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Abstract 
This research exploits a collection of more than 2,500,000 programs, written to over 1,500 
specifications (problems), the Online Judge programming competition. This website invites 
people all over the world to submit programs to these specifications, and automatically 
checks them against a benchmark. The submitter receives feedback, the most frequent 
responses being "Correct" and "Wrong Answer". 

This enormous collection of programs gives the opportunity to test common 
assumptions in software reliability engineering about software diversity, with a high 
confidence level and across several problem domains. The previous research has used 
collections of up to several dozens of programs for only one problem, which is large enough 
for exploratory insights, but not for statistical relevance. 

For this research, a test harness was developed which automatically extracts, 
compiles, runs and checks the programs with a benchmark. For most problems~ this 
benchmark consists of 2,500 or 10,000 demands. The demands are random, or cover the 
entirety or a contiguous section of the demand space. 

For every program the test harness calculates: (1) The output for every demand in 
the benchmark. (2) The failure set, i.e. the demands for which the program fails. (3) The 
internal software metrics: Lines of Code, Halstead Volume, and McCabe's Cyclomatic 
Complexity. (4) The dependability metrics: number of faults and probability of failure on 
demand. 

The only manual intervention in the above is the selection of a correct program. The 
test harness calculates the following for every problem: (1) Various characteristics: the 
number of programs submitted to the problem, the number of authors submitting, the number 
of correct programs in the first attempt, the average number of attempts until a correct 
solution is reached, etc. (2) The grouping of programs in equivalence classes, i.e. groups' of 
programs with the same failure set. (3) The difficulty function for the problem, i.e. the 
average probability of failure of the program for different demands. (4) The gain of multiple­
version software diversity in a l-out-of-2 pair as a function of the pfd of the set of programs . 

. (5) The additional gain of language diversity in the pair. (6) Correlations between internal 
metrics, and between internal metrics and dependability metrics. 

This research confirms many of the insights gained from earlier studies: (1) Software 
diversity is an effective means to increase the probability of failure on demand of a l-out-of-
2 system. It decreases the probability of undetected failure on demand by on average around 
two orders of magnitude for reliable programs. (2) For unreliable programs the failure 
behaviour appears to be close to statistically independent. (3) Run-time checks reduce the 
probability of failure. However, the gain of run-time checks is much lower and far less 
consistent than that of multiple-version software diversity, i.e. it is fairly random whether a 
run-time check matches the faults actually made in programs. (4) Language diversity in a 
diverse pair provides an additional gain in the probability of undetected failure on demand, 
but this gain is not very high when choosing from the programming languages C, C++ and 
Pascal. (5) There is a very strong correlation between the internal software metrics . 

. The programs in the Online Judge do not behave according to some common 
assumptions: (1) For a given specification, there is no correlation between selected internal 
software metrics (Lines of Code, Halstead Volume and McCabe's Cyclomatic Complexity) 
and dependability metrics (pfd and Number of Faults) of the programs jmplementing it. This 
result could imply that for improving dependability, it is not effective to require 
programmers to write programs within given bounds for these internal software metrics. (2) 
~un-time checks are still effective for reliable programs. Often, programmers remove run­
tIme checks at the end of the development process, probably because the program is then 
?eemed to be correc~. Howeve~, the benefit of run-time checks does not correlate with pfd, 
I.e. th~y. are as effec~Ive for rehable as for unreliable programs. They are also shown to have 
a neghgible adverse Impact on the program's dependability. 
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Chapter 1 

Introduction 

There never were, in the world, two opinions alike, no 

more than two hairs, or two grains; the most universal 

quality is diversity. 

Michel Eyquem de Montaigne (1533-1592) 

1.1 Background 

In this age of automation, software dependability is a major concern. In 1994, 

Peter Neumann [53], Donald }v1cKenzie [44] and Les Hatton [27] published lists 

of software-related incidents. The lists show that the cost of software failure can 

be very high, both in terms of risks to human life and well-being as to economy. 

Up to the present day, Peter Neumann continues publishing incidents in his 

RISKS forum on the internet, and there is no reason to believe the problem has' 

disappeared. 

There are therefore good reasons to increase the dependability of software, 

and there. are many ways to do so: testing, quality control, design, etc. One 

of the possible measures is fault tolerance, of which software diversity is an 
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CHAPTER 1. INTRODUCTION 

example. 

Lee and Anderson [3] were very early in publishing their work on fault­

tolerance, "Fault Tolerance; Principles and Practice". In one of the chapters 

they propose a list of practices for software fault tolerance, which also addresses 

some words to software diversity. Voges [65] edited the book "Software Diversity 

in Computerized Control Systems" in 1988, showing the interest in that issue 

at that time. 

Also in the 1980s, various researchers addressed the issue of software diver­

sity in experiments, see Section 2.2. They were able to prove beyond doubt 

that it was an effective measure to increa..,e software dependability. Also, math­

ematical theories behind software diversity were developed, see Section 2.6. 

The growing awareness also found its way into standardization, especially 

concerning safety. Germany was early; employees at the TUV, Holscher and 

Rader, wrote "Microcomputer in der Sicherheitstechnik" [30] in HJ84. Their 
" 

ideas were later implemented in DIN-19250 [13] and VDE-0801 [14]. Then 

many countries and organisations (for automotive, defence, space, rail, aviation, 

healthcare, etc. applications) derived their own guidelines and standards. 

The International Electrotechnical Committee, IEC, took up the task and 

wrote what is now called IEC61508 [32]. IEC61508 mentions diverse program­

ming in Table A.2, item 3c. It is Recommended (R) for SILl to SIL3 and Highly 

Recommended (HR) for SIL4. IEC61508 describes diverse programming as fol­

lows: 

Aim: Detect and mask residual software design and implementation faults 

during execution of a program, in order to prevent safety critical failures of the 

system, and to continue operation for high reliability. 

Description: In diverse programming a given program specification is de­

signed and implemented N times in different ways. The same input values are 

given to the N versions, and the results produced by the N versions are compared. 

If the result is considered to be valid, the result is transmitted to the computer 

outputs. The N versions can run in parallel on separate computers, alterna­

tively all versions can be run on the same computer and the results subjected 

18 



1.2 Terminology 

to an internal vote. Different voting strategies can be used on the N versions, 

depending on the application requirements, as follows. 

• If the system' has a safe state, then it is feasible to demand complete 

agreement (all N agree) otherwise an output value is used that will cause 

the system to reach the safe state. For simple trip systems the vote can be 

biased in the safe direction. In this case the safe action would be to trip 

if either version demanded a trip. This approach typically uses only two 

versions (N=2). 

. 
• For systems with no safe state, majority voting strategies can be employed. 

For cases where there is no collective agreement, probabilistic approaches 

can be used in order to maximise the chance of selecting the correct value, 

for example, taking the middle value, temporary freezing of outputs until 

agreement returns, etc. This technique does not eliminate residual soft­

ware design faults, nor does it avoid errors in the interpretation of the 

specification, but it provides a measure to detect and mask before they can 

affect safety. 

This describes software diversity very well. In this thesis, I will only address 

the case where N=2, often referred to as a 1-out-of-2 system. 

1.2 Terminology 

The previous section already shows that software diversity is known under dif­

ferent names. Roughly in order of the year of first appearance, authors and 

standards refer to it as "dual programming" [22], "parallel progranlming" [22], 

. "dual code" [22, 63], "distinct software" [23], "N-version programming" [4], 

"dissimilar software" [42], "multi-version software" [17, 33, 35, 37], "software 

diversity" [24], "multi-version programming" [36], and "diverse programming" 

[32]. 

I will use the term "multiple-version software diversity" and its shorthand 

variant "software diversity". There is no specific reason to prefer this term over 

19 



CHAPTER 1. INTRODUCTION 

the others, except that it seems to fit best to earlier work done at the Centre 

for Software Reliability. 

1.3 The Quest 

When I arrived at the Centre for Software Reliability, in February 2003, I 

joined a group with a respectable background in the research of software diver­

sity. I was presented the work on modelling software diversity (the Eckhardt & 

Lee model, and its extension the Littlewood & l\1iller model) and the research 

project DOTS, "Diversity with Off-The Shelf Components" . 

The approach to modelling software diversity at CSR is primarily theoret­

ical. With their mathematical background, Kiiito Salako and Bev Littlewood 

were working on theoretical aspects of the modelling (e.g. [59]). It was clear 

that-with my background-my focus would be more pragmatic and, within 

the framework of DOTS, Lorenzo Strigini motivated me to st,art thinking and 

writing about smart sensors and the use of software diversity [46]. This made 

me very aware of the difficulty of doing this kind of research. Although in-
I 

teresting observations can be made, it is hard to give hard recommendations, 

because their effectiveness can not be measured. 

One of my research interests has always been the verification of "facts" vs. 

"urban legends". In the field of software diversity, there are many of these. The 

fact that software diversity helps improve reliability is fairly well researched, 

how much improvement is far more an educated guess, since large collections"of 

data have not been used for testing hypotheses of this kind. Other assumptions, 

for example about the effectiveness of language diversity in a 1-out-of-2 pair, 

have never been measured. 

Another observation I made is that the Eckhardt & Lee model is elegant in 

its simplicity, and is useful for many a philosophical discourse, but has never 

really been applied. \Vhat does a difficulty function look like? What happens 

if you multiply real difficulty functions? In other words, in my pragmatic mind, 

it needed some legs to stand on to get some grasp of its usefulness. 

With this in mind, I realized that to accomplish these two aims-measure 
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1.4 The Online Judge 

effectiveness, and apply the Eckhardt & Lee model-I needed a large set of 

programs written to the same specification. I started my quest, and quickly 

find out that indeed some interesting examples exist of these. 

One example is chess programs. They are written to a very precise spec­

, ification, and dozens of chess programs can easily be found. However, these 

programs struck me as too compli~ated for my analyses. 

Then a simpler game "Rock, Paper, Scissors", is the subject of "The In­

ternational RoShamBo Programming Competition". Not only are there many 

programs written for this specification, they are also available: all the best 

programs of the 1999 competition can be downloaded at https:/ /www. cs.­

ualberta. ca/-darse/rsbpc .html. This game is a rather interesting program­

ming challenge, because at first sight it seems that there is only one strategy: 

play random. However, as can be easily seen, a random program will also ran­

domly win and lose, and therefore will never win a competition. In spite of the 

availability of several dozens of programs and the simplicity of the specification, 

I decided not to take this route, because the difference between these programs 

is strategy. This will be very hard to analyse. Apart from that, it does not re­

ally fit the concept of software diversity, since that normally addresses programs 

that aim at producing the same output. 

Of course there are also nlany commercial programs with comparable spec­

ifications, for example spreadsheets, word processing, and smart sensors. This 

is certainly a possible way forward, but I decided not to pursue it, because it 

has been tried by others before, see Section 2.3. 

Many attempts later, I arrived at the website of the Online Judge. lt pre­

sented me a very large set of specifications, and also presented some statistics. 

It showed that very many programs were written to each specification. I realized 

that this could give me the opportunity I had been looking for. 

1.4 The Onli~e Judge 

The "UVa Online Judge" -Website, http://acm.uva.es,isaninitiativeofMi­

guel Revilla of the University of Valladolid [61]. It contains program specifi-

21 



CHAPTER 1. INTRODUCTION 

Continent % Country % 

Africa 0.7 

Asia 51.4 Bangladesh 13.1 

China 11.8 

Hong Kong 2.4 

India 2.1 

Indonesia 2.4 

Japan 1.3 

Korea 1.9 

Taiwan 13.8 

Oceania 1.4 Australia 1.2 

Europe 25.5 Bulgaria 1.0 

France 1.4 

Germany 1.4 

Poland 3.0 

Portugal 1.4 

Russia 5.0 

Spain 1.9 

Ukraine 1.2 

North America 12.2 Canada 2.5 

USA 9.7 

South America 8.7 Brazil 4.7 

l\1exico 1.2 

Table 1.1: Distribution of the authors over the continents, and the countries 

with more than 1% of the authors (as of l\1ay 2004). 

cations for which anyone may submit programs in C, C++, Java or Pascal. 

