6 exp(t)] 

... - ~u - 26 u2 - 66
4 

u3 } -1; 
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The evolution of the probability of being in state one; cpU(O, t; 1), with control (repair 

degree) values u = 0.4, 0.8,1 is illustrated in Figure 5.8. The stochastic ordering of the 

sojourn time distributions determined by the repair degree values u : 1 t---+ {0.8, 0.4} is 

clear to see 
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Figure 5.8: An evolution of probability of state one cpU(O, t, 1) given control (repair 
degree) values u = 0.4, 0.8,1. 

5.9 Numerical Example 

To obtain an optimal repair degree strategy {u; : t E [0, T]} which maximizes revenue 

from the system over a fixed time period T = ~b, let f{ = 2, C = 1, J-L1 = 1.5, J-L2 = 1, 

"/2 = 2, "/1 = 1, A1, A2 = 2, (/h = 1 and ¢2 = 2, a = -0.25, b = 1 and E = 0.65. By using 

equation (5.3.5) to estimate mean inspection times lin, n ~ a and the Euler method with 

step size h = 0.1 an evolution of the optimal expected revenue V(t, n) (see Figure 5.9) 
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and optimal control (repair degree) process (see Figure 5.10) for 0 ~ n ~ 3 are derived. 

As illustrated in Figure 5.10, the optimal expected revenue V(t, n) for t E [0, 1.76J is non-
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t 

Figure 5.9: An evolution of optimal expected revenue over finite time [0, 4J. 

decreasing in the number of inspections, at second inspection the revenue reaches to the 

maximum value, then for t E (1.76,4J it follows a decreasing trend. Also, corresponding 

to nth inspection event (n = 0, 1,2,3), an evolution of the optimal expected revenue 

V;, expected inspection times Mn and mean time between inspections (MTBI) !:::'Mn are 

shown (see Table 5.2) where 

v; = max V(t, n), 0 ~ n ~ 3 
P,n~:Y~4 

The second column of the table describes an evolution of the optimal expected revenue 

v; which is concave in the number of inspections n. As shown, V; achieves to its 

maximum value at second inspection, that is, V* = maxn V; = 2.1144 'lin ~ 0, then for 
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n V* n f.-Ln t:::..pn 

0 0.9462 0 
1 1.5906 0.9 0.9 
2 2.1144 1.76 0.86 
3 1.8527 2.45 0.69 

Table 5.2: An evolution of optimal expected revenue V*, mean inspection times P and 
mean time between inspections t:::..p given the optimal control process u* and nonlinear 
transition rate 

(n > 2) follows an decreasing trend. So, the sequence of V; not only gives us a solution 

to the optimal (repair degree) control process u;, t E [0,1.76] that is 

0.1, o < t :S0.9; 

1, 0.9 < t:S 1.3; 

0.85, 1.3.< t :S 1.4; 

u; = 
0.71, 1.4 < t :S 1.5; 

0.6, 1.5 < t :S 1.'6; 

0.5, 1.6 < t :S 1.7; 

0.43, 1.7 < t :S 1.76; 

1, 1.76 < t :S 1.8. 

but also provides a solution to optimal inspection frequency Pn (n = 1,2,3) and the 

optimal run length problem of the system which is T* = P2 = 1. 76. 

Also, in the third and forth column of the table a sequence of the mean inspection 

time Pn and mean time between inspections t:::..pn = Pn - Pn-l (n = 1,2,3) (Po = 0) 

are shown. As expected, mean time between inspections is decreasing in the num-

ber of inspections. This follows from inspection intensity i(n, t, u*) (see Figure5.11) 

which is increasing in number of inspections n. As shown, intensity of inspection over 
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Figure 5.10: An evolution of optimal' control process' u* given :pN. 
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Figure 5.11: An evolution of optimal inspection intensity i(n, t, u*) given :pN. 
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inter-arrival inspection times as a result of decreasing trend of repair degree process u;, 
(t E [ft,n, ft,n+l)), (n = 0,1,2) is non-increasing. So, with respect to the optimal control 

process u;, t E [0, 1. 76] and the table illustrated above, the optimal maintenance sched­

ule is established as follows: from initial time 0 to 0.9 unit of time the system is repaired 

with repair degree u* = 0.1. The first scheduled inspection of the system occurs just 

after 0.9 unit of time. Over time interval (0.9,1.3] the system is repaired minimally. 

