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ABSTRACT

In this thesis we study the tail behavior of a random varialé sum of dependent random vari-
ables using the extreme value theory. We examine the tagviehof a single random variable by
mixture distribution models, and the asymptotic propertéthe value-at-risk measure of depen-

dent regularly varying random variables.

In order to obtain a flexible fit not only on the tail but also ¢ toody of the underlying dis-

tribution, mixture distributions are introduced with fior infinite number of thresholds, where
the consistency of the heavy-tailedness is preserved bgothditional layer mixture. Hazard rate
functions of the conditional layer mixture distributiong atudied and the mixture of the hazard

rate functions can be used in modeling the mixture distigmstequivalently.

Impact of heavy-tailedness and dependence on the valugkatieasure is examined for the sum
of regularly varying random variables under quite geneegleshdence structure and we conclude
that the extreme value index completely determines thebtgilavior of the compound sum of

regularly varying random variables with respect to the gadirrisk measure.

In addition, a hierarchical structure composed of maximalrikdv sequences is introduced to
simplify a given pool of risks under arbitrary dependence &g propose a computational method

of the aggregate distribution of each maximal Markov seqgaen



Chapter 1
Introduction

1.1 Background

Sound mathematical models are necessary nowadays to stigial problems such as pric-
ing, reserving, and optimal retention levels in reinsueanontract. Appropriate mathematical
models of insurance risks are gaining attentions and maea @imphasized especially when risks
are heavy-tailed or dependent, which are two main focus#soélissertation.

For independent risks, a number of risk models have beeriafeaand applied in practice.
Continuous or discrete time stochastic processes, nuahemalysis, and simulation techniques
have been widely used for this purpose. If dependence enesssramong risks, however, we fail
to apply or generalize the independent risk models moreaften not. For instance, Picard and
Lefévre (1997) considered a continuous time compound Bwigsocess of an insurance company
and proposed an elegant expression of the ruin probahilitynite time assuming discrete claim
size distributions and claims independence. Panjer'ssemu(Panjer, 1981) for the aggregate loss
distribution also assumes the independence of integaetddbsses, whereas the recursion cannot
be applied when losses are dependent. In finance multigaelysis has been applied to address
the dependence of multiple risks for an optimal portfolieesgon. Despite the lack of flexibil-
ity, multivariate normal distributions and the family ofiptical distributions have been used to
model the dependence structure of financial and insuraske where correlations play impor-
tant roles. Multivariate regular variation is another nualtiate analysis approach to dependence
modeling especially when the marginals are heavy-tailedpula has been also popularly used

to implement the dependence structure among risks. Form@rarhwe assume Markov property



among a number of risks, a chain of bivariate copulas bec@nvesy flexible tool to capture the
dependence. According to the principles proposed by BagBbasel Committee on Banking Su-
pervision, 2004), operational risks are classified intdhelmsiness lines and seven event types.
Based on the standardized classification matrix of operatigsks, the total aggregate loss can be
written as a sum of aggregate losses of each business liegdot type), i.eY; + - - - + Y; where
eachy; represents for the aggregate loss-ti line of business. Under this aggregate risk process,
it is of our special interest to study the impact of dependernong the lines of business (or event
types) on the total aggregate loss distribution and itdtgtilavior.

Heavy-tailedness of arisk is as important as dependengeiste and they shouldn’t be studied
separately. Moscadelli (2004) mentioned the empiricaéolagion of the heavy-tailed operational
risks. Similar discussion can be found in Dutta and Perr9420Since heavy-tailed risks usually
have very low frequency of loss occurrences, empirical @agghes such as parametric estimation
and Bayesian method often fail to measure the correct théwder of a risk. Therefore, one has
to appeal to purely mathematical models such as extreme tladory. The study of heavy-tailed
distributions requires advanced knowledge of mathematidsstatistics. It stems from basic ques-
tions such as how to define heavy-tailedess and how hedeg-idistribution is. The questions
can be answered in terms of the family of distributions tss lmandom variables belong to, such as
long-tailed distributions, subexponential distribusoor regular variations. In classical extreme
value theory, a limit law for the maxima has been used for #evi-tailedness of distributions
since Fisher and Tippett (1928), which classifies three lfasbf extreme value distributions,
Frechet, Gumbel, and Weibull distributions. Considerimgtotal aggregate loss of multiple lines
of business or products in insurance and operational higkindividual aggregate loss of one busi-
ness line (or event typeY;, can be considered as a member of certain distribution yasuaith as
subexponential, regularly varying distributions, or agrimaximum domain of attraction to reflect
the existence of heavy-tailedness of the risk. The studyeafrtailed distributions is important
because heavy-tailed risks often violate many propertieexpect in general risk modeling, an
example of which is the value-at-risk measure. It is well\ndhat the value-at-risk is not a co-

herent measure (Artzner et al., 1999), and it is not cleathédrehe subadditivity holds even under



the independence assumption. It naturally raises questidmich distribution families behave dif-
ferently from what we expect in the tail and how dependentaacts with heavy-tailedness with
respect to a given risk measure.

In sum, if we consider a risk process of sum of losses in imagar operational risks, depen-
dence and heavy-tailedness should be taken into accowethrgo achieve a sound mathematical
model of the tail behavior. We approach this problem in tHeWang ways. First we introduce
mixture distribution models for a risk consisting of mulésub-risks each of which has distinct
characteristics. We also study the properties of the mextlistributions inherited from the dis-
tributional components, such as maximum domain of atwastand the hazard rate functions of
the mixture. Secondly, we introduce a maximal Markov seqa@®ecomposition of a pool of risks
into disjoint sub-pools of risks and propose a computatiorehod of the aggregate distribution of
each sub-pool of risks. Lastly, we examine the asymptatibéhavior of sum of regularly varying
random variables under quite general dependence struantdrdiscuss the impact of dependence

and heavy-tailedness on the value-at-risk measure.

1.2 Outline of Thesis

In chapter 2 we introduce the classical theory of extremeevdlstributions and its properties.
We propose three types of mixture bfunderlying distributions with a sequence of thresholds
0=wup < u; <--- < ux Where a positive integér is possibly infinity. Main goal of this chapter
is the maximum domain of attractions of the mixture disttidmis and the properties inherited
from the distributional components. We first construct atome of finite number of distributions
and investigate the maximum domain of attraction and itsnadizing constants. We prove that
there is a equivalent representation between the layeunsixbodel and the linear mixture model.
Secondly, we generalize the finite mixture models we progpdsehe infinite mixture model of
infinite number of layers and thresholds. The propertieshefrhixture models inherited from
the distributional components are provided, among whiehtthzard function representation is
emphasized: the hazard rate function of the conditionarlayixture distribution can be written

as a mixture of the hazard functions of the distributionahponents, which is a unique property



of the conditional mixture among all mixture models. Limdgidistributions of the conditional
layer mixture model is also considered and we shortly dstus Lorenz curves of the conditional
layer mixtures. An application of the mixture model to thamd-h distributions is provided with

numerical examples where we use the threshold estimatelatdd in Appendix B.

In chapter 3 we introduce a decomposition of a pool of riskdewrarbitrary dependence into
disjoint maximal Markov sequences. Considering the randanables in a maximal Markov se-
guence, we present a computational method for the aggréasstalistribution of non-identical
and dependent random variables. We derive formulae for glgeegate density and aggregate
distribution function and introduce an application on aicha pairwise bivariate copulas to im-
plement Markovian dependence structure among losses. haahexamples are also given when
the marginal distributions are exponential with Falie-GetaMorgenstern copulas, and Pareto
distributed with Gaussian copulas. We also provide acauapplications of the proposed compu-
tational method; Bayesian premiums conditioning on the stitne past observations and stop-loss

premium calculation of dependent claims.

In chapter 4 we focus on the value-at-risk measure of finite eftiloss random variables or
compound sum generated by an appropriate counting proadsginite expectation. We dis-
cuss the classical convolution theorem for the regulartyimg random variables, and the closure
property and max-stability of regular variation. Introth the concept of negligible joint tail
probability, we provide a sufficient condition of the joinsttibution to generalize the convolution
theorem when losses are dependent with regularly varyilsg tefollows that the shape parameter
of the regularly varying distribution, the common disttilom of the loss random variables, com-
pletely determine the asymptotic super(sub)additivityhe value-at-risk of the aggregate loss.
Two numerical examples are given to illustrate the supet-sarbbadditivity of the value-at-risk of

Pareto distributed dependent losses when they satisfyetiegible joint tail condition.

Results of the thesis were presented in the conferencesiandtsed to the journals as follows:
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J. Jang and J. Jh&ecursive procedure for the aggregate distribution of deleait variables
Radon Workshop on Financial and Actuarial Mathematics foung Researchers, Linz,
Austria, May 30 - 31, 2007.

J. Jang and J. JhoAsymptotic super(sub)additivity of the value-at-risk ejularly vary-
ing dependent variabledl 1th International Congress on Insurance: Mathematid€Eao-

nomics, Piraeus, Greece, July 10-12, 2007.

J. Jang and J. JhoAsymptotic super(sub)additivity of the value-at-risk ejularly vary-
ing dependent variables-inance, Stochastics, Insurance, Bonn, Germany, Feb2%a?9,
2008.

J. Jang and J. Jhdsymptotic super(sub)additivity of the value-at-riskegjularly varying
random variablesSubmitted to Journal of Applied Probability, 2008.

J. Jho and V. KaishevOn some mixture distributions and their extreme value behnav

Actuarial Reseach Paper, N0.185, Cass Business Scho®, 33B-1-905752-14-0, 2008.

J. Jho and V. Kaishe¥®n some mixture distributions and their extreme value bemagnd
International Workshop on Computational and Financialreroetrics, Neuchéatel, Switzer-

land, 2008.

J. Jho and V. KaishevOn some mixture distributions and their extreme value behnav

Submitted to Computational Statistics and Data Analy$i682

Some Conventions

The list of notations and symbols is included in the AppendixXWe assume loss random

variables are continuous and the probability density fionstexist unless specified. The counting
process of loss occurrence is assumed to have finite dg&y for all ¢ > 0. The italics is used

to emphasize some ideas and the symba used for the end of proofs and examples.



Chapter 2

On Some Mixture Distributions and their Extreme Value Behav-
lor

This chapter is based on the paper by Jho and Kaishev (2008uigimodels are widely used
as a flexible modeling tool in lifetime data analysis andatality engineering in estimating distri-
bution functions of failure times. The most common mixtuigibution, so called finite mixture

distribution, is often defined by a mixture of density fuonc such as

n

F@or,. ., 0.) =Y cifi(x]0;) (2.1)

J=1

whered,, . . ., 6, are vectors of parameters arjdre appropriate positive weights such ﬂj%f:l cj =
1. The finite mixture distribution (2.1) has been widely usedaliability analysis to fit the proba-
bility density function of failure times, see for exampledaw et al. (2004). A number of practical
applications of (2.1) can be found in Al-Hussaini and EIHX@004) and the references therein.
Under the finite mixture distribution model, Nurmi (2004jroduced a Bayesian method to esti-
mate the parameters of the underlying distributions anagtenal number of sub-poppulations.
Computational implementations can also be found in Betimd Friedrich (2007), where the au-
thors fitted the finite mixtures of generalized linear regi@ss using the R software package (R
Development Core Team, 2005).

In this chapter we consider some specific types of mixtureetsoencountered in insurance
and reinsurance applications. Mixtures of discrete andimoous random variables naturally

arise in modeling individual claim amounts covered by thdirng and reinsurance companies



in excess of loss, anBCOMORTreinsurance contracts. For example, in an excess of loss con
tract with a limiting threshold(level)L and a retention level)/, M < L, the amount\W/ =
min(W;, M) +max(0, W; — L), covered by the cedent from each individual claim i = 1,2, ...,

with generic distributionfyy, (=), has a distribution function

which is a mixture distribution. It is not difficult to see th&.2) can be equivalently expressed as

Fwe(r) = Ipaany Fw (@) + Ipv<ay P (L) H (2) (2.3)

where H (z) is the conditional distribution of the exceedandest IW; — L under the condition

W, > L defined by

Hiz) = 1 — Fw(L)

For brevity, we will denote by (x) the distribution of the exceedancés+ W, — L |W; > L.

Clearly, with the transformation = x — M, the latter distribution function can be re-written as

Fw(L+y) — Fw(L)
(1— Fw(L))

H(y+ M) = ., y>0

which is the distribution of the exceedand&s— L | IV, > L. Following a result, due to Balkema
and de Haan (1974), and Pickands (1975) we can concludefohat,high enough threshold,
the distributionH (x + M) can be well approximated with a generalized Pareto digtdbuThis
suggests that, for high enough threshb]ane can assume that individual claim amounts bdlow
come from a generic distributiafiy (x), whereas claim amounts abokeome from a generalized

Pareto distribution with appropriate parameters.



The interpretation of model (2.2) in the form of the mixtuistdbution in (2.3) motivates us
to consider slightly more general (re)insurance apphcetin which individual claim amounts
have mixture distribution, i.e. claims below a thresholare assumed to come from a distribution
F1, whereas claim amounts abov@are assumed to come from a different distributignusually
with heavier tail tharf;. A model of this type, has been considered by Behrens et@4(an the
context of Bayesian threshold estimation of the extremeevdlstributions. The authors adopt the
generalized Pareto distribution for the approximatiof'gfthe tail part of the mixture distribution.
The corresponding mixture distributioA(?) can be formally written as

FP (@) = IpcwFi(2) + Iusa Fr(w)Fa(2) (2.4)
whereF(x) = 1 — F(z), for any distribution function (). Obviously,F® (z) is a distribution

with a jump discontinuity at = u, unlessF,(u) = 1. A slight variation of (2.4) is the model

FP2) = I Fr(@) + Lueay F1 (w) Fa(z — u) (2.5)

if there exists a density df;(z) on [0, c0). Often reinsurance arrangements involve complicated
reinsurance programs with more than two levels which regoimsidering even a more complex

mixture of k& distributional componet§F; },—; ., such thatF;(0) = 0 and the density;(z) exists

.....

on [0, c0) for eachi. Existence off;(z) is required since in the sequel we will be dealing with

hazard rate functions of the mixture distributions. Thetomi& model is of the form

( Hi(z) ,ifz<uwu

H Jfup <z <
FO) () = .2(@ ==t (2.6)

Hk(l‘) ) if Uk—1 S T

\

whereH;(x) = H;_1(ui_)Fi(z —u;_;) foreachl <i < kandH, = F}.



It is interesting to note that the mixture distribution oéttype (2.6) can be written as the dis-
tribution of a sum of layer random variables, which is a phtolistic interpretation of this mixture
model. LetX;, ¢ = 1,...,k be the loss random variables, defined on an appropriate lpitdpa
space((2, F,P), with distribution functions;, i = 1,..., k as in (2.6), and define the layer ran-
dom variablel;(w) induced fromX; by

Li(w) = Xl(w) if U; < Xz(w) < Uj41
00 it w < Xi(w)

for w € Q. Then the sum of the layer random variablg$) = >°*  I,, has the distribution

k
Froo(x) =Y Ty (@) Hi(z) = F®)(2) (2.7)

wherel},, .,,,) denotes the indicator function dnm;, u;.1). In this sense, it is natural to call the

yUi+1
mixture distribution of the type (2.6) or (2.@)layer mixture
Motivated by the modification of (2.4) as (2.5), we can coasa similar mixture distribution

with continuity at each threshold by conditioning inste&dlufting as follows

FP(@) = Iy Fr(2) + Lueo) F1 (w) Fa(a)z > u). (2.8)

where we denote by, (z|z > u) the conditional tail probability — Fy(z|z > u). Itis also
natural that we call the mixture (2.8)anditional layer mixtureThe conditional mixture of dis-
tributions can be defined in a similar way. The formal defom# of the mixtures of distributions
can be found in the next section. Although (2.5) and (2.8spss similar mathematical forms,
there is a fundamental difference between the layer mix@ncethe conditional layer mixture: The

hazard rate function of the conditional mixture distribatis a simple mixture of the hazard rate
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functions, which does not hold for the layer mixture giverfdrb). We revisit this unique property
and other useful applications of the conditional layer mm&tin section 2.3.

In general, the layer mixture (2.6) and the conditional tayexture (2.8) appear not only in
reinsurance applications but also in the context of genesalrance. For example, the layer or
conditional layer mixture distribution can be applied todabany pool of risks composed of mul-

tiple number, k of heterogeneous risks; },—1... . The total risk processj can be expressed as

.....

k N; ()

S=Y"5;, where §;=> X

j=1 =1

for some appropriate claims occurrence proceségs), j = 1,...,k. SinceS; are not iden-

aaaa
-----

=1,..

elling by means of the so called standardized operatiosiaktassification matrix which classifies
risks into eight business lines and seven event types aoga@the principles proposed by Basel
Il (Basel Committee on Banking Supervision, 2004). For maetails, see Moscadelli (2004);
Dutta and Perry (2004). I§; takes values in the interval,_,, u;) for eachi = 1,..., k where
ug, can be possibly infinity, we can model the riSky the layer or conditional layer mixture &f

distributions as follows,

k
P(S <) =FO@) =) I yupH;(@)

j=1
whereH j(z) = H;_1(uj_1)Fs;(x — uj—1) of Hj_1(uj_1)Fs,(z|x > u;_;) asin (2.6) and (2.8).

In all such models, where the distribution of the individeédim or the aggregate claim
amounts can be represented as an appropriate mixture olsaglistributions, it is essential to
be able to derive conclusions about the asymptotic behavitre extreme claim amounts as the
size of the claims tends to infinity. As is well known such Ewgaims often result from catas-

trophic events and cause huge financial losses and evenupankof insurance and reinsurance
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companies. This has justified the considerable interebeimsymptotic behavior of the maximum
of n, (n > 1) claims with a continuous generic distribution, which hasrbaddressed in a number
of recent publications, among which the monograph by Entttsest al. (2002), Kotz and Nadara-
jah (2000), papers by Kluppelberg (2006) and Cebrian e@DJ). Relatively little attention has

been devoted to studying the asymptotic behavior of maximibe case of claims modelled by a
mixture distribution of the kind described above. A nondactal paper, dealing with asymptotic
properties of maxima of mixtures applied to the context ohff@l processing of a task is the paper
by Kang and Serfozo (1999).

The aim of this chapter is to study the asymptotic behavith@maximum of a series of claim
amounts modelled by a mixture distribution of the risk ddss above and their actuarial applica-
tions of fitting a loss distribution by a mixture of certairsttibutional components. The outline of
the chapter is as follows. In section 2.1 we present the fodef@itions of three types of mixture
distributions with a sequence of thresholds: vy < u; < .... In section 2.2 we study the max-
imum domain of attraction and the normalizing constantdefrhixture distributions. In section
2.3 we generalize the definition of the conditional layer toni in (2.8) or (2.10) by considering
the caseé: — oo, i.e. considering mixtures of infinitely many layers witHimtely many thresh-
olds, which we call thénfinite layer mixture Such models are very interesting because they allow
flexible modelling of the extreme behavior on the entire domathout strict threshold restriction,
by assuming appropriate extreme value index for each la¥erexamine the unique property of
the conditional layer mixture model and its hazard rate fioncrepresentation. Another useful
aspect of the conditional layer mixture model is its coneahhazard rate function representation.
In particular, as we will show in section 2.3.1, in order tdigke a conditional layer mixture with
differentiable cdf one needs to define a continuous simpigure of the hazard rate functions
of the distributional components. We also discuss the ilmgidistribution of the infinite mixture
model as the size of each layer gets arbitrarily small, weithbles us to approximate any distri-
bution with continuous hazard rate function by a infinite ditional layer mixture of exponential
distributions. Numerical application of the conditional/ér mixture on g-and-h distribution is

given in section 2.4.
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2.1 Three Mixture Distribution Models

In this section we present the formal definitions of the threeture distribution models, the
layer mixture, the linear mixture, and the conditional lagexture of £ distributions introduced
in (2.5) ~ (2.8). We also discuss the characteristics of the mixture moaelgave some illustra-

tions.

