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ABSTRACT

In this thesis we study the tail behavior of a random variableand sum of dependent random vari-

ables using the extreme value theory. We examine the tail behavior of a single random variable by

mixture distribution models, and the asymptotic properties of the value-at-risk measure of depen-

dent regularly varying random variables.

In order to obtain a flexible fit not only on the tail but also on the body of the underlying dis-

tribution, mixture distributions are introduced with finite or infinite number of thresholds, where

the consistency of the heavy-tailedness is preserved by theconditional layer mixture. Hazard rate

functions of the conditional layer mixture distributions are studied and the mixture of the hazard

rate functions can be used in modeling the mixture distributions equivalently.

Impact of heavy-tailedness and dependence on the value-at-risk measure is examined for the sum

of regularly varying random variables under quite general dependence structure and we conclude

that the extreme value index completely determines the tailbehavior of the compound sum of

regularly varying random variables with respect to the value-at-risk measure.

In addition, a hierarchical structure composed of maximal Markov sequences is introduced to

simplify a given pool of risks under arbitrary dependence and we propose a computational method

of the aggregate distribution of each maximal Markov sequence.
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Chapter 1

Introduction

1.1 Background

Sound mathematical models are necessary nowadays to solve actuarial problems such as pric-

ing, reserving, and optimal retention levels in reinsurance contract. Appropriate mathematical

models of insurance risks are gaining attentions and more often emphasized especially when risks

are heavy-tailed or dependent, which are two main focuses ofthis dissertation.

For independent risks, a number of risk models have been developed and applied in practice.

Continuous or discrete time stochastic processes, numerical analysis, and simulation techniques

have been widely used for this purpose. If dependence intervenes among risks, however, we fail

to apply or generalize the independent risk models more often than not. For instance, Picard and

Lefèvre (1997) considered a continuous time compound Poisson process of an insurance company

and proposed an elegant expression of the ruin probability in finite time assuming discrete claim

size distributions and claims independence. Panjer’s recursion (Panjer, 1981) for the aggregate loss

distribution also assumes the independence of integer-valued losses, whereas the recursion cannot

be applied when losses are dependent. In finance multivariate analysis has been applied to address

the dependence of multiple risks for an optimal portfolio selection. Despite the lack of flexibil-

ity, multivariate normal distributions and the family of elliptical distributions have been used to

model the dependence structure of financial and insurance risks where correlations play impor-

tant roles. Multivariate regular variation is another multivariate analysis approach to dependence

modeling especially when the marginals are heavy-tailed. Copula has been also popularly used

to implement the dependence structure among risks. For example, if we assume Markov property
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among a number of risks, a chain of bivariate copulas becomesa very flexible tool to capture the

dependence. According to the principles proposed by Basel II (Basel Committee on Banking Su-

pervision, 2004), operational risks are classified into eight business lines and seven event types.

Based on the standardized classification matrix of operational risks, the total aggregate loss can be

written as a sum of aggregate losses of each business line (orevent type), i.e.Y1 + · · ·+ Yd where

eachYi represents for the aggregate loss ofi-th line of business. Under this aggregate risk process,

it is of our special interest to study the impact of dependence among the lines of business (or event

types) on the total aggregate loss distribution and its tailbehavior.

Heavy-tailedness of a risk is as important as dependence structure and they shouldn’t be studied

separately. Moscadelli (2004) mentioned the empirical observation of the heavy-tailed operational

risks. Similar discussion can be found in Dutta and Perry (2004). Since heavy-tailed risks usually

have very low frequency of loss occurrences, empirical approaches such as parametric estimation

and Bayesian method often fail to measure the correct tail behavior of a risk. Therefore, one has

to appeal to purely mathematical models such as extreme value theory. The study of heavy-tailed

distributions requires advanced knowledge of mathematicsand statistics. It stems from basic ques-

tions such as how to define heavy-tailedess and how heavy-tailed a distribution is. The questions

can be answered in terms of the family of distributions the loss random variables belong to, such as

long-tailed distributions, subexponential distributions, or regular variations. In classical extreme

value theory, a limit law for the maxima has been used for the heavy-tailedness of distributions

since Fisher and Tippett (1928), which classifies three families of extreme value distributions,

Frechet, Gumbel, and Weibull distributions. Considering the total aggregate loss of multiple lines

of business or products in insurance and operational risk, the individual aggregate loss of one busi-

ness line (or event type),Yi, can be considered as a member of certain distribution family such as

subexponential, regularly varying distributions, or certain maximum domain of attraction to reflect

the existence of heavy-tailedness of the risk. The study of heavy-tailed distributions is important

because heavy-tailed risks often violate many properties we expect in general risk modeling, an

example of which is the value-at-risk measure. It is well known that the value-at-risk is not a co-

herent measure (Artzner et al., 1999), and it is not clear whether the subadditivity holds even under
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the independence assumption. It naturally raises questions; which distribution families behave dif-

ferently from what we expect in the tail and how dependence interacts with heavy-tailedness with

respect to a given risk measure.

In sum, if we consider a risk process of sum of losses in insurance or operational risks, depen-

dence and heavy-tailedness should be taken into account together to achieve a sound mathematical

model of the tail behavior. We approach this problem in the following ways. First we introduce

mixture distribution models for a risk consisting of multiple sub-risks each of which has distinct

characteristics. We also study the properties of the mixture distributions inherited from the dis-

tributional components, such as maximum domain of attractions and the hazard rate functions of

the mixture. Secondly, we introduce a maximal Markov sequence decomposition of a pool of risks

into disjoint sub-pools of risks and propose a computational method of the aggregate distribution of

each sub-pool of risks. Lastly, we examine the asymptotic tail behavior of sum of regularly varying

random variables under quite general dependence structureand discuss the impact of dependence

and heavy-tailedness on the value-at-risk measure.

1.2 Outline of Thesis

In chapter 2 we introduce the classical theory of extreme value distributions and its properties.

We propose three types of mixture ofk underlying distributions with a sequence of thresholds

0 = u0 < u1 < · · · < uk where a positive integerk is possibly infinity. Main goal of this chapter

is the maximum domain of attractions of the mixture distributions and the properties inherited

from the distributional components. We first construct a mixture of finite number of distributions

and investigate the maximum domain of attraction and its normalizing constants. We prove that

there is a equivalent representation between the layer mixture model and the linear mixture model.

Secondly, we generalize the finite mixture models we proposed to the infinite mixture model of

infinite number of layers and thresholds. The properties of the mixture models inherited from

the distributional components are provided, among which the hazard function representation is

emphasized: the hazard rate function of the conditional layer mixture distribution can be written

as a mixture of the hazard functions of the distributional components, which is a unique property
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of the conditional mixture among all mixture models. Limiting distributions of the conditional

layer mixture model is also considered and we shortly discuss the Lorenz curves of the conditional

layer mixtures. An application of the mixture model to the g-and-h distributions is provided with

numerical examples where we use the threshold estimate calculated in Appendix B.

In chapter 3 we introduce a decomposition of a pool of risks under arbitrary dependence into

disjoint maximal Markov sequences. Considering the randomvariables in a maximal Markov se-

quence, we present a computational method for the aggregateloss distribution of non-identical

and dependent random variables. We derive formulae for the aggregate density and aggregate

distribution function and introduce an application on a chain of pairwise bivariate copulas to im-

plement Markovian dependence structure among losses. Numerical examples are also given when

the marginal distributions are exponential with Falie-Gumbel-Morgenstern copulas, and Pareto

distributed with Gaussian copulas. We also provide actuarial applications of the proposed compu-

tational method; Bayesian premiums conditioning on the sumof the past observations and stop-loss

premium calculation of dependent claims.

In chapter 4 we focus on the value-at-risk measure of finite sum of loss random variables or

compound sum generated by an appropriate counting process with finite expectation. We dis-

cuss the classical convolution theorem for the regularly varying random variables, and the closure

property and max-stability of regular variation. Introducing the concept of negligible joint tail

probability, we provide a sufficient condition of the joint distribution to generalize the convolution

theorem when losses are dependent with regularly varying tails. It follows that the shape parameter

of the regularly varying distribution, the common distribution of the loss random variables, com-

pletely determine the asymptotic super(sub)additivity ofthe value-at-risk of the aggregate loss.

Two numerical examples are given to illustrate the super- and subadditivity of the value-at-risk of

Pareto distributed dependent losses when they satisfy the negligible joint tail condition.

Results of the thesis were presented in the conferences and submitted to the journals as follows:
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• J. Jang and J. Jho.Recursive procedure for the aggregate distribution of dependent variables.

Radon Workshop on Financial and Actuarial Mathematics for Young Researchers, Linz,

Austria, May 30 - 31, 2007.

• J. Jang and J. Jho.Asymptotic super(sub)additivity of the value-at-risk of regularly vary-

ing dependent variables. 11th International Congress on Insurance: Mathematics and Eco-

nomics, Piraeus, Greece, July 10-12, 2007.

• J. Jang and J. Jho.Asymptotic super(sub)additivity of the value-at-risk of regularly vary-

ing dependent variables. Finance, Stochastics, Insurance, Bonn, Germany, February 25-29,

2008.

• J. Jang and J. Jho.Asymptotic super(sub)additivity of the value-at-risk of regularly varying

random variables. Submitted to Journal of Applied Probability, 2008.

• J. Jho and V. Kaishev.On some mixture distributions and their extreme value behavior.

Actuarial Reseach Paper, No.185, Cass Business School, ISBN 978-1-905752-14-0, 2008.

• J. Jho and V. Kaishev.On some mixture distributions and their extreme value behavior. 2nd

International Workshop on Computational and Financial Econometrics, Neuchâtel, Switzer-

land, 2008.

• J. Jho and V. Kaishev.On some mixture distributions and their extreme value behavior.

Submitted to Computational Statistics and Data Analysis, 2008.

1.3 Some Conventions

The list of notations and symbols is included in the AppendixC. We assume loss random

variables are continuous and the probability density functions exist unless specified. The counting

process of loss occurrence is assumed to have finite meanE[Nt] for all t > 0. The italics is used

to emphasize some ideas and the symbol� is used for the end of proofs and examples.
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Chapter 2

On Some Mixture Distributions and their Extreme Value Behav-
ior

This chapter is based on the paper by Jho and Kaishev (2008). Mixture models are widely used

as a flexible modeling tool in lifetime data analysis and reliability engineering in estimating distri-

bution functions of failure times. The most common mixture distribution, so called finite mixture

distribution, is often defined by a mixture of density functions such as

f(x|θ1, . . . , θn) =

n
∑

j=1

cjfj(x|θj) (2.1)

whereθ1, . . . , θn are vectors of parameters andcj are appropriate positive weights such that
∑n

j=1 cj =

1. The finite mixture distribution (2.1) has been widely used in reliability analysis to fit the proba-

bility density function of failure times, see for example Bucar et al. (2004). A number of practical

applications of (2.1) can be found in Al-Hussaini and El-Adll (2004) and the references therein.

Under the finite mixture distribution model, Nurmi (2004) introduced a Bayesian method to esti-

mate the parameters of the underlying distributions and theoptimal number of sub-poppulations.

Computational implementations can also be found in Bettinaand Friedrich (2007), where the au-

thors fitted the finite mixtures of generalized linear regressions using the R software package (R

Development Core Team, 2005).

In this chapter we consider some specific types of mixture models encountered in insurance

and reinsurance applications. Mixtures of discrete and continuous random variables naturally

arise in modeling individual claim amounts covered by the ceding and reinsurance companies
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in excess of loss, andECOMORreinsurance contracts. For example, in an excess of loss con-

tract with a limiting threshold(level),L and a retention level,M , M ≤ L, the amount,W c
i =

min(Wi, M)+max(0, Wi−L), covered by the cedent from each individual claimWi, i = 1, 2, ...,

with generic distributionFW (x), has a distribution function

FW c(x) = I{x<M}FW (x) + I{M≤x}FW (L − M + x) (2.2)

which is a mixture distribution. It is not difficult to see that (2.2) can be equivalently expressed as

F W c(x) = I{x<M}F W (x) + I{M≤x}FW (L)H(x) (2.3)

whereH(x) is the conditional distribution of the exceedancesM +Wi−L under the condition

Wi >L defined by

H(x) =
FW (L − M + x) − FW (L)

1 − FW (L)
.

For brevity, we will denote byH(x) the distribution of the exceedancesM +Wi−L |Wi > L.

Clearly, with the transformationy = x − M , the latter distribution function can be re-written as

H(y + M) =
FW (L + y) − FW (L)

(1 − FW (L))
, y ≥ 0

which is the distribution of the exceedancesWi−L |Wi > L. Following a result, due to Balkema

and de Haan (1974), and Pickands (1975) we can conclude that,for a high enough thresholdL,

the distributionH(x + M) can be well approximated with a generalized Pareto distribution. This

suggests that, for high enough thresholdL, one can assume that individual claim amounts belowL

come from a generic distributionFW (x), whereas claim amounts aboveL come from a generalized

Pareto distribution with appropriate parameters.
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The interpretation of model (2.2) in the form of the mixture distribution in (2.3) motivates us

to consider slightly more general (re)insurance applications in which individual claim amountsX

have mixture distribution, i.e. claims below a thresholdu are assumed to come from a distribution

F1, whereas claim amounts aboveu are assumed to come from a different distributionF2, usually

with heavier tail thanF1. A model of this type, has been considered by Behrens et al. (2004) in the

context of Bayesian threshold estimation of the extreme value distributions. The authors adopt the

generalized Pareto distribution for the approximation ofF2, the tail part of the mixture distribution.

The corresponding mixture distribution,F (2) can be formally written as

F
(2)

(x) = I{x<u}F 1(x) + I{u≤x}F 1(u)F 2(x) (2.4)

whereF (x) = 1 − F (x), for any distribution functionF (x). Obviously,F (2)(x) is a distribution

with a jump discontinuity atx = u, unlessF 2(u) = 1. A slight variation of (2.4) is the model

F
(2)

(x) = I{x<u}F 1(x) + I{u≤x}F 1(u)F 2(x − u) (2.5)

if there exists a density ofF2(x) on [0,∞). Often reinsurance arrangements involve complicated

reinsurance programs with more than two levels which require considering even a more complex

mixture ofk distributional componets{Fi}i=1,...,k such thatFi(0) = 0 and the densityfi(x) exists

on [0,∞) for eachi. Existence offi(x) is required since in the sequel we will be dealing with

hazard rate functions of the mixture distributions. The mixture model is of the form

F (k)(x) =































H1(x) , if x < u1

H2(x) , if u1 ≤ x < u2

...

Hk(x) , if uk−1 ≤ x

(2.6)

whereH i(x) = Hi−1(ui−1)F i(x − ui−1) for each1 < i ≤ k andH1 = F 1.
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It is interesting to note that the mixture distribution of the type (2.6) can be written as the dis-

tribution of a sum of layer random variables, which is a probabilistic interpretation of this mixture

model. LetXi, i = 1, . . . , k be the loss random variables, defined on an appropriate probability

space(Ω,F , P), with distribution functionsHi, i = 1, . . . , k as in (2.6), and define the layer ran-

dom variableLi(ω) induced fromXi by

Li(ω) =



















0 if Xi(ω) < ui

Xi(ω) if ui ≤ Xi(ω) < ui+1

∞ if ui+1 ≤ Xi(ω)

for ω ∈ Ω. Then the sum of the layer random variables,L(k) =
∑k

i=1 Li, has the distribution

functionF (k) which is the mixture of{Fi}i=1,...,k, since

FL(k)(x) =

k
∑

i=1

I[ui−1,ui)(x)Hi(x) = F (k)(x) (2.7)

whereI[ui,ui+1) denotes the indicator function on[ui, ui+1). In this sense, it is natural to call the

mixture distribution of the type (2.6) or (2.7)a layer mixture.

Motivated by the modification of (2.4) as (2.5), we can consider a similar mixture distribution

with continuity at each threshold by conditioning instead of shifting as follows

F
(2)

(x) = I{x<u}F 1(x) + I{u≤x}F 1(u)F 2(x|x ≥ u). (2.8)

where we denote byF 2(x|x ≥ u) the conditional tail probability1 − F2(x|x ≥ u). It is also

natural that we call the mixture (2.8) aconditional layer mixture. The conditional mixture ofk dis-

tributions can be defined in a similar way. The formal definitions of the mixtures ofk distributions

can be found in the next section. Although (2.5) and (2.8) possess similar mathematical forms,

there is a fundamental difference between the layer mixtureand the conditional layer mixture: The

hazard rate function of the conditional mixture distribution is a simple mixture of the hazard rate
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functions, which does not hold for the layer mixture given in(2.5). We revisit this unique property

and other useful applications of the conditional layer mixture in section 2.3.

In general, the layer mixture (2.6) and the conditional layer mixture (2.8) appear not only in

reinsurance applications but also in the context of generalinsurance. For example, the layer or

conditional layer mixture distribution can be applied to model any pool of risks composed of mul-

tiple number, k of heterogeneous risks,{Si}i=1,...,k. The total risk process,S can be expressed as

S =

k
∑

j=1

Sj , where Sj =

Nj(t)
∑

i=1

X
(j)
i ,

for some appropriate claims occurrence processesNj(t), j = 1, . . . , k. SinceSj are not iden-

tical, we havek distinct distribution functions,{FSj
}j=1,...,k, and hence the risk processS can

be modelled by the sum ofk risk processes{Sj}j=1,...,k through the mixture ofk distributions,

{FSj
}j=1,...,k. Pools of operational risks have been considered recently in operational risk mod-

elling by means of the so called standardized operational risk classification matrix which classifies

risks into eight business lines and seven event types according to the principles proposed by Basel

II (Basel Committee on Banking Supervision, 2004). For moredetails, see Moscadelli (2004);

Dutta and Perry (2004). IfSj takes values in the interval[ui−1, ui) for eachi = 1, . . . , k where

uk can be possibly infinity, we can model the riskS by the layer or conditional layer mixture ofk

distributions as follows,

P(S ≤ x) = F (k)(x) =

k
∑

j=1

I[uj−1,uj)Hj(x)

whereHj(x) = Hj−1(uj−1)F Sj
(x − uj−1) or Hj−1(uj−1)F Sj

(x|x ≥ uj−1) as in (2.6) and (2.8).

In all such models, where the distribution of the individualclaim or the aggregate claim

amounts can be represented as an appropriate mixture of various distributions, it is essential to

be able to derive conclusions about the asymptotic behaviorof the extreme claim amounts as the

size of the claims tends to infinity. As is well known such large claims often result from catas-

trophic events and cause huge financial losses and even bankruptcy of insurance and reinsurance
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companies. This has justified the considerable interest in the asymptotic behavior of the maximum

of n, (n > 1) claims with a continuous generic distribution, which has been addressed in a number

of recent publications, among which the monograph by Embrechts et al. (2002), Kotz and Nadara-

jah (2000), papers by Klüppelberg (2006) and Cebrian et al. (2003). Relatively little attention has

been devoted to studying the asymptotic behavior of maxima in the case of claims modelled by a

mixture distribution of the kind described above. A non-actuarial paper, dealing with asymptotic

properties of maxima of mixtures applied to the context of parallel processing of a task is the paper

by Kang and Serfozo (1999).

The aim of this chapter is to study the asymptotic behavior ofthe maximum of a series of claim

amounts modelled by a mixture distribution of the risk described above and their actuarial applica-

tions of fitting a loss distribution by a mixture of certain distributional components. The outline of

the chapter is as follows. In section 2.1 we present the formal definitions of three types of mixture

distributions with a sequence of thresholds0 = u0 < u1 < . . .. In section 2.2 we study the max-

imum domain of attraction and the normalizing constants of the mixture distributions. In section

2.3 we generalize the definition of the conditional layer mixture in (2.8) or (2.10) by considering

the casek → ∞, i.e. considering mixtures of infinitely many layers with infinitely many thresh-

olds, which we call theinfinite layer mixture. Such models are very interesting because they allow

flexible modelling of the extreme behavior on the entire domain without strict threshold restriction,

by assuming appropriate extreme value index for each layer.We examine the unique property of

the conditional layer mixture model and its hazard rate function representation. Another useful

aspect of the conditional layer mixture model is its convenient hazard rate function representation.

In particular, as we will show in section 2.3.1, in order to define a conditional layer mixture with

differentiable cdf one needs to define a continuous simple mixture of the hazard rate functions

of the distributional components. We also discuss the limiting distribution of the infinite mixture

model as the size of each layer gets arbitrarily small, whichenables us to approximate any distri-

bution with continuous hazard rate function by a infinite conditional layer mixture of exponential

distributions. Numerical application of the conditional layer mixture on g-and-h distribution is

given in section 2.4.



12

2.1 Three Mixture Distribution Models

In this section we present the formal definitions of the threemixture distribution models, the

layer mixture, the linear mixture, and the conditional layer mixture ofk distributions introduced

in (2.5) ∼ (2.8). We also discuss the characteristics of the mixture models and give some illustra-

tions.

2.1.1 Layer Mixture Distributions

The mixture of two distributions in (2.5) leads us to definingrecursively the mixture ofk,

(k > 0) distributions, as follows.

Definition 2.1 (Layer Mixture) Given distributions{Fi}i=1,2,... and thresholds0 = u0 < u1 <

. . ., the layer mixture of the firstk distributions denoted byF (k) is defined recursively as

F (k)(x) = I{x<uk−1}(x)F (k−1)(x) + I{x≥uk−1}(x)F (k−1)(uk−1)F k(x − uk−1) (2.9)

for any integerk > 1 andF
(1)

(x) = F 1(x).

The mixture distributionF (k) is simply an extension of the mixture of two distributions. It is well-

defined and continuous at each thresholdui. Figure 2.1 is an illustration of the mixture distribution

of light-tailed exponential distributions and a heavy-tailed Pareto distribution.

2.1.2 Linear Mixture Distributions

As we already mentioned in the introduction, the layer mixture distribution has its motivation

from practical applications, for example, in reinsurance modelling with multiple layers with more

than one thresholds. The second mixture model we are going toconsider here represents a gen-

eralization of the model (2.1) since we now release the restriction on the weightscj to be strictly

positive. Thus, we will consider mixtures with positive or negative coefficients which sum to one.
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Definition 2.2 (Linear Mixture) Given distributions{Fi}i=1,2,..., the linear mixture ofk distribu-

tions denoted byF (k) is defined by

F (k)(x) =
k

∑

i=1

ciFi(x)

whereci are negative or positive constants that sum to 1.