That means, for 0.4 unit of operating time the deterioration level of the system leaves 

unchanged. For t E (1.3,1.76] the system is repaired partially with repair degree u; 
which is decreasing in time. At T* = 1. 76 unit of time of operation (optimal production 

run length) the system is renewed. As illustrated in Figure 5.12 given optimal control 

process u;, the optimal replacement policy; which results in an optimal production run 

length, is a controi limit policy with respect to the failure rate (system state) process 

~(n, t, u*). That means, the r~placement is performed when ~(n, t, u*) first reaches the 

optimal critical limit c, where 

T* = inf {t : ~(n, t, u*) 2: c = 2.5267} 

= 1.76 
(5.9.1) 

It is easy to see that the optimization problem of inspection frequency and production 

run length/replacement policy investigated here is a two steps process optimization. 

First we optimized the control (repair degree) process u*, then given u* solutions to the 

optimal inspection intensity i(n, t, u*) and optimal production run length/replacement 

policy have been obtained. 
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Figure 5.12: An evolution of optimal failure intensity ~(n, t, u*) given FN. 

5.10 ConcI usion 

In this chapter using optimal intensity control modeling, given both linear and non~linear 

transition rate q12(t) of damage process X, a solution to the maintenance scheduling 

problem of a manufacturing system subject to deterioration is obtained. The modeling 

rests on assumptions that inspections do not impact on the failure characteristics of the 

system, the process is adapted to partial information and the resulting output (revenue) 

from system is subject to the system state influenced by repair action and deterioration 

process. The formulation allows the application of a standard for Markov control (10) to 

be exploited through the control of the intensity of the underlying physical wear process. 

The optimum policy determined gives a correct balance between revenue from system 

and maintenance costs. 



Chapter 6 

Conclusion and Further Works 

6.1 Summery and Conclusion 

6.1.1 The optimal intensity control problem 

In chapter 5 we addressed the problem of maintenance scheduling a manufacturing sys­

tem subject to deterioration. The model investigated rests on realistic assumption that 

resulting output (production process) from system is subject to the state of the system. 

Ideal state of manufacturing performance results in more products (revenue); System 

malfunction which arises from system deterioration leads to significant proportion of de­

fective products. It is assumed that the manufacturing system is subject to maintenance 

(repair and inspection): insufficient maintenance leads to an increase in the number of 

defective items, low profit and low maintenance cost; excessive maintenance results re­

duces the proportion of defective items, high profit and high maintenance cost. Repair 

actions are reflected through incorporating control (repair degree) process Ut E U as 

scale parameter of AFT and PH model (see Newby (51)) into transition rate of damage 

process X t . To balance the amount of maintenance (repair and inspection) and opti­

mize revenue from system, using optimal intensity control model (see Bremuad (10)), 
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an optimal control (repair degree) policy under both proportional hazard (PH) model 

(linear transition rate) and accelerated failure time (AFT) (non-linear transition rate) 

is derived. Also, to keep a correct balance between revenue from system and inspection 

frequency of system given optimal control process u;, a solution to optimal inspection 

intensity and corresponding optimum sequence of inspection times (optimum inspection 

schedule) is obtained. An illustrative numerical example under both AFT and PH model 

was provided. Given the optimal control process u; which is solution of Hamilton Jacobi 

equation, results of the model provides a realistic inspection policies for systems which 

are subject to deterioration. Under both maintenance models a decreasing sequence 
\ 

of the inspection intervals is derived. Besides, to get an insight into the prediction of 

system failure, using the proportional intensity process driven by u;, an evolution of \ 

failure intensity of the system was illustrated. Finally, an optimal production run length 

T* .was determined. In sum, our model presented in Chapter 5 is a novel approach to 

maintenance optimization which through modeling intensity control provides a solution 

to the optimal repair policy problem of manufacturing systems subject to deterioration. 

6.2 Decision Modeling for Stochastically Deteriorat-

ing Systems 

In chapter 4 we presented a new approach to decision modeling of stochastically de­

teriorating systems whose state is determined by bivariate process (X, V): X refers 

to damage process and V denotes the virtual age of the system. The problem is to 

determine optimal repair rule ~r and replacement rule ~f under both periodic and non­

periodic inspection policy in such away that the long-run average cost per unit of time is 
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minimized. In preference to current decision models such as (56) and (55), using Virtual 

age process and repair alert model, expressions for the long-run average cost under both 

periodic and non-periodic inspections policy are obtained. To optimize the long-run 

average cost per unit time subject to system parameters an algorithm applied for both 

periodic and non-periodic inspection policy was proposed. The model investigated above 

can be extended by formulating it in both semi-parametric and parametric framework. 

The degradation process of the system X t can be modeled by some semi-parametric pro­

cess such as (non)-homogeneous Markov process. Also, the parametric processes such 

as Gamma process, Maximum process which are monotone in time are suggested to 

describ~ the degradation process of the system. Furthermore, to demonstrate the use of 

this maintenance model in practical application, using the presented analytical method, 

providing a" numerical example for non-periodic inspection policy is worthwhile. 

