

City, University of London Institutional Repository

Citation: Alevizos, C. (2009). SYMEX: A Systems Theory based Framework for Workflow

Modelling and Execution. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/19605/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

SYMEX: A Systems Theory based Framework

for Workflow Modelling and Execution

A thesis

Submitted by

Charalampos C. Alevizos

For the Degree of

Doctor of Philosophy

At

Centre for Human Computer Interaction Design

School of Informatics

Supervisor: Bill Karakostas

December 2009

Abstract

Workflow management systems enable organisations to deal with all aspects

of business process management, including analysis, modelling, execution,

and administration. Modelling workflow processes involves transformation of

the process logic into a formal representation and it always remains a critical

success factor for these systems. Workflow modelling languages provide

constructs for capturing high-level descriptions of business processes, which

are then have to be transformed and encoded into low-level execution se-

mantics with the use of workflow programming languages. However, main-

taining these models separately results in a number of issues, particularly

when the various interdependencies between them are managed manually.

This primarily creates difficulties in adaptation, in terms of identifying

changes in high-level descriptions due to modifications of business condi-

tions, and tracing the impact of those changes on the low-level execution

semantics. Moreover, certain information included in the high-level descrip-

tions is either partly encoded or omitted from the low-level execution se-

mantics and at the same time, complicated business rules encoded at the

execution level are not included in the high-level descriptions, creating major

inconsistencies. The above issues result in high maintenance costs, reducing

the overall efficiency and performance of workflow management systems.

This thesis addresses the aforementioned problems by proposing a frame-

work named SYMEX. SYMEX addresses the issue of integrating high and

low-level descriptions in one unified format, from a Systems Theory perspec-

tive. SYMEX models have a mathematically defined formalism capable of

capturing both high-level descriptions of business processes and low-level

workflow execution semantics. Furthermore, SYMEX offers a concise and

easy to learn and communicate set of constructs, allowing business analysts,

process designers, and programmers to work on the same model, at differ-

ent levels of abstraction. Apart from the theoretical framework, an XML-

based approach for the application of SYMEX is proposed, along with a con-

straint-based inference engine. Additionally, SYMEX models are evaluated in

terms of their complexity and prove easier to read, understand, and manage

than other traditional workflow modelling approaches. However, further re-

search is required to assess the capability of the framework, with respect to

modelling workflow processes in a service-oriented environment, where ac-

tivities of business processes are essentially web-services exposed on the

Internet.

Declaration

The work in this thesis is based on research carried out at the Centre of

Human Computer Interaction Design at City University, London, UK. No part

of this thesis has been submitted elsewhere for any other degree or

qualification. All work is my own unless otherwise stated.

Copyright © 2009 by Charalampos C. Alevizos

“The copyright of this thesis rests with the author. No quotations should be

published or information and results derived from this thesis without

acknowledgement."

1st December 2009

Charalampos C. Alevizos Date

Acknowledgments

The major credit for the work in this thesis must go to my supervisor

Dr. Bill Karakostas and to Dr. Yannis Zorgios. I am grateful for their many

valuable suggestions, contributions, prompt feedback, guidance, encou-

ragement, and support during the research. My gratitude is beyond words. I

would like also to thank my examiners, Professor Neil Maiden and Dr Ilias

Petrounias for their valuable comments that helped me to improve this the-

sis.

Many thanks to the Centre for Human Computer Interaction Design of City

University, for supporting me throughout my research. I would like also to

thank Bodossaki Foundation for trusting me and supporting me financially

with a two-year scholarship.

Finally, I would like to thank my parents, my brother and the rest of my

family, my friends and all members of Hellenic Navy’s station at Corfu. Last

but not least, I would like to especially thank Kyriakos, Spyros, Christos,

Yannis and Stavroula. All their support and help in very different ways were

crucial to the completion of this thesis.

Charalampos C. Alevizos

December 1, 2009

 i

Contents

Contents ... 1

List of Figures .. 5

List of Tables .. 8

List of Formulas ... 9

1 Introduction ... 1

1.1 Research context .. 3

1.1.1 Process ... 3

1.1.2 Overview of Workflow technology ... 4

1.1.3 Workflow Process Modelling ... 6

1.2 Thesis motivation ... 8

1.2.1 Problem Statement .. 9

1.2.2 Research Hypotheses ... 9

1.2.3 Research Objectives and Questions ... 10

1.3 Research Methodology ... 11

1.4 Structure of the Thesis ... 13

1.5 Conclusions .. 13

2 Literature Review ... 15

2.1 Introduction ... 15

2.2 Model Transformation Approaches .. 17

2.3 Workflow Process Modelling and Execution .. 19

2.3.1 Workflow Process Modelling Languages ... 19

2.3.2 Workflow Process Execution Frameworks ... 38

2.4 Combining High-level representations with Low-level Execution Semantics.. 48

2.4.1 UML to BPEL4WS ... 48

2.4.2 BPMN to BPEL4WS .. 50

2.4.3 FBPML to OWL-S ... 52

2.5 Enabling Disciplines ... 54

PhD Thesis – Charalampos C. Alevizos

 ii

2.5.1 Systems Theory ... 55

2.5.2 Constraint-based reasoning .. 56

2.6 Conclusions ... 57

3 SYMEX: A Systems Theory based Framework for Workflow Modelling and

Execution .. 61

3.1 Introduction .. 61

3.2 Requirements for an Integrated Approach ... 62

3.3 Theoretical Framework ... 64

3.3.1 The Role of Systems Theory ... 64

3.3.2 Definition of Concepts .. 65

3.3.3 Mathematical Descriptions .. 68

3.4 Framework Analysis .. 71

3.4.1 Business Semantics .. 71

3.4.2 Workflow Process Execution Semantics .. 75

3.5 Overall comparison ... 91

3.6 Conclusions ... 92

4 Application of SYMEX .. 93

4.1 Introduction .. 93

4.2 Process modelling ... 94

4.2.1 Process ... 94

4.2.2 Entity Pool .. 95

4.2.3 Activities ... 99

4.2.4 XML Schema Definition ... 101

4.3 Application of SYMEX modelling ...103

4.3.1 Process description .. 103

4.3.2 SYMEX model .. 104

4.3.3 Process description .. 108

4.3.4 Discussion ... 113

4.4 Comparative analysis of change management ...114

4.4.1 Travel agency scenario ... 114

4.4.2 Modelling with UML 2 Activity Diagram .. 115

4.4.3 SYMEX modelling ... 117

PhD Thesis – Charalampos C. Alevizos

 iii

4.4.4 Discussion of results ...119

4.5 Workflow inference engine .. 122

4.5.1 Theory ..122

4.5.2 Constraint-based algorithm ...122

4.5.3 Implementation ..124

4.6 An Information System based on SYMEX ... 127

4.6.1 Process models ..127

4.6.2 Figures ..128

4.6.3 Discussion ...128

4.7 Conclusions .. 130

5 Evaluation of the SYMEX Framework ... 133

5.1 Introduction ... 133

5.2 Measuring complexity of process models .. 134

5.3 Cross-connectivity metric (CC) .. 136

5.3.1 Overview ...136

5.3.2 Formulas ...137

5.3.3 Adapting CC metric to SYMEX process models ...139

5.4 Calculation of metric .. 142

5.4.1 BPMN process model ..142

5.4.2 SYMEX process model without decomposition ...146

5.4.3 SYMEX process model with decomposition ..149

5.5 Complexity Cases ... 155

5.5.1 Trouble Ticket Process ..155

5.5.2 Supply Fulfilment Process ..156

5.5.3 Hiring Process ..157

5.5.4 RFQ/Order/Payment collaboration Process ..158

5.5.5 Overall comparison ...159

5.6 Conclusions .. 160

6 Conclusions .. 161

6.1 Overview .. 161

6.2 Summary of the Work .. 163

PhD Thesis – Charalampos C. Alevizos

 iv

6.3 Contributions ...165

6.3.1 Integration of high-level process descriptions and low-level workflow execution

semantics into SYMEX .. 165

6.3.2 Constraint-based process modelling and execution ... 166

6.3.3 Application of SYMEX ... 166

6.3.4 Adaptation of CC metric and evaluation of SYMEX models 167

6.3.5 Publications ... 168

6.3.6 POMPEI Project ... 168

6.4 Research Limitations ...169

6.5 Future Work ..170

6.6 Final Remarks ..172

References ..175

Appendix – Performance of inference engine ..183

 v

List of Figures

Figure 1.1: Rain formation at a macro level .. 1

Figure 1.2: Venn diagram showing the research context of the thesis 3

Figure 1.3: Workflow Reference Model - Components & Interfaces [10] 5

Figure 1.4: Creating high-level descriptions and low-level executable descriptions 7

Figure 1.5: Managing high and low-level process descriptions .. 9

Figure 1.6: Structure of the Thesis and research methodology ... 12

Figure 2.1: Core elements of an IDEF0 model [86] .. 21

Figure 2.2: A simple IDEF0 model for a computer assembly activity [87] 22

Figure 2.3: Modelling of a business process, using EPC [94] ... 24

Figure 2.4: IDEF3 process description diagram [97] ... 26

Figure 2.5: IDEF3 Object State Transition Network Diagram [97] .. 27

Figure 2.6: Graphical elements of BPDs [101] ... 28

Figure 2.7: A travel booking process modelled with BPMN [102] ... 29

Figure 2.8: An XPDL sample workflow process .. 31

Figure 2.9: Basic notation elements of BPDM [118] ... 34

Figure 2.10: An example of a process model using BPDM [118] .. 34

Figure 2.11: An Order Request modelled with UML 2 AD [33] ... 37

Figure 2.12: Basic structure of BPEL4WS language [43] ... 40

Figure 2.13: An example of a process in BPEL4WS [136] ... 41

Figure 2.14: Example of a service definition in OWL-S [142] .. 42

Figure 2.15: An example for a Concept and Axiom Description in WSML [149] 44

Figure 2.16: Overview of mapping BPEL4WS to OWL-S [155] ... 47

Figure 2.17: Transformation of UML model to BPEL4WS [46] ... 49

Figure 2.18: A Business Process Diagram with mappings to BPEL4WS [52] 50

Figure 2.19: BPMN components and corresponding BPEL4WS translation [49, 50] 51

Figure 2.20: Mapping classes, instances and relationships between FBPML and OWL-S [53]...... 52

Figure 2.21: Summary of mapping FBPML and OWL-S process primitives [53] 53

Figure 2.22: Rich picture of the Workflow Technology area .. 57

Figure 3.1: Transforming the problem of integration using Systems Theory 65

Figure 3.2: A Systemic perspective of a workflow model .. 66

Figure 3.3: Visual notation of SYMEX models .. 66

Figure 3.4: Modelling basic aspects of business semantics .. 71

Figure 3.5: An example of hierarchy in a workflow process model ... 73

Figure 3.6: An example of feedback loop in a workflow process model 74

Figure 3.7: Workflow pattern 1: Sequence .. 75

Figure 3.8: Workflow pattern 2: Parallel Split .. 76

Figure 3.9: Workflow pattern 3: Synchronization ... 77

PhD Thesis – Charalampos C. Alevizos

 vi

Figure 3.10: Workflow pattern 4: Exclusive Choice ... 78

Figure 3.11: Workflow pattern 5: Simple Merge ... 79

Figure 3.12: Workflow pattern 6: Multi-Choice ... 80

Figure 3.13: Workflow pattern 7: Synchronizing Merge .. 81

Figure 3.14: Workflow pattern 8: Multi-Merge ... 82

Figure 3.15: Workflow pattern 9: Discriminator ... 83

Figure 3.16: Workflow pattern 12: MI without Synchronization .. 84

Figure 3.17: Workflow pattern 13: MI with Synchronization (a) ... 85

Figure 3.18: Workflow pattern 14-15: MI with Synchronization (b) .. 86

Figure 3.19: Workflow pattern 16: Deferred Choice ... 87

Figure 4.1: Process: attributes and elements ... 94

Figure 4.2: Schema: attributes and elements .. 95

Figure 4.3: Control: attributes and elements ... 96

Figure 4.4: Mechanism: attributes and elements .. 98

Figure 4.5: Activity: attributes .. 99

Figure 4.6: Activity: elements .. 100

Figure 4.7: XML Schema Definition for capturing SYMEX constructs 102

Figure 4.8: SYMEX model - High-level description of business process 104

Figure 4.9: SYMEX model - Decomposition of Activity A1 .. 105

Figure 4.10: SYMEX model - Decomposition of Activity A2 .. 106

Figure 4.11: SYMEX model - Decomposition of Activity A3 .. 107

Figure 4.12: Process description in XML format ... 112

Figure 4.13: UML 2 Activity Diagram for travel agency scenario [177] 115

Figure 4.14: Adapted UML 2 Activity Diagram for travel agency scenario [177] 116

Figure 4.15: SYMEX model for travel agency scenario .. 117

Figure 4.16: Adapted SYMEX model for travel agency scenario ... 118

Figure 4.17: Changes to UML 2 Activity Diagram for the travel agency scenario 120

Figure 4.18: Changes to SYMEX model for the travel agency scenario 121

Figure 4.19: UML Class Diagram of the implemented workflow inference engine 124

Figure 4.20: UML Class Diagram: Activities and Activity classes ... 125

Figure 4.21: UML Class Diagram: Schemas and Schema classes .. 125

Figure 4.22: UML Class Diagram: Mechanisms and Mechanism classes 125

Figure 4.23: UML Class Diagram: Controls and Control classes .. 126

Figure 4.24: Database diagram of the implemented workflow inference engine 126

Figure 5.1: Reading a SYMEX model and calculating the CC metric .. 141

Figure 5.2: BPMN process model [49] ... 142

Figure 5.3: SYMEX model without decomposition ... 146

Figure 5.4: Level 1 of SYMEX model ... 149

PhD Thesis – Charalampos C. Alevizos

 vii

Figure 5.5: Level 2 of SYMEX model: decomposed Activity “questionnaire” 149

Figure 5.6: Level 2 of SYMEX model: decomposed Activity “complaint”................................... 150

Figure 5.7: Level 1 of SYMEX model with calculated CC metric for the composite Activities 152

Figure 5.8: BPMN model: Trouble Ticket Process [199] ... 155

Figure 5.9: BPMN model: Supply Fulfilment Process [200] ... 156

Figure 5.10: BPMN model: Hiring Process [201] ... 157

Figure 5.11: BPMN model: RFQ/Order/Payment collaboration Process [202] 159

Figure 0.1: Phase 1’s execution time (ms) ... 185

Figure 0.2: Phase 2’s execution time (ms) for a typical Activity .. 185

Figure 0.3: Phase 2’s execution time (ms) depending on execution Mechanisms 186

Figure 0.4: Phase 3’s execution time (ms) ... 186

Figure 0.5: Phase 4’s execution time (ms) ... 187

Figure 0.6: Phase 4 – Execution time (ms) based on the number of Inputs 187

Figure 0.7: Phase 4 – Execution time (ms) of checking an Activity’s state 187

Figure 0.8: Total Execution time (ms) using a typical scenario ... 188

Figure 0.9: Total Execution time (ms) using an extreme scenario .. 188

 viii

List of Tables

Table 2.1: Categorization of Process Execution Frameworks ... 38

Table 2.2: UML Profile and BPEL mapping [48] .. 48

Table 2.3: Main limitations identified in the literature ... 59

Table 3.1: Workflow patterns [104] ... 63

Table 3.2: Comparison based on workflow patterns [176] .. 89

Table 3.3: Overall comparison of SYMEX to other approaches ... 91

Table 4.1: Pseudo-code listing of constraint-based algorithm .. 123

Table 4.2: List of modelled Processes ... 127

Table 4.3: Figures from the Information System based on SYMEX ... 128

Table 5.1: Complexity metrics for software and business process models [196]...................... 135

Table 5.2: Calculation of weight of nodes for BPMN process model 143

Table 5.3: Calculation of weight of arcs for BPMN process model .. 144

Table 5.4: Calculation of weight of connections for BPMN process model 145

Table 5.5: Calculation of weight of nodes for SYMEX process model 147

Table 5.6: Calculation of weight of arcs for SYMEX process model .. 147

Table 5.7: Calculation of weight of connections for SYMEX process model 148

Table 5.8: Calculation of weight of nodes for Activity N2,3,4,5 of SYMEX model 150

Table 5.9: Calculation of weight of arcs for Activity N2,3,4,5 of SYMEX model 150

Table 5.10: Calculation of weight of connections for Activity N2,3,4,5 of SYMEX model 151

Table 5.11: Calculation of weight of nodes for Activity N6,7,8 of SYMEX model 151

Table 5.12: Calculation of weight of arcs for Activity N6,7,8 of SYMEX model 151

Table 5.13: Calculation of weight of connections for Activity N6,7,8 of SYMEX model 152

Table 5.14: Calculation of weight of nodes for Level 1 of SYMEX model 153

Table 5.15: Calculation of weight of arcs for Level 1 of SYMEX model 153

Table 5.16: Calculation of weight of connections for Level 1 of SYMEX model 153

Table 5.17: Calculation of CC-metric for all the cases ... 159

 ix

List of Formulas

Formula 3.1: Definition of I(A) – Inputs of Activity .. 68

Formula 3.2: Definition of O(A) – Outputs of Activity ... 68

Formula 3.3: Definition of C(A) – Controls of Activity ... 68

Formula 3.4: Definition of M(A) – execution Mechanisms of Activity .. 68

Formula 3.5: Rule 1 .. 69

Formula 3.6: Rule 2 .. 69

Formula 3.7: Rule 3 .. 69

Formula 3.8: Rule 4 .. 69

Formula 3.9: Rule 5 .. 69

Formula 3.10: Rule 6 .. 69

Formula 3.11: Definition of Activity States for a workflow process Σ .. 70

Formula 3.12: Definition of status ‘available’ for Activity Ai ... 70

Formula 3.13: Definition of execution Mechanism of Activity Ai ... 70

Formula 3.14: Definition of Control of Activity Ai .. 70

Formula 3.15: Hierarchy’s semantics .. 72

Formula 3.16: Feedback loop’s semantics ... 74

Formula 3.17: Semantics of Workflow pattern 1: Sequence .. 75

Formula 3.18: Semantics of Workflow pattern 2: Parallel Split .. 76

Formula 3.19: Semantics of Workflow pattern 3: Synchronization ... 77

Formula 3.20: Semantics of Workflow pattern 4: Exclusive Choice .. 78

Formula 3.21: Semantics of Workflow pattern 5: Simple Merge .. 79

Formula 3.22: Semantics of Workflow pattern 6: Multi-Choice .. 80

Formula 3.23: Semantics of Workflow pattern 7: Synchronizing Merge 81

Formula 3.24: Semantics of Workflow pattern 8: Multi-Merge ... 82

Formula 3.25: Semantics of Workflow pattern 9: Discriminator ... 83

Formula 3.26: Semantics of Workflow pattern 14: MI with Synchronization (a) 86

Formula 3.27: Semantics of Workflow pattern 14-15: MI with Synchronization (b) 86

Formula 3.28: Semantics of Workflow pattern 16: Multi-Choice .. 87

Formula 4.1: Control of Activity A3 at the initial SYMEX model ... 117

Formula 4.2: Control of Activity A3 at the adapted SYMEX model ... 119

Formula 4.3: Definition of Activity States for a business process Σ ... 122

Formula 4.4: Definition of status ‘available’ for Activity Ai .. 122

Formula 4.5: Definition of execution Mechanism of Activity Ai .. 122

Formula 4.6: Definition of Control of Activity Ai .. 122

City, University of London
Northampton Square

 London
EC1V 0HB

United Kingdom

 T +44 (0)20 7040 5060

www.city.ac.uk Academic excellence for business and the professions

THE FOLLOWING PARTS OF THIS THESIS HAVE BEEN REDACTED
FOR COPYRIGHT REASONS:

Figure 2.11: An Order Request modelled with UML 2 AD [33] ... 37

Figure 5.8: BPMN model: Trouble Ticket Process [199] ... 155

Figure 5.10: BPMN model: Hiring Process [201] ... 157

 x

 xi

1

1 Introduction

Physical phenomena are the outcome of processes that consist of a number of tasks executed in

some pre-specified or random order. The difficulty of capturing and defining the tasks depends on

the conceptualisation process required to describe the phenomena. If we would try to describe

the rain phenomenon at a macro level, we would say that it is a process consisting of a number

of tasks, in which the sun heats the water in oceans, rivers and lakes, water is vaporised due to

heat, condenses into drops when vapours reach a certain level on concentration and form rain.

Eventually water returns to oceans, rivers, and lakes. The process of rain phenomenon described,

always follows the same cyclic order of tasks, as shown in Figure 1.1.

Figure 1.1: Rain formation at a macro level

Similar to physical phenomena, human activities are also processes consisting of a number of

tasks realized in some order. Among human activities, business activities are diachronic; trade

was the first form of business activity originated with the start of communication in prehistoric

times, and since then, business activities cover all aspects of human life. However, unlike physical

phenomena, which generally follow a specific pattern of developmental stages, business activities

often change adapting to new business needs in a more dynamic manner. This increases the level

of complexity, making the process of rationalising and managing the changes manually a difficult

task. In order to facilitate the process of modelling and execution of business processes, specific

technological solutions have been developed, known as workflow management systems. In gen-

Clouds are

formed from

vapours of

water

Concentration of

vapours reaches

a critical degree

in clouds and it

rains

Sun heats water

of oceans, riv-

ers and lakes

Water is

 vaporized

due to heat

Water returns

back to oceans,

rivers and lakes

Chapter 1 – Introduction

2

eral, workflow technology is a research area dealing with all aspects of business process man-

agement, including analysis, modelling, execution, and administration. All these aspects are also

referred in the literature as workflow management.

As in most engineering processes, the success of a workflow management system relies much on

the modelling and the design phase of business processes [1, 2], [3, 4]. There is extensive re-

search attempting to formulate solutions that help business analysts to deliver workflow applica-

tions that adapt to changing business conditions. The research mainly focuses on providing

modelling tools and languages for conceptualising and thus modelling the tasks of a business

process at two separate levels; high structural level and low execution level. However, during the

adaptation of a business process, business analysts have to maintain manually the consistency

between the two levels of process description, which in turn creates difficulties in designing

adaptable workflow management solutions.

This thesis mainly focuses on the modelling aspect of business processes within a workflow man-

agement context (i.e. workflow process modelling). Among the open issues of modelling, the

problem of maintaining two different models for high-level representations and low-level execu-

tion semantics is identified as the main problem of our research. The research objectives include

the identification of the relationships between the two descriptions and their integration into a

united form.

The structure of this Chapter is as follows. Section 1.1 defines the research context of the thesis,

introducing the concept of process, giving an overview of workflow technology area and focusing

on the open issues of workflow process modelling. Section 1.2 discusses the thesis motivation,

stating the research problem, and posing the research questions and objectives. Section 1.3 de-

scribes the research methodology and Section 1.4 presents the structure of the thesis. Finally,

Section 1.5 concludes the Chapter.

Chapter 1 – Introduction

3

1.1 Research context

Venn diagram in Figure 1.2 shows the research context of the thesis, which focuses on the mod-

elling aspects of business processes for the purpose of workflow management. More specifically,

we are interested in investigating the open issue of maintaining consistency between separate

high and low-level workflow process models.

Process

Workflow technology

Biology

Business

Science and

technology

Music

Other uses
Business

process

Industrial

process

Modelling

Analysis
Execution

Administration

Others

Research context

High‐

level

Low‐

level

Figure 1.2: Venn diagram showing the research context of the thesis

1.1.1 Process

Process is a general term that applies to many aspects of life. Therefore, the term may refer to a

number of disciplines, e.g. a biological process, a chemical process, an industrial process, a busi-

ness process etc. In this Thesis, we refer to business process. In 1993, Davenport gave a defini-

tion of a business process as “a structured, measured set of activities designed to produce a

specific output for a particular customer or market. It implies a strong emphasis on how work is

done within an organization, in contrast to a product focus’s emphasis on what. A process is thus

a specific ordering of work activities across time and space, with a beginning and an end, and

clearly defined inputs and outputs: a structure for action” [5].

Chapter 1 – Introduction

4

A business process can have several levels of decomposition. Decomposition captures separation

of concerns at the business level, revealing the relations between the different parts of a process

and providing a natural way for business people to categorize and make hierarchy of their busi-

ness processes. During process design, a business process can be decomposed into several sub-

processes. Each sub-process has its own characteristics and can be furthered decomposed, but

eventually contributes to achieving the goal of the parent process [6]. The levels of decomposi-

tion depend on the size of the process and the levels of details that the process designer needs to

expose in the model. Finally, the success of process model depends not only on the process de-

signer but also on the modelling technique that is used. Choosing a technique is an important

decision, as there are many proposals for business process modelling within the workflow con-

text, with different characteristics.

1.1.2 Overview of Workflow technology

Workflow technology has appeared in a primitive form in the early 1970’s, supporting image and

document-routing automation in enterprises. One of the first attempts to define the term “work-

flow”, was made by the Workflow Management Coalition [7] in 1996, according to which work-

flow is “the automation of a business process, in whole or part, during which documents,

information or tasks are passed from one participant to another for action, according to a set of

procedural rules” [8]. Workflow technology has evolved a lot since then, and during the last 10

years, found its way in the support of model-driven development and the management of busi-

ness process realization, in application areas such as [9]:

 packaged applications, as a means of customization,

 electronic commerce, to coordinate an enterprise’s interaction with its customers over the

Internet,

 business objects for composing workflow-process components, message-broker environ-

ments, processing of complex requests, and

 virtual enterprises, to coordinate inter-enterprise processes.

As many vendors and developers began to build their own workflow applications in order to im-

plement workflow processes, there was a need for workflow standards. Workflow Management

Coalition identified those parts of workflow applications and workflow-management systems that

should be standardized [9] and introduced Workflow Reference Model [10]. Figure 1.3 illustrates

the major components and interfaces within the workflow architecture as defined in the Workflow

Reference Model.

Chapter 1 – Introduction

5

Figure 1.3: Workflow Reference Model - Components & Interfaces [10]

While business environments have become exceedingly dynamic and competitive since the late

90’s, workflow systems did not provide the flexibility necessary to support the dynamic nature of

business processes [11]. Research about issues and challenges related to managing change and

time in workflows representing dynamic business processes [11], provided a number of feasible

approaches to tackle dynamically changing workflow processes. Aalst in [12] suggested the use

of generic process models; the generic process model extended the classical workflow models,

primarily based on routing diagrams, with inheritance diagrams. This allowed for the specification

of process families composed of variants and addressed two main problems related to adaptive

workflow: (1) providing management information at the right aggregation level, and (2) support-

ing dynamic change, i.e., migrating cases from an old to a new workflow.

The next step in the workflow area was the need to support cross-enterprise workflows. This

need was addressed by researchers, such as Zeng et al. in [13] and Wang in [14], with the use of

agent-based approaches. Other researchers employed Common Object Request Broker Architec-

ture (CORBA) [15] to enable distributed workflow systems. Purvis et al. in [16], propose a

framework that employs Petri nets to model the interaction between various sub-processes. Other

approaches, such as the RainMan system [17], started using open standards and Web-browser

based user interface components. The importance of open standards in decentralized workflow

execution and disconnected participation, made the research community consider the use of

Internet-based standards such as HTTP protocol and XML, as Hayes et al. discuss in [18]. Web-

based workflow management systems soon made their appearance. This kind of systems support

a number of web protocols, such as HTTP, XML and XSL and they use HTTP as the core commu-

nication protocol. Characteristic examples are Magi [19] and Workspaces [20].

Chapter 1 – Introduction

6

Lately, following the recent requirements and needs, workflow technology is adopting the use of

web-services [21]. Web-services serve as an infrastructure providing seamless interoperability

among networked workflow processes. Thus, web-services enable workflow technology to move a

step towards interoperability, thanks to their ability of reducing heterogeneity through standard-

ized interaction paradigms [22]. The presence of web-services raised issues of monitoring and

controlling their execution, to ensure they operate with the desired quality levels. The description

and invocation of web-services have been addressed by Web-services Description Language

(WSDL) [23] and Simple Object Access Protocol (SOAP) [24] respectively. In addition, standardi-

zation efforts such as WS-Transaction, WS-Specification, WS-Coordination, WS-Addressing [25-

28] are trying to address the transaction, coordination, addressing and discovery issues. A num-

ber of models have also been proposed in order to support the management of complex interac-

tions between clients and web-services, like the model of Ardissono et al. in [29].

In summary, workflow technology evolved from simple document routing automation to distrib-

uted workflow management systems, supporting the management of business process realization

across enterprises. Modelling of processes is considered as one of the most crucial factors for the

success of a workflow management system and it is discussed in the next Section.

1.1.3 Workflow Process Modelling

The success of a workflow management system and thus its capability to adapt to changing busi-

ness conditions relies heavily on the success of the process modelling phase. The common prac-

tice, as far as the business process modelling is concerned, includes the following steps:

1. Analysts analyze and capture the requirements of the information system that will be de-

veloped. This step is equivalent with the requirements analysis in software engineering,

which is one of the most important challenges in order to rationalize the processes from

requirements definition to design [30]. Requirements analysis helps to determine the

needs or conditions to meet for a workflow process, taking account of the possibly con-

flicting requirements of the various stakeholders, such as beneficiaries or business users

[31]. The captured requirements must be actionable, measurable, testable, related to

identified business needs, and defined to a level of detail sufficient for the workflow proc-

ess design [32].

2. Designers, based on the analysis, design a high-level representation of the business

process using modelling techniques, such as UML-based diagrams [33].

3. Then programmers, in collaboration with designers, encode the business process in low-

level workflow execution semantics, using execution frameworks such as BPEL4WS [34].

Figure 1.4 shows an example of modelling a business process of a hospital. Specifically, analysts

first create a high-level representation of a business process that takes place inside the hospital.

Chapter 1 – Introduction

7

Analysts capture the requirements of the process, i.e. interacting roles, tasks of the process, in-

formation flow across the process etc. Then, designers create a UML Activity Diagram [33], trans-

lating the high-level representation using constructs and patterns of UML. Finally, programmers

use the programming constructs offered by BPEL4WS, in order to transform the UML Activity Dia-

gram into code that will be used by a workflow execution engine to automate the business proc-

ess.

H
U
M
A
N

F
A
C
T
O
R

High- level representation

UML Activity Diagram

 <process name=" ApprovalProcess" ...>

<variables>

<variable name="request"

messageType="loandef:creditInformationMessage"/>

<variable name="riskAssessment"

messageType="asns:riskAssessmentMessage"/>

...

</variables>

...

<flow>

<receive name="receive1" partner="customer"

portType="apns:loanApprovalPT"

operation="approve" variable="request"

createInstance="yes">

<source linkName="receive- to- assess"

transitionCondition=

"bpws:getVariableData('request', 'amount')<10000"/>

<source linkName="receive- to- approval"

transitionCondition=

"bpws:getVariableData('request', 'amount')>=10000"/>

</receive>

="assessor"

BPEL4WS Listing

Figure 1.4: Creating high-level descriptions and low-level executable descriptions

It is common practice to maintain manually the separate models of high-level representations and

low-level execution descriptions. This situation usually leads business analysts and process de-

signers to hard code certain semantics and elements of the business process environment to ei-

ther the high-level or the low-level description. In case of adaptation, changes have to be first

identified in the high-level representations and then needs to be adapted in the low-level descrip-

tions. These transformations rely much on the human factor and often a number of inconsisten-

cies between the two models appear. Such inconsistencies increase the level of complexity of the

workflow process modelling activity, which becomes even more difficult to adapt under the con-

tinually changing business conditions and may lead into a malfunctioning workflow management

system.

Chapter 1 – Introduction

8

Workflow process modelling therefore is one of the most critical phases for the success of a work-

flow management system. Up to now, there is not much research towards an integrated ap-

proach that would combine high-level representations of business processes with low-level

executable descriptions. For that reason, the need of an integrated framework, which would be

capable of effectively encoding processes in high-level descriptions as well as their execution se-

mantics in low-level workflow descriptions, is evident.

1.2 Thesis motivation

As workflow technology evolves, a landscape of languages and techniques for workflow process

modelling has emerged and it is continuously being enriched with new proposals from different

vendors and coalitions. Inside this landscape of languages and techniques, there is not much re-

search towards an integrated approach that would combine high-level representations of business

processes with low-level executable descriptions.

Business process models are representations defined in high-level descriptions by designers, while

executable business process descriptions are computer interpretable descriptions automating the

execution of business processes, defined in low-level descriptions by developers. The two are

maintained as completely different models. Therefore, when there is a business change demand,

designers have to understand and realise the changes in the high-level description of the business

process. Then developers need to propagate the changes again on the low-level execution seman-

tics of the process. This transformation is commonly done manually, relying on the capability of

analysts and designers to trace the changes from the high-level model to the low-level descrip-

tion and vice versa. Moreover, different type of information between the two models often

results to inconsistency. Specifically, designers often ignore hard coded business rules at exe-

cution semantics and on the other hand, developers overlook certain information modelled at

a high-level of abstraction.

Chapter 1 – Introduction

9

1.2.1 Problem Statement

High-level process descriptions and low-level workflow execution semantics are maintained as

two completely different models and the relationships between them are managed manually

(Figure 1.5). This primarily creates difficulties in adaptation, in terms of identifying changes in

high-level descriptions due to modifications of business conditions, and tracing the impact of

those changes on the low-level execution semantics. Moreover, certain information modelled in

the high-level descriptions is either partly encoded or omitted from the low-level execution se-

mantics and at the same time, complicated business rules encoded at the execution level are not

included in the high-level descriptions, creating major inconsistencies. The above issues result in

high maintenance costs reducing the overall efficiency and performance of workflow management

systems.

Modelling
Languages

Execution
Frameworks

High-level representations Low-level execution semantics

different models managed manually

translated

Figure 1.5: Managing high and low-level process descriptions

1.2.2 Research Hypotheses

We argue that an integrated workflow modelling and execution framework for capturing and en-

coding process semantics can be defined directly from first principles of Systems Theory. Specifi-

cally, within the scope of our research, we argue that:

1. Systems oriented constructs such as scope, activity, input, output, transformation

mechanisms, control logic, and feedback loops, together with the concept of decomposi-

tion provide the necessary means to capture and represent systemic views of complex

business processes.

2. A systems oriented workflow modelling and execution language can provide an integrated

framework, at the right level of abstraction, upon which process descriptions can be de-

fined in a computer-interpretable way, in order to support the execution of business

processes.

3. Systems oriented process semantics are easier to understand and manage than existing

ones based on BPMN, UML activity diagrams etc.

Chapter 1 – Introduction

10

1.2.3 Research Objectives and Questions

The research objectives (RO) and the research questions (RQ) of the thesis are as follows:

RO1 Integration of high-level process descriptions and low-level workflow exe-

cution semantics

RQ1.1 How can we enable integration of high-level process descriptions and low-level work-

flow execution semantics in the SYMEX approach using the main principles of Sys-

tems Theory?

RQ1.2 What kind of conceptual constructs of Systems Theory can be used to model high-

level and low-level workflow process descriptions?

RQ1.3 How can we formally describe systems oriented process models that encode both

high-level and low-level workflow process descriptions?

RO2 Application of the integrated workflow process modelling approach

RQ2.1 How can systems oriented process descriptions be defined in order to model real life

business workflows?

RQ2.2 What is required in order to execute systems oriented business workflows?

RO3 Assess the effectiveness in SYMEX models compared to existing available

techniques

RQ3 What kind of measures can we define in order to assess effectiveness; how easy is to

understand and manage changes in SYMEX models, compared to existing available

techniques?

Chapter 1 – Introduction

11

1.3 Research Methodology

The research methodology followed in the thesis comprises the following eight steps:

1. Research scope

Definition of the research context of the thesis.

2. Problem statement and Research Objectives

Definition of the thesis motivation, which includes the problem statement and the re-

search objectives and questions.

3. Literature Review

Review and analysis of the literature in workflow process modelling and execution, identi-

fying strengths and weaknesses. Also, review of disciplines that enable the solution of the

research problem.

4. Introduction of the proposed framework

Definition of the basic concepts and constructs of the proposed framework.

5. Formalization of the proposed framework

Definition of the formal semantics of the proposed framework.

6. Application of framework

Proposal of an implementation approach in order to design and develop a prototype of

the framework.

7. Evaluation of framework

Evaluation of the framework in order to assess its capabilities, strengths, weaknesses,

and possible improvements.

8. Overall conclusions

Discussion of the contributions of the research, possible limitations, and future research

directions.

Figure 1.6 presents the research methodology as flow chart, along with the structure of the the-

sis.

Chapter 1 – Introduction

12

Figure 1.6: Structure of the Thesis and research methodology

Chapter 1 – Introduction

13

1.4 Structure of the Thesis

The structure of the thesis is as follows:

Chapter 1 defines the research context of the thesis, along with problem statement, the re-

search objectives, and questions.

Chapter 2 reviews the literature of workflow process modelling and execution frameworks from

the problem’s perspective. In this Chapter, we identify strengths and weaknesses of current ap-

proaches and review disciplines that enable the solution of the research problem.

