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Opinion

Hierarchical Active Inference: A Theory of
Motivated Control

Giovanni Pezzulo,1,* Francesco Rigoli,2,3 and Karl J. Friston3

Motivated control refers to the coordination of behaviour to achieve affectively
valenced outcomes or goals. The study of motivated control traditionally
assumes a distinction between control and motivational processes, which
map to distinct (dorsolateral versus ventromedial) brain systems. However,
the respective roles and interactions between these processes remain contro-
versial. We offer a novel perspective that casts control and motivational pro-
cesses as complementary aspects � goal propagation and prioritization,
respectively � of active inference and hierarchical goal processing under deep
generative models. We propose that the control hierarchy propagates prior
preferences or goals, but their precision is informed by the motivational con-
text, inferred at different levels of the motivational hierarchy. The ensuing
integration of control and motivational processes underwrites action and policy
selection and, ultimately, motivated behaviour, by enabling deep inference to
prioritize goals in a context-sensitive way.

Motivated Control of Action
Motivated control (see Glossary), and the coordination of behaviour to achieve affectively
meaningful outcomes or goals, poses a multidimensional drive-to-goal decision problem. It
requires arbitration among multiple drives and goals that may be in play at the same (e.g.,
securing food versus water) or different levels of behavioural organization (e.g., indulging in a
dessert versus dieting) – as well as the selection and control of appropriate action plans; for
example, searching, reaching and consuming food [1–8]. Previous research has highlighted
two dimensions of motivated control: one concerns the distinction between a control or ‘cold’
domain (e.g., choice probabilities, plans, action sequences or policies [9,10]) and a motiva-
tional or ‘hot’ domain (e.g., homeostatic drives, incentive values, rewards [11,12]), where
both are essential for learning, planning and behaviour. The other dimension concerns the
complexity of the decision problem. In relation to control, it differentiates sensorimotor control
(choosing among current affordances [13]) from cognitive or executive control (the temporal
coordination of thoughts or actions related to internal goals [14]). In terms of motivation, it
distinguishes visceral drives (e.g., eating) from higher-order objectives (e.g., dieting).

From a neurophysiologic perspective, a distinction between dorsolateral areas – involved in
control (or execution) – and ventromedial areas – involved in motivation (or value) – is generally
accepted. However, previous treatments have not resolved fundamental questions about the
interaction between control and motivation in the service of goal-directed choice. For
example, the relative contribution of these systems to motivated control – whether they
operate sequentially or in parallel, their representational content (e.g., value, uncertainty,
errors in ventromedial areas), and what form – if any – the implicit hierarchy takes (e.g.,
abstractness, complexity).

Highlights
Motivated control of action requires
the coordination of control and motiva-
tional processes in the brain. These
have partially orthogonal demands
and can be factorized; yet at some
point they need to be functionally
integrated.

Using active inference, we explain the
functional segregation (factorization)
and integration of control and
motivation.

We propose that control and motiva-
tion (implemented mainly in dorsal and
ventral neural streams, respectively)
conspire to propagate and prioritize
goals, respectively, in the service of
goal-directed action.

Within active inference, this process
appeals to deep goal hierarchies and
results in a joint optimization of action
sequences (and state transitions) and
their precision.

Integrating control and motivation per-
mits to predict future states and infer
action sequences or policies, which,
ultimately, instigate and motivate
behaviour.
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Glossary
Active inference: a formulation of
self-organization that extends
predictive coding to include action,
planning and adaptive behaviour –

explained in terms of minimizing the
surprise (i.e., free energy) expected
under a course of action.
Bayesian inference: a
mathematical framework for
statistical inference, based on an
optimal integration of prior
information and (sensory) evidence.
Bayesian inference may be exact or
approximate (using various forms of
approximations, e.g., variational or
sampling methods).
Belief propagation: a
computational scheme for Bayesian
inference that entails passing
messages (or propagating beliefs)
under a generative model. Within a
deep (hierarchical) model, it involves
top–down and bottom–up message
passing.
Exteroception: the processing of
sensory signals coming from outside
the body (e.g., sight, olfaction,
touch).
Factorization: a segregation of two
or more factors within a probabilistic
generative model.
Free energy: the objective function
that is minimized in active inference.
Expected free energy has pragmatic
and epistemic parts, where the
pragmatic part ensures behaviour
conforms to prior beliefs and
preferences (from a hierarchically
higher level) and the epistemic part
ensures that uncertainty is resolved.
Generative model: a statistical
model that describes how hidden
variables generate observations. It is
usually expressed in (Bayesian) terms
of a likelihood and a prior.
Goals and goal states: anticipatory
representations of predicted (desired)
states that are imbued with affective
and motivational (wanting) valence
and have a prescriptive role in
guiding action. In active inference,
they are expressed as prior
preferences over outcomes.
Hidden state: a state that cannot
be directly observed but has to be
inferred (using Bayesian inference).
Sometimes referred to as latent
state.
Incentive value: reflects whether
(and to what extent) a stimulus is
appetitive or aversive, conditions