2.1.1 Layer Mixture Distributions

The mixture of two distributions in (2.5) leads us to definmegursively the mixture of;,

(k > 0) distributions, as follows.

Definition 2.1 (Layer Mixture) Given distributions{ ¥} },_ » .. and threshold® = v, < u; <

goor

..., the layer mixture of the first distributions denoted by *) is defined recursively as

F®) () = Ipew, (@) FED(2) + Trpsy, 3 (@) FED (ugq) Fi(z — 1) (2.9)

for any integet: > 1 andF'" (z) = F, (x).

The mixture distribution”*) is simply an extension of the mixture of two distributionsisiwell-
defined and continuous at each threshgldrigure 2.1 is an illustration of the mixture distribution

of light-tailed exponential distributions and a heavyadiPareto distribution.

2.1.2 Linear Mixture Distributions

As we already mentioned in the introduction, the layer nmtdistribution has its motivation
from practical applications, for example, in reinsurancaeiling with multiple layers with more
than one thresholds. The second mixture model we are goingrtsider here represents a gen-
eralization of the model (2.1) since we now release theictisin on the weights:; to be strictly

positive. Thus, we will consider mixtures with positive @gative coefficients which sum to one.
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gooe

tions denoted by is defined by
k
F® () =) ¢Fi(x)
=1

wherec; are negative or positive constants that sum to 1.

Kang and Serfozo (1999) considered more general linearunexaf countable collection of
distributions and examined the maximum domain of attractibthe mixture. It is important to
consider such linear mixture models since, as we will shothénext section, any layer mixture
distribution can be represented as a linear mixture. Thesefall of the important asymptotic
results for the linear mixture model, see Kang and Serfo889), can be applied to the layer
mixture model. Next we consider the conditional layer migiuintroduced earlier, and illustrate

its useful properties.

2.1.3 Conditional Layer Mixture Distributions

The conditional layer mixture model is a modification of thgdr mixture model, which im-
proves the behavior of the mixture distribution in the néigthood of each threshold. The layer
mixture model in Definition 2.1 has a drawback in that eactrihistion F; in F*) behaves at each
thresholdu; as at the origin since ead is shifted byu;. We can see a clear evidence of this in
the left panel of Figure 2.1. At the threshalg, Pareto distributior, is mixed with ). The dis-
tributional component$’, F,, and F; are exponentially distributed and henggis heavier-tailed
than ). However, the graph shows that there is a slight bump-atu;, which can be explained
by the fact that, near the threshalgl the mixture distribution is no longer consistent in termis o
increasing heavy-tailedness. This is mainly due to the rgstienating of the scaling effect of the
Pareto distribution in the mixture model. In the neighbadhofz = 0, even heavy-tailed Pareto is
viewed less heavy-tailed than the mixture of three expoaktistributions in the neighborhood of
us. In order to solve this problem, we introduce the followingtare distribution. The key point

of this mixture is that, for a given interval;, u;, 1), we adopt the-th distribution exactly on the
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same interval without loss of continuity at each threshdldis is possible by way of conditional

survival functions.

Definition 2.3 (Conditional Layer Mixture) Given distributions{ F;},_; o, .. and threshold§ =

ug < uy < ..., the conditional layer mixture of the firstdistributions denoted by *) is defined

recursively as

F®)(2) = Iycy, 3 (@) FED(2) + Tpsy, 3 (@) FED (wpq) Fr(z]z > wp_s) (2.10)

for any integetk > 1 andF" (z) = F, (z), whereFy(z|x > w_1) = 1 — Fy(z|lz > up_y).

Figure 2.1 illustrates the consistency of increasing heaigdness of the conditional layer mix-
ture distribution. Since there is no scaling of thresholdsraore, higher order mixture distribution

possesses heavier tall, i.e.

FO(z) < FO(z)

fori < jif Fy(x) < F;(x) on[uj_1, 00). Itis very clear that the slight bump at threshalgin the

left disappears in the right panel of Figure 2.1.

2.2 Maximum Domain of Attractions of Mixture Distributions

Here we are interested in the maximum domain of attractiomach mixture model we intro-
duced in the previous section. The fundamental theorem $lyelFiand Tippett (1928) classifies
the possible limit laws of the maxima of.d random variables(;, M,, = max(X;,...,X,), as
n — oo, introducing appropriate normalizing constamtsandb,,. If there exist normalizing con-

stantsu,, > 0, b, € R and some non-degenerating distributidrsuch that
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in distribution, thenH is equal to one of the three distributions,

i 0, if 2 <0
Fréchet &,(z) =
exp(—a:““), if x>0

exp (— (—x)*), ifz<0

Weibull W, (z) — (2.11)
1, if x>0
—e ), if r € R
Gumbel A(z) = exp (=) !
1, if x>0

for « > 0 and this is usually expressed Bsc M DA(H) whereF' is the common distribution
function for X; and H is either one of the extreme value distribution in (2.11).réde&e will be
concerned with the asymptotic behavior of the maximg, in the case wherX; has a mixture
distribution,F*), whosek-th component/{;, belongs to one of the maximum domain of attraction
MDA(H), ®, A, or V. Intuitively we would expect that the mixture distributiamould belong to
the samel/DA, i.e.

F® e MDA(:) if F,e MDA() (2.12)

sinceM D A is about the limiting distribution of the maxim¥,,, which is governed by the tail of
the distribution ifn is large enough. For similar asymptotic properties of timeitiaof heavy-tailed
distributions, see Cai and Tang (2004). Some results foifligA of mixture distributions can
be found in the following papers. Mladenévi1999) found the normalizing constants in special
examples such as normal mixtures and Cauchy mixtures. Kah§erfozo (1999) derived general
formula of the normalizing constants under the existendaibflominant distribution.

Before we show that (2.12) holds for all the three mixture eisdhtroduced in section 2.1, for

convenience we state two lemmas which will be used repegatiediughout this chapter.
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Lemma 2.4 (Convergence Criterion) Let F' be a distribution function and,, > 0,5, € R for

n =1,2,.... Then the following two statements are equivalent.

1. For an extreme value distributidi of the type in (2.11) with normalizing constants and
bn,
Fe MDA(H)

2. Forallz € R, asn — oo,

nF(a,x +b,) — —log H(z)

Lemma 2.5 (Kang and Serfozo (1999))The following statements are equivalent for an extreme

value distributionH of the type in (2.11). For > 0,

1. F' € MDA(H) with normalizing constants, andb,,.

2. nF(a*x + b* N—llong as n — oo,
n n o

where the normalizing constants are related as follows

at =~Y%a, b:i=0b,=0 if H is Fréchet,
a’ = ay, by = b, + a,log~y if His Gumbel,
al =~y"Y%, b =b,=0 if H is Weibull.

The above lemmas provide us with a method to determine thémuax domain of attractions
and the normalizing constants for the mixturescadistributions introduced in section 2.1. For

more details, see Theorem 1.5.1, Leadbetter et al. (1983} lamorem 2, Kang and Serfozo (1999).

2.2.1 MDA of Layer Mixture Distributions

Let F(®) be a layer mixture distributions given by Definition 2.1. Titte following proposi-
tion implies thatF*) belongs to the maximum domain of attractionfafwith modified normal-

izing constants.
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Proposition 2.6 Let F*) be of the type as in Definition 2.1. i, € MDA(H) for an extreme
value distributionf of the type in (2.11), thed*) ¢ M D A(H) and the normalizing constants are

an =YY%k, b, = up_1, if H is Fréchet,
anp =ay,, b, =0 +ux_1+a;logy, if His Gumbel,
ay, = 7*1/aa;§ b, = up_1, if H is Weibull.

wherea’ andbd’ are the normalizing constants bf(z), = = o’z + b, and

k—1
’)/:HTZ‘ where T :Fi(ui—ui_l).
=1

Proof: Letz} = a’x + b}, be the normalizing constants fé}.(x), i.e.
nF(x) — —log H(x).

By Definition 2.1 and Lemma 2.4

nF® (@ +up-1) = n{lpy<u oy (@) FED (@], 4+ upea)
Lian sup_ o3 (@ + wp—1) FED (up_y ) Fro(2) }

~ nEOD () Fr(a})

asn — oo. It follows that, by Lemma 2.5,

nF® (X + 0 +up_1) ~ —FED(uy_1)log H(z),

nF® (a,x +b,) ~ —log H(x)

where the normalizing constants fAr of Fréchet type,
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1/a

a, = FE Dy 1) af

1/a— 1/a,

= FO2D(up_g)  Fro1(up—1 — up—2)’'“ay,

1/aa*

= F (Ul - Uo) : ‘kal(ukfl - kaQ) n

1a

Il
:*
HE?‘N

andb, = b + ux_1 = ux_1. For the extreme value distribution of Gumbel and Weibutiety
similar argument holds in the same manner. Applying the eqgence criterion in Lemma 2.4
again, we conclude thdt®) ¢ A D A(H) with normalizing constants, andb,,, which completes

the proof.(J

2.2.2 MDA of Linear Mixture Distributions

Consider the linear mixture model in Definition 2.2 and siuggpthat there exists a distribution
F* satisfying
Fi(x)

lim ——+ = (2.13)

for somer; > 0 and this limit is uniform in in casel is an infinite set. Then we say that the tail
of the distributionF* dominates those ofF; : « € I}. Theorem 2 in Kang and Serfozo (1999)
provides the relationship between the maximum domain cd@ton and normalizing constants of
the mixture distribution?”*) and the tail-dominating distributiof*. We state this theorem here

for convenience.

Theorem 2.7 (Kang and Serfozo (1999)BupposeF*) is a linear mixture of the type in Defini-

tion 2.2 and satisfies (2.13) for eachLety = »_._, ¢;r; and assume is positive. Then the

iel

following statements are equivalent.

1. F € MDA (H) with normalizing constants a,,, b,,.
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2. F* ¢ MDA(H) with normalizing constantsa;, b’

n» - n'

When these statements hold, the normalizing constantelated as follows

an =Yk, b, =b; =0, if H is Fréchet,
a, = a, b, = b +a’ log~, if H is Gumbel,
an =y V%, b, =0b" =0, if H is Weibull.

wherec is the extreme value index of each type of extreme valueiloigion defined in (2.11).

The linear mixture of distributions, therefore, belongs to the maximum domaiatts&ction
of F}, if there exists a tail-dominating distributiafi* with v+ > 0. In practice, the existence of
the distributionF™ is assumed without loss of generality since higher layeftesnomodelled by
heavier-tailed distribution and we may &t = F}, which reduces tbm,_,, F;(z)/F*(x) = r; >
Oforalli=1,..., k.

As we mentioned in the previous section, the layer mixturelehan Definition 2.1 can be
written as a linear mixture model with appropriate positvenegative weights. This is an inter-
esting result since it allows us to interpret the layer nm&tmodels, (2.3)(2.6) and (2.9), with
their interesting (re)insurance applications (see thedhiction) as a linear mixture model and
apply the known results such as Theorem 2 of Kang and Seri®89] to the layer mixture model

to investigate their asymptotic behavior. Uef;},—; ., be the components of the layer mixture

.....

distribution F*) with threshold$) = uy < u; < - - - < ugx_; Such that

F®) (2) = Ipcu, 1 (@) FED(2) + Tazu, ) (@) FED (ugy) Fr(e — ug-1).
It is equivalent to

F® () = H(z) (2.14)

[wi—1,u5)

where H;(x) = H;_y(u;_1)Fi(x — u;_1) fori = 2,3,--- ,k andH, = F}. The following theo-
rem shows that a layer mixture distribution can be writteia sear combination of{; /., with

constantg; = (—1)"1.
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Theorem 2.8 The layer mixture distribution can be written as a lineartonig of the form

k—12j+1

FO(@) = eiHy(@) + 3 S el (@) [y (1)

j=1 i=2j

Whereci = (—1)i_1 for ¢ = 1,2,' .. ,2]{} —1 andE(az) = Hi,l(ui,l)fi(x — ui,l) for ¢ =
2,3,--- ,kandﬁl :Fl.

Proof: By induction onk. Fork = 2, it is immediate to see

Hi(x) — Hi(2) [, <oy () + Ho(2) [y, <y (2) = F@(2)

by direct substitution. Note that (2.14) holds for the lagextures,F? ..., F*~1) Denote the
indicator function by, = Iy.,(z), then

F® () = FO (@) ey + Fr(x)ly,_ <a

= {Hi(z) — Hi(2) ]y <o + Ho(x) L0 <o
_ka2(x)juk72§1' + kal(x)lukﬂﬁm} ’ Ix<“k*1
+Hk(x)luk—1§$

= Hl(x)j$<uk—1 - Hl(x)IU1§x<uk—1 + Hg(l‘)]u1§$<uk_1

_Hk_Q(x)Iuk—2§x<uk—l + Hk'_l(x)luk—2§$<uk—l

+Hp () Ly, <o

sincel <, - Io<p = lo<z<p fOr a < b, hence
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= Hl(x> - Hl(x>1uk71§$

_Hl(x>1u1§$ + Hl<x)luk71§'f + HQ(x>[u1§$ - H2(x>[uk71§'f

—Hy o(2) Ly _y<a + Hyo(2) luy_ <o + Hi1(2) Ly _y<o — Hp1 (%) Ly <o

_'_Hk('r)luk—lgx

by substituting;(z) 1., ,<ws<u,_, With H;(z)1,, <, — H;(x)I,, ,<,foreachi=1,2,--- k—1,

it reduces to

= Hi(x)— Hi(2)ly <o + Ho(2) <o — -+ — Hy—o(2) Ly <o + Hp1(2) oy <z
1y, <o — Hi(z) + Hi(z) — Ho(x) + - - - + Hy_o(x) — Hp_1(x) }
+Hy(z) 1y, <o

= Hi(x) — Hi(2)ly<o + Ho(2)Lyyy<o — -+ — Hyo(2) Ly <o + Hp1(2) Loy _o<a

—Hy 1 (o) Ly <o + Hp(2) Ly <o
k—1 25+1

- )Y Y (1) T Hi () <o

7=1 =23

which proves the theorem]
If the tail of F}, dominates those of/;I{;, the above theorem leads to the same result as in
Proposition 2.6 by Theorem 2 of Kang and Serfozo (1999) vaithdominating distributionF™ =

I, as follows.

Proposition 2.9 Let F'*) be a layer mixture distribution as in Definition 2.1. The lag@ixture
F*) can be written as a linear mixture of constant@and the distributions?; I, as in (2.14),

tail-dominated byF';, with v > 0. If F}, € M DA(H) for an extreme value distributioH of the
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type in (2.11), ther#”®) ¢ M DA(H) and the normalizing constants are

an =YV, b, = up_1, if H is Fréchet,
an, =ay, b, =0 +ux_1+a,logy, if His Gumbel,

an =y V% by = up_1, if H is Weibull.

wherea? andb; are the normalizing constants Bf, z; = a’x + b} and

k-1

k
’725 CiT z uzl

i=1 i=1

.

Proof: Leta; andb; be the normalizing constants féi.. If we setF™*(x) = Fi(x — ug—1), a;

2k—2

andb; + u;_; are the normalizing constants fér. By the proof of Lemma 2.8} ", “ ¢;r; = 0,

Cop—1 = 1, and

Hy, (x)[{wc_1 <$}(5’5>

= 7rop_1 = lim —
v 2k—1 T—00 F ([E)
k—1
H Fr(r —
= lim b 1(Uk 1) k e 1 H i — Uj— 1 >0.
T—00 Fk(.T — Up— 1 i1

Therefore the theorem follows immediately by Theorem 217.

Thus, we can see that Proposition 2.9 makes it possible toypd:}, as a tail-dominating
distribution /™ of all distributional component#; ., of the linear mixture representation of the
layer mixture model (2.9) and apply Theorem 2.7 to examireetkireme behavior of the layer
mixture. Itis instructive to illustrate this point and caster some examples of how Proposition 2.9

applies to particular tail-dominating distributioR¥ with heavy-tails.

Example 2.10 (Pareto)Consider a layer mixture of distributions with threshold® = uy <
u < ... < up_q fork > 1suchthatFi(z) = 1 —¢ " fori =1,....k — 1 and Fy(z) =
1—(1+ ga:)‘% for¢ > 0andl + &x > 0. Denoteu; — u;_1 by o; foreachi = 1,... k. If we
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choosel™ = Fy,

Hk(x>1{uk71<$} (x)

= lim —
_ lim Hk,l(x)Fk(x — uk,l)

= F1(6)Fa(8) - Fr_1(0x_1)

k—1 6;
6*51/H16*52/H2 . 6751“71/”’“71 —e Dica ;TZZ > 0.

whereH, are as in (2.14). By Proposition 2.9 we conclude #igt belongs to the same maximum
domain of attractiond/ D A(®, ) of the generalized Pareto distribution and the normaliziog:
stants are:,, = ~¢a* andb, = b* wherea’, b* are the normalizing constants of the generalized

Pareto distributiorF},. We provide the numerical result of the mixture distribatfd*) with & = 4,

i =i andu; = ¢ in Figure 2.2.

Example 2.11 (Lognormal) Consider the layer mixture distribution in Exmaple 2.10 wi#g, is
a lognormal distribution. Denote the mean and standardatlewi oflog X by u, ando, respec-

tively. Note that

where® is the standard normal distribution function. It is well kmothat Lognormal distribution
belongs to the maximum domain of attraction of Gumbel distion, M DA(A). If we choose
F* = Fy,
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v = lim Hk(x>[{Uk_1<x}(x)
Z—00 ﬁ(l’)

- oy Lo (e
= Hyr(up-) lim 1 — p(loz=n)

1 (103(1*“k71)7“)2
1 S\

o R~ ’
= kal(uk%)xhi& ) 71(%)2
— e 2 4
ox\/ 21

= M1 (up_1) lim o~ o2 (log z—log(z—uy,_1))(log z+log(z—up 1) —241)

T—00

where H; are as in (2.14), and applyinglogz — log(z — u) = [7 1ds < -, we get

r—u S — z—u’

_u_
T—U

(logxz + log(x — u) — 2u)(logz — log(x — u)) < (logz + log(x — u) — 2u) — 0aszr — oo

for anyu > 0 and hencélog = — log(z — uy—1))(log z + log(z — ux—1) — 211) — 0, which leads to

= ﬁk—l(uk—l) e’
= Fi(61)Fa(d2) - Fro1(dp1)
—SE

= e > 0.

By Proposition 2.9 again, we conclude that") belongs to the same maximum domain of at-
tractions)M D A(A) of the Lognormal distribution and the normalizing conssaartea,, = « and
b, = b} +a log v wherea’ andb; are the normalizing constants of the Lognormal distribufi.
We also provide a numerical result of the mixture distriboti®) with k& = 4, y; = i, € = 0.75

andu; = i in Figure 2.2.

Remark 2.12 In the examples above we observe that the normalizing cotssth the layer mix-
ture distributionsF®) are (y'/~a*, b%) or (a, b’ + a’ log ) without the threshold shift by,

since we chosé™ = F}, instead ofF™*(z) = Fj(z — ui_1). This is always possible when tleth

distribution is long-tailed, i.e.
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foru > 0.

2.2.3 MDA of Conditional Layer Mixture Distributions

The normalizing constants and maximum domain of attrastiohthe conditional mixture
distribution can be found in a similar way as in the layer miigtdistributions. The following

proposition is analogous to Proposition 2.6.