Kang and Serfozo (1999) considered more general linear mixture of countable collection of

distributions and examined the maximum domain of attraction of the mixture. It is important to

consider such linear mixture models since, as we will show inthe next section, any layer mixture

distribution can be represented as a linear mixture. Therefore, all of the important asymptotic

results for the linear mixture model, see Kang and Serfozo (1999), can be applied to the layer

mixture model. Next we consider the conditional layer mixture, introduced earlier, and illustrate

its useful properties.

2.1.3 Conditional Layer Mixture Distributions

The conditional layer mixture model is a modification of the layer mixture model, which im-

proves the behavior of the mixture distribution in the neighborhood of each threshold. The layer

mixture model in Definition 2.1 has a drawback in that each distributionFi in F (k) behaves at each

thresholdui as at the origin since eachFi is shifted byui. We can see a clear evidence of this in

the left panel of Figure 2.1. At the thresholdu3, Pareto distributionF4 is mixed withF (3). The dis-

tributional componentsF1, F2, andF3 are exponentially distributed and henceF4 is heavier-tailed

thanF (3). However, the graph shows that there is a slight bump atx = u3, which can be explained

by the fact that, near the thresholdu3, the mixture distribution is no longer consistent in terms of

increasing heavy-tailedness. This is mainly due to the underestimating of the scaling effect of the

Pareto distribution in the mixture model. In the neighborhood ofx = 0, even heavy-tailed Pareto is

viewed less heavy-tailed than the mixture of three exponential distributions in the neighborhood of

u3. In order to solve this problem, we introduce the following mixture distribution. The key point

of this mixture is that, for a given interval[ui, ui+1), we adopt thei-th distribution exactly on the
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same interval without loss of continuity at each threshold.This is possible by way of conditional

survival functions.

Definition 2.3 (Conditional Layer Mixture) Given distributions{Fi}i=1,2,... and thresholds0 =

u0 < u1 < . . . , the conditional layer mixture of the firstk distributions denoted byF (k) is defined

recursively as

F (k)(x) = I{x<uk−1}(x)F (k−1)(x) + I{x≥uk−1}(x)F (k−1)(uk−1)F k(x|x ≥ uk−1) (2.10)

for any integerk > 1 andF
(1)

(x) = F 1(x), whereF k(x|x ≥ uk−1) = 1 − Fk(x|x ≥ uk−1).

Figure 2.1 illustrates the consistency of increasing heavy-tailedness of the conditional layer mix-

ture distribution. Since there is no scaling of thresholds any more, higher order mixture distribution

possesses heavier tail, i.e.

F (i)(x) ≤ F (j)(x)

for i < j if F i(x) ≤ F j(x) on [uj−1,∞). It is very clear that the slight bump at thresholdu3 in the

left disappears in the right panel of Figure 2.1.

2.2 Maximum Domain of Attractions of Mixture Distributions

Here we are interested in the maximum domain of attraction ofeach mixture model we intro-

duced in the previous section. The fundamental theorem by Fisher and Tippett (1928) classifies

the possible limit laws of the maxima ofi.i.d random variablesXi, Mn = max(X1, . . . , Xn), as

n → ∞, introducing appropriate normalizing constantsan andbn. If there exist normalizing con-

stantsan > 0, bn ∈ R and some non-degenerating distributionH such that

Mn − bn

an

−→ H
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Figure 2.1 Layer mixture distribution and Conditional layer mixture distribution(k = 4).
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in distribution, thenH is equal to one of the three distributions,

Fréchet Φα(x) =







0, if x ≤ 0

exp
(

− x−α
)

, if x > 0

Weibull Ψα(x) =







exp
(

− (−x)α
)

, if x ≤ 0

1, if x > 0

Gumbel Λ(x) =







exp
(

− e−x
)

, if x ∈ R

1, if x > 0

(2.11)

for α > 0 and this is usually expressed asF ∈ MDA(H) whereF is the common distribution

function forXi andH is either one of the extreme value distribution in (2.11). Here we will be

concerned with the asymptotic behavior of the maxima,Mn, in the case whenXi has a mixture

distribution,F (k), whosek-th component,Hk belongs to one of the maximum domain of attraction

MDA(H), Φ, Λ, or Ψ. Intuitively we would expect that the mixture distributionwould belong to

the sameMDA, i.e.

F (k) ∈ MDA(·) if Fk ∈ MDA(·) (2.12)

sinceMDA is about the limiting distribution of the maximaMn, which is governed by the tail of

the distribution ifn is large enough. For similar asymptotic properties of the family of heavy-tailed

distributions, see Cai and Tang (2004). Some results for theMDA of mixture distributions can

be found in the following papers. Mladenović (1999) found the normalizing constants in special

examples such as normal mixtures and Cauchy mixtures. Kang and Serfozo (1999) derived general

formula of the normalizing constants under the existence oftail-dominant distribution.

Before we show that (2.12) holds for all the three mixture models introduced in section 2.1, for

convenience we state two lemmas which will be used repeatedly throughout this chapter.
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Lemma 2.4 (Convergence Criterion)Let F be a distribution function andan > 0, bn ∈ R for

n = 1, 2, . . .. Then the following two statements are equivalent.

1. For an extreme value distributionH of the type in (2.11) with normalizing constantsan and

bn,

F ∈ MDA(H)

2. For allx ∈ R, asn → ∞,

nF (anx + bn) → − log H(x)

Lemma 2.5 (Kang and Serfozo (1999))The following statements are equivalent for an extreme

value distributionH of the type in (2.11). Forγ > 0,

1. F ∈ MDA(H) with normalizing constantsan andbn.

2. nF (a∗
nx + b∗n) ∼ − 1

γ
log H(x) as n → ∞,

where the normalizing constants are related as follows



















a∗
n = γ1/αan b∗n = bn = 0 if H is Fréchet,

a∗
n = an b∗n = bn + an log γ if H is Gumbel,

a∗
n = γ−1/αan b∗n = bn = 0 if H is Weibull.

The above lemmas provide us with a method to determine the maximum domain of attractions

and the normalizing constants for the mixtures ofk distributions introduced in section 2.1. For

more details, see Theorem 1.5.1, Leadbetter et al. (1983) and Theorem 2, Kang and Serfozo (1999).

2.2.1 MDA of Layer Mixture Distributions

Let F (k) be a layer mixture distributions given by Definition 2.1. Then the following proposi-

tion implies thatF (k) belongs to the maximum domain of attraction ofFk with modified normal-

izing constants.
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Proposition 2.6 Let F (k) be of the type as in Definition 2.1. IfFk ∈ MDA(H) for an extreme

value distributionH of the type in (2.11), thenF (k) ∈ MDA(H) and the normalizing constants are



















an = γ1/αa∗
n, bn = uk−1, if H is Fréchet,

an = a∗
n, bn = b∗n + uk−1 + a∗

n log γ, if H is Gumbel,

an = γ−1/αa∗
n bn = uk−1, if H is Weibull.

wherea∗
n andb∗n are the normalizing constants ofFk(x), x∗

n = a∗
nx + b∗n, and

γ =
k−1
∏

i=1

ri where ri = F i(ui − ui−1).

Proof: Let x∗
n = a∗

nx + b∗n be the normalizing constants forFk(x), i.e.

nFk(x
∗
n) → − log H(x).

By Definition 2.1 and Lemma 2.4

nF (k)(x∗
n + uk−1) = n{I{x∗

n<uk−1}(x
∗
n)F (k−1)(x∗

n + uk−1)

+I{x∗
n≥uk−1}(x

∗
n + uk−1)F (k−1)(uk−1)Fk(x

∗
n)}

∼ nF (k−1)(uk−1)Fk(x
∗
n)

asn → ∞. It follows that, by Lemma 2.5,

nF (k)(a∗
nx + b∗n + uk−1) ∼ −F (k−1)(uk−1) log H(x),

nF (k)(anx + bn) ∼ − log H(x)

where the normalizing constants forH of Fréchet type,
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an = F (k−1)(uk−1)
1/α

a∗
n

= F (k−2)(uk−2)
1/α

F k−1(uk−1 − uk−2)
1/αa∗

n

...

= F 1(u1 − u0)
1/α · · ·F k−1(uk−1 − uk−2)

1/αa∗
n

= a∗
n

k−1
∏

i=1

F i(ui − ui−1)
1/α

andbn = b∗n + uk−1 = uk−1. For the extreme value distribution of Gumbel and Weibull type,

similar argument holds in the same manner. Applying the convergence criterion in Lemma 2.4

again, we conclude thatF (k) ∈ MDA(H) with normalizing constantsan andbn, which completes

the proof.�

2.2.2 MDA of Linear Mixture Distributions

Consider the linear mixture model in Definition 2.2 and suppose that there exists a distribution

F ∗ satisfying

lim
x→∞

Fi(x)

F ∗(x)
= ri (2.13)

for someri ≥ 0 and this limit is uniform ini in caseI is an infinite set. Then we say that the tail

of the distributionF ∗ dominates those of{Fi : i ∈ I}. Theorem 2 in Kang and Serfozo (1999)

provides the relationship between the maximum domain of attraction and normalizing constants of

the mixture distributionF (k) and the tail-dominating distributionF ∗. We state this theorem here

for convenience.

Theorem 2.7 (Kang and Serfozo (1999))SupposeF (k) is a linear mixture of the type in Defini-

tion 2.2 and satisfies (2.13) for eachi. Let γ =
∑

i∈I ciri and assumeγ is positive. Then the

following statements are equivalent.

1. F ∈ MDA(H) with normalizing constants an, bn.
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2. F ∗ ∈ MDA(H) with normalizing constantsa∗
n, b

∗
n.

When these statements hold, the normalizing constants are related as follows



















an = γ1/αa∗
n, bn = b∗n = 0, if H is Fréchet,

an = a∗
n, bn = b∗n + a∗

n log γ, if H is Gumbel,

an = γ−1/αa∗
n, bn = b∗n = 0, if H is Weibull.

whereα is the extreme value index of each type of extreme value distribution defined in (2.11).

The linear mixture ofk distributions, therefore, belongs to the maximum domain ofattraction

of Fk if there exists a tail-dominating distributionF ∗ with γ > 0. In practice, the existence of

the distributionF ∗ is assumed without loss of generality since higher layer is often modelled by

heavier-tailed distribution and we may setF ∗ = Fk which reduces tolimx→∞ Fi(x)/F ∗(x) = ri ≥

0 for all i = 1, . . . , k.

As we mentioned in the previous section, the layer mixture model in Definition 2.1 can be

written as a linear mixture model with appropriate positiveor negative weights. This is an inter-

esting result since it allows us to interpret the layer mixture models, (2.3)∼(2.6) and (2.9), with

their interesting (re)insurance applications (see the introduction) as a linear mixture model and

apply the known results such as Theorem 2 of Kang and Serfozo (1999) to the layer mixture model

to investigate their asymptotic behavior. Let{Fi}i=1,...,k be the components of the layer mixture

distributionF (k) with thresholds0 = u0 < u1 < · · · < uk−1 such that

F (k)(x) = I{x<uk−1}(x)F (k−1)(x) + I{x≥uk−1}(x)F (k−1)(uk−1)F k(x − uk−1).

It is equivalent to

F (k)(x)
∣

∣

∣

[ui−1,ui)
= Hi(x) (2.14)

whereHi(x) = Hi−1(ui−1)F i(x − ui−1) for i = 2, 3, · · · , k andH1 = F1. The following theo-

rem shows that a layer mixture distribution can be written asa linear combination ofHiI{·} with

constantsci = (−1)i−1.
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Theorem 2.8 The layer mixture distribution can be written as a linear mixture of the form

F (k)(x) = c1H1(x) +
k−1
∑

j=1

2j+1
∑

i=2j

ciHi−j(x)I{uj≤x}(x)

whereci = (−1)i−1 for i = 1, 2, · · · , 2k − 1 andHi(x) = Hi−1(ui−1)Fi(x − ui−1) for i =

2, 3, · · · , k andH1 = F 1.

Proof: By induction onk. Fork = 2, it is immediate to see

H1(x) − H1(x)I{u1<x}(x) + H2(x)I{u1<x}(x) = F (2)(x)

by direct substitution. Note that (2.14) holds for the layermixtures,F (2), . . ., F (k−1). Denote the

indicator function byI{·} = I{·}(x), then

F (k)(x) = F (k−1)(x)Ix<uk−1
+ Fk(x)Iuk−1≤x

=
{

H1(x) − H1(x)Iu1≤x + H2(x)Iu1≤x

...

−Hk−2(x)Iuk−2≤x + Hk−1(x)Iuk−2≤x

}

· Ix<uk−1

+Hk(x)Iuk−1≤x

= H1(x)Ix<uk−1
− H1(x)Iu1≤x<uk−1

+ H2(x)Iu1≤x<uk−1

...

−Hk−2(x)Iuk−2≤x<uk−1
+ Hk−1(x)Iuk−2≤x<uk−1

+Hk(x)Iuk−1≤x

sinceIa≤x · Ix<b = Ia≤x<b for a < b, hence
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= H1(x) − H1(x)Iuk−1≤x

−H1(x)Iu1≤x + H1(x)Iuk−1≤x + H2(x)Iu1≤x − H2(x)Iuk−1≤x

...

−Hk−2(x)Iuk−2≤x + Hk−2(x)Iuk−1≤x + Hk−1(x)Iuk−2≤x − Hk−1(x)Iuk−1≤x

+Hk(x)Iuk−1≤x

by substitutingHi(x)Iui−1≤x<uk−1
with Hi(x)Iui−1≤x −Hi(x)Iuk−1≤x for eachi = 1, 2, · · · , k− 1,

it reduces to

= H1(x) − H1(x)Iu1≤x + H2(x)Iu1≤x − · · · − Hk−2(x)Iuk−2≤x + Hk−1(x)Iuk−2≤x

+Iuk−1≤x

{

− H1(x) + H1(x) − H2(x) + · · ·+ Hk−2(x) − Hk−1(x)
}

+Hk(x)Iuk−1≤x

= H1(x) − H1(x)Iu1≤x + H2(x)Iu1≤x − · · · − Hk−2(x)Iuk−2≤x + Hk−1(x)Iuk−2≤x

−Hk−1(x)Iuk−1≤x + Hk(x)Iuk−1≤x

= H1(x) +
k−1
∑

j=1

2j+1
∑

i=2j

(−1)i−1Hi−j(x)Iuj≤x

which proves the theorem.�

If the tail of Fk dominates those ofHiI{}, the above theorem leads to the same result as in

Proposition 2.6 by Theorem 2 of Kang and Serfozo (1999) with tail-dominating distributionF ∗ =

Fk as follows.

Proposition 2.9 Let F (k) be a layer mixture distribution as in Definition 2.1. The layer mixture

F (k) can be written as a linear mixture of constantsci and the distributionsHiI{·} as in (2.14),

tail-dominated byF k with γ > 0. If Fk ∈ MDA(H) for an extreme value distributionH of the
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type in (2.11), thenF (k) ∈ MDA(H) and the normalizing constants are



















an = γ1/αa∗
n, bn = uk−1, if H is Fréchet,

an = a∗
n, bn = b∗n + uk−1 + a∗

n log γ, if H is Gumbel,

an = γ−1/αa∗
n bn = uk−1, if H is Weibull.

wherea∗
n andb∗n are the normalizing constants ofFk, x∗

n = a∗
nx + b∗n and

γ =

k
∑

i=1

ciri =

k−1
∏

i=1

F̄i(ui − ui−1).

Proof: Let a∗
n andb∗n be the normalizing constants forFk. If we setF ∗(x) = Fk(x − uk−1), a∗

n

andb∗n + uk−1 are the normalizing constants forF ∗. By the proof of Lemma 2.8,
∑2k−2

i=1 ciri = 0,

c2k−1 = 1, and

γ = r2k−1 = lim
x→∞

Hk(x)I{uk−1<x}(x)

F
∗
(x)

= lim
x→∞

Hk−1(uk−1)F k(x − uk−1)

F k(x − uk−1)
=

k−1
∏

i=1

F̄i(ui − ui−1) > 0.

Therefore the theorem follows immediately by Theorem 2.7.�

Thus, we can see that Proposition 2.9 makes it possible to pick up Fk as a tail-dominating

distributionF ∗ of all distributional componentsHiI{·} of the linear mixture representation of the

layer mixture model (2.9) and apply Theorem 2.7 to examine the extreme behavior of the layer

mixture. It is instructive to illustrate this point and consider some examples of how Proposition 2.9

applies to particular tail-dominating distributionsF ∗ with heavy-tails.

Example 2.10 (Pareto)Consider a layer mixture ofk distributions with thresholds0 = u0 <

u1 < . . . < uk−1 for k > 1 such thatFi(x) = 1 − e
− 1

µi
x for i = 1, . . . , k − 1 andFk(x) =

1 − (1 + ξx)−
1
ξ for ξ > 0 and1 + ξx > 0. Denoteui − ui−1 by δi for eachi = 1, . . . , k. If we
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chooseF ∗ = Fk,

γ = lim
x→∞

Hk(x)I{uk−1<x}(x)

F ∗(x)

= lim
x→∞

Hk−1(x)F k(x − uk−1)

Fk(x)

= F 1(δ1)F 2(δ2) · · ·F k−1(δk−1)

= e−δ1/µ1e−δ2/µ2 · · · e−δk−1/µk−1 = e
−Pk−1

i=1
δi
µi > 0.

whereHi are as in (2.14). By Proposition 2.9 we conclude thatF (k) belongs to the same maximum

domain of attractionsMDA(Φ1/ξ) of the generalized Pareto distribution and the normalizingcon-

stants arean = γξ a∗
n andbn = b∗n wherea∗

n, b∗n are the normalizing constants of the generalized

Pareto distributionFk. We provide the numerical result of the mixture distributionF (k) with k = 4,

µi = i andui = i in Figure 2.2.

Example 2.11 (Lognormal) Consider the layer mixture distribution in Exmaple 2.10 when Hk is

a lognormal distribution. Denote the mean and standard deviation of log X by µ, andσ, respec-

tively. Note that

Fk(x) = 1 − Φ
( log x − µ

σ

)

whereΦ is the standard normal distribution function. It is well known that Lognormal distribution

belongs to the maximum domain of attraction of Gumbel distribution,MDA(Λ). If we choose

F ∗ = Fk,
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γ = lim
x→∞

Hk(x)I{uk−1<x}(x)

F ∗(x)

= Hk−1(uk−1) lim
x→∞

1 − Φ
( log(x−uk−1)−µ

σ

)

1 − Φ
(

log x−µ
σ

)

= Hk−1(uk−1) lim
x→∞

− 1
σx

√
2π

e−
1
2

(

log(x−uk−1)−µ

σ

)2

− 1
σx

√
2π

e−
1
2

(

log x−µ
σ

)2

= Hk−1(uk−1) lim
x→∞

e−
1

σ2 (log x−log(x−uk−1))(log x+log(x−uk−1)−2µ)

whereHi are as in (2.14), and applyinglog x − log(x − u) =
∫ x

x−u
1
s
ds ≤ u

x−u
, we get

(log x + log(x − u) − 2µ)(log x − log(x − u)) ≤ (log x + log(x − u) − 2µ) u
x−u

→ 0 asx → ∞

for anyu > 0 and hence(log x− log(x−uk−1))(log x+ log(x−uk−1)− 2µ) → 0, which leads to

= Hk−1(uk−1) e0

= F 1(δ1)F 2(δ2) · · ·F k−1(δk−1)

= e
−

Pk−1
i=1

δi
µi > 0.

By Proposition 2.9 again, we conclude thatF (k) belongs to the same maximum domain of at-

tractionsMDA(Λ) of the Lognormal distribution and the normalizing constants arean = a∗
n and

bn = b∗n+a∗
n log γ wherea∗

n andb∗n are the normalizing constants of the Lognormal distributionHk.

We also provide a numerical result of the mixture distributionF (k) with k = 4, µi = i, ξ = 0.75

andui = i in Figure 2.2.

Remark 2.12 In the examples above we observe that the normalizing constants of the layer mix-

ture distributionsF (k) are(γ1/αa∗
n, b∗n) or (a∗

n, b∗n + a∗
n log γ) without the threshold shift byuk−1

since we choseF ∗ = Fk instead ofF ∗(x) = Fk(x − uk−1). This is always possible when thek-th

distribution is long-tailed, i.e.
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lim
x→∞

F k(x − u)

F k(x)
= 1.

for u > 0.

2.2.3 MDA of Conditional Layer Mixture Distributions

The normalizing constants and maximum domain of attractions of the conditional mixture

distribution can be found in a similar way as in the layer mixture distributions. The following

proposition is analogous to Proposition 2.6.

Proposition 2.13 Let F (k) be of the type in Definition 2.3. IfFk ∈ MDA(H) for an extreme

value distributionH of the type in (2.11)., thenF (k) ∈ MDA(H) and the normalizing constants

are



















an = γ1/αa∗
n, bn = 0, if H is Fréchet,

an = a∗
n, bn = b∗n + a∗

n log γ, if H is Gumbel,

an = γ−1/αa∗
n, bn = 0, if H is Weibull.

wherea∗
n andb∗n are the normalizing constants ofFk, x∗

n = a∗
nx + b∗n, and

γ =
k−1
∏

i=1

ri where ri =
Fi(ui)

Fi+1(ui)
.