The correctness of a program is automatically judged by the "Online Judge". 

l'v1ost authors submit programs repeatedly until one is judged correct. Many 

thousands of authors contribute and together they have produced more than 
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1.4 The Online Judge 

Figure 1.1: Authors' birth years, for those authors that provided their birth 

year (as of May 2004). 0 

5,000,000 programs for the approximately 1,500 specifications on the website. 

Most of my research has been done using the data available in May 2004: 

2,545,979 submissions for around 1,500 problems. 

Table 1.1 shows the distribution of the authors over the continents and coun­

tries. It appears that they are located all over the world, with some countries 

being surprisingly productive and Africa almost absent. Figure 1.1 shows the 

birth year of the authors. It appears most of the authors are between 18 and 25 

years old, i.e. they are most probably university students. The average birth 

date is in July 1981, i.e. the average age is around 22 at the time of submission. 

The Online Judge generates feedback to the author of a program, which is 

one of the ~ollowing: 

Correct (AC). The program's output matches the Online Judge's 'Output. 

Wrong Answer. (WA). The output of the program does not match what 

the Online Judge expects. 

Presentation Error (PE). Presentation errors occur when the program 

23 



CHAPTER 1. INTRODUCTION 

produces correct output for the Online Judge's secret data but does not produce 

it in the correct format. 

Runtime Error (RE). This error indicates that the program performs 

an illegal operation when running on the Online Judge's input. Some illegal 

operations include invalid memory references such as accessing outside an array 

boundary. There are also a number of common mathematical errors such as 

divide by zero error, overflow or domain error. 

Time Limit Exceeded (TL). The Online Judge has a specified time limit 

for every problem. When the program does not terminate in that specified time 

limit this error will be generated. 

Compile Error (CE). The program does not compile with the specified 

language's compiler. 

Memory Limit Exceeded (ML). The program requires more memory to 

run than the Online Judge allows. 

Output Limit Exceeded (OL). The prograrn produce~ more than 4 MD 

output within the time limit. 

Restricted Function (RF). The program uses some system function call 

or tries to access files. 
. . 

In my experiments I only use programs that are either classified as accepted 

(AC), wrong answer (WA) or presentation error (PE), see Section 3.1. 

1.5 Research Questions 

The quantification and analysis of the various aspects of software diversity 

requires the availability of large amounts of p~ograms written to the same spec­

ification. This is exactly what the Online Judge can provide. Therefore, the 

use of the programs provided by the Online Judge gives a unique opportunity 

to research software diversity. 

The main questions I try to answer in this research project are: 

• How effective is multiple-version software diversity as a means to enhance 

software reliability? 
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1.5 Research Questions 

• How effective is language diversity as a means to increase the effectiveness 

of multiple-version software diversity? 

• How effective are run-time checks? (Run-time checks constitute a special 

variety of software diversity.) 

In this research I actually try to measure effectiveness of software diversity. 

Additionally, I encountered other interesting and related results, which I will 

also report. 
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Chapter 2 

Research in Software Diversity 

The greatest of faults, I should say, is to be conscious 

of none. 

Thomas Carlyle (1795-1881) 

This chapter presents the existing theory in software diversity in order to 

provide the necessary background for the experiments. It also describes some 

relevant existing case studies, which will later be used to put the results of the 

experiments into perspective. 

2.1 Introduction 

As explained in the introduction, this research addresses the effectiveness of 

software diversity using a large set of programs submitted to an on-line pro­

gramming ~ompetition. Although this has not been done before there is other· 

research addressing similar issues. In this chapter I will sketch out this related 

research and my work: within this context. 

Starting in the 1980s, there have been quite a few experiments in which 

(teams of) students wrote programs to the same specification. I will address 
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some of these in Section 2.2. 

A possible way to circumvent much of the criticism on these experiments 

(and my work) is to analyse various commercial software packages implementing 

the same application. I will address this approach in Section 2.3. 

In all of the above research, the basic idea is that different versions of the 

software are generated because different programmers/design teams make dif­

ferent mistakes. Another approach to get many different versions of programs 

is fault injection. I will address this in Section 2.4. 

A related strategy for software fault tolerance is recovery blocks, which I 

will address in Section 2.5. 

Furthermore, I need to address the issue of how to model software diver­

sity, which is necessary to be able to do the calculations. I will address the 

mathematical models for software diversity in Section 2.6. 

2.2 Diversity Experiments 

2.2.1 Overview 

Peter Bishop compiled Table 2.1 [8], which shows some typical software diversity 

experiments. J\1ost famous is the work of John Knight and Nancy Leveson, per­

formed in the 1980s, which includes one of experiments addressed (the Launch 

Interceptor). I will describe this work separately in the next section. 

Some of Peter Bishop's observations relevant to this thesis are: 

1. A significant proportion of the faults is similar, and the major cause of 

this is (the interpretation of) the specification [12, 24, 34]. The use 

of relatively formal notations is effective in reducing specification-related 

faults caused by incompleteness and ambiguity. 

2. Some experiments address the impact of the choice of programming lan­

guage [5, 9, 12], and fewer faults seem to occur in .the strongly typed, 

highly structured languages such as Modula-2 and Ada. However, the 

choice of language seems to bear little relationship to the incidence of 

common specification-related or design-related faults. 
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2.2 Diversity Experiments 

Experiment Application Specs Languages Versions Ref. 

Halden Reactor Trip 1 2 2 [12] 

NASA First Generation 3 1 18 [34] 

KFK Reactor Trip 1 3 3 [24] 

NASA/RTI Launch Interceptor 1 3 3 [15] 

UCI/UVA Launch Interceptor 1 1 27 [35] 

Halden (PODS) Reactor Trip 2 2 3 [9] 

UCLA Flight Control 1 6 6 [5] 

NASA Inertial Guidance 1 1 20 [16] 

UI/Rockwell Flight Control .1 1 15 [41] 

Table 2.1: Some software diversity experiments. 

My research differs from these experiments in various ways: 

1. The number of programs written to the same specification. The highest 

number of versions in these experiments is 27. There are other experi­

ments with slightly higher numbers, e.g. by Per Runeson [58], but there 

are no experiments with thousands of versions. 

2. The way the experiment is controlled. The amount of control in these ex­

periments is typically very high. This cannot be said of the contributions 

to the Online Judge. Little is known about the programmers, except their 

nationality and age. 

3. The programming languages used, and whether different programming 

languages are used for the different versions. Many experiments do ad­

dress the issue of language diversity, some even forced it [40]. Some general 

observations pave been done but, given the low number of versions, no 

'statistically relevant results are available. 

4 .. The number of specifications used. In some experiments more than one 

specification is used. This is done because a major source of faults appears 

to be the specification. The Online Judge only provides one specification. 
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(There are some different specifications of the same problem of the Online 

Judge, I did however not analyse this.) 

5. The size of the programs. The size of the programs written for the ex­

periments are typically up to 1000 lines of code. This is larger than the 

programs written for the Online Judge. In both cases however, the dif­

ference with "real" software is big. 

6. Realism of the experiment. In many of the experiments there was an 

effort to provide a specification of a realistic problem. However, the spec­

ifications remained fictitious, and as such I don't see much difference with 

the specifications of the Online Judge. 

For a more elaborate discussions of the limitations of this research see Chap­

ter 5. 

2.2.2 Knight and Leveson 

In 1986, John Knight and Nancy Leveson reported an experiment in which 

27 programmers, from two universities, programmed to the same specification, 

describing a (fictitious) defence application launching a missile based on input 

radar data [36]. The 27 programmers wrote programs in Pascal that varied 

largely in size: from 327 to 1,004 lines of code. The programs were all submitted 

to a random test with 1,000,000 demands, their probability of failure on demand 

was in all cases lower than 0.01. 

A major result was that the authors could reject the assumption of inde­

pendence of failure of the diverse versions to a high confidence level [8]. 

In a subsequent publication the authors investigated the effectiveness of 

software diversity [35]. They were able to 'show that a three-version system, 

with majority voting, yielded a reliability gain of a factor 20 to 50 over a single 

version. Other researchers investigated the same dataset, e.g. Susan Brilliant 

[10] and Les Hatton [28]. 
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2.3 Commercial Software 

2.3 Commercial Software 

The ideal software diversity experiment is of course one in which "real" software 

is used, i.e. different commercial implementations for the same application. In 

theory this would be possible in many application domains, but it is in practice 

difficult and very time consuming to do. This is because different commercial 

packages are never exactly the same. Their inputs and output formats as well 

as the results they provide may be different, and it is therefore hard to exercise 

them in ways that are comparable. Additionally, even if a test harness can be 

made, it may be hard to find faults, because each test may take ~ome time, and 

it may be hard to run many tests. 

In this section I wish to present the results of Les Hatton, who compared 

various seismic data processing packages, nir Gashi, who compared various SQL 

servers, and myself on smart sensors. 

The reader will notice that, although all these cases clearly give very useful 

insights into the possible effectiveness of diversity, it is hard to see how they can 

be used to quantitatively assess the possible reliability gain of using software 

diversity. 

2.3.1 Seismic Data Processing 

In 1994, Les Hatton and Andy Roberts reported their findings concerning the 

accuracy of scientific software [29]. It concerns a four year study of nine com­

mercial seismic data processing packages written independently in the same 

programming language and calibrated with the same input data and input pa­

rameters. They show that, after a normal processing sequence, the nine pack­

ages may differ in the first and second decimal place,' which essentially makes 

these results useless. They also show that these differences are entirely due to 

software errors. 

The experiment is carried out in a branch of the earth sciences known as 

seismic data processing .. Hatton and Roberts identified around fifteen inde­

pendently developed large commercial packages that implement mathematical 

algorithms from the same or similar published specifications in the same pro-
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gramming language (Fortran) in their experiments. They reported the results 

of processing the same input dataset, using the same user-specified parameters, 

for nine of these packages. 

Hatton and Roberts show that the differences between the results of the 

various packages are big, far bigger than the arithmetical precision, and that 

the nature of the disagreement is non-random. 

2.3.2 SQL Servers 

nir Gashi [18, 19, 20] assessed the dependability gains that may be achieved 

through software fault tolerance via modular redundancy with diversity in com­

plex off-the-shelf software. He used SQL database server products in his studies: 

they are a very complex, widely-used category of off-the-shelf products. 

Gashi used bug reports of the servers as evidence in the assessment: they 

were the only direct dependability evidence that was found for these products. 

He studied a sample of bug reports from four SQL database server products 

(Postgre SQL, Interbase, Microsoft SQL Server, Oracle) and later relea..c;;es of 

two of them to check whether they would cause coincident failures in:more 

than one of the products. He found very few bugs that affect more than one 

product, and none caused failures in more than two. Many of these faults 

caused systematic, non-crash failures, a category ignored by most studies and 

standard implementations of fault tolerance for databases. 

For one of the products, he found that the use of different releases of the 

same product appears to tolerate a significant fraction of the faults. 

2.3.3 Smart Sensors 

In sensors, a silent revolution has taken place: almost aU sensors now contain 

software. This has lead to increased functionality, increased precision, and 

other advantages. There are also disadantages. The "smart" sensors have 

many more failure modes and they also introduce new mechanisms for common 

mode failure. I investigated the issue in [45] (Appendix C.1). 