Here, we address these questions by offering a formal treatment that casts motivated control in
terms of active inference: a physiologically grounded theory of brain structure and function
[15]. Calling on early cybernetic models [16–18], the view that the brain uses control hierarchies
has inspired many recent proposals [19–25]; for example, hierarchical temporal structures [26],
hierarchical reinforcement learning [9], hierarchical mixture of experts [23], distributed adaptive
control [8,27] and hierarchical information processing [21]. Hierarchical processing has also
been advanced to explain the role of dorsolateral (dlPFC [28]) and ventromedial prefrontal
cortex (vmPFC [3,29,30]) in control and motivation, respectively, see also [31–33]. Our proposal
reconciles and extends this work by disclosing the intimate relationship between control and
motivation.

On the active inference view, the multidimensional decision problem is cast in terms of
hierarchical Bayesian inference using hierarchical (deep) models or goal hierarchies [34].
Within these deep models, control and motivational processes implement separable
functions, namely, identifying the appropriate means to achieve goals and establishing
their contextual value, respectively. This separation affords a statistically efficient factori-
zation of the original multidimensional decision problem that is both neuronally plausible
and maps comfortably to the dorsolateral–ventromedial segregation. At the same time,
control and motivation serve a unitary purpose of solving multidimensional drive-to-goal
problems, and are both part of a unitary inferential mechanism that contextualizes goals at
multiple levels of hierarchical and temporal abstraction. This theoretical proposal thereby
explains both the functional segregation and integration that underwrite control and moti-
vation. In short, it dissolves the dialectic between motivation and control to explain
‘controlled motivation’ or ‘motivated control’.

Multidimensional Drive-to-Goal Problems
We start by illustrating the key concepts with an example. Imagine you are in a restaurant and
have to choose whether or not to have a dessert, and whether to take it from the desert trolley or
ask a waiter. Obviously, the chosen action will depend on the context. This example illustrates
two sorts of context. The former, control context, includes information that determines the
action–outcome contingencies; in other words, the likelihood of each outcome given an action.
For example, grasping your favourite dessert from the trolley may work at home but may be
inappropriate in a restaurant (where ‘home’ versus ‘restaurant’ is the control context). The
latter, motivational context, establishes the desirability of choice outcomes; for example, your
physiology (e.g., hypoglycaemia may change your preference for a calorific dessert) and higher-
order beliefs (e.g., ‘I can’t have cake because I’m dieting’).

In addition to the control/motivation dichotomy, a second distinction is based on the level of
complexity of a contextual representation [17–20]. This contextual complexity (i.e., low inter-
mediate and high) can be applied to both control and motivational domains. The low level is
defined by contexts that elicit simple (and sometimes evolutionarily hard-wired) motor tenden-
cies or motivational processes. In the control domain, these correspond to affordances [13,35],
namely, sensory configurations that elicit natural responses (e.g., food may induce an auto-
matic approach). In the motivational domain, low-level contexts reflect interoceptive signals
conveying information about body states, which automatically incentivize specific outcomes (e.
g., hunger incentivizes food). An intermediate level of complexity corresponds to semantic
considerations, based on (subpersonal) beliefs about prevailing rules in an environment. An
example – in the control domain – is being in a restaurant, where food is usually obtained by
calling a waiter. An example in the motivation domain is the belief ‘I’m on a diet’, which is likely to
devalue cakes in favour of apples. Finally, the most complex level of context corresponds to
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episodic (subjective) beliefs that depend on particular circumstances. In the control domain, the
belief that today is ‘buffet day’ implies that food can be secured without an intervening waiter. In
the motivational domain, the fact that today is my birthday may override the belief ‘I’m on a diet’,
inducing a re-evaluation of cakes (especially birthday cakes).

The restaurant example highlights two key points. First, control and motivational domains
are largely orthogonal: the preference for a goal-directed outcome can change irrespective
of action–outcome contingencies, and vice versa. Second, conflict emerges when contex-
tual information is available at different levels of abstraction: for example, ‘I’m on a diet’
(semantic) – ‘but it’s my birthday’ (episodic). Crucially, conflict can arise both within the
control and the motivational domains – and we offer analogous mechanisms to explain both
cases. Moreover, conflict can involve contexts within the same level (e.g., between two
conflicting affordances) and at different hierarchical levels (e.g., affordance versus semantic
context). As an example of the former, a range of different desserts that all elicit an approach
tendency and affordance competition [13]. The direct approach affordance may compete
with the knowledge one needs to ask waiters to obtain food, an example of conflict between
a lower (affordance) and a higher (semantic) level. A similar logic applies to the motivation
domain, in which thirst and hunger may compete at a lower hierarchical level, and the belief
‘I’m on a diet’ may compete with hunger.