Proposition 2.13 Let F*) be of the type in Definition 2.3. 1F, ¢ MDA(H) for an extreme
value distributionH of the type in (2.11)., thew'®) ¢ M DA(H) and the normalizing constants

are

an =~yY%a, b, =0, if H is Fréchet,

a, =a’, b,=0b~+a’logy, if HisGumbel,
an =~y a*, b, =0, if H is Weibull.

n’

wherec} andb} are the normalizing constants Bf, = = a;z + b}, and

E—1 —
Fi(u;

v = H r; where r;, = (i) .

i—1 Fipa(ug)

Proof: Letz! = ax + b}, be the normalizing constants féf, i.e.

nFi(x}) — — log H(z)

by Lemma 2.4. It follows that
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nF® (7)) = 0l cuy(2;) FED(a;)
1 zu, 3 (2 VFED (uy ) F(ah |z > up1)}
~ nf(kfl)(uk_l)Fk(:p;M > Up_1)
= pF*? (up—2) Fr1(up_1]z > up_o) Fr(zi]x > up_1)

E (ur]z > up) - - fk,l(ultl\:c > Up_o) Fr(zf |2 > up_1)
L Fiw)  Fea(we)  Fi(@)
F1(Uo) Fri(ws) Frlugy)

=n Fk(:c)

by similar argument as in the proof of Proposition 2.6. Itdals that by Lemma 2.5,

nF®(z}) ~ —ylog H(x),

nF® (aux +by,) ~ —log H(z)

where the normalizing constants fér of Fréchet type are

k—1
1/a, % *

a, = Y% = anH< Fi(ui) )1/@

i—1 Fiyi(u;)

andb,, = 0. For the extreme value distribution of Gumbel and Weibuthigr argument holds in
the same manner. Applying the convergence criterion in Lar@m again, we concludgé®) ¢

M D A(H) with normalizing constants,, andb,,, which completes the proof
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Example 2.14 Consider a conditional mixture @fdistributions at thresholds= ug < ug,... <
ug_1 such thatF(z) =1 — e_ﬁx fori =1,...,k— 1 andF} belogns to some maximum domain
of attraction. By Proposition 2.13;*) beglongs to the same maximum domain of attractioR,as

and

k—1 k—1

fy g Ti g _
g 11 Figa(u;)
e—u1/m e Uk—2/Hk—2 o—Uk—1/Hk—1

e—u1/u2 e~ Uk—2/Hk—1 Fk(ukfl)
k—1 9;

= G_EZ:I E/ Fk(uk_l).

whered; = u; — u;_1 is the size of each layer. We provide the numerical resulta@imixture
distribution F® with y; = i andwu; = i for i < 4 whenF is the generalized Pareto distribution

and the Lognormal distribution, respectively in Figure.2.2

2.3 Infinite Mixture Distributions and Hazard Rate Function s

The mixed distributions we proposed in the previous sedrerflexible enough to cover wide
range of higher moments such as skewness and kurtosis. ldgviteré not easy to determine or
estimate the thresholds, . . ., u;_, and corresponding distributional componef#s},_, . The
latter difficulty might be overcome if the thresholds areegivand there exist enough data points
for each layer. Unless we have a precise method of threskstdsation, it is not appropriate to
assume specific values for the thresholds. In this senserap®ge a mixture model with infinite
number of layers(thresholds) and the limiting distribatiof the mixture model, which can be
viewed as a mathematical background to solve the thresletddt®on problem. For example, a
non-decreasing sequence of thresholds suah, as> oo defines an infinite number of layers on
which appropriate distributions; are specified. Since there is no upper limit of the thresholds
any tail of the infinite mixture distribution is explainedtrioy a single distributional component

F}, but by an infinite number of componerts; } ;> for somek > 0. In this way it is not required
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to select a fixed threshold high enough to approximate theesponding tail by a singlé}.. In
other words, the mixture models of finite number of layerseda be mixture distributions in the
tail whereas the infinite mixture model always has its taidasfinite mixture distribution again.
Since the conditional layer mixture model is superior tolther mixture model in terms of the
consistency of increasing heavy-tailedness, we devemimite conditional layer mixture model
and its limiting distribution in the sequel.

Another important topic in this section is the hazard ratecfion representation of the con-
ditional mixture distribution which can also be applied be infinite conditional layer mixture.
Since the existence(continuity) of the hazard function distribution is equivalent to the conti-
nuity(differentiability) of the distribution, the resslin the following section provides us an easy
method of creating continuous or differentiable condigidayer mixture distributions.

We also discuss the limiting distribution of the infinite cational layer mixture distribution as
the size of each layer gets arbitrarily small. As a resultithéing distribution possesses a contin-
uously varying heavy-tailedness which can be implemenyesifanction of certain parameters of

heavy-tailedness, for example, the shape parameter abRfistribution.

2.3.1 Infinite Mixture Distributions and Hazard Rate Functions

Suppose that each distributidh has its density functiori; and the hazard functialy for each

1=1,.... k, le.

Let us define the simple mixture of the filsshazard functions by
k—1
WO @) = T ycocuy (@)hi(@) + Ty <oy (2) i),
=1

which is integrable as a finite linear combination of intdgeafunctions. The following theorem

implies that the hazard function of the conditional mixtdigtribution is the mixture of the hazard
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functions of the distributional components, which is a weigproperty of the conditional layer

mixture distribution among all mixture models.

Theorem 2.15 Given distributions{ F; },—; » .. and threshold® = vy < u; < ..., leth; be the

gooo

hazard function ofF; for eachi. Then the conditional mixture distributiofi’*) has the hazard

function®) which is the mixture of the first hazard functions, i.e.

F®) (1) = exp (- / ' h*)(s) ds)

0

Proof: First suppose that < w;_,, then there exist thresholds such that, < z < u, for

j < k — 1. From the proof of Proposition 2.13, we have

L il FZ U; Fj v
F®R)(z) = { H E(i(u)l)} Fj(u(j)ﬂ

1=1
jfl U;

_ {Hexp(_/ hi(s)ds)} exp(—/jl h;(s) ds)

i=1 Wi-1 i

= exp(— /0m h ) (s)ds).

If x > u_1, Setj = k, which completes the proof]

Definition 2.16 (Infinite Conditional Layer Mixture) Givendistributiong F; };—; ... and thresh-

gooo

olds0 = ug < u; < ..., the infinite conditional layer mixture distribution deadtby F(*°) is
defined by

F(m)(x) = Z ]{Ui71§m<ui}(x)m(x)
=1
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or equivalently

F()(z) = lim F®)(x)

k—o00

whereF*) is the conditional layer mixture of the firstdistributions as in Definition 2.3.

Note that the conditional layer mixture of finite number atdbutions,F*)| is a special case of
the infinite mixture, since if we choode. = F; andu, = u; = oo fori > k, F(* reduces ta#*).
The above definition simply implies that the restrictionfé#) on each layefu;_,, u;) is equal to

the conditional layer mixture distributioR® for eachi, i.e.

F©o)(2) = FO(x)

[wi—1,us)

which is well-defined sincé’) (z) = F0)(x) for z € (u;_1,u;] for anyi < j. Suppose that each

distribution F; has its density functiorf; and the hazard functioln, and denote the mixture of the

hazard functions by such that
h(m)(x) = Z [{Ui71§1'<ui}(x)hi(x)7 (215)
i=1

or equivalentlyp>) (z) = h;(z) for x € [u;_1, ;). Then the following corollary is the generaliza-

tion of Theorem 2.15 allowing = co.

Corollary 2.17 Given distributions{ ; },—; » .. and threshold® = v, < u; < ..., the infinite

goss

conditional layer mixture distributiof’ > has the mixture hazard functiég™, i.e.

F)(z) =exp (- /x h>)(s) ds)

0

whereF () andh(>) are defined in Definition 2.16 and (2.15) respectively.
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Proof: Let gy () = SN, Ttu,,<a<u (2)hi(2) for z < u; and0 otherwise. Themy 1 h(>) as

N — oo and hence we have

Fe)(z) = ]\}im FM(z)
= lim eXp(—/ h™M(s)ds) by Theorem 2.15

N—oo

= exp(— /Om R (s) ds)

= exp(—/ lim A™W)(s)ds) by monotone convergence theorem
0

which completes the proof

Note that the mixture hazard function in (2.15) takes a fofrsimple function whereas the
mixture distribution takes a recursive form as in Definititbh6. Therefore, in practice, it is much
easier to build a mixture distribution from a mixture hazérdction. Moreover, if we model a
heavy-tailed distribution with decreasing hazard rate cese start from appropriate hazard func-
tions {h,} satisfyingh;(x) > h;(x) for i < j and derive the mixture distributioR>> from the
mixture hazard functiok(>). For example, suppose that we want to find a infinite mixture of
Pareto distributions each of which has different shaperparara; > 0 such that

Fi(z)=(1+x) .

Supposey; | 0 asi — oo, then the mixture distributio® ) () can be calculated easily at each

x = uy, as follows; for any integet > 0,
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) (ur) = exp(— /o% h>)(z))

whereh;(z) = a; /(1 +z) for eachi. Note that the mixture distributioR (> is heavier-tailed than

any Pareto distribution since | 0.

Example 2.18 Consider a continuous mixture hazard function as a polygach that

= 1 2
for eachi = 1,2,.... The left graph in Figure 2.3 plots the mixture hazard func (> and

1/(1+ z) which is the hazard function of the Pareto distributiofx) = 1 — (1 +xz)~!. By Corol-
lary 2.17, the infinite mixture distribution can be easilyccgated at any: > 0. For example, for

any positive integen,

) = e (=3 /Zlhxx))

21 +1
= exp(—zm).

=1

The right panel of Figure 2.3 plots the infinite mixture distition and the Pareto distribution

F(z) =1— (x+1)~'inlog scale. Note that') is differentiable sincé(> is continuous.
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Pareto withne = 1 (dotted).
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2.3.2 Lorenz Curves of the Conditional Mixture Distributions

In economics the Lorenz curve is used to describe inequalggpulation’s income or wealth.

The Lorenz curve of distributiof’ with finite mean is simply defined by the ratio,

where f is the density function of'. In the following we examine the Lorenz curves of mixture
distributions with an illustrative example. For a non-nigaloss random variable¥ and its dis-
tribution F©), let @ = [*tdF;(t) andp>) = [*¢dF)(t) where eachF; has its hazard
functionh,. Forz € [u,_1,uy) for some positive integek, write v; = w; for i < k andv, = x.

Then we have

L) = &

wheree; = pOF ™ (u;_1) /O Fi(u;1) andAL; = L(Fy(w;)) — L(Fi(u;_1)) for i < k and
ALy = L(F;(z)) — L(F;(us—1)). Therefore the Lorenz curve of the mixture distribution? (>

can be viewed as a mixture of the Lorenz curiesf distributionsF;.

Example 2.19 Consider a sequence of thresholds and Pareto distributiantibns such as

w1 =1—1 and Fz(ff) — (1 +x)_2_%
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fori = 1,2,.... The Pareto distributions above have decreasing shapemetas from3 to 2
asi increases, and hence the mixture distributidf®) () has increasing heavy-tailednesszas

becomes large. By direct calculation we have

_ f’; P T )T

L(F(u)) = 1=+ 7.

From the paragraph followed by Example 2.18 in the previeatien witha; = 2 + 1/,

7

(i) = 11 (1 fj)—<2+§>_
=1

Combining all of the results above we have, for a positivegetn > 1,

Figure 2.4 is an illustration of the Lorenz curves of the migtdistribution and Pareto distribution

with shape parameter = 2,2.77, and3.
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Figure 2.4 Lorenz curves of Pareto distributions with mealnes).5(a = 3), 1.0(a = 2),
0.5644(a = 2.77), and the mixture distribution in Example 2.19

2.3.3 Limiting Distribution of Infinite Mixture

We already observed in the previous section that the camditilayer mixture distribution is
superior to the linear or layer mixture model with respedti® consistency of heavy-tailedness.
However, the mixture distribution8®) and F() are not differentiable at each threshaidin
general whereas smoothness of loss distributions is o#iquired in risk modelling. It is not
difficult to see that this non-differentiability problem dsie to the jumps of the mixture hazard
functionsh®) or h(>) at each threshold. Therefore, if we can approximate a contis hazard
function by the mixture hazard functioh®, the distributionF induced fromh can be viewed

as a limiting distribution induced fror(>.

Theorem 2.20 Consider a sequence of thresholgs< u; < ... such that = u; — u;_; > 0 for
all < and a sequence of distributional compon€rts z; §) } with hazard rate functiongh;(z; d)}.

Supposé(z) = lims_o h>)(z; §) exists and denote the distribution induced frbfm) by F(z) =



39

1 —exp(— [y h(s)ds). If F(z) > 0 for z > 0, the hazard function of the limiting mixture distri-
bution is the limit of the mixture hazard function &s- 0, i.e.

lim F(*)(z;6) = exp (— / (lsiné h(>)(s;8) ds).

6—0 0

Moreover, if the limiting hazard functioh is continuous, the limiting distributiof’ is differen-

tiable.

Proof: SinceF(z) > 0forz > 0, [ h(s)ds < oo and hence there exists> 0 such that

h(>)(s;8) < h(s) +efor0 < s < x. Then

; (00) (e — _ ’ () (g
(ISI_%F (x;6) (lsl_r%exp( /Oh (s;0)ds)

_ i h (s
exp ( /o (lslil(l)h (s;0)ds)
by dominated convergence theorem, which proves the firgrtams. Moreover, if the limiting

hazard rate function is continuous,

if(z) — lim exp(— fOHC h(s)ds) — exp( [y h(s)ds)

dx c—0 c

— —h(x) exp ( — /Ox h(s) dS)

which completes the proof.

The following corollary is an immediate result from Theor@r@0, which provides us with a
theoretical background to approximate any smooth didiohiby a conditional mixture oéxpo-
nentialdistributions. It is very interesting to note that the exgotial distributions can be seen as

a set of basis which reconstructs any differetiable digtiim as a conditional mixture.
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Corollary 2.21 Any distributionF with a continuous hazard rate functians a limiting distribu-
tion of the infinite conditional layer mixture of exponenigstributions, i.e.

F(r) = lim () (z; 6)

whereF;(x) = exp(—h(u;)z) for a sequence of thresholds < u; < --- andd = u;; — u;.

Proof: By the continuity, the hazard rate functidrcan be approximated by a step functioas

follows.

lim s(z;d) = h(z) where s(x)} = h(u;)

5—0 [wisuivt)

for eachi. Therefores is an infinite mixture of the hazard functiohs each of which is a constant
function such thab;(z) = h(u;). Since the constant hazard rate functionsgenerate exponen-

tial distribution functions, we have

for eachi. By Theorem 2.20/" is a limiting distribution of the infinite mixture of expongal
distributions which completes the proail.

In what follows, we provide two numerical exmaples. The fesample is an empirical dis-
tribution fit. Without assuming any parametric distributiove can approximate the empirical
distribution as presice as we want by a mixture of exponkdis#ributions, which is a parametric
distribution. This method solves problems such as uncgitsi of threshold and parametric dis-
tribution selection. We no longer need to assume a parasfetrn or a certain threshold level to
fit emprical data. The second example illustrates a reaact&dn of parametric distribution which

doesn’t have an explicit form where we use the g-and-h Sistion.
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Example 2.22 (Danish Fire Loss Data)The data used in this example is thanish fire loss data
with losses over one million Danish Krone. We approximatedensity functionf and the sur-
vival function F on [u;_, u;) as follows;

Ti—1 — %di

flo)~ ———— and F(z)~

for € (w1, u;).
(u;i —ui_1)n n T € [uio1, wi)

whered; andr;_; are the number of losses in_,, u; andu;_,, co, respectively. Therefore the

empirical hazard rate function can be written as

for each positive integer which leads us to identify the components of the mixtureahdunc-

tion by h, i.e.

d;

(Uz‘ - ui—l)(ri—l - édi)’

hi(x) = h(ui_q) =

x € [ui,l,ui) (216)

and the Danish fire loss data can be fitted by the infinite camdit mixture of exponential distribu-
tions with mean values; = fz(ui,l) by Corollary 2.21. Figure 2.5 plots the empirical hazare rat
function in the left panel and the infinite conditional layeixture distribution fit to the empirical

distribution in the right panel]

Example 2.23 (g-and-h simulation) Dutta and Perry (2004) proposed the parametric g-and-h dis-
tributions as a statistical tool to measure operation#ll aisthe enterprise level as well as at the
Basel Il business line and event type levels (Moscadell@42®ased on Loss Distribution Ap-
proach (LDA). They found that, with respect to the capitdineates at the enterprise level, the
g-and-h distribution resulted in realistic and consistapital estimates across all of the institu-
tions they considered. The g-and-h distribution with foargmeterga, b, g, h) can be defined as

a transformation of the standard normal random variabseich that
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distribution(right): empirical(circled), infinite contitbnal layer mixture(solid line)
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9% — 1 nz?

e 2
9

Fx)=Pr(X<z), X=a+b

whereg andh can be real valued functions @f. The advantage of using the g-and-h distribution
for loss modelling lies on its flexibility. Operational lessare known to vary from low frequency
and high severity to high frequency and low severity. Mortemthan not, one or two parameter
loss distributions fail to fit such operational risk datadese of the short ranges of skewness and
kurtosis. In this sense the g-and-h distribution is veryfuldgecause the g-and-h distributions
cover a wide range of skewness-kurtosis as illustrated gurei 3 of Dutta and Perry (2004).
We simulated, 000 samples from positive g-and-h distributed random variab)& > 0 with
a=0b=14¢=20,h = 0.2 The values ol andh are in the empirical range proposed by
Dutta and Perry (2004). We calculate the empirical hazasedftaction as in (2.16) and deduce the
infinite conditional mixture of exponential distributiomsthe same manner. Figure 2.6 plots the
empirical hazard rate function in the left panel and the itdioonditional layer mixture distribution

fit to the empirical distribution in the right panéll

2.4 Applications on the g-and-h Distributions

In this section we provide practical applications of the dibonal mixture distributions on
the g-and-h distributions. We fit three parametric distidms to Danish fire loss data by the
maximum likelihood estimation. In order to assess goodoéss, we use graphical method and
statistical goodness-of-fit test. We introduce the famflg-@nd-h distributions and its properties
and examine the maximum domain of attractions of the mixtfitee g-and-h distributions.

Dutta and Perry (2004) proposed the parametric g-and-hilisons as a statistical tool to
measure operational risk at the enterprise level as welt g#seaBasel Il business line and event
type levels (Moscadelli, 2004) based on Loss Distributigpach (LDA). They found that, with
respect to the capital estimates at the enterprise levey-#dind-h distribution resulted in realistic
and consistent capital estimates across all of the institsthey considered. The g-and-h distri-

bution with four parameterg:, b, g, h) can be defined as a transformation of the standard normal
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random variableZ such that

e9? — 1 hz?

e 2
9

Fx)=Pr(X<z), X=a+b

whereg andh can be real valued functions gf. The advantage of using the g-and-h distribution
for loss modelling lies on its flexibility. Operational l@ssare known to vary from low frequency
and high severity to high frequency and low severity. Mortemthan not, one or two parameter
loss distributions fail to fit such operational risk datadngése of the short ranges of skewness and
kurtosis. In this sense the g-and-h distribution is veryfuldgecause the g-and-h distributions
cover a wide range of skewness-kurtosis as illustratedgnJof Dutta and Perry (2004).

Degen et al. (2006) also considered the g-and-h distribs&md showed that they belong to the
family of regularly varying distributions or subexponentlistributions whem = 0,6 = 1,9 < 0,

andh > 0i.e.

Theorem 2.24 (Degen et al. (2006)$upposé- is a g-and-h distribution witl, » > 0, thenF =
x*%L(:c) for some slowly varying functior.(z). Forh = 0 andg > 0, we haveF' € S\R
whereS andR denote the class of subexponential distributions and aglyutarying distributions,

respectively.

We focus on the maximum domain of attractions of the condéionixture distribution*) with
k-th g-and-h distribution and the thresholtls- uy < u; < -+ < up_; whena =0,b=1,g9 > 0,
andh > 0. Thek-th distributional componenf,, above the highest threshalg _; corresponds to

one of the types

€2, g,h >0
X=q <= g>0,h=0
hz2
Ze 2, g=0,h>0.

where the random variablgé can be viewed as the standard normal distribuiomheng = 0 and

h = 0.
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.....

whereF}, is a g-and-h distribution anfl;, dominates all of; fori = 1,...,k — 1. We can write
F), ~ a7 %" L(x) by Theorem 2.24 and it is immediate to see that it belongs/to A (P, ).
Therefore,F'*) belongs to the sam&/ D A(®, ) by Proposition 2.13 and the normalizing con-
stants can be found as in Example 2.14F'{f) is of the linear mixture type as in (2.14) and as long
as the g-and-h distributiof;, tail-dominates allF; for i < k, we chooseF™ = F}, and conclude
F*®) € MDA(®,,,) by Theorem 2.7 and Theorem 2.8.