6.3 Further Works 

In this section we propose some maintenance models to be further studied in the future: 

• Modelling optimal intensity control subject to bivariate control and virtual age 

process or/and multivariate point process 

• Decision modelling for stochastically deteriorating systems subject to bivariate 

state process (n, z) 

In following section briefly a generalized approach to maintenance scheduling problem 

of chapter 5 is presented. Then, to tackle an optimal control problem of a system which 

is subject to repair and maintenance actions (RMAs) at inspection times, a general­

ized case of the intensity control model (see Chapter 5) is presented. In generalized 
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model, the flow of the process which consists of random jumps resulting from RMAs, 

and continuous motion between consecutive jumps is controlled in such away that the 

maximum ·expected value arising from continuous revenue, jump and terminal cost is 

derived. In other words, the model outlined above is a new approach to the controlled 

Piecewise Deterministic Markov Process (PDP) (see Bremuad (19)) indexed by bivari­

ate processes (Ut, lit) (t ~ 0) 'denoting the control process and the virtual age process 

respectively where through driving inspection intensity of system and the change of the 

time origin control the motion of the PDP between jumps. The objective is to control 

both continuous deterministic motion and the random jumps of the processes so that 

the expected value is maximized. Finally, in the last section, using Marked point process 

(see Aven and Jensen (4)), with ,the same approa~h as Chapter 4 a new decision model 

for maintenance scheduling deteriorating systems is proposed.' 

6.4 Modeling optimal intensity control subject to 

bivariate control and virtual age process or/and 

multivariate point process 

The maintenance optimization model proposed in chapter 5 has potential to consider 

the optimal maintenance scheduling problem of a variety of systems (or system compo­

nents) which are subject to repair and inspections. This arises from the intensity control 

model set up (see Bremuad (10)) which can simply provides solution for optimal inten­

sity control of a multivariate counting process Nt = (N1 (t),N2 (t), ... ,Nk (t)), In such 

case, the problem of controlling the intensity of univariate point process is generalized 

to multivariate point process case which Ni(t) (i = 1,2, ... , k) refers to the number of 
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inspections of system type i (or ith component of the system). 

In sequel, a new approach to the controlled piecewise deterministic Markov process 

(PDP) (see Almudevar (2) and Dempster (20)) is presented. A piecewise deterministic 

process (PDP) introduced by Davis (19) is a continuous-time homogeneous Markov pro­

cess (Xt, Px). The trajectories of piecewise deterministic Markov processes are solution 

of an ordinary differential equation 

with possible random jumps between different integral curves. In the interior Eo of the 

state space E c JR., the jump intensity is given by a non-negative real valued function 

while if the boundary Eo of the state space E is attained 'a jump occurs immediately. The 

distribution of new initial point after a jump is determined by the probability measures 

qx or Px dependent on whether the jump started from a state x E Eo or x E Eo. More 

precisely, if f3 := inf {t : Xt- i- Xt+ } implies the first jump time of the process, then 

Px(f3 < t) = >,(x).t + o(t), 

if x E Eo, 

Px (f3 = 0) = I, 

if x E Eo. As shown, the quadruple (f, A, q,p) determines the flow of the PDP (x, Px). 

The problem is to determine an optimal control of random jumps of the processes in 

such away that the optimum expected value of the performance functional consisting of 
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continuous, jump and terminal cost is derived. 

Here, using maintenance model presented in chapter 5, we introduce a new controlled 

Piecewise Deterministic Process (PDP) in which in contrast to PDP model the paths 

between consecutive jumps are determined by the deterministic probability measure 

o adapted to partial information FN (see chapter 5). More precisely, new controlled 

piecewise deterministic Markov process is characterized by the quadruple 

(0(u,v),~(U,v),q~,p~) 

where FN adapted measure 0(u, v) indexed by processes (Ut, lit) (t ~ 0) determines the 

trajectories of the PDP. Both continuous deterministic motion and the random jumps 

of the process are controlled by incorporating the control process Ut and the virtual age 

process lit into transition rate cl12 and standardized. normal distribution cP of probability 

me~ure 0t 1-+ 0~u,v). The jump mechanism is determined by two. further functions, 

the jump rate ~(u, v) and the transition measures p~ or q~ where respectively maps the 

virtual age space Vt- = v E Eo or Vt- = v E Ea into the set of probability measures 

P(Eo). in such case, time to the first jump is 

f3 : = inf {t : Vt- =f. Vt+ } 

An evolution of the process 0t (see chapter 6) controlled by the bivariate process (Ut, Vt) 

is illustrated (see Figure 6.1). As shown, trajectories of the new controlled PDP is 

influenced by the bivariate process (Ut, lit): Ut adjusts damage process intensity and lit 

changes the time origin. 