In summary, we have to deal with a hierarchy of contextual constraints (affordance, semantic
and episodic), where each level can be parsed into two domains (control and motivational). In
what follows, we outline an active inference solution to this complicated drive-to-goal problem
that emerges from deep (hierarchical) Bayesian inference.

Deep Goal Hierarchies in Active Inference
Active inference views the brain as a statistical organ that forms internal generative models of
the (hidden) states and contingencies in the world, and uses these models to continuously
generate predictions in the service of perception and adaptive behaviour [15,34,36,37]. It
proposes that choice is based on inverting a generative model to infer appropriate action
sequences or policies that lead to preferred outcomes or goals. On this view, the incentive value
of an outcome corresponds to its prior (log) probability, so that preferred outcomes (or goals)
have high prior probability. Active inference therefore eludes a separate representation of
incentive value, which is absorbed into (subpersonal) prior beliefs. Action selection proceeds by
inferring which policy is most likely, given prior beliefs over future outcomes (analogous to their
incentive value) and the degree to which future observations will resolve uncertainty (affecting
the probability of obtaining the outcomes). A worked example is provided in Figure 1 and Box 1.

Here, we extend active inference to characterize motivated control (Figure 2 and Box 2), by
appealing to two kinds of factorization that underwrite variational or approximate Bayesian
inference. The former, hierarchical factorization, is based on conditional independencies
implied by a separation of temporal scales in the causal structure of our world [38]: higher
and lower hierarchical levels encode ‘states of affairs’ that unfold at slower or faster timescales
[26], such as long- and short-term consequences of action, or distal versus proximal goals [34].
This hierarchical factorization provides a rationale to distinguish affordance, semantic and
episodic levels of complexity. The second is a factorization of (hidden) states of the world that
are conditionally independent (e.g., ‘what’ and ‘where’ [39] or ‘what’ and ‘when’ [38]). This
factorization provides a rationale to distinguish control and motivational streams in terms of
beliefs about policies and beliefs about (preferred) states of the world within the generative
model. Taken together, the dual factorizations afford a statistically efficient belief propagation

eliciting approach or avoidance
behaviour, respectively.
Interoception: the processing of
sensory signals from internal organs,
such as the digestive system or the
heart.
Mean field approximation: a
simplifying assumption or
approximation that renders
probabilistic inference tractable. It
assumes that a full (Bayesian)
posterior probability can be
approximated as the product of
independent, factorized distributions.
The mean field approximation is used
in variational Bayesian inference.
Motivated control: the coordination
of behaviour to achieve affectively
meaningful outcomes or goals.
Policy: a sequence of actions. In
active inference, each policy is
evaluated by how much it is
expected to minimize free energy (by
considering the integral of free
energy for future states afforded by
the policy).
Precision: the inverse of variance or
entropy.
Predictive coding: a theory
proposing that perception is realized
within a hierarchical neural
architecture, in which top–down
messages report predictions from
the level above and bottom–up
messages report prediction errors.
Proprioception: the processing of
signals from striatal muscles that
reflects the relative spatial position of
the different parts of the body.
Variational Bayesian inference: a
method to approximate Bayesian
inference of posterior probabilities,
which is generally difficult or
intractable. It approximates a
posterior distribution using an
auxiliary probability distribution having
a simpler form, and iteratively
reducing the differences between the
two distributions. Variational
Bayesian inference usually makes
use of a mean-field approximation.
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scheme (a mean field approximation) that alleviates the computational burden posed by
multidimensional drive-to-goal problems. Hierarchical processing carves goal processing into
different (affordance, semantic and episodic) levels, within which we can distinguish between
control beliefs about ‘What I am doing/I am about to do?’ and the motivational context, that is,
‘What should I do?’. In what follows, we look at the functional anatomy of hierarchical
processing within control and motivational streams, and then discuss their functional
integration.
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Figure 1. An Example of Active Inference: The Waiting Game. The waiting game illustrates the importance of withholding prepotent responses [53]. At the
beginning of the game, a low offer is available that can be replaced by a high offer or withdrawn. The player has prior preferences for ending up in the ‘accepted offer’
states, with a greater preference for the high offer. During the game, which lasts 16 trials, the player can thus either accept the low offer before it disappears or reject it
and wait until it is converted to a high offer – which is risky, since the offer can be withdrawn. Active inference solves this problem by inferring both beliefs about hidden
states of the game and the control policies (sequences of accept or reject/wait actions) that should be pursued [83–86]. The inference is based on a generative model
(A), which includes five hidden states (circles) and their contingencies in terms of probabilistic transitions among hidden states, under different actions (edges).
Accepting an offer moves the state to ‘accepted’ state (unless the offer has already been accepted or withdrawn). Rejecting a low offer (that has not been already been
accepted or withdrawn) has three potential effects: it can be transformed into a high offer (with a low probability q), remain in play (with a high probability p) or be
withdrawn (with a low probability r). The lower (B and C) panels show the results of simulating 16 trials, in which the low offer is converted to a high offer and accepted at
the 10th choice point (B), or withdrawn on the 5th choice point (C). The top-left and top-right subpanels show expectations about which hidden state is occupied over
time, and the expectation about accepting (green) or rejecting (blue) as time proceeds. The dotted lines correspond to beliefs about behaviour in the future formed
during the game, while the solid lines show postdicted expectations at the end of the game. The bottom-left and bottom-right panels show the precision of policies and
their deconvolution (to simulate dopaminergic responses) – which differ significantly when a preferred outcome can be attained (B) or not (C). See Box 1 for more details.
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Control Processes
In terms of functional anatomy, a control hierarchy has been associated with a posterior–
anterior gradient in dlPFC, with premotor cortex, caudal lPFC and rostral lPFC associated with
sensorimotor (analogous to affordances), task sets (analogous to semantic context) and
episodic contexts, respectively [24]. The functioning of this system is often described in terms
of progressively more sophisticated mappings between stimuli (or stimuli plus task sets) and
responses, possibly learned through reinforcement [9,21,40].