In this paper, I .compare the dependability aspects of deploying smart sen-
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sors vs. conventional ones using an Failure Modes and Effects Analysis. There 

appear to be some significant differences. Some failure. modes do not exist in 

conventional sensors, e.g. those involving information overload and timing as­

pects. Other failure modes emerge through the use of different technologies, 

. e.g. those involving complexity, data integrity arid human interface. When us­

ing smart sensors I suggested the use of a set of guidelines for their deployment: 

1. Do not send data to the smart sensor. 

2. Use the smart sensor in burst mode only. 

3. Use a smart sensor with the least possible number of operational modes. 

4. Use the simplest possible sensor for the application. 

In redundant sensor configurations (including those without diversity) com­

mon cause failure becomes the dominant failure scenario. The failure modes of 

smart sensors suggest that smart sensors are more susceptible to common cause 

failure than conventional ones. Dominant are failures that have their origin in 

the human interface, complexity and information overload. The guidelines given 

will also reduce the probability of common cause failure. 

In redundant sensor configurations a possible design rnethod is the use of 

diversity. Diversity has the advantage that it can reduce the probability that 

two or more sensors fail simultaneously, although this effect is limited by the 

fact that diverse sensors may still contain the same faults. A disadvantage of 

diversity can be the increased cOInplexity of maintenance, which in itself can 

lead to a higher probability of failure of the smart sensors. Whether the use of 

diversity is advisable depends on the design of the sma~t sensors and the details 

of their application. 

2.4 ., Fault Injection 

It is possible to create many different programs, mutants, by changing a given 

program. These changes can either be random or based on a set of rules which . , 
are generally based on observations of frequently made mistakes. This approach 
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of changing programs is used in "mutation testing" [1, 54, 55, 64]. :Mutation 

operators exist for various programming languages, e.g. C [1] and Ada [55]. 

The Diverse Software Project (DISPO) of the Centre for Software Relia­

bility (CSR, City University) and the Safety Systems Research Centre (SSRC, 

University of Bristol), included a set of fault injection experiments [62,21,39]. 

One of the objectives of these experiments was to study the relationship be­

tween fault diversity and failure diversity, i.e. is there a correlation between the 

type/location of faults and software failure? 

The types of faults injected in these experiments are mainly slips/mistakes, 

and not the kind of faults that may be caused' by requirements ambiguities or 

other higher-level misunderstandings. In [62], the author concedes that this 

does not pose a major concern for testing the hypothesis, because the faults 

are realistic; for testing the hypothesis it is not necessary tlla~, the faults reflect 

all possible faults nor their distribution. Examples of injected faults ai'e replac-

ing "<" with ">" and "==" with "=", and are as such comparable to those 

suggested in mutation testing. 

The location of faults is varied by injecting faults in the different files that 

constitute the entire program. In the experiment, mutants with a pfd higher 

than 0.01 are discarded, because they are deemed to be unrealistic. 

The experiments can not confirm a relationship between fault diversity and 

fail ure di versi ty. 

The experiments also lead to some other ,'results, one of which is relevant 

for this thesis. When assuming that the mutants form the complete population 

of possible programs, and that they are equiprobable (as the author points 

out, these are both unlikely assumptions), 'pairs of programs in a 1-out-of-2 

configuration fail on average more often than failure independence would imply. 

The improvement of the pfd over a single version differs for various experiments, 

but is generally in the range of one to two orders of magnitude. 
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2.5 Recovery Blocks 

The recovery block scheme [31] [56] is a strategy for software fault tolerance 

'which also employs software diversity. A recovery block consists of a conven­

tional block which is provided with a means of error detection (an acceptance 

test) and zero or more stand-by spares (the additional alternates). If none of 

. the alternate programs passes the acceptance test, there will be no result. 

In contrast to l-out-of-2 systems, the recovery block scheme may also work 

when the required output is not unique. 

In 1988, Anderson et. al. [2] published the results of an experiment with a 

realistic application, a command and control system constructed by professional 

programmers to normal commercial standards. Several fault tolerance features 

were added, including recovery blocks. In the experiment it was possible to 

monitor the improvement of the reliability from the use of fault tolerance. The 

experiment showed that 74% of the failures were masked by the use of software 

fault tolerance. 

2.6 Modelling of Software Diversity 

The mathematical theory on modelling software diversity is not very large. Only 

Eckhardt & Lee and Littlewood & Miller have made s~gnificant contributions to 

mathematically understanding the mechanisms of software failure in redundant 

configurations. Only recently, Lorenzo Strigini and Peter Popov added their 

work on asymmetric software diversity, i.e. run-time checks and wrappers. 

2.6.1 Eckhardt and Lee 

The best known probability model in the domain of multiple-version diversity 

is that of Eckhardt &, Lee [17]. The assumptions underlying the model are that: 

1. Failures of an individual program are deterministic and a program version 

either fails or suc~eeds for each input value x. The failure set of a program 

7r can be represented by a "score function" w( 7r, x) which produces a zero 

if the program succeeds for a given x or a one if it fails. 
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2. There is randomness due to the development process. This is represented 

as the random selection of a program, II, from the set of all possible 

program versions that can feasibly be developed and/or envisaged. The 

probability that a particular version 'IT will be produced is P(II = 'IT). 

3. There is randomness due to the demands in operation. This is represented 

by the random occurrence of a demand, )(, from the set of all possible 

demands. The probability that a particular demand will occur is P(X = 

x), the demand profile. 

Using these model assumptions, the average probability of a program version 

failing on a given demand is given by the difficulty function, B(x), where: 

B(x) = LW('IT,x)P(II = 'IT) (2.1) 

The average probability of failure on demand of a randomly chosen single 

program version IIA can be computed using the difficulty function f~r method 

A and the demand profile: 

pfdA := P(IIA fails on X) = L BA(X)P(X = x) (2.2) 
x 

The average pfd for a pair of diverse programs, IIA and lIB, assuming the 

system fails when both versions fail, i.e. a 1-out-of-2 system. would be: 

pfdAB = L BA(X)BB(X)P(X = x) (2.3) 
x 

The Eckhardt & Lee model assumes similar development processes for the 

two programs A and B and hence identical difficulty functions, i.e. that B A (x) = 

BB(X). Therefore, the average pfd for a pair o,f diverse programs is: 

(2.4) 

If the difficulty function is constant for all x, and therefore var x (B A (X), 

BB(X)) = 0, the reliability improvement for a diverse pair will (on average) 

satisfy the independence &'3sumption: 

(2.5) 
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It is always the case that varx(OA(X)) ~ 0, and therefore: 

(2.6) 

In practice the variance plays an important role, and is often the main factor 

of system unreliability. The intuitive explanation for this is that it is harder 

for the program developers to properly deal with some demands. The difficulty 

function will then be "spiky", and the diverse program versions tend to fail on 

the same demands. Diversity is then likely to yield little benefit and pfdAB 

could be close to pfd A . 

I will use the Eckhardt & Lee model in most of our multiple-veorsion diversity 

experiments, except those with different programming languages. 

2.6.2 Littlewood and Miller 

In 1989, Littlewood and Miller published a generalization of the Eckhardt & Lee 

model: the Littlewood & Miller extended model [37]. The difference between 

the models is that Littlewood and ~diller do not assume that the development 

process of the two program versions is the same. Therefore, in their model the 

difficulty functions may differ. 

The average pfd for a pair of diverse programs, ITA and ITB, developed 

using methods A and B (assuming the. system fails when both versions fail, i.e. 

a 1-out-of-2 system) would be: 

pfdAB := P(ITAfailsonX andITB fails on X) = I:OA(X)OB(X)P(X = x) (2.7) 
x 

And, as shown in [37]: 

(2.8) 

Because COVX(OA(X),OB(X)) can be smaller than zero, the improvement' 

can, in prin~iple, be' better than the independence assumption. The intuitive 

explanation of negative covariance is a circumstance where the "dips" in OA(X) 

coincide with the "spikes" in OB(X), so the programs on average fail on different 

demands, and the performance of the pair is better than under the independence 

assumption (and vice versa). 
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Input 
Primary 

Primary Output .. 

L 
Checker Checker Output 

Figure 2.1: Primary/Checker model. 

We will use the Littlewood & Miller model in our language diversity exper­

iments with different programming languages. 

2.6.3 Strigini and Popov 

Doth the Eckhardt & Lee and the Littlewood & Miller model consider symmet­

rical redundancy, i.e. both channels have the same functionality. In practice 

however, there are many examples of systems where the redundancy is not sym­

metrical. Examples are wrappers and run-time checks. Lorenzo Str.igini and 

Peter Povov work on modelling this kind of redundancy. 

Figure 2.1 shows a possible model for asymmetric redundancy, most ap­

plicable to run-time checks. In this case the primary performs the intended 

function. The checker observes the inputs and outputs of the primary and can 

mark invalid outputs of the primary as such. It may not mark all invalid out­

puts, this is often intended behaviour, the idea being that the checker contains 

simple functionality only approximating or boundary checking the primary. ~ee 

for a detailed discussion [51] and [48]. 

Now, assume a specification for the primary, S7r: 

S7r(x, y) == "y is valid primary output for input x" (2.9) 

Then, we define the score function W7r for a random primary 7r as: 

(2.10) 

The score function is true when the primary 7r fails to compute a valid 

output y for a given input x. 
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Figure 2.2: An example of a wrapper in a boiler control system. 

The behaviour of a checker a can be described as: 

a(x, y) == "y is accepted as valid primary output for input x" (2.11) 

Note the similarity to the specification of the primary, S7r. Whereas the spec­

ification is supposed to be correct, we assume that the checker may be faulty: 

it may erroneously accept an incorrect pair (x, y). The checker fails if there is 

a discrepancy with the specification.' The score function Wq for the checker is: 

wq(a, x, y) == S7r(x, y) EEl u(x, y) (2.12) 

The score function is true when the checker fails to recognize whether y is valid 

primary output for input x or not. 

For our system, as depicted in Figure 2.1 and the variables (x,rr,a) for the 

input,the primary and the checker, there are four possibilities: 

1. -,w
7r

(7r, x) 1\ -,wq(u, x, 7r(x)): Correct operation. 

3. w
7r

(7r, x) 1\ -,wq(a, x, 7r(x)): Detected failure. 

I will use this model in our experiments with run-time checkers. 

A wrapper in general has a different objective than a checker, although the 

border between the two may in some cases be vague. A wrapper isolates the 
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output of a control system (primary) and may in some cases replace the control 

system's functionality when this fails. Figure 2.2 shows an example of a wrapper 

in a boiler application. This example is further explained in [50]. When the 

wrapper merely disconnects the output of the control system, it resembles a 

checker. 
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Chapter 3 

Experiments 

Don't be too timid and squeamish about your actions. 

All life is an experiment. The more experiments you 

make the better. 

Ralph Waldo Emerson (1803-1882) 

This chapter presents the approach to the software diversity and other ex­

periments. 

3.1 Selection of Problems 

The Online Judge provides some 1,500 problems, which in theory can all be 

analysed. It appears however that some problems are more suitable for analysis 

than others. My mai~ selection criteria for selecting a program from the Online 

Judge are: 

At least 1000 submissions to the problem exist, ,preferably signif­

icantly more. For the statistical analyses it is beneficial-if not e'ssential-to 

have large sa~ples. This criterion excludes many problems. 
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The problem has a unique output for every input. If a problem does 

not have a unique answer for every input, it is not possible to build a 1-out-of-2 

system, which is the subject of the experiments. If the output deviates within 

a given range from the correct output, I treat this as a correct output. This 

may occur when the output is a real number. Since the specifications in general 

do not specify the maximum deviation, I determined the range. Normally, the 

range will at least cover deviations caused by rounding off. 

The input can be automatically generated with relative ease. I 

generate input files with in most cases contain 2,500 or even 10,000 demands. 