(6.4.1) 

( 
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In generalized case, the flow of the process which will consist of random jumps resulting 

from repair and maintenance action, and continuous deterministic motion between con-

secutive jumps is controlled in such away that the maximum expected value including 

continuous revenue, jump and terminal cost is derived. 

1.1 r----.------,;:=============;l 
-- (u

t
.V

t
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Figure 6.1: An evolution of the deterministic flow of the process CPt driven by the control 
process Ut, the virtual age process \It = VTn + t (0 ::; t < Tn+l - Tn) (0 ::; n ::; 2) 
corresponding to nth jump time Tn with the repair degree ~n(O ::; ~n ::; 1) and VTn+1 = 
VTn + ~n¢(Tn+1 - Tn). 

6.5 Decision modeling for deteriorating systems sub-

ject to bivariate state process (n, z) 

6.5.1 Model 

We introduce a decision model for a repairable system subject to stochastic deterioration. 

It is assumed that the system deteriorates continuously over time and can fail at any 
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instant. The model is given the partial information. The problem is converted into the 

complete information pattern by projecting on the observed history of the process. The 

deterioration flo~ (or, failure rate) of the system in a stochastic manner is measured 

by the Proportional Intensity Model (PIM) At (t E R+) which is the product of a 

baseline failure rate 1.6 (t) dependent on the age of the system and a positive function '!j; 

which describes the effect of environmental factors in which the system is operating. To 

model the impact of the operating environment on the system the underlying stochastic 

non-homogeneous Markov process X t is used. More precisely, 

(6.5.1) 

To model the mechanism of the repair and maintenance process (see Figure 6.2) 

z! 
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/I'llm 
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t 

Figure 6.2: An evolution of the maintenance process subject to stochastic deterioration 
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we take advantage of the Marked Point Process (Tn' Dn)n?l in which the point pro­

cess Tn refer to the sequential non-periodic inspection times, determined by the stochastic 

intensity measure 'Yt = 'Y(t, X t ), and the Marks Dn = (Yn, Wn) denote pairs of random 

variables, where 

(6.5.2) 

(where To = a) represents the amount of accumulated deterioration over nth inter­

arrival inspection times and Wn equals (a)l or 2 according to whether the accumulated 

deterioration defined by 

(6.5.3) 
n=l 

(doesn't) reach the preventive partial repair threshold Arrm or the preventive replacement 

controllimit A~m so that Arim < A~m· Also, associated with above control values let the 

7]~m (i=1,2) be F-stopping times: 

(6.5.4) 

and 

So, the marks Dn take values in Sv = lR+ x {a, 1, 2}. We define the associated counting 

process N(t,lR+ x {a,1,2}) with corresponding intensity function 'Yt(lR+ x {i}) which 

denotes the number of times that the deterioration level of the system described by 

Zt are observed in minimal repair region [a, Arim), partial repair region [Arim, A~m) and 

replacement region [A~m' 00). 

To configure the decision and action process it is assumed that the action space includes 
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three kinds of actions: (i) minimal repair action if the deterioration level of the system 

varies over range [0, Atim) (Deterioration level 1), (ii) the Preventive partial repair action 

if the deterioration level of the system varies over range [Ahm' ARm). In such case the 

accumulated deterioration value through adjusting the virtual age of the system reduces 

to the level Z~ = Z(Vn) where Vn = Vn- I + ~(Tn - Tn-I), ° < ~ < 1, (n ~ 1) denotes the 

virtual age of the system just after nth repair action and (iii) the preventive replacement 

action if the deterioration level of the system exceeds the threshold value ARm (Dete-
" 

rioration level 3). With respect to the action space above, the state of the process is 

depicted by the pair (N(t, Sv), Zn: the system is in state (N(t, Sv), Zn if just after 

Net, Sv)th repair the accumulated deterioration is zr Thus the state space is 

S = N x IR+ where N = {O, 1, 2, ... } ,Rt = [0,00). 

Using the renewal argument, as Chapter 4 expressions for long-run average cost per 

unit of time under both periodic and non-periodic inspection times can be derived. The 

maintenance process is optimized subject to the decision thresholds Ahm and ARm' that 

respectively refer to the preventive partial repair and the preventive maintenance rule. 

This thresholds configuration, characterized by the minimization of long run average 

cost per unit of time, leads to an optimal decision rule -repair/replacement policy- with 

non-periodic/periodic inspection times. 

In this thesis the power and flexibility of the martingale approach has shown how many 

maintenance and repair models can be built up. The martingale coupled with the study 

of regenerative processes as illustrated played a key role in stochastically modeling and 

maintenance optimization of systems which are subject to deterioration. 
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