Chapter 3 addresses research objective RO1 by integrating high-level process descriptions and

low-level workflow execution semantics into a unified format, using a Systems Theory based ap-

proach. In this Chapter, we also define the basic concepts of the proposed framework (SYMEX),

its constructs, and formal semantics.

Chapter 4 addresses research objective RO2. Specifically, it proposes an implementation ap-

proach in order to design and develop a prototype of the framework. This Chapter also demon-

strates how the proposed approach facilitates and accelerates adaptation of processes, in

comparison with approaches that explicitly sequence activities of processes. Additionally, it pre-

sents a proposed implementation of a workflow inference engine that can execute SYMEX mod-

els.

Chapter 5 evaluates effectiveness of SYMEX by employing complexity metrics for business proc-

ess models. These metrics quantify the benefits of the framework and address research objective

RO3.

Chapter 6 concludes our research. The major contributions, along with the limitations and future

work directions are discussed.

1.5 Conclusions

In this Chapter we defined the research context of the thesis; business processes and modelling

within the workflow context. We introduced the concept of business process, gave an overview of

the workflow technology area, and focused on the importance of the workflow process modelling.

Then we defined the problem statement of the thesis together with the research objectives and

questions. Finally, we described the research methodology and the structure of the thesis.

14

15

2 Literature Review

2.1 Introduction

In Chapter 1, we concluded that relationships between high-level process descriptions and low-

level workflow execution semantics are maintained manually, resulting is high maintenance costs

and processes that cannot adapt easily and quickly to changes, consequently reducing the overall

efficiency and performance of workflow management systems. In this Chapter, we discuss the

model transformation approaches that have been reported in the software engineering literature

and how they can affect our research and we then review the workflow process modelling lan-

guages and execution frameworks that are mainly used by modellers and process designers to

capture the high-level descriptions and the low-level execution semantics respectively.

There are a number of different approaches for workflow process modelling, including graphs of

events and functions [35], function modelling [36], process flow and object state transition net-

works [37], flowcharting techniques [38], XML-based design formats [39] and activity diagrams

[40]. All workflow process modelling languages focus on the creation of high-level descriptions

using a set of visual constructs [35], [36], [37], [38], [40]. On the other hand, they lack low-level

constructs and precise semantics for the realization of business processes, in terms of extracting

low-level process execution details. Thus, process designers use process execution frameworks in

order to translate the abstract layer of modelling to the execution layer of processes. Workflow

process execution frameworks are used to define low-level execution semantics for the processes

that will be eventually executed by an execution engine. There are two main categories of execu-

tion frameworks; mathematical-based [41], [42], [43] and ontology-based [44], [45]. BPEL4WS

and OWL-S are considered as the major representatives of each category respectively. Due to the

distance between modelling and execution, there are some research approaches proposing map-

pings, in order to reduce the gap between high-level process descriptions and low-level workflow

execution semantics. Among them, there are approaches using mathematical-based [46-48], [49-

52] and those using ontology-based [53] modelling and execution frameworks. Finally, this Chap-

ter discusses the enabling disciplines of our research: Systems Theory and Constrained-based

reasoning. These research areas enable us to address the research objectives we have posed in

Chapter 1.

The structure of this Chapter is as follows. Section 2.2 discusses model transformation ap-

proaches and examines in what extent they can be adopted in our research. Section 2.3 outlines

and reviews workflow modelling languages and process execution frameworks. Section 2.4 re-

views research approaches combining high-level modelling and execution semantics. Section 2.5

introduces the enabling disciplines for our proposed framework. Finally, Section 2.6 concludes the

Chapter 2 – Literature Review

16

Chapter with an overview of the research area of workflow process modelling and execution and

a discussion of the identified limitations.

Chapter 2 – Literature Review

17

2.2 Model Transformation Approaches

One of our main research objectives is to maintain consistency between workflow models at dif-

ferent levels of abstraction. This Section discusses the model transformation approaches that

have been reported in the software engineering literature and examines in what extent they can

be adopted in our research.

Model-Driven Architecture (MDA) [54] has been proposed by Object Management Group (OMG)

[55] as an approach to software development based on modeling and automated mapping of

models to implementations. The basic idea involves the definition of a platform independent

model (PIM) and its automated mapping to one or more platform-specific models (PSMs). The

benefits of such an approach are similar with our research objectives within the workflow context

and include [56]:

1. improved portability due to separating the application knowledge from the mapping to a

specific implementation technology,

2. increased productivity due to automating the mapping,

3. improved quality due to reuse of well proven patterns and best practices in the mapping,

4. improved maintainability due to better separation of concerns and

5. better consistency and traceability between models and code.

In 2002 there was an effort to define a foundation for transforming PIMs into PSMs and OMG in-

itiated a standardization process by issuing a Request for Proposal (RFP) on Query / Views /

Transformations (QVT) [57]. Driven by the OMG’s request and by practical needs, a large number

of approaches to model transformation have been proposed. A classification of existing model

transformation approaches based on [56] is the following:

 direct manipulation approaches; offer an internal model representation plus some

API to manipulate it and are usually implemented as an object-oriented framework, e.g.

Jamda [58], JMI [59]

 relational approaches; this category groups declarative approaches where the main

concept is to state the source and target element type of a relation using constraints in

terms of mathematical relations, e.g. [60], [61], [62], [63], [64]

 graph-transformation-based approaches; based on the theoretical work on graph

transformations, e.g. [65], VIATRA [66], ATOM [67], GreAT [68], UMLX [69], and BOTL

[70].

 structure-driven approaches; have two distinct phases: the first phase is concerned

with creating a hierarchical structure of the target model and the second phase sets the

attributes and references in the target, e.g. [71]

 hybrid approaches; combine different techniques from the previous categories, e.g.

Transformation Rule Language (TRL) [72], Atlas Transformation Language (ATL) [73]

Chapter 2 – Literature Review

18

It is a fact that model transformation approaches shows a direction in how to transform one

model into another but they cannot be used as such in order to address our research objectives.

In this thesis, we deal with business process-based information and characteristics, which are

very different compared to software engineering patterns. However, model transformation as a

research area can provide us with useful concepts and patterns that will help in the definition of

our theoretical framework in order to address the issue of maintaining consistency between work-

flow models at different levels of abstraction.

Chapter 2 – Literature Review

19

2.3 Workflow Process Modelling and Execution

The aim of our research is to propose a framework that could easily fit and work with popular and

widely adopted approaches and not to generate ‘yet another method’ that will stay only in theory

and have no real adoption by industry. Thus, among numerous research proposals for workflow

process languages and process execution frameworks we review those that fulfil the following

criteria:

1. Industry adoption; popularity and adoption by software houses and vendors, IT society.

2. Standardization efforts; adoption by standardization organizations such as WfMC [7],

BPMI [74], OASIS [75], OMG [55], and NIST [76].

3. Referent literature; related research comparing languages and execution frameworks

[77], [78], [79], [4], [80], [81], [2].

The remaining of this Section introduces the main concepts of each selected language and

framework and identifies the main limitations through the literature.

2.3.1 Workflow Process Modelling Languages

The term Workflow Process Modelling Languages includes all process modelling methods and

techniques used for capturing high-level representations of business processes within the work-

flow context. This kind of languages usually offer a number of visual constructs that IT designers

use to model business behaviour. Thus, providing visual representations of processes they help

communication across business and IT people [52]. The workflow process modelling languages

that we review are:

 Integration Definition for Function Modelling [IDEF0] [36],

 Event Driven Process Chain [EPC] [35],

 Integration Definition for Process Description [IDEF3] [37],

 Business Process Modelling Notation [BPMN] [38],

 XML Process Definition Language [XPDL] [39],

 Business Process Definition Metamodel [BPDM] [82] and

 UML 2 Activity Diagrams [UML 2 ADs] [40].

Following Sections present them based on the chronological order of their proposal.

Chapter 2 – Literature Review

20

2.3.1.1 1981 - Integration Definition for Function Modelling [IDEF0]

In 1970s US Air Force initiated a program for Integrated Computer Aided Manufacturing (ICAM)

[36]. The purpose of the program was to increase productivity of manufacturing through system-

atic application of computer technology. A series of modelling methodologies, known as the ICAM

Definition (IDEF) methods, were developed by that program in order to provide better analysis

and communication techniques for people involved in improving manufacturing productivity [36].

Among the IDEF methods developed, there was IDEF0. Later, in 1993, Institute of Electrical and

Electronics Engineers (IEEE) Computer Society [83] initiated a project to establish IDEF standards

across both industry and government within the standards framework of the American National

Standards Institute (ANSI) [84]. The result of that effort was the IEEE Std. 1320.1-1998 for

IDEF0 function modelling [85].

IDEF0 modelling technique produces function models; graphical structured representations of the

functions within a system or subject area [36]. Therefore, an IDEF0 model describes what a sys-

tem does, what controls it, what things it works on, what means it uses to perform its functions,

and what it produces. As for the structure, the model is composed of a hierarchical series of dia-

grams that gradually introduce increasing levels of detail to describe functions and their interfaces

within the context of a system [85].

As a function modelling language, IDEF0 has the following characteristics [85]:

1. The models are expressive and comprehensive. They are capable of graphically repre-

senting a wide variety of business operations to any level of detail.

2. It is a coherent and simple language, allowing accurate expressions and promoting con-

sistency of usage and interpretation.

3. The models enhance the communication among analysts, architects, developers, manag-

ers, as they are easy to learn and hierarchically expose details of systems.

4. It is a well-tested technique through many years of use by the US Air Force and other

government agencies and by private industry.

5. Several commercial products support development and analysis of IDEF0 models.

The basic constructs of IDEF0 models are Boxes, which represent functions and Arrows. De-

pending on how an arrow enters or leaves a box, we have [86]:

 Inputs, which are encoded with those arrows entering on the left side of a box. Inputs

are consumed by a function to produce outputs.

 Outputs, which are encoded with those arrows leaving a box on the right side. Outputs

are the data or objects produced by the function.

Chapter 2 – Literature Review

21

 Controls, which are encoded with arrows entering a box on the top. Controls specify the

conditions required by the function to produce correct outputs.

 Mechanisms, which are encoded with arrows entering a box to the bottom side. Mecha-

nisms identify the means that support the execution of the function.

 Call arrows, which are encoded with arrows leaving a box to the bottom side. Call ar-

rows enable the sharing of detail between models (linking them together) or between

portions of the same model.

Figure 2.1 illustrates the core elements of an IDEF0 model.

Figure 2.1: Core elements of an IDEF0 model [86]

Example:

Figure 2.2 shows a simple IDEF0 model for a computer assembly activity.

Chapter 2 – Literature Review

22

Figure 2.2: A simple IDEF0 model for a computer assembly activity [87]

Identified drawbacks:

 IDEF0 models are static diagrams with no explicit or even implicit representation of time-

order constraints between activities [79], [88]. Thus, although IDEF0 allows the descrip-

tion of what an organization does, it does not let modellers consider timing associated

with activities [88].

 IDEF0 models cannot represent behavioural or informational modelling perspectives [79].

Thus, modellers cannot describe the specific logic associated with activities [88].

 Lastly, IDEF0 modelling technique makes no assumptions about the implementation of a

process, i.e. execution logic [82].

Chapter 2 – Literature Review

23

2.3.1.2 1992 - Event Driven Process Chain [EPC]

Event-driven process chain (EPC) method has been developed within the ARIS framework (Archi-

tecture of Integrated Information System) [89] and it is used by many companies for modelling,

analyzing, and redesigning business processes [90]. An EPC model is an ordered graph that con-

sists of events and functions. As a modelling method, EPC provides a variety of connectors for

parallel and alternative execution of processes [91] and also supports logical operators, such as

OR, AND, and XOR. One of the key advantages of EPC is its simplicity and easy-to-understand

notation [92].

The main elements of an EPC are [93]:

1. Event (represented as hexagon)

Events are passive elements that describe the conditions for a function or a process to work

or the state that a function or a process results.

2. Function (represented as rounded rectangle)

Functions are active elements, modelling the tasks or activities of a process. They essentially

describe transformations from an initial state to a resulting state.

3. Organization unit (represented as an ellipse with a vertical line)

Organization units are used to define the roles within a process that are responsible for spe-

cific functions.

4. Information, material, or resource object (represented as rectangle)

These objects represent objects of the real world, such as documents, entities, etc., which

can be input or output data of functions.

5. Logical connector

Logical connectors describe the logical relationships between elements (events and functions)

in the control flow. There are three kinds of logical relationships:

1. Branch/Merge: Used for deciding which path to choose among several control

flows.

2. Fork/Join: Used for activating all paths in the control flow concurrently.

3. OR: Used for activating one or more paths among control flows.

6. Process path (represented as rounded rectangle in front of a hexagon)

Process paths show the connection from or to other processes.

7. Control flow (represented as a dashed arrow)

It connects events with logical connectors, process paths, or functions, creating a sequence

and a logical association between them.

8. Information flow

Information flows point the connection between the functions and their input or output data.

Chapter 2 – Literature Review

24

Example:

Figure 2.3 shows an EPC model, capturing the processing of a customer order.

Figure 2.3: Modelling of a business process, using EPC [94]

Chapter 2 – Literature Review

25

Identified drawbacks of EPCs:

 Although there are some formalization efforts [94], overall, there are no well-defined se-

mantics and syntax of EPCs. As a result, such models may be ambiguous. In addition, it is

impossible to check these models for consistency and completeness. So it becomes obvi-

ous that it is not a safe option to use EPCs for specification of business processes that

may be processed by ERP and Workflow Management systems [95].

 The fact that EPCs have no formal semantics, prevents the use of analytical techniques in

these models and makes difficult the exchange of such models between tools of different

vendors [95].

 EPCs do not support detailed specification of the conditions, of the control flow, of the

data flow, and of the functions of a process model [96].

 Overall, EPCs are suitable only for high-level, visual models of business processes.

Chapter 2 – Literature Review

26

2.3.1.3 1993 - Integrated Definition for Process Description [IDEF3]

IDEF3, officially named as Integrated Definition for Process Description Capture Method, is con-

sidered complementary to IDEF0. IDEF3 was developed to describe behavioural aspects of proc-

esses, providing a structured method for expressing knowledge about how a process works, what

precedence, and causality relations exist between activities and what their sequence is. The re-

sulting IDEF3 descriptions provide a structured knowledge base for constructing analytical and

design models [97].

IDEF3 has two model entities that form the basic units of an IDEF3 description [97]:

1. Process flow descriptions, describing the relationships between actions within the

context of a process. The graphical elements of these models include Unit of Behaviour

(UOB) boxes, precedence links, junctions, referents and notes [37]:

o UOB: represent elements as boxes in IDEF3 descriptions

o Links: connect UOB boxes to form representations of dynamic processes.

o Precedence Links: express temporal precedence relations between UOBs.

o Junctions: provide a mechanism to specify the logic of process branching.

o Referents: enhance understanding and provide additional meaning.

2. Object state transition networks (OSTN), describing the allowable states of objects

throughout a process. The basic elements of OSTNs are objects and state transition arcs

[97]:

o Object states: represented by circles

o State transition arcs: represented by lines connecting object states

Example:

Figure 2.4 and Figure 2.5 show an IDEF3 process description diagram and an object state transi-

tion network diagram respectively.

Figure 2.4: IDEF3 process description diagram [97]

Chapter 2 – Literature Review

27

Figure 2.5: IDEF3 Object State Transition Network Diagram [97]

Identified drawbacks:

 IDEF3 lacks a mathematical foundation, not supporting rigorous modelling principles that

underlie the development of complex models [98], [99]. Specifically, it is lacking of timing

information that goes beyond UOB sequencing [99], has limited support for capturing dy-

namic behaviours, and weakly supports representation and manipulation of objects and

their joint state-space [99].

 IDEF3 is neither appropriate for handling process change, as it offers limited capabilities

to portray the organisational and behavioural perspectives [100], nor able to represent

flow of multiple objects along the single link that connects a pair of UOBs.

 Another disadvantage of this methodology is that it produces an elaborate net of models

in order to achieve model integration. In cases where the net of models is too complex, it

would almost be impossible for a user to follow and understand it [100].

 Overall, IDEF3 is considered as a semiformal knowledge capture approach [99].

Chapter 2 – Literature Review

28

2.3.1.4 2002 - Business Process Modelling Notation [BPMN]

BPMN was initially developed by Business Process Management Initiative (BPMI), and is currently

maintained by the Object Management Group [101]. The purpose of BPMN is to enable busi-

nesses to understand their internal procedures with a graphical notation and give them the capa-

bility to communicate these procedures in a standard manner. Furthermore, BPMN models

facilitate the understanding of performance collaborations and business transactions between the

organizations. The ultimate goal is that using BPMN, businesses will understand themselves and

their collaborators and this knowledge will enable quick adjustment to new internal and business-

to-business circumstances [38].

Event

Activity

Gateway

Connections

Swimlanes

Groups

Annotation

Figure 2.6: Graphical elements of BPDs [101]

Chapter 2 – Literature Review

29

BPMN defines a Business Process Diagram (BPD), which, based on a modified flowcharting tech-

nique, creates models of business process operations in a graphical manner. BPDs are essentially

networks of graphical objects, comprising of activities and flow controls that define the order of

performance [52]. A BPD consists of a set of graphical elements that enable easy development of

simple diagrams and look familiar to most business analysts [52]. The four basic categories of

elements are [101]:

1. Flow Objects: Events, Activities, Gateways

2. Connecting Objects: Sequence Flow, Message Flow, Association

3. Swimlanes: Pool, Lane

4. Artefacts: Data Object, Group, Annotation

Figure 2.6 above shows the basic elements of BPDs.

As for the structure types of processes, there are three basic types [78]:

 Private (Internal) business process; define internal business process of an organiza-

tion and concerns the workflow definitions in general.

 Abstract (Public) business process; define the interaction between a private business

process and other processes or participants.

 Collaboration (Global) business process; define the interactions between two or

more business entities.

Example:

Figure 2.7 shows an example model of a travel booking process in BPMN.

Figure 2.7: A travel booking process modelled with BPMN [102]

Chapter 2 – Literature Review

30

Identified drawbacks:

 BPMN does not provide a complete technical model. Specifically, it is not possible to de-

scribe the data manipulated by the process, the data transformations, and the data re-

sults for each activity [103]. Another data related limitation is that data interaction with

external sources, operated outside the context of the workflow engine is not supported

[78].

 As far as the execution semantics are concerned, modellers cannot realize the workflow

pattern [104] dealing with multiple instances without synchronization, as BPMN does not

support spawning multiple instances of a process in an unsynchronized way [78].

 Moreover, BPMN is not extensible to define organizational structures, functional break-

downs, data and informational models and business rules [78].

 Finally, business analysts require a significant amount of training and access to technical

resources in order to create a BPMN diagram properly. BPMN has many concepts and

ways of constraining a process model, and it takes time to learn all the concepts and be

able to turn an idea into a process model [103].

Chapter 2 – Literature Review

31

2.3.1.5 2002 - XML Process Definition Language [XPDL]

The XML Process Definition Language XPDL was designed by the Workflow Management Coalition

(WfMC) [7], an organization with members representing all facets of workflow; from vendors to

users, and from academics to consultants [105]. The goal of XPDL was to provide a universally

accepted process design format for storing and exchanging process diagrams, so that one tool

would model a process diagram, another would read and edit it, an XPDL-compliant process en-

gine would execute the process model, and so on [106].

XPDL uses an XML-based syntax, specified by an XML schema. The main elements of the lan-

guage are [107]:

 Package: This container holds the other elements of the process diagram.

 Application: This container specifies the applications and tools invoked by the workflow

processes defined in a package.

 Workflow-Process: It defines parts or whole workflow processes and is composed of

elements of type Activity and Transition.

 Activity: This is the basic building block of a workflow process definition.

 Transition: Elements of this type connect elements of type Activity.

 Participant: This container specifies the participants of the workflow process, i.e., the

entities that can execute work.

 DataField and DataType: These containers specify workflow relevant data.

Example:

As XPDL uses an XML-based syntax, we show in Figure 2.8 the respective “grid view” of a sample

workflow process [108] as captured in the Altova XML Spy 2007 editor [109] in order to avoid

showing complex xml listings.

Figure 2.8: An XPDL sample workflow process

Chapter 2 – Literature Review

32

Identified drawbacks:

 XPDL does not have formal semantics [77] and does not support any transaction or ex-

ception semantics. Specifically, there is no explicit transaction demarcation and as for ex-

ceptions, there is no notion of fault or compensation handler [110, 111].

 XPDL has limited support for modelling flow of activities inside a process [107].

 Overall, as XPDL was not primarily designed for modelling, it has no graphical notation, it

is hard to read and requires technical background on XML language [105].

Chapter 2 – Literature Review

33

2.3.1.6 2003 - Business Process Definition Metamodel [BPDM]

Business Process Definition Metamodel (BPDM) is the result of an open process involving submis-

sions by organizations, following a Request for Proposal issued in 2003. BPDM was adopted in

initial form in 2007, and finalized in 2008 [112]. The expectations for BPDM were to become a

common metamodel that would [113]:

 unify the different business process definition graphical and textual notations existing in

the industry.

 complement UML metamodels so that business processes specifications could be part of

complete system specifications, assuring consistency and completeness.

 integrate collaborations between business units, process models for workflow manage-

ment processes and automated business processes.

 support the specification of choreography, describing the collaboration between partici-

pating business entities.

 enable the exchange of business process specifications between modelling tools, and be-

tween tools and execution environments using XMI (XML Metadata Interchange) [114].

The basis of BPDM’s definition is the notion of meta-model. A meta-model is a model of how to

describe business processes; it is a kind of shared vocabulary of process with well-defined con-

nections between terms and concepts [115]. In order to integrate the notations and technologies

and leverage existing assets and new designs, the meta-model captures their meaning. The

meta-model behind BPDM uses the OMG “Meta Object Facility” (MOF) standard [116] to capture

business processes and provide an XML syntax for storing and exchanging them between tools.

Various tools, methods, and technologies can then map their way to view, understand, and im-

plement processes to and through BPDM.

BPDM supports two views of process [117]:

 Orchestration view: This view describes what happens and when. Concepts are repre-

sented through sequences of Activities that produce results with branching and synchro-

nization. Orchestration is typically represented as flow charts, activity diagrams, swim

lanes or similar notations of one task or activity following another.

 Choreography view: This view describes how semi-independent and collaborating enti-

ties work together in a process. Choreography captures the interactions of roles with

well-defined responsibilities within a given process

Choreography and orchestration are effectively two sides of a business process model and BPDM

tries to join them into a unified model [117].

The basic notation elements of BPDM are shown in Figure 2.9.

Chapter 2 – Literature Review

34

Element Notation

Service Specification

Service Provider

Process

Tasks

Flow (depending on the type of line

and the starting and ending points it

denotes control flow, data flow, ex-

ception flow and message flow)

Data Store (stores information be-

tween process invocations)

Note (conveys additional comments

on a diagram)

Figure 2.9: Basic notation elements of BPDM [118]

Example:

Figure 2.10 shows a part of a banking process model using BPDM.

Figure 2.10: An example of a process model using BPDM [118]

Chapter 2 – Literature Review

35

Identified drawbacks:

 Industry and organisations has not yet adopted BPDM. There is no tool up to date sup-

porting the specification of BPDM [105].

 BPDM deals with descriptions of business processes at a level abstracted from any im-

plementation technology, making no assumptions about the form of the execution [105].

 Business processes often require information about an organisation in order to determine

appropriate routing for an action, such as an approval or selection of performers. Never-

theless, the organisational model is out of scope for BPDM definition [105].

 Finally, BPDM does not provide explicit integration of business rules [105].

Chapter 2 – Literature Review

36

2.3.1.7 2004 - UML 2 Activity Diagrams [UML 2 ADs]

In 1996, a company named Rational Software began the development of a non-proprietary Uni-

fied Modelling Language. An international consortium, called the UML Partners, was organized

that year to complete the Unified Modelling Language (UML) specification and the result of this

work, UML 1.1, was submitted and adopted by the Object Management Group (OMG) [55] in

1997 [119]. UML 2 is the latest version of UML. UML 2 Activity Diagrams is a subset of UML 2,

which defines the notation and semantics for diagrams that represent dynamic behaviour of sys-

tems [55]. UML 2 Activity Diagrams (UML 2 ADs) are typically used for business process model-

ling to model the workflow behind the system being designed [120], describing what actions

need to take place and when they should occur [121].

UML 2 ADs are read from top to bottom, showing the flow of activities through the system.

Branches and forks in the diagrams describe conditions and parallel activities respectively [120].

A UML 2 AD consists of the following behavioural elements [122]:

 Activity: It is the basic element and represented by a rectangle with rounded edges.

 Initial Activity: It is the starting point or first activity of the flow. It is represented by a

solid circle.

 Decision: Logical condition based on which a choice has to be made. It is represented

by a diamond.

 Signal: An Activity is called a Signal when it sends or receives a message. There are two

types of signals: (i) Input signals, which are Activities that receive messages and are rep-

resented by concave polygons and (ii) Output signals, which are Activities that send mes-

sages and are represented by convex polygons.

 Concurrent Activities: Those Activities occur simultaneously or in parallel. Concurrency

is represented by a horizontal split and the concurrent activities next to each other.

 Final Activity: It is the ending point of the flow. It is represented by a bull's eye symbol.

 Swimlane: It is a way to group activities.

Chapter 2 – Literature Review

37

Example:

Figure 2.11 shows a simple process of an order request.

Figure 2.11: An Order Request modelled with UML 2 AD [33]

Identified drawbacks:

 UML 2 ADs do not support modelling resource-related aspects of business processes.

Specifically, there is no modelling constructs in order to capture utilisation of data re-

sources either within the model or externally from the environment [123].

 Apart from resource-related aspects, UML 2 ADs have limited support for modelling or-

ganisational aspects of business processes, such as the notion of interaction with the op-

erational environment in which the process functions and the work distribution.

Specifically, UML 2 ADs have limited support for modelling any form of work distribution

other than direct allocation or role-based allocation [123].

Chapter 2 – Literature Review

38

2.3.2 Workflow Process Execution Frameworks

Workflow Process Execution Frameworks focus on the definition of low-level workflow execution

semantics that will be eventually executed by an execution engine. The industry has taken a step

forward in the direction of distributed workflow execution modelling and has introduced a number

of execution languages, such as WSFL [41], XLANG [42] and most lately BPEL4WS [43]. These

languages have adequate programming capabilities, such as variable declarations, control struc-

tures, and fault handlers. They also provide notations for describing interactions of web-services

as business processes. At the same time, Semantic Web community has developed powerful rep-

resentation and reasoning technology [124-126] in the direction of semantic representation, but

has remained largely disconnected from the industrial effort [127]. Semantic Web Community has

introduced OWL-S as an ontology-based language for describing services [44]. The ontology en-

ables the definition of services content vocabulary in terms of objects and complex relationships

between them, including class, subclass, and cardinality restrictions. Thus, there are mainly two

categories of execution frameworks; mathematical based and ontology based, as shown in Table

2.1.

Mathematical Based Ontology Based

 2001 - Application of Petri Nets with
Web-services Flow Language WSFL
(IBM) [41]

 2001 - Pi-Calculus model with XLANG
(Microsoft) [42]

 2002 - Business Process Execution Lan-
guage for Web-services BPEL4WS
(BEA, IBM, and Microsoft) [43]

 2003 - Ontology Web Language
OWL-S (formerly DAML-S [125])
(DAML Researchers) [44]

 2005 – Web Service Modelling
eXecution environment WSMX (WSMX
Working Group) [45]

Table 2.1: Categorization of Process Execution Frameworks

The main characteristic of mathematical based execution frameworks is that they are prescriptive.

The expressiveness of business process behaviour is somewhat constrained, as in most of the

cases it has to comply with mathematical models and relations (Petri Nets and Pi-calculus) and

with rudimentary content languages (XML and XML schemas). In the mathematical based cate-

gory we include WSFL [41], XLANG [42] and BPEL4WS [43]. BPEL4WS is considered as the repre-

sentative framework of the category. BPEL4WS is a specification co-authored by IBM [128],

Microsoft [129], BEA [130], SAP [131], and Siebel Systems [132] and merges ideas from Micro-

soft's XLANG and IBM's WSFL. On the other hand, although ontology based execution framework

have some mathematical foundation [133], they are mainly semantic oriented. They aim to make

business processes computer-interpretable, described with sufficient information in order to en-

able “automatic” business process discovery, invocation, composition, and execution monitoring.

In the ontology based category we include OWL-S [44] and WSMX [45], as two parallel efforts of

semantic web community [53] and consider OWL-S as the representative framework of the cate-

gory.

Chapter 2 – Literature Review

39

2.3.2.1 2002 - Business Process Execution Language for Web Ser-

vices[BPEL4WS]

BPEL4WS specification was co-authored by IBM [128], Microsoft [129], BEA [130], SAP [131],

and Siebel Systems [132] and merges ideas from Microsoft's XLANG [134] and IBM's WSFL [135],

[43]. It provides a notation for describing interactions of Web-services as business processes

[127], using an XML-based language. Workflows in BPEL4WS are directed by traditional control

structures; if, then, else, and while-loop. Services are integrated by treating them as partners

that fill roles in a BPEL4WS process model, while Web-service Description Language (WSDL)

[23] documents describe the communication-level parameters of the partner services.

BPEL4WS process model describes a program that orchestrates the interaction of the service

partners. The key components of a BPEL4WS process model are [127]:

 partners, associating a Web-service with a particular role

 variables, containing the messages passed between partners and corresponding to

messages in accompanying WSDL documents

 fault handlers, dealing with exceptions

 flow, which lists the activities defining the control flow of the process.

The basic structure of BPEL4WS language is shown in Figure 2.12:

<process name="ncname" targetNamespace="uri"
queryLanguage="anyURI"?
expressionLanguage="anyURI"?
suppressJoinFailure="yes|no"?
enableInstanceCompensation="yes|no"?
abstractProcess="yes|no"?
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

<partnerLinks>?

<!-- Note: At least one role must be specified. -->
<partnerLink name="ncname" partnerLinkType="qname"
myRole="ncname"? partnerRole="ncname"?>+
</partnerLink>

</partnerLinks>
<partners>?

<partner name="ncname">+
<partnerLink name="ncname"/>+
</partner>

</partners>
<variables>?

<variable name="ncname" messageType="qname"?
type="qname"? element="qname"?/>+

</variables>
<correlationSets>?

<correlationSet name="ncname" properties="qname-list"/>+
</correlationSets>

<faultHandlers>?

<!-- Note: There must be at least one fault handler or de-
fault. -->
<catch faultName="qname"? faultVariable="ncname"?>*

Chapter 2 – Literature Review

40

activity
</catch>
<catchAll>?

activity
</catchAll>

</faultHandlers>
<compensationHandler>?

activity
</compensationHandler>
<eventHandlers>?

<!-- Note: There must be at least one onMessage or onAlarm
handler. -->
<onMessage partnerLink="ncname" portType="qname"

operation="ncname" variable="ncname"?>
<correlations>?

<correlation set="ncname" initiate="yes|no"?>+
<correlations>
activity

</onMessage>
<onAlarm for="duration-expr"? until="deadline-expr"?>*

activity
</onAlarm>

</eventHandlers>
activity

</process>
Figure 2.12: Basic structure of BPEL4WS language [43]

Example:

Figure 2.13 shows an example of a BPEL4WS process where a seller and a buyer are negotiating

prices.

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:tns="http://docs.active-
endpoints.com/activebpel/sample/wsdl/marketplace/2006/09/marketplace.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="marketplace" targetName-
space="http://docs.active-
endpoints.com/activebpel/sample/wsdl/marketplace/2006/09/marketplace.wsdl">
 <import importType="http://schemas.xmlsoap.org/wsdl/" loca-
tion="project:/BPEL_Samples/Resources/WSDL/marketplace.wsdl" name-
space="http://docs.active-
endpoints.com/activebpel/sample/wsdl/marketplace/2006/09/marketplace.wsdl"/>
 <partnerLinks>
 <partnerLink myRole="sales" name="seller" partnerLink-
Type="tns:salesplnk"/>
 <partnerLink myRole="buying" name="buyer" partnerLink-
Type="tns:buyingplnk"/>
 </partnerLinks>
 <variables>
 <variable messageType="tns:sellerInfoMessage" name="sellerInfo"/>
 <variable messageType="tns:negotiationMessage"
name="negotiationOutcome"/>
 <variable messageType="tns:buyerInfoMessage" name="buyerInfo"/>
 </variables>
 <correlationSets>
 <correlationSet name="negotiationIdentifier" proper-
ties="tns:negotiatedItem"/>
 </correlationSets>
 <sequence name="MarketplaceSequence">
 <flow name="MarketplaceFlow">
 <receive createInstance="yes" name="SellerReceive" opera-
tion="submit" partnerLink="seller" portType="tns:sellerPT" vari-
able="sellerInfo">
 <correlations>
 <correlation initiate="join" set="negotiationIdentifier"/>

Chapter 2 – Literature Review

41

 </correlations>
 </receive>
 <!-- tets -->
 <receive createInstance="yes" name="BuyerReceive" opera-
tion="submit" partnerLink="buyer" portType="tns:buyerPT" vari-
able="buyerInfo">
 <correlations>
 <correlation initiate="join" set="negotiationIdentifier"/>
 </correlations>
 </receive>
 </flow>
 <if name="MarketplaceSwitch">
 <condition>($sellerInfo.askingPrice <= $buyer-
Info.offer)</condition>
 <assign name="SuccessAssign">
 <copy>
 <from>'Deal Successful'</from>
 <to part="outcome" variable="negotiationOutcome"/>
 </copy>
 </assign>
 <else>
 <assign name="FailedAssign">
 <copy>
 <from>'Deal Failed'</from>
 <to part="outcome" variable="negotiationOutcome"/>
 </copy>
 </assign>
 </else>
 </if>
 <reply name="SellerReply" operation="submit" partnerLink="seller"
portType="tns:sellerPT" variable="negotiationOutcome"/>
 <reply name="BuyerReply" operation="submit" partnerLink="buyer" port-
Type="tns:buyerPT" variable="negotiationOutcome"/>
 </sequence>
</process>

Figure 2.13: An example of a process in BPEL4WS [136]

Identified drawbacks:

 BPEL4WS neither defines a graphical representation of processes nor provides any par-

ticular design methodology for processes [137].

 BPEL4WS relies on XML for describing services. XML provides a rudimentary content lan-

guage, but lacks the constructs to describe complex relationships between Web resources

[127].

 BPEL4WS cannot express the inheritance and relationships among the web services inside

a process [138].

 BPEL4WS has the drawback of statically binding the existing services, referencing fixed

WSDL files. As a result, it regards the binding relationship between processes and ser-

vices as a known condition and makes the workflow less flexible in dynamic and ubiqui-

tous environments [139], [140].

Chapter 2 – Literature Review

42

2.3.2.2 2003 - OWL-S

The lack of semantics in the industry backed web-services standards, led the Semantic Web

Community to develop a DAML+OIL ontology for Web-services known as OWL-S (2003) [44],

formerly DAML-S [125]. OWL-S is an ontology for describing web-services based on DAML+OIL

[141]. As a DAML+OIL ontology, OWL-S has well-defined semantics, making it computer-

interpretable and unambiguous. It also enables the definition of Web-services content vocabulary

in terms of objects and complex relationships between them, including class, subclass, and car-

dinality restrictions. The OWL-S upper ontology comprises three components [44], [127]:

1. ServiceProfile: It describes the properties of a service necessary for automatic discov-

ery, such as what the service offers, its inputs and outputs, its preconditions and effects.

2. ServiceModel: It describes the process model of a service, i.e. the control flow and

data flow involved in using the service.

3. ServiceGrounding: It connects the process model description to communication-level

protocols and message descriptions in WSDL.

The unique aspects of OWL-S, in comparison with other execution frameworks are [127]:

 OWL-S can expresses hierarchies and taxonomic info: OWL-S classes may draw proper-

ties from inheritance and other relationships to other OWL-S classes, thus providing for a

richer representation of an individual service and the relationships between services.

 OWL-S ServiceProfile and ServiceModel provide sufficient information to enable auto-

mated discovery, composition, and execution based on well-defined descriptions of a ser-

vice's inputs, outputs, preconditions, effects, and process model.

Example:

Figure 2.14 shows a piece of OWL-S code, showing an example of a service definition.

<!-- CoastalAreaOilCleaning SERVICE -->
<service:Service rdf:ID="CoastalAreaOilCleaningService">

<!-- Reference to the Profile -->
<service:presents rdf:resource="#CoastalAreaOilCleaningProfile"/>
<!-- Reference to the Process Model -->
<service:describedBy rdf:resource="#CoastalAreaOilCleaning"/>
<!-- Reference to the Grounding -->
<service:supports>

<grounding:WsdlGrounding rdf:ID="EmptyGrounding"/>
</service:supports>

</service:Service>
Figure 2.14: Example of a service definition in OWL-S [142]

Identified drawbacks:

Chapter 2 – Literature Review

43

 OWL-S results to large service descriptions that are difficult to read and write. Moreover,

it does not support the description of certain rule types often needed for service descrip-

tion [143].

 Another drawback of OWL-S is that users have reported to have serious difficulties in

learning it and using it [144], a fact that could limit its adoption.