Whenh = 0, the g-and-h distribution becomes a scaled Lognormaibligton (or g-distribution),

i.e. X =e9?71/g,and

which is a lognormal distribution withy = logé — lando = g. Although Lognormal distri-
butions are not regularly varying, we already showed they tre long-tailed in Example 2.11.
Therefore, the conditional mixture distributidfi*) belongs to the same maximum domain of at-
traction of the lognormal distributiod/ DA(A) by Theorem 2.13. I#®*) is of the linear mixture
type as in (2.14) and tail-dominatésforall: = 1,...,k — 1, we choosd™ = F}, and conclude
F® € MDA(A), since

F
v = lim _k(x)
_ o Fp(r — up
= Fi_1(up_1) lim M

= fk,l(uk,l) > 0.

2.4.1 Data

The data used in this section Zanish fire loss datavith losses over one million Danish
Krone. It has been used in numerous papers for the threshidagions or extreme value distri-

bution estimations such as the shg@med scalgd parameter estimations of the generalized Pareto
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distribution,
_ 3 ),

F(:E):(lJer

=

for1+¢/4 > 0. The median and mean ar&'78 and3.385 million respectively, and the number of
claims over20 million and 10 million Danish Krone are respectived$ and109, which arel.66%
and5.03% of the sample observations. The exponential quantile plos an upward trend above
45° straight line, which is a strong evidence of the heavy tadedribution. In Appendix B we
provide a maximum likelihood estimator of the shape paramatthe extreme value distribution

with a numerical example.

2.4.2 Selected Parametric Models and Estimation Methods

We consider three parametric distributions, the genexdlRareto distribution, the g-and-h dis-
tribution, and a mixture of two g-and-h distributions witthaeshold. > 0 for g, » > 0 excluding
the trivial casey = h = 0. The closed form of the distribution function or the tramsfations of

the random variables can be found in the following Table 2.1.

For a given sample, ..., z,, the likelihood function of the generalized Pareto disttibn is
written as a product of the density functions ateacfor: =1,...,n,
Generalized Paretp F'(z) =1 — (1 + %az)_%, x>0 £>0,0>0

Single g-and-h | F ~ W%ehz2/2 g,h >0,
Z ~N(0,1) (9,h) # (0,0)
F?(2) = Lpewy(2)Hi(2) gir hi >0,

g-and-h mixture sy (@) Hy (W) Ho (| > ) (g, hi) # (0,0)
H; ~ S22 222 7 N(0,1) i=1,2

Table 2.1 Selected parametric distributions
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We denote the maximum likelihood estimates @fnd3 by £ and3, respectively.

In order to calculate the likelihood function of the g-andhistribution F* for a given sam-
ple {z,...,x,}, we need to computé¢(z;|©) for eachz; and given parameter sét = (g, h).
Let us denote the generalized inverseroby Q, i.e. Q(-) = F~1(:). ThenQ(F(x)) = x and
Q' (F(z))f(z) = 1 by differentiation, which reduces to

flalg.h) = =——. (2.17)
Q'(F(x))
Define a real valued functiofyz) by
69;—16%’ g,h >0
k(x) = egg;*l, g>0,h=
xeé, g=0,h >0

where® is the standard normal distribution. The quantile functiboan be also written as a com-

posite function ofc and the standard normal distribution as follows,

For more details see Remark 2.1, Degen et al. (2006). Morgihvederivative of) can be written



48

as

Q) = £F7'y) = HH@ () = K (@ )£ () (2.18)

Combining (2.17) and (2.18), we obtain

Therefore, if we have a method of evaluatifgz;|g, i) for eachz;, the likelihood function
l(x1,...,x,]g, h) can be calculated as a product of the above expressions.udgwsece there is
no closed form of~!(z) in general,F'y (z;) should be computed numerically for each> 0 as
follows. For a givenz; > 0, lety; be the solution of the equatidriy;) = z;. The value ofy; can
be found by many root-finding algorithms in numerical analygsd the uniqueness of the solution
is guaranteed sindgx) is strictly increasing fop, h > 0. ThenF'(z;) can be approximated by the
numerical solution); and hence we can also approximate the likelihood functioth@fg-and-h

distribution as follows.

k() ~ =
F(z;) ~ 2(4:)
N OO (D(3)))) . = o(0:)
l(x1,...,20lg, h) = Bk’(®1(®(@i)))_nk’(@i)

1

2.4.3 Results

Generalized Pareto Distribution: The negative log likelihood function of the generalized
Pareto distribution attains its minimum@t 3) = (0.61,0.32). Since the extreme value distribu-
tions have been widely used for modelling loss distribwgisnnumerous papers, we don'’t discuss

the details in this section. See McNeil (1997) and Cebriaal.€2003).
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The g-and-h Distribution: Figure 2.7 plots the negative log likelihood function of te
and-h distribution in the neighborhood of the origin 0). We used Monte Carlo method to lo-
cate the minimum of the negative log likelihood in this exdengnd the numerical estimates are
(§,h) = (0,0.38) which implies that the fitted distribution is an h-distritaurt which is subexpo-
nential such that

hz?

X ~ ZMF

Sinceh parameter in the g-and-h distribution is responsible ferkurtosis, h-distribution can be
used to model the heavy-tailedness of the sample. Howéwaayi fail to explain the skewness of

the loss distribution due to the lack gparameter.

- log likelihood
3500 3550 3600 3650 3700
s s s L f

3450
|

3400
!

3350
L

T T T T T T
0.2 0.3 0.4 0.5 0.6 0.7
h (g=0)

Figure 2.7 Negative log likelihood of the single g-and-hlsition

The Mixture of two g-and-h Distributions: For the conditional mixture of two g-and-h dis-
tributions F; and F;, we first introduce the threshold> 0, where the loss random variable satisfy
X|X <u ~ FyandX|X > u ~ Fy. Since the threshold choice is critical to the parameter es-
timation of the extreme value distributions, we chose tliiferent thresholds = 3, 6.234, and
10 million whereu = 6.234 million is the threshold estimate calculated by Bayesiathoe in

Appendix B. The number of losses exceeding each thresh6B2jd 77, and107 respectively.
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Figure 2.8 Negative log likelihood of the mixture of two gelh distributions whem = 6.21.

Foru = 3 million (532 exceedances) the negative log likelihood tiorcattains its minimum
at (g1, hy) = (0.26,0.02) and(gs, hy) = (0,0.57) respectively. Therefore it is the mixture of the
g-and-h and h-distribution such as

eNnZ _ 1 i z2 ho 22

X{$<u} ~N———e 2 and X{QCZU} ~e 2

~

g1

which asserts that losses below and above the thresholdspernsible for the strong skewnégs—
0.26) and the heavy-tailednes$s, = 0.57) of the sample data respectively. Figure 2.8 plots the

negative log likelihood function in the neighborhood(6f3) whenu = 3.



51

For v = 10 million (107 exceedances), the negative log likelihoodiat its minimum at
(g1, h1) = (0,0.37) and(ga, hy) = (1.04,0.23) respectively. It is the mixture of the h- and the

g-and-h distributions such as

6@22 — 1 22

hyz? hy2?
X{$<u} ~e 2 and X{xZu} ~ gg e 2

which implies that there exists strong skewngégs = 1.04) and relatively moderate heavy-
tailednesgh, = 0.23) in the right tail above the threshold= 10.

It is interesting to observe that far = 6.234 million (177 exceedances), the two underlying
distributionsF; and F; resulted in h-distribution and g-distribution respedyvd-igure 2.8 plots
the negative log likelihood function of the g-and-h disttibn below and above the threshald
respectively. The mixture distribution is heavy-tail@q = 0.37) as much as the single g-and-h
distribution (A = 0.48) from 1 million to 6.234 million and it is highly skewedj, = 1.60) in
the right tail above the threshold= 6.234 million. In this particular example, with appropriate
level of threshold we can fit the mixture distribution to tlergple data and observe that each of
the distributional components measures the skewness artetvy-tailedness separately, which
is not possible under non-mixture model.

Table 2.2 is the summary of the estimateg aind/ for each threshold. We can observe that
the tail inference of the loss distribution is very sengitio the threshold choice due to the bias-
variance trade off. For example, there are few data poirggeathe threshold = 10 which results
in parameter uncertainty fdr,. Alsou = 3 is too low to apply asymptotic properties in extreme
value theory. As a matter of fact the estimated.23) whenu = 10 reflects less heavy-tailedness
than52(0.57) whenu = 3. The discrepancy is due to the uncertainty of the parametdrswhen
u = 10 or the lack of theoretical justification df, whenu = 3.

Goodness of fit: Two methods are applied to assess the goodness-of-fits dorpgaameter
estimation, Kolmogorov-Smirnov test (K-S) and Quantilea@tile plot (Q-Q). Table 2.2 is the
summary of the parameter estimates, K-S statistics, aralyzs. The mixture model withh = 3

million shows the poorest fit and fails to pass the K-S tese GRPD model and the g-and-h mixture
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model withu = 6.21 million show the best fits with p-valu€s3571 and0.1391, respectively. The
distribution fits and the Q-Q plots of the selected parametrodels are illustrated in Figure 2.9
and 2.10.

Distributions Parameters Estimates K-S Statistics p-values
single Generalized Pareto (¢, ) (0.61,0.32) 0.0281 0.3571
single g-and-h (g9,h) (0,0.48) 0.0554 0.0026
g-and-h mixture (91,h1)  (0.26,0.02) 0.1527 0.0000
(u=3.0) (g2, ho) (0,0.57)
g-and-h mixture (g91,h1) (0,0.38) 0.0351 0.1391
(u=6.234) (g2, ha) (1.60,0)
g-and-h mixture (g1, h1) (0,0.37) 0.0383 0.0832
(u = 10.0) (g2,h2)  (1.04,0.23)

Table 2.2 Maximum likelihood estimates and goodness-sf-fit
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2.5 Conclusions

We have demonstrated that mixture distributions natuealie in (re)insurance risk modelling
and that they have considerable advantages over other hdarenparametric models in dealing
with large claims. The specific mixture distributions we éaonsidered in this chapter are suit-
able for modelling (re)insurance risks since they captheefar tails of loss distributions due to
their layer structure. We have shown that the maximum domiaattraction of the mixture distri-
butions are completely determined by the maximum domaintcdcion of the last distributional
component and hence the tail behavior of the mixture digtiob can be fully explained by the
tail behavior or the last component. We also discussed thartlaate functions of the conditional
layer mixture distributions, which is very unique amongraikture models. Since we can build a
conditional layer mixture distribution by mixing hazardedunctions in a simple way, the analytic
complexity of general mixture models can be overcome by #zaid rate function representation
of the conditional layer mixture model. The infinite mixtureodel and its hazard rate function
expressed as a simple mixture, gives a possible solutiohetidhreshold selection problem by
modelling the tail above any threshold level as another ibefimixture distribution. Lastly, we
have proposed a limiting distribution of the infinite comaiital mixture and have shown that any
distribution with continuous hazard rate function can bgragimated by a mixture of exponential

distributions.
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Chapter 3

Computation of the Aggregate Distribution of a Maximal Markov
Sequence

This chapter is based on the paper by Jang and Jho (2008anckhinstitutions such as
banks and insurance companies have a pool of risks. Thegajgne of these risks as loss random
variables has been used in insurance and operational ridelmg. Let us define a pool of risks
by a set of random variables,

E={X,...X4}

for d > 0 and denote the sum of the random variables hywhereX; are not necessarily identical.
In particular, if X; are independent, the aggregate loss distribufign can be calculated by the
convolution of F,, although it is a time-consuming approach. The difficultises when the
random variables are dependent, since the convolutionaparation on functions not on random
variables. An axiomatic approach to this problem can bedaarFrank (1991) where the author
considered the convolution for dependent random varigdesparticular member of distributional
counterpart of binary operations, for example, a bivaraeula and introduced the generalized
convolutions. Another difficulty lies on the size of the pobtisks,d, with respect to the numerical
efficiency. With no specific assumptions on the dependencetate, we propose a method of
reducing the size of the risk pool to obtain an equivalent sintpler risk pool and hence faster
calculation in the followings.

Consider a sequende, as a subset ab’ such that

E,={X,,...,X;,,} CE
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fori; < --- <1, < d. ThenE; is called anaximal Markov sequendft satisfies Markov property
but £, U{ X, } violates Markov property for an¥; € F\ E;. For the definition of Markov property
or Markov process, see Nelsen (1999) or Joe (1998, ¥ E, consider another maximal Markov
sequencd’, C FE\E; and repeat this process unfl exhaust the seb’. Eventually we have a

decomposition of the pool of risks by disjoint maximal Mavlisequences as follows,
U_Ei=F (3.1)

for a positive integelj < d. Note that the decomposition in (3.1) may not be unique. Detiwe

sum of the random variables in eahby Sg,, then we can writ&y = Z{Zl Sg, and
FSE(S) = ]P)(SEl + -4 SE7 S S)

For convenience, we rename the random variapfs. .. ., Sz, } by {X”,.... X\*'} where;
depends on the number of maximal Markov sequences and whemitle use in general the nota-
tion {X{Q), e ,Xg)}, which is called the second stage risk pool equivalent tditkestage and
we haver:1 X; = Zfil Xi(Q). Sinced is finite, repeating this process, we obtahth stage risk
pool which is no longer decomposable, and hence satisfiekdMaroperty, as in the following

diagram.

(x, .. xP)
Due to this hierarchical structurﬁ’,i(j) is a sum of random variables in a maximal Markov sequence
at (j — 1)-th stage risk pool. Therefore if we have a computationalhoetfor the aggregate
distribution of random variables satisfying Markov pragethe aggregate distribution of; +
-+ + X, can be calculated by the aggregate distributioﬁ(&) + -+ XC(/Z) where eachYZ.(k) IS
again a sum of random variables(in— 1) stage maximal Markov sequence and hefige, is an
aggregate distribution of @& — 1)-th stage maximal Markov sequence and so on. TFle efficiency

of the computation depends on how good a decomposition iacht stage, i.e. how large each
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maximal Markov sequence is. Therefore it is very crucialdmpute the aggregate distribution of
each maximal Markov sequence, which is the main goal of thepter.

In section 3.1 we present a computational method for theilolision of sum of random vari-
ables in a maximal Markov sequence and in section 3.2 wednt®a chain of pairwise bivariate
copulas to implement the dependence on the maximal Markguesee. We provide numeri-
cal examples of the method in section 3.3, and actuariaiagmns on Bayesian premiums and

stop-loss premiums in section 3.4 and 3.5.

3.1 Computation of the Aggregate Distribution of Non-identcal and Depen-
dent Variables in a Maximal Markov Sequence

For a given pool of risk€”, choose a maximal Markov sequenge= {Xy,..., X, } C E for
a positive integen. < d. Denote the joint distribution ok, ..., X,, by H,,(z1, ..., z,) for each
positive integem > 1. As a consequence of Markov properGhapman-Kolmogorov equation

holds as follows.

8.’,13']‘

P(Xk < ai] Xi = ;) = / P(Xk < 2] X = ;) d;
0

fori < j < k. If the conditional densities exist, the above equatioesake analogous form,
Fxpixi (@) :/ T (@il @) oo x, (@ |2) day.
0

Now let us denote the aggregate losshy= """ | X for a positive integen. Assuming Markov
property, we first derive an iterated integral equation efjtnt density functiorys, , x, for each

n > 2 in the following lemma.

Lemma 3.1 Suppose thak; are continuous, non-negative, non-identical, and depernadss ran-
dom variables. Further we assurfi&,, ..., X, } satisfies Markov property. If the joint density

function of X,, andS,,_; exists for eachn > 2, the following equation holds.
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an’S"_l(t, s) = / fX"‘Xnil(t | w) fX"_LS"_Q(w, s—w) dw. (3.2)
0

Proof: First consider the well-known result of conditional proliéagp

Q]P’(Xn <t S, ,<s)= QIP’(S

<s)-PX < =5s).
68 85 S) (n—t|Sn—l S)

n—1 —

Applying theChapman-Kolmogorov equatiam the conditional probability in the right hand side

by conditioningonS,_, and.X _,, the above equation can be rewritten as follows.

gP(Xn <t,S-1<s) = / fo (5)P(X,<t|X, ,=w,S, ,=s—w)
S 0 n—1

x an—LSnfz\Sn,l (’UJ, S—w | 3) dw

=[RS tX =m0 s du
0

The lemma follows immediately by differentiating the lagtiation with respect ta. [J

Note that the result (3.2) in Theorem 3.1 is of the form analmgto the convolution oX,
andsS,_;. The joint densityfx,s,_, is derived fromfx, _, 5., through the kernel integration by
Ix.1x._.- Applying the result of Lemma.1, we can derive another integral equation of the aggre-
gate loss density functiofy, in the following theorem. In special, if we assume the indefgsce

of losses, it is identical to the classical convolution faten

Theorem 3.2 Suppose thafl; are continuous, non-negative, non-identical, and dep#nrdss
random variables. Further we assufié,, . . ., X, } satisfies Markov property. If the joint density
function of X,, and.S,,_; exists for eacln > 2, the density function of the aggregate loss can be

written as follows.

fs, (1) :/o/o an‘Xnil(t—s|w) fX%l’SH(w,s—w) dw ds (3.3)
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where f

Xn—1:Sn-2 (

w, s—w) can be derived by Lemma 3.1.

Proof: By conditioning onX,,_; andS, , again,

PS,<1) — /tmx <t—s|S, =5 [ (s)ds

:// (X, <t—s|X, ,=w,S, _,=s—w)

(w,s—w|s) fy (s) dwds

nlsn2‘s —1

= // (X, <t=s|X, ,=w)fy o (0,s—w)dwds.

The density function follows immediately by differentiadi the distribution functio®®(S, < t)
with respect ta and applying thé.eibniz Rulewhich completes the proof.]

Lemma 3.1 and Theorem 3.2 provide a numerical algorithmnapzde the aggregate density or
aggregate distribution function of non-identical deparidesses in a maximal Markov sequence.
In the next section we introduce a chain of bivariate coptdasmplement the dependence on the

maximal Markov sequence.

3.2 Application on Bivariate Copulas

We give a brief overview of bivariate copulas and implemét dependence structure on a
maximal Markov sequencgXy, . . ., X,,} by a chain of bivariate copuals. The formal definition of

bivariate copulas can be found in many textbooks or papetsvafollow Nelsen (1999).

Definition 3.3 Let I = [0, 1], a unit closed interval. A bivariate copula is a function 7> — I

with the following properties:

1. Foreveryu,vin [

C(u,0)=0=C(0,v) and C(u,1)=wu, C(l,v)=
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2. For everyuy, us, v1, vy in I such thaty; < uy andv; < vs,

C(UQ, U2) — C(Ul, U2) — C(Ug, Ul) + C(Ul, U1> Z 0.

Copula is an efficient tool of modeling dependence strucsumee the dependence and the
marginals of random variables can be studied separateparticular, the copula function related
to any multivariate joint distribution with continuous ngaral distributions is uniquely determined

due to the following Sklar’s theorem (Sklar, 1959).

Theorem 3.4 Let H be a joint distribution function with marginal distributis F andG. Then

there exists a copul@ : [0, 1> — [0, 1] such that for alle, y € [—o0, o0,

H(z,y) = C(F(x), G(y))- (3.4)

If FF and G are continuous, thet' is unique. Conversely, i€ is a copula and? and G are
distribution functions, then the functiod defined by (3.4) is a joint distribution function with

marginal distributiong” andG.

Note that the copula function is not uniquely determinetiéf tnarginals are not continuous. If we
define the generalized inverse Bfby F~1(t) = inf{x : F(z) > t}, the equation (3.4) takes the

following analogous form,

H(F~Yu),G(v)) = C(u,v).