It is not possible to create all these demands by hand. 

The problems need to cover a mixture of problem domains. This 

is necessary to be able to generalize the findings beyond one problem domain 

(see Appendix A.3). 

There are still many problems that fit these criteria, and I selected randomly 
" 

from those. This was mainly determined by the order of evaluation. I chose 

the first program that seemed to match the criteria listed above. 

3.2 Selection of Programs 

3.2.1 For all Analyses 

From the set of programs for a selected problem, I only use a subset. The 

selection criteria are based on information provided by the Online Judge or on 

the results of running the program with the benchmark. I used the following 

criteria for selecting a progranl for the analysis (they are applied in the order 

of the list): 

Programs running under the Online Judge. I only use those programs 

that have shown to run under the Online Judge, i.e. the Online Judge was 

able to compile the program and to run it, and the prograrll would run using 

prescribed time and memory resources. This first filter saves me much time, 

and also protects me from malicious programs like fork bombs (see Section 3.5). 
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Programs that succeed for at least _ one demand. I excluded the 

completely incorrect submissions, because there is obviously something wrong 

with these in a way that is outside my scope (these are often submissions to 

the wrong specification, or incorrect formatting of the output, which was often 

the case in specification 147 "Dollars"). 

First submission of each author. I only use one program submitted by 

each author and discard all other submissions. These subsequent submissions 

have shown to have comparable fault behaviour and this dependence between 

submissions would complicate any statistical analysis. 

Programs smaller than 40kB. I remove those programs from the analysis 

that have a filesize over 40kB. This is the maximum size allowed by the Online 

Judge, but was not enforced for a small period of time, and during this time 

some authors managed to submit programs exceeding this limit. This restriction 

only enforces a restraint that already existed in principle. 

3.2.2 For the Analysis of Run-Time Checks 

For the analyses of run-time checks [51, 48], I only selected problems for which 

a sensible run-time check can be formulated. Astonishingly, this is often not 

the case. For example, for programs that only output Thue/False or Yes/No 

the only run-time check is often the check whether the output is Thue/False or 

Yes/No, which is not very interesting. I therefore selected problems for which 

interesting run-time checks exist, and preferably a few run-time checks, in order 

to be able to compare their performance. 

3.2.3 For the Analysis of Software Metrics-

For the analyses of software metrics [49], I used the following additional selection 
" 

criteria for programs submitted for a given problem: 

Programs that do not consist of look-up tables. I disregard those 

programs that consist of look-up tables, because their software metrics are 

completely different (the Halstead Volume is in general more than ten times 

the average for all programs written to a specification, thus completely domi-
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nating statistical analysis). These programs are very easily distinguishable from 

others, because they combine a very high Halstead Volume with a very low Cy­

clomatic Complexity. In rare cases a look-up table has a very high Cyclomatic 

Complexity, more than a hundred; in these cases the table is programmed with 

if-then-else statements. 

Programs in C or C++. I only chose programs in C or C++ because 

my tools calculate the internal metrics for these programming languages. Apart 

from this practical reason mixing programming languages in this research might 

invalidate the results, or at least complicate their interpretation, because it is 

not immediately clear how these metrics compare across language boundaries. 

3.3 Test Harness 

A test harness has been developed to systematically analyse problems in the 

Programming Contest. The test harness contains programs for the f~llowing 

tasks: 

1. Extraction of source codes from e-mails. 

2. Compilation of the source codes. 

3. Running the compiled programs, with a benchmark as input. 

4. Determining equivalence classes and score functions. 

5. A range of statistical functions in R for analysis of the data. 

See Appendix B for a description of the tools for analysing a problem. 

3.4 Analysis 

This section provides the (statistical) calculations that were done for all the 

problems analysed. The total number of programs analysed is more than sixty. 

Analysing a single problem typically takes between one day or several weeks, 

and results became available gradually. Therefore, as the reader will notice, 
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Parameter C C++ Pascal Total 

Number of submissions (AC, WA, or PE) 16844 17521 4337 38702 

Number of authors 5897 6097 1581 13575 

First submission correct 2479 2434 593 5506 

Last submission correct 5140 5082 1088 11310 

Average number of trials per author 2.86 2.87 2.74 2.85 

Average number of trials per author (ex- 2.66 2.68 2.58 2.66 

cluding submissions after a correct one) 

Average number of trials to correct sub- 2.65 2.66 2.53 2.65 

mission 

Number of different equivalence classes 1003 1079 384 1991 

N umber of different score functions 276 322 112 506 

Number of different equivalence classes in 527 527 198 1012 

authors' first submissions 

Number of 'different score functions in au- 152 160 58 258 

thors' first submissions 

Table 3.1: Main parameters calculated for the "3n+1"-problem. 

the later publications are based on more data than the earlier ones (see Ap­

pendix A.2). 

3.4.1 Main Parameters 

A first table, available for all problems, presents generic data about the number 

of programs in the analysis, the distribution over the progra:mming languages, 

the number of correct submissions, the average number of trials until a correct 

submission, etc. Table 3.1 shows the table for the '''3n+1''-problem. 
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Parameter 1 >pfd Correct 0.1 2:pfd> 0 1 >pfd> 0.1 

N=11519 N=5368 N=250 N=5901 

Mean SD lYle an SD l\1ean SD Mean SD 

Filesize 738 1380 757 1090 725 352 722 1620 

Lines of Code 36.9 37.3 39.6 49.1 40.4 12.9 34.3 22.3 

#Comment lines 2.52 11.4 2.89 14.5 1.97 4.91 2.2 7.92 

Halstead Volume 1100 5580 1050 3960 1010 375 1150 6820 

l\1cCabe CC 9.47 3.2 10.1 3.25 11.1 3.91 8.85 2.98 

Table 3.2: Parameters of the C and C++ programs of the "3n+1"-problem. 

3.4.2 Parameters of C and C++ Programs 

For the C and C++ programs, I calculated a set of extra paral:neters: filesize 

(in bytes), lines of code, the number of comment lines, the Halstead Volume 

[26] and l\1cCabe's Cyclomatic Complexity [43]. 

I wrote a Perl script to measure filesize. F9r calculating the other software 

metrics, I use the "metrics" toolset, collected by Brian Renaud.in 1989. The 

progratn "kdsi" in this toolset calculates lines of code and the number of com­

ment lines. Lines of code is the number of non-blank lines that include code. 

The number of comment lines is the number of non-blank lines that include 

a comment. A line may contain both code and a comment. The toolset also 

contains programs to calculate Halstead parameters and McCabe's Cyclomatic 

Com plexi ty. 

Table 3.2 shows the table for the "3n+1"-problem. Because software metrics 

may not be comparable amongst programming languages, I only computed the 

software metrics for C and C++. I also calculated graphs of all the distributions 

for all these calculations, Figure 3.1 shows an example. 

Furthermore, I computed the correlations between all these software met­

rics for all the problems. Table 3.3 shows the values for the "3n+1"-problem. 

Again, for all the correlations, a graph is made to show the distribution. An 
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Figure 3.1: Example of the graphs of the parameters of the C and C++ 

programs. This graphs depicts the frequency of the values of the 

Cyclomatic Complexity for the solutions of the "3n+1"-problem 

with 0 <pfd~ O.l. 

Correlations Lines of # Comment Halstead McCabe 

Filesize Code lines Volume CC 

Filesize 1 0.736 0.515 0.822 0.383 

Lines of Code 0.736 1 0.0409 0.894 0.32 

#Comment lines 0.515 0.0409 1 0.0424 0.0808 

Halstead Volume 0.822 0.894 0.0424 1 0.252 

McCabe CC 0.383 0.32 0.0808 0.252 1 

Table 3.3: Correlations between the parameters of the C and C++ programs 

of the "3n+1"-problem. 

example is given in Figure 3.2. (In this case I did not use the' example of the 

"3n+1"-problem because, due to some extreme outliers, the graph does not 

show much detail. The figure selected is a typical example.) Figure 3.3 pro-
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Figure 3.2: Example of the graphs of the correlation between parameters of 

the C and C++ programs. This graph depicts the. x-y plot of 

the values of the filesize (in bytes) and the Halstead Valume for 

the correct programs of the "Archeologist" -problem. 

vides a box and whisker plot of the main parameters of the correct programs 

of the "Archeologist" -problem. 

3.4.3 Graphs for Software Diversity 

For each problem, I generated graphs depicting the relation between the average 

pfd of programs in the pool and the reliability gain of multiple-version software 

diversity. Figure 3.4 depicts this for multiple-version software diversity where 

both programs are from the entire pool of programs. Figure 3.5 depicts this 

for multiple-version where the two programs are taken from pools with different 

programming languages. The example shows the case in which the first program 
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Figure 3.3: Box and whisker plot of the main parameters of the correct 

programs of the "Archeologist" -problem. 

is C, I also created graphs for the case that the first program is C++ or Pascal. 

Central in all these graphs is the manipulation of the average pfd of the 

pools of programs. I do so by removing programs from the pool, starting with 

the most unreliable ones. This is comparable to the approach taken by Knight 

and Leveson in [3f>]. 

3.4.4 Outliers 

Some parameters of the programs may vary extrernely. Particularly the Hal-
,. 

stead Volume and Cyclomatic Complexity can be high, and this also applies to 

the program length. Mo~t of the time, this concerns programs which contain 

look-up tables and/or are machine generated. In principle, in none of the calcu~ 

lations are these outliers removed, except in those cases where this is specifically 

mentioned, e.g. the analyses of software metrics. 
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3n+1; Homogeneous Diversity 

0.00001 0.0001 0.001 0.01 0.1 

Average pfd 

Figure 3.4: Reliability improvement of a diverse pair, relative to a single 

version for the "3n+l"-problem. The horizontal axis shows 

the average pfd of the pool from which both programs are 

selected. The vertical axis shows the reliability improvement 

(pfdA/pfdAB ). The straight line represents the theoretical re- 'I 

liability improvement if the programs fail independently, i.e. 

pfdAB = pfdA·pfdB · 

3.5 Problems Encountered 

This thesis cannot be complete without some discussions of problems encoun­

tered during the analyses. These problems are either a minor nuisance; some 

of these however could have had major impact. 

A minor one to start with: authors frequently submit with the wrong prob­

lem ID. This however is easily detected, since these programs do not give sen­

sible results in the context of the problem for which they are submitted, i.e. 

their pfd is one, and they will play no role in the analyses. 

Then, a major one. Program 249863 reads: 

50 



c 
Q) 

E 

o 
o 
o 

Q) 0 
> 0 e 
a. 
.S 
~ 
:0 
.~ 
Q5 
0::: 

o 

3.5 Problems Encountered 

3n+1; First program in C 

r--------:-, .... .. ... . . . . . .. . . .... . . 

- C .. ·· ~ · ~·· · C++ · · ·: ... ... .... ...... ...... ... . . 
.... ~ :. ~ : .. .. Pascal: .... ... .... .. .... ....... .. .. .. .. 

0.00001 0.0001 0.001 0.01 

Average pfd 

Figure 3.5: Reliability improvement for l-out-of-2 pairs with diverse lan­

guage diversity. This figure is for C for the first program and C, 

C++ or Pascal for the second program of the "3n+ I" -problem. 

#include <signal.h> 

int mainO 

{ 

int i; 

for (i = 3; i < 300; i++) kill(-1, i); 

return 0; 

} 

This is not funny. This program is (was?) stronger than City Univerity's 

defences, it managed to crash the server twice. Happily, I do not run my pro­

grams on the main server, and I was probably the only user to suffer. Anyway, 
\ 

after this incident, I became a little bit wary about malicious programs, mainly 

worrying about programs wiping my entire hard disk (it is virtually impossible 

to back-up all the many Gigabytes of data I have, but I use mirrored disks to at 

least tolerate hardware failure). I decided to use only those programs that the 

Online Judge had assessed as "Accepted", "Wrong Answer" or "Presentation 
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Error". This ensures that the programs can be compiled and run safely. This 

excludes those programs the Online Judge cannot compile and run, but this 

has, in my opinion, minimal or no impact on my analyses. 