 As far as the operations’ semantics are concerned, OWL-S cannot expressively capture

them. There are two key reasons for this: (1) OWL-S does not allow for the use of logic

variables like in rule languages and (2) the logical formulas are limited to the predefined

description logic of OWL-S [143]. As a result OWL-S cannot describe rules that are fre-

quently addressed when describing processes such as “if the price is below credit card’s

limit, approve transaction” etc.

 Finally, there are serious limitations on a conceptual level as the formal semantics of

OWL-S are not entirely clear [145]. A characteristic example is that although OWL-S of-

fers the choice between a number languages for the specification of preconditions and ef-

fects, it is not entirely clear how these languages interact with OWL-S [146].

Chapter 2 – Literature Review

44

2.3.2.3 2005 - Web Service Modelling eXecution environment [WSMX]

WSMX (Web Service Modelling eXecution environment) is the reference implementation of WSMO

(Web Service Modelling Ontology) [147]. It is an execution environment that aims to increase

flexibility in business processes automation and provide scalable integration solutions [45]. The

development of WSMX was initiated and driven by three major directives [45]:

1. The need to have a semantic execution environment capable of manipulating semantic

messages, discovering semantically enriched web services, invoking and composing them

for the end-user benefit.

2. The need to have a functional service open architecture prototype, which would be capa-

ble to encapsulate new components with new functionalities.

3. The need for reusability of component and general functionality.

Semantic Web’s aim is to enable machines to automatically carry out tasks using web services

with a minimum or no human intervention [148]. These tasks include automatic discovery, com-

position, and execution. WSMX is moving towards this goal by allowing web services whose se-

mantics have been formally described in Web Service Modelling Language to be discovered,

composed, and executed. WSMX uses Web Service Modelling Language (WSML) [146] which is

based on the WSMO conceptual model and provides a Rule Language for the Semantic Web.

Example:

Figure 2.15 shows an example for a Concept and Axiom Description in WSML.

 wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"

 namespace {_"http://www.example.org/Family#",
 dc _"http://purl.org/dc/elements/1.1#"}

 ontology Family
 concept Human
 hasParent inverseOf(hasChild) ofType Human
 hasChild ofType Human
 hasAgeInYears ofType (0 1) _integer

 axiom DefinitionTeenager
 nonFunctionalProperties
 dc#source hasValue _"http://dictionary.reference.com/search?q=teen"
 endNonFunctionalProperties
 definedBy
 forall {?teen,?age} (
 ?teen memberOf Teenager impliedBy
 ?teen[hasAgeInYears hasValue ?age] memberOf Human and
 ?age >= 13 and ?age =< 19).

Figure 2.15: An example for a Concept and Axiom Description in WSML [149]

Chapter 2 – Literature Review

45

Identified drawbacks:

 WSMX does not implement orchestration. Moreover, complete automatic discovery of

services is still not available [150].

 WSMX supports only MSML format and does not recognize other message formats [151].

 WSMX does not yet support automated service composition. However, it implements late

binding as a strategy for adaptation [152].

 Finally, WSMX is still in a premature phase with very little industry adoption.

Chapter 2 – Literature Review

46

2.3.2.4 Comparing BPEL4WS and OWL-S

As BPEL4WS and OWL-S are the most prominent efforts from the industry and the semantic web

community respectively, in this Section, we identify the similarities and differences of these two

proposals.

As discussed in [127], OWL-S and BPEL4WS have broad and somewhat complementary objec-

tives. OWL-S's ServiceProfile complements and extends ideas in UDDI. OWL-S's ServiceGrounding

connects the application level content description of a service to communication level descriptions

in WSDL. In addition, ServiceModel (Process Model) in OWL-S is closely related to the business

process model in BPEL4WS. Considering these complementary objectives, Mandell and McIlraith

in [127] propose a bottom-up approach to integrate semantic web technology, i.e. OWL-S, into

BPEL4WS models. The goal is to achieve automating customized, dynamic binding of web-

services together with interoperation through semantic translation.

Another common characteristic between BPEL4WS and OWL-S is that both provide a mechanism

for describing a business process model. The difference relies on the strictness of description.

BPEL4WS's reliance on describing services using XML and XML Schema prevent it from describ-

ing complex relationships between web resources and expressing rich semantic information. On

the contrary, OWL-S, based on DAML+OIL, enables the representation of classes, properties, do-

main and range, and subclass plus super-class hierarchies. OWL-S also has well-defined se-

mantics and the ability to define complex relationships between properties of objects in an

ontology [127].

Another difference relies on the semantics representation. While in OWL-S ServiceProfile and Ser-

viceModel provide sufficient information to enable automated discovery, composition, and execu-

tion based on well-defined description of a service’s inputs, outputs, preconditions, effects, and

process model, in BPEL4WS there is a lack of well-defined semantics as partners are restricted by

structured XML content contained in WSDL port type definition. On the other hand, BPEL4WS has

extended mechanisms for fault handling, execution monitoring, and transactions, while OWL-S

does not support any of these aspects, lacking a lot in programming capabilities. Finally, none of

the two directly supports query mechanism to expose the state of executing processes [127].

A number of researchers try to exploit the similarities between BPEL4WS and OWL-S, in order to

achieve a mapping between the two. Specifically, in [153], authors propose a technique for the

automated composition of web services described in OWL-S, which allows for the automated

generation of executable processes written as BPEL4WS programs. Given a set of available ser-

vices, they translate OWL-S process models into nondeterministic and partially observable state

transition systems that describe the dynamic interactions with external services. Moreover, in

Chapter 2 – Literature Review

47

[154] authors use their model transformation framework, named Simple Transformer (SiTra), in

order to transform OWL-S descriptions to BPEL4WS descriptions.

Finally, in [155] authors underline that the rapid growth and automation demands of e-business

and grid applications require BPEL4WS to provide enhanced semantic annotations to achieve the

goal of business processes automation. They argue that OWL-S is designed to represent such

kind of semantic information. Based on the similarity in the conceptual model of OWL-S and

BPEL4WS, they try to overcome the lack of semantics in BPEL4WS by mapping the BPEL4WS

process model to the OWL-S suite of ontologies. Therefore, they introduce a mapping from the

BPEL4WS process model to the complete OWL-S suite of ontologies. They present a mapping

strategy and a tool named BPEL4WS2OWL-S, supporting this strategy. Figure 2.16 gives an over-

view of the mapping proposed in this paper.

Figure 2.16: Overview of mapping BPEL4WS to OWL-S [155]

Chapter 2 – Literature Review

48

2.4 Combining High-level representations with Low-level Execu-

tion Semantics

There are some research approaches proposing mappings, in order to reduce the distance be-

tween high-level process descriptions and low-level workflow execution semantics. The proposed

mappings that we review in this Section are:

1. UML to BPEL4WS mapping [46-48]

2. BPMN to BPEL4WS mapping [49-52]

3. FBPML [98] to OWL-S mapping [53]

2.4.1 UML to BPEL4WS

The basic motivation of this mapping is that UML is an OMG [55] standard, which provides a

widely known visual modelling notation that is used for designing and understanding complex

systems.

In [48], Gardner introduces a UML Profile, which supports modelling with a set of semantic con-

structs that correspond to those in BPEL4WS. Table 2.2 shows an overview of the mapping from

the UML profile to BPEL4WS. The implementation of the mapping is built as an Eclipse [156]

plug-in. The implemented plug-in takes as input XMI [114], the industry’s standard file format for

exchange of UML models, and generates BPEL4WS code along with the required WSDL and XSD

artefacts.

UML Profile Construct BPEL4WS Concept

<<process>> class BPEL process definition

Activity graph on a <<process>> class BPEL activity hierarchy

<<port>> associations BPEL partner declarations

<<process>> class attributes BPEL containers

Hierarchical structure and control flow BPEL sequence and flow activities

Decision nodes BPEL switch activities and transi-

tion conditions

<<receive>>,<<reply>>,<<invoke>>

activities

BPEL receive, reply, invoke activi-

ties

<<protocol>> package with <<role>> classes BPEL service links types and roles

Table 2.2: UML Profile and BPEL mapping [48]

Moreover, Mantell [46] describes a process of transforming UML models to BPEL4WS code,

WSDL, and XSD files using a UML Activity Diagram. Figure 2.17 shows the diagram; boxes repre-

sent artefacts (usually files) while the ellipses represent an action or activity. The main stages of

the transformation include building and exporting UML models to XMI, generating BPEL4WS,

Chapter 2 – Literature Review

49

WSDL and XSD files and finally deploying and running the process using a BPEL4WS execution

engine.

Figure 2.17: Transformation of UML model to BPEL4WS [46]

Finally, Gardner [48] discusses a number of scenarios in which UML to BPEL4WS mapping would

be helpful. An interesting scenario would be to produce UML profiles in order to generate other

processes implementations. Moreover, it would be possible to generate artefacts for multiple

technologies based on UML models, e.g. in UML to BPEL4WS mapping, there is generation of

BPEL4WS, WSDL and XSD, but non-XML outputs such as Java, or other programming language

code can also be generated. Last of all, the transformation can be bi-directional, allowing the im-

port of existing BPEL4WS and WSDL artefacts and synchronizing UML models and BPEL4WS arte-

facts with changes in either being reflected in the other.

Chapter 2 – Literature Review

50

2.4.2 BPMN to BPEL4WS

As White points out in his technical article [52], a key goal for the development of BPMN was to

connect business-oriented process modelling notations with IT-oriented execution languages that

implement the processes. Therefore, he proposes mapping the modelling structures of BPMN to

BPEL4WS. Figure 2.18 shows a segment of a business process diagram in BPD with the mappings

to BPEL4WS elements.

Figure 2.18: A Business Process Diagram with mappings to BPEL4WS [52]

Ouyang et al. [49, 50] argue that mapping BPMN models to BPEL4WS code is a necessary step

towards unified and standards-based business process development environments and they pro-

pose a new technique focused on the control-flow perspective. To map a BPD onto BPEL4WS,

BPD is decomposed into components; a component is a subset of the BPD that has one entry

point and one exit point. Then the components are mapped onto suitable BPEL4WS blocks. In

this way graph structures are transformed into block structures.

Based on the proposed algorithm, each component in the BPD is mapped with a BPEL4WS trans-

lation and this is repeated until no component is left in the diagram. Authors identify two catego-

ries of components for the mapping: (1) well-structured components that can be directly mapped

onto BPEL4WS structured activities and (2) non-well-structured components that can be trans-

lated into BPEL4WS via event-action rules. Figure 2.19 shows examples of mappings. At the end,

with this technique “patterns” in the BPMN models are discovered and BPEL4WS code is gener-

ated by discovering the mappings onto BPEL4WS block-structured constructs or acyclic graphs of

control links [51].

Chapter 2 – Literature Review

51

 Figure 2.19: BPMN components and corresponding BPEL4WS translation [49, 50]

On the other hand, there are limitations of BPMN-to-BPEL4WS mappings because BPMN and

BPEL4WS represent two fundamentally different classes of languages; BPMN is graph oriented

while BPEL4WS is mainly block-structured [49]. Crucial differences between the two languages

make it often impossible to generate smoothly readable BPEL4WS code from BPMN models, due

to the complexity of the mapping and the compromises need to be done. Even more difficult is

the problem of maintaining the BPMN model and the generated BPEL4WS code synchronized, in a

way that any modification to one is correctly propagated to the other [102].

Chapter 2 – Literature Review

52

2.4.3 FBPML to OWL-S

Fundamental Business Process Modelling Language (FBPML) [98] adapts and merges two estab-

lished process languages; Process Specification Language (PSL) [157], which provides the formal

semantics for process modelling concepts and Integrated Definition Method IDEF3 [37], which

provides visual capabilities. FBPML has two sections to provide theories and formal representa-

tions for describing data and processes [53]:

1. Data Language, which is first-ordered and uses the syntactic convention of Prolog

[158]. It provides definitions for concepts, functions, logical qualifications, predicates,

and meta-predicates.

2. Process Language, which is both visual and formal, providing an intuitive representa-

tion and the same convention as the Data Language.

Nadarajan et al. [53] present an ontology-based conceptual mapping framework that translates

FBPML to OWL-S. Like FBPML, OWL-S has clear separation between data and process schemas:

 OWL-S’s data model is described in OWL and SWRL, while FBML’s is described in the

FBPML Data Language.

 OWL-S contains its own classes to describe its process model, while FBPML’s process

model is described by the FBPML Process Language.

As a result, the mapping has also been divided into a data model part and a process model part.

Figure 2.20 illustrates the mapping of classes, instances, and relationships between FBPML and

OWL-S.

Figure 2.20: Mapping classes, instances and relationships between FBPML and OWL-S
[53]

Finally, Figure 2.21 summarizes the mapping between FBPML and OWL-S.

Chapter 2 – Literature Review

53

Figure 2.21: Summary of mapping FBPML and OWL-S process primitives [53]

As far as the limitations of the mapping are concerned, the process model components can only

be partially translated [53]. Therefore, the translation between FBML and OWL-S is partial, be-

cause there are some elements that exist in FBPML but not in OWL-S and incomplete, because

some of the translation cannot be conducted due to lack of knowledge about an element that is

still in progress [53]. Thus, formal mapping between FBPML and OWL-S will require more work

and research before a real-working mapping can be formulated.

Chapter 2 – Literature Review

54

2.5 Enabling Disciplines

At this point, we review two research areas that have some enabling characteristics that can help

us address our research objectives. Specifically, the enabling disciplines are:

1. Systems Theory, providing critical concepts, and principles that help us integrate high-

level process descriptions and low-level workflow execution semantics, maintaining con-

sistency between the two different levels. Systems Theory helps us visualize and model

process descriptions and execution semantics in one united form, as a set of elements

standing in interrelation among themselves and with business environment [159].

2. Constraint-based reasoning provides us the means to model nonlinear relationships

between business processes. Constraint-based reasoning is ideal for expressing and rea-

soning about business dynamics, while approaches like traditional programming con-

structs (if-then-else, while etc.) create extra complexity and make it difficult to easily

change and adapt a process on a business demand.

Chapter 2 – Literature Review

55

2.5.1 Systems Theory

Systems theory was proposed in the 1940's by the biologist Ludwig von Bertalanffy [159] and

furthered by Ross Ashby [160] and others. Ludwig von Bertalanffy, reacting against reductionism,

underlined that real systems not only interact with their environments, but they can also obtain

new properties through emergence, resulting in continual evolution [159]. Systems theory fo-

cuses on the arrangement of and relations between the parts or elements of an entity and con-

nects them into a whole. “This organization determines a system, which is independent of the

concrete substance of the elements. Thus, the same concepts and principles of organization un-

derlie the different disciplines (physics, biology, technology, sociology, etc.), providing a basis for

their unification” [161]. The concepts of a system include system-environment boundary, input,

output, process, state, hierarchy, goal-directedness, and information [159].

According to the system concept, as defined in General System Theory [159], “a system may be

defined as a set of elements standing in interrelation among themselves and with environment.

Progress is possible only by passing from a state of undifferentiated wholeness to a differentiation

of parts”. There are two categories of systems; open and closed. A system is 'closed' if no mate-

rial enters or leaves it. On the other hand, a system is 'open' if there is import and export of ma-

terial. More formally, “an open system is defined as a system in exchange of matter with its

environment, presenting import and export, building-up and breaking-down of its material com-

ponents” [159].

Among the aims of the General System Theory discussed by Bertalanffy [159], we focus on the

tendency towards integration and the development of unifying principles running 'vertically'

through the universe of the individual sciences, bringing us nearer to the goal of the unity of sci-

ence. This aim matches our research goal to integrate high-level process descriptions and low-

level execution semantics. Therefore, accommodating Systems Theory paradigm within our re-

search context, we deal with open systems as we have exchange of business goals, needs, and

demands, thus import and export of information. Through this interaction with business environ-

ments, workflow processes can acquire new characteristics, resulting in continual evolution.

Moreover, rather than reducing a high-level process description to its execution parts, following

systems theory principles we focus on the arrangement of and relations between the parts, which

connect high-level process descriptions and low-level execution semantics into a whole. Finally,

systems concepts of system-environment boundary, input, output, process, state, and hierarchy

will help us towards the integration we are seeking for in our research.

Chapter 2 – Literature Review

56

2.5.2 Constraint-based reasoning

Constraint-based reasoning is an approach for problem solving that is based on deductive reason-

ing. In order to solve a problem using constraint-based reasoning, the problem is first modelled in

terms of hypotheses and conclusion constraints. Then the problem is solved via constraint satis-

faction [162]. Constraint-based reasoning has connections to a wide variety of fields and applica-

tions including design problems, scheduling and planning, causal reasoning, language

understanding, qualitative and diagnostic reasoning, expert systems etc. [163].

Common practice in building and maintaining a business process is the construction of linear se-

quences of its activities from an inherently two, three, or multi-dimensional world [164]. Building

models using linear approaches often creates misalignment with the business needs. The busi-

ness world is nonlinear, and since processes are a way of describing the business world, process

descriptions need to be nonlinear [164]. Some researchers have incorporated constraints with

business process modelling. Specifically, Crampton [165] identifies a generic class of constraints,

called entailment constraints, which restrict the execution order of process tasks with respect to

authorization. Therefore, we consider constrained-based reasoning as an enabling paradigm that

can help us effectively express and reason about business rules that capture nonlinear relation-

ships.

Moreover, apart from effective process modelling of business, constraint-based reasoning can

also help in maintenance of process models. Current modelling approaches explicitly sequence

activities of workflow processes using traditional programming constructs (if-then-else, cases,

while-loops etc.). When the process needs to be adapted, modellers have to resolve all the se-

quence and dependencies across its activities. Then they need to add, delete or update existing

activities and at the end reallocate dependencies and sequence across them. On the other hand,

encoding business rules by using constraints reduces the interdependencies across the activities

of the workflow process and enables modellers to focus only on the activities that needs to be

adapted. Thus, constrained-based reasoning can help us address changing conditions within

workflow processes.

Chapter 2 – Literature Review

57

2.6 Conclusions

Below we give a schematic overview of workflow process modelling and execution research areas

from the perspective of the literature review:

Ontologies – Semantic Web

Workflow
Process
Models

UML BPMN FBPML

 B P E L 4 W S OWL-S

T r a n s f o r m a t i o n s / m a p p i n g s

Execution Frameworks

Figure 2.22: Rich picture of the Workflow Technology area

Specifically, as shown in Figure 2.22 there are two basic layers, namely modelling and execution

layer. With regard to modelling layer, there are workflow modelling languages that capture busi-

ness processes and create high-level visual process models. The workflow modelling languages

reviewed in this Chapter were IDEF0, EPC, IDEF3, BPMN, XPDL, BPDM, and UML 2 ADs. Regard-

ing the execution layer, we have reviewed BPEL4WS, OWL-S, and WSMX. Execution frameworks

are able to define the low-level execution semantics for the processes that will be eventually exe-

cuted by an execution engine. At this point, semantic web community with OWL-S and WSMX

promote the use of ontologies, elaborating processes with semantics, in order to enable auto-

matic discovery, composition, and execution of processes with little or even no human interven-

tion.

Recent research approaches have defined mappings between the two layers trying to reduce the

gap between them. The mappings we have reviewed were UML to BPEL4WS, BPMN to BPEL4WS

and FBPML to OWL-S. These mappings try to address the existence of two different representa-

tions for high-level models and execution semantics, finding common constructs and concepts in

order to provide an automatic mechanism of translating modelling languages to execution ones

and vice versa. Although these mappings are positive approaches towards the vision of an inte-

grated framework, they fail to fulfil a number of key requirements, as identified in [52]:

Chapter 2 – Literature Review

58

 Completeness, i.e. the mapping is only applicable to UML/BPMN/FBPML models that fulfil

certain requirements.

 Automation, i.e. they are not capable of producing target code without requiring human

intervention to identify patterns in the source model.

 Readability, i.e. the produced target code is not always understandable by humans; e.g.,

the produced BPEL4WS code due to automatic translation via the mappings becomes too

complicated and often rather unreadable, obstructing refinement [52].

The main limitations we have identified in the literature in respect with our research objectives

are as follows:

1. IDEF0 and IDEF3 are the only modelling languages that have formal semantics defined in

its specification. The rest of modelling languages are either not formalized at all or have

some proprietary formalization efforts trying to define some formal semantics but still are

not finalized and not widely accepted. Absence of formalization results to ambiguous

models that cannot be automatically checked for consistency and completeness.

2. There is no modelling language efficiently handling process change, in terms of quick ad-

aptation of an existing model. Specifically, all process modelling languages we have re-

viewed explicitly sequence activity flow in a way that the final model includes a set of

hard-connected activities. In case a modeller needs to add, change, or remove an activ-

ity, he has to find all the dependent activities and update them accordingly. It is obvious

that in small and medium-sized models this would work but large scale and complex

models would be very difficult to maintain.

3. Process modelling languages with lot of constructs may be more complete and accurate

but at the same time require significant amount of training and access to technical re-

sources in order to create models without errors.

4. Process modelling languages make no assumptions about the implementation of a proc-

ess, thus they miss critical information for the execution logic needed by execution

frameworks.

5. Process execution frameworks do not define graphical representation of processes nor

provide any particular design methodology.

6. Process execution frameworks rely on either XML language or ontologies for the descrip-

tion of processes and their execution logic. Those that use XML cannot describe complex

relationships and inheritance among activities in a process, while those using ontologies

are difficult to learn and result to large descriptions that are difficult to read and write.

7. Business rules are mainly encoded at the execution layer using traditional programming

constructs such as if-then-else, cases, while, etc. and this makes maintenance of process

models and execution semantics even more difficult when process needs to be changed.

Chapter 2 – Literature Review

59

8. Although there are some proposals for mappings, common practice is still managing high-

level modelling and low-level execution descriptions manually, creating difficulties in

maintaining consistency between the two.

9. There is a lack an integrated modelling approach that could effectively represent high-

level models and low-level execution semantics, supporting both layers of modelling in a

smooth and consistent way.

Table 2.3 recapitulates the main limitations.

Table 2.3: Main limitations identified in the literature

Finally, we reviewed two enabling disciplines for our research, namely Systems Theory and Con-

straint-based reasoning. Systems Theory has some enabling characteristics that can help us inte-

grate high-level process descriptions and low-level workflow execution semantics into a unified

format. On the other hand, constraint-based reasoning has some enabling characteristics that can

help us effectively express and reason about business rules that capture nonlinear relationships in

workflow processes and address changing conditions.

Modelling Languages

No Formal semantics (EPC, BPMN, XPDL, BPDM, UML2 ADs)

Sequencing activity flow (EPC, IDEF3, BPMN, XPDL, BPDM, UML2 ADs)

Lots of modelling constructs - significant amount of training and access to tech-
nical resources needed (BPMN)

No execution semantics (IDEF0, EPC, IDEF3, BPDM,UML2 ADs)

Execution Frameworks

No graphical representation

Sequence business rules with traditional programming constructs

Mappings (UML to BPEL4WS, BPMN to BPEL4WS, FBPML to OWL-S)

Completeness / Automation / Readability

60

61

3 SYMEX: A Systems Theory based Framework for

Workflow Modelling and Execution

3.1 Introduction

Both process modelling languages and workflow execution frameworks aim to support and auto-

mate business processes in real operational environments, at different levels of detail. Workflow

processes in business environments usually incorporate a great deal of complexity due to the na-

ture of business. They include both the essential physical activities and the essential management

decision-making activities that control the flow logic of processes. Thus, based on the literature

review, this Chapter defines a set of requirements that an integrated approach should satisfy in

order to be able to effectively capture and represent high-level descriptions and low-level execu-

tion semantics of workflow processes.

In Chapter 2, we argued that the principles of Systems Theory could form a basis for rationalising

the complexity of workflow processes and help us to derive appropriate constructs for dealing

with that complexity. Here we describe the role of Systems Theory for defining an integrated ap-

proach for process modelling by identifying a set of interrelationships that exist between high-

level process descriptions and low-level workflow execution semantics. By capturing this complex

set of interrelationships we are able to support a reasoning about tracking changes in high-level

descriptions due to internal and external conditions, and tracing the impact of those changes on

the low-level execution semantics.

As a result, we address research objective RO1 by proposing a Systems Theory based framework,

which integrates high-level process descriptions and low-level execution semantics, called

SYMEX (SYstems theory based framework for workflow Modellng and EXecution). More specifi-

cally, we define the basic concepts of the proposed framework, the rules that apply, and the cor-

responding formal representations. Finally, we analyse the frameworks modelling capability of

capturing high-level descriptions and low-level execution semantics by examining the level of

compliance with the set of requirements defined at the beginning of the Chapter.

The structure of this Chapter is as follows. Section 3.2 reviews the requirements for an integrated

approach. Section 3.3 discusses the role of Systems Theory for defining such approach and de-

fines the concepts, rules, and mathematical descriptions of SYMEX framework. Then, Section 3.4

examines the capability of SYMEX to support high-level process descriptions and low-level work-

flow execution semantics and Section 3.5 makes an overall comparison between SYMEX and

other workflow modelling approaches. Finally, Section 3.6 concludes the Chapter with the overall

findings.

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

62

3.2 Requirements for an Integrated Approach

An integrated modelling and execution approach should effectively satisfy the requirements for

capturing and representing high-level descriptions and low-level execution semantics of workflow

processes.

According to the literature [166], [51], [99], [167], [10], [165], [10], [168], [169], [170], [171],

[172] and our previous work [173] five aspects of high-level descriptions of workflow processes

can be regarded as representative set of minimum requirements that should be supported by an

integrated approach:

1. Flow representation [166], [51]: to capture transfer of knowledge, information,

goods from one point of the process to another. Flow also models the sequence of a

process and is conducive to the way business analysts model processes [174].

2. Conditions and effects [99], [167], [10]: to capture preferences, preconditions,

rules and results of business activities.

3. Role assignment [165], [10], [168]: to capture the different responsibilities of busi-

ness roles in different parts of a business process model.

4. Hierarchy representation [169], [170], [171]: to capture separation of concerns at

the business level, revealing the relations between the different parts of a process and

providing a natural way for business people to categorize and make hierarchy of their

business processes.

5. Feedback loops [172]: to capture the ability of a workflow process to react in response

to demands by business environments. As business practices are developed or enhanced,

the improvements can be incorporated into the workflow model as well, providing a

feedback loop between the operations staff and the model. In the end, the model be-

comes a live, dynamic blueprint that captures knowledge about a complete distributed

system in terms of its structure, behaviour, and characteristics [175].

The high-level business semantics presented above, should be integrated with low-level descrip-

tions of workflow processes in order to be able to encode typical control flow dependencies en-

countered in workflow execution. Such dependencies can easily be identified analysing the control

flow constructs existing in workflow execution languages. There is, indeed, a research initiative in

workflow management presenting a set of workflow patterns [176], which provide a way to ex-

amine various perspectives of workflow execution semantics (e.g. control flow, data, resource,

and exception handling). These patterns can be grouped in a number of categories as listed in

the table below.

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

63

No WF pattern description

Basic Control Patterns
WP1 Sequence - execute two or more activities in sequence

WP2 Parallel Split - execute two or more activities in any order or in parallel

WP3 Synchronization - synchronize two or more activities that may execute in any order or
in parallel

WP4 Exclusive Choice - choose one execution path from many alternatives based on data that is
available when the execution of the process reaches the exclusive choice

WP5 Simple Merge - wait for one among a set of activities completes before proceeding

Advanced Branching and Synchronization Patterns
WP6 Multiple Choice - choose several execution paths from many alternatives

WP7 Synchronizing Merge - merge many execution paths; synchronize if many paths are
taken

WP8 Multiple Merge - wait for one among a set of activities to complete before proceeding

WP9 Discriminator - wait for one among a set of activities to complete before proceeding

Structural Patterns
WP10 Arbitrary Cycles - do not impose any structural restrictions on the types of loops that can

exist in the process model.
WP11 Implicit Termination - terminate an instance of the process if there is nothing else

to be done
Multiple Instances (MI)

WP12 MI without Synchronization - generate many instances of one activity without
synchronizing them afterwards

WP13 MI with a Priori Design Time Knowledge - generate many instances of one activ-
ity when the number of instances is known at the design time

WP14 MI with a Priori Runtime Knowledge - generate many instances of one activity
when a number of instances can be determined at some point during the runtime

WP15 MI without a Priori Runtime Knowledge - generate many instances of one activ-
ity when a number of instances cannot be determined

State-based patterns
WP16 Deferred Choice - execute one of a number of alternatives threads.

WP17 Interleaved Parallel Routing - execute a number of activities in any order, but do not
execute any of these activities at the same time/simultaneously.

WP18 Milestone - allow a certain activity at any time before the milestone is reached

Cancellation Patterns
WP19 Cancel Activity - stop the execution of an enabled activity

WP20 Cancel Case - stop the execution of a running process

Table 3.1: Workflow patterns [104]

An integrated approach should be able to capture and represent low-level execution semantics of

workflow processes. For this purpose, we adopt workflow patterns as a representative set of re-

quirements.

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

64

3.3 Theoretical Framework

3.3.1 The Role of Systems Theory

In Chapter 2, we briefly reviewed General Systems Theory and discussed its importance for devis-

ing an integrated workflow modelling and execution framework, focusing on how its principles

can be applied to address the business dynamics at different levels of abstractions, i.e. high-level

descriptions and low-level execution semantics. This Section describes the role of Systems Theory

for defining an integrated approach for process modelling, by identifying a set of interrelation-

ships that exist between high-level process descriptions and low-level workflow execution seman-

tics. By capturing this complex set of interrelationships we will be able to support a reasoning

about tracking changes in high-level descriptions due to internal and external conditions, and

tracing the impact of those changes on the low-level execution semantics. Thus, the central goal

of adopting a systems perspective is to understand the complexity which arises from the two dif-

ferent levels of abstraction, in order to be able to define a formal description of how they behave

as a whole, emerged from the interactions of their parts, i.e. process models and workflow execu-

tion semantics.

Systems Theory defines a system as a set of elements standing in interrelation among them and

with environment. The Theory focuses on the arrangement of and relations between the parts or

elements of an entity and connects them into a whole. Moreover, Ludwig von Bertalanffy, sug-

gested among other things the existence of system isomorphism [159], i.e. the existence of gen-

eral mathematical descriptions explaining the dynamic behaviour of very different kinds of

systems at different scales, thus introducing hierarchy for determining multiple layers with differ-

ent detail of description. Inspired by these concepts, we consider a workflow model as an ‘entity’

and at the same time high-level and low-level executable descriptions as two ‘elements’ of this

‘entity’. So the problem of integration becomes a problem of defining the arrangement of and the

relations between these two ‘elements’ and their parts. The solution is to conceptualize the high-

level description as the upper layer ‘element’ and the low-level execution semantics as the lower

layer ‘element’ of a hierarchical decomposition of the ‘entity’ workflow model, as shown in Figure

3.1. Both elements are thus connected into a whole, inside the ‘entity’ workflow model.

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

65

Workflow
Process
Models

UML BPMN FBPML

 B P E L 4 W S OWL-S

T r a n s f o r m a t i o n s / m a p p i n g s

Execution Frameworks

Entity
workflow model

Element
High-level description

Element
Low-level execution

semantics

decomposes to

Figure 3.1: Transforming the problem of integration using Systems Theory

3.3.2 Definition of Concepts

A business process consists of a network of resources, actors, process steps and the interactions

between them. Therefore, in order to model business processes under the workflow context, we

adopt a systems perspective of the process-centred workflows and analyse them separately from

the environment by defining their boundaries. Workflow boundaries are defined with respect

to the workflow goals and the business constraints. Workflow goals express the expecta-

tions of various agents about the ability of the workflow to carry the desired process execution.

On the other hand, business constraints affect workflow, posing requirements for the delivered

outputs and the inputs that may be used to deliver this output. Both workflow goals and business

constraints define the scope of the workflow model and execution.

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

66

Workflow Model

 Business Process

 Inputs
(Resources,
Information e.t.c)

Outputs
(Value e.t.c)

Boundaries
Business

Constraints

Goals
Agents

Activity

Activity

Activity

Figure 3.2: A Systemic perspective of a workflow model

Figure 3.2 represents the highest level of abstraction of a workflow model. Subsequently, realiza-

tion of a workflow process is perceived as the coordination of a network of activities organized in

the context of a hierarchy. Thus, modelling the workflow process from a Systems Theory per-

spective, we consider it as a system of interconnected activities with inputs, outputs, controls,

and mechanisms. More specifically, finalizing the model we introduced in an initial form in [173],

that is greatly influenced by IDEF0 modelling technique, we view a workflow process, as a set of

Activities, which take Inputs and produce Outputs. Activities are executed via the means of

their execution Mechanisms and activated by their Control, which evaluates a number of con-

straints. Figure 3.3 shows a visual notation we propose for communication purposes.

Activity
Control OutputInput

execution
Mechanism

Figure 3.3: Visual notation of SYMEX models

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

67

We argue that these constructs provide sound foundations for expressing business dynamics in

high-level descriptions as well as the semantics of low-level process execution, and we will vali-

date this argument in Section 3.4.

At this point we logically define the concepts of our proposed framework, based on the concepts

introduced in [173]:

1. Activity: The main construct of our formalism is the Activity. A workflow process model

is composed by a number of activities. According to the level of decomposition, the activ-

ity can represent the whole process, a sub-process, or an atomic activity. There are two

types of Activities; composite, that are decomposed further to sub-activities and

atomic, that are not decomposed.

2. Inputs: Inputs of Activities are structures of information elements related to software

components involved in the work activities of the workflow process.

3. Outputs: Outputs of Activities are structures of information elements related to software

components involved in the work activities of the workflow process.

4. Controls: Controls are logical conditions and constraints that control the execution of the

Activity.

5. Execution Mechanisms: Execution Mechanisms are the means by which Activities are

being executed using Inputs and producing the Output. Execution Mechanisms are soft-

ware components, web-services, or business roles responsible for the realization of the

Activity.

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

68

3.3.3 Mathematical Descriptions

Having provided an informal definition of the main concepts of our framework, we continue in this

Section with their mathematical descriptions. These descriptions are mainly based on a set theory

that allows to reason about the process characteristics at different levels of detail, in a more con-

trolled way.

3.3.3.1 Basic constructs

Derived from our formalization efforts in [177], an Activity A is defined as a 4-

tuple (I, C, O, M) where:

 I is a set of structures of information elements I1, I2,…, In [defined as I(A)], where n is

an integer number.

I(A):  i, 1 ≤ i ≤ n, Ii  I(A)

Formula 3.1: Definition of I(A) – Inputs of Activity

 O is a set of structures of information elements O1, O2,…, On [defined as O(A)], where

n is an integer number.

O(A):  i, 1 ≤ i ≤ n, Oi  O(A)

Formula 3.2: Definition of O(A) – Outputs of Activity

 C is a set of control rules C1, C2,…, Cn [defined as C(A)], where n is an integer num-

ber.

C(A):  i, 1 ≤ i ≤ n, Ci  C(A)

Formula 3.3: Definition of C(A) – Controls of Activity

 M is a set of execution mechanisms M1, M2,…, Mn [defined as M(A)], where n is an in-

teger number.

M(A):  i, 1 ≤ i ≤ n, Mi  M(A)

Formula 3.4: Definition of M(A) – execution Mechanisms of Activity

Based on the above definitions, a workflow process is set Σ consisting of activities A1,

A2, …, An  Σ having inputs I(A), outputs O(A), controls C(A) and execution mechanisms

M(A).

An Activity can be either atomic or composite. Therefore, a workflow process Σ is defined as Σ =

AtAct(Σ)  CAct(Σ), where AtAct is the set of atomic Activities and CAct is the set of com-

posite Activites.

3.3.3.2 Modelling semantics

As far as the modelling is concerned, we define the following rules that apply to SYMEX models:

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

69

1. An Activity Ai must have at least one Input and up to n Inputs, where n is an integer

number. Based on Formula 3.1 we have:

 Ik  I(Ai), 1 ≤ k ≤ n, 1 ≤ i ≤ n, Ai  Σ

Formula 3.5: Rule 1

2. An atomic Activity Ai must have exactly one Output. Based on Formula 3.2 we have:

 Ok  O(Ai), k = 1, 1 ≤ i ≤ n, Ai  Σ, Ai  AtAct(Σ)

Formula 3.6: Rule 2

3. A composite Activity Ai must have at least one Output and up to n Outputs, where n is an

integer number. Based on Formula 3.2 we have:

 Ok  O(Ai), 1 ≤ k ≤ n, 1 ≤ i ≤ n, Ai  Σ, Ai  CAct(Σ)

Formula 3.7: Rule 3

4. An atomic Activity Ai may have zero to n Controls, where n is an integer number. Based

on Formula 3.3 we have:

(C(Ai) =׎  ( Ck  C(Ai), 1 ≤ k ≤ n)), Ai  Σ, Ai  AtAct(Σ), 1 ≤ i ≤ n

Formula 3.8: Rule 4

5. An atomic Activity Ai may have zero to n Execution Mechanisms, where n is an integer

number. Based on Formula 3.4 we have:

(M(Ai)=׎  ( Mk  M(Ai), 1 ≤ k ≤ n)), Ai  Σ, Ai  AtAct(Σ), 1 ≤ i ≤ n

Formula 3.9: Rule 5

6. Outputs of Activities may be used as Inputs to other activities. Based on Formula 3.1 and

Formula 3.2 we have:

 Ai  Σ, Ak  Σ : ( j  I(Ak)  j  O(Ai)), 1 ≤ i ≤ n, 1 ≤ k ≤ n

Formula 3.10: Rule 6

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

70

3.3.3.3 Execution Semantics

As far as the execution semantics are concerned, we give the following definitions:

1. An atomic Activity can be only in one of three possible states ‘available’, ‘unavailable’,

or ‘executed’. ActSt is the set of states of activities A1, A2, …, An  Σ, defined as

ActStA1, ActStA2, ActStA3,…, ActStAn [ActSt(Σ)], where Σ is the workflow process.