Moreover, it is not difficult to show that if the joint densikyz, y) of H(z,y) exists,

h(z,y) = c(F(z),G(2)) f(z)g(x)
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wherec(u, v) is called the density of the copula and defined by

For the random variables in a maximal Markov sequehce= {X1,..., X}, let X;_; and X;
be dependent by bivariate copul@$’ with continuous partial derivatives for eacrsuch that
Hifl,i(l’ifl, SL’Z> = C(Z) (Fwifl(]?i,l), E(IZ)) WherEHZ’,LZ’ is the jOint distribution OfX'i,1 andXi.

The joint density function of;_; and X, can be viewed as
fifl(xifl)fi(xi) C(i) (Efl(l’ifl)a Fz(ﬂfz)) (3-5)

and hence the conditional density &f|X;_; is equal toc') (Fi_; (2,_1), Fi(z;)) f (x;). From the

equation (3.2) in Lemma 3.1 the joint density function’gf and.S,,_; can be written as follows.

Fxns

n—1

(t,s) = /OS ™ (Fpei(t), Fn(w)) fx, (t) [, s, (W, s—w) dw. (3.6)

In the same manner, by substituting (3.6) into (3.3) in TheoB.2, the density function ¢f, can

be written as follows,
fs, (t) = //S ¢ (Fao1(w), Fu(t — s)) fx, (t = s) fe, s, (W, s—w) dwds. (3.7)
0J0

Denote the partial derivative of the cop@’ (u, v) with respect ta: by ) (u,v), i.e.

CD(u,v) = %C(i) (u,v).

From the last equation of the proof in Theorem 3.2, the agdeedjstribution of5,, can be written
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as
F, (1) = /t/s cm (Fpo1(w), Fu(t — s)) fx, s, (W, s—w) dwds. (3.8)
0Jo

Therefore (3.6) and (3.8) constitute a numerical algoritbnthe aggregate loss distributidry,

forn > 2.

3.3 Numerical Examples

In this section we provide two examples of Lemma 3.1 and TéraoB.2 with applications
on Farlie-Gumbel-Morgenstern copula and Gaussian copiadie-Gumbel-Morgenstern copula
has simple algebraic expression and is well-defined on ttieeetomain,(u,v) € [0,1]*>. The
example in section 3.3.2 can be applied to similar copulel ag Archimedean copulas. Gaussian
copulas provide us a standard of copula modeling since jepi®the dependence structure of the
multivariate standard normal distribution onto any mualtiate joint distribution with non-normal
marginals. For more details about the construction, pt@srand estimations of the copulas, see
Frees and Valdez (1998), Genest and MacKay (1986), GenddRiaast (1993), and Joe (1997).
The example in section 3.3.3 can be also applieddopulas by simple substitutions 6f, (u, v)
andc(u, v). Exponential and Pareto distributions are chosen for matgiistributions in order to

illustrate the effect of light or heavy-tailedness on thgragate distributions.

3.3.1 Algorithms

Givent,s > 0 andn > 2, we introduce a recursive algorithm of the numerical caitah for
the joint density functionfx, s, , (¢, s) associated with marginal density functiofis and copula

densities:) fori = 1,...,n as follows.

ALL. For the joint density functiorfx, s, ,(,s),
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PROCEDUREY, 5, 1)
IF n = 2 THEN RETURN fx, x, (¢, 5)
ELSE
RETURN [ ¢™(F,_1(t), F,(w))- PROCEDUREw, s — w,n — 1) dw
END IF
END PROCEDURE

The aggregate density functigix, (¢) and the distribution functio’y, (¢) can be calculated

numerically by calling the procedure in AL1 above as follows
AL2. For the aggregate density functigr,, (¢),

STEP Llia(w;t,s,n) = "™ (F,_1(w), F,(t — s)) - fx, (t — s)- PROCEDUREw, s — w,n — 1)
STEP 2:b(s;t,n) fo a(w;t, s,n)dw
STEP 3:fx, (1) fo s;t,n)ds

AL3. For the aggregate distribution functidfy, (¢),

STEP 1:A(w;t, s,n) = C{ (F,_i(w), Fu(t — s))- PROCEDUREw, s — w,n — 1)
STEP 2:B(s;t,n) = [, A(w;t,s,n)dw
STEP 3:Fx, () fo (s;t,n)ds

For the the univariate integrals in AL1, AL2, and AL3, any rennal integration method can
be applied, for example Newton-Cotes formulas and Gausgiadrature. In this chapter we do
not discuss about the efficiency of the numerical approXonaince main topic of this chapter is
focused on the dependence structure of multiple randorablas implemented by copulas and an
introduction to a numerical method of the aggregate distidim function. For the following nu-

merical examples we apply the trapezoidal rule, a simpleebiarce calculation for convenience.
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ALO. Trapezoidal rule forfcf’ f(x)dx

CHOOSE AN INTEGERk > 0.

SET ACCUMULATOR= 0 AND i = 0

WHILE i < n DO
ACCUMULATOR = ACCUMULATOR + &¢{ f(a + i%2) + f(a+ (i + 1))}
i=i+1

END WHILE

RETURN ACCUMULATOR

3.3.2 Farlie-Gumbel-Morgenstern Copula and Exponential bstributions

Consider a maximal Markov sequenkg C E and denote the sum of the random variable in

Eiby S, =X, + ...+ X, whereX; are exponentially distributed such that

1—Fx (z)=en

forz > 0 andyu > 0. For the dependence of;, ; and X; for eachi > 1, we choose Farlie-

Gumbel-Morgenstern Copula defined by

C(u,v) = uv + Auw(l —u)(1l — o)

for (u,v) € [0,1]> and—1 < A < 1. By the definition of the copula, it is immediate to find the

partial derivative and the density of the copula as follows.

Cu(u,v) = v+ (1l —v)(1 = 2u),
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c(u,v) =14+ M1 —20v)(1 — 2u).
Suppose that X}, ..., X, } satisfies Markov property. Then the aggregate loss disioibi’s,,
and the aggregate density functigs) for any dimensiom > 2 can be calculated numerically by
(3.5)~ (3.8). Fig. 3.2 is the sketch of the aggregate distribufignand the aggregate density,
computed numerically by (3.5) (3.8) and simulations, respectively whgn= 1 and\ = —1, 1.
We generated 100 million samples for Monte-Carlo simutatibhe length of each subinterval is
equal to0.01 for the univariate numerical integrations in the compuwtaai method, (3.5) (3.8).
It is obvious from Fig. 3.2 that the positive or negative degence between subsequent losses has
substantial influence on both of the tails. The aggregateldlitsion with A\ = 1 has fatter tails in
the left and right than the aggregate distribution wite= —1. In other words, large(small) losses
are more likely to incur subsequent large(small) lossesutite pairwise positive dependence
(A > 0). Conversely, the negative dependefize< 0) reduces the chance of extreme events so

that large(or small) losses are less likely to occur subseidy

Numerical Simulated Diff/Sim
x A=—1 A=1 x A=—1 A=1 x A=—1 A=1
21 0.097154 0.24593R 2.1 0.097385 0.246678 2.1 0.002376 0.003023
3.6 0.462003 0.508551 3.6 0.462715 0.50980b6 3.6 0.001539 0.002460
4.8 0.728725 0.6785744.8 0.729644 0.680008 4.8 0.001260 0.002102
6.3 0.905492 0.830151 6.3 0.906509 0.8316116.3 0.001122 0.001756
7.2 0.952690 0.89030837.2 0.953768 0.891792 7.2 0.001130 0.001670
7.8 0970524 0.9196857.8 0.971620 0.9211787.8 0.001128 0.001621
9.3 0.990879 0.96521P9.3 0.992000 0.9666909.3 0.001130 0.001521
11.7 0.997904 0.99145911.7 0.999038 0.99293711.7 0.001135 0.001488

Table 3.1 Numerical and simulated values of the aggregatghiitions with exponential
marginal distributions and Falie-Gumbel-Morgensternutapdimensiom = 4, exponential
meanu = 1, copula parametex = —1, 1, and the number of simulationsi80, 000, 000.
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Figure 3.1\ = 1. Top left: Farlie-Gumbel-Morgenstern Copuldu, v) on the unit square
(u,v) € [0.1]%. Top right: partial derivative of’(u, v) with respect ta: on (0, 1)?. Bottom left:
partial derivative of” (u, v) with respect ta on (0, 1)2. Bottom right: copula density oft), 1)?

Numerical Fs,

h =0.01 h = 0.005 h =0.01 h =0.005 | 100 million
499.660000  3993.390000 | 500.180000 3999.820000 | 838.470000

Numerical fs, Simulation

Table 3.2 Runtimes(seconds) of the simulation method amddamputational method whehgs
the length of each subinterval in every univariate numeéntagration.
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Figure 3.2\ = —1 (dashed)) = 0 (solid), A = 1 (dotted). Top left: aggregate distributions of
X1+ -+ -+ X, with Farlie-Gumbel-Morgenstern copula and exponentiak(1) marginal
distributions by simulation. Top right: aggregate digitibns with Farlie-Gumbel-Morgenstern
copula and Exponentiali(= 1) marginal distributions by Theorem 3.2. Bottom left: diface
between simulation and numerical approximation. Bottayhtriaggregate density functions by
Theorem 3.2.
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3.3.3 Gaussian Copula and Pareto Distributions

Consider a maximal Markov sequenkg C E and denote the sum of the random variable in

EibyS, =X+ ...+ X, whereX; are Pareto distributed such that

1— Fy () = ( b )a

x+ 0

for a, 5 > 0 andz > 0. Pareto distribution witl) < o < 1 is well known as an extremely heavy-
tailed loss distribution. Fatt > 1 and a positive integer > «, k-th moment of Parete(, ) is as

follows.

Bk

k]
E[X]_(oz—l)---(oz—k:)'

For0 < a < 1, however, no finite moments exist. The parametatetermines the maximum
domain of attraction of the distribution and it is one of theshimportant indices in the family of
extreme value distributions. For more details, see Emlivsesttal. (1997)

For the dependence betweén and X;_; for each: > 2, we choose Gaussian copula with
correlation coefficient-1 < p < 1. Let ¢ and® be the density and the distribution function
of the standard normal distributio¥ (0, 1), respectively. Denote the density and the distribution
function of the bivariate standard normal distributioniwibrrelation coefficienp by ¢, and®,,,

then Gaussian copuf@ is defined by

C(u,v) =, ((ID_l(u), @‘1(1)))

whereu = F,_4(z;_1) andv = Fj(z;) for eachi > 1. Gaussian copula transforms the random
variables to the standard normal random variables and gisofeem onto the bivariate standard
normal dependence structure. As a result the random vesaeifined by Gaussian copula behave

as if they were bivariate standard normal random varialiteew@gh the marginals are not normally
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distributed. In order to apply the numerical procedure 0b)3- (3.8), it is necessary to find
the explicit forms ofc® (F,_, (z;_1), Fy(z;)) and CY) (F,_1 (z;_1), Fy(z;)). Moreover, we should
take extra care of the well-definedness of the copula deresat For exampIeCff)(u, v) doesn’t
converge to a finite value ds,v) — (0,v) for anyv € (0, 1). Fig.3.3 illustrates the singularities
of the copula derivatives on the boundary of the donj@jt]?.

It is not difficult to derive the following two results fromérdefinition of the Gaussian copula,

o) = o220

2 — — — —
) = Lt e e 0}

for all (u,v) € (0,1)2. Applying these results into (3.5) (3.8), Fs, (t) and fs, (¢) can be calcu-
lated numerically with desired precisions for any firtite 0 and positive integer > 2. Table 3.3
and Fig. 3.4 are the summary of the numerical values and #tetskf the aggregate distributions
Fs,, where the marginal distributions are identically Parete{ 0.9, 3 = 0.4) distributed under
Gaussian copula framework with different values of cotretacoefficientsp = —0.7, 0, and0.7.
Simulated values are also compared and the number of siongas again 00, 000, 000.

Similar to the case of Farlie-Gumbel-Morgenstern copula,&aussian copula with negative
correlation(p = —0.7) also shows that the aggregate density function is less dispeand more
centered than the positive correlation= 0.7) and vice versa. As a Pareto distribution is used
as a marginal, we can easily see that the aggregate digtnkhas heavier tail than the aggregate

distribution of exponential marginals with Farlie-Gumidébrgenstern copula.
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Figure 3.3p = 0.5. Top left: Gaussian Copuld(u, v) on the unit squaréu, v) € [0.1]%. Top
right: partial derivative of”(u, v) with regard tou on (0, 1)?. Bottom left: partial derivative of
C(u,v) with regard tov on (0, 1). Bottom right: copula density ofb, 1)?
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Numerical Simulated Diff/Sim
x p=-—07 p=0.7 x p=-07 p=07 x p=-07 p=07
2.8 0.293849 0.4997952.8 0.294012 0.502817 2.8 0.000554 0.006011
44 0.511512 0.616991 4.4 0.511531 0.619997 4.4 0.000037 0.004849
56 0.606551 0.6734845.6 0.606537 0.6765165.6 -0.000024 0.004481
7.6 0.702002 0.73701B7.6 0.701982 0.7400367.6 -0.000029 0.004085
9.2 0.749585 0.7718839.2 0.749539 0.7748809.2 -0.000062 0.003869
11.2 0.790581 0.80386511.2 0.790514 0.80684{711.2 -0.000085 0.003697
13.2 0.819624 0.82763613.2 0.819483 0.83064113.2 -0.000171 0.003618
16.0 0.848561 0.85226216.0 0.848357 0.85529216.0 -0.000240 0.003542

Table 3.3 Numerical and simulated values of the aggregatgtalitions with Pareto marginals
and Gaussian copula; dimension= 4, Pareto distribution parametets= 0.9, 5 = 0.4,
correlation coefficients = —0.7,0.7, and the number of simulationsi80, 000, 000.

NumericalF, Simulation
100 million

1073.870000

Numericalfs,
h =0.01
8080.630000

h =0.01
7997.310000

Table 3.4 Runtimes(seconds) of the simulation method amddimputational method whekes
the length of each subinterval in every univariate numénntagration.
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Simulation Numerical
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Figure 3.4 = —0.7 (dashed)p = 0 (solid), p = 0.7 (dotted). Top left: aggregate distributions of
X1+ -+ X4 with Gaussian copula and Pareto€ 0.9, 5 = 0.4) marginal distributions by
simulation. Top right: aggregate distributions with Gaassopula and Pareto(= 0.9, 3 = 0.4)
marginal distributions by Theorem 3.2. Bottom left: diface between simulation and Theorem
3.2. Bottom right: aggregate density functions by Theoren 3
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3.4 Applications on Bayesian Premiums

Conditional expectations have been widely used to predtaré premiums based on the past
claim observations in insurance pricing. Let us denote tive premium by, ., = F[X,, 1] and
the hypothetical premium by,,.;(©) where® is the associated parameter with the policyholder
or group of policyholders. Because the paraméter the distribution oP is unknown in general,
we are often required to use the conditional expectatioh mspect to the past datd;, ..., X,.
We can use the Bayesian premiuthX,, .| X, ..., X,,] as a future premiump,,,,(©) for a par-
ticular group of policyholders possessing homogeneols tishigher dimensiom, however, it
is not easy to compute the Bayesian premium because of tletidoal complexity of the joint
distribution, Fx (z1, . .., xz,11) in general dependence structure.

In order to avoid this numerical difficulty, Biihimann (196#pposed the following credibility
model to approximate.,,.;(©) as a linear function of the past observatio¥is - - - , X,,, i.i.d.

conditional on®,

g + Z OziXi (39)
i=1
with appropriate coefficients; for i = 0,--- ,n. The random variableX; are assumed to be

identically distributed and independent conditionalk@nBy elementary calculus, we can find the
coefficientsa; minimizing the squared error in the following manner. Cebe the expectation of

the squared error,
Q - E{ |:,un+1(@) — 0y — iain}Q}.
=1

If we denote by(ay, - - - , &,) the values ofy; minimizing ), we have

9Q

: ‘ro =0 for i=0, n
o (G0



75

Solving the system of equations, we obtain so called noronzdons,

E(Xpp1) =60+ Y &E(X;), Cov(Xy, Xnn) =Y  aCov(X;, X;) (3.10)
j=1

j=1

fori =1,...,n. The above system of-equations can be viewed as a matrix equation, i.e.
COU(Xl,XnJrl) CO’U(Xl,Xl) COU(Xl,XQ> CO’U(Xl,Xn) 6[1
COU(XQ,Xn_H) CO’U(XQ,Xl) CO’U(XQ,Xn) 6[2
Cov(X,, Xni1) Cov(X,, X;) Cov(X,,Xs) ... Cov(X,,X,) Ol

Therefore, the coefficients; can be found as long as the covariance matridf, - - - , X,,) is not

singular. For more details, see Klugman et al. (1998).

Blhlmann’s linear model (3.9) is very useful when the candal densityfy, ., or the con-
ditional expectatior’[ X, 1| X1, - - - , X,,] is hard to calculate, for example, when the random vari-
ablesX; are not independent in higher dimension However, this method can’t be applied to
approximate the Bayesian premium when losses are negativgklated, which is illustrated in

Example 3.5 and Table 3.

3.4.1 Conditioning onS,,

In the following we apply Lemma 3.1 and Theorem 3.2 discussetie previous section to
compute the Bayesian premium directly, conditioning ongtwn of the past observation§ =
> r X, instead of{X,---, X, }. Before we proceed to compute the conditional expectation,
E[X,11]S,], we briefly examine the similarity between Biuhimann'’s line@del and the following

simpler model conditioning of,,.
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Let us assume the Bayesian premium is of the form,

a+ 38, where S,=>"X; E[X]<oo (3.11)

i=1
anda, G need to be specified. L&Y be the expectation of the squared error, i.e.
2
W= E{ [Mn+1(@) —a-— ﬁsn] }
Similarly, if we denote the values of, 3 minimizing W by &, 3, they satisfy the following partial

differential equations,

ow ow

P l@n =0 Frlas =0
which reduce to the analogous normal equations,

E(Xpi1) =a+BE(S,), Cov(Sy, Xni1) = Var(S,). (3.12)

It is immediate to find the solution of (3.12),

a = E[X,11] — BE[S,], B _ 2?11 Cov(Xi,XnH).

Var(S,)

It is very interesting that two functional assumptions J&8d (3.11) of the credibility premiums

provide the same credibility factor under certain dependetructure as in the following example.

Example 3.5 (i) Buhlmann'’s Credibility Premium: Suppose thatX;| = u, Var(X;) = o2, and

Cov(X;, X;) = po? for i # j where the correlation coefficieptsatisfies) < p < 1. Then the
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classical credibility premium gf,,; 1 (©) can be calculated as a linear combinatioef- - - , X,,,
do+ Y aiX;
=1

where the coefficients; are as follows.

1 —
R )L S N SR S OUP
1—p+np 1—p+np
The credibility premium reduces to
_ np — "
1-2Z\u+72X where 7=—+"—— X = Xi/n 3.13
(1= 2)p T 2%/ (3.13)

which is the desired weighted average:adnd X if 0 < p < 1 (Klugman et al., 1998).
(i) Bayesian premium conditioning aofi,: Now we consider the credibility premium of the form
(3.11). The credibility premium in this case is a simple éineombination of,, only, i.e. &+ 35,,.

From the normal equations (3.12), the coefficients can be easily calculated as

- o n(l—ppu
pu— 1 _— = -
a pl =nf) = — e 0

Z:‘L:l COU(X%XH-H) _ 14
Var(Sy) 1—p+np

@

= &

which gives the identical credibility factar and premium as in the previous result of (3.13).
Therefore the credibility premium conditioning on the suithe past losses does not lose any in-
formation of the past observations Xf;, - - - , X,, possess the same mean value and the correlation
coefficients of X;, X ;) are identical for # j. In generalS,, can be viewed as a linearly sufficient
statistic,7 - [X,,...,X,]’, for an appropriate non-ramdom matfi which is[1,..., 1] in this

case. Therefore
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EXp | X1,....Xn] = EXpq|T (X1,....X)],

1=1

For more about linearly sufficient statistics, see Sund®{) @nd references thereinl.