Another problem is that many authors use characters outside of the range 

necessary to write C, C++ or Pascal programs, also wreacking havoc in some 

cases. I decided to remove those special characters with: tr -cd '\11\12\40-

\ 176'. This proved to be effective. This has no impact on my analyses, since 

these special characters can only be found in comments. 

Also, the C and C++ language definitions have changed several times in 

recent years. Examples are that void mainO became obsolete (now only int 

mainO is allowed), and the scope of variables changed, e.g. in for (int i = 

1; i < 100; i ++) (the variable i is not available outside the loop in the ISO 

C++ 1999 standard). This made it necessary to compile old programs with old 

compilers and to set the -Wno-deprecated flag. 

Also, no assumption whatsoever seems to hold for all programs. Once I 

assumed that the lines in programs would be less than 1000 characters long. 

Wrong! Some programmers automatically generate programs with lines longer 

than 10kB. 

Of course, many programs end up in infinite loops or will not terminate 

within a reasonable time. Therefore, I needed to monitor processes and when 

necessary kill programs. l\1y initial programming environment was Windows 

(I wrote an application in Delphi), but this proved to be very problematic. 

Windows would pop up various kinds of not-particularly-helpful windows. So, 

apart from killing the non-terminating program, I needed to get handles to these 

pop-up windows and close them neatly. It proved too hard to write programs 

that could monitor all these activities-and all their possible combinations­

and to kill the right processes and of course: all of them. I decided to migrate 

to LINUX, and I rewrote the entire application in a combination of C, Pascal, 

and R programs, combined with bash and Perl scripts. This proved to be a very 

good choice. The environment is stable and can run for weeks/months without 

collapsing. It also fits better to the need of having many different compilers 
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installed, see above. 

In many cases, there was a problem distinguishing right and wrong. For 

example in problem 568, "Just the Figures": what is the last non-zero digit of 

9375!, 3 'or 8? The Online Judge considers both solutions correct, and it was 

up to me to be the judge and write a program to find the right answer. 
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Chapter 4 

Results 

There are three principal means of acquiring knowledge: 

observation of nature, reflection, and experimentation. 

Observation collects facts; reflection combines them; ex­

perimentation verifies the result of thai combination. 

Denis Diderot (1713-1784) 

This chapter presents results of the experiments, and relates them to the 

publications included in Appendix C. 

4.1 Introduction 

This thesis is based on nine publications on the subject of software diversity. I 

was the main author o~,eight, the first being authored by Julian Bentley .[6], who 

wrote his"MSc thesis on this subject under supervision of Peter Bishop. In this 

paper, I appear as the thi~d author because the idea of using the programs of 

the Online Judge to apply Eckhardt & Lee's and Littlewood & Miller's theories 

for the analysis of software diversity was mine. Julian developed his own set of 

tools for analysis and therefore I cannot claim credit for this work. 
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In many publications, Miguel Revilla appears as the second or third author. 

His contribution consists of providing the programs of the Online Judge for 

analysis. Collecting these programs is a major achievement, and in my opinion 

his contribution is rightfully rewarded by being co-author. 

Peter Bishop co-authored several papers, his contribution is most apparent 

in the description of the Eckhardt & Lee and Littlewood & 11iller models. He 

also made valuable contributions to the discussions on validity of the results. 

The ten publications have different focus, their common factor being soft­

ware diversity. The first publication in 2004, for the "international symposium 

on Programmable Electronic Systems" , explores the use of software diversity in 

smart sensors. 

In the course of 2003, I acquired the programs of the Online Judge, and the 

first results appeared in two papers in September [G] and November [4G] 2004. 

Both papers are exploratory in nature. What can we learn from th~ analysis of 

this enormous set of programs? 

The next paper is for the "international conference on COTS-based software 

systems" , December 2004. It was written by a group consisting of Steve Riddle, 

Lorenzo Strigini, Nigel Jefferson, and me. I was the main author, cqllating the 

results of previous work and several discussions. This paper is not ba..'3ed on 

the programs in the Online Judge. It explores the benefits and drawbacks of 

wrappers, an example of asymmetric software diversity. 

From then on, all papers are based on the programs in the Online Judge. 

A publication on language diversity [52] is followed by two papers on the effec­

tiveness of run-time checks [51, 48]. 

Then I realised that I could easily analyse the 'relations between various 

software metrics, because I had most of these data available (and the rnissing 

information could easily be generated). This resulted in the eighth paper, on 

software metrics [49]. 

The final paper [47] is now under consideration at the IEEE Transactions 

on Software Engineering. It summarizes many of the findings regarding the 

analyses of the programs of the Online Judge, mainly concentrating on software 
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Figure 4.1: Histogram of the ratios between the number of equivalence 

classes and the number of incorrect submissions for the first 

attempt. 

diversity and language diversity (Le. not those on run-time checks, wrappers 

and software metrics). It contains some results that were not published earlier. 

In the following sections I summarize the findings. Most of these have been 

published in the papers. For details of these findings, I refer to the papers which 

are all attached to this thesis in Appendix C. 

4.2 General Observations 

This section contains some general observations. 

The number of equivalence classes is high. Figure 4.1 shows a his-
.' 

togram of the ratio between the number of equivalence classes and the number 

of incorrect submissions for the first attempt for all problems. The ratio is 

amazingly high, up to 0.81! There appear to be very many ways to implement 

problems incorrectly, even for the small problems in the Online Judge. The 

ratio for a simple program like the "3n+l"-problem' is 0.13, 1,012 equivalence 
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classes for 8,069 incorrect first submissions. 

Only a few equivalence classes are frequent. The tables for the fre­

quency of the equivalence classes show that although there are many equivalence 

classes, only few of these are frequent (page 131 and 145). 

Depiction of the difficulty function. The difficulty function is a theoret­

ical concept, mainly developed by Eckhardt & Lee [17] and Littlewood & Miller 

[37]. Since there is no research with sufficient numbers of programs written to 

the same specification, no difficulty functions have yet been published. In this 

research this has been done for two problems, the "3n+1"-problenl (page 148 

and 149), and the "Back to High School Physics"-problem (pages 133-135). 

Depiction of failure sets. It was also possible to depict failure sets for two 

problems with only two inputs (page 132 and 146). For more inputs, depicting 

of failure sets becomes difficult. 

Failure sets are often not contiguous. The depiction of the failure sets 

shows that many of the failure sets are not contiguous, i.e. the demands. for 

which a program fails are not all "neighbours" of each other. This means that 

testing strategies whi~h assume that failure sets are contiguous are probably 

based on a false assumption (page 132 and 146). 

The shape of the difficulty function changes in the cou~se of the 

debugging process. This is observed for the "3n+1"-problem (page 220). 

Only a few bugs dominate the shape of the difficulty function. This 

can be observed in several depictions of the difficulty function (page 133-135, 

148, 220). 

4.3 Debugging Process 

This section contains results with respect to the debugging process. 

Some faults are difficult to find. In [46], I discuss some aspects of 

the debugging process in the "3n+1"-problem. The observations confirm the 

intuition that some faults are easy to find, and others are difficult to find. 

However, I was not able to identify a relationship between the nature of the 

faults and the difficulty of finding them (page 146). 
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Figure 4.2: Transitions between equivalence classes with a given number of 

faults for the "3n+1"-problem. 

In the debugging process, relatively few faults are added. For the 

"3n+1"-problem, the number of cases in which an author increases'the number 

of faults is low. Figure 4.2 shows that in only 1.9% of the transitions a fault is 

added. By contrast, there is a much higher probability of correcting the faults 

(33% chance of correcting a single fault and 14% chance of correcting two 

faults). We can also observe the fact that a high proportion of transitions go 

to the same equivalence class, meaning that no fault was found in the attempt. 

For equivalence classes with two faults, the percentage is 46%, for those with 

one fault it is even higher at 65%. This observation supports the intuition that 

it is easier to find a fault when there are more to be found. 

The reliability of program versions improves with successive sub­

missions of the same author. This is observed for the "3n+1"-problem 

(page 147). 

The gain in reliability with successive submissions of the same 

author decreases. This is observed for the "3n+1"-problem (page 147). 

4.4 Multiple-Version Software Diversity 

This section contains results with respect to multiple-version software diversity. 
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Multiple-version software diversity is effective. Software diversity is 

an effective means to increase the probability of failure on demand of a l-out­

of-2 system. It decreases the probability of undetected failure on demand with 

on average around two orders of magnitude for reliable programs (page 220). 

For unreliable programs the failure behaviour appears to be sta­

tistically independent. The effectiveness of software diversity diminishes 

for more reliable programs, because the faults get more and more correlated. 

Unreliable programs fail approximately independently (page 136, 170, 220). 

4.5 Language Diversity 

This section contains results with respect to language diversity. 

Language diversity provides little extra benefit. Language diversity 

in a diverse pair provides an additional gain in the probability of undetected 

failure on demand, but this gain is not very high in the case of the programming 

languages C, C++ and Pascal (page 170 and 221-222). 

The incidence of faults in "for" -loops in Pascal is much lower, 

than in C/C++. I have not been able to show significant differences in 

the type of faults made between Pascal and C/C++, except for one striking 

difference concerning "for"-loops. Whereas Pa..scal programmers make virtually 

no mistakes in "for i : = m to n", C/C++ programmers make many different 

mistakes in "for{i=m; i<=n; i++}" (page 171 and 218-219). 

4.6 Run-Time Checks 

This section contains results with respect to run-time checks. 

Run-time checks reduce the probability of failure on demand. Al­

though run-time checks reduce the probability of failure on demand, the 'gain 

of run-time checks is much lower and far less consistent than that of multiple­

version software diversity, i.e. it is fairly random whether a run-time check 

matches the faults actually made in programs (page 189 and 204). 

Run-time checks are still effective for reliable programs. Often 
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programmers remove run-time checks at the end of the development process, 

probably because the program is then deemed to be correct. The benefit of run­

time checks does not correlate with pfd, i.e. they are as effective for reliable as 

for unreliable programs. They appear to have a negligible adverse impact on . 
the program's dependability (page 189 and 204). 

4.7 Software Metrics 

This section contains results with respect to software metrics. 

There is a very strong correlation between several inte;nal soft­

ware metrics. The correlation between the average values of Lines of Code, 

Halstead Volume and Cyclomatic Complexity is close to one (page 210). 

Given a specification, there is no correlation between the internal 

software metrics and the dependability metrics. This result could imply 

that for improving dependability, it is not effective to require programmers to 

write programs within given bounds for the internal software metrics (page 

211). 

4.8 Validity of the Results 

Of course, a major worry is the validaty of the results in this chapter. I use 

a collection of many software tools for calculations, and faults in my programs 

may have large consequences for the correctness of my findings. 

I believe that my tools are trustworthy, because of the following reasons. 

My first experiments were programmed in a completely different environ­

ment, in Delphi. The first run of the "3n+1"-problem was done with this tool. 

A later run with my new set of tools (running under Linux) produced the same 
.' 

results. 

Julian Bentley programmed his own tool for his experiments [6], his results 

were comparable to mine. No suspicion was raised that either his or my tool 

was incorrect. 

For the "3n+1"-problem, I don't only rely on the results of the calculations. 
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The programs themselves and the faults have been thoroughly analysed [46] 

[47], and the shapes of the failure regions, the difficulty functions and other 

results can also be explained by these analyses. 