ActStAi is essentially a function having as input an Activity Ai and producing as output

one of the values ‘available’ or ‘unavailable’ or ‘executed’:

ActStAi = f : Ai  , Ai  AtAct(Σ)
and

ActSt(Σ):  i, 1 ≤ i ≤ n, Ai  Σ, ActStAi  ActSt(Σ), Ai  AtAct(Σ)

Formula 3.11: Definition of Activity States for a workflow process Σ

2. Each atomic Activity of a SYMEX model can be executed whenever it is ‘available’. An

atomic Activity Ai is ‘available’ when the Controls C(Ai) of atomic Activity Ai evaluate to

true:

( Ci  C(Ai), eval (Ci)=true), 1≤i≤n, Ai  AtAct(Σ)
 ActStAi = f : Ai  {available}

Formula 3.12: Definition of status ‘available’ for Activity Ai

3. Inputs are used by the execution Mechanisms of atomic Activities in order to produce

their Output. Execution Mechanism M(Ai) is essentially a function having as input the In-

puts I(Ai) of atomic Activity Ai and producing as output the Output O(Ai) of atomic Activ-

ity Ai:

 Ai  Σ, Ai  AtAct(Σ) : ( i  I(Ai)  o  O(Ai)  m  M(Ai))
 m = f : i  o

Formula 3.13: Definition of execution Mechanism of Activity Ai

4. The Inputs and the set of Activity States of a workflow process Σ are used by the Con-

trols of atomic Activities to constrain their execution. Control C(Ai) of atomic Activity Ai

is essentially a function having as input the Inputs I(Ai) of atomic Activity Ai and the set

of Activity States of ActSt(Σ) of workflow process Σ and producing as output one of the

values ‘true’ or ‘false’:

 Ai  Σ, Ai  AtAct(Σ) : ( i  I (Ai)  c  C (Ai))
 c = f : (i  ActSt(Σ)) {True  False}

Formula 3.14: Definition of Control of Activity Ai

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

71

3.4 Framework Analysis

SYMEX aims to bridge the gap between high-level process descriptions and low-level execution

semantics. In the following Sections, we examine the capability of the proposed framework to

capture the business semantics, which are identified in high-level workflow process descriptions.

Then we examine the framework’s capability to support low-level workflow execution semantics in

terms of capturing a number of workflow patterns [104] that encode typical control flow depend-

encies encountered in workflow execution. The analysis is based on the framework’s compliance

with the set of requirements defined at Section 3.2 of this Chapter.

3.4.1 Business Semantics

In a high-level description of a workflow process, we have identified five distinct aspects that ex-

press the business semantics: (1) Flow representation, (2) Conditions and effects, (3) Role as-

signment, (4) Hierarchy representation and (5) Feedback loops. The first three aspects are easily

modelled in SYMEX, as shown in Figure 3.4. Flow representation can be expressed with the con-

cepts of Input and Output. Condition and effects can be expressed through concepts of Controls

and Execution Mechanisms, while Role assignment through Execution Mechanism.

Activity
Fulfil order

 Output =
Order data

Input =
Order
request

Activity
 Alert manager

Output =
Alert data

Input =
Order
data

Control =
Order.TotalCost>600

Flow of
information

Condition

Effect

Role assignment

Mechanisms
M1 = Role 
Salesman
M2 = Component 
Order.Save(Input)

Figure 3.4: Modelling basic aspects of business semantics

The fourth aspect, which is Hierarchy representation, is only supported by a few workflow proc-

ess modelling languages, i.e. IDEF0, IDEF3 and BPMN, and not supported at all by execution

frameworks. Finally, the fifth aspect, which is Feedback loops, is implicitly supported by some

process modelling languages and execution frameworks. In the next Sections, we examine

whether SYMEX can support hierarchy representation and feedback loops respectively.

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

72

3.4.1.1 Hierarchy Representation

Hierarchy is a good modelling technique for separation of concerns. As separation of concerns

starts at the business level and business people depending on their hierarchy and position want

to have the right information at the right place and time, it would be easier for them to under-

stand, communicate, and even participate in the design of models that would enable the separa-

tion of workflow processes in a hierarchical manner. Therefore, hierarchy representation in a

model reveals the relations between the different parts of a process and provides a natural way

for business people to categorize and make hierarchy of workflow processes that reflect their

business. SYMEX supports hierarchy through the decomposition of composite Activities. Compos-

ite Activities inherit their Inputs, Outputs, Controls, and execution Mechanisms to the decom-

posed Activities.

Semantics: A composite Activity Aj has i as Input, o as Output, c as Control and m as execution

Mechanism. The Activity Aj is decomposed to Activities Aj1, ..., Ajn if Input i, Output o, Control c

and execution Mechanism m of Activity Aj are Input, Output, Control and execution Mechanism of

at least of one of the Activities Aj1, ..., Ajn , where n is an integer number:

 Aj  Σ  Aj1, ..., Ajn Σ :

( i  I(Aj)  o  O(Aj)  c  C(Aj)  m  M(Aj)) 

(i  I(Aj1)  ...  i  I(Ajn)) 

(o  O(Aj1)  ...  o  O(Ajn)) 

(c  C(Aj1)  ...  c  C(Ajn)) 

(m  M(Aj1)  ...  m  M(Ajn))

Formula 3.15: Hierarchy’s semantics

Example: An e-shop has a workflow process, which handles the order requests and ships the

ordered items. In an abstract level, the Activity “Process order” is presented as having Input an

“Order request” and as Output the “Items for shipping”. This view hides the implementation de-

tails of Activity “Process orders” and only in the decomposed level we may observe the constitu-

ent Activities; “Check warehouse for items” and “Invoice order”.

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

73

Activity =
Process order

Activity =
 Check warehouse

for items

Output =
Found items

Input =
Order
request

Activity =
Invoice order

 Output =
Items for
shipping

Input =
Found
items

Output =
Items for shipping

Input =
Order request

Figure 3.5: An example of hierarchy in a workflow process model

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

74

3.4.1.2 Feedback Loops

Feedback is a process whereby some proportion of the output of a system is passed (fed back) to

the input of the system. As a workflow process changes due to demand by business environ-

ments, feedback loops control the execution and amplify possibilities of divergences with the new

business goals [172].

Semantics: If an Activity Aj has i as Input, o as Output and c as Control, then Feedback loop

F(Aj) is defined as a subset of Output o, that feeds back the Control c of Activity Aj: Then, Con-

trol c of Activity Aj is essentially a function taking as input the UNION of Input i and Feedback

loop F(Ai) and producing as output value ‘true’ or ‘false’:

 Aj  Σ : ( i  I(Aj)  o  O(Aj)  c  C (Aj))
 F (Aj)  o  O(Aj)
 c = f : (i  F (Aj)) {True  False}

Formula 3.16: Feedback loop’s semantics

Example: An investor holds a savings account. Every month he compares all available interest

rates of the market and in case he finds a higher interest rate than his current one, he opens a

new account and transfers all his money. The new interest rate feeds back the investor’s monthly

activity. Figure 3.6 shows the visual representation of this example.

Activity =
Compare all available

interest rates

Control =
Compare with current interest rate Output =

Interest Rates

Input =
Current Savings Account

Feedback =
Higher interest rate found

Mechanism =
compare rates

Figure 3.6: An example of feedback loop in a workflow process model

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

75

3.4.2 Workflow Process Execution Semantics

In the previous Section, we examined the capability of the proposed framework to formalize the

business dynamics semantics that are identified in high-level workflow process descriptions. This

Section examines the 20 workflow patterns presented in [104], and show how and to what

extent these patterns can be captured using SYMEX modelling. The examples employed

are the same with [104]. Most of the solutions are presented in a simplified model based

on the concepts we introduced in Section 3.3, which is rich enough for capturing the key

ideas of the solutions.

WP1 Sequence: An activity in a workflow process is executed after the completion of an-

other activity in the same process.

Example: After the Activity “order registration” the Activity “customer notification” is exe-

cuted.

Solution, WP1: The solution is depicted in Figure 3.7. Here we highlight on the Control con-

cept, which constrains the execution of Activity A2, based on the completion of

Activity A1.

 Activity A1=
 Check warehouse

for items

Output =
Found items

Input =
Order
request

 Activity A2=
Invoice order

Output =
Items for
shipping

Input =
Found
items

Control =
ActStA1 = executed

Figure 3.7: Workflow pattern 1: Sequence

 A1, A2 Σ :

(IA1(Order request)  I(A1)  OA1(Found items)  O(A1)) 

(IA2(Found items)  I(A2)  OA2(Items for shipping)  O(A2)  CA2  C(A2)) 

(IA2(Found items) = OA1(Found items)) 

(CA2 = f : (ActStA1=executed)  {True  False})
Formula 3.17: Semantics of Workflow pattern 1: Sequence

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

76

WP2 Parallel Split: A point in the process where a single thread of control splits into mul-

tiple threads of control, which can be executed in parallel, thus allowing activities to be exe-

cuted simultaneously or in any order.

Example: After Activity “Subscribe new mobile phone”, Activities “Update Mobile Location Reg-

istry” and “Update Service Registry” are executed in parallel.

Solution, WP2: The solution is depicted in Figure 3.8. The parallel split is realized by defin-

ing the Activities’ Controls as “ActStA1 = executed”, so that the activities are executed in paral-

lel.

 Activity A2=
 Update Mobile

 Location Registry

 Activity A3=
 Update Service

Registry

 Activity A1=
 Subscribe new
 mobile phone Output =

Subscription
data

Input =
New mobile
data

Control =
ActStA1 = executed

Output =
Registry

data

Input =
Subscription
data

Output =
Registry

data

Input =
Subscription
data

Figure 3.8: Workflow pattern 2: Parallel Split

 A1, A2, A3 Σ :

(IA1(New mobile data)  I(A1)  OA1(Subscription data)  O(A1)) 

(IA2(Subscription data)  I(A2)  OA2(Registry data)  O(A2)  CA2  C(A2)) 

(IA3(Subscription data)  I(A3)  OA3(Registry data)  O(A3)  CA3  C(A3)) 

(IA2(Subscription data) = IA3(Subscription data) = OA1(Subscription data)) 

(CA2 = CA3 = f : (ActStA1=executed)  {True  False})
Formula 3.18: Semantics of Workflow pattern 2: Parallel Split

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

77

WP3 Synchronization: A point in the process where multiple parallel branches converge

into one single thread of control, synchronizing multiple threads.

Example: Activity “Mail tickets” is executed after the completion of both Activities “Issue tick-

ets” and “Issue Invoice”.

Solution, WP3: The solution is depicted in Figure 3.9. Activity “Mail tickets” has as Control

“ActStA1=executed AND ActStA2=executed”.

 Activity A3=
Mail tickets

 Activity A2=
 Issue invoice

Output =
Invoice data

Input =
Request
for tickets

Control =
ActStA1 = executed

AND
ActStA2 = executed

Output =
Shipping

data

Input =
Ticket data &
Invoice data

 Activity A1=
 Issue tickets

Output =
Ticket data

Input =
Request
for tickets

Figure 3.9: Workflow pattern 3: Synchronization

 A1, A2, A3 Σ :

(IA1(Request for tickets)  I(A1)  OA1(Ticket data)  O(A1)) 

(IA2(Request for tickets)  I(A2)  OA2(Invoice data)  O(A2)) 

(IA3(Ticket & Invoice data)  I(A3)  OA3(Shipping data)  O(A3)  CA3  C(A3)) 

(IA3(Ticket & Invoice data) = OA1(Ticket data)  OA2(Invoice data)) 

(CA3 = f : (ActStA1=executed AND ActStA2=executed)  {True  False})
Formula 3.19: Semantics of Workflow pattern 3: Synchronization

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

78

WP4 Exclusive Choice: A point in the workflow process where, based on a decision or

workflow control data, one of several branches is chosen.

Example: The manager is alerted if an order exceeds € 600, otherwise not.

Solution, WP4: The solution is depicted in Figure 3.10. Activity “Alert manager” has a Con-

trol that evaluates the cost of the order.

 Activity A1=
Fulfil order

 Output =
Order data

Input =
Order
request

 Activity A2=
 Alert manager

 Output =
Alert data

Input =
Order data

Control =
Order.TotalCost>600

Figure 3.10: Workflow pattern 4: Exclusive Choice

 A1, A2  Σ :

(IA1(Order request)  I(A1)  OA1(Order data)  O(A1)) 

(IA2(Order data)  I(A2)  OA2(Alert data)  O(A2)  CA2  C(A2)) 

(IA2(Order data) = OA1(Order data)) 

(CA2 = f : (Order.TotalCost>600)  {True  False})

Formula 3.20: Semantics of Workflow pattern 4: Exclusive Choice

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

79

WP5 Simple Merge: A point in the workflow process where two or more alternative

branches come together without synchronization.

Example: After Activity “Receive payment” is completed or Activity “Approve bank loan” is

completed, then Activity “Deliver car to customer” is executed.

Solution, WP5: The solution is depicted in Figure 3.11.

 Activity A3=
 Deliver car to

customer

 Activity A2=
 Approve bank

loan Output =
Bank loan

data

Input =
Request
for loan

Control =
ActStA1 = executed

OR
ActStA2 = executed

Output =
Delivery

data

Input =
Car and
customer

data

 Activity A1=
 Receive payment

Output =
Payment

data

Input =
Invoice
data

Figure 3.11: Workflow pattern 5: Simple Merge

 A1, A2, A3 Σ :

(IA1(Invoice data)  I(A1)  OA1(Payment data)  O(A1)) 

(IA2(Request for loan)  I(A2)  OA2(Bank loan data)  O(A2)) 

(IA3(Car & customer data)  I(A3)  OA3(Delivery data)  O(A3)  CA3  C(A3)) 

(CA3 = f : (ActStA1=executed OR ActStA2=executed)  {True  False})

Formula 3.21: Semantics of Workflow pattern 5: Simple Merge

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

80

WP6 Multi-Choice: A point in the process, where, based on a decision or control data, a

number of branches are chosen and executed as parallel threads.

Example: After completion of Activity “Evaluate damage”, Activity “Contact fire department” or

Activity “Contact insurance company” is executed. At least one of these activities is executed.

However, it is also possible that both need to be executed.

Solution, WP6: The solution is depicted in Figure 3.12. In case Activity “Evaluate damage”

identifies a fire factor then the fire department is contacted. In addition, if the damaged

property was insured, the insurance company is contacted. The Controls of Activities imple-

ment the multi-choice pattern.

 Activity A2=
 Contact fire
 department

 Activity A3=
 Contact insurance

company

 Activity A1=
 Evaluate damage

Output =
Evaluation

data

Input =
Damage data

Control =
ActStA1 = executed

AND
Evaluation.fire_identified=true

Output =
Insurance
company’s

report

Input =
Evaluation
data

Output =
Fire

department’s
report

Input =
Evaluation

data

Control =
ActStA1 = executed

AND
Evaluation.insurance_exist=true

Figure 3.12: Workflow pattern 6: Multi-Choice

 A1, A2, A3 Σ :

(IA1(Damage data)  I(A1)  OA1(Evaluation data)  O(A1)) 

(IA2(Evaluation data)  I(A2)  OA2(Fire dept’s report)  O(A2)  CA2  C(A2)) 

(IA3(Evaluation data)  I(A3)  OA3(Insurance comp’s report)O(A3)  CA3C(A3)) 

(IA2(Evaluation data) = IA3(Evaluation data) = OA1(Evaluation data)) 

(CA2 = f : (ActStA1 = executed AND Evaluation.fire_identified=true) {True  False}) 

(CA3 = f : (ActStA1 = executed AND Evaluation.insurance_exist=true) {True  False})
Formula 3.22: Semantics of Workflow pattern 6: Multi-Choice

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

81

WP7 Synchronizing Merge: A point in the process where multiple paths converge into

one single thread. Some of these paths are "active" (i.e. they are being executed) and some

are not. If only one path is active, the activity after the merge is triggered as soon as this

path completes. If more than one path is active, synchronization of all active paths need to

take place before the next activity is triggered. It is an assumption of this pattern that a

branch that has already been activated, cannot be activated again while the merge is still

waiting for other branches to complete.

Example: After either or both of the Activities “Contact fire department” and “Contact insur-

ance company” have been completed, the Activity “Submit report” needs to be performed.

Activity “Submit report” needs to be executed only once.

Solution, WP7 The solution is depicted in Figure 3.13.

 Activity A3=
 Submit report

 Activity A2=
 Issue insurance

Output =
Insurance
company’s

report

Input =
Evaluation
data

Control =
(ActStA1 = executed AND NOT (ActStA3 = executed))

OR
(ActStA2 = executed AND NOT (ActStA3 = executed))

Output =
Final

report

Input =
Report
data

 Activity A1=
 Contact Fire
department Output =

Fire
department’s

report

Input =
Evaluation
data

Figure 3.13: Workflow pattern 7: Synchronizing Merge

 A1, A2, A3 Σ :

(IA1(Evaluation data)  I(A1)  OA1(Fire dept’s report)  O(A1)) 

(IA2(Evaluation data)  I(A2)  OA2(Insurance company’s data)  O(A2)) 

(IA3(Report data)  I(A3)  OA3(Final report)  O(A3)  CA3  C(A3)) 

(IA3(Report data) = OA1(Fire dept’s report)  OA2(Insurance company’s data)) 

(CA3 = f : ((ActStA1=executed AND NOT (ActStA3=executed)) OR

 (ActStA2=executed AND NOT (ActStA3=executed))) 

  {True  False})

Formula 3.23: Semantics of Workflow pattern 7: Synchronizing Merge

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

82

WP8 Multi-Merge: A point in a process where two or more branches merge without syn-

chronization. If more than one branch gets activated, possibly concurrently, the activity follow-

ing the merge is started for every action of every incoming branch.

Example: Sometimes two or more branches share the same ending. Two Activities “Audit ap-

plication” and “Process application” are running in parallel, which should both be followed by an

Activity “Close case”, which should be executed twice if the Activities “Audit application” and

“Process application” are both executed.

Solution, WP8 The solution is depicted in Figure 3.14.

 Activity A3=
Close case

 Activity A2=
 Process

 application Output =
Process data

Input =
Application
data

Control =
ActStA1 = executed

OR
ActStA2 = executed

Output =
Case data

Input =
Audit data
OR
Process data

 Activity A1=
 Audit application

Output =
Audit data

Input =
Application
data

Figure 3.14: Workflow pattern 8: Multi-Merge

 A1, A2, A3 Σ :

(IA1(Application data)  I(A1)  OA1(Audit data)  O(A1)) 

(IA2(Application data)  I(A2)  OA2(Process data)  O(A2)) 

(IA3(Audit OR Process data)  I(A3)  OA3(Case data)  O(A3)  CA3  C(A3)) 

(IA3(Audit OR Process data) = OA1(Audit data)  OA2(Process data)) 

(CA3 = f : (ActStA1=executed OR ActStA2=executed)  {True  False})

Formula 3.24: Semantics of Workflow pattern 8: Multi-Merge

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

83

WP9 Discriminator: A point in the workflow process that waits for one of the incoming

branches to complete before activating the subsequent activity. From that moment on it waits

for all remaining branches to complete and 'ignores' them. Once all incoming branches have

been triggered, it resets itself so that it can be triggered again (which is important otherwise it

could not really be used in the context of a loop).

Example: To improve query response time, a complex search is sent to two different data-

bases over the Internet. The results of the first are used while the results of the second da-

tabase are ignored.

Solution, WP9: Our formalism supports this pattern as it can employ XOR in Control of

an Activity. The solution is depicted in Figure 3.15.

 Activity A3=
 Process results

 Activity A2=
 Request search

engine 2 Output =
Result data

Input =
Request
data

Control =
ActStA1 = executed

XOR
ActStA2 = executed

Output =
Process

data

Input =
Result
data

 Activity A1=
 Request search

engine 1 Output =
Result data

Input =
Request
data

Figure 3.15: Workflow pattern 9: Discriminator

 A1, A2, A3 Σ :

(IA1(Request data)  I(A1)  OA1(Result data)  O(A1)) 

(IA2(Request data)  I(A2)  OA2(Result data)  O(A2)) 

(IA3(Result data)  I(A3)  OA3(Process data)  O(A3)  CA3  C(A3)) 

(IA3(Result data) = OA1(Result data)  OA2(Result data)) 

(CA3 = f : (ActStA1=executed XOR ActStA2=executed)  {True  False})

Formula 3.25: Semantics of Workflow pattern 9: Discriminator

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

84

WP10 Arbitrary Cycles: A point where a portion of the process (including one or more

activities and connectors) needs to be "visited" repeatedly without imposing restrictions on the

number, location, and nesting of these points.

Solution, WP10: This pattern is not directly supported by our formalism.

WP11 Implicit Termination: A given sub process is terminated when there is nothing left to

do, i.e., termination does not require an explicit termination activity.

Solution, WP11: Implicit termination is supported by our formalism, as a process completes

when its final Activity completes and there are no other Activities left for execution.

WP12 MI without Synchronization: Within the context of a single case multiple instances of

an activity may be created. The instances might be created consecutively, but they will be able to run

in parallel, which distinguishes this pattern from the pattern for Arbitrary Cycles.

Example: When booking a trip, the activity “Book flight” is executed multiple times if the trip in-

volves multiple flights.

Solution, WP12 Multiple instances of an activity can be created by using the Control concept.

Activity =
Flight Booking

Control =
WHILE

Trip.AllFlightsBooked=false

Output =
Booked flights

Input =
Trip data

Feedback =
Booked flights

Mechanism =
book flight

Figure 3.16: Workflow pattern 12: MI without Synchronization

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

85

WP13-WP15 MI with Synchronization A point in a workflow where a number of instances of a

given activity are initiated, and these instances are later synchronized, before proceeding with the

rest of the process. In WP13, the number of instances to be started/synchronized is known at de-

sign time. In WP14, the number is known at some stage during run time, but before the initiation

of the instances has started. In WP15 the number of instances to be created is not known in ad-

vance: new instances are created on demand, until no more instances are required.

Example of WP15: When booking a trip, the activity “Book flight” is executed multiple times if

the trip involves multiple flights. Once all bookings are made, an invoice is sent to the client. The

number of the bookings is only known at runtime through interaction with the user.

Solutions, WP13-WP15 A simple solution, in case the number of instances to be synchro-

nized is known at design time (WP13), is to replicate the activity as many times as it needs to

be instantiated, and run the replicas in parallel by placing them in parallel activities (Figure 3.17

– we need to book 2 flights). If the number of instances to be created and synchronized is only

known at run time (WP14), or not known (WP15) we may encode this by means of a loop en-

coded in Control concept (

Figure 3.18).

 Activity A3=
Issue Invoice

 Activity A2=
Book flight 2

Output =
Flight2 data

Input =
Flight
data

Control =
ActStA1 = executed

AND
ActStA2 = executed

Output =
Invoice
data

Input =
Flight1
data
&
Flight2 data

 Activity A1=
Book flight 1

Output =
Flight1 data

Input =
Flight
data

Figure 3.17: Workflow pattern 13: MI with Synchronization (a)

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

86

 A1, A2, A3 Σ :

(IA1(Flight data)  I(A1)  OA1(Flight1 data)  O(A1)) 

(IA2(Flight data)  I(A2)  OA2(Flight2 data)  O(A2)) 

(IA3(Flight1 & Flight2 data)  I(A3)  OA3(Invoice data)  O(A3)  CA3  C(A3)) 

(IA3(Flight1 & Flight2 data) = OA1(Flight1 data)  OA2(Flight2 data)) 

(CA3 = f : (ActStA1=executed AND ActStA2=executed)  {True  False})

Formula 3.26: Semantics of Workflow pattern 14: MI with Synchronization (a)

 Activity A2=
 Issue Invoice

Control =
ActStA1 = executed

AND
trip.destination_reached=true

Output =
Invoice
data

Input =
All
booked
flights
data

 Activity A1=
Book flight

Output =
Flight data

Input =
Trip data

AND
Booked flights

Control =
WHILE

trip.destination_reached=false

Feedback =
Booked flights

Figure 3.18: Workflow pattern 14-15: MI with Synchronization (b)

 A1, A2  Σ :

(IA1(Trip data & Booked flights) I(A1)  OA1(Flight1 data) O(A1)  FA1 F(A1)) 

(IA2(All booked flight data)  I(A2)  OA2(Invoice data)  O(A2)  CA2  C(A2)) 

(FA1  OA1(Flight1 data)) 

(IA1(Trip data & Booked flights) = IA1(Trip data & Booked flights)  FA1) 

(CA1 = f : (WHILE trip.destination_reached=false) {True  False}) 
(CA2 = f : (ActStA1=executed AND trip.destination_reached=true)  {True  False})

Formula 3.27: Semantics of Workflow pattern 14-15: MI with Synchronization (b)

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

87

WP16 Deferred Choice: A point in a process where one among several alternative branches

is chosen based on information, which is not necessarily available when this point is reached.

This differs from the normal exclusive choice, in that the choice is not made immediately when

the point is reached, but instead several alternatives are offered, and the choice between

them is delayed until the occurrence of some event.

Example: When a contract is finalized, it has to be reviewed and signed either by the director

or by the operations manager, whoever is available first. Both the director and the operations

manager would be notified that the contract is to be reviewed: the first one who is available will

proceed with the review.

Solution, WP16: The solution is depicted in Figure 3.19.

 Activity A2=
 Director signs

contract

 Activity A3=
 Operations

 manager signs
 contract

 Activity A1=
 Finalize contract

Output =
Final contract

data

Input =
Contract
data

Control =
ActStA1 = executed

AND NOT
ActStA3 = executed

Output =
Signed

contract data

Input =
Final
contract
data

Output =
Signed

contract data

Input =
Final contract
data

Control =
ActStA1 = executed

AND NOT
ActStA2 = executed

Figure 3.19: Workflow pattern 16: Deferred Choice

 A1, A2, A3 Σ :

(IA1(Contract data)  I(A1)  OA1(Final contract data)  O(A1)) 

(IA2(Final contract data)I(A2)  OA2(Signed contract data) O(A2)  CA2 C(A2)) 

(IA3(Final contract data)I(A3)  OA3(Signed contract data) O(A3)  CA3 C(A3)) 

(IA2(Final contract data) = IA3(Final contract data) = OA1(Final contract data)) 

(CA2 = f : (ActStA1=executed AND NOT ActStA3=executed)  {True  False}) 

(CA3 = f : (ActStA1=executed AND NOT ActStA2=executed)  {True  False})
Formula 3.28: Semantics of Workflow pattern 16: Multi-Choice

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

88

WP17 Interleaved Parallel Routing: A set of activities is executed in an arbitrary or-

der. Each activity in the set is executed exactly once. The order between the activities is de-

cided at run-time: it is not until one activity is completed that the decision on what to do next

is taken. In any case, no two activities in the set can be active at the same time.

Example: At the end of each year, a bank executes two activities for each account: “Add inter-

est” and “Charge credit card costs”. These activities can be executed in any order. However, since

they both update the account, they cannot be executed at the same time.

Solution, WP17: Our formalism does not have a construct like BPEL4WS’ concept of serializ-

able scopes.

WP18 Milestone: A given activity can only be executed if a certain milestone has been

reached which has not yet expired. A milestone is defined as a point in the process where a

given activity A has finished and an activity B following it has not yet started.

Example: After having placed a purchase order, a customer can withdraw it at any time before

the shipping takes place. To withdraw an order, the customer must complete a withdrawal re-

quest form, and this request must be approved by a customer service representative. The exe-

cution of Activity “Approve order withdrawal” must therefore follow Activity “Request

withdrawal”, only if: (i) the activity “Place order” is completed, and (ii) the Activity “Ship order”

has not yet started.

Solution, WP18: Our formalism does not provide direct support for this pattern.

WP19 Cancel Activity & WP20 Cancel Case: A cancel activity terminates a running in-

stance of an activity, while cancelling a case leads to the removal of an entire workflow in-

stance.

Example of WP19: A customer cancels a request for information.

Example of WP20: A customer withdraws his/her order.

Solutions, WP19 & WP20: WP20 is not supported by our formalism while WP19 is dealt with

using compensation and faults activities, specifying the course of action in cases of faults and

cancellations.

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

89

In this Section, we made an in-depth analysis of SYMEX based on existing workflow patterns. A

summary of the results from the analysis are presented in Table 3.2. The table also shows a

comparison of our framework with BPEL4WS, BPMN, and UML Activity Diagrams. A '+' in a cell of

the table refers to direct support (i.e. there is a construct in the language which directly support

the pattern). A '-' in the table refers to no direct support. Sometimes there is a feature that only

partially supports a pattern, e.g., a construct that implies certain restrictions on the structure of

the process. In such cases, the support is rated as '+/-'.

 WF pattern Description product/standard
 BPEL4WS BPMN UML SYMEX

WP1 Sequence + + + +

WP2 Parallel Split + + + +

WP3 Synchronization + + + +

WP4 Exclusive Choice + + + +

WP5 Simple Merge + + + +

WP6 Multi Choice + + + +

WP7 Synchronizing Merge + + - +

WP8 Multi Merge - + + +

WP9 Discriminator - +/- +/- +

WP10 Arbitrary Cycles - + + +/-

WP11 Implicit Termination + + + +

WP12 MI without Synchronization + + + +

WP13 MI with a Priori Design Time Knowledge + + + +

WP14 MI with a Priori Runtime Knowledge - + + +

WP15 MI without a Priori Runtime Knowledge - - - +

WP16 Deferred Choice + + + +

WP17 Interleaved Parallel Routing + - - -

WP18 Milestone - - - -

WP19 Cancel Activity + + + +

WP20 Cancel Case + + + -

Table 3.2: Comparison based on workflow patterns [176]

The following observations can now be made from the table:

1. The first five patterns correspond to the basic routing constructs and they are

naturally supported by all languages/notations. In contrast, some of the patterns

referring to more advanced constructs are often not supported in the different

approaches, e.g. WP8, WP9, WP10 are not supported by BPEL4WS, WP15 is only

supported by SYMEX etc.

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

90

2. SYMEX supports an adequate number of workflow patterns and thus can be con-

sidered as a competent approach for capturing and encoding low-level workflow

execution semantics.

3. While other approaches use control flow constructs to model workflow patterns,

SYMEX modelling does not realize patterns using modelling constructs. Instead,

SYMEX models use the construct of Controls of Activities in order to constrain

their execution and implicitly realize the desired workflow pattern.

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

91

3.5 Overall comparison

In the previous Section, we examined the capability of the proposed framework to capture the

business semantics identified in high-level workflow process descriptions and to support low-level

workflow execution semantics in terms of capturing workflow patterns that encode typical control

flow of workflow execution. This Section discusses the results of this analysis and makes an over-

all comparison of SYMEX with UML and BPMN as the most widely adopted workflow process mod-

elling languages and with BPEL4WS as the most widely adopted process execution framework.

Table 3.3 below combines the results of Sections 3.4.1 and 3.4.2, where we examined the sup-

port of high-level business semantics and low-level execution patterns as set in Section 3.2. A '+'

in a cell of the table refers to direct support, a '-' to no direct support and a '+/-' to partial sup-

port but with certain restrictions.

 UML 2 AD BPMN BPEL4WS SYMEX

Number of basic constructs 13 11 4 5
Support of high-level semantics

Flow representation + + + +

Conditions and effects + + + +

Role assignment + + + +

Hierarchy representation + + - +

Feedback loops - +/- - +

Support of low-level workflow

patterns (fully and partially sup-

ported)

16 17 14 17

Degree of efficiency

(supported semantics+patterns

divided by the number of basic

constructs)

1,54 1,95 4,25 4,4

Table 3.3: Overall comparison of SYMEX to other approaches

Based on the aggregated results of Table 3.3 we can make the following claims:

1. SYMEX proves to be capable of capturing all aspects of high-level business descriptions

that we have set as minimum requirements in Section 3.2.

2. SYMEX proves to support 17 workflow patterns and together with BPMN are the two most

efficient approaches for encoding low-level workflow execution.

3. SYMEX has five (5) basic constructs and comparing its capability of supporting high and

low-level descriptions of workflow processes, makes it a more concise and at the same

time more efficient approach than the others.

Chapter 3 – SYMEX: A Systems Theory based Framework for Workflow Modelling and Execution

92

3.6 Conclusions

One of the main goals of workflow process modelling is to establish precise structure–function

relationships between the dynamics of a business environment and computer based execution of

business activities. This was traditionally accomplished by manually translating high-level descrip-

tions of process models to low-level code for workflow execution purposes. Only recently reported

research has proposed some mappings between high-level descriptions and low-level execution

semantics, but this research is still in early stages and faces an number of issues, as discussed in

Chapter 2.

In order to address our first research objective of integrating high-level with low-level execution

semantics, we have defined a number of requirements for an integrated approach in Section 3.2.

Then, inspired by Systems Theory we visualized a workflow model as an entity and the two mod-

els (high-level and low-level) as the elements of this entity. In addition, the concept of hierarchy

proposed by Systems Theory helped us to define hierarchical models where the upper layers are

depicting high-level descriptions and lower-layers encode the execution semantics. The result was

the definition of SYMEX, a Systems Theory based framework that encodes workflow processes, as

a set of Activities taking Inputs and producing Outputs. Activities are executed via the means of

their execution Mechanisms and are activated by their Control. The mathematical descriptions of

the concepts were also defined in order to provide a sound foundation for automatic validation

and computer-based execution of the modelled workflow processes.

After the theory, we have made an analysis of the framework in terms of its capability of captur-

ing and representing high-level descriptions and low-level workflow processes in an integrated

way. SYMEX proved to comply with the set of requirements we have defined in Section 3.2 and

the comparison with other workflow modelling approaches in Section 3.5 showed the advantage

of the framework in terms of its degree of efficiency in modelling workflow processes. However,

for further assessing the applicability of SYMEX in business process scenarios, we need to provide

a mechanism for executing the integrated workflow process models. This is the main objective of

the next Chapter.

93

4 Application of SYMEX

4.1 Introduction

In Chapter 3, we introduced our theoretical framework, SYMEX, in terms of its main concepts and

their expressiveness capability. We then analysed and discussed how SYMEX integrates business

semantics captured in high-level descriptions and workflow execution patterns encoded in low-

level descriptions. However, for assessing further the applicability of SYMEX in business process

scenarios, this Chapter proposes an approach to develop a prototype of SYMEX and present an

implemented workflow execution engine that executes SYMEX models.

Specifically, we propose an XML-based implementation approach in order to design and develop a

working prototype of SYMEX. We choose XML because it can be processed easily by computers,

and it is an extensible and open cross-platform W3C standard, endorsed by software industry

market leaders [178-181]. This Chapter also demonstrates how constraint-based reasoning

adopted by SYMEX models can facilitate and accelerate adaptation of processes in comparison

with approaches that explicitly sequence activities of processes. Finally, we present the workflow

inference engine we have implemented in order to execute SYMEX models and discuss the Infor-

mation System modelled with SYMEX.

The structure of this Chapter is as follows. Section 4.2 presents our XML-based implementation

approach. Section 4.3 applies SYMEX modelling on a business process derived from the account-

ing domain. Then, Section 4.4 makes a comparative analysis of change management between a

SYMEX model and a UML Activity Diagram model. Section 4.5 describes the constraint-based al-

gorithm of our implemented workflow inference engine. Section 4.6 discusses the application of

SYMEX for an Information System and finally, Section 4.7 concludes the Chapter.

Chapter 4 – Application of SYMEX

94

4.2 Process modelling

In Chapter 3, we have formally defined the concepts of our framework, their properties, and rela-

tionships. This Section encodes this logic using XML technology, defining the concepts of SYMEX

and the relationships between them in a top-down approach. At a top level, we have the concept

of Process. So beginning by the definition of a Process, we describe its detailed elements.

4.2.1 Process

A business process is defined as an element of type Process having the following

attributes:

1. ID, which is the unique identifier of the process

2. Name, which is a descriptive name of the process

3. Codename, which is the codename used by the execution engine (see Section 4.5)

4. Description, which describes the process.

The elements of the Process are:

1. Entity Pool that includes elements of types Schemas, Controls, and Mechanisms.

2. Activities that includes all the elements of type Activity.

Figure 4.1: Process: attributes and elements

Chapter 4 – Application of SYMEX

95

4.2.2 Entity Pool

4.2.2.1 Schemas

Schemas is an element including all the elements of type Schema. Element of type Schema is

defined inside the Entity Pool of the Process, as there may be Activities with common Inputs

and Outputs inside the Process. Thus, Inputs and Outputs of Activities are of type

Schema,

Schema has one attribute:

1. ID, which is the unique identifier of the Schema

The elements of the Schema are:

1. Name, which is a descriptive name of the Schema

2. Description, which describes the Schema

3. XSD, which is an XML Schema Definition describing the structure of the Schema. A valid

instance of a Schema is essentially an XML validated by its XSD.