Active inference does not use a stimulus-based scheme but casts control problems in terms of
a model-based inference about the best action plans (or policies) [36]. The selection of policies
at lower, sensorimotor levels functions in a predictive way, by inferring policy-dependent
outcomes (e.g., exteroceptive, proprioceptive and interoceptive signals associated with
food) and selecting among them. Higher hierarchical levels contextualize this inference,
finessing outcome prediction based on additional (semantic or episodic) information as well
as on long-term action consequences [41] and future affordances [42]; for example, choosing a
restaurant in anticipation of satiating hunger. In short, active inference is a dynamic process in
which policies at a lower, sensorimotor level compete against each other and are continuously
biased by (the results of competition at) higher levels [43].

In a control hierarchy, higher hierarchical levels regulate lower levels by setting their preferred or
predicted outcomes (or set points), which lower levels realize. This idea dates back to control
theory [18,44] and has been appealed to repeatedly for motor control (e.g., the equilibrium point
hypothesis [45]) and allostasis [46]. For generative models of discrete states (as in Figure 2), the
desired ‘set point’ now becomes a trajectory or path through different states in the future that
minimizes expected surprise (i.e., resolves the greatest uncertainty). In the restaurant example,
the higher hierarchical level encoding semantic narratives influences affordance competition by

Box 1. A Case Study in Cognitive Control

Active inference has been applied to cognitive control phenomena, such as the strategic decisions to execute, defer or
stop an impending action or exploration–exploitation dynamics [90–92]. This box explains in more detail the computa-
tional study (waiting game) shown in Figure 1, which addresses the importance of withholding prepotent responses [93]
(see [94,95] for simulations of exploration–exploitation). Response inhibition is often described as a race between two
competing (go versus stop) processes [96]. In the ‘waiting game’, the competition is at the level of policies, which
activate or defer a ‘go’ action depending on their predicted outcomes. While the game is not explicitly hierarchical, it can
be easily mapped into a competition between a (hierarchically lower) incentive to grab food and a (hierarchically higher)
incentive to call the waiter – where the latter can inhibit or override impulsive behaviour [97]. The simulation illustrates the
fact that, in active inference, action selection requires forming beliefs about (the value of) policies that entail sequences of
actions. In this example, the sequences correspond to waiting for an increasing number of offers and then accepting.
This has three important consequences. First, motivated control is cast in terms of model-based planning. It depends on
beliefs about hidden states of the world and action sequences (i.e., policies), and has to be inferred: it has to be specified
in terms of objective functionals (i.e., function of a function) of beliefs about states of the world – as opposed to value
functions of states as in reinforcement learning [98]. In active inference, this objective function is an expected free energy
that balances pragmatic value (how good are policies in achieving goals) and epistemic value (how good are policies in
reducing uncertainty) [94]. In this setting, expected free energy plays the role of an expected value under a sequence of
actions, where value has epistemic and pragmatic components. Crucially, adding these two components is equivalent
to multiplying their associated probabilities. This means that the epistemic value of a particular course of action will only
contribute to action selection if its pragmatic consequences are desirable. Second, it is necessary to have a generative
model that plays out sequences of actions into the future to select the best policy. Technically, this uses Bayesian model
selection based on the expected free energy [41]. This mandates deep models that entertain states and policies in the
future (and past), lending cognitive control both a prospective (or counterfactual) and postdictive (or mnemonic) aspect
[36], see Figure 1B,C. Third, the precision of policies is optimized as part of the free energy minimization. The precision
may reflect an increased (Figure 1B) or decreased (Figure 1C) confidence that a valuable goal will be secured, and its
dynamics during goal achievement may be key to understand cognitive–emotional interactions.
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setting a series of goals and subgoals at the lower (sensorimotor) level; for example, consulting
the menu and calling the waiter, while the sensorimotor level selects policies that meet these
goals. In other words, goals or prior preferences at one level translate into predictions about
sequences of events that provide top–down (empirical) prior constraints on transitions at the
level below. In turn, bottom–up messages from lower levels report the evidence for expecta-
tions of beliefs generating predictions, thus permitting the higher levels to accumulate evidence
(e.g., about progresses towards the goal) to finesse plans.