Proof: Let x∗
n = a∗

nx + b∗n be the normalizing constants forFk, i.e.

nFk(x
∗
n) → − log H(x)

by Lemma 2.4. It follows that
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nF (k)(x∗
n) = n{I{x∗

n≤uk−1}(x
∗
n)F (k−1)(x∗

n)

+I{x>uk−1}(x
∗
n)F (k−1)(uk−1)Fk(x

∗
n|x > uk−1)}

∼ n F
(k−1)

(uk−1)F k(x
∗
n|x > uk−1)

= n F
(k−2)

(uk−2)F k−1(uk−1|x > uk−2)F k(x
∗
n|x > uk−1)

= n F 1(u1|x > u0) · · ·F k−1(uk−1|x > uk−2)F k(x
∗
n|x > uk−1)

= n
F 1(u1)

F 1(u0)
· · ·

F k−1(uk−1)

F k−1(uk−2)
·

F k(x
∗
n)

F k(uk−1)

= n
k−1
∏

i=1

F i(ui)

F i+1(ui)
· F k(x

∗
n) = n

k−1
∏

i=1

ri · F k(x
∗
n)

= n γ F k(x
∗
n)

by similar argument as in the proof of Proposition 2.6. It follows that by Lemma 2.5,

nF (k)(x∗
n) ∼ −γ log H(x),

nF (k)(anx + bn) ∼ − log H(x)

where the normalizing constants forH of Fréchet type are

an = γ1/αa∗
n = a∗

n

k−1
∏

i=1

( F i(ui)

Fi+1(ui)

)1/α

andbn = 0. For the extreme value distribution of Gumbel and Weibull, similar argument holds in

the same manner. Applying the convergence criterion in Lemma 2.4 again, we concludeF (k) ∈

MDA(H) with normalizing constantsan andbn, which completes the proof.�
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Figure 2.2 Layer mixture distributions vs. conditional layer mixture distributions(k = 4).
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Example 2.14 Consider a conditional mixture ofk distributions at thresholds0 = u0 < u1, . . . <

uk−1 such thatFi(x) = 1 − e
− 1

µi
x for i = 1, . . . , k − 1 andFk belogns to some maximum domain

of attraction. By Proposition 2.13,F (k) beglongs to the same maximum domain of attraction asFk

and

γ =

k−1
∏

i=1

ri =

k−1
∏

i=1

F i(ui)

F i+1(ui)

=
e−u1/µ1

e−u1/µ2
· · ·

e−uk−2/µk−2

e−uk−2/µk−1

e−uk−1/µk−1

F k(uk−1)

= e
−

Pk−1
i=1

δi
µi

/

F k(uk−1).

whereδi = ui − ui−1 is the size of each layer. We provide the numerical results ofthe mixture

distributionF (4) with µi = i andui = i for i < 4 whenF4 is the generalized Pareto distribution

and the Lognormal distribution, respectively in Figure 2.2.

2.3 Infinite Mixture Distributions and Hazard Rate Function s

The mixed distributions we proposed in the previous sectionare flexible enough to cover wide

range of higher moments such as skewness and kurtosis. However, it is not easy to determine or

estimate the thresholdsu1, . . . , uk−1 and corresponding distributional components{Fi}i=1,...,k. The

latter difficulty might be overcome if the thresholds are given and there exist enough data points

for each layer. Unless we have a precise method of thresholdsestimation, it is not appropriate to

assume specific values for the thresholds. In this sense, we propose a mixture model with infinite

number of layers(thresholds) and the limiting distribution of the mixture model, which can be

viewed as a mathematical background to solve the threshold selection problem. For example, a

non-decreasing sequence of thresholds such asuk → ∞ defines an infinite number of layers on

which appropriate distributionsFi are specified. Since there is no upper limit of the thresholds,

any tail of the infinite mixture distribution is explained not by a single distributional component

Fk but by an infinite number of components{Fi}i≥k for somek > 0. In this way it is not required
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to select a fixed threshold high enough to approximate the corresponding tail by a singleFk. In

other words, the mixture models of finite number of layers cease to be mixture distributions in the

tail whereas the infinite mixture model always has its tail asa infinite mixture distribution again.

Since the conditional layer mixture model is superior to thelayer mixture model in terms of the

consistency of increasing heavy-tailedness, we develop the infinite conditional layer mixture model

and its limiting distribution in the sequel.

Another important topic in this section is the hazard rate function representation of the con-

ditional mixture distribution which can also be applied to the infinite conditional layer mixture.

Since the existence(continuity) of the hazard function of adistribution is equivalent to the conti-

nuity(differentiability) of the distribution, the results in the following section provides us an easy

method of creating continuous or differentiable conditional layer mixture distributions.

We also discuss the limiting distribution of the infinite conditional layer mixture distribution as

the size of each layer gets arbitrarily small. As a result thelimiting distribution possesses a contin-

uously varying heavy-tailedness which can be implemented by a function of certain parameters of

heavy-tailedness, for example, the shape parameter of Pareto distribution.

2.3.1 Infinite Mixture Distributions and Hazard Rate Functi ons

Suppose that each distributionFi has its density functionfi and the hazard functionhi for each

i = 1, . . . , k, i.e.

hi(x) =
fi(x)

1 − Fi(x)
and F i(x) = exp

(

−

∫ x

0

hi(s) ds
)

.

Let us define the simple mixture of the firstk hazard functions by

h(k)(x) =
k−1
∑

i=1

I{ui−1≤x<ui}(x)hi(x) + I{uk−1≤x}(x)hk(x).

which is integrable as a finite linear combination of integrable functions. The following theorem

implies that the hazard function of the conditional mixturedistribution is the mixture of the hazard
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functions of the distributional components, which is a unique property of the conditional layer

mixture distribution among all mixture models.

Theorem 2.15 Given distributions{Fi}i=1,2,... and thresholds0 = u0 < u1 < . . . , let hi be the

hazard function ofFi for eachi. Then the conditional mixture distributionF (k) has the hazard

functionh(k) which is the mixture of the firstk hazard functions, i.e.

F (k)(x) = exp
(

−

∫ x

0

h(k)(s) ds
)

Proof: First suppose thatx ≤ uk−1, then there exist thresholds such thatuj−1 ≤ x < uj for

j ≤ k − 1. From the proof of Proposition 2.13, we have

F (k)(x) =
{

j−1
∏

i=1

F i(ui)

F i(ui−1)

} F j(x)

F j(uj−1)

=
{

j−1
∏

i=1

exp
(

−

∫ ui

ui−1

hi(s) ds
)

}

exp
(

−

∫ x

uj−1

hj(s) ds
)

= exp
(

−

∫ x

0

h(k)(s) ds
)

.

If x > uk−1, setj = k, which completes the proof.�

Definition 2.16 (Infinite Conditional Layer Mixture) Given distributions{Fi}i=1,2,... and thresh-

olds0 = u0 < u1 < . . . , the infinite conditional layer mixture distribution denoted byF (∞) is

defined by

F (∞)(x) =
∞

∑

i=1

I{ui−1≤x<ui}(x)F (i)(x)
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or equivalently

F (∞)(x) = lim
k→∞

F (k)(x)

whereF (k) is the conditional layer mixture of the firstk distributions as in Definition 2.3.

Note that the conditional layer mixture of finite number of distributions,F (k), is a special case of

the infinite mixture, since if we chooseFk = Fi anduk = ui = ∞ for i ≥ k, F (∞) reduces toF (k).

The above definition simply implies that the restriction ofF (∞) on each layer[ui−1, ui) is equal to

the conditional layer mixture distributionF (i) for eachi, i.e.

F (∞)(x)
∣

∣

∣

[ui−1,ui)
= F (i)(x)

which is well-defined sinceF (j)(x) = F (i)(x) for x ∈ (ui−1, ui] for anyi ≤ j. Suppose that each

distributionFi has its density functionfi and the hazard functionhi and denote the mixture of the

hazard functions byh(∞) such that

h(∞)(x) =

∞
∑

i=1

I{ui−1≤x<ui}(x)hi(x), (2.15)

or equivalently,h(∞)(x) = hi(x) for x ∈ [ui−1, ui). Then the following corollary is the generaliza-

tion of Theorem 2.15 allowingk = ∞.

Corollary 2.17 Given distributions{Fi}i=1,2,... and thresholds0 = u0 < u1 < . . . , the infinite

conditional layer mixture distributionF (∞) has the mixture hazard functionh(∞), i.e.

F (∞)(x) = exp
(

−

∫ x

0

h(∞)(s) ds
)

whereF (∞) andh(∞) are defined in Definition 2.16 and (2.15) respectively.



33

Proof: Let gN(x) =
∑N

i=1 I{ui−1≤x<ui}(x)hi(x) for x < ui and0 otherwise. ThengN ↑ h(∞) as

N → ∞ and hence we have

F (∞)(x) = lim
N→∞

F (N)(x)

= lim
N→∞

exp
(

−

∫ x

0

h(N)(s) ds
)

by Theorem 2.15

= exp
(

−

∫ x

0

lim
N→∞

h(N)(s) ds
)

by monotone convergence theorem

= exp
(

−

∫ x

0

h(∞)(s) ds
)

which completes the proof.�

Note that the mixture hazard function in (2.15) takes a form of simple function whereas the

mixture distribution takes a recursive form as in Definition2.16. Therefore, in practice, it is much

easier to build a mixture distribution from a mixture hazardfunction. Moreover, if we model a

heavy-tailed distribution with decreasing hazard rate, wecan start from appropriate hazard func-

tions{hi} satisfyinghi(x) ≥ hj(x) for i < j and derive the mixture distributionF (∞) from the

mixture hazard functionh(∞). For example, suppose that we want to find a infinite mixture of

Pareto distributions each of which has different shape parameterαi > 0 such that

F i(x) = (1 + x)−αi .

Supposeαi ↓ 0 asi → ∞, then the mixture distributionF (∞)(x) can be calculated easily at each

x = uk as follows; for any integerk > 0,
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F
(∞)

(uk) = exp
(

−

∫ uk

0

h(∞)(x)
)

= exp
(

−
k

∑

i=1

∫ ui

ui−1

hi(x)
)

= exp
(

−
k

∑

i=1

αi log(
1 + ui

1 + ui−1
)
)

=

k
∏

i=1

(
1 + ui

1 + ui−1
)−αi

wherehi(x) = αi/(1+x) for eachi. Note that the mixture distributionF (∞) is heavier-tailed than

any Pareto distribution sinceαi ↓ 0.

Example 2.18 Consider a continuous mixture hazard function as a polygon such that

h(∞)(x) =

∞
∑

i=1

I{i−1≤x<i}hi(x) where hi(x) = −
1

i(i + 1)
x +

2

1 + i

for eachi = 1, 2, . . .. The left graph in Figure 2.3 plots the mixture hazard function h(∞) and

1/(1+x) which is the hazard function of the Pareto distributionF (x) = 1− (1+x)−1. By Corol-

lary 2.17, the infinite mixture distribution can be easily calculated at anyx ≥ 0. For example, for

any positive integern,

F
(∞)

(n) = exp
(

−
n

∑

i=1

∫ i

i−1

hi(x)
)

= exp
(

−
n

∑

i=1

2i + 1

2i(i + 1)

)

.

The right panel of Figure 2.3 plots the infinite mixture distribution and the Pareto distribution

F (x) = 1 − (x + 1)−1 in log scale. Note thatF (∞) is differentiable sinceh(∞) is continuous.
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Pareto withα = 1 (dotted).
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2.3.2 Lorenz Curves of the Conditional Mixture Distributions

In economics the Lorenz curve is used to describe inequalityin population’s income or wealth.

The Lorenz curve of distributionF with finite mean is simply defined by the ratio,

L(F (x)) =

∫ x

−∞ tf(t)dt
∫ ∞
−∞ tf(t)dt

wheref is the density function ofF . In the following we examine the Lorenz curves of mixture

distributions with an illustrative example. For a non-negative loss random variablesX and its dis-

tribution F (∞), let µ(i) =
∫ ∞
0

t dFi(t) andµ(∞) =
∫ ∞
0

t dF (∞)(t) where eachFi has its hazard

functionhi. Forx ∈ [uk−1, uk) for some positive integerk, write vi = ui for i < k andvk = x.

Then we have

L(F (∞)(x)) =

∫ x

0
t dF (∞)(t)

µ(∞)

= −
k

∑

i=1

1

µ(∞)

F
(∞)

(vi−1)

F i(vi−1)

∫ vi

vi−1

t dF i(t)

=
k

∑

i=1

µ(i)

µ(∞)

F
(∞)

(vi−1)

F i(vi−1)

[

L(Fi(vi)) − L(Fi(vi−1))
]

=
k

∑

i=1

ci ∆Li

whereci = µ(i)F
(∞)

(ui−1)/µ
(∞)F i(ui−1) and∆Li = L(Fi(ui)) − L(Fi(ui−1)) for i < k and

∆Lk = L(Fi(x)) − L(Fi(uk−1)). Therefore the Lorenz curveL of the mixture distributionF (∞)

can be viewed as a mixture of the Lorenz curvesLi of distributionsFi.

Example 2.19 Consider a sequence of thresholds and Pareto distribution functions such as

ui−1 = i − 1 and F i(x) = (1 + x)−2− 1
i
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for i = 1, 2, . . .. The Pareto distributions above have decreasing shape parameters from3 to 2

as i increases, and hence the mixture distributionF (∞)(x) has increasing heavy-tailedness asx

becomes large. By direct calculation we have

µ(i) =
i

i + 1
,

µ(∞) =

∞
∑

i=1

∫ i

i−1

F
(∞)

(x) dx

=
∞

∑

i=1

{F
(∞)

(i − 1)

F i(i − 1)

∫ i

i−1

F i(x) dx
}

=

∞
∑

i=1

[

F
(∞)

(i − 1) i2+
1
i

i

i + 1

{

i−
1+i

i − (1 + i)−
1+i

i

}

]

L(F (ui)) = 1 − (1 + i)−
1+i

i .

From the paragraph followed by Example 2.18 in the previous section withαi = 2 + 1/i,

F
(∞)

(i) =
i

∏

j=1

(1 + j

j

)−(2+ 1
j
)
.

Combining all of the results above we have, for a positive integern > 1,

L(F (∞)(n)) =
1

µ(∞)

n
∑

i=1

{

i−1
∏

j=1

(1 + j

j

)−(2+ 1
j
)
i2+

1
i

i

i + 1

[

i−
1+i

i − (1 + i)−
1+i

i

]}

.

Figure 2.4 is an illustration of the Lorenz curves of the mixture distribution and Pareto distribution

with shape parameterα = 2, 2.77, and3.
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Figure 2.4 Lorenz curves of Pareto distributions with mean values0.5(α = 3), 1.0(α = 2),
0.5644(α = 2.77), and the mixture distribution in Example 2.19

.

2.3.3 Limiting Distribution of Infinite Mixture

We already observed in the previous section that the conditional layer mixture distribution is

superior to the linear or layer mixture model with respect tothe consistency of heavy-tailedness.

However, the mixture distributionsF (k) andF (∞) are not differentiable at each thresholdui in

general whereas smoothness of loss distributions is often required in risk modelling. It is not

difficult to see that this non-differentiability problem isdue to the jumps of the mixture hazard

functionsh(k) or h(∞) at each threshold. Therefore, if we can approximate a continuous hazard

functionh by the mixture hazard functionh(∞), the distributionF induced fromh can be viewed

as a limiting distribution induced fromh(∞).

Theorem 2.20 Consider a sequence of thresholdsu0 < u1 < . . . such thatδ = ui − ui−1 > 0 for

all i and a sequence of distributional components{Fi(x; δ)} with hazard rate functions{hi(x; δ)}.

Supposeh(x) = limδ→0 h(∞)(x; δ) exists and denote the distribution induced fromh(x) byF (x) =
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1 − exp(−
∫ x

0
h(s) ds). If F (x) > 0 for x > 0, the hazard function of the limiting mixture distri-

bution is the limit of the mixture hazard function asδ → 0, i.e.

lim
δ→0

F (∞)(x; δ) = exp
(

−

∫ x

0

lim
δ→0

h(∞)(s; δ) ds
)

.

Moreover, if the limiting hazard functionh is continuous, the limiting distributionF is differen-

tiable.

Proof: SinceF (x) > 0 for x > 0,
∫ x

0
h(s) ds < ∞ and hence there existsǫ > 0 such that

h(∞)(s; δ) < h(s) + ǫ for 0 < s < x. Then

lim
δ→0

F (∞)(x; δ) = lim
δ→0

exp
(

−

∫ x

0

h(∞)(s; δ) ds
)

= exp
(

−

∫ x

0

lim
δ→0

h(∞)(s; δ) ds
)

by dominated convergence theorem, which proves the first assertion. Moreover, if the limiting

hazard rate functionh is continuous,

d

dx
F (x) = lim

c→0

exp(−
∫ x+c

0
h(s) ds) − exp(

∫ x

0
h(s) ds)

c

= −h(x) exp
(

−

∫ x

0

h(s) ds
)

which completes the proof.�

The following corollary is an immediate result from Theorem2.20, which provides us with a

theoretical background to approximate any smooth distribution by a conditional mixture ofexpo-

nentialdistributions. It is very interesting to note that the exponential distributions can be seen as

a set of basis which reconstructs any differetiable distribution as a conditional mixture.
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Corollary 2.21 Any distributionF with a continuous hazard rate functionh is a limiting distribu-

tion of the infinite conditional layer mixture of exponential distributions, i.e.

F (x) = lim
δ→0

F (∞)(x; δ)

whereF i(x) = exp(−h(ui)x) for a sequence of thresholdsu0 < u1 < · · · andδ = ui+1 − ui.

Proof: By the continuity, the hazard rate functionh can be approximated by a step functions as

follows.

lim
δ→0

s(x; δ) = h(x) where s(x)
∣

∣

[ui,ui+1)
= h(ui)

for eachi. Therefore,s is an infinite mixture of the hazard functionshi, each of which is a constant

function such thathi(x) = h(ui). Since the constant hazard rate functions,hi, generate exponen-

tial distribution functions, we have

F i(x) = e−h(ui)x

for eachi. By Theorem 2.20,F is a limiting distribution of the infinite mixture of exponential

distributions which completes the proof.�

In what follows, we provide two numerical exmaples. The firstexample is an empirical dis-

tribution fit. Without assuming any parametric distribution, we can approximate the empirical

distribution as presice as we want by a mixture of exponential distributions, which is a parametric

distribution. This method solves problems such as uncertainties of threshold and parametric dis-

tribution selection. We no longer need to assume a parametric form or a certain threshold level to

fit emprical data. The second example illustrates a reconstruction of parametric distribution which

doesn’t have an explicit form where we use the g-and-h distribution.
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Example 2.22 (Danish Fire Loss Data)The data used in this example is theDanish fire loss data

with losses over one million Danish Krone. We approximate the density functionf and the sur-

vival functionF on [ui−1, ui) as follows;

f(x) ≈
di

(ui − ui−1) n
and F (x) ≈

ri−1 −
1
2
di

n
for x ∈ [ui−1, ui).

wheredi andri−1 are the number of losses inui−1, ui andui−1,∞, respectively. Therefore the

empirical hazard rate function can be written as

ĥ(x) =
di

(ui − ui−1)(ri−1 −
1
2
di)

, x ∈ [ui−1, ui)

for each positive integeri, which leads us to identify the components of the mixture hazard func-

tion by ĥ, i.e.

hi(x) = ĥ(ui−1) =
di

(ui − ui−1)(ri−1 −
1
2
di)

, x ∈ [ui−1, ui) (2.16)

and the Danish fire loss data can be fitted by the infinite conditional mixture of exponential distribu-

tions with mean valuesλi = ĥ(ui−1) by Corollary 2.21. Figure 2.5 plots the empirical hazard rate

function in the left panel and the infinite conditional layermixture distribution fit to the empirical

distribution in the right panel.�

Example 2.23 (g-and-h simulation)Dutta and Perry (2004) proposed the parametric g-and-h dis-

tributions as a statistical tool to measure operational risk at the enterprise level as well as at the

Basel II business line and event type levels (Moscadelli, 2004) based on Loss Distribution Ap-

proach (LDA). They found that, with respect to the capital estimates at the enterprise level, the

g-and-h distribution resulted in realistic and consistentcapital estimates across all of the institu-

tions they considered. The g-and-h distribution with four parameters(a, b, g, h) can be defined as

a transformation of the standard normal random variableZ such that
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Figure 2.5 Empirical hazard rate function(left) and the mixture distribution fit to the empirical
distribution(right): empirical(circled), infinite conditional layer mixture(solid line)
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distribution(right): simulated(circled), infinite conditional layer mixture(solid line)
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F (x) = Pr(X ≤ x), X = a + b
egZ − 1

g
e

hZ2

2

whereg andh can be real valued functions ofZ2. The advantage of using the g-and-h distribution

for loss modelling lies on its flexibility. Operational losses are known to vary from low frequency

and high severity to high frequency and low severity. More often than not, one or two parameter

loss distributions fail to fit such operational risk data because of the short ranges of skewness and

kurtosis. In this sense the g-and-h distribution is very useful because the g-and-h distributions

cover a wide range of skewness-kurtosis as illustrated in Figure 3 of Dutta and Perry (2004).

We simulated5, 000 samples from positive g-and-h distributed random variableX|X ≥ 0 with

a = 0, b = 1, g = 2.0, h = 0.2. The values ofg andh are in the empirical range proposed by

Dutta and Perry (2004). We calculate the empirical hazard rate function as in (2.16) and deduce the

infinite conditional mixture of exponential distributionsin the same manner. Figure 2.6 plots the

empirical hazard rate function in the left panel and the infinite conditional layer mixture distribution

fit to the empirical distribution in the right panel.�

2.4 Applications on the g-and-h Distributions

In this section we provide practical applications of the conditional mixture distributions on

the g-and-h distributions. We fit three parametric distributions to Danish fire loss data by the

maximum likelihood estimation. In order to assess goodness-of-fit, we use graphical method and

statistical goodness-of-fit test. We introduce the family of g-and-h distributions and its properties

and examine the maximum domain of attractions of the mixtureof the g-and-h distributions.

Dutta and Perry (2004) proposed the parametric g-and-h distributions as a statistical tool to

measure operational risk at the enterprise level as well as at the Basel II business line and event

type levels (Moscadelli, 2004) based on Loss Distribution Approach (LDA). They found that, with

respect to the capital estimates at the enterprise level, the g-and-h distribution resulted in realistic

and consistent capital estimates across all of the institutions they considered. The g-and-h distri-

bution with four parameters(a, b, g, h) can be defined as a transformation of the standard normal
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random variableZ such that

F (x) = Pr(X ≤ x), X = a + b
egZ − 1

g
e

hZ2

2

whereg andh can be real valued functions ofZ2. The advantage of using the g-and-h distribution

for loss modelling lies on its flexibility. Operational losses are known to vary from low frequency

and high severity to high frequency and low severity. More often than not, one or two parameter

loss distributions fail to fit such operational risk data because of the short ranges of skewness and

kurtosis. In this sense the g-and-h distribution is very useful because the g-and-h distributions

cover a wide range of skewness-kurtosis as illustrated in Fig. 3 of Dutta and Perry (2004).