Now consider the following Bayesian premium conditionimgtbe sums,, without any func-

tional assumption of the conditional expectation,

Summing up the past observations, we may lose intrinsianmédion amongX; more or less.
However, by simplifying the conditioning, we have an adeget that it is possible to evaluate the
conditional expectation by applying Lemma 3.1 and Theore2uBder the assumption of Markov
property amond X1, ..., X,,}. The conditional expectation (3.14) is the best estimatdié fol-

lowing sense. For any functignof .S,,,
E{ X1 = E(Xun|Su]"} < B{ [Xua — g(S0)]°}.

It is easy to write the following asymptotic approximatidrttee Bayesian premium in terms of the
joint density ofX,, .1, .S,, and the aggregate density,
M an+1,Sn (tv 3)

M
E[X,a]S.) = lim / s, (tls)dt = m [t

N Fo (5) dt (3.15)

wherefx, s, (x,s) andfs, (s) can be numerically calculated by Lemma 3.1 and TheoremB.2. |

sum, if the following conditions are satisfied,
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1. Loss random variablek; are non-negative and continuous.
2. {Xy,..., X, } satisfies Markov property.
3. fx, 1 1x,(wis1|2z;) is known foreach = 1,... n,

Bayesian premium can be approximated numerically withrddgprecision by (3.15); For any
givene > 0 and positive integet > 1
M an+175n (t7 S)

FElX,1|S, = s| — =t T L dt| <
X1l Sn = o / T, (5) ‘

for sufficiently largeM/ > 0 wherefy, ., s, (t,s) andfg, (s) can be calculated by Lemma 3.1 and

Theorem 3.2.

3.4.2 Numerical Examples

Table 3.5 and Fig. 3.5 are the summary of the Bayesian premiui,|S;] evaluated by
(3.5) ~ (3.8) for various values af;. We also assuméXy, ..., X, } satisfies Markov property.
Top in Table 3.5 and left in Fig. 3.5 are the Bayesian premiwhen losses are exponentially
distributed with unit mean and subsequent l0$3&s, X;) are dependent through Farlie-Gumbel-
Morgenstern copula with = —1, 1. Bottom and right in Table 3.5 and Fig. 3.5 are the case of
Pareto marginal distributions and Gaussian copula. Matgifollow Paret¢4.0, 3.0) distributions
with unit mean and each pair of subsequent los€sX;,,) are dependent through Gaussian
copula withp = —0.7,0.7.

It is very interesting to notice the phenomenon against atuition in this example. In
Table 3.5 and Fig. 3.5, Bayesian premium with negative dégece of subsequent losses in-
creases(decreases)@sdecreases(increases), which implies that Bayesian presniue heavily
affected by the sign of the correlations under Markov prgpefhe negative dependence struc-
ture,\ = —1 or p = —0.7 has strong influence on Bayesian premiums so that smaitge(lethe

aggregate loss is, the higher(lower) the credibility ptamis. In other words, Bayesian premium
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Credibility (Exponential-FGM) Credibility (Pareto—Gaussian)

14
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1.0
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2 4 6 8 2 4 6 8

X1+X2+X3 X1+X2+X3

Figure 3.5 Bayesian Premiunig X,|Ss]. Left: Unit mean exponential marginal distributions
and Farlie-Gumbel-Morgenstern copulas witk- —1, 1(equivalentlyp = —0.25, 0.25). Right:
Unit mean Paret@.0, 3.0) marginal distributions and Gaussian copulas<(—0.7,0.7).

Exp-FGM Ss 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6
E[X4]S5] A=-—1 11222 1.089 0.988 0911 0.852 0.807 0.772 0.744 0.721
A=1 10817 0947 1.038 1.109 1.167 1.214 1.252 1.284 1.309
Pareto-Gau Ss 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6
E[X4|S3] p=-0.7]1.278 1.035 0.921 0.860 0.816 0.777 0.740 0.706 0.675
p=0.7 10607 0.837 1.042 1.232 1410 1.581 1.744 1901 2.053

Table 3.5 Selected values of Fig.5. Top: Unit mean Expoaemtarginal distributions and
Farlie-Gumbel-Morgenstern copulas. Bottom: Unit mearef@amarginal distributions and
Gaussian copulas.

with the sum of the past losses smaller(larger) thdfiX;| becomes ironically larger(smaller)

than B[ X;].
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3.5 Application on Stop-Loss Insurance

The computational method of Lemma 3.1 and Theorem 3.2 cafsbaiaed to calculate the

limited expected value of the aggregate loss,
b
/ (1—Fs,(s)) ds (3.16)

for any non-negative real numbers< b. Amount of aggregate loss covered by insurer(reinsurer)
in stop-loss insurance with retention levet- 0 can be numerically computed with desired preci-
sion by (3.16) withu = 0 andb = L (a = L andb = o). SinceE[S,| = > | E[X;] regardless

of the dependence structure amakig amount covered by reinsurer is simply the difference of
E[S,] and insurer’s aggregate loss. In the following we examine much the dependence struc-
ture distort the aggregate loss amount covered by insucereansurer, respectively.

Fig. 3.2 and Fig. 3.4 in section 3.3 illustrate the effect efative or positive correlations of
(X;, Xi+1) on the aggregate distributions. It is very clear that theeggte density functions with
pairwise positive correlations are more dispersed thasethath negative correlations. The area
between the distribution of independent losses and any dtk&ibution of dependent losses can
be considered as loss amount adjustment or risk loadingadiine tdependence effect. In stop loss
insurance, Lemma 3.1 and Theorem 3.2 can be applied to cerntipaiamount of aggregate loss
covered by insurer and reinsurer under Markov property anmaultiple lines of business or prod-
uct. For example, consider the aggregate loss of sectio @3ere we choose Farlie-Gumbel-
Morgenstein copula and exponential marginals. Denotedtantion level and the loss amount of
each line of business or product tiyand X;, respectively, fofi = 1---n, then E\[min(S,,, L)]
and F\[max(S, — L,0)] can be calculated fox € [—1, 1]. The adjustment amount of aggregate

loss due to the dependence can be numerically calculated as

Pins = Ex[min(Sy, L)] — Eo[min(Sy, L)] for insurer
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P.=—P,,, forreinsurer (3.17)

where E,\[-] and Ey|-] are the expectations with respect to the aggregate distibfunctions
corresponding to the dependént# 0) and independerit: = 0) cases. The equation (3.17) holds
true since the two areas overlapped by any two curves of #telditions in the Fig. 3.2 are equal.
The expected aggregate loss amount under the independeuse@ion can be adjusted to the
amount under certain dependence between losses by mingphe adjustment coefficients corre-
sponding to each retentidnin the following manner. Suppose that insurer or reinsuaénudated
its aggregate loss amount under the independence assamptie adjustment coefficient, the ra-
tio of the expected aggregate loss amount under dependeiice amount under independence,

can be calculated as follows.

A E\[min(S,, L)]
" Eo[min(S,, L))’

for insurer and reinsurer, respectively. Table 3.6 is tharmary of the numerical values of the
expectations and the amounts of adjustment due to the depead It is immediate from Table
3.6 and Fig. 3.6 that if dependence is not accounted for jp-ktss pricing, insurer(reinsurer) is
always less(over) charged for all retention leet 0 when each subsequent losses are negatively
correlated. In the same manner, insurer(reinsurer) isyawaer(less) charged for all retention
level L > 0 when each subsequent losses are positively correlatedadjbstment coefficients in
Table 3.6 can be used to correct the discrepancy caused bigpemdence for the aggregate loss

amount coverd by the insurer and reinsurer if losses arendiepe with Markov property.
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Stop-loss premiums : Pareto-Gaussian

- Insurer

Insurer

L: Retention

L: Retention

Figure 3.6 Aggregate loss amount covered by insurer andugnin stop-loss insurance at
retention levelL. Left: Unit mean exponential marginals and Farlie-Gumdekgenstern
copulas withA = —1 (dashed)A = 0 (solid), A = 1 (dotted). Right: Unit mean Pareto(4.0,3.0)

marginals and Gaussian copulas with- —0.7 (dashed}y = 0 (solid),f = 0.7 (dotted).
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B[]

A=—1

Cins

CT‘@

E)[]

A=1

Cins

Cre

2.1
3.6
4.8
6.3
7.2
7.8
9.3
11.7

2.008573
3.028855
3.508838
3.812538
3.901152
3.937759
3.985425
4.008183

2.059099
3.156010
3.631421
3.887058
3.948849
3.971578
3.997622
4.008411

1.025155
1.041981
1.034935
1.019546
1.012227
1.008588
1.003061
1.000057

0.9745¢
0.86994
0.7543¢
0.61954
0.55587%
0.52264
0.4753¢
0.50094

»3.922591
12.851486
»&3.335304
183.695597
163.819998
1B.876712
343.958980
121.003868

0.957192
0.941440
0.950544
0.969327
0.979197
0.984497
0.993365
0.998923

1.041406
1.177694
1.340432
1.578174
1.720920
1.808656
1.973333
1.992191

L

=0
Epl]

Epl]

0=-0.7

Cins

Cre

Eyl]

0=0.7

Cins

Cre

2.4
3.9
5.1
6.6
7.5
8.1
9.6
11.7

1.870399
2.684855
3.067392
3.343818
3.445358
3.495988
3.583456

3.652033

2.010100
2.858933
3.183525
3.392542
3.466240
3.502803
3.566245
3.616677

1.074691
1.064837
1.037861
1.014571
1.006061
1.001949
0.995197
0.990319

0.9344(
0.86763
0.87547
0.92574
0.96234
0.98641
1.0413]1

(1.589323
$62.262259
(22.625897
172.940841
»13.078798
(88.155172
|B.305100

1.1016(

8.447319

0.849724
0.842600
0.856068
0.879486
0.893607
0.902512
0.922322
0.943945

1.131985
1.321331
1.473398
1.614125
1.660896
1.676206
1.668250
1.588316

Table 3.6 Insurer’s and reinsurer’s amount of loss and thesadent coefficients;,,, ¢,. for
each retention level whereFE,[-] = E,[min(X; + --- + X4, L)]. Top: Unit mean exponential
marginals and Farlie-Gumbel-Morgenstern copulas. Battdnit mean Pareto(4.0,3.0) marginals
and Gaussian copulas.
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3.6 Conclusions

We introduce a decomposition of a pool of risks into disjomaximal Markov sequences in
order to obtain a smaller size of equivalent risk pool. Cdesng the random variables in a max-
imal Markov sequence, we present a computational methothéaggregate loss distribution of
non-identical and dependent random variables. We prowidapalication of the method with a
sequence of pairwise bivarate copulas to implement therdigpee among losses with numerical
examples. Actuarial applications of the computationalhrodtare also given; Bayesian premi-
ums are calculated conditioning on the sum of past obsenatnd we examine the impact of

dependence on stop-loss insurance.
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Chapter 4

Asymptotic Super(Sub)additivity of the Value-at-risk of Regu-
larly Varying Random Variables

This chapter is based on the paper by Jang and Jho (2008hbe-&htisk has been one of the
most popular methods of risk management because of itsisity@nd downside risk measure-
ment. Recently, it has gained popularity in quantifyingadlperational risks of banks and insurance
companies since the Basel Il proposed advanced measurapmoiach (AMA) requiring quan-
titative method based on the company’s internal and extemairical data (Basel Committee on
Banking Supervision, 2004). Value-at-risk often fails teasure the financial and operational risks
because of its lack of subadditivity and stability. In theext of the value-at-risk measure, there
are two major issues of concern in this chapter, dependamtéeavy-tailedness. According to
the principle proposed by Basel Il, operational risks asssified into eight business lines and
seven event types. Applying the standardized classificatiatrix of operational risks, the total

aggregate loss can be modeled by

Y () = Yi(t) + -+ Yalt) (4.)

where eachy;(t) represents for the individual aggregate loss of each lineusfness (or event

type) such that

Yit)=> %" >0 (4.2)
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whered is a positive integer andrk(” are the individual losses independent of the appropriate
counting processes;(t) fort > 0.

The above risk model has been widely used in the presencertaircelependence structure
among losses in numerous papers. Value-at-risk becomdseastt measure under certain multi-
variate structure such as elliptical distributions (Encbite et al., 2002). Embrechts et al. (2003)
introduced the concept of copula to find the bound of the valuesk of the aggregate risk. Mes-
fioui and Quessy (2005) discussed the bounds on the valugkdbr the sum of possibly depen-
dent risks when only partial information is available abthé dependence structure by way of
copulas. Chavez-Demoulin et al. (2006a,b) also considdwedggregate loss of compound type
and discussed whether the subadditivity of the valuesktiiolds or not when the severity dis-
tributions are very skewed or extremely heavy-tailed orelexists a special dependence among
losses. Wiithrich (2003) and Alink et al. (2004) considerdidite sum of identically distributed
continuous random variables with Archimedean copula threegdor of which is regularly vary-
ing. The authors showed that the value-at-risk of the aggedgss is asymptotically proportional
to the value-at-risk of the individual loss. Bécker and Kp@fberg (2006, 2005) considered a
d-dimensional compound Poisson procéss) = (Yi(t),..., Ys(t))>0 and developed a multi-
variate loss distribution under Levy copula framework todeidhe dependence between different
operational risk cells of the classification matrix. Theyided asymptotic approximation of the
value-at-risk of the total aggregate loss under the assampt certain multivariate model such
that the severity distributions are subexponential, thentiag processes are Poisson, and the de-
pendence is modeled by Levy copulas.

In this chapter we consider two risk processes (4.1) and Witk quite general dependence
structure among losses with heavy tails. Suppose we are tfneparametric forms or the esti-
mates of the distributions éf;, - - - , Y, for a fixed timet > 0. In particular, ifY;’s are independent,

the total aggregate loss distribution is simply the contiofuof Fy,

Fy(l‘) = Fyl b *Fyd (ZL‘)
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However, we don’'t have much knowledge about the exact forthefggregate distribution when
losses are dependent. The numerical computati®iof+- - -+ Y, < y) of dependent variables is
also very difficult in higher dimensions. Most of well-knowecursive formulae following Panjer’s
recursion (Panjer, 1981) assume that losses are independieieger-valued. The computation
of the individual aggregate loss distributiohy; ), is even more sophisticated since it involves
the counting processeés;(t) instead of the deterministic value for the loss occurrentesrder
to avoid time-consuming numerical computation, we may ayipnate the value-at-risk of the
aggregate loss by the sum of the individual value-at-rigkewever, this simple method often
fails to calibrate correct measure of risks since the valiuesk is not a coherent risk measure
(Artzner et al., 1999). Therefore it is very risky to assuime subadditivity or comonotonicity of
the value-at-risk, and it may provide even worse risk mesment when losses are from the family
of heavy-tailed distributions such as infinite mean lossloam variables (Chavez-Demoulin et al.,
2006a).

Danielsson et al. (2005) showed that the value-at-riskfagithe subadditivity in the tail region
when losses follow the multivariate regularly varying diastions with extreme value index >
1. However, the condition that > 1 doesn't include the case of the extremely heavy-tailed
losses while it has been observed that insurance and fihaistia often show the existence of
extreme heavy-tailedness such as subexponential disbmisuor regularly varying distributions
with 0 < a < 1. Moscadelli (2004) mentioned the empirical observatiothefheavy-tailedness
of the operational risks and Chavez-Demoulin et al. (20@&) discussed the extreme behavior
of the infinite mean distributions in the tail and presenteghynillustrations. In sum, it is not
much known whether the subadditivity of the value-at-rigists for the risks with extreme heavy-
tails. It naturally raises a question that the superadditof the value-at-risk may exist in the tail
when losses are extremely heavy-tailed or dependent, andaés, what would be the sufficient
conditions.

The following is the outline of this chapter. In sectidpwe discuss the classical convolution

theorem for regularly varying random variables and inte®lthe concept of the negligible joint
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tail probability. We provide a sufficient condition of thanbdistribution to generalize the convo-
lution theorem when the random variables are not necegsadépendent with regularly varying
tails. Applying the result, we derive the relationship be¢én the extreme value indices of the
regularly varying distributions and the asymptotic prajesrof the value-at-risk in the presence
of dependence. In sectid}) we present numerical examples of the super(sub)adgifithe
value-at-risk of regularly varying random variables undepula framework of dependence. We
conclude afterwards.

In this chapter we follow usual functional notationk; identical regularly varying random
variables not necessarily independdrtmarginal distribution functions ak’;, H the joint distri-
bution function of{ X}, and~ asymptotic equivalence at € [—oo, oo] in the following sense,

a(z)

a(x) ~ b(z) ifand only if leI?O o) =1

for real-valued functions(x) andb(z).

4.1 Aggregate Distributions of Regularly Varying Random Vaiables

If X, are independent, the distribution of the sum is the coniaruof the distributions of
X;. However, if X; are dependent, convolution formula can’t be applied to fimel dggregate
distribution. In this section we provide a sufficient corahtfor the dependence structure among
random variables to generalize Feller’s convolution teeomwith respect to the sum of random

variables.

4.1.1 Convolution Theorem

The convolution of distribution function’, GG is defined by

FxG (s)= /_OO G(s —z)dF(z). (4.3)

[e.9]
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It is well-known that the convolution of distributions is ettibution function and if7 is bounded
and continuous, then so i8x GG (Feller, 1971). For any independent random variable¥” with

distributionsF’, (z, the distribution of the sunX + Y can be written as

P(X4+Y <s)=FxG (s). (4.4)

Similarly, n-convolutions of distributiong?, . . ., F,, can be defined recursively far> 2 and the
distribution function of the independent suxi + - - - + X,, can be written a$; x - - - x F,.

A distribution I’ on [0, co) is called subexponential if(x) > 0 for everyx and

lim Ff (z) =
% ()

(4.5)

for each positive integet > 2 where F(z) is the tail of the distribution” defined byl — F ()
and F'™* is then-convolution of the distributio’. We denote the family of distributions satisfying

(4.5) byS. The family of subexponential distributions includes tbkdwing distributions;

1. Pareto:F(z) =1 — (I%)a, a>0, B3>0,

2. Lognormal:F(z) = @(bgﬂ> pLeR, >0,

g

3. Weibull distribution :F'(z) = 1 — e, c>0, 0<7<l.

Subexponential distributions have been widely used faeex¢ loss modeling since it satisfies
the max-sum equivalence for.d random variables. Suppose th§t, ..., X, are independent

and identically distributed with distribution functian € S. Then

P(max(X; + -+ X,) >x) = 1—F"(x)
= F(z)) Ft)
k=0

~ nF(z), z— oo.
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SinceP(X; + - -+ X,, > z) = F"™*(x) ~ nF(x), the following max-sum equivalence holds;

P(X;+- -+ X, >2z) ~P(max(Xy, -, X,) > )

which can be interpreted that the extreme of the aggregasadadue to a single extreme loss and
other losses are negligible compared to the extreme (Calamgl, 2004).

It is easy to verify that the convolution @fi.d random variables i is also subexponential.
Embrechts and Goldie (1980) showed thatfo(7 € S,

: F
FxGesS |if sup_(x) < 0.
z>0 G(l‘)
Therefore if we sef’ = G, it is immediate to gef'>* € S. Sincesup,., ?(S) < oo, for all

n > 2, the closure property of-convolution ofi.i.d subexponential random variables follows by
induction. However, the family of subexponential disttibns doesn’t satisfy the max-sum equiv-
alence in general and it is also well-known since Leslie @)9Bat subexponential family is not

closed under convolutions, i.e. ¥; and X, are not identical bufy, I, € S, itis possible that

F1 *FQ ¢ S
P(Xl + X9 > .T) e ]P(max(Xl, X2) > 37)

for F1, F5 € S.
Let us consider a proper subset of the subexponential fasatlgfying either convolution clo-
sure or max-sum equivalence. Note that there are otheifatations of distributions with respect

to the asymptotic tail probability as follows.