This hierarchical scheme implies a separation of timescales between slower and faster infer-
ence at higher and lower hierarchical levels [26], respectively. This follows because an update of
the higher level (e.g., ‘I’m dining in a restaurant’) entails multiple updates over lower levels,
forming a trajectory of successive states (e.g., consult the menu, call the waiter and order food).
This separation of timescales renders hierarchical inference tractable, because each hierar-
chical level operates independently and passes the results of its computations to the levels
below (and above). Furthermore, it explains the differential informational demands of sensori-
motor and cognitive stages of control. While at lower, sensorimotor stages the competition only
considers simple and momentary (perceptual and proprioceptive) variables, at higher stages of
control it necessarily considers (hidden) constructs beyond perception – such as the narrative
of dining in a restaurant – and maintains them over extended periods, in the service of (long-
term) prediction. This explains the involvement of higher (prefrontal) cortical areas in working
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Figure 2. Simplified Belief Propagation Scheme for Deep Goal Hierarchies. The figure shows a hierarchical generative model that includes three levels,
corresponding to three corticothalamic loops of increasing hierarchical depth [87], and the neuronal message passing that realizes a functional integration between
dorsolateral and ventromedial structures (represented at a subcortical level for simplicity). The first and second equations mean that the higher levels of the control
hierarchy [whose states are S(i+1)] prescribe the initial states SðiÞ

1 (via A) and the prior preferences over the evolution of their future sequences of states SðiÞ
t (via C) of

the lower levels. Crucially, the influence from higher- to lower-level state sequences is precision weighted, and the motivational hierarchy sets the precision g (i) of
top–down messages within the control hierarchy. This allows the motivational hierarchy to optimize the precision of prior preferences (or goals), by reflecting the
incentives inferred at each level. At the lowest level, the states and trajectories specify set points for motor or autonomic control [88]. The third equation means
that each level is equipped with probability transition matrices and policies or transition sequences (B), permitting to infer future states SðiÞ

tþ1 based on the
previous state at the same level SðiÞ

t and the selected policy p(i). The latter equation shows that the probability of selecting a policy p(i) is treated as a Bayesian
model selection problem, using a Softmax function of its expected evidence (free energy; G). The variables u, o and p denote motor actions, observations and
policies or sequences of state transitions. Superscripts denote hierarchical levels. See [89] for more details.
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memory, prospection and executive functions; for example, delay period activity and the top–
down guidance of action to achieve distal goals. In other words, cognitive (or executive)
functions can be considered as hierarchical contextualizations of sensorimotor decisions,
affording more sophisticated forms of control; for example, self-regulation over extended time
periods [10,14,18,21,34,42,47].