Degen et al. (2006) also considered the g-and-h distributions and showed that they belong to the

family of regularly varying distributions or subexponential distributions whena = 0, b = 1, g < 0,

andh ≥ 0 i.e.

Theorem 2.24 (Degen et al. (2006))SupposeF is a g-and-h distribution withg, h > 0, thenF =

x− 1
h L(x) for some slowly varying functionL(x). For h = 0 andg > 0, we haveF ∈ S\R

whereS andR denote the class of subexponential distributions and regularly varying distributions,

respectively.

We focus on the maximum domain of attractions of the conditional mixture distributionF (k) with

k-th g-and-h distribution and the thresholds0 = u0 < u1 < · · · < uk−1 whena = 0, b = 1, g ≥ 0,

andh ≥ 0. Thek-th distributional componentFk above the highest thresholduk−1 corresponds to

one of the types

X =



















egZ−1
g

e
hZ2

2 , g, h > 0

egZ−1
g

, g > 0, h = 0

Ze
hZ2

2 , g = 0, h > 0.

where the random variableX can be viewed as the standard normal distributionZ wheng = 0 and

h = 0.
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Supposeh > 0 and consider the conditional mixtureF (k) of k underlying distributions{Fi}i=1,...,k

whereFk is a g-and-h distribution andF k dominates all ofF i for i = 1, . . . , k − 1. We can write

F k ∼ x−1/h L(x) by Theorem 2.24 and it is immediate to see that it belongs toMDA(Φ1/h).

Therefore,F (k) belongs to the sameMDA(Φ1/h) by Proposition 2.13 and the normalizing con-

stants can be found as in Example 2.14. IfF (k) is of the linear mixture type as in (2.14) and as long

as the g-and-h distributionFk tail-dominates allFi for i < k, we chooseF ∗ = Fk and conclude

F (k) ∈ MDA(Φ1/h) by Theorem 2.7 and Theorem 2.8.

Whenh = 0, the g-and-h distribution becomes a scaled Lognormal distribution (or g-distribution),

i.e. X = egZ−1/g, and

F (x) = P(X ≤ x) = P(Z ≤
log(gx) + 1

g
) = Φ

( log x − (log 1
g
− 1)

g

)

which is a lognormal distribution withµ = log 1
g
− 1 andσ = g. Although Lognormal distri-

butions are not regularly varying, we already showed that they are long-tailed in Example 2.11.

Therefore, the conditional mixture distributionF (k) belongs to the same maximum domain of at-

traction of the lognormal distribution,MDA(Λ) by Theorem 2.13. IfF (k) is of the linear mixture

type as in (2.14) and tail-dominatesFi for all i = 1, . . . , k − 1, we chooseF ∗ = Fk and conclude

F (k) ∈ MDA(Λ), since

γ = lim
x→∞

F k(x)

F ∗(x)

= F k−1(uk−1) lim
x→∞

F k(x − uk−1)

F k(x)

= F k−1(uk−1) > 0.

2.4.1 Data

The data used in this section isDanish fire loss datawith losses over one million Danish

Krone. It has been used in numerous papers for the threshold estimations or extreme value distri-

bution estimations such as the shapeξ and scaleβ parameter estimations of the generalized Pareto
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distribution,

F (x) =
(

1 +
ξ

β
x
)− 1

ξ .

for 1+ξ/β > 0. The median and mean are1.778 and3.385 million respectively, and the number of

claims over20 million and10 million Danish Krone are respectively36 and109, which are1.66%

and5.03% of the sample observations. The exponential quantile plot shows an upward trend above

45◦ straight line, which is a strong evidence of the heavy taileddistribution. In Appendix B we

provide a maximum likelihood estimator of the shape parameter of the extreme value distribution

with a numerical example.

2.4.2 Selected Parametric Models and Estimation Methods

We consider three parametric distributions, the generalized Pareto distribution, the g-and-h dis-

tribution, and a mixture of two g-and-h distributions with athresholdu > 0 for g, h ≥ 0 excluding

the trivial caseg = h = 0. The closed form of the distribution function or the transformations of

the random variables can be found in the following Table 2.1.

For a given samplex1, . . . , xn, the likelihood function of the generalized Pareto distribution is

written as a product of the density functions at eachxi for i = 1, . . . , n,

Generalized ParetoF (x) = 1 − (1 + ξ
β
x)−

1
ξ , x ≥ 0 ξ > 0, β > 0

Single g-and-h F ∼ egZ−1
g

ehZ2/2 g, h ≥ 0,

Z ∼ N (0, 1) (g, h) 6= (0, 0)

F
(2)

(x) = I{x<u}(x)H1(x) gi, hi ≥ 0,

g-and-h mixture +I{x≥u}(x)H1(u)H̄2(x|x > u) (gi, hi) 6= (0, 0)

Hi ∼
egiZ−1

gi
ehiZ

2/2, Z ∼ N (0, 1) i = 1, 2

Table 2.1 Selected parametric distributions
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l(x1, . . . , xn|ξ, β) =

n
∏

i=1

1

β
(1 +

ξ

β
xi)

−1− 1
ξ

We denote the maximum likelihood estimates ofξ andβ by ξ̂ andβ̂, respectively.

In order to calculate the likelihood function of the g-and-hdistributionF for a given sam-

ple {x1, . . . , xn}, we need to computef(xi|Θ) for eachxi and given parameter setΘ = (g, h).

Let us denote the generalized inverse ofF by Q, i.e. Q(·) = F−1(·). ThenQ(F (x)) = x and

Q
′
(F (x))f(x) = 1 by differentiation, which reduces to

f(x|g, h) =
1

Q′(F (x))
. (2.17)

Define a real valued functionk(x) by

k(x) =



















egx−1
g

e
hx2

2 , g, h > 0

egx−1
g

, g > 0, h = 0

xe
hx2

2 , g = 0, h > 0.

Sincek is strictly increasing, the distributionFX can be written as

FX(x) = Φ(k−1(x)),

whereΦ is the standard normal distribution. The quantile functionQ can be also written as a com-

posite function ofk and the standard normal distribution as follows,

F−1(y) = k(Φ−1(y)).

For more details see Remark 2.1, Degen et al. (2006). Moreover, the derivative ofQ can be written
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as
Q

′
(y) = d

dy
F−1(y) = d

dy
k(Φ−1(y)) = k

′
(Φ−1(y)) d

dy
Φ−1(y)

= k
′
(Φ−1(y))

φ(Φ−1(y))
.

(2.18)

Combining (2.17) and (2.18), we obtain

f(xi|g, h) =
φ(Φ−1(F (xi)))

k′(Φ−1(F (xi)))
.

Therefore, if we have a method of evaluatingF (xi|g, h) for eachxi, the likelihood function

l(x1, . . . , xn|g, h) can be calculated as a product of the above expressions. However, since there is

no closed form ofk−1(x) in general,FX(xi) should be computed numerically for eachxi > 0 as

follows. For a givenxi > 0, let yi be the solution of the equationk(yi) = xi. The value ofyi can

be found by many root-finding algorithms in numerical analysis and the uniqueness of the solution

is guaranteed sincek(x) is strictly increasing forg, h ≥ 0. ThenF (xi) can be approximated by the

numerical solution̂yi and hence we can also approximate the likelihood function ofthe g-and-h

distribution as follows.

k(ŷi) ≈ xi

F (xi) ≈ Φ(ŷi)

l(x1, . . . , xn|g, h) ≈
n

∏

i=1

φ(Φ−1(Φ(ŷi)))

k′(Φ−1(Φ(ŷi)))
=

n
∏

i=1

φ(ŷi)

k′(ŷi)

2.4.3 Results

Generalized Pareto Distribution: The negative log likelihood function of the generalized

Pareto distribution attains its minimum at(ξ̂, β̂) = (0.61, 0.32). Since the extreme value distribu-

tions have been widely used for modelling loss distributions in numerous papers, we don’t discuss

the details in this section. See McNeil (1997) and Cebrian etal. (2003).
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The g-and-h Distribution: Figure 2.7 plots the negative log likelihood function of theg-

and-h distribution in the neighborhood of the origin(0, 0). We used Monte Carlo method to lo-

cate the minimum of the negative log likelihood in this example and the numerical estimates are

(ĝ, ĥ) = (0, 0.38) which implies that the fitted distribution is an h-distribution which is subexpo-

nential such that

X ∼ Ze
ĥZ2

2 .

Sinceh parameter in the g-and-h distribution is responsible for the kurtosis, h-distribution can be

used to model the heavy-tailedness of the sample. However, it may fail to explain the skewness of

the loss distribution due to the lack ofg parameter.
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Figure 2.7 Negative log likelihood of the single g-and-h distribution

The Mixture of two g-and-h Distributions: For the conditional mixture of two g-and-h dis-

tributionsF1 andF2 we first introduce the thresholdu > 0, where the loss random variable satisfy

X|X < u ∼ F1 andX|X ≥ u ∼ F2. Since the threshold choice is critical to the parameter es-

timation of the extreme value distributions, we chose threedifferent thresholdsu = 3, 6.234, and

10 million whereu = 6.234 million is the threshold estimate calculated by Bayesian method in

Appendix B. The number of losses exceeding each threshold is532, 177, and107 respectively.
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Figure 2.8 Negative log likelihood of the mixture of two g-and-h distributions whenu = 6.21.

For u = 3 million (532 exceedances) the negative log likelihood function attains its minimum

at (ĝ1, ĥ1) = (0.26, 0.02) and(ĝ2, ĥ2) = (0, 0.57) respectively. Therefore it is the mixture of the

g-and-h and h-distribution such as

X{x<u} ∼
eĝ1Z − 1

ĝ1
e

ĥ1Z2

2 and X{x≥u} ∼ e
ĥ2Z2

2

which asserts that losses below and above the threshold are responsible for the strong skewness(ĝ1 =

0.26) and the heavy-tailedness(ĥ2 = 0.57) of the sample data respectively. Figure 2.8 plots the

negative log likelihood function in the neighborhood of(ξ̂, β̂) whenu = 3.
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For u = 10 million (107 exceedances), the negative log likelihood attains its minimum at

(ĝ1, ĥ1) = (0, 0.37) and(ĝ2, ĥ2) = (1.04, 0.23) respectively. It is the mixture of the h- and the

g-and-h distributions such as

X{x<u} ∼ e
ĥ1Z2

2 and X{x≥u} ∼
eĝ2Z − 1

ĝ2

e
ĥ2Z2

2

which implies that there exists strong skewness(ĝ2 = 1.04) and relatively moderate heavy-

tailedness(ĥ2 = 0.23) in the right tail above the thresholdu = 10.

It is interesting to observe that foru = 6.234 million (177 exceedances), the two underlying

distributionsF1 andF2 resulted in h-distribution and g-distribution respectively. Figure 2.8 plots

the negative log likelihood function of the g-and-h distribution below and above the thresholdu

respectively. The mixture distribution is heavy-tailed(ĥ1 = 0.37) as much as the single g-and-h

distribution(ĥ = 0.48) from 1 million to 6.234 million and it is highly skewed(ĝ2 = 1.60) in

the right tail above the thresholdu = 6.234 million. In this particular example, with appropriate

level of threshold we can fit the mixture distribution to the sample data and observe that each of

the distributional components measures the skewness and the heavy-tailedness separately, which

is not possible under non-mixture model.

Table 2.2 is the summary of the estimates ofg andh for each thresholdu. We can observe that

the tail inference of the loss distribution is very sensitive to the threshold choice due to the bias-

variance trade off. For example, there are few data points above the thresholdu = 10 which results

in parameter uncertainty forF2. Also u = 3 is too low to apply asymptotic properties in extreme

value theory. As a matter of fact the estimatedĥ2(0.23) whenu = 10 reflects less heavy-tailedness

thanĥ2(0.57) whenu = 3. The discrepancy is due to the uncertainty of the parametersof F2 when

u = 10 or the lack of theoretical justification ofF2 whenu = 3.

Goodness of fit: Two methods are applied to assess the goodness-of-fits for each parameter

estimation, Kolmogorov-Smirnov test (K-S) and Quantile-Quantile plot (Q-Q). Table 2.2 is the

summary of the parameter estimates, K-S statistics, and p-values. The mixture model withu = 3

million shows the poorest fit and fails to pass the K-S test. The GPD model and the g-and-h mixture
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model withu = 6.21 million show the best fits with p-values0.3571 and0.1391, respectively. The

distribution fits and the Q-Q plots of the selected parametric models are illustrated in Figure 2.9

and 2.10.

Distributions Parameters Estimates K-S Statistics p-values

single Generalized Pareto (ξ, β) (0.61, 0.32) 0.0281 0.3571

single g-and-h (g, h) (0, 0.48) 0.0554 0.0026

g-and-h mixture (g1, h1) (0.26, 0.02) 0.1527 0.0000

(u = 3.0) (g2, h2) (0, 0.57)

g-and-h mixture (g1, h1) (0, 0.38) 0.0351 0.1391

(u = 6.234) (g2, h2) (1.60, 0)

g-and-h mixture (g1, h1) (0, 0.37) 0.0383 0.0832

(u = 10.0) (g2, h2) (1.04, 0.23)

Table 2.2 Maximum likelihood estimates and goodness-of-fits
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Figure 2.9 Distribution fits and Q-Q plots of the generalizedPareto distribution (Top) and the
single g-and-h distribution (Bottom).
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2.5 Conclusions

We have demonstrated that mixture distributions naturallyarise in (re)insurance risk modelling

and that they have considerable advantages over other non-mixture parametric models in dealing

with large claims. The specific mixture distributions we have considered in this chapter are suit-

able for modelling (re)insurance risks since they capture the far tails of loss distributions due to

their layer structure. We have shown that the maximum domainof attraction of the mixture distri-

butions are completely determined by the maximum domain of attraction of the last distributional

component and hence the tail behavior of the mixture distribution can be fully explained by the

tail behavior or the last component. We also discussed the hazard rate functions of the conditional

layer mixture distributions, which is very unique among allmixture models. Since we can build a

conditional layer mixture distribution by mixing hazard rate functions in a simple way, the analytic

complexity of general mixture models can be overcome by the hazard rate function representation

of the conditional layer mixture model. The infinite mixturemodel and its hazard rate function

expressed as a simple mixture, gives a possible solution to the threshold selection problem by

modelling the tail above any threshold level as another infinite mixture distribution. Lastly, we

have proposed a limiting distribution of the infinite conditional mixture and have shown that any

distribution with continuous hazard rate function can be approximated by a mixture of exponential

distributions.
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Chapter 3

Computation of the Aggregate Distribution of a Maximal Markov
Sequence

This chapter is based on the paper by Jang and Jho (2008a). Financial institutions such as

banks and insurance companies have a pool of risks. The aggregation of these risks as loss random

variables has been used in insurance and operational risk modeling. Let us define a pool of risks

by a set of random variables,

E = {X1, . . .Xd}

for d > 0 and denote the sum of the random variables bySE, whereXi are not necessarily identical.

In particular, ifXi are independent, the aggregate loss distributionFSE
can be calculated by the

convolution ofFXi
, although it is a time-consuming approach. The difficulty arises when the

random variables are dependent, since the convolution is anoperation on functions not on random

variables. An axiomatic approach to this problem can be found in Frank (1991) where the author

considered the convolution for dependent random variablesas a particular member of distributional

counterpart of binary operations, for example, a bivariatecopula and introduced the generalized

convolutions. Another difficulty lies on the size of the poolof risks,d, with respect to the numerical

efficiency. With no specific assumptions on the dependence structure, we propose a method of

reducing the size of the risk pool to obtain an equivalent andsimpler risk pool and hence faster

calculation in the followings.

Consider a sequenceE1 as a subset ofE such that

E1 = {Xi1 , . . . , Xik} ⊂ E
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for i1 < · · · < ik ≤ d. ThenE1 is called amaximal Markov sequenceif it satisfies Markov property

butE1∪{Xi} violates Markov property for anyXi ∈ E\E1. For the definition of Markov property

or Markov process, see Nelsen (1999) or Joe (1997). IfE1 6= E, consider another maximal Markov

sequenceE2 ⊂ E\E1 and repeat this process untilEi exhaust the setE. Eventually we have a

decomposition of the pool of risks by disjoint maximal Markov sequences as follows,

∪j
i=1Ei = E (3.1)

for a positive integerj < d. Note that the decomposition in (3.1) may not be unique. Denote the

sum of the random variables in eachEi by SEi
, then we can writeSE =

∑j
i=1 SEi

and

FSE
(s) = P(SE1 + · · · + SEj

≤ s)

For convenience, we rename the random variables{SE1 , . . . , SEj
} by {X(2)

1 , . . . , X
(2)
j } wherej

depends on the number of maximal Markov sequences and we willhence use in general the nota-

tion {X(2)
1 , . . . , X

(2)
d2

}, which is called the second stage risk pool equivalent to thefirst stage and

we have
∑d

i=1 Xi =
∑d2

i=1 X
(2)
i . Sinced is finite, repeating this process, we obtaink-th stage risk

pool which is no longer decomposable, and hence satisfies Markov property, as in the following

diagram.

{X1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , Xd}

{X(2)
1 , . . . . . . . . . . . . . . . . . . , X

(2)
d2

}
...

{X(k)
1 , . . . , X

(k)
dk

}.

Due to this hierarchical structure,X
(j)
i is a sum of random variables in a maximal Markov sequence

at (j − 1)-th stage risk pool. Therefore if we have a computational method for the aggregate

distribution of random variables satisfying Markov property, the aggregate distribution ofX1 +

· · · + Xd can be calculated by the aggregate distribution ofX
(k)
1 + · · · + X

(k)
dk

where eachX(k)
i is

again a sum of random variables in(k− 1) stage maximal Markov sequence and henceF
X

(k)
i

is an

aggregate distribution of a(k − 1)-th stage maximal Markov sequence and so on. The efficiency

of the computation depends on how good a decomposition is at each stage, i.e. how large each
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maximal Markov sequence is. Therefore it is very crucial to compute the aggregate distribution of

each maximal Markov sequence, which is the main goal of this chapter.

In section 3.1 we present a computational method for the distribution of sum of random vari-

ables in a maximal Markov sequence and in section 3.2 we introduce a chain of pairwise bivariate

copulas to implement the dependence on the maximal Markov sequence. We provide numeri-

cal examples of the method in section 3.3, and actuarial applications on Bayesian premiums and

stop-loss premiums in section 3.4 and 3.5.

3.1 Computation of the Aggregate Distribution of Non-identical and Depen-
dent Variables in a Maximal Markov Sequence

For a given pool of risksE, choose a maximal Markov sequenceE1 = {X1, . . . , Xn} ⊂ E for

a positive integern ≤ d. Denote the joint distribution ofX1, . . . , Xn by Hn(x1, . . . , xn) for each

positive integern > 1. As a consequence of Markov property,Chapman-Kolmogorov equation

holds as follows.

P(Xk ≤ xk|Xi = xi) =

∫ ∞

0

P(Xk ≤ xk|Xj = xj)
∂P(Xj ≤ xj |Xi = xi)

∂xj
dxj

for i < j < k. If the conditional densities exist, the above equation takes the analogous form,

fXk|Xi
(xk|xi) =

∫ ∞

0

fXk |Xj
(xk|xj)fXj |Xi

(xj |xi) dxj.

Now let us denote the aggregate loss bySn =
∑n

i=1 Xi for a positive integern. Assuming Markov

property, we first derive an iterated integral equation of the joint density functionfSn−1,Xn for each

n > 2 in the following lemma.

Lemma 3.1 Suppose thatXi are continuous, non-negative, non-identical, and dependent loss ran-

dom variables. Further we assume{X1, . . . , Xn} satisfies Markov property. If the joint density

function ofXn andSn−1 exists for eachn > 2, the following equation holds.
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f
Xn,Sn−1

(t, s) =

∫ s

0

f
Xn|Xn−1

(t |w) f
Xn−1,Sn−2

(w, s−w) dw. (3.2)

Proof: First consider the well-known result of conditional probability,

∂

∂s
P(Xn ≤ t, S

n−1 ≤ s) =
∂

∂s
P(S

n−1 ≤ s) · P(Xn ≤ t |S
n−1 = s).

Applying theChapman-Kolmogorov equationon the conditional probability in the right hand side

by conditioning onS
n−2 andX

n−1 , the above equation can be rewritten as follows.

∂

∂s
P(Xn ≤ t, Sn−1 ≤ s) =

∫ s

0

f
Sn−1

(s) P(Xn≤ t |X
n−1 = w, S

n−2 = s−w)

× f
Xn−1,Sn−2 | Sn−1

(w, s−w | s) dw

=

∫ s

0

P(Xn ≤ t |X
n−1 = w) f

Xn−1,Sn−2
(w, s−w) dw.

The lemma follows immediately by differentiating the last equation with respect tot. �

Note that the result (3.2) in Theorem 3.1 is of the form analogous to the convolution ofXn

andSn−1. The joint densityfXn|Sn−1
is derived fromfXn−1,Sn−2 through the kernel integration by

fXn|Xn−1. Applying the result of Lemma3.1, we can derive another integral equation of the aggre-

gate loss density functionf
Sn

in the following theorem. In special, if we assume the independence

of losses, it is identical to the classical convolution formula.

Theorem 3.2 Suppose thatXi are continuous, non-negative, non-identical, and dependent loss

random variables. Further we assume{X1, . . . , Xn} satisfies Markov property. If the joint density

function ofXn andSn−1 exists for eachn > 2, the density function of the aggregate loss can be

written as follows.

f
Sn

(t) =

∫ t

0

∫ s

0

f
Xn|Xn−1

(t−s |w) f
Xn−1,Sn−2

(w, s−w) dw ds (3.3)
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wheref
Xn−1,Sn−2

(w, s−w) can be derived by Lemma 3.1.

Proof: By conditioning onXn−1 andS
n−2 again,

P(Sn ≤ t) =

∫ t

0

P(Xn ≤ t − s |S
n−1 = s) f

Sn−1
(s) ds

=

∫ t

0

∫ s

0

P(X
n
≤ t−s |X

n−1
= w, S

n−2
= s−w)

× f
Xn−1,Sn−2 |S

n−1
(w, s−w | s) f

Sn−1
(s) dw ds

=

∫ t

0

∫ s

0

P(Xn ≤ t−s |X
n−1 = w) f

Xn−1,Sn−2
(w, s−w) dw ds.