1. Long-tailed:F’ € L if

. F(z—1)
lim ——= =1, forany ¢ > 0.
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2. Subexponentialf’ € S if

Tn
lim — (z) =n, forany n > 2.

3. Dominated varyingf® € D if

F(t
lim sup _( 2) < 00, t e (0,1).
4. Consistent varyingl' € C if B
... F(tx)
lim lim — =1.

y1l z—o0 (1)

5. Extended regular varying? € & if
F(tz)

liminf — >t forsome a>0, all ¢t>1.

6. Regularly varyingF € R_,, if

- Px)
lim ) =t for a parameter « > 0 andevery ¢ > 0.
T—00 €T

We restrict the distributions in this chapter to the familyegularly varying distributionsk _,

for « > 0. A positive functionZ defined on0, oo) is said to vary slowly at infinity if and only if

L(t
lim (t2)

=1 forevery t>0.
2% L(x) g

A distribution functionF' varies regularly with the extreme value indexf and only if it is of the
form F(x) = 2*L(x) for some slowly varying functior.(z). The family of regularly varying
distributions is a proper subset of the subexponentialljaamd as a matter of fact the following

is true. For everyy > 0,

R.CcEECcCcDNLCSCL. (4.6)
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The max-sum equivalence is valid ®_, for « > 0 if we assume independence. Cai and
Tang (2004) proved that it holds for the larger clasSesxdD N L. Regularly varying distribu-
tions, R _,, also satisfy the convolution closure property under tltependent assumption due
to Feller (1971). Therefore the family of regularly varyiditributions is a proper subset of the
subexponetial family satisfying both of the convolutionstire and the max-sum equivalence for
independent random variables. Here we state, for the coenves, Feller's outstanding result of

convolutions of regularly varying distributions (Fell@971).
Theorem 4.1 If F; andF, are two distribution functions such that
1 —F(z) =2"“Li(x)

with a > 0 and L; slowly varying for each = 1,2, then the convolutiods = F; x F; varies
regularly such that
1—G(z) ~ 2~ *(Li(z) + La(z)) 4.7)

asr — o0.

For the proof of the theorem, see Feller (1971) or Embrecdh#s. €1997). Then-dimensional
convolution theorem is an immediate consequence of (4.fichwcan be stated ds— G(x) ~
= (Ly(z) + - - -+ Ly(z)) whereG = Fy x - - - x F),.

4.1.2 Dependent Regularly Varying Random Variables

In this section we discuss the analogous properties of theotation closure and max-sum
equivalence for regularly varying random variables notessarily independent. We present a
sufficient condition of the joint distributio&/ of X3, --- | X, for the following two properties; If

X, eR_, fora >0,

1. Max-sum equivalence of regularly varying random vaeabiot necessarily independent:
P(X;+---+ X, >5) ~P(max(Xy,...,X,) > s), (4.8)

ass — oo and
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2. Closure property of the distributions of regularly vawyirandom variables not necessarily
independent:
PX;+--+X,<s)eR_,. (4.9

Definition 4.2 Let X; and X, be random variables not necessarily independent with aelgul
varying tails. Denote the marginals and joint distributionctions byF}, F», andH, respectively.

Denote the joint tail probability off by A such that

~

H(SCl,.TQ) = ]P(Xl > Il,Xz > .I‘Q)

Then the tail probability of the joint distribution is call@egligiblecompared to those of marginal
distributions if and only if

e =0 (4.10)

ast — oo. If (4.10) holds, the random variablés(;, X} or the joint distribution/ are called to

satisfy thenegligible joint tail condition

The above definition (4.10) is equivalent to the sufficiemtdition

1 — Fx(z) — Fy(y) + Hxy(z,y)

lim =0.
T,y —00 1— HX,Y(£7 y)
for the asymptotic independencemafx(X;, - - -, X,,) andmax(Y;, - -- ,Y,), even thoughX; and

Y; are not independent (Johnson and Kotz, 1972).
If we assume the independence ®f and X5, the tail probability of the joint distribution
H is always negligible sincél (z,y) = F(z)Fy(y). The family of distributions satisfying the

negligible joint tail condition includes many well-knowisttibution families such as
1. The bivariate normal distribution witlp| < 1.
2. Bivariate distribution of type

H(xy,20) = Fi(z1) Fy(22) (1 4+ AFy (21) Fa(22)).
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3. Bivariate exponential distributions of type
H(zq,29) =1 —€"" —e ™ —exp(—x1 — g — Ox129)
for xy, 25 > 0,and0 < 4 < 1.
4. The bivariate logistic distribution

H(zy,m5) = (14+e ™ e *2)7 1

For more details of the examples, see Johnson and Kotz (1972)

Remark 4.3 If X; are regularly varying with the same extreme value index- 0 such that
F; = v7*L;(z), the negligible joint tail condition in Definition 4.2 is eiyalent to the following

asymptotic tail condition.

H(b1t, 65t)
Fl (Clt) -+ FQ (Cgt)

(4.11)

asx — oo for any positive real numbers, 6, ¢1, andc,.

Before we show that two statements (4.8) and (4.9) hold ifjdive distribution satisfies the
negligible joint tail condition, we give an example of a brede distribution with a copula satisfy-
ing the negligible joint tail condition in Definition 4.10.ddinitions and properties of copulas can

be found in many textbooks and papers such as Nelsen (1999).

Example 4.4 Let X; and X, be the regularly varying random variables not necessanitie-
pendent. Suppose that there exists a copulauch thatH (z,z,) = C(Fi(z1), Fa(z2)) and
the copula density:(u,v) is bounded by some constaff > 0 on [l — §,1] x [1 — 4, 1] for
some reald < § < 1. A simple example is Farlie-Gumbel-Morgenstern copulanefiby
C(u,v) = uv + Auv(l — u)(1 —v) for =1 < XA < 1. Due to the boundedness of the copula

density, the joint tail probability is also bounded by theghct of two marginal tail probabilities
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up to constant, i.e.

~

H(t,t) = ZMZMC(F1($1),FQ(ZEQ))fl(ZEl)fQ(ZL‘Q) dl‘ldl‘g S MFl(t)FQ(t)

whereM is the upper bound of the copula density. Then

which vanishes as — oo sincee is arbitrarily small. Therefore the tail probability of thant

distribution H is negligible compared to those of marginal distributidis.

Suppose we have dependent random variables belonging sarie family of regularly vary-
ing distributions;R _, for somex > 0. If the tail behavior of the joint distribution is not extnaid-
nary, we may assume the negligible joint tail condition. Byedrem 4.7 and Corollary 4.8 in the
following, we prove two statements (4.8) and (4.9) holdiin,,, if the joint distribution satisfies

(4.10). Beforehand, we need the following lemma.

Lemma 4.5 Suppose that the random variabl®s and X, are not necessarily independent and

the distributiong; and F; vary regularly with the same extreme value index 0 such that
1 —F(z) =27“Li(x)

with L; slowly varying for eachk = 1,2. If the joint distribution satisfies the negligible joint
tail condition in (4.10), the distribution ok; + X, denoted byG varies regularly with the same

extreme value index such that
1= G(x) ~ 2 (Ly(2) + Lo(x)) (4.12)

asxr — oQ.
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Proof: We follow Feller with a slight modification which is necesgar case of dependent random
variables. Put =(1+6)t. Let E be the event of X 1-X,>t}. Then,E will include the sef{ F, UE,}
where By ={ X ,>t' Xo>—6t}, and Bo={ Xy>t , X, >—0t}. Now let Es=E; N Ey={ X >t X,>t'}.

Then, for a giverr > 0 andé > 0, there exists a sufficiently largesuch that
P(Ey) +P(By) = H(,—6t) + H(=6t,¢) > (1= 5)(Fy(t) + Ba(t).

Moreover,H (', t') is bounded by(F (') + Fy(t')) for a sufficiently large: due to the negligible
joint tail probability assumption. Therefore, the tail pability of X; + X, is bounded below as

follows.

1-G(t) = P(E)=P(E) + P(Er) — P(E3)
= H(t,—6t)+ H(=6t,t)— H(t 1)

€ —

> (1= DR + B) - S(RE) + Bt

= (1—e(F({t)+ F(t)).

)

Similarly, in order to find the upper bound of— G(t), we putt’ = (1 — §)t with 0 < § < 1.

Then E will be included in the seD; U D, U Dy whereD; ={X,>t"}, D,={X,>t"}, and
D3:{X1>5t,X2>5t} Then

1-G(t) = P(F) <P(Dy)+P(Dy) + P(Dj3)
= F (") + (") + H(t,6t)
< (Fﬁ(t//) +F2(t//)) +€(F1(t//) +F2(t//))

— "

= (1+e(RA{)+ ()

by the negligible joint tail condition and Remark 4.3. Sim@ndo are arbitrarily smalll —G(t) ~
Fi(t) + Fy(t) = t=%(Ly(t) + Lo(t)), which completes the proof]

The above lemma asserts that the sum of two dependent raraltables in the same family
of regular variatioriR _,, also belongs to the same famiR._,, if they satisfy the negligible joint

tail condition. Lemma 4.5 can be generalized for the agdesdistribution of regularly varying
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random variables(y, ..., X,, not necessarily independent. Beforehand we need the dieedra

definition of the negligible joint tail condition.

Definition 4.6 A sequence of random variablés(;, X5, ...} is called to satisfy the negligible
joint tail condition if and only if any paif X;, X} of the sequence satisfies the negligible joint tail

condition in Definition 4.2.

The following theorem is an immediate consequence of Lemfardd Definition 4.6, which
provides the sufficient condition for the closure propeftihe distributions of dependent regularly

varying random variables in (4.9).

Theorem 4.7 If X4,..., X,, € R_, and satisfy the negligible joint tail condition in Definiti@!.6,
the aggregate distributiai of X, ..., X, varies regularly such that

1=G(z) ~ a2 (La(x) + -+ + Ln(2))
asx — oo WhereF;(z) = x~*L;(x) for some slowly varying functiod,;(x).

Proof:

It suffices to show the closure property in case- 3. The general case will follow by induction.
LetS, = X + Xy andt” = (1 —§)tfor0 < § < 1/2. The evenf{ S, > t, X5 > t} is included by
{X; >t X3 >t} U{X) > 6t, Xy > 6t, X3 >t} U{X, >t X3 > t}, and hence for any > 0

andt sufficiently large

Hs,x, (1) Hig(t', 1) + Hip3(0t, 61, 1) + Ha(t', 1)

Fo,(t) + Fa(t) ~ Fi(t) + Fa(t) + Fs(t)
His(t",t) H,5(0t, 6t) N Hys(t" 1)
Fi(t) + Fs(t)  Fu(t) + Fao(t)  Fa(t) + Fa(t)
< €

by Remark 4.3. Sincé e are arbitrarily small{ .S;, X3} satisfies the negligible joint tail condition

with the joint distributionH s, x,. By Theoremd.5,
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1-— G(ZC) ~ FSQ (.T) + FXS(ZC)
~ x© (L1 (SC) -+ LQ(.T) -+ Lg(ﬂf))
which completes the proof.

Now we prove the max-sum equivalence of dependent regularlying random varialbes in

(4.8) in the following corollary.

Corollary 4.8 If X;,..., X, € R_, and satisfy the negligible joint tail condition, the followgs

are true.
1. Max-sum equivalence: P(max(Xy,...,X,) > x) ~P(X; + - -+ X,, > z),
2. Max-stability: P(max(Xy,...,X,) <z) € R_,.
Proof:
Let M,, = max(Xy,...,X,) and H be the joint tail probability as in Definition 4.2. The prosf i
by induction om. Forn = 2, by Lemma 4.5,
P(My >2) = Fx, (z)+ Fx,(x) — I:IXI,XQ(Q:, x)

= — _ ﬁXl,X2<'r7x>
= (Fx,(z)+ Fx,(z)) (1 Ty, (z) +FX2(3;)>

~ FXI (x) + sz (SC)
~ ]P(Xl + X9 > ZL’)
asx — oo and hence?(M, < z) € R_,. Suppose the above asymptotic relation holds for

k < n —1, then{M,_,, X, } satisfies the negligible joint tail condition sin€&M/,,_; > z) ~
P(X; + -+ X,-1 >2)and
P(M, >z) = Fu, () + Fx,(2) = Hy, , x, (2, 7)
Enl Fal [:IM -1,X (.T},SC)
= (Fu, ,(2)+ Fx, (7)1 - =——2="

Fu,_,(x)+ Fx,
~ Fu,_ (x)+ Fx,(z) ~ Fx,(2) + -+ Fx,(2)

~ PXy+--+X,>01)
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and henc@®(M,, < z) € R_,, which proves both of the assertions.

4.2 Value at Risk of Regularly Varying Random Variables

In this section we first consider a simple risk process of ttel taggregate loss = Y; +
---+Y, for a positive integetl where the regularly varyiny; are not necessarily independent. We
apply Theorem 4.7 to classifig _,, into three categories, asymptotic superadditivity, asytng
comonotonic, and asymptotic subadditivity correspondimtipe extreme value index > 0. The
individual aggregate loss;(t);>o is also considered as a compound type generated by a general
counting proces$V;(t) with finite means and we present the analogous result of §ym@atstic

properties of the value-at-risk.

4.2.1 Value at Risk of the Total Aggregate Loss

Simply speaking, the value-at-risk of a random variable abnfidence level is defined by
the p-quantile of its distribution, which can be interpreted agrabable maximum loss that an
institution may experience for a given period of time. Siaa#stribution function of a continuous
random variable is generally assumed to be right-contiauthe value-at-risk can be formally

defined by the generalized inverse of the distribution devid.

Definition 4.9 Let I be the distribution function of a random variabie then the value-at-risk of

X atp level of confidence fob < p < 1 is defined by

VaR,(X) = inf{z € R|F(z) > p}.

The subadditivity of value-at-risk doesn’t hold in gener@here is a partial result in the family of
multivariate regularly varying distributions when therexhe value index: > 1 (Danielsson et al.,
2005). However, multivariate regularly varying distrilmuts are different in nature from arbitrary
multivariate distributions with regularly varying margindistributions. Moreover, the extremely
heavy-tailed regularly varying distributions have exteewalue indices such as < o < 1, in

which interval ofa, we don’'t have much knowledge of the subadditivity. In thikofwing two
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theorem we discuss the asymptotic properties of the vahlistaof regularly varying random
variables under the assumption of the negligible jointgedbability. As a result the family of the
regularly varying distributions are classified into thredfamilies corresponding to the extreme

value indicesy > 0.

Theorem 4.10 Let X4, ..., X,, be identical but not necessarily independent random Vasahe
distributions of which vary regularly such thBf(x) = ==*L(z) for some slowly varying function
L(z) anda > 0. Further we assume that the distribution functionsXgfare continuous almost
everywhere for alt = 1,...,n. If X;,..., X, satisfy the negligible joint tail condition, there

exists a reap, € (0, 1) such that for all positive € [py, 1],
i) (Subadditivity) Fora. > 1

VaR, (X1 + -+ X,,) < VaR,(X;) + - -- 4+ VaR,(X,,). (4.13)

i) (Asymptotic Comonotonicity) For = 1
VaR,(X; + -+ + X,) ~ VaR,(X;) + - - - + VaR,(X,) (4.14)

where~ indicates the asymptotic equivalencepas> 1—.

i) (Superadditivity) For0 < a < 1

VaR,(X; + -+ X,,) > VaR,(X;) + - - - 4+ VaR,(X,,). (4.15)

Proof:

LetS, = X; +---+ X,, and writev; = VaR,(X,) andv,, = VaR,(5,,) for a fixed positive integer
n. Because we assume the distribution function is continabusst everywhere, we may assume
P(X; < ) = P(S, < v,) = p for the following without loss of generality. By Theorem 4.7
whetherX; are independent or not,— p = P(S,, > v,) ~ nP(X; > v,) asp — 1—. Then for

any givene > 0, there exists @, € (0, 1) close enough t@ such that for alp € (po, 1),

(1—6)1;p<1@(x1>vn)<(1+e)1;p. (4.16)
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Similarly, sinceF} is regularly varyingP(X; > nv;) ~ n °P(X; > v;) and
(1 —e)n "P(X; > v1) <P(X; >nv) < (14 €e)n “P(X; > vy). (4.17)

Subtracting (4.16) from (4.17), we have

1—¢ 1+¢ _ _ 14+e 1—c¢
— < F - Fi(v,) < (1-— —
- =) < Fi(nvr) = Fa(v) < (1= p)(—3 -

(1 =p)( ). (4.18)

For0 < a < 1, asp approach td, e gets arbitrary small and the lower bound of (4.18) evenyuall
becomes positive, thus there exisgse (0, 1) such thad < Fy(nv,) — Fi(v,) forall p € (po, 1).
SinceFl(x) is a monotone decreasing function, we concluge> nv; which proves the last
assertion (4.15) and the other cases, (4.13) and (4.14jolWolw immediately in the same manner.
O]

The above theorem can be used to approximate the minimurtategguirement of the total
aggregate los¥ = Y; +--- 4+ Y, for 0 < o < 1 and the upper bound of the capital requirement

for « > 1 by dVaR,(Y;) for 0 < p < 1 sufficiently close to 1.

4.2.2 Value at Risk of the Individual Aggregate Loss

For the risk modeling of individual aggregate 1d$§& ), it is more desirable to apply a continuous-
time risk process with appropriate counting process as.).(&uppose that the individual aggre-
gate loss;(t) for eachi is of compound type generated bBy(¢), the number of losses up to time

t > 0, independent of eactj () such that
Yi(t) = > v, (4.19)

It is not clear that the risk process of compound distributid (4.19) is subexponential or regu-
larly varying when the random variables are identicallyesgdmnetial or regularly varying but not
necessarily independent. Embrechts et al. (1997) shoveedite compound distribution afi.d
subexponential random variables is again subexponemg®rnguite general counting processes,

i.e. if FY;f“ is subexponetial for each, then the aggregate distribution of the compound type of
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(4.19),
Fy(z) = Z%(Fyly))k*(x) x>0 (4.20)
k=0

is again subexponential whep= P(N;(t) = k) and>_,~ ; g1(1+€)* < oo for somee > 0. In the
following theorem, we show an analogous result of Theoretd #ith respect to the individual

aggregate losy;(t) for any fixedt > 0.

Theorem 4.11 Let { X, X5, ...} be a sequence of identical but not necessarily independant r
dom variables such thdf;(x) = x~*L(z) for some slowly varying functior.(xz) anda > 0.
Further we assume that the distribution functions\gfare continuous almost everywhere for all
i=1,2,.... Let N, = N(t) be a counting process such tlgtV,] < oo fort > 0. If the sequence
{X1, X5, ...} satisfies the negligible joint tail condition, there exat®alp, € (0, 1) such that for

all positivep € [py, 1],

i) (Subadditivity) Fora > 1

VaRp(zt:Xi) < E[N;]VaR,(X}). (4.21)

=1
i) (Asymptotic Comonotonicity) For = 1

VaR,( Z X;) ~ E[N,)VaR,(X;) (4.22)

where~ indicates the asymptotic equivalencepas> 1—.

i) (Superadditivity) For0 < a < 1
N

VaR,() " X;) > E[N,)VaR,(X). (4.23)

=1
Proof:
We prove (4.23) only and the other cases, (4.21) and (4.2@#)follow in the same manner.