Box 2. Deep Goal Hierarchies in the Brain

Deep goal hierarchies in the brain are characterized by the interaction between a control system and a motivational system,
associated with a dorsolateral and a ventromedial cortico-subcortical hierarchy, see Figure 2. The control hierarchy,
associated with a posterior–anterior gradient in dlPFC, has been often characterized as having three levels: premotor
cortex, caudal lPFC and rostral lPFC, corresponding to sensorimotor, semantic context (or task sets) and episodic context,
respectively [24], see Figure I. These areas operate at different (shorter to longer) timescales and the interactions between
them can be characterized in terms of top–down biases from higher to lower areas – which permit higher-level goals to bias
sensorimotor (affordance) competition and to exert cognitive control. The motivational hierarchy is often characterized as
having three levels, too. Lower layers include subcortical regions, such as the hypothalamus, the solitary nucleus, the
amygdala and the insula, important in regulating basic vegetative, homeostatic and emotional processes – and that possibly
encode set points related to interoceptive states (e.g., about food in the stomach), corresponding to predictions in active
inference. Departures from these set points (e.g., an empty stomach) correspond to interoceptive prediction errors and elicit
appropriate drives, which incentivize associated outcomes (e.g., for food). In addition, these regions, especially amygdala,
process external stimuli and imbue these with value. The second level of the hierarchy includes the hippocampus and
vmPFC, regions important in processing more general contextual information (e.g., contextual fear in the hippocampus;
multiattribute evaluation in vmPFC). A third layer within the motivational hierarchy may include the ventrolateral prefrontal
cortex and inferior frontal gyrus (IFG): two regions that have been associated with effortful inhibition of instinctive and short-
term drives in favour of abstract and long-term objectives (e.g., inhibition of craving) and strategic emotion regulation [99].
Interestingly, the interactions between these cortical layers seem to follow the same logic of top–down biasing of control
hierarchies. Supporting this hypothesis is the fact that extinction is mediated by inhibitory connections from vmPFC to
amygdala, whereas engagement of IFG increases the connectivity between IFG and vmPFC. Finally, the anterior cingulate
cortex is supposed to play integrative and modulatory roles across hierarchies, given its multidimensional sensitivity to errors
and rewards and its linkage to the motivation of extended behaviours [100] and action outcome predictions [4]. See [34] for
a more detailed treatment of goal hierarchies that also includes subcortical structures.

Amy

Hypo

Insula

PAG

vmPFC

vlPFC

SMA

dlPFC

lPFC

Episodic context

Seman c context

Sensorimotor context

Control hierarchy
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Figure I. Sensorimotor, Semantic and Episodic Contexts within Deep Goal Hierarchies. Amy, amygdala;
dlPFC, dorsolateral prefrontal cortex; Hypo, hypothalamus; lPFC, lateral prefrontal cortex; PAG, periaqueductal gray;
SMA, supplementary motor area; vlPFC, ventrolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex.
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Interestingly, this approach can help understand when it is adaptive to engage higher hierar-
chical levels to contextualize decisions. In some cases, policies can be selected using available
affordances (e.g., consummatory behaviour). Hence, engaging extra hierarchical levels can be
considered as a meta-decision, which follows cost–benefit computations. Engaging each
additional level incurs a ‘cost of control’ [48] and is equivalent to inference under a more
complex model, or a model that includes more variables (e.g., semantic information plus
affordances). Phenomenologically, this may correspond to increased cognitive effort [49] and
slower reaction time. However, the hierarchical contextualization has enormous benefits, such
as an increased ability to generalize over different contexts and realize long-term preferences. In
short, appealing to active inference allows one to treat the costs and benefits of hierarchical
imperatives in terms of Bayesian model selection in statistics, in which more complex models
are penalized but may also enjoy a bonus if they confer greater accuracy over extended periods
of application [50].

Motivational Processes
Motivational processes are thought to play two roles within deep goal hierarchies. The first
involves inferring the incentive value of outcomes and goals at various hierarchical levels, thus
prioritizing them. This inference operates according to the same principles discussed for control
hierarchies – requiring a learned model of outcome incentives – but within an anatomically
distinct neural circuit. The core components of the motivational stream are ventromedial areas,
which progressively integrate various kinds of interoceptive, exteroceptive and proprioceptive
information with key behavioural significance. The salience spans from immediate sensory or
interoceptive prediction errors – that report homeostatic or allostatic imbalance – to learned
contingencies about the range of rewards available during an episode [3,4,29,34]. The
neurophysiology of ventromedial motivational hierarchies recapitulates gradients of motiva-
tional, salience and reward information [51] and can be decomposed into three levels,
paralleling control hierarchies [22], see Box 2. In active inference, hierarchical processing
allows the brain to infer which goals should be favoured and pursued within a given context,
by resolving conflicts both within each hierarchical level (e.g., between thirst and hunger) and
across multiple levels [e.g., deciding whether to prioritize eating a cake (a lower-level goal that
rests on the incentives of immediate interoceptive and exteroceptive signals) or continue dieting
(a higher-level goal that rests on episodic information and possibly social incentives or self-
image)].

The second role of the motivational system is to convey motivational incentives to the control
hierarchy, using the inferred goal values and incentives at each level to modulate and energize
the corresponding level of the control hierarchy through their lateral interactions [22]. This
communication between motivation and control brings us to the next architectural principle,
namely, functional integration.