The density function follows immediately by differentiating the distribution functionP(S
n
≤ t)

with respect tot and applying theLeibniz Rule, which completes the proof.�

Lemma 3.1 and Theorem 3.2 provide a numerical algorithm to compute the aggregate density or

aggregate distribution function of non-identical dependent losses in a maximal Markov sequence.

In the next section we introduce a chain of bivariate copulasto implement the dependence on the

maximal Markov sequence.

3.2 Application on Bivariate Copulas

We give a brief overview of bivariate copulas and implement the dependence structure on a

maximal Markov sequence{X1, . . . , Xn} by a chain of bivariate copuals. The formal definition of

bivariate copulas can be found in many textbooks or papers and we follow Nelsen (1999).

Definition 3.3 Let I = [0, 1], a unit closed interval. A bivariate copula is a functionC : I2 → I

with the following properties:

1. For everyu, v in I

C(u, 0) = 0 = C(0, v) and C(u, 1) = u, C(1, v) = v.



61

2. For everyu1, u2, v1, v2 in I such thatu1 ≤ u2 andv1 ≤ v2,

C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0.

Copula is an efficient tool of modeling dependence structuresince the dependence and the

marginals of random variables can be studied separately. Inparticular, the copula function related

to any multivariate joint distribution with continuous marginal distributions is uniquely determined

due to the following Sklar’s theorem (Sklar, 1959).

Theorem 3.4 Let H be a joint distribution function with marginal distributionsF andG. Then

there exists a copulaC : [0, 1]2 → [0, 1] such that for allx, y ∈ [−∞,∞],

H(x, y) = C(F (x), G(y)). (3.4)

If F and G are continuous, thenC is unique. Conversely, ifC is a copula andF andG are

distribution functions, then the functionH defined by (3.4) is a joint distribution function with

marginal distributionsF andG.

Note that the copula function is not uniquely determined if the marginals are not continuous. If we

define the generalized inverse ofF by F−1(t) = inf{x : F (x) ≥ t}, the equation (3.4) takes the

following analogous form,

H(F−1(u), G−1(v)) = C(u, v).

Moreover, it is not difficult to show that if the joint densityh(x, y) of H(x, y) exists,

h(x, y) = c
(

F (x), G(x)
)

f(x)g(x)
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wherec(u, v) is called the density of the copula and defined by

c(u, v) =
∂2

∂u∂v
C(u, v).

For the random variables in a maximal Markov sequenceE1 = {X1, . . . , Xn}, let Xi−1 andXi

be dependent by bivariate copulasC(i) with continuous partial derivatives for eachi such that

Hi−1,i(xi−1, xi) = C(i)
(

Fi−1(xi−1), Fi(xi)
)

whereHi−1,i is the joint distribution ofXi−1 andXi.

The joint density function ofXi−1 andXi can be viewed as

fi−1(xi−1)fi(xi) c(i)
(

Fi−1(xi−1), Fi(xi)
)

(3.5)

and hence the conditional density ofXi|Xi−1 is equal toc(i)
(

Fi−1(xi−1), Fi(xi)
)

f(xi). From the

equation (3.2) in Lemma 3.1 the joint density function ofXn andSn−1 can be written as follows.

f
Xn,Sn−1

(t, s) =

∫ s

0

c(n)
(

Fn−1(t), Fn(w)
)

fXn(t) f
Xn−1,Sn−2

(w, s−w) dw. (3.6)

In the same manner, by substituting (3.6) into (3.3) in Theorem 3.2, the density function ofSn can

be written as follows,

f
Sn

(t) =

∫ t

0

∫ s

0

c(n)
(

Fn−1(w), Fn(t − s)
)

fXn(t − s) f
Xn−1,Sn−2

(w, s−w) dw ds. (3.7)

Denote the partial derivative of the copulaC(i)(u, v) with respect tou by C
(i)
u (u, v), i.e.

C(i)
u (u, v) =

∂

∂u
C(i)(u, v).

From the last equation of the proof in Theorem 3.2, the aggregate distribution ofSn can be written
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as

F
Sn

(t) =

∫ t

0

∫ s

0

C(n)
u

(

Fn−1(w), Fn(t − s)
)

f
Xn−1,Sn−2

(w, s−w) dw ds. (3.8)

Therefore (3.6) and (3.8) constitute a numerical algorithmfor the aggregate loss distributionFSn

for n > 2.

3.3 Numerical Examples

In this section we provide two examples of Lemma 3.1 and Theorem 3.2 with applications

on Farlie-Gumbel-Morgenstern copula and Gaussian copula.Farlie-Gumbel-Morgenstern copula

has simple algebraic expression and is well-defined on the entire domain,(u, v) ∈ [0, 1]2. The

example in section 3.3.2 can be applied to similar copulas such as Archimedean copulas. Gaussian

copulas provide us a standard of copula modeling since it projects the dependence structure of the

multivariate standard normal distribution onto any multivariate joint distribution with non-normal

marginals. For more details about the construction, properties, and estimations of the copulas, see

Frees and Valdez (1998), Genest and MacKay (1986), Genest and Rivest (1993), and Joe (1997).

The example in section 3.3.3 can be also applied tot-copulas by simple substitutions ofCu(u, v)

andc(u, v). Exponential and Pareto distributions are chosen for marginal distributions in order to

illustrate the effect of light or heavy-tailedness on the aggregate distributions.

3.3.1 Algorithms

Givent, s > 0 andn > 2, we introduce a recursive algorithm of the numerical calculation for

the joint density function,fXn,Sn−1(t, s) associated with marginal density functionsfXi
and copula

densitiesc(i) for i = 1, . . . , n as follows.

AL1. For the joint density functionfXn,Sn−1(t, s),



64

PROCEDURE(t, s, n)

IF n = 2 THEN RETURNfX2,X1(t, s)

ELSE

RETURN
∫ s

0
c(n)(Fn−1(t), Fn(w))· PROCEDURE(w, s − w, n − 1) dw

END IF

END PROCEDURE

The aggregate density functionfXn(t) and the distribution functionFXn(t) can be calculated

numerically by calling the procedure in AL1 above as follows.

AL2. For the aggregate density functionfXn(t),

STEP 1:a(w; t, s, n) = c(n)(Fn−1(w), Fn(t− s)) · fXn(t− s)· PROCEDURE(w, s −w, n− 1)

STEP 2:b(s; t, n) =
∫ s

0
a(w; t, s, n) dw

STEP 3:fXn(t) =
∫ t

0
b(s; t, n) ds

AL3. For the aggregate distribution functionFXn(t),

STEP 1:A(w; t, s, n) = C
(n)
u (Fn−1(w), Fn(t − s))· PROCEDURE(w, s − w, n − 1)

STEP 2:B(s; t, n) =
∫ s

0
A(w; t, s, n) dw

STEP 3:FXn(t) =
∫ t

0
B(s; t, n) ds

For the the univariate integrals in AL1, AL2, and AL3, any numerical integration method can

be applied, for example Newton-Cotes formulas and Gaussianquadrature. In this chapter we do

not discuss about the efficiency of the numerical approximation since main topic of this chapter is

focused on the dependence structure of multiple random variables implemented by copulas and an

introduction to a numerical method of the aggregate distribution function. For the following nu-

merical examples we apply the trapezoidal rule, a simple brute-force calculation for convenience.
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AL0. Trapezoidal rule for
∫ b

a
f(x) dx

CHOOSE AN INTEGERk > 0.

SET ACCUMULATOR= 0 AND i = 0

WHILE i < n DO

ACCUMULATOR = ACCUMULATOR + b−a
2k

{

f(a + i b−a
k

) + f(a + (i + 1) b−a
k

)
}

i = i + 1

END WHILE

RETURN ACCUMULATOR

3.3.2 Farlie-Gumbel-Morgenstern Copula and Exponential Distributions

Consider a maximal Markov sequenceE1 ⊂ E and denote the sum of the random variable in

E1 by Sn = X1 + . . . + Xn whereXi are exponentially distributed such that

1 − FXi
(x) = e−

x
µ

for x ≥ 0 andµ > 0. For the dependence ofXi−1 andXi for eachi > 1, we choose Farlie-

Gumbel-Morgenstern Copula defined by

C(u, v) = uv + λuv(1 − u)(1 − v)

for (u, v) ∈ [0, 1]2 and−1 ≤ λ ≤ 1. By the definition of the copula, it is immediate to find the

partial derivative and the density of the copula as follows.

Cu(u, v) = v + λv(1 − v)(1 − 2u),
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c(u, v) = 1 + λ(1 − 2v)(1 − 2u).

Suppose that{X1, . . . , Xn} satisfies Markov property. Then the aggregate loss distributionFSn

and the aggregate density functionfSn for any dimensionn > 2 can be calculated numerically by

(3.5)∼ (3.8). Fig. 3.2 is the sketch of the aggregate distributionFS4 and the aggregate densityfS4

computed numerically by (3.5)∼ (3.8) and simulations, respectively whenµ = 1 andλ = −1, 1.

We generated 100 million samples for Monte-Carlo simulation. The length of each subinterval is

equal to0.01 for the univariate numerical integrations in the computational method, (3.5)∼ (3.8).

It is obvious from Fig. 3.2 that the positive or negative dependence between subsequent losses has

substantial influence on both of the tails. The aggregate distribution with λ = 1 has fatter tails in

the left and right than the aggregate distribution withλ = −1. In other words, large(small) losses

are more likely to incur subsequent large(small) losses under the pairwise positive dependence

(λ > 0). Conversely, the negative dependence(λ < 0) reduces the chance of extreme events so

that large(or small) losses are less likely to occur subsequently.

Numerical Simulated Diff/Sim

x λ = −1 λ = 1 x λ = −1 λ = 1 x λ = −1 λ = 1

2.1 0.097154 0.245932 2.1 0.097385 0.246678 2.1 0.002376 0.003023

3.6 0.462003 0.508551 3.6 0.462715 0.509805 3.6 0.001539 0.002460

4.8 0.728725 0.678574 4.8 0.729644 0.680003 4.8 0.001260 0.002102

6.3 0.905492 0.830151 6.3 0.906509 0.831611 6.3 0.001122 0.001756

7.2 0.952690 0.890303 7.2 0.953768 0.891792 7.2 0.001130 0.001670

7.8 0.970524 0.919685 7.8 0.971620 0.921178 7.8 0.001128 0.001621

9.3 0.990879 0.965219 9.3 0.992000 0.966690 9.3 0.001130 0.001521

11.7 0.997904 0.99145911.7 0.999038 0.99293711.7 0.001135 0.001488

Table 3.1 Numerical and simulated values of the aggregate distributions with exponential
marginal distributions and Falie-Gumbel-Morgenstern copula; dimensionn = 4, exponential

meanµ = 1, copula parameterλ = −1, 1, and the number of simulations is100, 000, 000.
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Figure 3.1λ = 1. Top left: Farlie-Gumbel-Morgenstern CopulaC(u, v) on the unit square
(u, v) ∈ [0.1]2. Top right: partial derivative ofC(u, v) with respect tou on (0, 1)2. Bottom left:
partial derivative ofC(u, v) with respect tov on (0, 1)2. Bottom right: copula density on(0, 1)2

Numerical FS4 Numerical fS4 Simulation

h = 0.01 h = 0.005 h = 0.01 h = 0.005 100 million

499.660000 3993.390000 500.180000 3999.820000 838.470000

Table 3.2 Runtimes(seconds) of the simulation method and the computational method whereh is
the length of each subinterval in every univariate numerical integration.
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Figure 3.2λ = −1 (dashed),λ = 0 (solid),λ = 1 (dotted). Top left: aggregate distributions of
X1 + · · · + X4 with Farlie-Gumbel-Morgenstern copula and exponential (µ = 1) marginal

distributions by simulation. Top right: aggregate distributions with Farlie-Gumbel-Morgenstern
copula and Exponential (µ = 1) marginal distributions by Theorem 3.2. Bottom left: difference
between simulation and numerical approximation. Bottom right: aggregate density functions by

Theorem 3.2.
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3.3.3 Gaussian Copula and Pareto Distributions

Consider a maximal Markov sequenceE1 ⊂ E and denote the sum of the random variable in

E1 by Sn = X1 + . . . + Xn whereXi are Pareto distributed such that

1 − FXi
(x) =

( β

x + β

)α

for α, β > 0 andx ≥ 0. Pareto distribution with0<α< 1 is well known as an extremely heavy-

tailed loss distribution. Forα > 1 and a positive integerk > α, k-th moment of Pareto(α, β) is as

follows.

E[Xk] =
βkk

(α − 1) · · · (α − k)
.

For 0 < α ≤ 1, however, no finite moments exist. The parameterα determines the maximum

domain of attraction of the distribution and it is one of the most important indices in the family of

extreme value distributions. For more details, see Embrechts et al. (1997)

For the dependence betweenXi andXi−1 for eachi > 2, we choose Gaussian copula with

correlation coefficient−1 < ρ < 1. Let φ andΦ be the density and the distribution function

of the standard normal distributionN (0, 1), respectively. Denote the density and the distribution

function of the bivariate standard normal distribution with correlation coefficientρ by φρ andΦρ,

then Gaussian copulaC is defined by

C(u, v) = Φρ

(

Φ−1(u), Φ−1(v)
)

whereu = Fi−1(xi−1) andv = Fi(xi) for eachi > 1. Gaussian copula transforms the random

variables to the standard normal random variables and projects them onto the bivariate standard

normal dependence structure. As a result the random variables defined by Gaussian copula behave

as if they were bivariate standard normal random variables although the marginals are not normally
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distributed. In order to apply the numerical procedure of (3.5) ∼ (3.8), it is necessary to find

the explicit forms ofc(i)(Fi−1(xi−1), Fi(xi)) andC
(i)
u (Fi−1(xi−1), Fi(xi)). Moreover, we should

take extra care of the well-definedness of the copula derivatives. For example,C(i)
u (u, v) doesn’t

converge to a finite value as(u, v) → (0, v) for anyv ∈ (0, 1). Fig.3.3 illustrates the singularities

of the copula derivatives on the boundary of the domain[0, 1]2.

It is not difficult to derive the following two results from the definition of the Gaussian copula,

Cu(u, v) = Φ
(Φ−1(v) − ρ Φ−1(u)

√

1 − ρ2

)

c(u, v) =
1

√

1 − ρ2
e
− ρ2

2(1−ρ2)

{

Φ−1(u)2+Φ−1(v)2− 2
ρ
Φ−1(u)Φ−1(v)

}

for all (u, v) ∈ (0, 1)2. Applying these results into (3.5)∼ (3.8),FSn(t) andfSn(t) can be calcu-

lated numerically with desired precisions for any finitet ≥ 0 and positive integern > 2. Table 3.3

and Fig. 3.4 are the summary of the numerical values and the sketch of the aggregate distributions

FS4 , where the marginal distributions are identically Pareto(α = 0.9, β = 0.4) distributed under

Gaussian copula framework with different values of correlation coefficients,ρ = −0.7, 0, and0.7.

Simulated values are also compared and the number of simulations is again100, 000, 000.

Similar to the case of Farlie-Gumbel-Morgenstern copula, the Gaussian copula with negative

correlation(ρ = −0.7) also shows that the aggregate density function is less dispersed and more

centered than the positive correlation(ρ = 0.7) and vice versa. As a Pareto distribution is used

as a marginal, we can easily see that the aggregate distribution has heavier tail than the aggregate

distribution of exponential marginals with Farlie-Gumbel-Morgenstern copula.
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Figure 3.3ρ = 0.5. Top left: Gaussian CopulaC(u, v) on the unit square(u, v) ∈ [0.1]2. Top
right: partial derivative ofC(u, v) with regard tou on (0, 1)2. Bottom left: partial derivative of

C(u, v) with regard tov on (0, 1)2. Bottom right: copula density on(0, 1)2
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Numerical Simulated Diff/Sim

x ρ = −0.7 ρ = 0.7 x ρ = −0.7 ρ = 0.7 x ρ = −0.7 ρ = 0.7

2.8 0.293849 0.499795 2.8 0.294012 0.502817 2.8 0.000554 0.006011

4.4 0.511512 0.616991 4.4 0.511531 0.619997 4.4 0.000037 0.004849

5.6 0.606551 0.673484 5.6 0.606537 0.676516 5.6 -0.000024 0.004481

7.6 0.702002 0.737013 7.6 0.701982 0.740036 7.6 -0.000029 0.004085

9.2 0.749585 0.771883 9.2 0.749539 0.774880 9.2 -0.000062 0.003869

11.2 0.790581 0.80386511.2 0.790514 0.80684711.2 -0.000085 0.003697

13.2 0.819624 0.82763613.2 0.819483 0.83064113.2 -0.000171 0.003618

16.0 0.848561 0.85226216.0 0.848357 0.85529216.0 -0.000240 0.003542

Table 3.3 Numerical and simulated values of the aggregate distributions with Pareto marginals
and Gaussian copula; dimensionn = 4, Pareto distribution parametersα = 0.9, β = 0.4,

correlation coefficientsρ = −0.7, 0.7, and the number of simulations is100, 000, 000.

NumericalFS4 NumericalfS4 Simulation

h = 0.01 h = 0.01 100 million

7997.310000 8080.630000 1073.870000

Table 3.4 Runtimes(seconds) of the simulation method and the computational method whereh is
the length of each subinterval in every univariate numerical integration.
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Figure 3.4ρ = −0.7 (dashed),ρ = 0 (solid),ρ = 0.7 (dotted). Top left: aggregate distributions of
X1 + · · ·+ X4 with Gaussian copula and Pareto(α = 0.9, β = 0.4) marginal distributions by

simulation. Top right: aggregate distributions with Gaussian copula and Pareto(α = 0.9, β = 0.4)
marginal distributions by Theorem 3.2. Bottom left: difference between simulation and Theorem

3.2. Bottom right: aggregate density functions by Theorem 3.2.
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3.4 Applications on Bayesian Premiums

Conditional expectations have been widely used to predict future premiums based on the past

claim observations in insurance pricing. Let us denote the pure premium byµn+1 = E[Xn+1] and

the hypothetical premium byµn+1(Θ) whereΘ is the associated parameter with the policyholder

or group of policyholders. Because the parameterΘ or the distribution ofΘ is unknown in general,

we are often required to use the conditional expectation with respect to the past data,X1, . . . , Xn.

We can use the Bayesian premiumE[Xn+1|X1, . . . , Xn] as a future premiumµn+1(Θ) for a par-

ticular group of policyholders possessing homogeneous risk. In higher dimensionn, however, it

is not easy to compute the Bayesian premium because of the functional complexity of the joint

distribution,FX(x1, . . . , xn+1) in general dependence structure.

In order to avoid this numerical difficulty, Bühlmann (1967)proposed the following credibility

model to approximateµn+1(Θ) as a linear function of the past observationsX1, · · · , Xn, i.i.d.

conditional onΘ,

α0 +
n

∑

i=1

αiXi (3.9)

with appropriate coefficientsαi for i = 0, · · · , n. The random variablesXi are assumed to be

identically distributed and independent conditional onΘ. By elementary calculus, we can find the

coefficientsαi minimizing the squared error in the following manner. LetQ be the expectation of

the squared error,

Q = E
{[

µn+1(Θ) − α0 −
n

∑

i=1

αiXi

]2}

.

If we denote by(α̃0, · · · , α̃n) the values ofαi minimizingQ, we have

∂Q

∂αi

∣

∣

(α̃0,··· ,α̃n)
= 0 for i = 0, · · · , n.
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Solving the system of equations, we obtain so called normal equations,

E(Xn+1) = α̃0 +

n
∑

j=1

α̃iE(Xi), Cov(Xi, Xn+1) =

n
∑

j=1

α̃iCov(Xi, Xj) (3.10)

for i = 1, . . . , n. The above system ofn-equations can be viewed as a matrix equation, i.e.

















Cov(X1, Xn+1)

Cov(X2, Xn+1)
...

Cov(Xn, Xn+1)

















=

















Cov(X1, X1) Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1) . . . Cov(X2, Xn)
...

...
. . .

...

Cov(Xn, X1) Cov(Xn, X2) . . . Cov(Xn, Xn)

































α̃1

α̃2

...

α̃n

















.

Therefore, the coefficients̃αi can be found as long as the covariance matrix of(X1, · · · , Xn) is not

singular. For more details, see Klugman et al. (1998).

Bühlmann’s linear model (3.9) is very useful when the conditional densityfXn+1|Θ or the con-

ditional expectationE[Xn+1|X1, · · · , Xn] is hard to calculate, for example, when the random vari-

ablesXi are not independent in higher dimensionn. However, this method can’t be applied to

approximate the Bayesian premium when losses are negatively correlated, which is illustrated in

Example 3.5 and Table 3.

3.4.1 Conditioning onSn

In the following we apply Lemma 3.1 and Theorem 3.2 discussedin the previous section to

compute the Bayesian premium directly, conditioning on thesum of the past observationsSn =
∑n

i=1 Xi instead of{X1, · · · , Xn}. Before we proceed to compute the conditional expectation,

E[Xn+1|Sn], we briefly examine the similarity between Bühlmann’s linear model and the following

simpler model conditioning onSn.
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Let us assume the Bayesian premium is of the form,

α + βSn, where Sn =
n

∑

i=1

Xi, E[Xi] < ∞ (3.11)

andα, β need to be specified. LetW be the expectation of the squared error, i.e.

W = E
{[

µn+1(Θ) − α − βSn

]2}

.

Similarly, if we denote the values ofα, β minimizingW by α̃, β̃, they satisfy the following partial

differential equations,

∂W

∂α
|(α̃,β̃) = 0,

∂W

∂β
|(α̃,β̃) = 0

which reduce to the analogous normal equations,

E(Xn+1) = α̃ + β̃E(Sn), Cov(Sn, Xn+1) = β̃V ar(Sn). (3.12)

It is immediate to find the solution of (3.12),

α̃ = E[Xn+1] − β̃E[Sn], β̃ =

∑n
i=1 Cov(Xi, Xn+1)

V ar(Sn)
.

It is very interesting that two functional assumptions (3.9) and (3.11) of the credibility premiums

provide the same credibility factor under certain dependence structure as in the following example.

Example 3.5 (i) Bühlmann’s Credibility Premium: Suppose thatE[Xi] = µ, V ar(Xi) = σ2, and

Cov(Xi, Xj) = ρσ2 for i 6= j where the correlation coefficientρ satisfies0 < ρ < 1. Then the



77

classical credibility premium ofµn+1(Θ) can be calculated as a linear combination ofX1, · · · , Xn,

α̃0 +
n

∑

i=1

α̃iXi

where the coefficients̃αi are as follows.