Supposé < a < 1 and writev; = VaR,(X;) anduvy, = VaRp(ZfV:’f1 X;). Then

Nt n k‘

N, = {w}IP’(Z X; <w)= p} = {w’ nh_}rgoz [P(N; = k)[P’(Z X; <w)| = p}. (4.24)

i=1 k=0 1=1
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By Theorem 4.10P(>F | X; < w) ~ 1 — kP(X; > w) asp — 1—, and hence

n n

k
S PW, =kPO X <w)| ~ 1= [KP(N; = k)| P(X; > w) (4.25)

k=0 k=0
as andy — 1—. Combining (4.24) and (4.25), we have
o, ~ {wlt = EINJB(X; > w) = p}
asp — 1— andn — oo. Therefore we can write
P(X1 > vn,) ~ (1 = p)/E[N¢]

asp — 1—. SinceP(X; > E[N]v;) ~ E[Ny] *P(X; > v1), in the same manner as in the proof
of Theorem 4.10, for any given> 0, there exists a reak, € (0, 1) such that

(=2 — Fy) < PENI) = Fion,)

forall p € (po, 1) where the lower bound becomes positive eventually and Herce’ (E[N;|v;)—

Fi(vy,) forall p € (po, 1). We concludey, > E[N,]v; which completes the proofl]

4.3 Numerical Examples

Let us consider the following total aggregate 165s- Y; + Y5 + Y3, the sum of three individ-
ual aggregate losses. We assume that the marginal digtnbudf individual aggregate losses are

identically Paretat, ) distributed such that

1= Pl = (45)"

for a, 5 > 0 andy > 0. It is immediate that Pareto distributions with the shapaupetera > 0
belong to the family of regularly varying distributior’®_,. Fora > 1 and a positive integer

k > «a, k-th moments of Parete(, ) are as follows,

B*k
(a—1)(a—k)
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For0 < a < 1, however, no finite moments exist. Pareto distribution with o < 1 is
well known as an extremely heavy-tailed loss distributiomisurance and operational risk. The
parametery determines the maximum domain of attraction and it is onéhefrhost important
indices in the family of extreme value distributions. Formrmabout the extreme value theory, see
Embrechts et al. (1997).

For the dependence structure, we assume Markov propertp@imdor the computational
convenience and choose the bivariate Gaussian copula ertélation coefficienp for each sub-

sequent pair o¥;_; andY; for i = 2, 3, defined by

Clui—1,ui) = Py (@7 (1), @7 (ws))

where®, and® ' are the multivariate standard normal distribution and tiverise of the standard
normal distribution, respectively, with, = Fy,(y;) fori = 1,2, 3.

Fig. 4.1 and Table 4.1 are the summary of the numerical valuesks wherv = 4.0, 5 = 1.0
and the correlation coefficiept= 0.7 and—0.7. Comparing two graphs in Fig. 4.1, we can see
clear evidence of stronger diversification effect in theoselograph due to the negative dependence
between subsequent losses. The negative dependencetplagteiin such a way that large(or
small) losses are not likely to happen subsequently, whigkes the aggregate distribution more
centered in the middle and less dispersed and explainsrier ldiscrepancy between the curves
of the second graph.

The second numerical example in Fig. 4.2 and Table 4.2 idain@ the previous one except
different Pareto parameters = 0.9,3 = 0.2. As it was mentioned above, no finite moments
exist and the marginal distributions become extremely fr¢aved. In this case, we observe that
the superadditivity exists on the entire domain. The depead effect on diversification cannot
exceed the heavy-tailedness effect of the Pareto disoibwith « < 1 under Gaussian copula

dependence.
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positive negative

VaRp
VaRp

Figure 4.1 Value at risk of the total aggregate loss (sofid)livs. the sum of the value-at-risks of
the individual aggregate losses (dashed line). Let: 0.7, o = 4.0, 5 = 1.0. Right: p = —0.7,

a=4.0,6=1.0.

a=40 B=10 p=07 |a=40 B=10 p=-07
D VaR,(53) 3VaR,(Y1) P VaR,(S3) 3VaR,(Y1)
0.524 0.700 0.612 0.384 0.700 0.387
0.621 0.900 0.824 0.589 0.900 0.746
0.697 1.100 1.042 0.724 1.100 1.139
0.755 1.300 1.264 0.808 1.300 1.534
0.819 1.600 1.602 0.881 1.600 2.109
0.865 1.900 1.947 0.921 1.900 2.667
0.920 2.500 2.646 0.961 2.500 3.755

Table 4.1 Value-at-risk of the total aggregate loss vs. time af the value-at-risks of the
individual aggregate losses with= 4.0, 5 = 1.0 andp = +0.7.
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positive negative

VaRp
VaRp

Figure 4.2 Value at risk of the total aggregate loss (sofid)livs. the sum of the value-at-risks of
the individual aggregate losses (dashed line). Let: 0.7, « = 0.9, 5 = 0.2. Right: p = —0.7,

a=0906=0.2.
a=09 f=02 p=07 |a=09 B=02 p=-07

D VaR,(53) 3VaR,(Y1) P VaR,(S3) 3VaR,(Y1)
0.455 0.800 0.578 0.225 0.800 0.197
0.561 1.200 0.897 0.415 1.200 0.490
0.682 2.000 1.541 0.623 2.000 1.175
0.749 2.800 2.187 0.721 2.800 1.877
0.792 3.600 2.834 0.777 3.600 2.572
0.844 5.200 4.126 0.838 5.200 3.946
0.906 9.600 7.654 0.906 9.600 7.677

Table 4.2 Value-at-risk of the total aggregate loss vs. time sf the value-at-risks of the
individual aggregate losses with= 0.9, 5 = 0.2 andp = +0.7.
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4.4 Conclusions

Assuming the existence of the diversification of risks incticee, we have taken it for granted
that the subadditivity of the value-at-risk holds. Howewerisks are extremely heavy-tailed, it
is essential to find the lower bound of a given risk measurens@ering dependent loss random
variables with regularly varying tails, we present a sudinticondition of the joint distribution
and generalize the convolution theorem of regular vamiatiApplying the result, we classify the
family of regularly varying distributions into three subifdies such as regularly varying distribu-
tions with asymptotic subadditivity, comonotonocity, auperadditivity which correspond to the
extreme value indexes, > 1, « = 1, and0 < «a < 1, respectively. In the numerical examples,
we observe that heavy-tailedness of the marginal distabathas much larger influence on the

value-at-risk measure than the dependence among lossas@tain confidence level.
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Appendix A: Extreme Value Distributions

For an insurance risk defined as a non-negative loss random variable, a sound mgdel
of the risk or premium calculation has been the major goalktdaies. Especially in property-
casualty insurance, pricing large claims or catastropssel® are gaining attention because of rapid
increase of gross claim amount in recent market. Reinsatepshave sought for mathematical or
empirical models of loss distributions with good fits of extral events. Premiums should be
high enough to cover the insured if claims occur so that threpany stays solvent with certain
confidence level even in case of catastrophe. Ruin probleiskitheory is one of the mathematical
solutions to this question. For a long time extreme valuephéas belonged to the standard tool
kits for reliability engineers. Although it has been wideled in hydrology and climatology rather
than in insurance, it has been recently noted that the egtiaoie theory could be one solution to

the extreme events in insurance and operational risks.

A.1 Fisher-Tippet Theorem

Given a sequence ofi.d random variables(y, - - - , X, with common distribution?’, denote
the maximum of the random variables By, = max(Xy,---,X,). The fundamentaFisher-
Tippet theorentlassifies the possible limit laws of the maxim¥,,, asn — oo, introducing
appropriate normalizing constanis andb,. If there exist sequences of normalizing constants

a, > 0, b, € R and a non-degenerating distribution functiirsuch that

Mn_bn

Qn

. H (A.1)

in distributions, then? belongs to one of the types as follows.
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; 0, if 2 <0
Fréchet ¢,(z) =
exp{—z"%}, ifz>0

—(—x)° if 2 <0 A2
Weibull () — | SO e (A2)
1, ifz>0
\ Gumbel A(z) = exp{—e7}, ifzeR

The distributionF’ of a random variabl&X is said to belong to the maximum domain of attraction

of the extreme value distributiod and denoted by" € MDA (H) if (A.1) is satisfied.

A.2 The Generalized Extreme Value Distributions

Extreme value distributions can be written as one paraniatetions, so calledenkinson-von
Mises representatiowhich covers the three types of limiting distributions in.2\ It is widely

accepted and called the (standard) generalized extreme gadtribution and defined by

expq — z)" Y '
He(x) = p{—(1+&x)""¢},  if€#0 A3)

exp{—exp(—z)}, if&=0

wherel + £&x > 0 and¢ is called the extreme value index or tail index. The one-4patar
functional form classifies the extreme value distributianth respect to the shape parameter as

follows.

Definition A.1 (Maximum Domain of Attractions) A distribution ' belongs to a maximum do-
main of attraction ofH,, denoted byF' € M DA(H), if and only if there exist sequences of

constants:,, > 0 andb,, € R such that

lim P(M,, < a,z+b,) = He(x) (A.4)

n—oo
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where H; is the generalized extreme value distribution with shaparpater{ as in (A.3). The

real sequences, andb,, are called normalizing constants for the maxima.

A.3 Approximation of the Extreme Value Distributions

The (standard) generalized extreme value distributiorehaese link to the (standard) gener-

alized Pareto distribution which is defined by

L G { (1+er)F,  ife4£0 ~5)

e, if&=0

forz > 0if £ > 0and0 <z < 1/¢if £ < 0. Introducing the scale and location parametgrand
o, the generalized Pareto distribution can be writtet:as,(x) by simple substitution of with

(x — o) /. Let us define the distribution of excesses over threshdig

F(z+u) — F(u)
F(u) '
The distribution of scaled excesses over the high threshoth be approximated by the gener-

F ) =P(X —u<z|X >u)=

alized Pareto distribution which has the same extreme vatiex¢ of the underlying distribution

F due to the followingBalkema-de Haan-Pickandlseorem.

Theorem A.2 For every¢ € R, F € MDA(H) if and only if

lim  sup ’G&ﬁ(u)(z) — Fu(x)} =0

U—TF O<z<zp—u

wherez implies the right-end point of', andG. is the generalized Pareto distribution with shape

and scale parametersand some positive functiofi(«) such that

L= (14575 0f €40 A6)

G(x;ﬁ,ﬁ(u)){ 1 —exp(—z/B(u)), if €=0
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forz >0if £ >0and0 <x < —pF(u)/Eif € <O0.

Note thats3 is a function of the threshold. For more details, see Embrechts et al. (1997); Balkema
and de Haan (1974); Pickands (1975). Theorem A.2 providestheoretical justification to use
the generalized Pareto distribution for the tail approxioraof the underlying loss distribution

above high enough threshold.
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Appendix B: Estimation of the Extreme Value Distributions

We introduce a maximum likelihood estimator of the thredHeVel over which the tail of loss
distribution can be approximated by an appropriate extneahee distribution belonging to certain

maximum domain of attraction.

B.1 Shape Parameter Estimation of the Extreme Value Distritions

Let Xy, ..., X, bei.i.d. loss random variables whose common distributiafiigz) = P(X <
x) for z > 0. Consider an excess of loss insurance with retentiband limit L, M < L. The

claim amoun®” covered by reinsurer given that a la§soccurs is given by

0, 0<X <M
Y =< (X-M), M<X<M+1L (B.1)
L, M+L<X

The problem of retention level in excess of loss insuranes isnportant as that of pricing. They
are of great relevance when we price high excess of loss tay#roose optimal retention level for
insurer or reinsurer. The family of extreme value distribog proves important in the study of the
limiting behavior of sample extremajax(Xy, ..., X,), as the normal distributions are essential

in the study of the limiting distributions for sample sufip or sample mearX .

B.2 Threshold Estimation of the Mixture Distribution

The proposed model by Behrens et al. (2004) assumes thab#esvations below a thresh-
old u come from a certain distribution with parametersienoted by (x|n), where those above
the threshold come from a generalized Pareto distributien,)(x) which can be justified by
Theorem A.2. The shape paramefeis determined by the maximum domain of attraction of
the underlying distribution such thé&; € M DA(H,) or should be estimated together with the

thresholdu. The layer(conditional layer) mixture distributidf? of F, andGe g, introduced in
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Chapter 2 can be written as

el e, fw) = 1 Y e
e Fi(uln) + F1i(uln) Gepw(r —u) x> u.

If we denote the parameters of our concerriby (n, ¢, 3(u)) and rearrange the sample observa-
tions{X;, ..., X,} inincreasing order by X, , < --- < Xj,}, the likelihood function can be

written as follows.

n k
L(O;xy,...,x,) = H fi(inln) H 1(w|n) ge aw)(Tin) (B.3)

i=k+1 i=1

wheref, andg; g, are the density functions @f, and the generalized Pareto distribution, respec-
tively andzy_1, < u < xpp.

Behrens et al. (2004) referred to the elicitation of infotioa within a parameterization on
which experts in that field are familiar with, the basic idéauwhich can be found in Coles and
Tawn (1996). Because analysis data in extreme values aaflyisparse, information from experts
in specific field can play an important role to supplement tiferential information from the
data. In this manner, the authors used the experts infoom#dir the key parameters of prior
distributions above the threshold. When we have such teliabbormation at hand, it increase the
accuracy of the estimation by and large. If we had a prioritistion which can describe the true
behavior of the threshold, it would be the best choice oftédiwever, there is no way of statistical
testing that the elicitation of prior information is accaiple or not. In order to avoid assuming
specific parameter values of the prior distribution, we @nés: Bayesian method of the threshold

estimation conditioning on the number of exceedances ifolte@ving section.
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B.3 Maximum Likelihood Estimation of the Threshold Conditioning on the
Number of Exceedances

According to Theorem A.2, if a distributioR € M DA(®, ) for £ > 0, the relation between
the scaled excess over the threshold of the underlyingllision /' and the generalized Pareto

distributionG is as follows.

Jim p(% > 2|X >u) = (1+&2)”

=

(B.4)

where the functioms(u) is determined as an integrand of slowly varying functiorcds follows.
Note thatF is regularly varying, denoted b € R_, /¢, and we writeF'(z) = z~¢L(z) for
some slowly varying functiorl.. By the representation theorem for regularly varying fiorns

(Embrechts et al., 1997, Beirlant et al., 2004))ic R _, ¢, we have

F = c(z) exp{— /:v %} (B.5)

wherec(t) — ¢ > 0 andj3(t)/t — oo ast — oo. For more details, see Theorem 3.4.5 and
following remarks in Embrechts et al. (1997). For examgld; is a Pareto distribution such that
1—F(z) = (1+2)~/¢, the scale parameter functigiit) = £(1+t). Therefore the approximation

of the tail of ' above the threshold is written as folows.

1= Fuo) = Geale) = (1+ 55 = (14 1) % (8.6)

B.3.1 Maximum Likelihood Estimator of the Number of Exceedaices

Let X; bei.i.d. loss random variables and denote the common distributioki;dfy F;. If
the sample observationy, - - - , X,,, are given, the likelihood function is defined as a product of

the densities of the underlying distribution and the déesivf the generalized Pareto distribution
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conditioning onk’, the number of exceedances above the threshold. The sabg#evationX;, ,,
can be chosen as a threshold conditionakoe- k. Therefore, conditioning on the threshold level
is equivalent to conditioning on the number of exceedances.

This likelihood function also takes a different form fromathof Hill's estimator. Since the
latter is based on th& upper observations only, i.€X; ,,- - -, X}, it includes no information
from the rest of the sample observation bel&y,,. The sample observations below the threshold
can be included in the likelihood function (B.3) unless tiweshold is random. Therefore, condi-
tioning on K, we can write the likelihood function of the mixture distitipn for all the sample

observationsXy, ..., X,, such that

n k
Lk, &uilwr, -+ san) = [ Alwin) HF Tt 1n) G gy (Tin — 1) (B.7)

i=k+1 i=1

wheref; is the density of andgéﬁ(u) is the density of the generalized Pareto distribution vith t
shape parameter estimitgk by Hill's estimator. As long as Hill’s estimator exists, thileslihood
function is well defined and attains its maxima on the domé&iR o

We assume thak’, the number of exceedances above the threshold is unifatistsibuted
such that’ ~ discretel/ (0, ¢) for an integett > 0 and is a function of the threshold lewelwhich
is unknown. Using the likelihood function in (B.7) we canaahte the conditional probability
function fx:(k|t) and the conditional expectatidfi/|t]. Since the functional relationship be-
tween the number of exceedances and the threshold is ndbesree correspondence, we estimate
K by k(t) = E[K|t] and approximate the corresponding threshold léyal.

Once we are given a sample data, it is natural to assume #alotinain of the uniform dis-
tribution of K is bounded by the sample size. For example, we can chooseratdisiniform
distributionU (0, t) wheret represents for the possible maximum number of exceedaneeshe
threshold. We can make use of the elicitation of expertsrpnformation at this point or de-
ducet from the data analysis of the sample. We assumetthaties fromo0 to t,,., wheret ..
is large enough to cover realistic maximum number of exaeegl® Then we can calculate the

maximum likelihood estimator of the number of exceedané¢s, = E[K|t] for each integer
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Figure B.1 Danish Fire Loss Data

t € [0, tmax] BY (B.7). We select an appropriatec (0, t,,.x) and estimate the threshold leveby

a(t*) = Xj4»),,» the sample observation corresponding:te).

B.3.2 Numerical Example

The data used in this exampledganish fire loss datavith losses over one million Danish Krone
(R Development Core Team, 2005). The median and the mean7i®&and 3.385 respectively.
The number of claims oveX0 million Danish Krone and 0 million are respectively6 and 109,
which arel.66% and5.03%. The exponential quantile plot in Fig. 5.1 shows an upwasddr
above the straight line, which is a strong evidence of heawgd distribution of the data. The left
graph in Fig. 5.2 is the empirical mean excess glat, ¢,,(u))}. It follows a straight line with
positive slope reasonably, which is also an indication @awWetailed behavior. Another useful
graphical analysis is the Hill Plot. The right graph in Fig2 % the plot of(k, & ,) where¢;, ,
is the Hill's estimator witht upper order statistics. Note that the Hill plot is stableragpnately
whenk > 200.
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Figure B.2 Mean Excess Plot and Hill's Plot

We assume the underlying distributiéh is Pareto-distributed such as

1—Flz)=(1+2)¢ (B.8)

for £ > 0. ThenFx belongs to Fréchet family and— F(z) € R_;,.. The tail of the distribu-
tion over a sufficiently high threshold can be approximatgdhe generalized Pareto distribution
G ) Wheref(u) = £/(1 4 u) by (B.6).

We choose discrete uniform distributions for the prior rifsttion of X, the number of ex-
ceedances over the threshold, i.&. ~ discreteU(0,t) for t > 0. For each integer value of
t € [10,1500], the conditional expectatiof| K |t| are calculated numerically. Fig. 5.3 is the plot
(t, E[K|t]) for t € [10,1500]. Note that the plot shows three stable intervals. It is realte to se-
lect the second interv@200 < ¢ < 600) because the firgt < 100) and the lasf1000 < t) are the
results when the domains of uniform random varialil@re too small or too large in terms of the
possible maximum number of extremal events. Therefore wess#¥ K|t € (200,600)] = 177

for k and the corresponding threshold estinvate Xy = 6,234,705 and the shape parameter
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Figure B.3 Plot of the possible maximum number of exceedanemndk (t)

estimatel = &i77., = 0.751. The fitted distribution with the estimatésand¢ is the mixture of the

underlying Pareto distributiof; belowu and the generalized Pareto distribut'(dgﬁ(é) aboved.
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Appendix C: Symbols and Notation
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A\B {z|x € Aandzx ¢ B}

(Q,F,P) probability space

P(A) probability of eventd

R set of real numbers

Ft generalized inverse of distributidn

F decumulative distribution function df
E[X] expected value of random variable

Var(X) variance of random variabl¥
Cov(X,Y) covariance of random variablésandY

) standard deviation of random variabte
p(-]*) conditional density function

N, N(t) counting process far> 0

N(0,1) standard normal distribution

d cumulative standard normal distribution function

) density of standard normal distribution function

o, multivariate normal distribution with correlation coeféat p

I unitinterval|0, 1]

C(u,v) bivariate copula

c(u,v) density of bivariate copula

He generalized extreme value distribution with shape paranget
Gepo generalized Pareto distribution with shape, scale, aratilmt parameters, 3, o
R_o regularly varying distributions with extreme value index
MDA Maximum Domain of Attraction

FxG Convolution of " andG

VaR, value-at-risk measure with confidence lebet p < 1

~ asymptotic equivalence

U uniform distribution
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