Figure 4.2: Schema: attributes and elements

Chapter 4 – Application of SYMEX

96

4.2.2.2 Controls

Controls is an element including all the elements of type Control. Element of type Control is

defined inside the Entity Pool of the Process, as there may be Activities with common Con-

trols inside the Process.

Control has one attribute:

1. ID, which is the unique identifier of the Control

The elements of the Control are:

1. Name, which is a descriptive name of the Control

2. Codename, which is the codename used by the execution engine (see Section 4.5)

3. Condition, which is a Boolean expression containing states of Activities of the process

and data from elements of type Schema (Inputs).

Figure 4.3: Control: attributes and elements

Chapter 4 – Application of SYMEX

97

4.2.2.3 Mechanisms

Mechanisms is an element including all the elements of type Mechanism. Element of type

Mechanism is defined inside the Entity Pool of the Process, as there may be Activities with

common Mechanisms inside the Process.

Mechanism has one attribute:

1. ID, which is the unique identifier of the Mechanism

The elements of the Mechanism are:

1. Name, which is a descriptive name of the Mechanism

2. Description, which describes the Mechanism

3. Type. There are 3 different types of Mechanism:

a) Role; this type of Mechanism defines one or more roles. When this Mechanism is

applied to an Activity, only the roles defined in the Mechanism can enact the Ac-

tivity. In this case the element Roles of Mechanism is used to define the avail-

able roles in XML format.

b) Component; this type of Mechanism defines execution of a software compo-

nent. When this Mechanism is applied to an Activity, the defined component is

executed. In this case the element:

1. ProgID is used to define the Programmatic Id of the software compo-

nent, e.g. ExampleObject.dll,

2. Method is used to define the invoked method of the software compo-

nent, e.g. CalculateTax() and

3. Arguments are used to define the input parameters of the software

component, e.g. Invoice.TotalAmount. Arguments use subset of the In-

put elements of Activities.

After the execution of the software component, the produced output parameter

is set as Output (element of type Schema) of the Activity.

c) XSLT; this type of Mechanism defines a transformation on the XML structure

containing the Input (element of type Schema) of the Activity. In this case the

element XSLT is used to define the XSL Transformation. The result of the trans-

formation is either set as input parameter to a Mechanism of type Component (if

there is one available) or is directly set as Output (element of type Schema) of

the Activity.

Chapter 4 – Application of SYMEX

98

Figure 4.4: Mechanism: attributes and elements

Chapter 4 – Application of SYMEX

99

4.2.3 Activities

Activities is an element including all the elements of type Activity.

Activity has the following attributes:

1. ID, which is the unique identifier of the Activity

2. Name, which is a descriptive name of the Activity

3. CodeName, which is the codename used by the execution engine (see Section 4.5)

4. Description, which describes the Activity

5. PendingJobInfo, which describes in a XML-based format the information that will be

exposed to the user when an Activity waits for human intervention. PendingJobInfo

uses data from the Input (element of type Schema) of the Activity.

6. ControlSynch, which is a Boolean expression containing data from elements of type

Control of the Activity.

Figure 4.5: Activity: attributes

An Activity has the following elements:

1. Inputs, which are of type Schema and use the reference ID to resolve an exact

Schema from the Entity Pool.

2. Outputs, which are of type Schema and use the reference ID to resolve an exact

Schema from the Entity Pool. Outputs have also one attribute: RuntimeMainOut-

put; this is used for execution purposes, as the current implementation of our workflow

inference engine (see Section 4.5), assumes that an Activity can produce only one Out-

put, while SYMEX models allow for multiple outputs.

Chapter 4 – Application of SYMEX

100

3. Controls, which are of type Control and use the reference ID to resolve an exact Con-

trol from the Entity Pool.

4. Mechanisms, which are of type Mechanism and use the reference ID to resolve an

exact Mechanism from the Entity Pool.

Figure 4.6: Activity: elements

Chapter 4 – Application of SYMEX

101

4.2.4 XML Schema Definition

Figure 4.7 presents the entire XML Schema Definition (XSD) that captures SYMEX constructs.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:complexType name="ActivitiesType">
 <xs:sequence>
 <xs:element name="Activity" type="ActivityType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ActivityType">
 <xs:sequence>
 <xs:element name="Inputs" type="InputsType"/>
 <xs:element name="Outputs" type="OutputsType"/>
 <xs:element name="Controls" type="ControlsRefType"/>
 <xs:element name="Mechanisms" type="MechanismsRefType"/>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:string" use="required"/>
 <xs:attribute name="Name" type="xs:string" use="required"/>
 <xs:attribute name="CodeName" type="xs:string" use="required"/>
 <xs:attribute name="Description" type="xs:string" use="required"/>
 <xs:attribute name="PendingJobInfo" type="xs:string" use="required"/>
 <xs:attribute name="ControlSynch" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="ControlType">
 <xs:sequence>
 <xs:element name="Name"/>
 <xs:element name="CodeName"/>
 <xs:element name="Condition"/>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="ControlsType">
 <xs:sequence>
 <xs:element name="Control" type="ControlType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ControlsRefType">
 <xs:sequence>
 <xs:element name="Control" type="ItemType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="InputsType">
 <xs:sequence>
 <xs:element name="Schema" type="ItemType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ItemType">
 <xs:attribute name="ID" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="MechanismType">
 <xs:sequence>
 <xs:element name="Name"/>
 <xs:element name="Description"/>
 <xs:element name="Type"/>
 <xs:element name="ProgID"/>
 <xs:element name="Method"/>
 <xs:element name="Arguments"/>
 <xs:element name="Roles"/>
 <xs:element name="XSLT"/>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="MechanismsType">
 <xs:sequence>
 <xs:element name="Mechanism" type="MechanismType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="MechanismsRefType">
 <xs:sequence>
 <xs:element name="Mechanism" type="ItemType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="OutputType">
 <xs:sequence>
 <xs:element name="Schema" type="ItemType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="OutputsType">
 <xs:sequence>
 <xs:element name="Schema" type="ItemType"/>
 </xs:sequence>
 <xs:attribute name="RuntimeMainOutput" type="xs:string" use="required"/>

Chapter 4 – Application of SYMEX

102

 </xs:complexType>
 <xs:element name="Process">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="EntityPool" type="EntityPoolType" maxOccurs="unbounded"/>
 <xs:element name="Activities" type="ActivitiesType" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:string" use="required"/>
 <xs:attribute name="Name" type="xs:string" use="required"/>
 <xs:attribute name="CodeName" type="xs:string" use="required"/>
 <xs:attribute name="Description" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="SchemaType">
 <xs:sequence>
 <xs:element name="Name"/>
 <xs:element name="Description"/>
 <xs:element name="XSD"/>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="SchemasType">
 <xs:sequence>
 <xs:element name="Schema" type="SchemaType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="EntityPoolType">
 <xs:sequence>
 <xs:element name="Schemas" type="SchemasType"/>
 <xs:element name="Controls" type="ControlsType"/>
 <xs:element name="Mechanisms" type="MechanismsType"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Figure 4.7: XML Schema Definition for capturing SYMEX constructs

Chapter 4 – Application of SYMEX

103

4.3 Application of SYMEX modelling

This Section applies SYMEX modelling on a business process derived from the accounting domain.

First, the business process is described in natural language and then its semantics are captured

using SYMEX approach. At the end of the Section, we present the corresponding process descrip-

tion in terms of the XML-based implementation we have proposed in the previous Section of this

Chapter.

4.3.1 Process description

The business process we model is based on the process realized at the Accounting Office of Ath-

ens University of Economics and Business [182] that we recorded in September of 2008. Names

in bold indicate names of Activities, Roles, Inputs and Outputs of the process.

Athens University of Economics and Business has an Accounting Office that is responsible for

all the purchases of the various departments of the University. Whenever a department wants to

purchase something, the secretary of the department makes a Purchase Request to the Ac-

counting Office. The Accounting Office registers the Purchase Request and it either ap-

proves or disapproves it. If the Purchase Request is approved, the secretary of the

department is informed and contacts the Supplier to order the approved items. The Sup-

plier then issues an Invoice for the ordered items and the Accounting Office receives and

registers the Invoice. Finally, when the secretary of the department informs the Account-

ing Office that the items are delivered and checked, the Accounting Office issue a Pay-

ment Order and a Check for the Supplier, based on the approved Purchase Request and

the registered Invoice. The Supplier is given the Check and the Accounting Office re-

ceives a Payment Receipt.

Chapter 4 – Application of SYMEX

104

4.3.2 SYMEX model

The SYMEX model of the example is composed of two levels:

1. The first level consists of three Activities (Figure 4.8):

a. A1: Process Purchase Request,

b. A2: Process Order and

c. A3: Process Payment.

2. The second level, consists of the decomposition of the aforementioned Activities in three

separate sub-models, namely:

a. Decomposition of Activity A1 (Figure 4.9)

i. A1.1: Register Purchase Request and

ii. A1.2: Approve Purchase Request

b. Decomposition of Activity A2 (Figure 4.10)

i. A2.1: Order Items,

ii. A2.2: Receive Supplier’s Invoice and

iii. A2.3: Receive Ordered Items

c. Decomposition of Activity A3 (Figure 4.11)

i. A3.1: Issue Payment Order,

ii. A3.2: Issue Check and

iii. A3.3: Receive Payment Receipt

Figure 4.8 captures the first level of SYMEX model as a high-level description consisting of three

Activities.

A1=Process
Purchase
Request Output =

Processed
Purchase
Request

Input =
Purchase
Request

Output =
Invoice

data
&

Order
status

Input =
Processed
Purchase
Request

Output =
Payment
data

Input =
Processed

Purchase Request
&

Invoice data
&

Order status

A2=
Process Order

A3=
Process
Payment

Figure 4.8: SYMEX model - High-level description of business process

Chapter 4 – Application of SYMEX

105

4.3.2.1 Decomposition of Activity A1: Process Purchase Request

If we focus in composite Activity A1: Process Purchase Request and decompose it, it con-

sists of two atomic Activities:

(1) A1.1: Register Purchase Request and

(2) A1.2: Approve Purchase Request.

Figure 4.9 shows the decomposed Activity A1. Note that the Input and Output of Activity A1 is

used in the decomposition by Activity A1.1 and Activity A1.2 respectively. In this level we also

encode actual Mechanisms of the Activities and actual Controls.

Figure 4.9: SYMEX model - Decomposition of Activity A1

Chapter 4 – Application of SYMEX

106

4.3.2.2 Decomposition of Activity A2: Process Order

Composite Activity A2: Process Order is also further decomposed to atomic Activities:

(1) A2.1: Order Items

(2) A2.2: Receive Supplier’s Invoice and

(3) A2.3: Receive Ordered Items.

Figure 4.10 shows the decomposition of Activity A2.

Figure 4.10: SYMEX model - Decomposition of Activity A2

Chapter 4 – Application of SYMEX

107

4.3.2.3 Decomposition of Activity A3: Process Payment

Finally, composite Activity A3: Process Payment is decomposed to:

(1) A3.1: Issue Payment Order,

(2) A3.2: Issue Check and

(3) A3.3: Receive Payment Receipt.

Figure 4.11 shows this decomposition.

Figure 4.11: SYMEX model - Decomposition of Activity A3

Chapter 4 – Application of SYMEX

108

4.3.3 Process description

The corresponding process description of the above SYMEX model, based on the XML schema

introduced in Section 4.2.4 of this Chapter, is shown in Figure 4.12.
<Process ID="{0936145D091245D29DC2EE656D04DE0E112200715116}" Name="THESIS" CodeName="ExampleProcess" Descrip-
tion="Example of a business process">
 <EntityPool>
 <Schemas>
 <Schema ID="{A0F391B4A8A840BA919E90DB80E341DD11220071544}">
 <Name>Purchase Request</Name>
 <Description/>
 <XSD/>
 </Schema>
 <Schema ID="{F5ED1A9325554EAA8776208C75F3A4EA112200715415}">
 <Name>Processed Purchase Request</Name>
 <Description/>
 <XSD/>
 </Schema>
 <Schema ID="{02C629B897DB4B5BAF22A50E43EF6E7E112200715441}">
 <Name>Invoice data</Name>
 <Description/>
 <XSD/>
 </Schema>
 <Schema ID="{3E059881C1B34B3CAA85C5D410B3849E112200715449}">
 <Name>Order status</Name>
 <Description/>
 <XSD/>
 </Schema>
 <Schema ID="{451E3B1DF1CD46CBBEB6971FA7ECBAB3112200715515}">
 <Name>Payment data</Name>
 <Description/>
 <XSD/>
 </Schema>
 <Schema ID="{D9D6EE0FE0F34003A4C7D19B0608284B112200715624}">
 <Name>Registered Purchase Request</Name>
 <Description/>
 <XSD/>
 </Schema>
 <Schema ID="{31ADFEC59BE34E6394C495FE073F5D351122007151321}">
 <Name>Supplier's Invoice</Name>
 <Description/>
 <XSD/>
 </Schema>
 <Schema ID="{5B3A1CAF9E954CC59511151DD626FD7C1122007151559}">
 <Name>Order data</Name>
 <Description/>
 <XSD/>
 </Schema>
 <Schema ID="{18B0FFC2660E425DB5E6BAF9DD1E577A1122007152249}">
 <Name>Payment Order data</Name>
 <Description/>
 <XSD/>
 </Schema>
 <Schema ID="{C91595F791144ECA8FB17A9085B20D8D1122007152318}">
 <Name>Check data</Name>
 <Description/>
 <XSD/>
 </Schema>
 <Schema ID="{8A494A610897430FB1C4275E09FB1BD31122007152329}">
 <Name>Supplier's Payment Receipt</Name>
 <Description/>
 <XSD/>
 </Schema>
 </Schemas>
 <Controls>
 <Control ID="{264A4EA7D1E14FFC8AA2E0CB4353B33B11220071584}">
 <Name>Control of A12</Name>
 <CodeName>ControlA12</CodeName>
 <Condition>ActSt("A11")=executed</Condition>
 </Control>
 <Control ID="{AAAB64EF47374A4E898A62FA89087AC51122007151235}">
 <Name>Control of A21</Name>
 <CodeName>ControlA21</CodeName>
 <Condition>ActSt("A12")=executed AND PRequest.approved=true</Condition>
 </Control>
 <Control ID="{9B3BB7AACE2F4DB5987AB851DFB57FBE1122007151519}">
 <Name>Control of A22</Name>
 <CodeName>ControlA22</CodeName>
 <Condition>ActSt("A21")=executed</Condition>
 </Control>
 <Control ID="{66ABBAEF58224D0CA06489E703AFE4861122007151747}">
 <Name>Control of A23</Name>

Chapter 4 – Application of SYMEX

109

 <CodeName>ControlA23</CodeName>
 <Condition>ActSt("A22")=executed</Condition>
 </Control>
 <Control ID="{9A935605F2184EC7ACCCB582AB930A811122007152557}">
 <Name>Control of A31</Name>
 <CodeName>ControlA31</CodeName>
 <Condition>ActSt("A23")=executed AND Order.received=true</Condition>
 </Control>
 <Control ID="{984B92A8BD274969ADEA1D835856DF2B1122007152643}">
 <Name>Control of A32</Name>
 <CodeName>ControlA32</CodeName>
 <Condition>ActSt("A31")=executed</Condition>
 </Control>
 <Control ID="{51C57080191D47EBA75DDF414738F5881122007152835}">
 <Name>Control of A33</Name>
 <CodeName>ControlA33</CodeName>
 <Condition>ActSt("A32")=executed</Condition>
 </Control>
 </Controls>
 <Mechanisms>
 <Mechanism ID="{58F847CA8B684AC99B4DFB62B93D93E5112200715932}">
 <Name>Component PurchaseRequest.Save</Name>
 <Description/>
 <Type>Component</Type>
 <ProgID>PurchaseRequest</ProgID>
 <Method>Save</Method>
 <Arguments>Input</Arguments>
 <Roles/>
 <XSLT/>
 </Mechanism>
 <Mechanism ID="{F34C7A96C438474E90AB571DB3DE1EBD112200715101}">
 <Name>Component PurchaseRequest.Approve</Name>
 <Description/>
 <Type>Component</Type>
 <ProgID>PurchaseRequest</ProgID>
 <Method>Approve</Method>
 <Arguments>Input</Arguments>
 <Roles/>
 <XSLT/>
 </Mechanism>
 <Mechanism ID="{78DE5A2323F245A0B7F193FCFEE41F0F112200715211}">
 <Name>Role Dept's Secretary</Name>
 <Description/>
 <Type>Role</Type>
 <ProgID/>
 <Method/>
 <Arguments/>
 <Roles>DptsSecretary</Roles>
 <XSLT/>
 </Mechanism>
 <Mechanism ID="{52948139BC234496A438FAF897085112112200715206}">
 <Name>Role Accounting Office</Name>
 <Description/>
 <Type>Role</Type>
 <ProgID/>
 <Method/>
 <Arguments/>
 <Roles>AccountingOffice</Roles>
 <XSLT/>
 </Mechanism>
 <Mechanism ID="{47CFD8CD48844F148E1E792A71E9299D1122007152413}">
 <Name>Component PaymentOrder.Issue</Name>
 <Description/>
 <Type>Component</Type>
 <ProgID>PaymentOrder</ProgID>
 <Method>Issue</Method>
 <Arguments>Input</Arguments>
 <Roles/>
 <XSLT/>
 </Mechanism>
 <Mechanism ID="{3A785AF9A4E64FFFB27E89B6D693D1901122007152431}">
 <Name>Component Check.Issue</Name>
 <Description/>
 <Type>Component</Type>
 <ProgID>Check</ProgID>
 <Method>Issue</Method>
 <Arguments>Input</Arguments>
 <Roles/>
 <XSLT/>
 </Mechanism>
 <Mechanism ID="{C4C7FE4F75354055BF55C23F6BE7B91F1122007152445}">
 <Name>Component Payment.GetReceipt</Name>
 <Description/>
 <Type>Component</Type>
 <ProgID>Payment</ProgID>
 <Method>GetReceipt</Method>

Chapter 4 – Application of SYMEX

110

 <Arguments>Input</Arguments>
 <Roles/>
 <XSLT/>
 </Mechanism>
 <Mechanism ID="{C4C7FE4F753540KJGHKSFHSD981F1122007152445}">
 <Name>Component Order.Initiate</Name>
 <Description/>
 <Type>Component</Type>
 <ProgID>Order</ProgID>
 <Method>Initiate</Method>
 <Arguments>Input</Arguments>
 <Roles/>
 <XSLT/>
 </Mechanism>
 <Mechanism ID="{C4C7FE4567890LKSDFHJKLSDJF98341122007152445}">
 <Name>Component Invoice.Register</Name>
 <Description/>
 <Type>Component</Type>
 <ProgID>Invoice</ProgID>
 <Method>Register</Method>
 <Arguments>Input</Arguments>
 <Roles/>
 <XSLT/>
 </Mechanism>
 <Mechanism ID="{KDFSGSDIOFOF097ADSGF354T4GF41122007152445}">
 <Name>Component Order.Receive</Name>
 <Description/>
 <Type>Component</Type>
 <ProgID>Order</ProgID>
 <Method>Receive</Method>
 <Arguments>Input</Arguments>
 <Roles/>
 <XSLT/>
 </Mechanism>
 </Mechanisms>
 </EntityPool>
 <Activities>
 <Activity ID="{740E9B3BE07F47C6A92E6BAFFD06A489112200715335}" Name="Process Purchase Request" Code-
Name="" Description="" PendingJobInfo="" ControlSynch="">
 <Inputs>
 <Item ID="{A0F391B4A8A840BA919E90DB80E341DD11220071544}"/>
 </Inputs>
 <Outputs RuntimeMainOutput="{F5ED1A9325554EAA8776208C75F3A4EA112200715415}">
 <Item ID="{F5ED1A9325554EAA8776208C75F3A4EA112200715415}"/>
 </Outputs>
 <Controls/>
 <Mechanisms>
 <Item ID="{52948139BC234496A438FAF897085112112200715206}"/>
 </Mechanisms>
 </Activity>
 <Activity ID="{55C7252CB77849DC95F9484B00A48C34112200715345}" Name="Process Order" CodeName=""
Description="" PendingJobInfo="" ControlSynch="">
 <Inputs>
 <Item ID="{F5ED1A9325554EAA8776208C75F3A4EA112200715415}"/>
 </Inputs>
 <Outputs RuntimeMainOutput="{02C629B897DB4B5BAF22A50E43EF6E7E112200715441}">
 <Item ID="{02C629B897DB4B5BAF22A50E43EF6E7E112200715441}"/>
 <Item ID="{3E059881C1B34B3CAA85C5D410B3849E112200715449}"/>
 </Outputs>
 <Controls/>
 <Mechanisms>
 <Item ID="{52948139BC234496A438FAF897085112112200715206}"/>
 <Item ID="{78DE5A2323F245A0B7F193FCFEE41F0F112200715211}"/>
 </Mechanisms>
 </Activity>
 <Activity ID="{F5E7A250DDA142EA8081D94AE1367BE0112200715354}" Name="Process Payment" CodeName=""
Description="" PendingJobInfo="" ControlSynch="">
 <Inputs>
 <Item ID="{F5ED1A9325554EAA8776208C75F3A4EA112200715415}"/>
 <Item ID="{02C629B897DB4B5BAF22A50E43EF6E7E112200715441}"/>
 <Item ID="{3E059881C1B34B3CAA85C5D410B3849E112200715449}"/>
 </Inputs>
 <Outputs RuntimeMainOutput="{451E3B1DF1CD46CBBEB6971FA7ECBAB3112200715515}">
 <Item ID="{451E3B1DF1CD46CBBEB6971FA7ECBAB3112200715515}"/>
 </Outputs>
 <Controls/>
 <Mechanisms>
 <Item ID="{52948139BC234496A438FAF897085112112200715206}"/>
 </Mechanisms>
 </Activity>
 <Activity ID="{F7A00E39831E4732833AED9C543BC066112200715556}" Name="Register Purchase Request" Code-
Name="RegisterPurchaseRequest" Description="" PendingJobInfo="" ControlSynch="">
 <Inputs>
 <Item ID="{A0F391B4A8A840BA919E90DB80E341DD11220071544}"/>
 </Inputs>
 <Outputs RuntimeMainOutput="{D9D6EE0FE0F34003A4C7D19B0608284B112200715624}">

Chapter 4 – Application of SYMEX

111

 <Item ID="{D9D6EE0FE0F34003A4C7D19B0608284B112200715624}"/>
 </Outputs>
 <Controls/>
 <Mechanisms>
 <Item ID="{58F847CA8B684AC99B4DFB62B93D93E5112200715932}"/>
 <Item ID="{52948139BC234496A438FAF897085112112200715206}"/>
 </Mechanisms>
 </Activity>
 <Activity ID="{8981E2D2CB99483C8837A5B0C277DA3111220071566}" Name="Approve Purchase Request" Code-
Name="ApprovePurchaseRequest" Description="" PendingJobInfo="" ControlSynch="ControlA12">
 <Inputs>
 <Item ID="{D9D6EE0FE0F34003A4C7D19B0608284B112200715624}"/>
 </Inputs>
 <Outputs RuntimeMainOutput="{F5ED1A9325554EAA8776208C75F3A4EA112200715415}">
 <Item ID="{F5ED1A9325554EAA8776208C75F3A4EA112200715415}"/>
 </Outputs>
 <Controls>
 <Item ID="{264A4EA7D1E14FFC8AA2E0CB4353B33B11220071584}"/>
 </Controls>
 <Mechanisms>
 <Item ID="{F34C7A96C438474E90AB571DB3DE1EBD112200715101}"/>
 <Item ID="{52948139BC234496A438FAF897085112112200715206}"/>
 </Mechanisms>
 </Activity>
 <Activity ID="{18780860411E43008E93A3B26DEC12F5112200715111}" Name="Order Items" Code-
Name="OrderItems" Description="" PendingJobInfo="" ControlSynch=" ControlA21">
 <Inputs>
 <Item ID="{F5ED1A9325554EAA8776208C75F3A4EA112200715415}"/>
 </Inputs>
 <Outputs RuntimeMainOutput="{5B3A1CAF9E954CC59511151DD626FD7C1122007151559}">
 <Item ID="{5B3A1CAF9E954CC59511151DD626FD7C1122007151559}"/>
 </Outputs>
 <Controls>
 <Item ID="{AAAB64EF47374A4E898A62FA89087AC51122007151235}"/>
 </Controls>
 <Mechanisms>
 <Item ID="{78DE5A2323F245A0B7F193FCFEE41F0F112200715211}"/>
 <Item ID="{C4C7FE4F753540KJGHKSFHSD981F1122007152445}"/>
 </Mechanisms>
 </Activity>
 <Activity ID="{3C4CF23A64234C8E83ED4DE0905048421122007151311}" Name="Receive Supplier's Invoice"
CodeName="ReceiveSuppliersInvocie" Description="" PendingJobInfo="" ControlSynch=" ControlA22">
 <Inputs>
 <Item ID="{31ADFEC59BE34E6394C495FE073F5D351122007151321}"/>
 </Inputs>
 <Outputs RuntimeMainOutput="{02C629B897DB4B5BAF22A50E43EF6E7E112200715441}">
 <Item ID="{02C629B897DB4B5BAF22A50E43EF6E7E112200715441}"/>
 </Outputs>
 <Controls>
 <Item ID="{9B3BB7AACE2F4DB5987AB851DFB57FBE1122007151519}"/>
 </Controls>
 <Mechanisms>
 <Item ID="{52948139BC234496A438FAF897085112112200715206}"/>
 <Item ID="{C4C7FE4567890LKSDFHJKLSDJF98341122007152445}"/>
 </Mechanisms>
 </Activity>
 <Activity ID="{37822B583261498EAC05113898A968B31122007151543}" Name="Receive Ordered Items" Code-
Name="ReceiveOrderedItems" Description="" PendingJobInfo="" ControlSynch="ControlA23">
 <Inputs>
 <Item ID="{5B3A1CAF9E954CC59511151DD626FD7C1122007151559}"/>
 <Item ID="{02C629B897DB4B5BAF22A50E43EF6E7E112200715441}"/>
 </Inputs>
 <Outputs RuntimeMainOutput="{3E059881C1B34B3CAA85C5D410B3849E112200715449}">
 <Item ID="{3E059881C1B34B3CAA85C5D410B3849E112200715449}"/>
 </Outputs>
 <Controls>
 <Item ID="{66ABBAEF58224D0CA06489E703AFE4861122007151747}"/>
 </Controls>
 <Mechanisms>
 <Item ID="{78DE5A2323F245A0B7F193FCFEE41F0F112200715211}"/>
 <Item ID="{KDFSGSDIOFOF097ADSGF354T4GF41122007152445}"/>
 </Mechanisms>
 </Activity>
 <Activity ID="{D2450EF2B9E84D38B304400E711B542C1122007152158}" Name="Issue Payment Order" Code-
Name="IssuePaymentOrder" Description="" PendingJobInfo="" ControlSynch="ControlA31">
 <Inputs>
 <Item ID="{F5ED1A9325554EAA8776208C75F3A4EA112200715415}"/>
 <Item ID="{02C629B897DB4B5BAF22A50E43EF6E7E112200715441}"/>
 <Item ID="{3E059881C1B34B3CAA85C5D410B3849E112200715449}"/>
 </Inputs>
 <Outputs RuntimeMainOutput="{18B0FFC2660E425DB5E6BAF9DD1E577A1122007152249}">
 <Item ID="{18B0FFC2660E425DB5E6BAF9DD1E577A1122007152249}"/>
 </Outputs>
 <Controls>
 <Item ID="{9A935605F2184EC7ACCCB582AB930A811122007152557}"/>
 </Controls>

Chapter 4 – Application of SYMEX

112

 <Mechanisms>
 <Item ID="{52948139BC234496A438FAF897085112112200715206}"/>
 <Item ID="{47CFD8CD48844F148E1E792A71E9299D1122007152413}"/>
 </Mechanisms>
 </Activity>
 <Activity ID="{F8D0BCDE1D724EA38508EBDB7C91D245112200715224}" Name="Issue Check" Code-
Name="IssueCheck" Description="" PendingJobInfo="" ControlSynch="ControlA32">
 <Inputs>
 <Item ID="{18B0FFC2660E425DB5E6BAF9DD1E577A1122007152249}"/>
 </Inputs>
 <Outputs RuntimeMainOutput="{C91595F791144ECA8FB17A9085B20D8D1122007152318}">
 <Item ID="{C91595F791144ECA8FB17A9085B20D8D1122007152318}"/>
 </Outputs>
 <Controls>
 <Item ID="{984B92A8BD274969ADEA1D835856DF2B1122007152643}"/>
 </Controls>
 <Mechanisms>
 <Item ID="{52948139BC234496A438FAF897085112112200715206}"/>
 <Item ID="{3A785AF9A4E64FFFB27E89B6D693D1901122007152431}"/>
 </Mechanisms>
 </Activity>
 <Activity ID="{52BC4F5FCB084618A60C062CF7FEB04B1122007152212}" Name="Receive Payment Receipt"
CodeName="ReceivePaymentReceipt" Description="" PendingJobInfo="" ControlSynch="ControlA33">
 <Inputs>
 <Item ID="{8A494A610897430FB1C4275E09FB1BD31122007152329}"/>
 </Inputs>
 <Outputs RuntimeMainOutput="{451E3B1DF1CD46CBBEB6971FA7ECBAB3112200715515}">
 <Item ID="{451E3B1DF1CD46CBBEB6971FA7ECBAB3112200715515}"/>
 </Outputs>
 <Controls>
 <Item ID="{51C57080191D47EBA75DDF414738F5881122007152835}"/>
 </Controls>
 <Mechanisms>
 <Item ID="{52948139BC234496A438FAF897085112112200715206}"/>
 <Item ID="{C4C7FE4F75354055BF55C23F6BE7B91F1122007152445}"/>
 </Mechanisms>
 </Activity>
 </Activities>
</Process>

Figure 4.12: Process description in XML format

Chapter 4 – Application of SYMEX

113

4.3.4 Discussion

As shown in Figure 4.8, the first level of SYMEX model does not expose any implementation de-

tails (Controls or Mechanisms of Activities). This level represents the business process in an ab-

stract layer, showing the main classification of Activities and the information flow between them.

The three Activities are then further decomposed to three sub-models as shown in Figure 4.9,

Figure 4.10, and Figure 4.11. The models at this decomposed level may seem as separate but

they are ultimately connected through the relationships between their parent Activities. Moreover,

each of these models explicitly encodes how its parent Activity is implemented, modelling the

Controls and Mechanisms of the process. At the end, it is the information of this second level that

encodes the execution semantics of the process, which will be used for execution purposes by the

workflow inference engine.

The example of modelling a real business process derived from the accounting domain, was used

in order to demonstrate the basic methodology and principles of SYMEX modelling. For this, we

modelled only a small part of the University’s business process, in order to avoid many levels of

decomposition and an excessive set of models that would prevent the reader from easily follow-

ing and understanding SYMEX modelling. However, in more extended business processes the lev-

els of decomposition would be much more. If for example we would like to create a SYMEX model

covering all activities inside a University, we would have a high-level description with Activities:

A1: Finance Office, A2: Registry Office, A3: Departments etc. These Activities would be

further decomposed to A1.1 Tuition Fees, A1.2 Salaries, and A1.3 Payment and so on.

Therefore, it is evident that larger business processes result to more levels of decompositions and

an increasing set of models. Higher-levels of decomposition always depict high-level descriptions

of business processes, while final levels of decomposition always encode the execution semantics

of processes.

Chapter 4 – Application of SYMEX

114

4.4 Comparative analysis of change management

This Section presents a comparative analysis of change management between SYMEX models and

UML 2 Activity Diagrams [33]. Specifically, this analysis validates that constraint-based modelling

adopted by SYMEX is more efficient in terms of adaptation in comparison with modelling using

linear sequences of activities. The reason for selecting UML 2 Activity Diagram for this compara-

tive analysis is that all process modelling languages we reviewed in Chapter 2 follow the same

approach, sequencing activities of processes with the construction of linear relationships by using

controls flows in the models. Control flows encode traditional programming constructs such as if-

the-else, cases, while loops etc. Thus UML 2 Activity Diagram is representative of commonly used

modelling languages in terms of change management of process models.

4.4.1 Travel agency scenario

For the analysis, we employ a travel agency scenario [177] as follows. A travel agent undertakes

to fulfil the requirements of a trip for a customer, by arranging both the customer’s flight and ho-

tel accommodation. The customer requires that the flight’s actual date must be as close as possi-

ble to his desired date for travel, and that there must be available hotel accommodation for that

date. The task of the travel agent is to orchestrate external services for flight and hotel booking

in a way that meets the customer requirements. There are mutual dependencies between the

services, as hotel reservation can only be made after a suitable flight has been found. However,

the flight service depends also on the hotel booking service, as if there is no hotels’ availability for

the found date then an alternative flight must be sought.

The adaptation that will take place is a case where the travel agency extends its range of services

by providing additionally a car booking service. The newly added service of car booking, adds a

new set of dependencies to the existing services. A car booking can only be made after a hotel

reservation has been made. However, based on the customer’s demand if there is no cars’ avail-

ability then alternative flights and hotels must be sought.

Chapter 4 – Application of SYMEX

115

4.4.2 Modelling with UML 2 Activity Diagram

4.4.2.1 Initial UML 2 Activity Diagram

In this Section we model the travel agency scenario using UML 2 Activity diagram, as shown in

Figure 4.13.

INVOKE THE FLIGHT
BOOKING SERVICE

WITH FIRST CHOICE
DATE

INVOKE THE HOTEL
BOOKING SERVICE

WITH FIRST CHOICE
DATE

ROLLBACK & INVOKE
HOTEL SERVICE AND FLIGHT

BOOKING SERVICE WITH
ALTERNATIVE DATE

HOTEL AVAILABLE

FLIGH UNAVAILABLE

{continued until
alternative dates are
exhausted in which
case the process
terminates}

FLIGHT AVAILABLE

HOTEL UNAVAILABLE

ROLLBACK & INVOKE
HOTEL SERVICE AND FLIGHT

BOOKING SERVICE WITH
ALTERNATIVE DATE

Figure 4.13: UML 2 Activity Diagram for travel agency scenario [177]

The UML 2 Activity Diagram for the travel agency process, explicitly models that when the proc-

ess starts, two parallel activities are initiated; “Invoke flight booking service” and “Invoke hotel

booking service”. When acceptable date is found for both flight and hotel accommodation, the

process ends. Otherwise, the process roll backs and invokes again the two activities till an ac-

ceptable date is reached.

Chapter 4 – Application of SYMEX

116

4.4.2.2 Adaptation of UML 2 Activity Diagram

In order to introduce the new service in the previous UML 2 Activity Diagram we are required to

do modifications in several places as now three conditions need to be satisfied, as shown in Fig-

ure 4.14.

ROLLBACK & INVOKE
HOTEL, FLIGHT AND CAR
BOOKING SERVICE WITH

ALTERNATIVE DATE

INVOKE THE FLIGHT
BOOKING SERVICE

WITH FIRST CHOICE
DATE

INVOKE THE HOTEL
BOOKING SERVICE

WITH FIRST CHOICE
DATE

ROLLBACK & INVOKE
HOTEL, FLIGHT AND CAR
BOOKING SERVICE WITH

ALTERNATIVE DATE

HOTEL AVAILABLE

FLIGH UNAVAILABLE

FLIGHT AVAILABLE

HOTEL UNAVAILABLE

ROLLBACK & INVOKE
HOTEL, FLIGHT AND CAR
BOOKING SERVICE WITH

ALTERNATIVE DATE

INVOKE THE CAR
BOOKING SERVICE

WITH FIRST CHOICE
DATE

CAR AVAILABLE

{continued until
alternative dates are
exhausted in which
case the process
terminates}

CAR UNAVAILABLE

Figure 4.14: Adapted UML 2 Activity Diagram for travel agency scenario [177]

In the adapted UML 2 Activity Diagram, the newly added activity “Invoke car booking service” is

explicitly added as a parallel activity to “Invoke flight booking service” and “Invoke hotel booking

service”. Moreover, the termination of the process now depends on the synchronization of out-

puts from all the three activities and in case that one of them returns “no availability” or an unac-

ceptable date, the process roll backs and invokes again the three activities till an acceptable date

is reached.

Chapter 4 – Application of SYMEX

117

4.4.3 SYMEX modelling

4.4.3.1 Initial SYMEX model

In this Section, we model the travel agency scenario using SYMEX, as shown in Figure 4.15.