α̃0 =
(1 − ρ)µ

1 − ρ + nρ
, α̃i =

ρ

1 − ρ + nρ
for i = 1, · · · , n.

The credibility premium reduces to

(1 − Z)µ + ZX̄ where Z =
nρ

1 − ρ + nρ
, X̄ =

n
∑

i=1

Xi/n (3.13)

which is the desired weighted average ofµ andX̄ if 0 < ρ < 1 (Klugman et al., 1998).

(ii) Bayesian premium conditioning onSn: Now we consider the credibility premium of the form

(3.11). The credibility premium in this case is a simple linear combination ofSn only, i.e. α̃+ β̃Sn.

From the normal equations (3.12), the coefficientsα̃, β̃ can be easily calculated as

α̃ = µ(1 − nβ̃) =
n(1 − ρ)µ

1 − ρ + nρ
= α̃0

β̃ =

∑n
i=1 Cov(Xi, Xn+1)

V ar(Sn)
=

ρ

1 − ρ + nρ
= α̃i

which gives the identical credibility factorZ and premium as in the previous result of (3.13).

Therefore the credibility premium conditioning on the sum of the past losses does not lose any in-

formation of the past observations, ifX1, · · · , Xn possess the same mean value and the correlation

coefficients of(Xi, Xj) are identical fori 6= j. In general,Sn can be viewed as a linearly sufficient

statistic,T · [X1, . . . , Xn]
′
, for an appropriate non-ramdom matrixT , which is [1, . . . , 1] in this

case. Therefore
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E[Xn+1|X1, . . . , Xn] = E[Xn+1 | T · (X1, . . . , Xn)
′

],

α̃0 +
n

∑

i=1

α̃iXi = α̃ + β̃Sn.

For more about linearly sufficient statistics, see Sundt (1991) and references therein.�

Now consider the following Bayesian premium conditioning on the sumSn without any func-

tional assumption of the conditional expectation,

E[Xn+1|Sn]. (3.14)

Summing up the past observations, we may lose intrinsic information amongXi more or less.

However, by simplifying the conditioning, we have an advantage that it is possible to evaluate the

conditional expectation by applying Lemma 3.1 and Theorem 3.2 under the assumption of Markov

property among{X1, . . . , Xn}. The conditional expectation (3.14) is the best estimator in the fol-

lowing sense. For any functiong of Sn,

E
{

[

Xn+1 − E[Xn+1|Sn]
]2

}

≤ E
{

[

Xn+1 − g(Sn)
]2

}

.

It is easy to write the following asymptotic approximation of the Bayesian premium in terms of the

joint density ofXn+1, Sn and the aggregate densitySn,

E[Xn+1|Sn] = lim
M→∞

∫ M

0

t fXn+1|Sn
(t|s) dt = lim

M→∞

∫ M

0

t
fXn+1,Sn(t, s)

fSn(s)
dt (3.15)

wherefXn+1,Sn(x, s) andfSn(s) can be numerically calculated by Lemma 3.1 and Theorem3.2. In

sum, if the following conditions are satisfied,
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1. Loss random variablesXi are non-negative and continuous.

2. {X1, . . . , Xn} satisfies Markov property.

3. fXi+1|Xi
(xi+1|xi) is known for eachi = 1, . . . , n,

Bayesian premium can be approximated numerically with desired precision by (3.15); For any

givenǫ > 0 and positive integern > 1

∣

∣

∣E[Xn+1|Sn = s] −

∫ M

0

t
fXn+1,Sn(t, s)

fSn(s)
dt

∣

∣

∣ < ǫ

for sufficiently largeM > 0 wherefXn+1,Sn(t, s) andfSn(s) can be calculated by Lemma 3.1 and

Theorem 3.2.

3.4.2 Numerical Examples

Table 3.5 and Fig. 3.5 are the summary of the Bayesian premiums E[X4|S3] evaluated by

(3.5)∼ (3.8) for various values ofS3. We also assume{X1, . . . , Xn} satisfies Markov property.

Top in Table 3.5 and left in Fig. 3.5 are the Bayesian premiumswhen losses are exponentially

distributed with unit mean and subsequent losses(Xi−1, Xi) are dependent through Farlie-Gumbel-

Morgenstern copula withλ = −1, 1. Bottom and right in Table 3.5 and Fig. 3.5 are the case of

Pareto marginal distributions and Gaussian copula. Marginals follow Pareto(4.0, 3.0) distributions

with unit mean and each pair of subsequent losses(Xi, Xi+1) are dependent through Gaussian

copula withρ = −0.7, 0.7.

It is very interesting to notice the phenomenon against our intuition in this example. In

Table 3.5 and Fig. 3.5, Bayesian premium with negative dependence of subsequent losses in-

creases(decreases) asS3 decreases(increases), which implies that Bayesian premiums are heavily

affected by the sign of the correlations under Markov property. The negative dependence struc-

ture,λ = −1 or ρ = −0.7 has strong influence on Bayesian premiums so that smaller(larger) the

aggregate loss is, the higher(lower) the credibility premium is. In other words, Bayesian premium
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Figure 3.5 Bayesian PremiumsE[X4|S3]. Left: Unit mean exponential marginal distributions
and Farlie-Gumbel-Morgenstern copulas withλ = −1, 1(equivalentlyρ = −0.25, 0.25). Right:

Unit mean Pareto(4.0, 3.0) marginal distributions and Gaussian copulas (ρ = −0.7, 0.7).

Exp-FGM S3 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6

E[X4|S3] λ = −1 1.222 1.089 0.988 0.911 0.852 0.807 0.772 0.744 0.721

λ = 1 0.817 0.947 1.038 1.109 1.167 1.214 1.252 1.284 1.309

Pareto-Gau S3 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6

E[X4|S3] ρ = −0.7 1.278 1.035 0.921 0.860 0.816 0.777 0.740 0.706 0.675

ρ = 0.7 0.607 0.837 1.042 1.232 1.410 1.581 1.744 1.901 2.053

Table 3.5 Selected values of Fig.5. Top: Unit mean Exponential marginal distributions and
Farlie-Gumbel-Morgenstern copulas. Bottom: Unit mean Pareto marginal distributions and

Gaussian copulas.

with the sum of the past losses smaller(larger) thann E[X1] becomes ironically larger(smaller)

thanE[X1].
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3.5 Application on Stop-Loss Insurance

The computational method of Lemma 3.1 and Theorem 3.2 can be also used to calculate the

limited expected value of the aggregate loss,

∫ b

a

(

1 − FSn(s)
)

ds (3.16)

for any non-negative real numbersa < b. Amount of aggregate loss covered by insurer(reinsurer)

in stop-loss insurance with retention levelL > 0 can be numerically computed with desired preci-

sion by (3.16) witha = 0 andb = L (a = L andb = ∞). SinceE[Sn] =
∑n

i=1 E[Xi] regardless

of the dependence structure amongXi, amount covered by reinsurer is simply the difference of

E[Sn] and insurer’s aggregate loss. In the following we examine how much the dependence struc-

ture distort the aggregate loss amount covered by insurer and reinsurer, respectively.

Fig. 3.2 and Fig. 3.4 in section 3.3 illustrate the effect of negative or positive correlations of

(Xi, Xi+1) on the aggregate distributions. It is very clear that the aggregate density functions with

pairwise positive correlations are more dispersed than those with negative correlations. The area

between the distribution of independent losses and any other distribution of dependent losses can

be considered as loss amount adjustment or risk loading due to the dependence effect. In stop loss

insurance, Lemma 3.1 and Theorem 3.2 can be applied to compute the amount of aggregate loss

covered by insurer and reinsurer under Markov property among multiple lines of business or prod-

uct. For example, consider the aggregate loss of section 3.3.2 where we choose Farlie-Gumbel-

Morgenstein copula and exponential marginals. Denote the retention level and the loss amount of

each line of business or product byL andXi, respectively, fori = 1 · · ·n, thenEλ[min(Sn, L)]

andEλ[max(Sn − L, 0)] can be calculated forλ ∈ [−1, 1]. The adjustment amount of aggregate

loss due to the dependence can be numerically calculated as

Pins = Eλ[min(S4, L)] − E0[min(S4, L)] for insurer
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Pre = −Pins for reinsurer (3.17)

whereEλ[·] and E0[·] are the expectations with respect to the aggregate distribution functions

corresponding to the dependent(λ 6= 0) and independent(λ = 0) cases. The equation (3.17) holds

true since the two areas overlapped by any two curves of the distributions in the Fig. 3.2 are equal.

The expected aggregate loss amount under the independence assumption can be adjusted to the

amount under certain dependence between losses by multiplying the adjustment coefficients corre-

sponding to each retentionL in the following manner. Suppose that insurer or reinsurer calculated

its aggregate loss amount under the independence assumption. The adjustment coefficient, the ra-

tio of the expected aggregate loss amount under dependence to the amount under independence,

can be calculated as follows.

cins =
Eλ[min(Sn, L)]

E0[min(Sn, L)]
,

cre =
E[Sn] − Eλ[min(Sn, L)]

E[Sn] − E0[min(Sn, L)]
=

nE[X1] − Eλ[min(Sn, L)]

nE[X1] − E0[min(Sn, L)]

for insurer and reinsurer, respectively. Table 3.6 is the summary of the numerical values of the

expectations and the amounts of adjustment due to the dependence. It is immediate from Table

3.6 and Fig. 3.6 that if dependence is not accounted for in stop-loss pricing, insurer(reinsurer) is

always less(over) charged for all retention levelL > 0 when each subsequent losses are negatively

correlated. In the same manner, insurer(reinsurer) is always over(less) charged for all retention

levelL > 0 when each subsequent losses are positively correlated. Theadjustment coefficients in

Table 3.6 can be used to correct the discrepancy caused by thedependence for the aggregate loss

amount coverd by the insurer and reinsurer if losses are dependent with Markov property.
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Figure 3.6 Aggregate loss amount covered by insurer and reinsurer in stop-loss insurance at
retention levelL. Left: Unit mean exponential marginals and Farlie-Gumbel-Morgenstern

copulas withλ = −1 (dashed),λ = 0 (solid),λ = 1 (dotted). Right: Unit mean Pareto(4.0,3.0)
marginals and Gaussian copulas withθ = −0.7 (dashed)θ = 0 (solid),θ = 0.7 (dotted).
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λ = 0 λ = −1 λ = 1

L E0[·] Eλ[·] cins cre Eλ[·] cins cre

2.1 2.008573 2.059099 1.025155 0.9745651.922591 0.957192 1.041406

3.6 3.028855 3.156010 1.041981 0.8699462.851486 0.941440 1.177694

4.8 3.508838 3.631421 1.034935 0.7543663.335304 0.950544 1.340432

6.3 3.812538 3.887058 1.019546 0.6195483.695597 0.969327 1.578174

7.2 3.901152 3.948849 1.012227 0.5558763.819998 0.979197 1.720920

7.8 3.937759 3.971578 1.008588 0.5226493.876712 0.984497 1.808656

9.3 3.985425 3.997622 1.003061 0.4753843.958980 0.993365 1.973333

11.7 4.008183 4.008411 1.000057 0.5009424.003868 0.998923 1.992191

θ = 0 θ = −0.7 θ = 0.7

L E0[·] Eθ[·] cins cre Eθ[·] cins cre

2.4 1.870399 2.010100 1.074691 0.9344001.589323 0.849724 1.131985

3.9 2.684855 2.858933 1.064837 0.8676362.262259 0.842600 1.321331

5.1 3.067392 3.183525 1.037861 0.8754752.625897 0.856068 1.473398

6.6 3.343818 3.392542 1.014571 0.9257472.940841 0.879486 1.614125

7.5 3.445358 3.466240 1.006061 0.9623513.078798 0.893607 1.660896

8.1 3.495988 3.502803 1.001949 0.9864783.155172 0.902512 1.676206

9.6 3.583456 3.566245 0.995197 1.0413193.305100 0.922322 1.668250

11.7 3.652033 3.616677 0.990319 1.1016083.447319 0.943945 1.588316

Table 3.6 Insurer’s and reinsurer’s amount of loss and the adjustment coefficientscins, cre for
each retention levelL whereE∗[·] = E∗[min(X1 + · · · + X4, L)]. Top: Unit mean exponential

marginals and Farlie-Gumbel-Morgenstern copulas. Bottom: Unit mean Pareto(4.0,3.0) marginals
and Gaussian copulas.
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3.6 Conclusions

We introduce a decomposition of a pool of risks into disjointmaximal Markov sequences in

order to obtain a smaller size of equivalent risk pool. Considering the random variables in a max-

imal Markov sequence, we present a computational method forthe aggregate loss distribution of

non-identical and dependent random variables. We provide an application of the method with a

sequence of pairwise bivarate copulas to implement the dependence among losses with numerical

examples. Actuarial applications of the computational method are also given; Bayesian premi-

ums are calculated conditioning on the sum of past observations and we examine the impact of

dependence on stop-loss insurance.
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Chapter 4

Asymptotic Super(Sub)additivity of the Value-at-risk of Regu-
larly Varying Random Variables

This chapter is based on the paper by Jang and Jho (2008b). Value-at-risk has been one of the

most popular methods of risk management because of its simplicity and downside risk measure-

ment. Recently, it has gained popularity in quantifying theoperational risks of banks and insurance

companies since the Basel II proposed advanced measurementapproach (AMA) requiring quan-

titative method based on the company’s internal and external empirical data (Basel Committee on

Banking Supervision, 2004). Value-at-risk often fails to measure the financial and operational risks

because of its lack of subadditivity and stability. In the context of the value-at-risk measure, there

are two major issues of concern in this chapter, dependence and heavy-tailedness. According to

the principle proposed by Basel II, operational risks are classified into eight business lines and

seven event types. Applying the standardized classification matrix of operational risks, the total

aggregate loss can be modeled by

Y (t) = Y1(t) + · · ·+ Yd(t) (4.1)

where eachYi(t) represents for the individual aggregate loss of each line ofbusiness (or event

type) such that

Yi(t) =

Ni(t)
∑

k=1

Y
(i)
k , t ≥ 0 (4.2)
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whered is a positive integer andY (i)
k are the individual losses independent of the appropriate

counting processesNi(t) for t > 0.

The above risk model has been widely used in the presence of certain dependence structure

among losses in numerous papers. Value-at-risk becomes a coherent measure under certain multi-

variate structure such as elliptical distributions (Embrechts et al., 2002). Embrechts et al. (2003)

introduced the concept of copula to find the bound of the value-at-risk of the aggregate risk. Mes-

fioui and Quessy (2005) discussed the bounds on the value-at-risk for the sum of possibly depen-

dent risks when only partial information is available aboutthe dependence structure by way of

copulas. Chavez-Demoulin et al. (2006a,b) also consideredthe aggregate loss of compound type

and discussed whether the subadditivity of the value-at-risk holds or not when the severity dis-

tributions are very skewed or extremely heavy-tailed or there exists a special dependence among

losses. Wüthrich (2003) and Alink et al. (2004) considered afinite sum of identically distributed

continuous random variables with Archimedean copula the generator of which is regularly vary-

ing. The authors showed that the value-at-risk of the aggregate loss is asymptotically proportional

to the value-at-risk of the individual loss. Böcker and Klüppelberg (2006, 2005) considered a

d-dimensional compound Poisson processY (t) = (Y1(t), . . . , Yd(t))t≥0 and developed a multi-

variate loss distribution under Levy copula framework to model the dependence between different

operational risk cells of the classification matrix. They derived asymptotic approximation of the

value-at-risk of the total aggregate loss under the assumption of certain multivariate model such

that the severity distributions are subexponential, the counting processes are Poisson, and the de-

pendence is modeled by Levy copulas.

In this chapter we consider two risk processes (4.1) and (4.2) with quite general dependence

structure among losses with heavy tails. Suppose we are given the parametric forms or the esti-

mates of the distributions ofY1, · · · , Yd for a fixed timet > 0. In particular, ifYi’s are independent,

the total aggregate loss distribution is simply the convolution of FYi
,

FY (x) = FY1 ⋆ · · · ⋆ FYd
(x).
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However, we don’t have much knowledge about the exact form ofthe aggregate distribution when

losses are dependent. The numerical computation ofP(Y1+· · ·+Yd ≤ y) of dependent variables is

also very difficult in higher dimensions. Most of well-knownrecursive formulae following Panjer’s

recursion (Panjer, 1981) assume that losses are independent or integer-valued. The computation

of the individual aggregate loss distribution,FYi(t), is even more sophisticated since it involves

the counting processesNi(t) instead of the deterministic value for the loss occurrences. In order

to avoid time-consuming numerical computation, we may approximate the value-at-risk of the

aggregate loss by the sum of the individual value-at-risks.However, this simple method often

fails to calibrate correct measure of risks since the value-at-risk is not a coherent risk measure

(Artzner et al., 1999). Therefore it is very risky to assume the subadditivity or comonotonicity of

the value-at-risk, and it may provide even worse risk measurement when losses are from the family

of heavy-tailed distributions such as infinite mean loss random variables (Chavez-Demoulin et al.,

2006a).

Danielsson et al. (2005) showed that the value-at-risk satisfies the subadditivity in the tail region

when losses follow the multivariate regularly varying distributions with extreme value indexα >

1. However, the condition thatα > 1 doesn’t include the case of the extremely heavy-tailed

losses while it has been observed that insurance and financial risks often show the existence of

extreme heavy-tailedness such as subexponential distributions or regularly varying distributions

with 0 < α ≤ 1. Moscadelli (2004) mentioned the empirical observation ofthe heavy-tailedness

of the operational risks and Chavez-Demoulin et al. (2006a)also discussed the extreme behavior

of the infinite mean distributions in the tail and presented many illustrations. In sum, it is not

much known whether the subadditivity of the value-at-risk exists for the risks with extreme heavy-

tails. It naturally raises a question that the superadditivity of the value-at-risk may exist in the tail

when losses are extremely heavy-tailed or dependent, and ifit does, what would be the sufficient

conditions.

The following is the outline of this chapter. In section2, we discuss the classical convolution

theorem for regularly varying random variables and introduce the concept of the negligible joint
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tail probability. We provide a sufficient condition of the joint distribution to generalize the convo-

lution theorem when the random variables are not necessarily independent with regularly varying

tails. Applying the result, we derive the relationship between the extreme value indices of the

regularly varying distributions and the asymptotic properties of the value-at-risk in the presence

of dependence. In section3, we present numerical examples of the super(sub)additivity of the

value-at-risk of regularly varying random variables undercopula framework of dependence. We

conclude afterwards.

In this chapter we follow usual functional notations;Xi identical regularly varying random

variables not necessarily independent,Fi marginal distribution functions ofXi, H the joint distri-

bution function of{Xi}, and∼ asymptotic equivalence atx0 ∈ [−∞,∞] in the following sense,

a(x) ∼ b(x) if and only if lim
x→x0

a(x)

b(x)
= 1.

for real-valued functionsa(x) andb(x).

4.1 Aggregate Distributions of Regularly Varying Random Variables

If Xi are independent, the distribution of the sum is the convolution of the distributions of

Xi. However, ifXi are dependent, convolution formula can’t be applied to find the aggregate

distribution. In this section we provide a sufficient condition for the dependence structure among

random variables to generalize Feller’s convolution theorem with respect to the sum of random

variables.

4.1.1 Convolution Theorem

The convolution of distribution functionsF, G is defined by

F ⋆ G (s) =

∫ ∞

−∞
G(s − x) dF (x). (4.3)
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It is well-known that the convolution of distributions is a distribution function and ifG is bounded

and continuous, then so isF ⋆ G (Feller, 1971). For any independent random variablesX, Y with

distributionsF, G, the distribution of the sumX + Y can be written as

P(X + Y ≤ s) = F ⋆ G (s). (4.4)

Similarly, n-convolutions of distributionsF1, . . . , Fn can be defined recursively forn ≥ 2 and the

distribution function of the independent sumX1 + · · · + Xn can be written asF1 ⋆ · · · ⋆ Fn.

A distributionF on [0,∞) is called subexponential if̄F (x) > 0 for everyx and

lim
x→∞

F n⋆(x)

F̄ (x)
= n (4.5)

for each positive integern ≥ 2 whereF̄ (x) is the tail of the distributionF defined by1 − F (x)

andF n⋆ is then-convolution of the distributionF . We denote the family of distributions satisfying

(4.5) byS. The family of subexponential distributions includes the following distributions;

1. Pareto:F (x) = 1 −
(

β
x+β

)α

, α > 0, β > 0,

2. Lognormal:F (x) = Φ
(

log x−µ
σ

)

, µ ∈ R, σ > 0,

3. Weibull distribution :F (x) = 1 − e−cxτ

, c > 0, 0 < τ < 1.

Subexponential distributions have been widely used for extreme loss modeling since it satisfies

the max-sum equivalence fori.i.d random variables. Suppose thatX1, . . . , Xn are independent

and identically distributed with distribution functionF ∈ S. Then

P(max(X1 + · · ·+ Xn) > x) = 1 − F n(x)

= F (x)
n−1
∑

k=0

F k(x)

∼ nF (x), x → ∞.
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SinceP(X1 + · · ·+ Xn > x) = F n⋆(x) ∼ nF (x), the following max-sum equivalence holds;

P(X1 + · · ·+ Xn > x) ∼ P(max(X1, · · · , Xn) > x)

which can be interpreted that the extreme of the aggregate loss is due to a single extreme loss and

other losses are negligible compared to the extreme (Cai andTang, 2004).

It is easy to verify that the convolution ofi.i.d random variables inS is also subexponential.

Embrechts and Goldie (1980) showed that forF, G ∈ S,

F ⋆ G ∈ S if sup
x>0

F (x)

G(x)
< ∞.

Therefore if we setF = G, it is immediate to getF 2⋆ ∈ S. Sincesupx>0
F n⋆(x)

F (x)
< ∞, for all

n ≥ 2, the closure property ofn-convolution ofi.i.d subexponential random variables follows by

induction. However, the family of subexponential distributions doesn’t satisfy the max-sum equiv-

alence in general and it is also well-known since Leslie (1989) that subexponential family is not

closed under convolutions, i.e. ifX1 andX2 are not identical butF1, F2 ∈ S, it is possible that

F1 ⋆ F2 /∈ S

P(X1 + X2 > x) ≁ P(max(X1, X2) > x)

for F1, F2 ∈ S.