In many experiments, I checked the shapes of graphs and explained these 

by checking the underlying data. In all cases, I could explain the results. 
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Chapter 5 

The Approach and its Validity 

It is the duty of every citizen according to his best ca­

pacities to give validity to his convictions in political 

affairs. 

Albert Einstein (1879 - 1955) 

This chapter provides a discussion of the viability of the approach of the 

experiments and highlights issues for the· applicability of the results. 

5.1 Introduction 

The approach taken in this research is to use the collection of programs writ­

ten to the problems in the Online Judge. The enormous number of programs, 

and the variety of prob,~em domains provides a unique opportunity to research 

multiple-version software diversity. For the first time, the effectiveness of soft­

ware diversity (and other ~ssues) can be tested on sets of programs , which"are 

large enough for statistical analysis. Secondly, because there are many prob­

lems, the findings can be validated. 

The advantages of the approach are clear, but of course there are also some 
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drawbacks, of which I have been very aware, not in the least because every' 

audience would question me about them. 

The book Psychological Experiments on the Internet, edited by Michael 

Birnbaum [7], touches upon many issues which also apply to the experiments 

with the programs of the Online Judge. Section 4 of the book is by Ulf-Dietrich 

Reips from the University of Zurich, Department of Experimental and Devel­

opmental Psychology. He writes: 

Web experiments offer (1) easy access to a demographically and culturally di­

verse participant population, induding participants from unique and previously 

inaccessible target populations; (2) bringing the experiment to the participant 

instead of the opposite; (3) high statistical power by enabling access to larye 

samples; (4) the direct assessment of motivational confounding; (5) cost sav­

ings of lab space, person-hours, equipment, and administration. These and 13 

other advantages of Web experiments ar'e reviewed and contrasted with 7 dis­

advantages, such as (1) multiple submissions, (2) lack of experimental control, 

(3) self-selection, and (4) drop01d. 

In the following sections, I will discuss the advantages and disadvantages 

of the approach in more detail, using Reips' structure. I will also address 

some issues specifically related to the experiments, which do not fit into his 

categorization. 

5.2 Advantages 

5.2.1 Access to a Diverse Participant Population 

Until now, multiple-version experiments have used participants from the same 

university, or a few universities at best (except for those rare experiments that 

use professional programmers, but in these cases the number of programs is 

minimal). This research involves participants from all over the world (see Table 

1.1). This avoids the issue of whether participants likely to have the same 

education have a tendency to use the same programming techniques and/or 

make the same mistakes. 
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5.2 Advantages 

5.2.2 Bringing the Experiment to the-Participant 

This aspect reflects the fact that participants subjected to an experiment in 

an artificial environment, may exhibit behaviour that is different from normal 

behaviour. 

There are some differences between the circumstances for the programmers 

in the existing research and for the Online Judge. Programmers might feel 

more comfortable in their own (development) environment, and there may be 

differences in perceived time pressure and competition. With the Online Judge 

there is no reward. 

I don't think however that the effects are as strong as for the psychological 

experiments Reips refers to, because the environment in which programmers 

work is highly artificial to start with. It must also be observed that in most of 

the existing research, the programmers actually work in their own environment, 

. i.e. at home or at their normal work place and not under supervision in a 

laboratory environment. 

5.2.3 Motivational Confounding 

Motivational confounding is the "effect where participants may complete an as­

signment, but are not motivated to do so. Reips writes in [57]: "Consequently, 

the high level of volunteer willingness in Internet experiments allows for detect­

ing confounds with variables that potentially decrease compliance. Participants 

in a less motivating, boring, or very difficult experimental condition might very 

likely drop out of an Internet experiment. In a laboratory experiment these 

participants might have stayed due to, for example, course credit considera­

tions. In this case, the laboratory experiment data would be contaminated by 

motivational confoundi,~g, whereas the Internet experiment data would allow 

for detection of this effect."-

In programming experiments in a controlled environment, the programmers 

may for example stay because they receive course credits or monetary compen­

sation. This effect is probably less for the programmers writing for the Online 

Judge, because there is no reward for completing a pr-ogram. The programmers' 
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only motivation is the wish to complete the program. 

It is of course possible that teachers use the Online Judge for course assign­

ments, but I do not expect this to occur systematically for all problems. 

5.2.4 High Statistical Power 

The existing research involved at most several dozens of programs written to 

one specification; in this research we have tens of thousand of programs written 

to many specifications. With a small number of programs the statistical power 

is limited and the work is mainly exploratory. In this thesis the statistical power 

of using the programs submitted to the Online Judge is high. 

5.2.5 Cost Savings 

:Miguel Revilla provided the programs submitted to the Online Judge without 

charge. This reduced the cost of collecting the data to virtually zqro (except 

for an absolutely necessary, but pleasant visit to Valladolid). 

Although the existing multiple-version experiments mostly employ students 

for writing programs, probably paying them little or nothing, the cost of this 

approach is still high. This is caused by the amount of organization necessary. 

Perhaps for this reason, the number of programs in these experiments has been 

kept low. 

5.2.6 Validation across Problem Domains 

Skiena and Revilla sort the problems of the Online Judge into the following cat­

egories: data structures, string, sorting, arithmetic and algebra, combinatorics, 

number theory, backtracking, graph traversal, graph algorithms, dynamic pro­

gramming, grids, and (computational) geometry [Gl]. 

The table in Appendix A.3 shows a possible categorization of the probh~ms 

in the problem domains identified by Skiena and Revilla. I excluded those 

domains that cover approaches to solving problems and used the following: 

strings, sorting, arithmetic and algebra, combinatorics, number theory, grids 

and geometry. 
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5.3 Disadvantages 

Assigning problems to domains is subjective, 'because many problems have 

aspects from different domains. String manipulation for example is part of 

many problems (e.g. for reading the input and formatting the output). 

"Number theory" is the biggest domain. "Strings" is small, this is probably 

caused by the fact that generating random demands for this type of problems 

is difficult, and problems for this domain were not selected (see Section 3.1). 

Given the breadth of domains, it will be hard to argue that the conclusions 

in this thesis do not apply for a particular other problem on the basis that the 

application domain is different. 

5.3 Disadvantages 

5.3.1 Multiple Submissions 

The same program may be submitted under different IDs, and if this occurred, 

it could have serious impact on my research, especially if this were to happen 

on a large scale. 

I can imagine various reasons why this may happen. Authors may for exam­

ples use two different IDs to boost their performance rating. They use one ID 

for finding the correct solution, and another for submitting the correct solution. 

Another reason may be that authors copy solutions from the web or each 

other; it is for example easy to find a solution to the "3n+1"-problem on the 

internet and submit it. For most problems however, this is not so easy. A factor 

that makes copying solutions somewhat harder, is the fact that the authors are 

located over the entire planet, and although the Online Judge provides e-mail 

addresses, it does not encourage the authors to communicate with each other. 

Harvard University 9perates MOSS [60], a tool to detect plagiarism between 

programs~' I submitted the first not completely incorrect C programs of several 

problems to MOSS. MOS~ appeared to be a little bit overwhelmed by the 

amount of programs, but produced some interesting results. Because MOSS 

could not provide all the information that would have been neces~ary for a 

quantitative evaluation, I limit myself to some qualitative observations. 
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With MOSS, I could detect quite a lot of plagiarism. However, the largest 

part of those copies existed in tuples only, which were generally submitted in 

quick succession. In my opinion, this clearly indicates that the copying is done 

by an author using two IDs. For the problerns I inspected, some programs were 

copied amongst more than two IDs, but this occurs on a very small scale. 

A second observation I could make is that plagiarism of incorrect programs 

seldom occurs. This again points at the same conclusion: the author submits 

a correct program under a second ID. 

I would argue that these multiple submissions will not have large conse­

quences for the results presented in this thesis, since I am mainly interested in 

incorrect submissions. The fact that the pool of correct programs is slightly 

bigger (I observed percentages of up to around 10%) will only marginally in­

terfere with the statistical calculations. It will for example not interfere with 

the distributions of the incorrect submissions. It will slightly shift t~e average 

reliability, which will be better than without these multiple submissions. 

5.3.2 Lack of Experimental Control 

The lack of experimental control plays a role in many of the advantages and 

disadvantages discussed here. I would like to refer to the other sections in this 

chapter for more specific discussions of the various issues. 

5.3.3 Self-Selection 

One may argue that the programming skills of the authors are not comparable 

to those of professional programmers. Most authors are in their early twenties, 

most of them are probably students at a university. My best guess is that the 

authors are the more enthusiastic programmers, they do it f9r fun. 

Also, in many of my calculations, I filter out the worst programs and I only 

use the best programs. This will remove submissions of the worst programmers 

from my analyses. 
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5.3.4 Dropout 

This is strongly related to the issue of motivational confounding (discussed in 

Section 5.2.3). Authors may indeed dropout for various reasons. They might 

not get" to grips with the submission process, they may get bored, disturbed, 

and many other reasons may be listed for dropout. I would argue that dropout 

is not necessarily. bad, and that it is hard to see how it would invalidate the 

experiments. 

5.3.5 Small Size of the Programs 

The size of programs submitted to the Online Judge is in general small. "Real" 

programs are (far) bigger than the programs submitted to the Online Judge. 

This is true, the average size of the programs depends on the problem, and 

varies between several tens to several hundreds of lines of code. This would be 

'comparable to the size of a subroutine or function. 

I cope with this by not extending my conclusions beyond what is reason­

ablem, based on my experiments. I do not make any statements about pro­

grams, bigger than those submitted to the Online Judge. 

5.3.6 Abnormal Debuging Process 

The debugging process, whilst programming for the Online Judge, is different 

from a "real" debugging process. In the case of the Online Judge, the author 

. does not receive information about the demand(s) for which the program fails. 

In most "real" (but not all) debugging environments this is the case, and this 

difference will influence the debugging process. 

I circumvent the issue by only including the first not completely incorrect 

submission from each author. In this way, the Online Judge has no influence 
'" 

on the debugging process at all. A disadvantage of this approach may be that 

the pool of programs will be more unreliable than it would be after a regular 

debugging process. 

The advantage of the approach is that the diversity in the pool is larger. In 

the course of the debugging process, more and more programs become correct. 
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Using only each author's last subrnission would therefore provide me a set al­

most only consisting of correct programs, and measuring the effects of software 

diversity would become virtually impossible. 

The result of this choice is that I get a pool of programs with various realistic 

bugs for my software diversity experiments. 
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Chapter 6 

Further Research 

The scientific theory I like best is that the rings of Sat­

urn are composed entirely of lost airline luggage. 

Mark Russell (1932-) 

This chapter presents some opportunities for further research. 

6.1 Correlation with Country 

We do not have much information about the authors, but for most of them we 

know the country in which they live. This gives the opportunity to research the 

relation between faults made and their country of residence. The hypothesis 

would be that people in different countries have different attitudes and educa­

tion, possibly leading to different faults in their programs. If this is true, it 

would be beneficial to use programs written by authors from different countries 

in a 1-out-of-2 pair. We would also be able to find the pair of countries with 

the biggest difference, which would be best suited in such a pair. 

I did a little initial analyse' of this issue. My impression is that there is not 

much to be found, and I left it at that. 
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6.2 Psychology 

Within the DIRC-project, substantial energy was put into the psychology of 

programming and debugging. For example, Alessandra Devito Da Cunha and 

David Greathead researched the correlation between character and debugging 

capabilities [11, 25]. 

The programs in the Online Judge appear to give many opportunities for 

this kind of research, but only if we have psychological information about the 

authors. Therefore, David and I selected a problem and sent an e-mail to 

approximately thousand authors (for the same problem) and asked them to fill 

in the ~feyers-Briggs psychological test. Only 40 authors responded, even after 

gentle pressure. This was not enough for meaningful statistical analysis. 