Figure 4.15: SYMEX model for travel agency scenario

The SYMEX model for the travel agency process includes three Atomic Activities, namely A1:

Invoke flight booking service, A2: Invoke hotel booking service and A3: Re-

peat search. Activity A3 is activated when its Control evaluates to ‘true’. The constraints speci-

fied by the Control are as follows:

(ActStA1 = executed AND ActStA2 = executed)
AND NOT

(FlightBooking.OutDate=HotelBooking.ArrivalDate
AND

 FlightBooking.ReturnDate=HotelBooking.DepartureDate)
Formula 4.1: Control of Activity A3 at the initial SYMEX model

The Control of Activity A3 encodes the business rule that was described in the travel agency sce-

nario: travel agent can only confirm a booking after a suitable set of dates has been found for

both flight and hotel booking. Otherwise, an alternative set of dates must be sought.

Chapter 4 – Application of SYMEX

118

4.4.3.2 Adaptation of SYMEX model

In order to introduce the new service in the previous SYMEX model, we create the model shown

in Figure 4.16.

Figure 4.16: Adapted SYMEX model for travel agency scenario

In the adapted SYMEX model, the newly added service “Invoke car booking service” is added as a

new Activity A4, with its Input and Output. Activities A1 and A2 remain the same while the Con-

trol of Activity A3: Repeat search is updated accordingly as follows:

Chapter 4 – Application of SYMEX

119

 (ActStA1 = executed AND ActStA2 = executed)
AND NOT

(FlightBooking.OutDate=HotelBooking.ArrivalDate
AND

 FlightBooking.ReturnDate=HotelBooking.DepartureDate
AND

 CarBooking.StartDate = HotelBooking.ArrivalDate
AND

 CarBooking.EndDate= HotelBooking.DepartureDate)

Formula 4.2: Control of Activity A3 at the adapted SYMEX model

4.4.4 Discussion of results

In Section 4.4.2 we modelled the travel agency scenario using UML 2 Activity Diagram technique.

In the adaptation of the scenario, we needed to add one more activity. The result was a total

number of five (5) changes to the initial model, as shown in Figure 4.17:

1. Redefinition of the concurrent activities after the initial activity

2. Redefinition of the concurrent activities before the Final Activity

3. Addition of a new Activity with the decision based on the car availability

4. Update of Activity that occurs when there is no flight availability

5. Update of Activity that occurs when there is no hotel availability

On the other hand, in Section 4.4.3, we modelled the same travel agency scenario using SYMEX

modelling and in the adaptation, we had a total number of two (2) changes, as shown in Figure

4.18:

1. Addition of new Activity A4=Invoke car booking service, defining its Input, Output, Con-

trol and execution Mechanism

2. Update of Control of Activity A3

The conclusion that can be made is that modelling a business process with the construction of

linear sequences of activities, like in the UML 2 Activity Diagrams, creates problems in change

management of processes. When a business process is sequenced using traditional programming

constructs (if-then-else, cases, while-loops etc.), the process designer needs to resolve all the

sequence of activities and the dependencies between them in order to adapt the process to the

new business needs. In large and more complex business processes, the adaptation process be-

comes a challenge and creates high maintenance costs.

On the other hand, constraint-based reasoning of SYMEX models proves to be easier and quicker

to adapt. In particular, SYMEX models capture Activities and their information flow and do not

provide any control flow constructs. The business rules are encoded in terms of constraints at the

Control of each Activity. In this way, Activities are not explicitly sequenced. As we showed in the

example of the travel agency scenario, the absence of control flow constructs eliminates the de-

Chapter 4 – Application of SYMEX

120

pendencies between Activities, enabling easier adaptation of the process by just adding the new

Activity and setting the relevant constraints at the Controls. Process designers working with

SYMEX models need to focus only on the change that needs to be done, not having to interfere

with any other irrelevant Activities. Thus, constraint-based approach adopted by SYMEX modelling

enables easy and quick adaptations of process models in response to business change.

ROLLBACK & INVOKE
HOTEL, FLIGHT AND CAR
BOOKING SERVICE WITH

ALTERNATIVE DATE

INVOKE THE FLIGHT
BOOKING SERVICE

WITH FIRST CHOICE
DATE

INVOKE THE HOTEL
BOOKING SERVICE

WITH FIRST CHOICE
DATE

ROLLBACK & INVOKE
HOTEL, FLIGHT AND CAR
BOOKING SERVICE WITH

ALTERNATIVE DATE

HOTEL AVAILABLE

FLIGH UNAVAILABLE

FLIGHT AVAILABLE

HOTEL UNAVAILABLE

ROLLBACK & INVOKE
HOTEL, FLIGHT AND CAR
BOOKING SERVICE WITH

ALTERNATIVE DATE

INVOKE THE CAR
BOOKING SERVICE

WITH FIRST CHOICE
DATE

CAR AVAILABLE

{continued until
alternative dates are
exhausted in which
case the process
terminates}

CAR UNAVAILABLE

Figure 4.17: Changes to UML 2 Activity Diagram for the travel agency scenario

1

2

4 5
3

Chapter 4 – Application of SYMEX

121

Figure 4.18: Changes to SYMEX model for the travel agency scenario

1

2

Chapter 4 – Application of SYMEX

122

4.5 Workflow inference engine

This Section describes the theory and the algorithm of our implemented workflow inference en-

gine, which we use for the execution of SYMEX models.

4.5.1 Theory

As we discussed in Section 2.4.2 of Chapter 2, constraint-based reasoning is a problem-solving

approach based on deductive reasoning. In our research, we conceptualize the problem of work-

flow execution in terms of a constraint satisfaction problem [162]. For the definition of the en-

gine’s algorithm, we focus on the execution semantics defined in Chapter 3, and briefly presented

below:

 An atomic Activity can be only in one of three possible states ‘available’ or ‘unavail-

able’ or ‘executed’:

ActStAi = f : Ai  {available  unavailable  executed}, Ai  AtAct(Σ)
and

ActSt(Σ):  i, 1 ≤ i ≤ n, Ai  Σ, ActStAi  ActSt(Σ), Ai  AtAct(Σ)

Formula 4.3: Definition of Activity States for a business process Σ

 Each atomic Activity of a SYMEX model can be executed whenever it is ‘available’:

( Ci  C(Ai), eval (Ci)=true), 1≤i≤n, Ai  AtAct(Σ)
 ActStAi = f : Ai  {available}

Formula 4.4: Definition of status ‘available’ for Activity Ai

 Inputs are used by the execution Mechanisms of atomic Activities in order to produce

their Output:

 Ai  Σ, Ai  AtAct(Σ) : ( j  I(Ai)  k  O(Ai)  m  M(Ai))
 m = f : j  k

Formula 4.5: Definition of execution Mechanism of Activity Ai

 The Inputs and the set of Activity States are used by Controls of atomic Activities to con-

strain their execution:

 Ai  Σ, Ai  AtAct(Σ) : ( j  I (Ai)  k  C (Ai))
 k = f : (j  ActSt(Σ)) {True  False}

Formula 4.6: Definition of Control of Activity Ai

4.5.2 Constraint-based algorithm

The main difference between common process execution engines, such as BPEL4WS engines

[183-185] and our inference engine is that the execution of our engine is based on constraint-

satisfaction and not on common programming structures. At each step of the execution, the en-

gine checks all the candidate activities to be executed, i.e. all the Activities of the Process except

from the ‘executed’ ones, and eventually executes those Activities that their constraints are being

Chapter 4 – Application of SYMEX

123

satisfied. The sequence of execution is thus implicit and can only be recorded during execution

and not in advance.

This Section describes the constraint-based algorithm of the workflow inference engine, using the

formulization defined in Chapter 3. We emphasize on the logic, so common programming error

checking of the actual source code are not included in the following pseudo-code listing.

Public Sub Execute (ActCodename, oInput, oProcess)

'-- Find the Activity Ai  Σ, based on the Codename of the Activity

f : (ActCodename)  Ai  Σ

'-- Check if the state of Activity Ai  Σ, is available and thus can be executed

if ActStAi ≠ f : (Ai)  available then Exit Sub

'-- For each Mechanism of Activity, check its type and act accordingly

 i, 1 ≤ i ≤ n, Mi  M(A)
select case type of Mi

case Component
call Mi.component.method(arguments)

Oi  O(A), Oi = return of execution
case XSLT

apply XSLT to Ii  I (A)

Oi  O(A), Oi = result of transformation
end select

'-- Set the state of Activity Ai  Σ, to executed

ActStAi = f : (Ai)  executed

'-- Check which other Activities of the process are available
Call CheckAvailableActivities (oProcess)
'--Create and Return XML
Return XML with status, error details

End Sub

Private Sub CheckAvailableActivities (oProces)
'-- Check each Activity of the Process whether it is ‘available’

 i, 1 ≤ i ≤ n, Ai  Σ
'-- If all Inputs are ‘available’, its Controls evaluate to ‘True’ and Activity has
not been executed, it is considered as ‘available’ and is being executed

if ( Ii  I (Ai), available(Ii)=true) 

( Ci  C(Ai), eval (Ci) = true) 

ActStAi ≠ f : (Ai)  executed then

f : (Ai)  available

'-- Call recursively method Execute

Call Execute (Ai.Codename, Ii  I (Ai), oProcess)
end if

End Sub

Table 4.1: Pseudo-code listing of constraint-based algorithm

Chapter 4 – Application of SYMEX

124

4.5.3 Implementation

After describing the constraint-based algorithm of the inference engine, this Section describes the

design and implementation of the engine. Current implementation is in MS Visual Basic 6, but the

code could be easily immigrated to Java [186] or .Net platform, as there is no use of Visual Basic

6 specific controls. The following UML class diagrams of the implemented workflow inference en-

gine, illustrate their attributes, operations and relationships.

Figure 4.19: UML Class Diagram of the implemented workflow inference engine

Chapter 4 – Application of SYMEX

125

Figure 4.20: UML Class Diagram: Activities and Activity classes

Figure 4.21: UML Class Diagram: Schemas and Schema classes

Figure 4.22: UML Class Diagram: Mechanisms and Mechanism classes

Chapter 4 – Application of SYMEX

126

Figure 4.23: UML Class Diagram: Controls and Control classes

As far as the data persistence of the inference engine is concerned, we use the Microsoft’s SQL

Server 2000 as our Relational Database Management System (RDBMS). Again, we use pure SQL

structures and constructs and we could easily use any other available RDBMS, such as Oracle,

mySQL etc. The following figure shows the tables in the database, their fields, and relationships.

Figure 4.24: Database diagram of the implemented workflow inference engine

Chapter 4 – Application of SYMEX

127

Finally, the implemented workflow inference engine runs as Component Object Model (COM+)

software component under the Microsoft Transaction Server (MTS), which provides automated

transaction and instance management, in order to ensure data consistency in the database in

case transactions are not completed successfully and have to be rolled back.

4.6 An Information System based on SYMEX

As we mentioned in Section 4.3, SYMEX has been applied for modelling the business processes of

the Accounting Office of Athens University of Economics and Business [182]. The information sys-

tem has been implemented in 2004 and since then, it has been working and supporting real busi-

ness needs. Next Sections discuss the business processes that have been modelled, the figures

from 5 years of use, and the overall conclusions from the development of the System.

4.6.1 Process models

In order to model all the aspects of business that takes place within the Accounting Office, the

development team ended with a number of 31 distinct SYMEX models and a total number of 267

Activities inside these models. The following table includes the list of modelled processes for the

implemented Information System.

Process

Codename

Modelled

Activities

Process

Codename

Modelled

Activities

1 ACCOUNT_MG 2 17 INTERNALORD_MG 8

2 ASSET_MG 11 18 INTINVENTRAN_MG 8

3 AUDITTRAIL_MG 2 19 INVENTORY_MG 7

4 BNKACCOUNT_MG 11 20 OPENBAL_MG 7

5 BUDGET_MG 13 21 PAYORD_MG 21

6 BUDGETREVISION_MG 12 22 PAYREC_MG 13

7 BUDGETSCENARIO_MG 7 23 PREPAYORD_MG 11

8 CASHBALANCE_MG 7 24 PRQ_MG 9

9 CASHIER_MG 8 25 PSAACCOUNT_MG 7

10 CHECK_MG 11 26 PSAPARAMS_MG 5

11 CONSOLREL_MG 5 27 REPORT_MG 10

12 EGLSACCOUNT_MG 8 28 SPLR_MG 6

13 EGLSPARAMS_MG 12 29 SUPPLSRCDOC_MG 18

14 EGLSSTATISTIC_MG 2 30 UNITMEASURES_MG 6

15 EMPLOYEE_MG 7 31 WAREHOUSE_MG 7

16 EXTRAIT_MG 6 Total Activities 267

Table 4.2: List of modelled Processes

Chapter 4 – Application of SYMEX

128

4.6.2 Figures

Table 4.3 has a number of interesting figures that we have extracted from the log files of the In-

formation System.

Working Period 5 years and 10 months (January 2004 – now)

Number of users 17

Number of SYMEX models 31

Number of distinct Activities modelled 267

Number of distinct Activities executed 212 – 79,40% of total Activities modelled

Number of executions 478615

Number of errors in total executions 6266 – 1,3% of total executions

Table 4.3: Figures from the Information System based on SYMEX

As shown in table above, there are modelled Activities that have not yet executed within the In-

formation System (22,60% - 55 out of 267). This is due to the modelling of Activities of the Pay-

roll System of the University that the corresponding sub-department has not yet used. As far as

the errors are concerned, from the 6266 recorded, 5423 of them were due to wrong user input.

This led the development team to refine data validation rules in end user forms of the System,

resulting to a number of only 37 error executions the last year. Moreover, the rest 843 errors

were due to timeouts because of connection issues with the database.

4.6.3 Discussion

The modelling of Activities of the Accounting Office was done by two designers in cooperation

with two members of the Office. The duration of process modelling kept about 3 months. During

this phase, SYMEX helped designers and members of the Office to communicate their knowledge

and proposals as the models proved easy to understand from people with no IT background and

this has accelerated the modelling process. After then there was a testing period of 1 month

where five members of the Accounting Office used the System simultaneously with the old one

the Office had.

The Information System started working officially in January of 2004. The first 2 months, there

was a need to adapt about 15 Activities based on the feedback we had from end users. Then in

2007, there was a need for a major redesign due to change of Greek legislation about purchases

from Universities. The corresponding SYMEX model was adapted in two weeks time and success-

fully applied to the System without any side effects. Since then, the Information System works

efficiently supporting all aspects of processes involved in the Accounting Office of the University.

Chapter 4 – Application of SYMEX

129

Overall, the development team as well as the University’s authorities are very satisfied from the

result combined with the time and the cost needed for the project. We consider this as one of the

toughest tests for the viability of SYMEX and we are glad that the outcome has mainly positive

messages. Finally, the general conclusions about the advantages of SYMEX based on the experi-

ence from this implementation are the following:

1. Quick modelling of business processes

2. Easy communication of models with people having no IT background

3. Quick adaptation of modelled processes

4. Efficient execution

Chapter 4 – Application of SYMEX

130

4.7 Conclusions

In this Chapter, we proposed an XML-based implementation approach in order to design and de-

velop a working prototype of SYMEX. We encoded the concepts, properties, and relationships of

SYMEX modelling in a top-down approach defining a Schema Definition (XSD). We chose XML

because it can be easily processed by computers, and it is an extensible and open cross-platform

W3C standard, endorsed by software industry market leaders [178-181]. Moreover, this XML-

based approach could be easily supported by a graphical tool that would export the correspond-

ing XML process descriptions of SYMEX models. On the other hand, XML may be considered as a

strict and rudimentary language. It could turn as a disadvantage in case we would want to enrich

our process descriptions with more semantics (such as OWL-s), in order to support automatic

discovery and execution.

Apart from the implementation approach, we applied SYMEX modelling on a business process

derived from the accounting domain. The example was used to demonstrate the basic methodol-

ogy and principles of SYMEX modelling. Specifically, we showed that higher-levels of decomposi-

tion always depict high-level descriptions of business processes, while final levels of

decomposition always encode the execution semantics of processes. One of the advantages of

SYMEX modelling is that the visual models are straightforward and we argue that are easy to

learn. On the other hand, there is no tool available yet for modelling business processes using

SYMEX notation and exporting the corresponding XML process description. At the end, however

easy and straightforward SYMEX modelling may be, it is a fact that most designers and develop-

ers use and trust well-established modelling approaches such as UML 2 Activity Diagrams and

BPMN and are reluctant to try something new and not extensively tested.

This Chapter also presented a comparative analysis of change management between SYMEX

models and UML 2 Activity Diagrams. The analysis confirmed that constraint-based modelling of

SYMEX is more efficient in terms of adaptation in comparison with modelling with the construction

of linear sequences of activities. Linear approach of modelling results in process designers need-

ing to resolve all the sequence of activities and the dependencies between them in order to adapt

processes to new business needs. This becomes a challenge when managing large and complex

business processes, creating high maintenance costs. On the other hand, constraint-based rea-

soning of SYMEX models proves to be easier and quicker to adapt. In particular, SYMEX models

do not provide any control flow constructs and they encode all business rules as constraints. This

approach reduces the dependencies between Activities enabling much easier adaptation of the

process. Process designers working with SYMEX models need to focus only on the change that

needs to be done and not on the whole of the process.

Chapter 4 – Application of SYMEX

131

Then, we presented the implementation approach for our workflow inference engine that exe-

cutes SYMEX models. The algorithm of the engine is based on constraint-based theory and the

execution of SYMEX models is a solution of a constraint-satisfaction problem; each Activity has a

number of constraints that need to be satisfied in order to execute. Moreover, the implemented

algorithm is not complex and can be easily implemented with any programming language. The

first version of the engine was implemented using MS Visual Basic 6, but the code could be easily

immigrated to Java [186] or .Net platform. Nevertheless, current implementation only supports

the execution of components that are installed in one computer machine. In the next versions we

plan to support web-service execution, as one of the main objectives of workflow technology is

the distributed execution of business processes across organizational and platform boundaries

using web-services. Finally, we discussed the implementation of the Information System in Ath-

ens University of Economics and Business, where SYMEX was applied as a modelling technique in

order to capture all aspects of the Accounting Office’s business processes.

132

133

5 Evaluation of the SYMEX Framework

5.1 Introduction

In Chapter 3, we introduced SYMEX and in Chapter 4, we assessed the frameworks applicability.

In this Chapter, we evaluate our approach with respect to the complexity of SYMEX models, ad-

dressing research objective RO3. As we argued in Chapter 2, to the best of our knowledge, there

is no integrated framework for modelling high-level process descriptions and low-level workflow

execution semantics. However, three proposed mappings for modelling and execution exist,

namely UML to BPEL4WS, BPMN to BPEL4WS and FBPML to OWL-s. Out of those three mappings,

we consider the BPMN to BPEL4WS mapping to be the most significant and widely used, and

therefore we are going to use it as the basis for comparison with our approach.

In order to prove that SYMEX is more efficient in producing easier to understand and maintain

process models than the BPMN to BPEL4WS mapping, we have reviewed a number of complexity

metrics for business processes. By applying such metrics, we can quantify the properties of

SYMEX framework that we have informally described in previous Chapters, namely reduced com-

plexity of the produced business process models that results in easier adaptation and maintain-

ability. The complexity metric we eventually employ for the evaluation is the Cross-Connectivity

metric, which can be applied to both BPMN and SYMEX models.

The structure of this Chapter is as follows. Section 5.2 discusses related research on metrics for

business process models. Section 5.3 presents the Cross-Connectivity metric that we have se-

lected for the evaluation. Section 5.4 describes the calculation steps of the metric and Section 5.5

applies the metric in a number of complexity cases in order to evaluate BPMN and SYMEX process

models in terms of their complexity. Finally, Section 5.6 discusses the findings and summarises

the work reported in this Chapter.

Chapter 5 – Evaluation of the SYMEX Framework

134

5.2 Measuring complexity of process models

Our research primarily deals with business process modelling. One of the main roles of business

process models is to serve as a basis for communication between business and IT stakeholders.

Therefore, process models should be easy to understand and maintain [187]. Complexity of busi-

ness processes as defined by Cardoso [188] is: “the degree to which a process is difficult to ana-

lyze, understand or explain. It may be characterized by the number and intricacy of activity

interfaces, transitions, conditional and parallel branches, the existence of loops, data-flow, con-

trol-flow, roles, activity categories, the types of data structures, and other process characteris-

tics.”

High complexity has undesirable effects on, among others, the validation, maintainability, and

understandability of business process models [189]. Moreover, high complexity can lead to more

errors and defects in development and testing and prohibit flexibility [190]. Therefore, the need

for measures that can quantify the complexity of business process models is evident. Although

hundreds of software complexity measures, named ‘metrics’, have been proposed in the last few

decades, measuring the complexity of business process models is a rather new research with only

a small number of contributions [187].

The early research on process model metrics was greatly inspired by software quality metrics

[191], as business process and software program designs have many similarities [189]. Reijers

and Vanderfeesten inspired from software metrics define cohesion and coupling metrics [192],

for the design of activities in a workflow design. In [189] metrics similar to the Line-of-Code,

McCabe’s Cyclomatic Complexity, Halstead Complexity Metric and Information Flow Complexity

are proposed to measure process complexity. Cardoso in [193] suggests a complexity metric,

which is a generalization of McCabe’s cyclomatic number, called the Control-Flow Complexity

(CFC) metric. CFC is based on the analysis of XOR-splits, OR-splits and, AND-splits control state-

ments in a process model. The main idea behind the CFC metric is the number of mental states

that a designer has to consider when developing a process. Cardoso in [194] proposes, also an-

other CFC metric to be used during the design of BPEL4WS processes, by calculating the com-

plexity of the various types of workflow patterns encountered in the process. Finally, Lassen and

Aalst in [195] extend the CFC metric defined by Cardoso and extend the Cyclomatic metric of

McCabe. Table 5.1 shows a number of complexity metrics for software programs and their adap-

tation for business process models [196].

Chapter 5 – Evaluation of the SYMEX Framework

135

Software

complexity

metric

Corresponding

metric for

business process

model

Usage, significance

Lines of Code Number of activities

(and connectors)

Very simple, does not take into account the con-

trol-flow

Cyclomatic

number

CFC as defined by

Cardoso

Measures the number of possible control flow

decisions, well-suited for measuring the number

of test cases needed to test the model, does not

take into account other structure-related infor-

mation

Nesting depth Nesting depth Provides information about structure

Knot-count Counting the

“reasons for

unstructuredness”

Measure of “well-structuredness” (for example

jumps out of or into control-flow structures)

Is always 0 for well-structured models

Cognitive weight Cognitive weight Measures the cognitive effort to understand a

model, can indicate that a model should be re-

designed

(Anti)Patterns (Anti)Patterns

for business

process models

Experience with the patterns needed.

Counting the usage of anti-patterns in a model

can help to detect poor modelling

Fan-in/Fan-out Fan-in/Fan-out Can indicate poor modularization

Table 5.1: Complexity metrics for software and business process models [196]

Apart from the domain of software, metrics for process modelling have been inspired from other

domains too. In [189] graph theoretical measures are proposed as potential complexity metrics

for business process models. [197] proposes a density metric inspired by social network analysis

in order to quantify the complexity of EPC models. [198] presents a metric calculating the Log-

Based Complexity (LBC) of a workflow process, by devising complexity metrics for each workflow

pattern identified in log traces generated from the execution of the workflow. Finally, [191] intro-

duces the cross-connectivity metric that builds on insights from cognitive research. The next Sec-

tion describes in detail the cross-connectivity metric, as this has been selected as the basis for

evaluating the SYMEX framework.

Chapter 5 – Evaluation of the SYMEX Framework

136

5.3 Cross-connectivity metric (CC)

5.3.1 Overview

As argued in the previous Section, a business process model should be capable to serve as a ba-

sis for communication between the people involved in a software development process. This is

similar to an architect using a model to ascertain the views of users, to communicate new ideas

and develop a shared understanding among participants [191]. Therefore, it is crucial to have

process models that are easily understood by people. Although there is some research that identi-

fies the cognitive motivation as a potential inspiration for metrics [189], up to now there has been

little research on measurements to quantify the cognitive effort of a model reader to understand

a process model. One of the few examples is the research on the Control Flow Complexity (CFC)

metric by Cardoso and the Cross-Connectivity (CC) metric [191].

Cross-Connectivity (CC) metric was recently proposed by Vanderfeesten et al. [191] and is based

on cognitive research in programming languages. The authors argue that the study of a process

model requires some hard mental operations and involves behavioural relationships between

model elements being constructed in the mind of the user. Understanding of issues such as the

dependencies between the elements of a process and whether pairs of activities with lots of par-

allelism and choices are exclusive or not, are very cognitively demanding tasks even for experts.

The CC metric aims to quantify the ease of understanding in terms of the interplay of any pair of

model elements. Vanderfeesten et al. evaluate and validate the metric using a thorough empirical

evaluation, in order to establish its suitability for assessing the ease of understanding of process

models.

The reasons for selecting the CC metric, out of all the metrics found in the literature, are the fol-

lowing:

1. CC metric does not take into account only control-flow elements (splits) such as other

metrics, e.g. CFC.

2. CC metric is based on cognitive research, quantifying the ease of understanding a proc-

ess model from the user’s perspective. It adds a new cognitive perspective on process

model quality [191].

3. CC metric takes into account all characteristics of a process, namely tasks, joins, arcs,

paths, number of tasks.

4. CC metric has a solid evaluation and validation [191].

5. CC metric is independent of syntactic features and can be applied to standard modelling

languages such as EPCs, UML Activity Diagrams, Petri nets, BPMN, YAWL etc. [191]. Cor-

respondingly, it can also be applied to SYMEX process models.

Chapter 5 – Evaluation of the SYMEX Framework

137

6. CC metric provides a common base for comparing two or more modelling approaches.

Higher scores from application of the metric to a process model are associated with an

easier understanding of the model [191].

5.3.2 Formulas

There are four assumptions used for the formalization of the metric [191]:

1. The CC metric expresses the sum of the paths between all pairs of nodes in a process

model, relative to the theoretical maximum number of paths between all nodes (see

Definition 5).

2. The path with the highest connectivity between two nodes determines the strength of the

overall connectivity between those nodes (see Definition 4).

3. The tightness of a path (i.e., degree of connectivity) is determined by the product of the

valuations of the links connecting the nodes on the path (see Definition 3).

4. Differences in the types of nodes that a path consists of determine the tightness of the

arcs connecting nodes (see Definitions 1 and 2).

Five definitions as given in [191] are as follows:

Definition 1 (Weight of a Node).

Let a process model be given as a graph consisting of a set of nodes (n1, n2, … א N) and

a set of directed arcs (a1, a2, ... א A). A node can be of one of two types: (i) task, e.g. t1,

t2 א T, and (ii) connector, e.g. c1, c2 א C. Thus, N = T U C.

The weight of a node n, w(n), is defined as follows:

with d the degree of the node (i.e. the total number of ingoing and outgoing arcs of the

node). Definition 1 assumes that the process model consists of tasks and connectors,

where tasks have at most one input and one output arc and connectors can have multiple

input and output arcs.

w(n) =

 1 , if n אC ٿ n is of type AND

1

d
 , if n אC ٿ n is of type XOR

1 2 2 1

2 1 2 1

d

d d d


 

 
 , if n אC ٿ n is of type OR

 1 , if n א T ,

Chapter 5 – Evaluation of the SYMEX Framework

138

Definition 2 (Weight of an Arc).

Let a process model be given by a set of nodes (N) and a set of directed arcs (A). Each di-

rected arc (a) has a source node (denoted by src (a)) and a destination node (denoted by

dest (a)). The weight of arc a, W (a), is defined as follows:

W (a) = w (src (a)) · w (dest (a))

Definition 3 (Value of a Path).

Let a process model be given by a set of nodes (N) and a set of directed arcs (A). A path p

from node n1 to node n2 is given by the sequence of directed arcs that should be followed

from n1 to n2: p =< a1, a2, ..., ax >. The value for a path p, v (p), is the product of the

weights of all arcs in the path:

v (p) = W (a1) · W (a2) · ... · W (ax)

Definition 4 (Value of a Connection).

Let a process model be given by a set of nodes (N) and a set of directed arcs (A) and let Pn1,n2

be the set of paths from node n1 to n2. The value of the connection from n1 to n2,

V (n1, n2), is the maximum value of all paths connecting n1 and n2:

V (n1, n2) =
1, 2

max ()
n np P

v p


If no path exists between node n1 and n2, then V (n1, n2) = 0. Also loops in a path should

not be considered more than once, since the value of the connection will not be higher if

the loop is followed more than once in the particular path.

Definition 5 (Cross-Connectivity (CC)).

Let a process model be given by a set of nodes (N) and a set of directed arcs (A). The Cross-

Connectivity metric is then defined as follows:

 
1, 2

(1, 2)

1
n n N

V n n
CC

N N

 



As for the interpretation of the value, a higher value of the metric is associated with an

easier understanding of the model, which implies consequently a lower error probability.

Chapter 5 – Evaluation of the SYMEX Framework

139

5.3.3 Adapting CC metric to SYMEX process models

As we explained in Chapter 3, SYMEX process models have the following key constructs:

1. Activities, which are equivalent to nodes of type ‘task’.

2. Inputs and Outputs, which can be considered as the directed arcs of the graph of the

process model.

3. Controls, which are integrated part of Activities and can be considered as equivalent to

logical connectors (AND, OR, XOR).

4. Execution Mechanisms, which are part of Activities.

Therefore, the CC metric can be applied to SYMEX process models under the following considera-

tions:

1. There are no nodes in SYMEX models acting as connectors.

2. SYMEX process models have Activities with more than one Input, while Definition 1 of CC

metric notes that each task must have at most one input.

3. SYMEX process models support hierarchy through the decomposition of composite Activi-

ties and CC metric does not take into account decomposition of process models.

4. CC metric does not have a concept equivalent to the Execution Mechanisms of a SYMEX

process model.

The first three points above are crucial in order to evaluate the complexity of a SYMEX process

model. Consequently, these three points will be used for adapting the formulas of the CC metric.

Regarding the fourth point above, Execution Mechanisms encode the means by which Activities

are executed and thus are effectively software components, web-services or business roles re-

sponsible for the realization of Activities. For that reason, we consider them to have minor influ-

ence in the understanding of a model by a user and therefore they will not be included in the

adapted CC metric.

The original CC metric is adapted as follows. Original definitions 2, 3 and 4 remain the same,

while definitions 1 and 5 have the following changes:

Adapted Definition 1 (Weight of a Node).

Let a process model be given as a graph consisting of a set of nodes (n1, n2, … א N) and

a set of directed arcs (a1, a2, ... א A). A node can be of one of two types: (i) atomic Ac-

tivity, e.g. AtAct1, … , AtAct2 א AtAct, and (ii) composite Activity, e.g.

CAct1, … , CAct2 א CAct, with a composite Activity CActi having: (a) a set of nodes

(n1, n2, ... , א N(CActi)) at its decomposition model and (b) a CC metric value of

Chapter 5 – Evaluation of the SYMEX Framework

140

CC_metric(CActi). Thus, N = AtAct U CAct and the weight of a node n, w(n), is defined as

follows:

with d being the degree of the node (i.e. the total number of ingoing and outgoing arcs

of the node). Based on the formalization of SYMEX in Chapter 3, an atomic Activity in a

SYMEX process model has always exactly one Output. Based on the above definition, we

have two cases of atomic Activities:

 If d=2, the Activity has exactly one Input and one Output. In this case, Activity is

equivalent to the concept of a task which, based on the original Definition 1, has

at most one input and one output arc and its weight is 1. So, w(n)=1.

 If d>2, the Activity has more than one Inputs. In this case we don’t know upfront

how many of the Inputs will be followed. It could be that they are all followed

(cf. AND situation), that only one Input is followed (cf. XOR situation), but it

could also well be that several Inputs are followed. So the weight of the Activity

in this case is equal to the weight of an OR connector [191].

Definition 5 (Cross-Connectivity (CC)).

The Cross-Connectivity metric is defined as:

 
1, 2

(1, 2)

1
n n N

V n n
CC

N N

 


,

where |N| is the number of nodes of the model. In SYMEX models, we have two kinds of

nodes, namely atomic Activities and composite Activities. As we defined in previous defi-

nition, a composite Activity CActi has a set of nodes

(n1, n2, ... , א N(CActi)) at its decomposition model. Therefore, the number of nodes at a

level of a model is defined as:

, ()

1
| |

| |
i i iCAct CAct n N CAct i

NodesNumber AtAct
n  

  

The final formula for the adapted CC metric is:

 
1, 2

(1, 2)

1
n n N

V n n
CC

NodesNumber NodesNumber

 



w(n) =

 1 , if n א AtAct ٿ d=2

1 2 2 1

2 1 2 1

d

d d d


 

 
 , if n א AtAct ٿ d>2

 CC_metric(n) , if n א CAct ,

Chapter 5 – Evaluation of the SYMEX Framework

141

In hierarchical models, users typically study the model in a top-down fashion; users first study a

high-level model and then follow composite Activities that lead to decomposed models of more

detail. However, in order to calculate the weight of SYMEX hierarchical models we follow a bot-

tom-up approach. First, we evaluate the CC metric for the lowest levels of decomposition. Then

we assign the value of the CC metric to the composite Activity that decomposes to that model

and we continue till we reach the highest level of the model.

Figure 5.1 shows the top-down approach a user follows to read a hierarchical SYMEX model in

comparison with the bottom-up approach we follow to calculate the CC metric for this model.

Levels of decomposition of a SYMEX process model

Atomic Ac Atomic Ac

Atomic Ac Atomic Ac Atomic Ac

Composite Act

Composite Act Atomic Ac Atomic Ac

Composite Act

Calculated
CC metric

Calculated
CC metric

Calculated
CC metric

Reading
the model

Calculating
complexity of

the model

Figure 5.1: Reading a SYMEX model and calculating the CC metric

Chapter 5 – Evaluation of the SYMEX Framework

142

5.4 Calculation of metric

In this Section we apply the CC metric to a process model in BPMN and then to a ‘flat’ and a hier-

archical SYMEX model. The purpose is to evaluate and compare the complexity of these models.

5.4.1 BPMN process model

Figure 5.2: BPMN process model [49]

A business process model in BPMN is shown in Figure 5.2 and is described as follows [49]. When

a complaint is registered, a questionnaire is sent to the complainant and, in parallel, the com-

plaint is processed. If the complainant returns the questionnaire within two weeks, the task

‘process questionnaire’ is performed, otherwise the result of the questionnaire is discarded. In

parallel, the complaint is evaluated. Based on the result, the evaluation either is completed or

continues with the task ‘check processing’. If the check processing result is not ok, the complaint

requires re-processing. Finally, the complaint is archived.

For the calculation of the CC metrics, events of the BPMN process model are considered of

equivalent weight to nodes of type task. Next, we calculate the weight of nodes, arcs, connec-

tions and in the end the CC metric, based on the formulas of Section 5.3.2.

Chapter 5 – Evaluation of the SYMEX Framework

143

5.4.1.1 Weight of nodes

Node (n)
Degree (m)

(total number of ingoing
and outgoing arcs

of the node)

Weight
W(n)

N1 1 1

N2 2 1

N3 2 1

N4 2 1

N5 2 1

N6 2 1

N7 2 1

N8 2 1

N9 1 1

n10 (AND) 3 1

n11 (XOR) 3
1

3

n12 (OR) 3
3

3 3

1 2 2 1 3

2 1 2 1 3 7


  

 

n13 (OR) 3
3

7

n14 (OR) 3
3

7

n15 (OR) 3
3

7

n16 (OR) 3
3

7

n17 (AND) 3
3

7

Table 5.2: Calculation of weight of nodes for BPMN process model

Chapter 5 – Evaluation of the SYMEX Framework

144

5.4.1.2 Weight of arcs

Arc (a)
Source node

src(a)

Destination node

dest(a)

Weight

W(a)=W(src(a)) * W(dest(a))

a0 N1 n10 1 1 1 

a1 n10 N2 1 1 1 

a2 n10 n13
3 3

1
7 7
 

a3 N2 n11
1 1

1
3 3
 

a4 n11 N3
1 1

1
3 3
 

a5 n11 N5
1 1

1
3 3
 

a6 N3 N4 1 1 1 

a7 N4 n12
3 3

1
7 7
 

a8 N5 n12
3 3

1
7 7
 

a9 n12 n17
3 3

1
7 7
 

a10 n13 N6
3 3

1
7 7
 

a11 N6 N7 1 1 1 

a12 N7 n14
3 3

1
7 7
 

a13 n14 n16
3 3 9

7 7 49
 

a14 n14 N8
3 3

1
7 7
 

a15 N8 n15
3 3

1
7 7
 

a16 n15 n16
3 3 9

7 7 49
 

a17 n16 n17
3 3

1
7 7
 

a18 n15 n13
3 3 9

7 7 49
 

a19 n17 N9 1 1 1 

Table 5.3: Calculation of weight of arcs for BPMN process model

Chapter 5 – Evaluation of the SYMEX Framework

145

5.4.1.3 Weight of connections

 N1 N2 N3 N4 N5 N6 N7 N8 N9 n10 n11 n12 n13 n14 n15 n16 n17 Total

N1
0 1 1/9 1/9 1/9 9/49 9/49 14/415 1/49 1 1/3 1/21 3/7 27/343 6/415 6/415 1/49 3 646/933

N2
0 0 1/9 1/9 1/9 0 0 0 1/49 0 1/3 1/21 0 0 0 0 1/49 37/49

N3
0 0 0 1 0 0 0 0 9/49 0 0 3/7 0 0 0 0 9/49 1 39/49

N4
0 0 0 0 0 0 0 0 9/49 0 0 3/7 0 0 0 0 9/49 39/49

N5
0 0 0 0 0 0 0 0 9/49 0 0 3/7 0 0 0 0 9/49 39/49

N6
0 0 0 0 0 0 1 9/49 14/415 0 0 0 6/415 3/7 27/343 27/343 14/415 1 132/155

N7
0 0 0 0 0 5/807 0 9/49 14/415 0 0 0 6/415 3/7 27/343 27/343 14/415 555/647

N8
0 0 0 0 0 14/415 14/415 0 14/415 0 0 0 27/343 6/415 3/7 27/343 14/415 189/257

N9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n10
0 1 1/9 1/9 1/9 9/49 9/49 14/415 1/49 0 1/3 1/21 3/7 27/343 6/415 6/415 1/49 2 646/933

n11
0 0 1/3 1/3 1/3 0 0 0 3/49 0 0 1/7 0 0 0 0 3/49 1 13/49

n12
0 0 0 0 0 0 0 0 3/7 0 0 0 0 0 0 0 3/7 6/7

n13
0 0 0 0 0 3/7 3/7 27/343 6/415 0 0 0 0 9/49 14/415 14/415 6/415 1 198/917

n14
0 0 0 0 0 6/415 6/415 3/7 27/343 0 0 0 14/415 0 9/49 9/49 27/343 1 2/125

n15
0 0 0 0 0 27/343 27/343 6/415 27/343 0 0 0 9/49 14/415 0 9/49 27/343 233/319

n16
0 0 0 0 0 0 0 0 3/7 0 0 0 0 0 0 0 3/7 6/7

n17
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Table 5.4: Calculation of weight of connections for BPMN process model

5.4.1.4 CC metric

CC  0,0769

Chapter 5 – Evaluation of the SYMEX Framework

146

5.4.2 SYMEX process model without decomposition

In this Section, we model the same process in only one level without any decomposition (‘flat’

model). In this case, the model consists only of atomic Activities. Figure 5.3 shows the model.