Let us consider a proper subset of the subexponential familysatisfying either convolution clo-

sure or max-sum equivalence. Note that there are other classifications of distributions with respect

to the asymptotic tail probability as follows.

1. Long-tailed:F ∈ L if

lim
x→∞

F (x − t)

F (x)
= 1, for any t > 0.
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2. Subexponential:F ∈ S if

lim
x→∞

F ⋆n(x)

F (x)
= n, for any n ≥ 2.

3. Dominated varying:F ∈ D if

lim sup
x→∞

F (tx)

F (x)
< ∞, t ∈ (0, 1).

4. Consistent varying:F ∈ C if

lim
y↑1

lim
x→∞

F (tx)

F (x)
= 1.

5. Extended regular varying:F ∈ E if

lim inf
x→∞

F (tx)

F (x)
≥ t−α for some α ≥ 0, all t ≥ 1.

6. Regularly varying:F ∈ R−α if

lim
x→∞

F (tx)

F (x)
= t−α for a parameter α ≥ 0 and every t > 0.

We restrict the distributions in this chapter to the family of regularly varying distributions,R−α

for α > 0. A positive functionL defined on[0,∞) is said to vary slowly at infinity if and only if

lim
x→∞

L(tx)

L(x)
= 1 for every t > 0.

A distribution functionF varies regularly with the extreme value indexα if and only if it is of the

form F̄ (x) = x−αL(x) for some slowly varying functionL(x). The family of regularly varying

distributions is a proper subset of the subexponential family and as a matter of fact the following

is true. For everyα > 0,

R−α ⊂ E ⊂ C ⊂ D ∩ L ⊂ S ⊂ L. (4.6)
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The max-sum equivalence is valid inR−α for α > 0 if we assume independence. Cai and

Tang (2004) proved that it holds for the larger classesC andD ∩ L. Regularly varying distribu-

tions,R−α, also satisfy the convolution closure property under the independent assumption due

to Feller (1971). Therefore the family of regularly varyingdistributions is a proper subset of the

subexponetial family satisfying both of the convolution closure and the max-sum equivalence for

independent random variables. Here we state, for the convenience, Feller’s outstanding result of

convolutions of regularly varying distributions (Feller,1971).

Theorem 4.1 If F1 andF2 are two distribution functions such that

1 − Fi(x) = x−αLi(x)

with α > 0 andLi slowly varying for eachi = 1, 2, then the convolutionG = F1 ⋆ F2 varies

regularly such that

1 − G(x) ∼ x−α
(

L1(x) + L2(x)
)

(4.7)

asx → ∞.

For the proof of the theorem, see Feller (1971) or Embrechts et al. (1997). Then-dimensional

convolution theorem is an immediate consequence of (4.7), which can be stated as1 − G(x) ∼

x−α(L1(x) + · · ·+ Ln(x)) whereG = F1 ⋆ · · · ⋆ Fn.

4.1.2 Dependent Regularly Varying Random Variables

In this section we discuss the analogous properties of the convolution closure and max-sum

equivalence for regularly varying random variables not necessarily independent. We present a

sufficient condition of the joint distributionH of X1, · · · , Xn for the following two properties; If

Xi ∈ R−α for α > 0,

1. Max-sum equivalence of regularly varying random variables not necessarily independent:

P(X1 + · · ·+ Xn > s) ∼ P(max(X1, . . . , Xn) > s), (4.8)

ass → ∞ and
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2. Closure property of the distributions of regularly varying random variables not necessarily

independent:

P(X1 + · · · + Xn ≤ s) ∈ R−α. (4.9)

Definition 4.2 Let X1 andX2 be random variables not necessarily independent with regularly

varying tails. Denote the marginals and joint distributionfunctions byF1, F2, andH, respectively.

Denote the joint tail probability ofH by Ĥ such that

Ĥ(x1, x2) = P(X1 > x1, X2 > x2)

Then the tail probability of the joint distribution is called negligiblecompared to those of marginal

distributions if and only if
Ĥ(t, t)

F̄1(t) + F̄2(t)
→ 0 (4.10)

ast → ∞. If (4.10) holds, the random variables{X1, X2} or the joint distributionH are called to

satisfy thenegligible joint tail condition.

The above definition (4.10) is equivalent to the sufficient condition

lim
x,y→∞

1 − FX(x) − FY (y) + HX,Y (x, y)

1 − HX,Y (x, y)
= 0.

for the asymptotic independence ofmax(X1, · · · , Xn) andmax(Y1, · · · , Yn), even thoughXi and

Yi are not independent (Johnson and Kotz, 1972).

If we assume the independence ofX1 and X2, the tail probability of the joint distribution

H is always negligible sincêH(x, y) = F̄1(x)F̄2(y). The family of distributions satisfying the

negligible joint tail condition includes many well-known distribution families such as

1. The bivariate normal distribution with|ρ| < 1.

2. Bivariate distribution of type

H(x1, x2) = F1(x1)F2(x2)(1 + λF̄1(x1)F̄2(x2)).
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3. Bivariate exponential distributions of type

H(x1, x2) = 1 − e−x1 − e−x2 − exp(−x1 − x2 − θx1x2)

for x1, x2 > 0, and0 ≤ θ ≤ 1.

4. The bivariate logistic distribution

H(x1, x2) = (1 + e−x1 + e−x2)−1.

For more details of the examples, see Johnson and Kotz (1972).

Remark 4.3 If Xi are regularly varying with the same extreme value indexα > 0 such that

F i = x−αLi(x), the negligible joint tail condition in Definition 4.2 is equivalent to the following

asymptotic tail condition.

Ĥ(δ1t, δ2t)

F̄1(c1t) + F̄2(c2t)
→ 0 (4.11)

asx → ∞ for any positive real numbersδ1, δ2, c1, andc2.

Before we show that two statements (4.8) and (4.9) hold if thejoint distribution satisfies the

negligible joint tail condition, we give an example of a bivariate distribution with a copula satisfy-

ing the negligible joint tail condition in Definition 4.10. Definitions and properties of copulas can

be found in many textbooks and papers such as Nelsen (1999).

Example 4.4 Let X1 and X2 be the regularly varying random variables not necessarily inde-

pendent. Suppose that there exists a copulaC such thatH(x1, x2) = C(F1(x1), F2(x2)) and

the copula densityc(u, v) is bounded by some constantM > 0 on [1 − δ, 1]× [1 − δ, 1] for

some real0 ≤ δ < 1. A simple example is Farlie-Gumbel-Morgenstern copula defined by

C(u, v) = uv + λuv(1 − u)(1 − v) for −1 ≤ λ ≤ 1. Due to the boundedness of the copula

density, the joint tail probability is also bounded by the product of two marginal tail probabilities
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up to constant, i.e.

Ĥ(t, t) =

∫ ∞

t

∫ ∞

t

c
(

F1(x1), F2(x2)
)

f1(x1)f2(x2) dx1dx2 ≤ MF̄1(t)F̄2(t)

whereM is the upper bound of the copula density. Then

H̄(t, t)

F̄1(t) + F̄2(t)
≤

MF̄1(t)F̄2(t)

F̄1(t) + F̄2(t)
≤ M

ǫ2

2ǫ
=

M

2
ǫ

which vanishes ast → ∞ sinceǫ is arbitrarily small. Therefore the tail probability of thejoint

distributionH is negligible compared to those of marginal distributions.�

Suppose we have dependent random variables belonging to thesame family of regularly vary-

ing distributions,R−α for someα > 0. If the tail behavior of the joint distribution is not extraordi-

nary, we may assume the negligible joint tail condition. By Theorem 4.7 and Corollary 4.8 in the

following, we prove two statements (4.8) and (4.9) hold inR−α, if the joint distribution satisfies

(4.10). Beforehand, we need the following lemma.

Lemma 4.5 Suppose that the random variablesX1 andX2 are not necessarily independent and

the distributionsF1 andF2 vary regularly with the same extreme value indexα ≥ 0 such that

1 − Fi(x) = x−αLi(x)

with Li slowly varying for eachi = 1, 2. If the joint distribution satisfies the negligible joint

tail condition in (4.10), the distribution ofX1 + X2 denoted byG varies regularly with the same

extreme value indexα such that

1 − G(x) ∼ x−α(L1(x) + L2(x)) (4.12)

asx → ∞.
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Proof: We follow Feller with a slight modification which is necessary in case of dependent random

variables. Putt
′
=(1+δ)t. LetE be the event of{X1+X2>t}. Then,E will include the set{E1∪E2}

whereE1={X1>t
′
,X2>−δt}, andE2={X2>t

′
,X1>−δt}. Now letE3=E1 ∩ E2={X1>t

′
,X2>t

′
}.

Then, for a givenǫ > 0 andδ > 0, there exists a sufficiently larget such that

P(E1) + P(E2) = Ĥ(t
′

,−δt) + Ĥ(−δt, t
′

) ≥ (1 −
ǫ

2
)(F̄1(t

′

) + F̄2(t
′

)).

Moreover,Ĥ(t
′
, t

′
) is bounded byǫ(F̄1(t

′
) + F̄2(t

′
)) for a sufficiently larget due to the negligible

joint tail probability assumption. Therefore, the tail probability of X1 + X2 is bounded below as

follows.

1 − G(t) = P(E) ≥ P(E1) + P(E2) − P(E3)

= Ĥ(t
′

,−δt) + Ĥ(−δt, t
′

) − Ĥ(t
′

, t
′

)

≥ (1 −
ǫ

2
)(F̄1(t

′

) + F̄2(t
′

)) −
ǫ

2
(F̄1(t

′

) + F̄2(t
′

))

= (1 − ǫ)(F̄1(t
′

) + F̄2(t
′

)).

Similarly, in order to find the upper bound of1 − G(t), we putt
′′

= (1 − δ)t with 0 < δ < 1
2
.

ThenE will be included in the setD1 ∪ D2 ∪ D3 whereD1 ={X1 >t
′′
}, D2 ={X2 >t

′′
}, and

D3={X1>δt,X2>δt}. Then

1 − G(t) = P(E) ≤ P(D1) + P(D2) + P(D3)

= F̄1(t
′′

) + F̄2(t
′′

) + Ĥ(δt, δt)

≤ (F̄1(t
′′

) + F̄2(t
′′

)) + ǫ(F̄1(t
′′

) + F̄2(t
′′

))

= (1 + ǫ)(F̄1(t
′′

) + F̄2(t
′′

))

by the negligible joint tail condition and Remark 4.3. Sinceǫ andδ are arbitrarily small,1−G(t) ∼

F̄1(t) + F̄2(t) = t−α(L1(t) + L2(t)), which completes the proof.�

The above lemma asserts that the sum of two dependent random variables in the same family

of regular variationR−α also belongs to the same familyR−α if they satisfy the negligible joint

tail condition. Lemma 4.5 can be generalized for the aggregate distribution of regularly varying
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random variablesX1, . . . , Xn not necessarily independent. Beforehand we need the generalized

definition of the negligible joint tail condition.

Definition 4.6 A sequence of random variables{X1, X2, . . .} is called to satisfy the negligible

joint tail condition if and only if any pair{Xi, Xj} of the sequence satisfies the negligible joint tail

condition in Definition 4.2.

The following theorem is an immediate consequence of Lemma 4.5 and Definition 4.6, which

provides the sufficient condition for the closure property of the distributions of dependent regularly

varying random variables in (4.9).

Theorem 4.7 If X1, . . . , Xn ∈ R−α and satisfy the negligible joint tail condition in Definition 4.6,

the aggregate distributionG of X1, . . . , Xn varies regularly such that

1 − G(x) ∼ x−α(L1(x) + · · ·+ Ln(x))

asx → ∞ whereFi(x) = x−αLi(x) for some slowly varying functionLi(x).

Proof:

It suffices to show the closure property in casen = 3. The general case will follow by induction.

Let S2 = X1 + X2 andt
′′

= (1 − δ)t for 0 < δ < 1/2. The event{S2 > t, X3 > t} is included by

{X1 > t
′′
, X3 > t} ∪ {X1 > δt, X2 > δt, X3 > t} ∪ {X2 > t

′′
, X3 > t}, and hence for anyǫ > 0

andt sufficiently large

HS2,X3(t, t)

F S2(t) + F 3(t)
≤

H1,3(t
′′
, t) + H1,2,3(δt, δt, t) + H2,3(t

′′
, t)

F 1(t) + F 2(t) + F 3(t)

≤
H1,3(t

′′
, t)

F 1(t) + F 3(t)
+

H1,2(δt, δt)

F 1(t) + F 2(t)
+

H2,3(t
′′
, t)

F 2(t) + F 3(t)

< ǫ

by Remark 4.3. Sinceδ, ǫ are arbitrarily small,{S2, X3} satisfies the negligible joint tail condition

with the joint distributionHS2,X3. By Theorem4.5,
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1 − G(x) ∼ FS2(x) + FX3(x)

∼ x−α
(

L1(x) + L2(x) + L3(x)
)

which completes the proof.�

Now we prove the max-sum equivalence of dependent regularlyvarying random varialbes in

(4.8) in the following corollary.

Corollary 4.8 If X1, . . . , Xn ∈ R−α and satisfy the negligible joint tail condition, the followings

are true.

1. Max-sum equivalence: P(max(X1, . . . , Xn) > x) ∼ P(X1 + · · ·+ Xn > x),

2. Max-stability: P(max(X1, . . . , Xn) ≤ x) ∈ R−α.

Proof:

Let Mn = max(X1, . . . , Xn) andĤ be the joint tail probability as in Definition 4.2. The proof is

by induction onn. Forn = 2, by Lemma 4.5,

P(M2 > x) = F X1(x) + F X2(x) − ĤX1,X2(x, x)

=
(

F X1(x) + F X2(x)
)

(

1 −
ĤX1,X2(x, x)

F X1(x) + F X2(x)

)

∼ F X1(x) + F X2(x)

∼ P(X1 + X2 > x)

asx → ∞ and henceP(M2 ≤ x) ∈ R−α. Suppose the above asymptotic relation holds for

k ≤ n − 1, then{Mn−1, Xn} satisfies the negligible joint tail condition sinceP(Mn−1 > x) ∼

P(X1 + · · · + Xn−1 > x) and

P(Mn > x) = F Mn−1(x) + F Xn(x) − ĤMn−1,Xn(x, x)

=
(

FMn−1(x) + FXn(x)
)

(

1 −
ĤMn−1,Xn(x, x)

F Mn−1(x) + F Xn(x)

)

∼ F Mn−1(x) + F Xn(x) ∼ FX1(x) + · · ·+ F Xn(x)

∼ P(X1 + · · · + Xn > x)
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and henceP(Mn ≤ x) ∈ R−α, which proves both of the assertions.�

4.2 Value at Risk of Regularly Varying Random Variables

In this section we first consider a simple risk process of the total aggregate lossY = Y1 +

· · ·+Yd for a positive integerd where the regularly varyingYi are not necessarily independent. We

apply Theorem 4.7 to classifyR−α into three categories, asymptotic superadditivity, asymptotic

comonotonic, and asymptotic subadditivity correspondingto the extreme value indexα > 0. The

individual aggregate lossYi(t)t≥0 is also considered as a compound type generated by a general

counting processNi(t) with finite means and we present the analogous result of the asymptotic

properties of the value-at-risk.

4.2.1 Value at Risk of the Total Aggregate Loss

Simply speaking, the value-at-risk of a random variable atp confidence level is defined by

the p-quantile of its distribution, which can be interpreted as aprobable maximum loss that an

institution may experience for a given period of time. Sincea distribution function of a continuous

random variable is generally assumed to be right-continuous, the value-at-risk can be formally

defined by the generalized inverse of the distribution as follows.

Definition 4.9 Let F be the distribution function of a random variableX, then the value-at-risk of

X atp level of confidence for0 < p < 1 is defined by

V aRp(X) = inf{x ∈ R|F (x) ≥ p}.

The subadditivity of value-at-risk doesn’t hold in general. There is a partial result in the family of

multivariate regularly varying distributions when the extreme value indexα > 1 (Danielsson et al.,

2005). However, multivariate regularly varying distributions are different in nature from arbitrary

multivariate distributions with regularly varying marginal distributions. Moreover, the extremely

heavy-tailed regularly varying distributions have extreme value indices such as0 < α < 1, in

which interval ofα, we don’t have much knowledge of the subadditivity. In the following two
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theorem we discuss the asymptotic properties of the value-at-risk of regularly varying random

variables under the assumption of the negligible joint tailprobability. As a result the family of the

regularly varying distributions are classified into three subfamilies corresponding to the extreme

value indicesα > 0.

Theorem 4.10 Let X1, . . . , Xn be identical but not necessarily independent random variables the

distributions of which vary regularly such thatFi(x) = x−αL(x) for some slowly varying function

L(x) andα > 0. Further we assume that the distribution functions ofXi are continuous almost

everywhere for alli = 1, . . . , n. If X1, . . . , Xn satisfy the negligible joint tail condition, there

exists a realp0 ∈ (0, 1) such that for all positivep ∈ [p0, 1],

i) (Subadditivity) Forα > 1

VaRp(X1 + · · · + Xn) ≤ VaRp(X1) + · · ·+ VaRp(Xn). (4.13)

ii) (Asymptotic Comonotonicity) Forα = 1

VaRp(X1 + · · ·+ Xn) ∼ VaRp(X1) + · · · + VaRp(Xn) (4.14)

where∼ indicates the asymptotic equivalence asp → 1−.

iii) (Superadditivity) For0 < α < 1

VaRp(X1 + · · · + Xn) ≥ VaRp(X1) + · · ·+ VaRp(Xn). (4.15)

Proof:

Let Sn = X1 + · · ·+ Xn and writev1 = VaRp(X1) andvn = VaRp(Sn) for a fixed positive integer

n. Because we assume the distribution function is continuousalmost everywhere, we may assume

P(X1 ≤ v1) = P(Sn ≤ vn) = p for the following without loss of generality. By Theorem 4.7,

whetherXi are independent or not,1 − p = P(Sn > vn) ∼ nP(X1 > vn) asp → 1−. Then for

any givenǫ > 0, there exists ap0 ∈ (0, 1) close enough to1 such that for allp ∈ (p0, 1),

(1 − ǫ)
1 − p

n
< P(X1 > vn) < (1 + ǫ)

1 − p

n
. (4.16)
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Similarly, sinceF̄1 is regularly varying,P(X1 > nv1) ∼ n−α
P(X1 > v1) and

(1 − ǫ)n−α
P(X1 > v1) < P(X1 > nv1) < (1 + ǫ)n−α

P(X1 > v1). (4.17)

Subtracting (4.16) from (4.17), we have

(1 − p)(
1 − ǫ

nα
−

1 + ǫ

n
) < F̄1(nv1) − F̄1(vn) < (1 − p)(

1 + ǫ

nα
−

1 − ǫ

n
). (4.18)

For0 < α < 1, asp approach to1, ǫ gets arbitrary small and the lower bound of (4.18) eventually

becomes positive, thus there existsp0 ∈ (0, 1) such that0 < F̄1(nv1) − F̄1(vn) for all p ∈ (p0, 1).

Since F̄1(x) is a monotone decreasing function, we concludevn ≥ nv1 which proves the last

assertion (4.15) and the other cases, (4.13) and (4.14), will follow immediately in the same manner.

�

The above theorem can be used to approximate the minimum capital requirement of the total

aggregate lossY = Y1 + · · · + Yd for 0 < α < 1 and the upper bound of the capital requirement

for α > 1 by d VaRp(Y1) for 0 < p < 1 sufficiently close to 1.

4.2.2 Value at Risk of the Individual Aggregate Loss

For the risk modeling of individual aggregate lossYi(t), it is more desirable to apply a continuous-

time risk process with appropriate counting process as in (4.2). Suppose that the individual aggre-

gate lossYi(t) for eachi is of compound type generated byNi(t), the number of losses up to time

t > 0, independent of eachYi(t) such that

Yi(t) =

Ni(t)
∑

k=1

Y
(i)
k . (4.19)

It is not clear that the risk process of compound distribution of (4.19) is subexponential or regu-

larly varying when the random variables are identically subexponetial or regularly varying but not

necessarily independent. Embrechts et al. (1997) showed that the compound distribution ofi.i.d

subexponential random variables is again subexponential under quite general counting processes,

i.e. if F
Y

(i)
k

is subexponetial for eachk, then the aggregate distribution of the compound type of
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(4.19),

FYi(t)(x) =
∞

∑

k=0

qk(FY
(i)
k

)k⋆(x) x ≥ 0 (4.20)

is again subexponential whenqk = P(Ni(t) = k) and
∑∞

k=0 qk(1+ǫ)k < ∞ for someǫ > 0. In the

following theorem, we show an analogous result of Theorem 4.10 with respect to the individual

aggregate lossYi(t) for any fixedt > 0.

Theorem 4.11 Let {X1, X2, . . .} be a sequence of identical but not necessarily independent ran-

dom variables such thatFi(x) = x−αL(x) for some slowly varying functionL(x) andα > 0.

Further we assume that the distribution functions ofXi are continuous almost everywhere for all

i = 1, 2, . . .. LetNt = N(t) be a counting process such thatE[Nt] < ∞ for t > 0. If the sequence

{X1, X2, . . .} satisfies the negligible joint tail condition, there existsa realp0 ∈ (0, 1) such that for

all positivep ∈ [p0, 1],

i) (Subadditivity) Forα > 1

VaRp

(

Nt
∑

i=1

Xi

)

≤ E[Nt]VaRp(X1). (4.21)

ii) (Asymptotic Comonotonicity) Forα = 1

VaRp

(

Nt
∑

i=1

Xi

)

∼ E[Nt]VaRp(X1) (4.22)

where∼ indicates the asymptotic equivalence asp → 1−.

iii) (Superadditivity) For0 < α < 1

VaRp

(

Nt
∑

i=1

Xi

)

≥ E[Nt]VaRp(X1). (4.23)

Proof:

We prove (4.23) only and the other cases, (4.21) and (4.22), will follow in the same manner.