Functional Integration
We propose that the inferred incentives, within the motivational hierarchy, determine the
precision of top–down, goal setting messages that are passed down hierarchical levels of
the control hierarchy. Generally, descending predictions of precision in hierarchical inference
can be construed as a form of attentional selection [52]. In the present setting, these predictions
play the role of intentional or goal selection by, effectively, applying an attentional bias to prior
preferences. This mechanism operationalizes the learned importance of incentives at appro-
priate hierarchical levels. For example, if the motivational hierarchy infers that the incentives for
following a diet are more probable than bingeing on cakes, the control system will infer the next
most likely state of affairs is abstinence. This state of abstinence will necessarily reduce the
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precision afforded to (prior preferences about) gustatory outcomes at the lower level – and
increase the precision of preferences for outcomes in another modality that provides confir-
matory evidence of abstinence; for example, ‘I’ve chosen the healthy option’.

Heuristically, increasing the precision of prior preferences over a particular outcome (or
outcome modality) is like attending to that modality, when evaluating the consequences of
behaviour, while decreasing precision is effectively ignoring (i.e., attending away from) those
preferences. Therefore, precision modulation operated by the motivational system mediates
the way preferences over future states will guide policy selection: preferences that enjoy high
precision will ultimately motivate and energize goal-directed behaviour.

In turn, progress towards a goal increases its anticipated likelihood, thus raising the precision of
beliefs about policies that achieve the goal [34,53]. Thus, when precision is itself inferred,
successful goal-directed behaviour creates a form of positive feedback between control and
motivational processes [54]. This positive feedback may help explain the sociable phenome-
nology associated with goal selection – dominated by careful cost–benefit considerations in
medial areas – versus goal engagement after a goal has been selected (possibly a form of
curious behaviour) – when cost–benefit considerations are deemphasized [29]. Intuitively, it is
sometimes difficult to start a new task, but once progress has been made, it becomes difficult
to give it up – even when the reward is small. A possible explanation is that, as goal proximity
increases, its inferred achievability increases – with precision – hence placing a premium on the
policy above and beyond of its pragmatic value.

More broadly, the reciprocal integration of control and motivational processes affords various
cognitive–emotional interactions [55,56]. For example, the incentive value of goals influences
which predictions are generated and which beliefs are afforded high precision, hence modu-
lating perception, memory and attention [52,57,58]. Furthermore, when policies are afforded a
high precision, they induce an optimism bias (i.e., the belief that preferred outcomes are being
realized [59]). This explains some facets of cognitive–emotional interaction without appealing to
separate ‘emotional reasoning’ systems [60]. Finally, goal prioritization in the motivational
hierarchy necessarily considers other action-related dimensions in addition to achievability
(e.g., action costs), some of which change dynamically as control plans unfold, creating other
forms of circular causality between control and motivational streams [61–63].

Figure 2 illustrates the functional integration of control and motivation within hierarchical active
inference. The architecture presents a dual structure, namely, increasing hierarchical depth that
represents generative processes of increasing temporal scale and an orthogonal segregation
into cognitive (i.e., state and sequence) and motivational (i.e., salience and precision) belief
updating. Importantly, each level of the model generates a context for a sequence of state
transitions at the level below. More technically, the inferences and trajectories at one level are
generally conditioned upon a single (discrete) state at the level above, which changes more
slowly. This discrete state provides a top–down context for lower-level transitions, which can
set the initial states, state transitions, prior preferences or the precision of the preferences

The top–down propagation of prior preferences – and their precision – is the key to understand
the coordination of control and motivational processes. We propose that the control hierarchy
propagates prior preferences, but their precision is informed by the motivational context
inferred by the motivational hierarchy. In this scheme, (beliefs about) motivational incentives
determine (beliefs about) the precision or confidence that can be placed in preferred outcomes
at multiple hierarchical levels, thus contextualizing their relative contribution to (beliefs about)
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‘what to do next’ or control policies [53]. Accordingly, Figure 2 shows that the expected
precision at every level is informed by higher levels and by the current motivational context,
represented at a subcortical level for simplicity. Formally, we appeal to exactly the same
(precision-based) mechanisms that are thought to underlie attention and figure-ground segre-
gation [52,64,65]. However, in the present context, the precision in question affects beliefs
about policies (i.e., ‘What am I doing’) as opposed to states of the world (i.e., ‘What am I
seeing’). This means precision mediates intentional selection, as opposed to attentional
selection. In the brain, the relative precision may be reflected in the activity of neuromodulators
such as dopamine, whose main effect is regulating postsynaptic neural gain [53].

In summary, control and motivational processes may be two sides of the same coin that are
necessary aspects of active inference: the brain has to infer how to achieve goals (control) and
which goals are worth pursuing (motivation). These problems can be partially factorized by
exploiting their conditional independencies, providing a rationale for anatomical distinctions (e.
g., between dlPFC and vmPFC hierarchies). At the same time, control and motivational
processes form a functionally integrated, deep goal hierarchy. The novel perspective offered
here on their integration appeals to the joint optimization of policies and their precision within
active inference. It is this integration that enables us to form beliefs about the consequences of
behaviour, which can be more or less precise and that, ultimately, motivate the policies we
select.