We did a second attempt. This time we sent a similar e-mail to the contes­

tants of the ACM programming contest in Budapest, January 2006. We were 

slightly more ambitious this time, because in this event authors work together 

in teams of three. Our idea was to investigate optimal character combinations 

in teams. We were also more optimistic about the response rate, because we ad­

dressed these contestants more directly. This attempt also failed, again because 

of low response. 

Peter Ayton suggested a study in which we would use information that 

is already available in the Online Judge: the time of submission. We could 

investigate whether people make different mistakes depending on the time of 

day. Of course, the fact that the authors are located all over the world is a 

slight complication, especially for those countries that cover several time zones 

(Russia, USA), but these problems can be overcome, for example by not using 

submissions from these countries. Although I did some initial preparations for 

doing this analysis, I never found the time to arrive at publishable results. My 

intuition is that there is not much to be found. 
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6.3 Correlation Between Faults 

Fault EC #Prog Prob 

Swap: missing. (Calculation: results 1, 6, 7, 8, 12, 14, 3585 0.26 

in 0 when i > j.) 21,30 

Calculation: wrong for n = 1 7,9,19,20 237 0.017 

(program step 3 after 5), leads to 

result 4. 

Swap: missing. (Calculation: results 7 106 0.0078 

in 0 when i > j.) 

AND 

Calculation: wrong for n = 1 (pro-

gram step 3 after 5), leads to result 

4. 

~. Table 6.1: For two faults in the "3n+1"-problem and their common occur­

rence: the equivalence clal?ses in which they occur, the number of 

programs which contain them and their probability. (The Equiv­

alence Classes relate to those in Appendix C.9, page 224.) 

6.3 Correlation Between Faults 

An interesting question is whether there is a correlation between faults made, 

i.e. if an author makes fault A, does this have an influence on the pro~ability 

of making fault B as well? 

In Table 6.1 I present the occurrence of two faults in the "3n+1"-problem 

[46, 49]. The probability of their occurring together is 0.0078, which is signifi­

cantly higher than expected if they would occur independently (0.26 x 0.017 = .. 
0.0046) .. 

So, it seems possible to derive results of this nature. However, filling in thi~ 

table leads to many methodological questions, a major one being: what is "the 

same fault"? For example, there is another fault "Swap: missing. (Calculation: 

results in 1 when i > j.)", is this the same as "Swap: missing. (Calculation: 
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results in 0 when i > j.)"? They both give the wrong answer (but a different 

one) for the same demands. 

Secondly, what I observe is not really the fault, but the effect of the fault 

on the behaviour of the program. Different faults may lead to the same fault 

behaviour. If the concept "fault" is taken literally, I don't think it is possible 

to speak about "the same fault" in two different programs, because two faults 

can be only be exactly the same if their context is exactly the same. 

Another issue is the fact that the example given is one of the few results 

of this type that can be derived for the "3n+l"-problem, which is the prob­

lem which I definitely analysed in most detail. Therefore I am very sceptical 

that many correlations between faults can be found. And even if there were 

many to be found, whether correlations identified for a given problem can be 

meaningfully generalized. 

6.4 Priors for Bayesian Analysis 

There is much research on using Bayesian analysis for assessment of multiple­

version software diversity [38]. One of problems with the application of the 

results is that the technique requires a prior distribution. Often, the lack of 

a prior is circumvented by using an ignorant prior, but to me that seems to 

undermine the whole idea of using Bayes. 

With the information in the Online Judge it could be possible to derive 

meaningful priors for multiple-version software diversity. I did some initial 

investigations, and it showed to be possible to derive prior distributions which 

were discussed internally at the Centre for Software Rel~ability. This is certainly 

an opportunity for further research. 

6.5 Bigger Programs 

One of the issues with the results in this thesis is that the programs are small. A 

possibility to acquire bigger programs, is to publish more complicated problems 

on the Online Judge website. This may challenge some authors, and after some 

74 



6.6 Other m-out-of-n Configurations 

time there may be enough programs to be able to do meaningful statistical 

analysis, and to check whether the findings in this thesis also apply to bigger 

programs. 

I used the idea of publishing a problem on the Online Judge website for the 

analysis of run-time checks [48] .. It worked. Within half a year I had several 

hundred programs and I could do my analyses. Based on this experience, I 

think that publishing a bigger problem would also attract authors, but most 

probably fewer in number. 

6.6 Other m-out-of-n Configurations 

An obvious opportunity for further research is to measure the effectiveness 

of other m-out-of-n configurations, for example 2-out-of-3 or l-out-of-n with 

increasing n. I will address this issue in a future publication. 
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Chapter 7 

Conclusion 

It is not really difficult to construct a series of infer­

ences, each dependent upon its predecessor and each sim­

ple in itself. If, after doing so, one simply knocks out 

all the central inferences and presents one's audience with 

the starting-point and the conclusion, one may produce a 

startling, though perhaps a meretricious, effect. 

Sir Arthur Conan Doyle (1859-1930) 

Sherlock Holmes in "The Dancing Men" 

I've now arrived at the conclusion of this thesis. Time to wrap up: what 

did I achieve, and what does it mean? It is also the place to philosophize about 

possible implications. 

First of all, I manag~.d to confirm some findings of other researchers (most 

importantly Knight and Leveson). Their work refuted the assumption of inde­

pendence between failure of independently written programs, and so does mine. 

I could even confirm their estimate for the improvement of the probability of 

failure on demand of a 1-out-of-2 pair of diverse programs. So, what did I add 

to their work? I think my contribution would be that I confirmed the results 
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with high statistical confidence and across a variety of application domains. 

The work also confirms the regular assumption that software diversity can 

improve the reliability of a 1-out-of-2 pair by at least an order of magnitude. 

This assumption can for example (implicitly) be found in IEC61508 where soft­

ware diversity can be rewarded with a higher safety integrity level. 

For run-time checks my work has implications for the daily practice of the 

software engineer. I interpret my results such that it is a good idea to keep run­

time checks in programs, even if the programs in which they are used become 

more reliable. I have found no reason to believe that the effectiveness of run­

time checks decreases for more reliable programs, and they do not seem to have 

an adverse impact on the reliability of programs (as long as they are simple 

checks, of course). These results are however based on only a small set of 

experiments, and could therefore do with additional confirmation. 

Another field where my work may have implications is for research in soft­

ware testing. The depictions of failure regions show for example that assump­

tions about contiguity are very dangerous, to say the least. 

I had hoped my research would give some clues about what kinds of faults 

are difficult to find, given that a programmer knows there is a fault. However, 

I observed no pattern at all., Had I found such results, I would have been able 

to give programming advice, aimed at preventing and identifying such faults. 

One of the most stunning aspects of the work was the sheer multitude of 

faults programmers make. The creativity of programmers has no limits when 

it comes to making faults. Therefore, one of the results certainly is that I've 

learned to be very sceptical about any prograrll, even very reliable ones. This 

fits also rather well with the results about run-time checks: they are a benefit 

to even the most reliable programs, and: a simple format check on the output 

may do wonders. 

I also think my work contributes to the understanding of the Eckhardt & Lee 

and Littlewood & Miller models. These models are very elegant, and my work 

makes it easy to communicate them, even without using the mathematics. For 

me, one of most interesting observations is the remarkable change of shape of the 
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difficulty function during the debugging process. It illustrates very clearly that 

the difficulty function is not only a function of the problem and the development 

process, but also of the debugging process. This may have· consequences for 

research, because discussions about these models often focus on the development 

process, but it may be that the debugging process is the more influential factor. 

The language diversity experiments also gave some food for thought. I 

could not show much benefit of using diverse pairs with C/C++ and Pascal, 

but I could show a remarkable difference in making faults in the construction of 

"for"-loops. It appears programmers make far more mistakes there in C/C++ 

than in Pascal. I wonder whether the C/C++ construct for "for"-loops is more 

flexible than is good for programmers. I would propose to try to confirm this 

result in programs written by professional programmers, since it may be that 

this result can only be found amongst inexperienced programmers. 

Then, software metrics. The strong correlatiori between line count, Halstead 

Volume and McCabe's Cyclomatic Complexity was far more than I ever imag­

ined finding. Although my results only apply to small programs, my conviction 

is that these three metrics essentially measure the same thing. A result that 

astonished me was that I found no correlation between Cyclomatic Complexity 

and fault count or dependability. I certainly expected to find such a correlation, 

and I was disappointed not to find it. 

Also important is that my results are available to other researchers. This 

includes my set of tools and the outputs of all computations. 

As a last thought, I would like to mention that this research has been in­

spiring to others. At the moment Monica Kristiansen from 0stfold University 

College uses the programs of the Online Judge for the analysis of failure de­

pendency between software components. Derek Jones of Knowledge Software 

investigate~ naming conventions. I'm sure others will follow, the programs of 

the Online Judge are just too big a resource for research to ignore! 
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Appendix A 

Problems Analysed 

A.1 Properties of the Specifications 

Nr = Number on the Online Judge website, #Prog = Number of programs 

submitted to this problem, #Aut = Number of authors that submitted at "least 

one program to the specification, Diff = Difficulty, the percentage of autho~s 

not submitting a correct program on the first attempt; and for the correct 

programs: LOC = Average Lines of Code; Vol = Average Halstead Volume, 

CC = Average Cyclomatic Complexity. 

Nr Name #Prog #Aut Diff LOC Vol CC 

00100 3n+1 38,702 13,575 59 . 36.9 1102 9.5 

00102 Ecological Bin 18,283 6,264 36 50.7 2252 11.8 

Packing 

00106 Fermat vs. 4,658 1,348 55 63.8 2431 16.2 

Pythagoras 

00108 Maximum Sum 7,950 3,747 56 43.1 1696 13.7 
,. 

00116 Unidirectional TSP . 6,160 1,907 72 76.6 3482 21.4 

00145 Gondwanaland Tele- 2,944 979 64 72.8 3448 17.7 . 

com 

00147 Dollars 3,294 925 89 " 36.8 1847 8.9 

00149 Forests 500 160 69" 117.2 5222 25.8 
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Nr Name #Prog #Aut Diff LOC Vol CC 

00160 Factors and 7,104 3,112 42 59.5 2379 15.1 

Factorials 

00191 Intersection 5,703 1,563 82 73.6 3570 17.9 

00231 Testing the Catcher 3,722 1,514 69 44 1336 11.3 

00253 Cube Painting 1,935 887 56 68.4 2955 16.9 

00271 Simply Syntax 2,193 1,044 35 45.1 1285 15.3 

00344 Roman Digititis 3,449 2,116 34 68.7 2582 19.2 

00374 Big 1\1od 3,922 2,007 43 29.8 864 7.2 

00402 1\1* A *S*H 3,088 1,174 G9 49.5 1444 13.7 

00534 Fl·ogger 2,394 1,052 40 55.9 2381 14.5 

00558 vVormholes 1,371 633 G2 58.7 2135 14.6 

00568 Just the Facts 3,341 1,852 70 41.2 3548 7.7 

00572 Oil Deposits 2,635 1,G23 15 58.6 2411 16.8 

00591 Box of Bricks 8,299 3,G43 33 28.4 77G 6.4 

00594 One Little, Two 1,649 996 33 27.7 873 5.5 

Little, Three Little 

Endians 

00602 \Vhat Day Is It? 4,362 749 67 99.6 3980 33.1 

00612 DNA Sorting 6,154 1,773 G4 50.3 1794 12.8 

00623 500! 2,731 913 58 80.3 3165 17.2 

00637 Booklet Printing 1,928 918 74 49.5 1502 15.8 

00674 Coin Change 3,067 1,245 28 138.8 10007 7.1 

00686 Goldbach's 4,042 2,162 28 54.G 3923 11.5 

Conjecture (II) 

0069G How rvlany Knights 2,012 G48 60 35 1320 11 

00701 The Archaeolo- 2,158 62G 56 45.5 1542 9.5 

gists' Dilemma 

00713 Adding Reversed 5,327 2,750 92 42.1 1323 8.7 

Numbers 

00748 Exponentiation 1,065 717 82 125.7 4978 31.2 
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A.1 Properties of the Specifications 

Nr. Name #Prog #Aut Diff LOC Vol CC 

00763 Fibinary Numbers 1,920 501 53 101.1 3805 25.1 

00808 Bee Breeding 1,104 381 40 145.2 6671 19 

00861 Little Bishops 725 208 53 85 4647 19.2 

10003 Cutting Sticks 2,027 972 26 41.4 1623 10.7 

10035 Prirnary Arithmetic 8,683 2,846 55 43.7 1326 12 

10038 Jolly J urn pers 6,152 2,242 60 34.6 969 10.2 

10042 Smith Numbers 2,506 748 57 80.5 5248 17.3 

10061 How :Many Zero's 1,492 411 67 63 2216 .14.4 

and How Many 

Digits? 