Suppose0 < α < 1 and writev1 = VaRp(X1) andvNt = VaRp(
∑Nt

i=1 Xi). Then

vNt =
{

w
∣

∣P(

Nt
∑

i=1

Xi ≤ w) = p
}

=
{

w
∣

∣ lim
n→∞

n
∑

k=0

[

P(Nt = k)P(

k
∑

i=1

Xi ≤ w)
]

= p
}

. (4.24)
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By Theorem 4.10,P(
∑k

i=1 Xi ≤ w) ∼ 1 − kP(X1 > w) asp → 1−, and hence

n
∑

k=0

[

P(Nt = k)P(

k
∑

i=1

Xi ≤ w)
]

∼ 1 −
n

∑

k=0

[

kP(Nt = k)
]

P(X1 > w) (4.25)

as andp → 1−. Combining (4.24) and (4.25), we have

vNt ∼
{

w
∣

∣1 − E[Nt]P(X1 > w) = p
}

asp → 1− andn → ∞. Therefore we can write

P(X1 > vNt) ∼ (1 − p)/E[Nt]

asp → 1−. SinceP(X1 > E[Nt]v1) ∼ E[Nt]
−α

P(X1 > v1), in the same manner as in the proof

of Theorem 4.10, for any givenǫ > 0, there exists a realp0 ∈ (0, 1) such that

(1 − p)(
1 − ǫ

E[Nt]α
−

1 + ǫ

E[Nt]
) < F̄1(E[Nt]v1) − F̄1(vNt).

for all p ∈ (p0, 1) where the lower bound becomes positive eventually and hence0 < F̄1(E[Nt]v1)−

F̄1(vNt) for all p ∈ (p0, 1). We concludevNt ≥ E[Nt]v1 which completes the proof.�

4.3 Numerical Examples

Let us consider the following total aggregate lossY = Y1 + Y2 + Y3, the sum of three individ-

ual aggregate losses. We assume that the marginal distributions of individual aggregate losses are

identically Pareto(α, β) distributed such that

1 − FYi
(y) =

( β

y + β

)α

for α, β > 0 andy ≥ 0. It is immediate that Pareto distributions with the shape parameterα > 0

belong to the family of regularly varying distributionsR−α. For α > 1 and a positive integer

k > α, k-th moments of Pareto(α, β) are as follows,

E[Y k] =
βkk

(α − 1) · · · (α − k)
.
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For 0 < α ≤ 1, however, no finite moments exist. Pareto distribution with0 < α < 1 is

well known as an extremely heavy-tailed loss distribution in insurance and operational risk. The

parameterα determines the maximum domain of attraction and it is one of the most important

indices in the family of extreme value distributions. For more about the extreme value theory, see

Embrechts et al. (1997).

For the dependence structure, we assume Markov property among Yi for the computational

convenience and choose the bivariate Gaussian copula with correlation coefficientρ for each sub-

sequent pair ofYi−1 andYi for i = 2, 3, defined by

C(ui−1, ui) = Φρ

(

Φ−1(ui−1), Φ
−1(ui)

)

whereΦρ andΦ−1 are the multivariate standard normal distribution and the inverse of the standard

normal distribution, respectively, withui = FYi
(yi) for i = 1, 2, 3.

Fig. 4.1 and Table 4.1 are the summary of the numerical value-at-risks whenα = 4.0, β = 1.0

and the correlation coefficientρ = 0.7 and−0.7. Comparing two graphs in Fig. 4.1, we can see

clear evidence of stronger diversification effect in the second graph due to the negative dependence

between subsequent losses. The negative dependence plays its role in such a way that large(or

small) losses are not likely to happen subsequently, which makes the aggregate distribution more

centered in the middle and less dispersed and explains the larger discrepancy between the curves

of the second graph.

The second numerical example in Fig. 4.2 and Table 4.2 is similar to the previous one except

different Pareto parametersα = 0.9, β = 0.2. As it was mentioned above, no finite moments

exist and the marginal distributions become extremely heavy-tailed. In this case, we observe that

the superadditivity exists on the entire domain. The dependence effect on diversification cannot

exceed the heavy-tailedness effect of the Pareto distribution with α < 1 under Gaussian copula

dependence.
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Figure 4.1 Value at risk of the total aggregate loss (solid line) vs. the sum of the value-at-risks of
the individual aggregate losses (dashed line). Left:ρ = 0.7, α = 4.0, β = 1.0. Right: ρ = −0.7,

α = 4.0, β = 1.0.

α = 4.0 β = 1.0 ρ = 0.7 α = 4.0 β = 1.0 ρ = −0.7

p V aRp(S3) 3V aRp(Y1) p V aRp(S3) 3V aRp(Y1)

0.524 0.700 0.612 0.384 0.700 0.387

0.621 0.900 0.824 0.589 0.900 0.746

0.697 1.100 1.042 0.724 1.100 1.139

0.755 1.300 1.264 0.808 1.300 1.534

0.819 1.600 1.602 0.881 1.600 2.109

0.865 1.900 1.947 0.921 1.900 2.667

0.920 2.500 2.646 0.961 2.500 3.755

Table 4.1 Value-at-risk of the total aggregate loss vs. the sum of the value-at-risks of the
individual aggregate losses withα = 4.0, β = 1.0 andρ = ±0.7.
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Figure 4.2 Value at risk of the total aggregate loss (solid line) vs. the sum of the value-at-risks of
the individual aggregate losses (dashed line). Left:ρ = 0.7, α = 0.9, β = 0.2. Right: ρ = −0.7,

α = 0.9, β = 0.2.

α = 0.9 β = 0.2 ρ = 0.7 α = 0.9 β = 0.2 ρ = −0.7

p V aRp(S3) 3V aRp(Y1) p V aRp(S3) 3V aRp(Y1)

0.455 0.800 0.578 0.225 0.800 0.197

0.561 1.200 0.897 0.415 1.200 0.490

0.682 2.000 1.541 0.623 2.000 1.175

0.749 2.800 2.187 0.721 2.800 1.877

0.792 3.600 2.834 0.777 3.600 2.572

0.844 5.200 4.126 0.838 5.200 3.946

0.906 9.600 7.654 0.906 9.600 7.677

Table 4.2 Value-at-risk of the total aggregate loss vs. the sum of the value-at-risks of the
individual aggregate losses withα = 0.9, β = 0.2 andρ = ±0.7.
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4.4 Conclusions

Assuming the existence of the diversification of risks in practice, we have taken it for granted

that the subadditivity of the value-at-risk holds. However, if risks are extremely heavy-tailed, it

is essential to find the lower bound of a given risk measure. Considering dependent loss random

variables with regularly varying tails, we present a sufficient condition of the joint distribution

and generalize the convolution theorem of regular variations. Applying the result, we classify the

family of regularly varying distributions into three subfamilies such as regularly varying distribu-

tions with asymptotic subadditivity, comonotonocity, andsuperadditivity which correspond to the

extreme value indexes,α > 1, α = 1, and0 < α < 1, respectively. In the numerical examples,

we observe that heavy-tailedness of the marginal distributions has much larger influence on the

value-at-risk measure than the dependence among losses above certain confidence level.
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Appendix A: Extreme Value Distributions

For an insurance riskX defined as a non-negative loss random variable, a sound modeling

of the risk or premium calculation has been the major goal of actuaries. Especially in property-

casualty insurance, pricing large claims or catastrophe losses are gaining attention because of rapid

increase of gross claim amount in recent market. Reinsurersalso have sought for mathematical or

empirical models of loss distributions with good fits of extremal events. Premiums should be

high enough to cover the insured if claims occur so that the company stays solvent with certain

confidence level even in case of catastrophe. Ruin problem inrisk theory is one of the mathematical

solutions to this question. For a long time extreme value theory has belonged to the standard tool

kits for reliability engineers. Although it has been widelyused in hydrology and climatology rather

than in insurance, it has been recently noted that the extreme value theory could be one solution to

the extreme events in insurance and operational risks.

A.1 Fisher-Tippet Theorem

Given a sequence ofi.i.d random variablesX1, · · · , Xn with common distributionF , denote

the maximum of the random variables byMn = max(X1, · · · , Xn). The fundamentalFisher-

Tippet theoremclassifies the possible limit laws of the maxima,Mn, asn → ∞, introducing

appropriate normalizing constantsan and bn. If there exist sequences of normalizing constants

an > 0, bn ∈ R and a non-degenerating distribution functionH such that

Mn − bn

an
−→ H (A.1)

in distributions, thenH belongs to one of the types as follows.
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

































































Fréchet Φα(x) =







0, if x ≤ 0

exp{−x−α}, if x > 0

Weibull Ψα(x) =







exp{−(−x)α}, if x ≤ 0

1, if x > 0

Gumbel Λ(x) = exp{−e−x}, if x ∈ R

(A.2)

The distributionF of a random variableX is said to belong to the maximum domain of attraction

of the extreme value distributionH and denoted byF ∈ MDA(H) if (A.1) is satisfied.

A.2 The Generalized Extreme Value Distributions

Extreme value distributions can be written as one parameterfunctions, so calledJenkinson-von

Mises representationwhich covers the three types of limiting distributions in (A.2). It is widely

accepted and called the (standard) generalized extreme value distribution and defined by

Hξ(x) =







exp{−(1 + ξx)−1/ξ}, if ξ 6= 0

exp{− exp(−x)}, if ξ = 0
(A.3)

where1 + ξx > 0 and ξ is called the extreme value index or tail index. The one-parameter

functional form classifies the extreme value distributionswith respect to the shape parameter as

follows.

Definition A.1 (Maximum Domain of Attractions) A distributionF belongs to a maximum do-

main of attraction ofHξ, denoted byF ∈ MDA(Hξ), if and only if there exist sequences of

constantsan > 0 andbn ∈ R such that

lim
n→∞

P(Mn ≤ anx + bn) = Hξ(x) (A.4)
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whereHξ is the generalized extreme value distribution with shape parameterξ as in (A.3). The

real sequencesan andbn are called normalizing constants for the maxima.

A.3 Approximation of the Extreme Value Distributions

The (standard) generalized extreme value distribution hasa close link to the (standard) gener-

alized Pareto distribution which is defined by

1 − Gξ(x) =







(1 + ξx)−
1
ξ , if ξ 6= 0

e−x, if ξ = 0
(A.5)

for x ≥ 0 if ξ ≥ 0 and0 ≤ x ≤ 1/ξ if ξ < 0. Introducing the scale and location parameters,β and

σ, the generalized Pareto distribution can be written asGξ;β,σ(x) by simple substitution ofx with

(x − σ)/β. Let us define the distribution of excesses over thresholdu by

Fu(x) = P(X − u ≤ x |X > u) =
F (x + u) − F (u)

F (u)
.

The distribution of scaled excesses over the high thresholdu can be approximated by the gener-

alized Pareto distribution which has the same extreme valueindexξ of the underlying distribution

F due to the followingBalkema-de Haan-Pickandstheorem.

Theorem A.2 For everyξ ∈ R, F ∈ MDA(Hξ) if and only if

lim
u→xF

sup
0<x<xF−u

∣

∣Gξ,β(u)(x) − Fu(x)
∣

∣ = 0

wherexF implies the right-end point ofF , andGξ is the generalized Pareto distribution with shape

and scale parameters,ξ and some positive functionβ(u) such that

G(x; ξ, β(u)) =







1 − (1 + ξx
β(u)

)−1/ξ, if ξ 6= 0

1 − exp(−x/β(u)), if ξ = 0
(A.6)
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for x ≥ 0 if ξ ≥ 0 and0 ≤ x ≤ −β(u)/ξ if ξ < 0.

Note thatβ is a function of the thresholdu. For more details, see Embrechts et al. (1997); Balkema

and de Haan (1974); Pickands (1975). Theorem A.2 provides usa theoretical justification to use

the generalized Pareto distribution for the tail approximation of the underlying loss distribution

above high enough threshold.
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Appendix B: Estimation of the Extreme Value Distributions

We introduce a maximum likelihood estimator of the threshold level over which the tail of loss

distribution can be approximated by an appropriate extremevalue distribution belonging to certain

maximum domain of attraction.

B.1 Shape Parameter Estimation of the Extreme Value Distributions

Let X1, . . . , Xn bei.i.d. loss random variables whose common distribution isFX(x) = P(X ≤

x) for x ≥ 0. Consider an excess of loss insurance with retentionM and limit L, M < L. The

claim amountY covered by reinsurer given that a lossX occurs is given by

Y =



















0, 0 ≤ X < M

(X − M), M ≤ X < M + L

L, M + L ≤ X

(B.1)

The problem of retention level in excess of loss insurance isas important as that of pricing. They

are of great relevance when we price high excess of loss layeror choose optimal retention level for

insurer or reinsurer. The family of extreme value distributions proves important in the study of the

limiting behavior of sample extrema,max(X1, . . . , Xn), as the normal distributions are essential

in the study of the limiting distributions for sample sumSn or sample meanX.

B.2 Threshold Estimation of the Mixture Distribution

The proposed model by Behrens et al. (2004) assumes that the observations below a thresh-

old u come from a certain distribution with parametersη, denoted byF1(x|η), where those above

the threshold come from a generalized Pareto distributionGξ,β(u)(x) which can be justified by

Theorem A.2. The shape parameterξ is determined by the maximum domain of attraction of

the underlying distribution such thatF1 ∈ MDA(Hξ) or should be estimated together with the

thresholdu. The layer(conditional layer) mixture distributionF (2) of F1 andGξ,β(u) introduced in
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Chapter 2 can be written as

F (2)(x|η, ξ, β(u)) =







F1(x|η) x < u

F1(u|η) + F 1(u|η) Gξ,β(u)(x − u) x ≥ u.
(B.2)

If we denote the parameters of our concern byθ = (η, ξ, β(u)) and rearrange the sample observa-

tions{X1, . . . , Xn} in increasing order by{Xn,n ≤ · · · ≤ X1,n}, the likelihood function can be

written as follows.

L(θ; x1, . . . , xn) =
n

∏

i=k+1

f1(xi,n|η)
k

∏

i=1

F 1(u|η) gξ,β(u)(xi,n) (B.3)

wheref1 andgξ,β(u) are the density functions ofF1 and the generalized Pareto distribution, respec-

tively andxk−1,n < u ≤ xk,n.

Behrens et al. (2004) referred to the elicitation of information within a parameterization on

which experts in that field are familiar with, the basic idea of which can be found in Coles and

Tawn (1996). Because analysis data in extreme values are usually sparse, information from experts

in specific field can play an important role to supplement the inferential information from the

data. In this manner, the authors used the experts information for the key parameters of prior

distributions above the threshold. When we have such reliable information at hand, it increase the

accuracy of the estimation by and large. If we had a prior distribution which can describe the true

behavior of the threshold, it would be the best choice of all.However, there is no way of statistical

testing that the elicitation of prior information is acceptable or not. In order to avoid assuming

specific parameter values of the prior distribution, we present a Bayesian method of the threshold

estimation conditioning on the number of exceedances in thefollowing section.
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B.3 Maximum Likelihood Estimation of the Threshold Conditi oning on the
Number of Exceedances

According to Theorem A.2, if a distributionF ∈ MDA(Φ1/ξ) for ξ > 0, the relation between

the scaled excess over the threshold of the underlying distribution F and the generalized Pareto

distributionG is as follows.

lim
u→xF

P(
X − u

β(u)
> x|X > u) = (1 + ξx)−

1
ξ (B.4)

where the functionβ(u) is determined as an integrand of slowly varying function ofF as follows.

Note thatF is regularly varying, denoted byF ∈ R−1/ξ, and we writeF (x) = x−1/ξL(x) for

some slowly varying functionL. By the representation theorem for regularly varying functions

(Embrechts et al., 1997; Beirlant et al., 2004), ifF ∈ R−1/ξ, we have

F = c(x) exp{−

∫ x

z

1

β(t)
} (B.5)

wherec(t) → c > 0 andβ(t)/t → ∞ as t → ∞. For more details, see Theorem 3.4.5 and

following remarks in Embrechts et al. (1997). For example, if F is a Pareto distribution such that

1−F (x) = (1+x)−1/ξ, the scale parameter functionβ(t) = ξ(1+t). Therefore the approximation

of the tail ofF above the thresholdu is written as folows.

1 − Fu(x) ≈ Gξ,β(u)(x) = (1 +
ξx

β(u)
)−1/ξ = (1 +

x

1 + u
)−1/ξ. (B.6)

B.3.1 Maximum Likelihood Estimator of the Number of Exceedances

Let Xi be i.i.d. loss random variables and denote the common distribution ofXi by F1. If

the sample observations,X1, · · · , Xn, are given, the likelihood function is defined as a product of

the densities of the underlying distribution and the densities of the generalized Pareto distribution
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conditioning onK, the number of exceedances above the threshold. The sample observationXk,n

can be chosen as a threshold conditional onK = k. Therefore, conditioning on the threshold level

is equivalent to conditioning on the number of exceedances.

This likelihood function also takes a different form from that of Hill’s estimator. Since the

latter is based on theK upper observations only, i.e.X1,n, · · · , Xk,n, it includes no information

from the rest of the sample observation belowXk,n. The sample observations below the threshold

can be included in the likelihood function (B.3) unless the threshold is random. Therefore, condi-

tioning onK, we can write the likelihood function of the mixture distribution for all the sample

observationsX1, . . . , Xn such that

L(k, ξ̂n,k|x1, · · · , xn) =
n

∏

i=k+1

f1(xi,n)
k

∏

i=1

F̄1(xk+1,n) gξ̂,β̂(u)(xi,n − u) (B.7)

wheref1 is the density ofF1 andgξ̂,β̂(u) is the density of the generalized Pareto distribution with the

shape parameter estimateξ̂n,k by Hill’s estimator. As long as Hill’s estimator exists, thelikelihood

function is well defined and attains its maxima on the domain of K.

We assume thatK, the number of exceedances above the threshold is uniformlydistributed

such thatK ∼ discreteU(0, t) for an integert > 0 and is a function of the threshold levelu, which

is unknown. Using the likelihood function in (B.7) we can calculate the conditional probability

function fK|t(k|t) and the conditional expectationE[K|t]. Since the functional relationship be-

tween the number of exceedances and the threshold is not one-to-one correspondence, we estimate

K by k̂(t) = E[K|t] and approximate the corresponding threshold levelû(t).

Once we are given a sample data, it is natural to assume that the domain of the uniform dis-

tribution of K is bounded by the sample size. For example, we can choose a discrete uniform

distributionU(0, t) wheret represents for the possible maximum number of exceedances over the

threshold. We can make use of the elicitation of experts prior information at this point or de-

ducet from the data analysis of the sample. We assume thatt varies from0 to tmax wheretmax

is large enough to cover realistic maximum number of exceedances. Then we can calculate the

maximum likelihood estimator of the number of exceedances,k̂(t) = E[K|t] for each integer
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Figure B.1 Danish Fire Loss Data

t ∈ [0, tmax] by (B.7). We select an appropriatet⋆ ∈ (0, tmax) and estimate the threshold levelu by

û(t⋆) = Xk̂(t⋆),n, the sample observation corresponding tok̂(t⋆).

B.3.2 Numerical Example

The data used in this example isDanish fire loss datawith losses over one million Danish Krone

(R Development Core Team, 2005). The median and the mean are1.778 and3.385 respectively.

The number of claims over20 million Danish Krone and10 million are respectively36 and109,

which are1.66% and5.03%. The exponential quantile plot in Fig. 5.1 shows an upward trend

above the straight line, which is a strong evidence of heavy tailed distribution of the data. The left

graph in Fig. 5.2 is the empirical mean excess plot{(u, en(u))}. It follows a straight line with

positive slope reasonably, which is also an indication of heavy-tailed behavior. Another useful

graphical analysis is the Hill Plot. The right graph in Fig. 5.2 is the plot of(k, ξk,n) whereξk,n

is the Hill’s estimator withk upper order statistics. Note that the Hill plot is stable approximately

whenk > 200.
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Figure B.2 Mean Excess Plot and Hill’s Plot

We assume the underlying distributionF1 is Pareto-distributed such as

1 − F (x) = (1 + x)−
1
ξ (B.8)

for ξ > 0. ThenFX belongs to Fréchet family and1 − F (x) ∈ R−1/ξ. The tail of the distribu-

tion over a sufficiently high threshold can be approximated by the generalized Pareto distribution

Gξ,β(u) whereβ(u) = ξ/(1 + u) by (B.6).

We choose discrete uniform distributions for the prior distribution of K, the number of ex-

ceedances over the threshold, i.e.K ∼ discreteU(0, t) for t > 0. For each integer value of

t ∈ [10, 1500], the conditional expectationE[K|t] are calculated numerically. Fig. 5.3 is the plot

(t, E[K|t]) for t ∈ [10, 1500]. Note that the plot shows three stable intervals. It is reasonable to se-

lect the second interval(200 < t < 600) because the first(t < 100) and the last(1000 < t) are the

results when the domains of uniform random variableK are too small or too large in terms of the

possible maximum number of extremal events. Therefore we chooseE[K|t ∈ (200, 600)] = 177

for k̂ and the corresponding threshold estimateû = X177,n = 6, 234, 705 and the shape parameter
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Figure B.3 Plot of the possible maximum number of exceedances, t andk̂(t)

estimatêξ = ξ177,n = 0.751. The fitted distribution with the estimatesû andξ̂ is the mixture of the

underlying Pareto distributionF1 belowû and the generalized Pareto distributionGξ̂,β(ξ̂) aboveû.
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Appendix C: Symbols and Notation
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A\B {x|x ∈ A andx /∈ B}

(Ω,F ,P) probability space

P(A) probability of eventA

R set of real numbers

F−1 generalized inverse of distributionF

F decumulative distribution function ofF

E[X] expected value of random variableX

V ar(X) variance of random variableX

Cov(X, Y ) covariance of random variablesX andY

σ(X) standard deviation of random variableX

p(·|·) conditional density function

Nt, N(t) counting process fort > 0

N (0, 1) standard normal distribution

Φ cumulative standard normal distribution function

φ density of standard normal distribution function

Φρ multivariate normal distribution with correlation coefficientρ

I unit interval[0, 1]

C(u, v) bivariate copula

c(u, v) density of bivariate copula

Hξ generalized extreme value distribution with shape parameter ξ

Gξ;β,σ generalized Pareto distribution with shape, scale, and location parameters,ξ, β, σ

R−α regularly varying distributions with extreme value indexα

MDA Maximum Domain of Attraction

F ⋆ G Convolution ofF andG

V aRp value-at-risk measure with confidence level0 < p < 1

∼ asymptotic equivalence

U uniform distribution
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