Concluding Remarks
We have introduced a novel account of motivated control of action within active inference,
which addresses the ways goal-directed behaviour is selected at multiple timescales in a
context-sensitive fashion. In this theory, a deep goal hierarchy integrates control and motiva-
tional streams, which conspire to propagate and prioritize goals, and to jointly optimize
behavioural policies and their precision. The belief propagation scheme that underwrites active
inference thus produces a circular dependency between motivational beliefs about (hidden)
states of the world and subsequent control policies that solicit evidence for the motivational
beliefs, offering a compelling metaphor for functional integration or neuronal message passing
in prefrontal cortical and subcortical hierarchies.

Within active inference, motivated control operates to reducing exteroceptive, interoceptive
and proprioceptive prediction errors, at all hierarchical levels [15,66–69]. A simple episode of
motivated control may start with an interoceptive prediction error that reports a homeostatic
imbalance (e.g., hunger). This entails hierarchical inference over possible incentives and costs
associated with different ways of resolving the imbalance. The implicit goal selection process in
the motivational stream interacts continuously with state estimation in the control stream – by
raising the precision of goals and preferences over future states and the saliency of particular
policies, ultimately steering a cascade of control processes (e.g., to go to a restaurant with
friends) that resolve the initial (e.g., interoceptive) imbalance [34,70].

Our proposal emphasizes the centrality of goals and goal directedness for motivated control
[10,14,29,42,54,71–79]. The rationale for deep goal hierarchies is to generate, prioritize (i.e.,
raise the precision and incentive salience) and achieve goals at multiple levels of abstraction,
not to trigger simpler-to-more-complex stimulus-response mappings. This goal-based
approach resolves an intrinsic limitation of theories based on utility maximization: the fact
that oftentimes agents have preferences over goals and not only their reward values – and
they would not give up a goal for another outcome having the same (or sometimes higher)
value.

Outstanding Questions
Are control and motivation two
aspects of a unique overarching mech-
anism? And can this be described as a
form of inference? How does this infer-
ential scheme map to (or replace) the
usual distinction between belief and
desire in motivated control?

Can we identify, within control and
motivational processes, a hierarchy of
representations that guide inference?

Should the control hierarchy be
described in terms of increasing infor-
mational, temporal or goal demands
(or something else)?

Should the motivation hierarchy be
described in terms of action–outcome
predictions, state-outcome predic-
tions or error representations (or
something else)?

Can we explain top–down influences
within control hierarchies in terms of
setting goals or set points at a lower
hierarchical level?

Can we interpret the multidimensional
sensitivity of ventromedial streams to
motivational signals, value, reward and
error under the same computational
principle of inferring incentives for
goal-directed action?

How does the brain reconcile motiva-
tional incentives with the exigencies of
control, to ensure that one does not
pursue desired but unattainable goals,
or does not give up too early?

Can we appeal to the notion of preci-
sion weighting of top–down messages
to interpret the influence of a given
motivational hierarchical level over a
corresponding level within the control
hierarchy?

Can we interpret cognitive control as a
hierarchical contextualization of sen-
sorimotor control, or are the two forms
of control fundamentally different?

What are the neuronal and computa-
tional processes required to pass from
a generic drive state (e.g., thirst) to a
specific, sophisticated cognitive goal
(e.g., having a glass of wine in my
favourite canteen)?
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This view may help understand the multifarious phenomenology of goal processing, such as the
positive emotions associated with progress towards the goal (anticipation, enthusiasm) and the
negative emotions associated with failures (disappointment, regret), in terms of increased (or
decreased) confidence that the selected policy will achieve the desired goals [80,81]. Appealing
to precision dynamics may also help explain some aspects of habitization and perseverative
behaviour, in terms of a failure to contextualize low-level control patterns. When lower hierar-
chical levels are imbued with too much precision (e.g., due to overtraining), they can become
insensitive to messages and biases from higher levels that have access to detailed motivational
information, maintaining prevailing strategies even when contingencies change (e.g., when
associated outcomes are devalued) [34]. This failure of contextualization may correspond to
habitual behaviour, which may be adaptive or maladaptive [34]; for example, obsessional and
compulsive behaviour. Many other things can ‘go wrong’ in hierarchical inference, thus
producing various psychiatric and psychopathological disorders [82]. While the space of these
disorders is too wide to cover here, appealing to a unitary framework may help identifying
common mechanisms that transcend diverse conditions; for example, how aberrations of
perception (e.g., hallucinations), control (e.g., Parkinson) and motivation (e.g., anhedonia) may
all result from the failure to assign the appropriate salience (or precision) to the most relevant
hierarchical processing level (see Outstanding Questions).
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