Figure 5.3: SYMEX model without decomposition

The calculations of the weight of nodes, arcs, connections and of the CC metric that follow are

based on the adapted formulas of Section 5.3.3.

Chapter 5 – Evaluation of the SYMEX Framework

147

5.4.2.1 Weight of nodes

Node (n)
Degree (m)

(total number of ingoing
and outgoing arcs of the node)

Weight
W(n)

N1 2 1
N2 2 1
N3 2 1
N4 2 1
N5 2 1

N6 3
3

3 3

1 2 2 1 3

2 1 2 1 3 7


  

 

N7 3
3

7

N8 2 1

N9 5
5

5 5

1 2 2 1 7

2 1 2 1 5 31


  

 

Table 5.5: Calculation of weight of nodes for SYMEX process model

5.4.2.2 Weight of arcs

Arc (a)
Source node

src(a)

Destination node

dest(a)

Weight

W(a)=W(src(a)) * W(dest(a))

a1 N1 N2 1 1 1 
a2 N2 N3 1 1 1 
a3 N2 N5 1 1 1 
a4 N3 N4 1 1 1 

a5 N4 N9
7 7

1
31 31
 

a6 N5 N9
7 7

1
31 31
 

a7 N1 N6
3 3

1
7 7
 

a8 N6 N7
3 3 9

7 7 49
 

a9 N7 N9
3 7 3

7 31 31
 

a10 N7 N8
3 3

1
7 7
 

a11 N8 N9
7 7

1
31 31
 

a12 N8 N6
3 3

1
7 7
 

a13 N8 N7
3 3

1
7 7
 

Table 5.6: Calculation of weight of arcs for SYMEX process model

Chapter 5 – Evaluation of the SYMEX Framework

148

5.4.2.3 Weight of connections

 N1 N2 N3 N4 N5 N6 N7 N8 N9 Total

N1 0 1 1 1 1 3/7 27/343 14/415 7/31 4 467/609

N2 0 0 1 1 1 0 0 0 7/31 3 7/31

N3 0 0 0 1 0 0 0 0 7/31 1 7/31

N4 0 0 0 0 0 0 0 0 7/31 7/31

N5 0 0 0 0 0 0 0 0 7/31 7/31

N6 0 0 0 0 0 0 9/49 27/343 4/225 202/721

N7 0 0 0 0 0 9/49 0 3/7 3/31 173/244

N8 0 0 0 0 0 3/7 27/343 0 7/31 206/281

N9 0 0 0 0 0 0 0 0 0 0

Table 5.7: Calculation of weight of connections for SYMEX process model

5.4.2.4 CC metric

The number of nodes is:

, ()

1
| | | | 9

| |
i i iCAct CAct n N CAct i

NodesNumber AtAct AtAct
n  

   

Therefore, the value of the CC metric is:

 
1, 2

215
11(1, 2) 548 0,1581

1 9 8
n n N

V n n
CC

NodesNumber NodesNumber
  
  



The calculated value is greater than that of the BPMN model, meaning that the ‘flat’ SYMEX

model is easier to understand than the equivalent BPMN model.

Chapter 5 – Evaluation of the SYMEX Framework

149

5.4.3 SYMEX process model with decomposition

In this Section, we model the same process in more levels of detail. Here the model consists of a

first level model and two decompositions of the composite Activities. Figure 5.4 shows Level 1 of

the model.

register

 questionaire

 complaint

archive

N9

N2,3,4,5

N1

a14

a5

a1

a0

N6,7,8

a6

a11

a9

a7

Figure 5.4: Level 1 of SYMEX model

Figure 5.5 shows the decomposition of composite Activity “questionnaire”.

 send
 questionnaire

 check
 returned
 questionnaire

 check
 time-out

 process
 questionnaire

N4

N3

N2

a5

a4

a2

a1

N5

a6

a3

Figure 5.5: Level 2 of SYMEX model: decomposed Activity “questionnaire”

Figure 5.6 shows the decomposition of composite Activity “complaint”.

Chapter 5 – Evaluation of the SYMEX Framework

150

 process
 complaint

 evaluate

 check
 processing

N8

N7

N6

a11

a10

a8

a7

a9

a13

a12

Figure 5.6: Level 2 of SYMEX model: decomposed Activity “complaint”

The order of carrying out the calculations is as follows. First, we calculate the CC metric for the

decomposed models of Figure 5.5 and Figure 5.6 and then we calculate the CC metric of Level 1

of the SYMEX model of Figure 5.4. The calculations of the weights of nodes, arcs, connections

and of the CC metric that follow are based on the adapted formulas of Section 5.3.3.

5.4.3.1 Decomposition of Activity N2,3,4,5

The calculation of the CC metric begins with the models of Figure 5.5 and Figure 5.6, as they are

composed by atomic Activities only. The weight of nodes, arcs, and connections for the models,

are shown in the tables below.

Weight of nodes

Node (n) Degree (m) Weight W(n)

N2 2 1
N3 2 1
N4 2 1
N5 2 1

Table 5.8: Calculation of weight of nodes for Activity N2,3,4,5 of SYMEX model

Weight of arcs

Arc (a)
Source node

src(a)

Destination

node dest(a)

Weight

W(a)=W(src(a)) *

W(dest(a))

a2 N2 N3 1 1 1 
a3 N2 N5 1 1 1 
a4 N3 N4 1 1 1 

Table 5.9: Calculation of weight of arcs for Activity N2,3,4,5 of SYMEX model

Chapter 5 – Evaluation of the SYMEX Framework

151

Weight of connections

 N2 N3 N4 N5 Total

N2 0 1 1 1 3

N3 0 0 1 0 1

N4 0 0 0 0 0

N5 0 0 0 0 0

Table 5.10: Calculation of weight of connections for Activity N2,3,4,5 of SYMEX model

CC metric

CC =
4 1

4 3 3




5.4.3.2 Decomposition of Activity N6,7,8

Weight of nodes

Node (n) Degree (m) Weight W(n)

N6 3
3

3 3

1 2 2 1 3

2 1 2 1 3 7


  

 

N7 3 3/7
N8 2 1

Table 5.11: Calculation of weight of nodes for Activity N6,7,8 of SYMEX model

Weight of arcs

Arc (a)
Source node

src(a)

Destination

node dest(a)

Weight

W(a)=W(src(a)) *

W(dest(a))

a8 N6 N7
3 3 9

7 7 49
 

a10 N7 N8
3 3

1
7 7
 

a12 N8 N6
3 3

1
7 7
 

a13 N8 N7
3 3

1
7 7
 

Table 5.12: Calculation of weight of arcs for Activity N6,7,8 of SYMEX model

Chapter 5 – Evaluation of the SYMEX Framework

152

Weight of connections

 N6 N7 N8 Total

N6 0 9/49 27/343 90/343

N7 9/49 0 3/7 30/49

N8 3/7 27/343 0 174/343

Table 5.13: Calculation of weight of connections for Activity N6,7,8 of SYMEX model

CC metric

CC =

474
79343

3 2 343




5.4.3.3 Level 1 of SYMEX model

Now that we have calculated the CC metric for the decomposed Activities, we calculate the CC

metric for the first level model, as shown in Figure 5.7.

register

 questionaire

 complaint

archive

N9

N2,3,4,5

N1

a14

a5

a1

a0

N6,7,8

a6

a11

a9

a7

CC=1/3

CC=79/343

Figure 5.7: Level 1 of SYMEX model with calculated CC metric for the composite Ac-
tivities

The weight of nodes, arcs, and connections for the model, are shown in the tables below.

Chapter 5 – Evaluation of the SYMEX Framework

153

Weight of nodes

Node (n) Degree (m) Weight W(n)

N1 2 1
N2,3,4,5 --- composite Activity --- 1/3
N6,7,8 --- composite Activity --- 79/343

N9 5
5

5 5

1 2 2 1 7

2 1 2 1 5 31


  

 

Table 5.14: Calculation of weight of nodes for Level 1 of SYMEX model

Weight of arcs

Arc (a)
Source node

src(a)

Destination node

dest(a)

Weight

W(a)=W(src(a)) * W(dest(a))

a1 N1 N2,3,4,5 1 1
1

3 3
 

a5 N2,3,4,5 N9 1 7 7

3 31 93
 

a6 N2,3,4,5 N9 1 7 7

3 31 93
 

a7 N1 N6,7,8
79 79

1
343 343
 

a9 N6,7,8 N9
79 7 22

343 31 423
 

a11 N6,7,8 N9
79 7 22

343 31 423
 

Table 5.15: Calculation of weight of arcs for Level 1 of SYMEX model

Weight of connections

 N1 N2,3,4,5 N6,7,8 N9 Total

N1 0 1/3 79/343 7/279 136/231

N2,3,4,5 0 0 0 7/93 7/93

N6,7,8 0 0 0 22/423 22/423

N9 0 0 0 0 0

Table 5.16: Calculation of weight of connections for Level 1 of SYMEX model

Chapter 5 – Evaluation of the SYMEX Framework

154

CC metric

The number of nodes is:

, ()

1 1 1 7
| | 2 2

| | 4 3 12
i i iCAct CAct n N CAct i

NodesNumber AtAct
n  

     

Therefore, the value of the CC metric is:

 
1, 2

(1, 2) 0,716
0,175

7 71 2 (2 1)
12 12

n n N
V n n

CC
NodesNumber NodesNumber

  
  



The calculated value is greater than the value of the ‘flat’ SYMEX model and is greater than the

value of the BPMN model. Thus, it appears that the hierarchical SYMEX model is easier to under-

stand than both the ‘flat’ SYMEX model and the equivalent BPMN model.

Chapter 5 – Evaluation of the SYMEX Framework

155

5.5 Complexity Cases

This Section reports four process models where we have calculated the CC complexity metric. The

focus is on the breadth of the cases that demonstrate complexity difference between BPMN and

SYMEX models and not on the calculations of each case.

5.5.1 Trouble Ticket Process

5.5.1.1 Process Description

“This is a process to allow a software company to handle a customer support issue. This issue

might be handled by the customer support team directly. If not, it is forwarded to the QA team

for validation/verification and possibly handling the issue there. If it is a real problem in the prod-

uct, it is referred to the development team for a fix. Before the process is complete, there are

steps to assure that the customer who reported the problem gets the final resolution.” [199]

5.5.1.2 BPMN Model

Figure 5.8: BPMN model: Trouble Ticket Process [199]

Chapter 5 – Evaluation of the SYMEX Framework

156

5.5.2 Supply Fulfilment Process

5.5.2.1 Process Description

This is a typical process of a company in order to get supplies for the warehouse. When there is

an order request from a customer, there is a check whether the requested item is in or out of

stock. In case it is in stock, the item is delivered to the customer and the process ends. On the

other hand, when it is out of stock, the company sends request for offers to the suppliers of the

item and based on the best offer continues with the order. Finally, when the items arrive they are

added to the warehouse.

5.5.2.2 BPMN Model

Figure 5.9: BPMN model: Supply Fulfilment Process [200]

Chapter 5 – Evaluation of the SYMEX Framework

157

5.5.3 Hiring Process

5.5.3.1 Process Description

This is a typical hiring process. Candidates submit job applications that are being reviewed by HR

Managers. The applications are either approved at once, or totally disapproved, or more informa-

tion is requested from the candidate. In all cases, the candidate is informed about the outcome of

the review and in case he is asked for a revision, the candidate prepares a revised application

form. Then the candidate resubmits the form and is informed about the outcome of the final re-

view.

5.5.3.2 BPMN Model

Figure 5.10: BPMN model: Hiring Process [201]

Chapter 5 – Evaluation of the SYMEX Framework

158

5.5.4 RFQ/Order/Payment collaboration Process

5.5.4.1 Process Description

“This model details three main components of the overall process: (1) The private process of the

buyer, (2) the private process of the supplier and (3) collaboration between the buyer, the sup-

plier, the bank and the credit check organization. The private process starts and as part of its

"GetQuote" activity, it sends an RFQ document to the supplier. When the supplier receives this

document, it dispatches it to its ProcessRFQ activity. This activity is invoking the PrepareQuote

activity which is actually an activity performed by a user. As part of the activity, the user invokes

the ManageAccount activity, which is in charge of creating a customer record if the customer is

unknown and in all cases to perform a credit check with a partner agency. If all goes well, a

quote is returned to the processRFQ activity, which forwards it to the customer. If the customer

likes the quote, its process stipulates that it will start the SendOrder activity, which creates, and

send an order relative to the quote. When the order is received by the supplier, it dispatches to

the processRFQ activity, which ends at this point, and initiate the processOrder activity, which

notifies the IssueInvoice activity, which sends an invoice as a response to the order. And so on.”

[202]

Chapter 5 – Evaluation of the SYMEX Framework

159

5.5.4.2 BPMN Model

Figure 5.11: BPMN model: RFQ/Order/Payment collaboration Process [202]

5.5.5 Overall comparison

Process BPMN Flat SYMEX Hierarchical SYMEX

Complaint Registration

 (Section 5.4)
0,0769 0,1581 0,1753

Trouble Ticket 0,0939 0,1931 0,2127

Supply Fulfillment 0,1282 0,2624 0,2873

Hiring Process 0,0578 0,1093 0,1214

Buy through credit 0,0623 0,1285 0,1437

Table 5.17: Calculation of CC-metric for all the cases

Chapter 5 – Evaluation of the SYMEX Framework

160

5.6 Conclusions

High complexity has undesirable effects on, among others, the validation, maintainability, and

understandability of business process models. In this Chapter, we evaluated SYMEX framework

with respect to the complexity of the produced process models. As, to the best of our knowledge,

there is no other integrated framework with similar characteristics to SYMEX, we validated the

framework against the closest similar research approach, which are the mappings we reviewed in

Chapter 2. BPMN to BPEL4WS mapping is considered as the most significant and widely used out

of all the mappings and therefore we used it as the basis for comparison with our approach.

In order to demonstrate that our approach is more efficient in producing easier to understand

and maintain process models than the BPMN to BPEL4WS mapping, we have reviewed a number

of complexity metrics for business process models. Most proposals of process metrics are inspired

by software quality metrics due to similarities between software and processes. However, there

are a number of metrics that are based to other domains and among them, we selected Cross-

Connectivity (CC) metric as the basis for evaluating the SYMEX framework. CC is a validated and

tested metric, based on cognitive science, which quantifies the complexity of a process model in

terms of the cognitive effort of a model reader to understand it. CC metric has also an implemen-

tation independent of specific modelling approach and can be applied to both BPMN and SYMEX

models.

The CC metric was adapted to take into account the special characteristics of SYMEX models.

Then it was applied to a number of process models in BPMN, ‘flat’ SYMEX models and hierarchical

SYMEX models. The results demonstrated that the hierarchical SYMEX models are less complex

than both ‘flat’ SYMEX models and equivalent BPMN models. These findings confirm that SYMEX

models are easier to understand and maintain than BPMN models and validate the benefit of re-

ducing complexity by decomposing process models. However, in order to generalise these find-

ings we need to extend this comparative evaluation approach with more modelling techniques.

161

6 Conclusions

In this final Chapter, we provide an overview of our work as presented in this Thesis, and then

we identify the main contributions along with the limitations of our research. Finally, we present

some directions for future research and conclude the Thesis with some final remarks.

6.1 Overview

Workflow management systems enable organisations to deal with all aspects of business process

management, including analysis, modelling, execution, and administration. As workflow technol-

ogy evolves, a landscape of languages and techniques for workflow process modelling has

emerged and it is continuously being enriched with new proposals from different vendors and

coalitions. Modelling workflow processes involves transformation of the process logic into a formal

representation and it always remains a critical success factor for workflow management systems.

However, common practice is using workflow modelling languages for capturing high-level de-

scriptions of business processes. Then these descriptions are transformed by process designers

into low-level execution semantics with the use of workflow programming languages. Thus, the

two descriptions are maintained manually as completely different models.

Maintaining these models separately results in a number of issues. Inconsistency between the

models is the primary issue. Specifically, certain information included in the high-level descrip-

tions is either partly encoded or omitted from the low-level execution semantics and at the same

time, complicated business rules encoded at the execution level are not included in the high-level

descriptions. Moreover, maintaining these models separately creates difficulties in adaptation.

Particularly, identifying changes in high-level descriptions due to modifications of business condi-

tions, and tracing the impact of those changes on the low-level execution semantics can often

become very difficult for business modellers and process designers. As a result, the performance

and efficiency of workflow management systems is affected.

This thesis addresses the aforementioned problems by proposing a framework named SYMEX.

SYMEX proposes a solution by integrating high and low-level descriptions in one unified format,

from a Systems Theory perspective (Research Objective RO1). It provides a set of mathematically

defined descriptions offering a rigid framework for capturing and representing both high-level

business process descriptions and low-level workflow execution semantics. Furthermore, we have

effectively tested the applicability of the framework, in terms of implementing a working proto-

type together with a workflow inference engine that executes SYMEX process descriptions (Re-

search Objective RO2).

Finally, as high complexity results in undesirable effects on the validation, maintainability, and

understandability of business process models, we have evaluated the produced process models

Chapter 6 – Conclusions

162

with respect to their complexity (Research Objective RO3). Adapting a process complexity metric

with foundations on the cognitive domain (CC metric), we confirmed that SYMEX offers easy to

understand and communicate set of constructs. The produced process models proved less com-

plex than BPMN models. Additionally, hierarchy in SYMEX proved to reduce complexity of the

models in comparison with ‘flat’ ones.

Chapter 6 – Conclusions

163

6.2 Summary of the Work

In Chapter 1, the focus of our research was set on the modelling aspect of business processes

within a workflow management context. Then, we defined the thesis motivation as the problem

of maintaining consistency between high-level representations and low-level execution process

models. The three objectives of our research were defined together with the research methodol-

ogy and the structure of the thesis.

In Chapter 2, we reviewed the literature with respect to workflow modelling languages used for

the representation of high-level descriptions of business processes and workflow process execu-

tion frameworks used to define low-level execution semantics. We also reviewed some research

approaches in the literature proposing mappings and discussed the enabling disciplines of our

research: Systems Theory and Constrained-based reasoning. At the end of Chapter 2, we identi-

fied the limitations of the literature in respect with our research objectives.

In Chapter 3, we introduced our Systems Theory based framework for workflow modelling and

execution, named SYMEX. The definitions of the basic concepts of SYMEX were followed by the

formalization of its constructs. At the end of Chapter 3, we successfully assessed the framework’s

capability to effectively capture business processes in high-level descriptions as well as for encod-

ing low-level execution semantics. In this Chapter, we have answered the following Research

Questions:

 RQ1.1: How can we enable integration of high-level process descriptions and low-level

workflow execution semantics in the SYMEX approach using the main principles of Sys-

tems Theory?

Answer: Inspired by Systems Theory we visualized a workflow model as an en-

tity and the two models as the elements of this entity. In addition, the concept of

hierarchy proposed by Systems Theory helped us to define hierarchical SYMEX

models where the upper layers are depicting high-level descriptions and lower-

layers encode the execution semantics.

 RQ1.2: What kind of conceptual constructs of Systems Theory can be used to model

high-level and low-level workflow process descriptions?

Answer: Modelling the workflow process from a Systems Theory perspective,

SYMEX models view workflow processes as a set of Activities, which take Inputs

and produce Outputs. Activities are executed via the means of their execution

Mechanisms and activated by their Control, which evaluates a number of con-

straints.

 RQ1.3: How can we formally describe systems oriented process models that encode both

high-level and low-level workflow process descriptions?

Chapter 6 – Conclusions

164

Answer: Having provided an informal definition of the main concepts of SYMEX,

we have defined the mathematical descriptions of constructs and their relation-

ships based on set theory, which allows reasoning about the process characteris-

tics at different levels of detail, in a more controlled way.

In Chapter 4, we proposed an XML-based implementation approach in order to create a working

prototype of SYMEX. Then we presented an example of capturing a business process using

SYMEX modelling and tested our framework’s adaptation in comparison with UML 2 Activity Dia-

grams. At the end of Chapter 4, we presented the constraint-based algorithm of an implemented

workflow inference engine that executes SYMEX models. In this Chapter, we have answered the

following Research Questions:

 RQ2.1: How can systems oriented process descriptions be defined in order to model real

life business workflows?

Answer: We have encoded the constructs and relationships of SYMEX using XML

technology, in a top-down approach. We ended with a Schema Definition (XSD)

that enables the definition of SYMEX models in XML format that can be easily

processed by computers.

 RQ2.2: What is required in order to execute systems oriented business workflows?

Answer: Based on constraint-based reasoning, which is a problem-solving ap-

proach, we conceptualized the problem of workflow execution in terms of a con-

straint satisfaction problem. Then we described the constraint-based algorithm

we have implemented for our workflow inference engine, which is capable of

executing SYMEX workflow models.

Finally, in Chapter 5 we evaluated SYMEX framework with respect to the complexity of the pro-

duced process models, in comparison with BPMN models. In this Chapter, we have answered the

following Research Question:

 RQ3: What kind of measures can we define in order to assess effectiveness; how easy is

to understand and manage changes in SYMEX models, compared to existing available

techniques?

Answer: In order to prove that SYMEX is more efficient in producing easier to

understand and maintain process models, we selected and adapted the Cross-

Connectivity metric. With the use of this metric, we quantified the complexity of

the produced models. The results validated that SYMEX models are easier to un-

derstand and maintain than BPMN models and validated the benefit of complexity

reduction in SYMEX process models with decomposition.

Chapter 6 – Conclusions

165

6.3 Contributions

The contributions of this thesis are the results of our work to address the research objectives.

6.3.1 Integration of high-level process descriptions and low-level workflow exe-

cution semantics into SYMEX

One of the most important contributions of our work is the integration of high-level process de-

scriptions and low-level execution semantics into one unified format. Up to now, there are model-

ling languages that capture business processes and create visual high-level process models on

one hand and there are execution frameworks, which are used to define the low-level execution

semantics for the processes that are eventually executed by an execution engine, on the other

hand. Those two descriptions are mostly maintained and adapted manually, even though there

are some proposals for mappings, trying to reduce the gap between them. This common practice

creates difficulties and results in high maintenance costs. Therefore, the problem of finding an

efficient way to integrate high-level process descriptions and low-level execution semantics was

our primary research challenge.

In order to address the issue of integration, we employed Systems Theory as an enabling disci-

pline. Systems Theory defines a system as a set of elements standing in interrelation among

them and with environment. The Theory focuses on the arrangement of and relations between

the parts or elements of an entity and connects them into a whole. Moreover, Systems Theory

introduces hierarchy for determining multiple layers with different detail of description. Inspired

by these concepts, we considered workflow model as an entity, while high-level description and

low-level executable description were considered as two elements of this entity. Therefore, the

problem of integration became a problem of defining the arrangement of and the relations be-

tween these two elements and their parts. The solution was to conceptualize the high-level de-

scription as the upper layer element and the low-level executable description as the lower layer

element of a hierarchical decomposition of the ‘entity’ workflow model. Both elements were also

connected into a whole, inside the ‘entity’ workflow model.

The result of thinking by concepts of Systems Theory was the definition of SYMEX, an integrated

framework for workflow modelling and execution, with simple and basic concepts that are easy to

learn and understand. Specifically, SYMEX models are defined as a hierarchical set of Activities

having controls and execution mechanisms and being interconnected with inputs and outputs.

Composite Activities are further decomposed to more detailed layers, until atomic Activities are

reached, which are essentially the execution parts of the process model. Thus, the high-level de-

scription of a workflow process is modelled by composite Activities in higher layers, while the low-

level execution semantics are modelled by atomic Activities in lower layers of the SYMEX model.

SYMEX models can also enhance communication between designers and programmers, as both of

Chapter 6 – Conclusions

166

them work at different layers of the same model, avoiding manual transformations from one de-

scription to another. Finally, we have formally defined the semantics of SYMEX modelling and

validated its capability to efficiently represent business dynamics as well as encode workflow exe-

cution patterns.

To the best of our knowledge, there is no similar research approach for the problem of maintain-

ing separate models of high-level process descriptions and low-level execution semantics, classi-

fying the result of this work as a pioneering contribution in the workflow modelling research area.

6.3.2 Constraint-based process modelling and execution

Another contribution of our work is the use of constraint-based reasoning for workflow process

modelling. Common practice in modelling a business process is the construction of linear se-

quences of activities. However, this linear approach creates problems and often does not work

because the business world is not linear. Although, some researchers have incorporated con-

straints with business process modelling, these research efforts remain theories and all of the

reviewed modelling languages create models of business processes by sequencing the order of

their activities. Constraint-based reasoning enabled us to effectively model non-linear relation-

ships between activities in SYMEX models. In particular, constraints are encoded as controls in

each Activity of the model and there is no explicit sequence. In this way, Activities in SYMEX

models are not dependent with each other in terms of explicit control flow constructs.

The lack of execution dependencies of Activities in SYMEX models helps us address changing

conditions within business processes; it is much easier to adapt a workflow process that is con-

strained, by adding or changing the constraints of its Activities, than to adapt a sequenced work-

flow process. When a process is sequenced using traditional programming constructs (if-then-

else, cases, while-loops etc.), the designer needs to resolve all the sequence of activities and the

dependencies between them in order to adapt the process to new business needs. On the other

hand, in SYMEX models the process designer focus only on the Activity that needs to be changed,

not having to interfere with any other irrelevant Activities. Thus, the constraint-based approach of

SYMEX modelling enables easy and quick adaptation of process models in response to business

change.

6.3.3 Application of SYMEX

An additional result of our work was the successful assessment of the applicability of SYMEX.

Specifically, we have proposed an implementation of SYMEX that enables us to capture and exe-

cute integrated workflow process models. The implementation is based on XML and is essentially

a Schema Definition (XSD), which encodes the concepts, properties, and relationships of SYMEX

modelling in a top-down approach. This essentially provides a persisted model of process descrip-

Chapter 6 – Conclusions

167

tions modelled with SYMEX, which then can be easily executed by computers and could be easily

supported by graphical tools.

Together with the proposed XML-based implementation of our framework, we presented the im-

plementation approach of a workflow inference engine that executes SYMEX models. The algo-

rithm of the engine is based on constraint-based theory and the execution of SYMEX models is a

solution of a constraint-satisfaction problem; each Activity has a number of constraints that need

to be satisfied in order to execute. Moreover, the implemented algorithm is not complex and can

be easily implemented with any programming language. The first version of the engine has been

implemented using MS Visual Basic 6, but the code could be easily immigrated to Java [186] or

.Net platform.

6.3.4 Adaptation of CC metric and evaluation of SYMEX models

A final contribution of our work is the adaptation of the Cross-Connectivity (CC) metric and the

quantification of SYMEX modelling benefits. In order to evaluate the SYMEX models in comparison

with BPMN models, we selected the CC metric, which quantifies the complexity of a process

model in terms of the cognitive effort of a model reader to understand it. We adapted the formu-

las of CC metric suitably to take into account special characteristics of SYMEX models. The CC

metric was then applied to a process model in BPMN, a ‘flat’ SYMEX model and a hierarchical

SYMEX model. The results demonstrated that hierarchical SYMEX model was less complex than

both ‘flat’ SYMEX model and the equivalent BPMN model. Thus, the findings confirmed that

SYMEX models are easier to understand and maintain than BPMN models and that decomposition

reduces their complexity.

Chapter 6 – Conclusions

168

6.3.5 Publications

Our research produced a number of publications listed below in chronological order:

 Bill Karakostas, Yannis Zorgios & Charalampos C. Alevizos, Automatic derivation of

BPEL4WS from IDEF0 process models. Journal of Software & System Modelling, Springer

Berlin / Heidelberg, 2006. 5(2): p. 208-218.

 Bill Karakostas, Yannis Zorgios & Charalampos C. Alevizos, The Semantics of Business

Service Orchestration, Advances in Semantics for Web services 2006 Workshop (seman-

tics4ws'06), 2006, Vienna, Austria.

 Charalampos C. Alevizos, Bill Karakostas & Yannis Zorgios, Complexity Calculation of ser-

vice orchestration models, submitted to 4th International Conference on Software and

Data Technologies - ICSOFT 2009, Sofia, Bulgaria.

6.3.6 POMPEI Project

The constraint-based process modelling approach of SYMEX was used in an initial form in POMPEI

[203]. POMPEI was European-funded project, under the Sixth Framework Programme (FP6), that

aimed to develop a dynamic, mobile, and peer-to-peer workflow management system for emer-

gencies. Our constraint-based approach was used as the workflow layer, responsible for the exe-

cution of processes that were modelled in terms of Activities, Inputs, Outputs, Controls, and

Mechanisms. The implementation was based on Java’s [186] edition for mobile devices, namely

J2ME.

Chapter 6 – Conclusions

169

6.4 Research Limitations

The limitations we identify in our research are:

 The control flow in SYMEX models is encoded inside Controls of Activities and is not visu-

ally represented. As a result, when a user reads a SYMEX model he cannot understand

the sequence of Activities but only the information flow between them (via Inputs and

Outputs). This limitation is due to the constraint-based approach we used for SYMEX

modelling and is the basic trade-off for easy and quick adaptation.

 In case of modelling extremely large business processes, the SYMEX model may consist

of too many decomposition levels that it would be very difficult for a user to follow and

understand it.

 The proposed implementation approach for SYMEX is based on XML. XML may be open

and standard but we consider it also as a strict and rudimentary language. It could turn

as a disadvantage; in case we would try to enrich our process descriptions with more

semantics (such as OWL-s) in order to be able to support automatic discovery and execu-

tion of services.

 The implemented workflow inference engine for SYMEX models has not been thoroughly

tested. Besides this, it does not support web-service execution.

 The evaluation of SYMEX models, in terms of their complexity, was done in comparison

with BPMN models. In order to generalize the results and validate the benefits of SYMEX

modelling, more comparative evaluation with existing workflow modelling languages and

execution frameworks needs to be done.

 There is no tool available yet for SYMEX modelling.

 Finally, although SYMEX modelling may be easy to learn and straightforward, the fact is

that most designers and developers use and trust well-established modelling approaches,

such as UML Activity Diagrams and BPMN, and are reluctant to try something new and

not extensively tested.

Chapter 6 – Conclusions

170

6.5 Future Work

This thesis introduced SYMEX as an integrated framework for workflow modelling and execution.

Whatever the benefits of our proposal may be, without a graphical tool that would enable ana-

lysts, designers and end users to create, modify and communicate SYMEX models, we could not

expect quick adoption from academia and industry. For this reason, we are in the early stages of

developing a graphical tool that has an easy to use interface with drag and drop features, in or-

der to make the creation of SYMEX models easy and accessible to everyone. We have not dis-

cussed earlier in the thesis about this tool because it is in a very premature developing phase and

needs a lot of testing and development before it can considered even a beta version.

As far as the execution capabilities of SYMEX are concerned, we have reviewed in Sections 3.4

and 3.5 of Chapter 3 the support of workflow patterns. There are three workflow patterns that

cannot be supported by SYMEX and one that is partially supported. One of our concerns is

whether we could extend SYMEX framework in order to offer complete support of workflow exe-

cution patterns. Some early attempts did not have any success and the question that we will have

to answer is what kind of changes have to be made and what will be the cost of these changes in

terms of adding new constructs and making SYMEX approach more complex to use and maintain.

Moreover, Section 4.5 introduced the implemented workflow inference engine that executes proc-

esses modelled using SYMEX. Current implementation supports the execution of components in-

stalled in the same computer with the installed engine. However, the main objective of workflow

technology is ubiquitous distributed execution of business processes across organizational and

platform boundaries. Web-services has come as platform independent software services in order

to enable this objective and one of our main goals is to extend the workflow inference engine in

order to support synchronization and execution of web-services across Internet.

As for SYMEX’s evaluation, in Chapter 5, we used the Cross-Connectivity metric in order to evalu-

ate the efficiency in terms of producing easier to understand and maintain SYMEX process models

than BPMN models. In order to prove that SYMEX models are generally easier to adapt and main-

tain than other business process models, we need to extend the comparative evaluation with

more modelling techniques, beginning with those reviewed in Chapter 2; IDEF0, EPC, IDEF4,

XPDL, BPDM and UML2 ADs. Moreover, we need to compare SYMEX to process execution frame-

works as well. The evaluation at this level will include the capability of supporting workflow pat-

terns and the capability of working with existing workflow engines. BPEL4WS, OWL-S and WSMX

will be the first candidates for comparison but we will also consider other industrial/academic

proposals for workflow execution.

Chapter 6 – Conclusions

171

Overall, industries and organizations today make significant investments, in time and money, on

the modelling approaches they follow. Usually, when there is a new and more efficient modelling

proposal, there is the dilemma of either continuing with the existing modelling approach with all

the disadvantages it may have or choosing the new proposal with all the promising features and

capabilities, but also with all the hassle and the cost of the incurred change. The answer to this

dilemma is to follow the Java paradigm. We intend to examine whether SYMEX framework can be

adapted in order to play the role of a neutral workflow modelling approach, which would enable

us to apply the Java paradigm to the area of workflow process modelling; be able to model a

workflow process only once in SYMEX and execute it using any execution framework and engine,

such as BPEL4WS, WSMX etc.

Chapter 6 – Conclusions

172

6.6 Final Remarks

Software engineering is changing and software design is moving from monolithic structures to

multi-layer distributed architectures. Workflow technology plays a key role in the new era of ap-

plication architectures. Initially when workflow technology was introduced, it was employed to

address document routing and gradually was adopted inside software systems. The first auto-

mated business applications had all workflow related information hard-coded inside the software

components. With the evolution of software development, workflow has become an independent

layer (the workflow layer).

Workflow technology includes aspects of modelling, execution and administration of business

processes. Current modelling and execution approaches and methods, such as BPMN, UML 2 ADs,

BPEL4WS etc. focus either on the modelling phase or on the execution phase. These two different

phases are maintained as two separate models resulting in synchronization and maintenance is-

sues. What we have proposed in this thesis is an integrated view of modelling and execution se-

mantics of workflow process. Given the lack of previous research results in this area, we adopted

a systems perspective and visualized a workflow model as a hierarchical model where the upper

layers are depicting high-level descriptions and lower layers encode the execution semantics. To

the best of our knowledge, there is no equivalent proposal from the industry or the academia fol-

lowing our systems oriented approach.

Our research was guided by the vision to define SYMEX as a methodology and a platform inde-

pendent workflow modelling and execution language in order to play the same role as Java plays

in software development. Java has become a language where programmers use to develop their

programs and then these programs can run on any available platform (Windows, Linux, Solaris

etc.) that supports the Java Virtual Machine. So Java promotes the idea "program once and run

everywhere". In the same sense, SYMEX could play the role of a platform-independent modelling

approach where process designers would model the processes once and then these models could

be run in any execution language/engine, e.g. a process would be modelled in SYMEX and then

could be executed either in our workflow inference engine or in a BPEL engine.

The area of workflow management is continuously changing, shaped by new paradigms as Ser-

vice-Oriented Architecture (SOA) [204] and ubiquitous distributed execution across organizational

and platform boundaries. Following the recent trends, workflow technology is adopting the use of

web-services [21], as an infrastructure providing seamless interoperability among networked

workflow processes [22]. The presence of web-services has raised issues of monitoring and con-

trolling their execution within the workflow context they operate. However, the importance of

workflow process modelling remains a semantic issue, facing new sort of challenges.

Chapter 6 – Conclusions

173

In conclusion, we believe that this thesis made a definitive contribution to the quest for more

flexible and dynamic business process systems, by providing a new perspective for conceptualiz-

ing workflow process modelling, that we hope can serve as a constructive basis for further re-

search on this area.

174

175

References

[1] C. Badica and C. Fox, "Modelling and Verification of Business Processes," in IASTED In-
ternational Conference Applied Simulation and Modelling (ASM 2002), Crete, Greece,
2002.

[2] B. List and B. Korherr, "An evaluation of conceptual business process modelling languag-
es," in ACM symposium on Applied computing Dijon, France: ACM Press, 2006

[3] R. Endl, G. Knolmayer, and et al., "Modeling Processes and Workflows by Business
Rules," Institute of Information Systems, University of Bern 1998.

[4] A. Lonjon, "Business Process Modeling and Standardization," BPTrends 2004.
[5] T. Davenport, Process Innovation: Reengineering work through information technology:

Harvard Business School Press, Boston, 1993.
[6] "Business Processes and the OMG: An overview," Object Management Group,

http://www.omg.org.
[7] "Workflow Management Coalition," www.wfmc.org.
[8] L. Fischer, "An Introduction to Workflow," in Workflow Handbook 2002: Workflow Man-

agement Coalition, 2002.
[9] M.-T. Schmidt, "The Evolution of Workflow Standards," IEEE Concurency, pp. 44-52,

1999.
[10] D. Hollingsworth, "Workflow Management Coalition: The Workflow Reference Model," The

Workflow Management Coalition 1995.
[11] S. Shazia, S. Olivera, M. Maria, and E. Orlowska, "Managing Change And Time In Dynam-

ic Workflow Processes," International Journal of Cooperative Information Systems, 1999.
[12] W. M. P. v. d. Aalst, "Generic Workflow Models: How to Handle Dynamic Change and

Capture Management Information?," in Fourth IECIS International Conference on Coop-
erative Information Systems, Edinburgh, Scotland, 1999, p. p. 115.

[13] L. Zeng, A. Ngu, B. Benatallah, and M. O'Dell, "An Agent-Based Approach for Supporting
Cross-Enterprise Workflows," in Australiasian Database Conference, Gold Coast, Queen-
sland, Australia, 2001, p. p. 0123.

[14] A. I. Wang, "Using software agents to support evolution of distributed workflow models,"
in International ICSC Symposium on INTERACTIVE AND COLLABORATIVE COMPUTING
(ICC'2000), Wollongong (near Sydney), Australia, 2000.

[15] "Common Object Request Broker Architecture (CORBA®)," Object Management Group
http://www.corba.org/.

[16] M. Purvis, M. Purvis, and S. Lemalu, "A Framework for Distributed Workflow Systems," in
34th Annual Hawaii International Conference on System Sciences (HICSS-34), Maui, Ha-
waii, 2001, p. p. 9039.

[17] S. Paul, E. Park, and J. Chaar, "RainMan: A Workflow System for the Internet," in USENIX
Symposium on Internet Technologies and Systems, 1997.

[18] J. G. Hayes, E. Peyrovian, S. Sarin, M.-T. Schmidt, K. D. Swenson, and R. Weber,
"Workflow Interoperability Standards for the Internet," IEEE Internet Computing, 2000.

[19] G. A. Bolcer, "Magi: An Architecture for Mobile and Disconnected Workflow," IEEE Inter-
net Computing, pp. 46-54, 2000.

[20] R. Tolksdorf, "Workspaces: A Web-Based Workflow Management System," IEEE Internet
Computing, 2002.

[21] M. Virdell, "Business processes and workflow in the Web services world," IBM developer-
Works 2003.

[22] F. Casati, E. Shan, U. Dayal, and M.-C. Shan, "Business-oriented management of Web
services," Communications of the ACM, 2003.

[23] W3C-WSDL, "Web Services Description Language (WSDL), http://www.w3.org/TR/wsdl,"
2001.

[24] W3C, "SOAP Version 1.2 http://web5.w3.org/TR/2003/REC-soap12-part0-20030624/,"
XML Protocol Working Group, 2003.

[25] F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein, T. Storey, and S. Thatte, "Web Ser-
vices Transaction (WS-Transaction)," 2002.

References

176

[26] S. Overhage and P. Thomas, "WS-Specification: Specifying Web Services Using UDDI Im-
provements," in Web, Web Services, and Database Systems - NODe 2002 Web- and Da-
tabase-Related Workshops, 2002.

[27] F. Cabrera, G. Copeland, T. Freund, J. Klein, D. Langworthy, D. Orchard, J. Shewchuk,
and T. Storey, "Web Services Coordination (WS-Coordination)," 2002.

[28] A. Bosworth, D. Box, E. Christensen, F. Curbera, D. Ferguson, J. Frey, C. Kaler, D. Lang-
worthy, F. Leymann, S. Lucco, S. Millet, N. Mukhi, M. Nottingham, D. Orchard, J. Shew-
chuk, T. Storey, and S. Weerawarana, "Web Services Addressing (WS-Addressing),"
2003.

[29] L. Ardissono, A. Goy, and G. Petrone, "Enabling conversations with Web Services," in 2nd
Int. Conf. on Autonomous Agents and Multi Agent System (AAMAS'03), Melbourne, Aus-
tralia, 2003.

[30] K. Matsumura, H. Mizutani, and M. Arai, "An Application of Structural Modeling to Soft-
ware Requirements Analysis and Design," IEEE Transactions on Software Engineering,
1987.

[31] Systems Engineering Fundamentals. Virginia, USA: Defense Acquisition University Press,
2001.

[32] A. Abran, J. W. Moore, P. Bourque, and R. Dupuis, Guide to the software engineering
body of knowledge: IEEE Computer Society Press, 2005.

[33] "UML 2 Activity Diagram," Sparx Systems Pty Ltd. -
http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_activitydiagram.html.

[34] "Business Process Execution Language for Web Services (BPEL4WS)," BEA, IBM, Micro-
soft, 2003.

[35] G. Keller, M. Nüttgens, and A.-W. Scheer, "Semantische Prozeßmodellierung auf der
Grundlage "Ereignisgesteuerter Prozeßketten (EPK)"," Veröffentlichungen des Instituts für
Wirtschaftsinformatik, Saarbrücken 1992.

[36] "INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEF0),"
http://www.idef.com/idef0.html.

[37] P. D. Richard J. Mayer, P. D. Christopher P. Menzel, M. K. Painter, P. D. Paula S. deWitte,
T. Blinn, and P. D. Benjamin Perakath, "INFORMATION INTEGRATION FOR CONCUR-
RENT ENGINEERING (IICE) IDEF3 PROCESS DESCRIPTION CAPTURE METHOD REPORT,"
KNOWLEDGE BASED SYSTEMS, INCORPORATED 1995.

[38] "Business Process Modeling Notation," Business Process Management Initiative,
http://www.bpmn.org/ 2002.

[39] "Workflow Process Definition Interface – XML Process Definition Language (XPDL), Doc-
ument Number WFMC-TC-1025, Version 1.0,," Workflow Management Coalition, 2002.

[40] OMG, "UML 2.0 superstructure specification, Technical report," 2004.
[41] "Web Services Flow Language (WSFL),"

http://www4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf: IBM, 2001.
[42] "XLANG," http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm: Microsoft,

2001.
[43] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D.

Smith, S. Thatte, I. Trickovic, and S. Weerawarana, "Business Process Execution Lan-
guage for Web Services Version 1.1," BEA Systems, International Business Machines Cor-
poration, Microsoft Corporation, SAP AG, Siebel Systems, 2003.

[44] "Web Ontology Language (OWL)," http://www.w3.org/2004/OWL/: W3C Recommenda-
tion.

[45] "Web Service eXecution Environment (WSMX)," WSMX working group.
[46] K. Mantell, "From UML to BPEL," SOA and Web Services, developerWorks, IBM, 2003.
[47] T. Gardner, "UML Modelling of Automated BusinessProcesses with a Mapping to

BPEL4WS," in 17th European Conference on Object-Oriented Programming (ECOOP),
Darmstadt, Germany, 2003.

[48] T. Gardner, "UML Modelling of Automated Business Processes with a Mapping to
BPEL4WS," in First European Workshop on Web Services and Object Orientation, ECOOP
2003: IBM UK Laboratories, Hursley Park, 2003.

References

177

[49] C. Ouyang, W. M. P. v. d. Aalst, M. Dumas, and A. H. M. t. Hofstede, "From BPMN
Process Models to BPEL Web Services," in 4th International Conference on Web Services
(ICWS), Chicago IL, USA, 2006.

[50] C. Ouyang, W. M. P. v. d. Aalst, M. Dumas, S. Breutel, and A. H. M. t. Hofstede, "Trans-
lating BPMN to BPEL," BPM Report BPM-06-02, BPMcenter.org 2006.

[51] C. Ouyang, W. M. P. v. d. Aalst, M. Dumas, S. Breutel, and A. H. M. t. Hofstede, "From
business process models to process-oriented software systems: The BPMN to BPEL way,"
BPM Center Report BPM-06-27, BPMcenter.org 2006.

[52] S. A. White, "Introduction to BPMN," IBM Corporation 2004.
[53] M. G. Nadarajan and D. Y.-H. Chen-Burger, "An Ontology-Based Conceptual Mapping

Framework for Translating FBPML to the Web Services Ontology," in Sixth IEEE Interna-
tional Symposium on Cluster Computing and the Grid (CCGrid 2006) Singapore, 2006.

[54] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise Computing: John
Wiley & Sons, 2003.

[55] "Object Management Group, http://www.omg.org/."
[56] K. Czarnecki and S. Helsen, "Classification of Model Transformation Approaches," in OOP-

SLA’03 Workshop on Generative Techniques in the Context of Model-Driven Architecture,
2003.

[57] "MOF 2.0 Query / Views / Transformations RFP," Object Management Group 2002.
[58] "Jamda: The Java Model Driven Architecture 0.2,

http://sourceforge.net/projects/jamda/," 2003.
[59] "Java Metadata Interface 1.0, http://java.sun.com/products/jmi," 2002.
[60] D. H. Akehurst and S.Kent., "A Relational Approach to Defining Transformations in a Me-

tamodel," in The Unified Modeling Language 5th International Conference, Dresden,
Germany, 2002.

[61] "QVT-Partners. MOF Query/Views/Transformations, Revised Submission.," OMG Docu-
ment: ad/2003-08-08 2003.

[62] CBOP, DSTC, and IBM, "MOF Query/Views/Transformations, Revised Submission.," OMG
Document: ad/03-08-03 2003.

[63] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood, "Transformation: The Missing
Link of MDA," in Graph Transformation: First International Conference (ICGT 2002), Bar-
celona, Spain, 2002.

[64] Alcatel, Softeam, Thales, TNI-Valiosys, and C. Corporation, "MOF
Query/Views/Transformations, Revised Submission," OMG Document: ad/03-08-05 2003.

[65] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske, D. Kuske, D.
Plump, A. Schürr, and G. Taentzer, "Graph Transformation for Specification and Pro-
gramming," Universität Bremen 1996.

[66] D. Varro, G. Varro, and A. P. . "Designing the automatic transformation of visual languag-
es," Science of Computer Programming, vol. 44, pp. 205-227, 2002.

[67] "ATOM3: A Tool for Multi-Paradigm modeling," http://atom3.cs.mcgill.ca/.
[68] A. Agrawal, G. Karsai, and F. Shi, "Graph Transformations on Domain-Specific Models,"

Software and Systems Modeling, 2003.
[69] E. D. Willink, "UMLX: A graphical transformation language for MDA," in Workshop on

Model Driven Architecture: Foundations and Applications, University of Twente, En-
schede, The Netherlands, 2003.

[70] P. Braun and F. Marschall, "The Bi-directional Object-Oriented Transformation Language,"
Technische Universität München 2003.

[71] I. Objects and P. Technology, "MOF Query/Views/Transformations,
Revised Submission," OMG Document: ad/03-08-11, ad/03-08-12, ad/03-08-13 2003.
[72] Alcatel, Softeam, Thales, TNI-Valiosys, and C. Corporation, "MOF

Query/Views/Transformations, Revised Submission," OMG Document: ad/03-08-05.
[73] J. Bézivin, G. Dupé, F. Jouault, and J. E. Rougui, "First experiments with the ATL model

transformation language: Transforming XSLT into XQuery," in Workshop on Generative
Techniques in the Context of the MDA, 2003.

[74] "Business Process Management Initiative, BPMI," http://www.bpmi.org/: W3C, OASIS,
OMG.

References

178

[75] "Organization for the Advancement of Structured Information Standards, OASIS,
http://www.oasis-open.org/."

[76] "National Institute of Standards and Technology," www.nist.gov.
[77] W. M. P. v. d. Aalst and A. H. M. t. Hofstede, "YAWL: Yet Another Workflow Language,"

Information Systems, vol. 30, pp. 245-275, 2003.
[78] M. Vasko and S. Dustdar, "A view based analysis of workflow modeling languages," in

14th Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP’06), 2006.

[79] G. M. GIAGLIS, "A Taxonomy of Business Process Modeling and Information Systems
Modeling Techniques," The International Journal of Flexible Manufacturing Systems,
2001.

[80] P. Wohed, W. M. P. v. d. Aalst, M. Dumas, and A. H. M. t. Hofstede, "Analysis of Web
Services Composition Languages: The Case of BPEL4WS " in 22nd International Confe-
rence on Conceptual Modeling (ER) Chicago, IL, USA: Springer Verlag, 2003.

[81] S. Carlsen, J. Krogstie, A. Sølvberg, and O. I. Lindland, "Evaluating Flexible Workflow Sys-
tems," in Hawaii International Conference on System Sciences (HICSS-30) Maui, Hawaii,
1997.

[82] "Business Process Definition Metamodel," Object Management Group,
http://www.bpmn.org/Documents/BPDM/OMG-BPD-2004-01-12-Revision.pdf, 2004.

[83] "IEEE Computer Society," www.computer.org.
[84] "American National Standards Institute - ANSI," www.ansi.org.
[85] "IEEE Standard for Functional Modeling Language—Syntax and Semantics for IDEF0

[IEEE Std 1320.1-1998]," Software Engineering Standards Committee of the IEEE Com-
puter Society 1998.

[86] "Draft Federal Information Processing Standards Publication 183, Standard for integration
definition for function Modeling (IDEF0)," National Institute of Standards and Technology
(NIST), 1993.

[87] P. Bernus, K. Mertins, and G. Schmidt, Handbook on Architectures of Information Sys-
tems: The IDEF Family of Languages: Springer Berlin Heidelberg, 1998.

[88] A. Plaia and A. Carrie, "Application and assessment of IDEF3-process flow description
capture method," International Journal of Operations & Production Management, 1995.

[89] A.-W. Scheer, Architecture of Integrated Information Systems: Foundations of Enterprise
Modelling: Springer-Verlag New York, Inc., 1992.

[90] Ferdian, "A Comparison of Event-driven Process Chains and {UML} Activity Diagram for
Denoting Business Processes," in Information and Communication Systems: Technische
Universität Hamburg-Harburg, 2001.

[91] Bezivin, A. Tsalgatidou, F. Vermaut, L. Kutvonen, and P. F. Linington, "State-of-the art for
Interoperability architecture approaches," Network of Excellence - www.interop-noe.org
2005.

[92] A. Tsai, J. Wang, W. Tepfenhart, and D. Rosea, "EPC Workflow Model to WIFA Model
Conversion," in IEEE International Conference on Systems, Man and Cybernetics, 2006.

[93] "The Event-driven Process Chain," in ARIS Design Platform London: Springer 2007.
[94] W. M. P. v. d. Aalst, "Formalization and Verification of Event-driven Process Chains," In-

formation and Software Technology, 1999.
[95] W. M. P. v. d. Aalst, "Formalization and Verification of Event-driven Process Chains,"

Eindhoven University of Technology, Eindhoven 1998.
[96] A. Tsalgatidou, "Business Process Models," Department of Informatics and Telecommuni-

cations University of Athens, Athens.
[97] I. Knowledge Based Systems, "IDEF3 Process Description Capture Method," Knowledge

Based Systems, Inc.
[98] Y.-H. Chen-Burger, A. Tate, and D. Robertson, "Enterprise Modelling: A Declarative Ap-

proach for FBPML," in European Conference of Artificial Intelligence, Knowledge Man-
agement and Organisational Memories Workshop, Lyon, France, 2002.

[99] J. Lee, H. Sarjoughian, F. Simcox, S. Vahie, and B. Zeigler, "A Group-Based Approach for
Distributed Model Construction," in HICSS - Proceedings of the Thirty-First Annual Hawaii
International Conference on System Sciences, 1998, p. 220.

References

179

[100] J. Eatock, R. J. Paul, and A. Serrano, "A Study of the Impact of Information Technology
on Business Processes Using Discrete Event Simulation: A Reprise," International Journal
of Simulation Systems, Science & Technology, vol. 2, pp. 30-40, 2001.

[101] "Business Process Modeling Notation, OMG Available Specification," Object Management
Group 2008.

[102] S. A. White, "Using BPMN to Model a BPEL Process," IBM Corp 2005.
[103] T. Crusson, "Business Process Management Essentials," GLiNTECH 2006.
[104] W. M. P. v. d. Aalst, A. H. M. t. Hofstede, B. Kiepuszewski, and A. P. Barros., "Workflow

Patterns," Queensland University of Technology, Brisbane 2002.
[105] A. Cicortas, K.-P. Eckert, F. Fortis, B. Gaillard, Y. Glickman, J. Hall, R. Knapik, and R.

Renk, "VISP Workflow Technologies Functional Analysis and Comparison," Information
Society Technologies 2006.

[106] "XPDL," Workflow Managemnt Coalition.
[107] W. M. P. v. d. Aalst, "Patterns and XPDL: A Critical Evaluation of the XML Process Defini-

tion Language," Queensland University of Technology, Brisbane 2003.
[108] "WfMC Sample Workflow," The Open Business Engine.
[109] "Altova XML Spy 2007," ALTOVA - http://www.altova.com/.
[110] J.-J. Dubray, "XPDL Analysis," ebPML.org, 2002.
[111] H. Salah, B. Mahmoud, and B. Nacer, "An architecture for the interoperability of workflow

models," in first international workshop on Interoperability of heterogeneous information
systems, Bremen, Germany, 2005.

[112] "Business Process Definition MetaModel," Object Managemet Group 2008.
[113] "Business Process Definition Metamodel - Request For Proposal," Object Management

Group 2003.
[114] "XML Metadata Interchange (XMI)," Object Management Group -

http://www.omg.org/technology/documents/formal/xmi.htm 2007.
[115] A. Chazalet and P. Lalanda, "A Meta-Model Approach for the Deployment of Services-

oriented Applications," in IEEE International Conference on Services Computing, 2007.
[116] OMG, "Meta Object Facility."
[117] modeldriven.org, "Business Process Definition Metamodel."
[118] R. Gronback, "Modeling BPEL4WS," CodeGear Conference Proceedings, Borland, 2004.
[119] "Unified Modeling Language," Object Management Group, http://www.uml.org/.
[120] D. Braun, J. Sivils, A. Shapiro, and J. Versteegh, "Unified Modeling Language (UML) Tu-

torial," Kennesaw State University, 2001.
[121] M. Fowler and K. Scott, UML Distilled: Addison-Wesley, 2000.
[122] M. Chitnis, P. Tiwari, and L. Ananthamurthy, "Activity Diagram in UML."
[123] N. Russell, W. M. P. v. d. Aalst, A. H. M. t. Hofstede, and P. Wohed, "On the suitability of

UML 2.0 activity diagrams for business process modelling," in 3rd Asia-Pacific conference
on Conceptual modelling, Hobart, Australia, 2006.

[124] S. Agarwal, S. Handschuh, and S. Staab, "Surfing the Service Web," in Second Interna-
tional Semantic Web Conference (ISWC2003), Sanibel Island, Florida, 2003.

[125] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, S. A. McIlraith, S. Naraya-
nan, M. Paolucci, and T. Payne, "DAML-S: Semantic Markup for Web Services," The
DAML Services Coalition.

[126] M. Paolucci, N. Srinivasan, K. P. Sycara, and T. Nishimura, "Towards a Semantic Choreo-
graphy of Web Services," in International Conference on Web Services, Las Vegas, Neva-
da, USA, 2003.

[127] D. J. Mandell and S. A. McIlraith, "Adapting BPEL4WS for the Semantic Web: The Bottom-
Up Approach to Web Service Interoperation," in Second International Semantic Web Con-
ference (ISWC2003), Sanibel Island, Florida, 2003.

[128] "IBM," www.ibm.com.
[129] "Microsoft Corporation," www.microsoft.com.
[130] "BEA Systems, Inc.," http://www.oracle.com/bea/index.html.
[131] "SAP - Business Software Solutions Applications and Services," www.sap.com.
[132] "Siebel Systems, Inc.," http://www.oracle.com/applications/crm/siebel/index.html.
[133] E. Oren, "WSMO Deliverable - D13.2 v0.1 - WSMX Execution Semantics," DERI 2004.

References

180

[134] S. Thatte, "XLANG, Web Services for Business Process Design,"
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm: Microsoft Corpora-
tion, 2001.

[135] D. F. Leymann, "Web Services Flow Language (WSFL 1.0)," IBM Software Group, 2001.
[136] "Samples for ActiveBPEL 3.x," Active Endpoints, 2007.
[137] P. Wohed, W. M. P. v. d. Aalst, M. Dumas, and A. H. M. t. Hofstede, "Pattern Based Anal-

ysis of BPEL4WS," Queensland University of Technology, Brisbane 2002.
[138] M. A. Aslam, S. Auer, and M. Böttcher, "From BPEL4WS Process Model to Full OWL-S On-

tology," in Posters and Demos 3rd European Semantic Web Conference (ESWC 2006),
Budva, Montenegro, 2006.

[139] H. Guo and X. Lin, "A Study on the an Application Integration Integrated Model Support-
ing Inter-enterprise Collaborations," in Computer Supported Cooperative Work in Design
II: Springer Berlin / Heidelberg, 2006.

[140] Lee, Yoon, and Shin, "Supporting Dynamic Workflows in a Ubiquitous Environment " in
International Conference on Multimedia and Ubiquitous Engineering (MUE'07), 2007.

[141] I. Horrocks, F. v. Harmelen, P. Patel-Schneider, T. Berners-Lee, D. Brickley, D. Connolly,
M. Dean, S. Decker, D. Fensel, R. Fikes, P. Hayes, J. Heflin, J. Hendler, O. Lassila, D.
McGuinness, and L. A. Stein, "DAML+OIL," 2001.

[142] K. K. Breitman, M. A. Casanova, and W. Truszkowski, "Semantic Web: Concepts, Tech-
nologies and Applications," Springer London, 2007.

[143] J. Peer and M. Vukovic, "A Proposal for a Semantic Web Service Description Format," in
European Conference on Web Services, 2004.

[144] M. Sabou, D. Richards, and S. V. Splunter, "An experience report on using DAMLS," in
Twelfth International World Wide Web Conference Workshop on E-Services and the Se-
mantic Web, 2003.

[145] R. Lara, A. Polleres, H. Lausen, D. Roman, J. d. Bruijn, and D. Fensel., "A Conceptual
Comparison between WSMO and OWL-S. WSMO Deliverable D4.1v0.1, 2005.
http://www.wsmo.org/2004/d4/d4.1/v0.1/," 2005.

[146] "The Web Service Modeling Language WSML," ESSI WSMO working group 2005.
[147] "Web Service Modelling Ontology (WSMO)," ESSI WSMO working group.
[148] M. Moran and A. Mocan, "WSMX – An Architecture for Semantic Web Service Discovery,

Mediation and Invocation," in 3rd International Semantic Web Conference (ISWC2004)
Hiroshima, Japan, 2004.

[149] H. Lausen, J. d. Bruijn, A. Polleres, and D. Fensel, "WSML - a Language Framework for
Semantic Web Services," Position Paper for the W3C rules workshop 2005.

[150] M. Gone and S. Schade, "Towards Semantic Composition of Geospatial Web Services –
Using WSMO in Comparison to BPEL," in GI-Days 2007 University of Münster, Germany,
2007.

[151] A. Mocan, M. Kerrigan, and M. Zaremba, "Applying Semantics to Service Oriented Archi-
tectures," in Oasis Symposium 2006 San Francisco, 2006.

[152] D. Kuropka and M. Weske, "Towards a service composition and enactment platform," Int.
J. Business Process Integration and Management, vol. 2, 2007.

[153] P. Traverso and M. Pistore, "Automated Composition of Semantic Web Services into Ex-
ecutable Processes," in 3rd Int. Semantic Web Conf., 2004.

[154] B. Bordbar, G. Howells, M. Evans, and T. Staikopoulos, "Model Transformation from OWL-
S to BPEL via SiTra," in European Conference on Model Driven Architecture Foundations
and Applications, 2007.

[155] M. A. Aslam, S. Auer, J. Shen, and M. Herrmann, "Expressing Business Process Models as
OWL-S Ontologies," in Workshop on Grid and Peer-to-Peer Based Workflows (GPWW
2006), 2006.

[156] "Eclipse - an open development platform."
[157] "Process Specification Language PSL," http://www.mel.nist.gov/psl/: National Institute of

Standards and Technology, U.S. Department of Commerce, 1999.
[158] L. Sterling, E. Shapiro, and R. Garrett, "The Art of Prolog," IEEE Expert, 1987.
[159] L. v. Bertalanffy, General System Theory: George Braziller Publications, 1968.
[160] W. R. Ashby, Introduction to Cybernetics: London: Chapman & Hall, 1958.

References

181

[161] F. Heylighen and C. Joslyn, "What is Systems Theory?," Principia Cybernetica Web (Prin-
cipia Cybernetica, Brussels), 1992.

[162] S. LAKMAZAHERI, "Constraint-based reasoning via Grobner Bases," Artificial intelligence
for engineering design, analysis and manufacturing, 1997.

[163] E. C. Freuder and A. K. Mackworth, Constraint-Based Reasoning: MIT / Elsevier, 1994.
[164] J. Francis, "BPM and Nonlinear Thinkers," Managing BPM, 2004.
[165] J. Crampton, "On the satisfiability of authorization constraints in workflow systems,"

2004.
[166] K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, and J. Lee, "On Accommodating Inter Ser-

vice Dependencies in Web Process Flow Composition," in 2004 AAAI Spring Symposium,
2004.

[167] G. A. Bolcer and R. N. Taylor, "Advanced Workflow Management Technologies," Informa-
tion and Computer Science, University of California, Irvine, 2008.

[168] F. Maurer, B. Dellen, F. Bendeck, S. Goldmann, H. Holz, B. Kotting, and M. Schaaf,
"Merging Project Planning and Web-Enabled Dynamic Workflow Technologies," IEEE In-
ternet Computing, 2000.

[169] D. L. Dean, R. E. Orwig, and D. R. Vogel, "Facilitation Methods for use with EMS Tools to
Enable Rapid Development of High Quality Business Process Models," in 29th Annual Ha-
waii International Conference on System Sciences, 1996.

[170] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema, "Developing
Applications Using Model-Driven Design Environments," IEEE Computer Society, 2006.

[171] D. Fahland, "Complete Abstract Operational Semantics for the Web Service Business
Process Execution Language," Humboldt-Universität zu Berlin, Institut für Informatik
2005.

[172] M. M. Lehman and J. F. Ramil, "Role and Impact of Feedback and System Dynamics in
Software Evolution Processes and their Improvement," Copenhagen, Denmark 2000.

[173] B. Karakostas, Y. Zorgios, and C. C. Alevizos, "Automatic derivation of BPEL4WS from
IDEF0 process models," Journal of Software & System Modeling, Springer Berlin / Heidel-
berg, vol. 5, pp. 208-218, 2006.

[174] M. Owen and J. Raj, "BPMN and Business Process Management," Popkin Software, 2004.
[175] "Applications of Model-based Management," Microsoft Corporation 2005.
[176] "Standard Evaluations," Workflow Patterns Initiative, http://www.workflowpatterns.com,

2007.
[177] B. Karakostas, Y. Zorgios, and C. C. Alevizos, "The Semantics of Business Service Orches-

tration," in Advances in Semantics for Web services 2006 Workshop (semantics4ws'06),
Vienna, Austria, 2006.

[178] "Process Definition Interface- XML Process Definition Language,Document Number
WFMC-TC-1025, Version 1.0,," Workflow Management Coalition, 2005.

[179] G. Shegalov, M. Gillmann, and G. Weikum, "XML-enabled workflow management for e-
services across heterogeneous platforms," The VLDB Journal — The International Journal
on Very Large Data Bases, 2001.

[180] W3C-XML, "Extensible Markup Language (XML), http://www.w3.org/XML."
[181] W3C-XMLSchema, "XML Schema, http://www.w3.org/2001/XMLSchema."
[182] "Athens University of Economics and Business," http://www.aueb.gr/.
[183] "The ActiveBPEL® engine," http://www.active-endpoints.com/active-bpel-engine-

overview.htm: Active Endpoints.
[184] "bexee - BPEL Execution Engine," Berne University of Applied Sciences, School of Engi-

neering and Information Technology, http://bexee.sourceforge.net/: Active Endpoints.
[185] "Intalio|BPMS," http://bpms.intalio.com/: Intalio.
[186] "Java Technology, http://java.sun.com/," Sun Microsystems, Inc.
[187] A. Azim, A. Ghani, K. T. Wei, G. M. Muketha, and W. P. Wen, "Complexity Metrics for

Measuring the Understandability and Maintainability of Business Process Models using
Goal-Question-Metric (GQM)," IJCSNS International Journal of Computer Science and
Network Security, vol. 8, pp. 219-225, 2008.

[188] J. Cardoso, "Process control-flow complexity metric: An empirical validation," in IEEE In-
ternational Conference on Services Computing, Washington, DC, USA, 2006.

References

182

[189] J. Cardoso, J. Mendling, G. Neumann, and H. A. Reijers, "A Discourse on Complexity of
Process Models," in Business Process Management Workshops, 2006.

[190] J. Cardoso, "About the Data-Flow Complexity of Web Processes," in 6th International
Workshop on Business Process Modeling, Development, and Support: Business Processes
and Support Systems: Design for Flexibility, Porto, Portugal, 2005.

[191] I. Vanderfeesten, H. A. Reijers, J. Mendling, W. M. Aalst, and J. Cardoso, "On a Quest for
Good Process Models: The Cross-Connectivity Metric," in 20th International Conference
on Advanced Information Systems Engineering, Berlin, Heidelberg, 2008.

[192] H. A. Reijers and I. T. P. Vanderfeesten, "Cohesion and coupling metrics for workflow
process design," in 2nd International Conference on Business Process Management (BPM
2004), 2004.

[193] J. Cardoso, "Evaluating Workflows and Web Process Complexity," in Workflow Handbook
2005, L. Fischer, Ed. FL, USA: Future Strategies Inc.: Lighthouse Point, 2005, pp. 284-
290.

[194] J. Cardoso, "Complexity Analysis of BPEL Web Processes," Software Process: Improve-
ment and practice, 2006.

[195] K. B. Lassen and W. M. P. v. d. Aalst, "Complexity metrics for Workflow nets," Informa-
tion and Software, vol. 51, pp. 610-626, 2008.

[196] V. Gruhn and R. Laue, "Approaches for Business Process Model Complexity Metrics,"
Technologies for Business Information Systems, pp. 13-24, 2007.

[197] J. Mendling, "Testing Density as a Complexity Metric for EPCs," Vienna University of Eco-
nomics and Business Administration, Vienna, Austria 2006.

[198] J. Cardoso, "Business Process Quality Metrics: Log-Based Complexity of Workflow Pat-
terns," in OTM Conferences, Vilamoura, Portugal, 2007.

[199] K. Swenson, "Human Process: Trouble Ticket,"
http://kswenson.wordpress.com/2008/01/01/human-process-trouble-ticket/, 2008.

[200] K. Pijanowski, "What is Windows Workflow Foundation?,"
http://www.keithpij.com/Home/tabid/36/EntryID/18/Default.aspx, 2008.

[201] A. Belychook, "Humans Swimming In The Intalio Pool," http://mainthing.ru/tag/bpmn/,
2009.

[202] J.-J. Dubray, "Where is BPEL 2.0 going?," http://www.ebpml.org/bpel_2_0.htm, 2004.
[203] "POMPEI: P2P location and presence mobile services for crisis management," Pro-

gramme: Sixth Framework Programme (FP6); IST Priority, Europe’s Information Society,
2006-2007.

[204] H. He, "What is Service-Oriented Architecture?,"
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html, 2003.

183

Appendix – Performance of inference engine

Appendix

184

We undertook several real and simulated tests to test the performance of the workflow inference

engine, introduced in Section 4.5 of Chapter 4. There are four distinct phases:

 Phase 1: Based on a user’s action or a request from a software agent, the engine checks

the state of the requested Activity.

E.g. Execute (ActCodename: CalculateTaxAmount,

oInput: Invoice,

oProcess: Taxes)

At this phase, the engine checks whether the state of Activity CalculateTaxAmount is

‘available’.

 Phase 2: Engine executes the requested Activity, based on its defined execution Mecha-

nisms.

 Phase 3: After execution, the status of Activity is set to ‘executed’.

 Phase 4: The engine checks all Activities of the process and for those whose status is

‘available’ the program flow returns to Phase 1 and so on.

Obviously, the most time consuming phases are 2 and 4. We ran our experiments on a COMPAQ

PROLIANT server with dual XEON processors at 2.8GHz, 1-GB of RAM, and under a MS [129]

Windows Advanced Server operating system. We varied different parameters including the num-

ber of Activities involved in a process, the number of Controls, Inputs, and execution Mechanisms

of Activities. The results of performance are as follows.

Appendix

185

Phase 1

Phase 1 is not CPU-intensive and is independent of the number of total Activities involved

in the whole process model. It is also independent of the number of Controls, Inputs, and

execution Mechanisms. The execution time was less than 3 ms (Figure 0.1).

Figure 0.1: Phase 1’s execution time (ms)

Phase 2

Phase 2 is also independent of the number of total Activities involved in the whole proc-

ess model. It is dependent though on the number of execution Mechanisms of the Activ-

ity and relies on the execution performance of components and XSLT transformations. A

typical Activity has 1 component type of mechanism or 1 XSLT type of mechanism. In ex-

treme cases, an Activity may have more mechanisms. In Figure 0.2 the results show that

execution time for a typical Activity varies from 11ms to 19ms.

Figure 0.2: Phase 2’s execution time (ms) for a typical Activity

On the other hand, in extreme cases where an Activity has more than 2 execution

Mechanisms we observe that the execution time is exponential as shown in Figure 0.3.

Appendix

186

Figure 0.3: Phase 2’s execution time (ms) depending on execution Mechanisms

Phase 3

Phase 3 is not CPU-intensive and is independent of the number of total Activities involved

in the whole process model. It is also independent of the number of Controls, Inputs, and

execution Mechanisms. The average time was less than 1 ms (Figure 0.4).

Figure 0.4: Phase 3’s execution time (ms)

Phase 4

Phase 4 may require analysis of large and complex process models in order to check

which Activities of the process are ‘available’. The performance of this phase clearly de-

pends on the number of Activities of the process. The results show that even in the ex-

treme scenario of having 3000 Activities in a single process model the average time is

acceptable, at around 2 seconds (2232 ms) as depicted in Figure 0.5.

Appendix

187

Figure 0.5: Phase 4’s execution time (ms)

Apart of the number of Activities, performance of Phase 4 is slightly dependant on the

number of Inputs and Controls of the Activities. Figure 0.6 shows the performance of

checking an Activity’s state, based on the number of Inputs and Figure 0.7 shows the

performance of checking an Activity’s state, based on the number of Controls.

Figure 0.6: Phase 4 – Execution time (ms) based on the number of Inputs

Figure 0.7: Phase 4 – Execution time (ms) of checking an Activity’s state

We observe therefore that the number of Controls in Activities affect the performance

more than the number of Inputs. Having 100 Inputs in an Activity, which we consider as

Appendix

188

an extreme case, results in a performance of about 5ms (Figure 0.6), while having 100

Controls, which we also consider an extreme scenario, results in a performance of about

85ms (Figure 0.7). This is logically, as in case of Controls the engine needs to evaluate

each one of them, while in case of Inputs the engine just checks if they are available or

not.

Overall, the total execution time is represented in Figure 0.8, using a common scenario where

Activities have an average number of 2 execution Mechanisms, 4 Inputs and 3 Controls. In this

case, we consider the average performance of 645,95ms reasonable and acceptable.

Figure 0.8: Total Execution time (ms) using a typical scenario

Figure 0.9 also shows the total execution time of an extreme case where Activities have an aver-

age number of 10 execution Mechanisms, 40 Inputs and 3 Controls. In this extreme case the av-

erage performance of 13359ms is expected but in the same time not acceptable for a real

working system.

Figure 0.9: Total Execution time (ms) using an extreme scenario