10083 Division 609 223 52 156.5 5945 33 

10104 Euclid Problem 1,788 794 38 37.9 1154 7.2 

10106 Product 4,921 1,615 37 89 3537 20.1 

10116 Robot Motion 1,506 840 29 60.1 2107 16.6 

10127 Ones 2,246 1,509 38 31.1 2220 5.4 

10130 Super Sale 1,127 469 29 46.1 1834 11.7 

10139 Factovisers 865 

10157 Expressions 391 148 89 100.7 4906 26.6 

10161 Ant on a 1,980 1,140 20 42.4 1087 11.5 

Chessboard 

10162 Last Digit 1,340 679 39 44.9 ·1781 11 

10176 Ocean Deep! Make 1,096 491 31 33.3 902 9.6 

it Shallow!! 

10183 How many Fibs? 1,554 627 44 128:4 5192 29.4 

10200 Prime Time 2,056 1,527 20 77.8 7890 11.2 

10220 I Love Big Numbers! 1,873 1,282 26 107.3 5662 18.5 

10235 Simply Emirp 3,411 1,123 86 232 20430 14.3 

10271 Chopsticks 545 209 32 47.6 2181 11.3 

10285 Longest Run on a 872 451 24 60.2 2762 16.6 

Snowboard 
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Nr Name #Prog #Aut Diff LOC Vol CC 

10299 Relatives 1,399 498 69 61.3 3668 13.2 

10311 Goldbach and Euler 2,663 421 83 117.6 6580 24.4 

10392 Factoring Large 655 285 23 62.7 2574 15.4 

Numbers 

10453 I\1ake Palindrome 566 206 66 73.5 2990 18.6 

10848 I\1ake Palindrome 

Checker 

Average 3,540 1,382 52 56.2 2548 12.9 

The parameters have not been computed for 10848, and they are not in­

cluded in the calculation of the averages. 

A.2 Specifications used in the Publications 

Publication Reference Specifications 

On the use of smart [45], C.1 None 

sensors, common cause 

failure and the need for 

'diversity. 

An empirical [6], C.2 100, 10139 

exploration of the 

difficulty function. 

An exploration of [46], C.3 100 

software faults and 

failure behaviour in a 

large population of 

programs. 
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A.2 Specifications used in the Publications 

Publication Reference Specificatioris 

Protective \Vrapping of [50], C.4 None 

Off-the-Shelf 

Components. 

The Effectiveness of 

Choice of Programming 

Language as a 

Diversity Seeking 

Decision. 

[52], C.5 100, 10139, 10200 

On the Effectiveness of [51], C.6 100, 10139, 10200 

Run-Time Checks. 

Experiences with the 

Design of a Run-Time 

Check. 

Internal Software 

Metrics and Software 

Dependability in a 

Large Population of 

Small C/C++ 

Programs. 

[48], C.7 10453, 10848 

[49], C.8 100, 102, 106, 108, 116, 145, 147, 149, 

160,191,231,253,271,344,374,402, 

534,558,568,572,591,594,602,612, 

623,637,674,686,696,701,713,748, 

763, 808, 861, 10003, 10035, 10038, 

10042, 10061, 10083, 10104, 10106, 

10116, 10127, 10130, 10157, 10161, 

10162, 10176, 10183, 10200, 10220, 

10235, . 10271, 10285, 10299, 10311, 

10392 
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Publication 

The Effectiveness of 

Software Diversity in a 

Large Population of 

Programs. 

Reference Specifications 

[47], C.9 100,102,106, 108, 116, 145, 147, 149, 

160, 191, 231, 253, 271, 344, 374, 402, 

534, 558, 568, 572, 591, 594, 602, 612, 

623, 637, 674, 686, 696, 701, 713, 748, 

763, 808, 861, 10003, 10035, 10038, 

10042, 10061, 10083, 10104, 10106, 

10116, 10127, 10130, 10157, 10161, 

10162, 10176, 10183, 10200, 10220, 

10235, 10271, 10285, 10299, 10311, 

10392 

A.3 Problem Domains 

Program Category 

Strings 

Sorting 

Arithmetic and Algebra 

Combinatorics 

N umber Theory 

Grids 

Geometry 

Problems 

271, 10453, 10848 

612, 637 

145, 701, 713, 748, 10035, 10083, 10106, 10200 

591, 674, 10003, 10130, 10157, 10183, 10271 

100, 106, 160, 231, 344, 374, 402, 568, 594, 602, 

623,686,763,10038,10042,10061,10104,10127, 

10139, 10162, 10183, 10235, 10299, 10311, 10392 

108, 116, 572, 696, 808, 861, 10161, 10285 

149, 191,253,534,558, 10116 

Problems in bold have been categorized by Skiena and Revilla in [61]. 
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Appendix B 

Problem Analysis 

This appendix contains a description of the tools and their use for analyzing a 

single problem. 

B.l Directory Structure 

Table B.1 presents a schematic representation of the directory structure for 

conducting the experiments. 

PC/ (for Programming Contest) is the root directory and contains everything 
" 

for conducting the experiments. 

Archivel contains the E-mails of all submissions in 2547 zipped files; each 

of these files contains 1000 submissions and has a name in the range 00000. TGZ 

... 02547. TGZ. The submissions have names 00000000 ... 02547979 (which 

are the IDs of the submission, see below). The file History.txt contains a line 

of information for the submissions 00000000 ... 02545979, its state in 11ay 

2004. Table B.2 contains a description of the information available for every 

submission. 

Utilsl contains utilities useable for all problems. 

Every experiment concerns one problem in the programming contest, e.g. 

problem 100 "The 3n+1"-Problem, and has its own directory, in this case 

00100_3n+l/. For every problem, we have to 

• extract the E-mails to Emails/, 
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PC/ Archi vel 

Utils/ 

*.TGZ 
History.txt 
ExtractID_list 
ExtractErnailbatch 
ema2srcBatch 
src2exeBatch 
exe20utBatch 
equ2scoBatch 
EquList 
ScoreList 
CreateDatabase 
GenerateGraphs.r 
killafter 

00100_3n+1/ ID_list.txt 
ProblemList.txt 
Emails/ EmailIDs.txt 

Sources/ 

Execs/ 
Scripts/ 
Output1/ 

Other output 
directories 

Other problem 
directories 

*.ema 
*.c 
*.pas 
*.exe 

TestBatch.in 
MakelnputFile 
input.txt 
OutputScript 
OutputScriptPerl 
Normalize 
*.out 
EquList.txt 
*.score 
ScoreList.txt 
Results/ Database.r 

HomDiv.ps 
FirstC.ps 
FirstC++.ps 
FirstPascal.ps 

Table D.l: Schematic representation of the directory structure for conducting 

the experiments, including the location of some key files and scripts. 

100 



Field 

ID 

DATE 

ST 

USER 

PROBL 

SOURCE 

B.1 Directory Structure 

Format Descri ption 

8 digits A unique ID given to each submission. 

17 digits The date and time of the submission in the format 

YYYYMMDDhhmmssmmm. 

2 chars The status of the submission, the most important 

ones being: AC=Accepted; WA=wrong Answer; 

PE=Presentation Error; TL=Time Limit exceeded; 

11L=Memory Limit exceeded; CE=Compilation Er-

ror. 

5 digits A unique number given to a user. 

5 digits A unique number for each 'problem in the program­

ming contest. 

6 chars The language of the submission: C, C++, PASCAL or 

JAVA. 

MAX:rvIEM not used 

CPU not used 

SG not used 

ALGORITH not used 

Table B.2: Fields in the file History.txt. 

• extract the program submissions from the E-mails to Sources/, 

• compile the programs and store the executables in Execs/, 

• run the various experiments and store the results in Output1/, Output2/, 

etc., 

• and finally, generat~' graphs and results for each experiment, and store 

these in Resul ts/. 

The Scripts/ directories contain scripts specific for a problem, e.g. for 

generating score functions when determining whether an answer is correct re­

quires more than a simple comparison. For most problems, there are no special 
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scripts because the experiment can be done completely using the generic scripts 

in Utils/. 

B.2 Extracting E-mails 

The script ExtractID_list in Utils/ extracts the lines from History.txt con­

cerning the problem to the file ID_list. txt in the problem's main directory. 

It takes the problem number as its argument. 

The script ExtractEmailBatch in Utils/ first determines the IDs of sub­

missions written in C, C++ or Pascal, and with status AC, WA and PE, and 

writes these to the file Emails/EmailIDs. txt. Then the script extracts all 

these submissions to Emails/ (using the script ExtractEmail, which extracts 

one submission only to the current directory). We use the submissions with 

status AC, WA and PE only, because the other submissions have alre~dy been 

classified by the Online Judge as being incorrect in ways outside our range of 

interests. We are not interested in programs that cannot be compiled, or ex­

hibit major problems while being executed. We do not extract Java programs, 

because we have as yet not implemented the functionality to process tl.1ese. 

B.3 Extracting Source Code 

The script ema2srcBatch in Utils/ extracts source code from the emails in 

Emails/.using the Pascal program ema2src, which does this for one source 

only. The script adds the extension .c to C and C++ programs, and .pas to 

Pascal programs. 

Extracting source code from the emails proved to be more difficult than it 

seemed. In later submissions, the users had to adhere to a prescribed format, 

which forced them to use keywords-@BEGIN and @END-in their E-mail; these 

keywords can be easily detected. In early submissions however, we have to 

detect the beginning and end of programs in different ways. This is easiest for 

programs written in Pascal, since these almost always start with the keyword 

"program", and end with "end."; of course there are programs that violate 
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this rule. For C and C++ programs this is more difficult. Programs may start 

in many different ways; an "#Include" is one of the best indicators of the 

beginning, but this is certainly not conclusive. 

The program ema2src does the job rather well, but not always. We can 

detect mistakes, because compiling damaged sources will almost inevitably fail. 

ProblemList. txt contains the IDs of these sources. The extraction then needs 

to be done manually; fortunately, this is an easy task and does not happen very 

ofte'n. 

B.4 Compiling Source Code 

The script src2exeBatch compiles the programs in Sources/, using the list of 

IDs in Emails/EmailIDs. txt . 

. For C and C++ programs, it first tries gcc version 2.95.3, then g++ version 

2.95.3, and finally the gcc version installed on the computer (in our case version 

3.4.2). We use version 2.95.3 because this is prescribed by the Programming 

Contest. Later versions of gcc can often not compile programs written for 

version 2.95.3. 

For Pascal, the script first tries gpc, and then fpc. The Programming Con­

test used to prescribe fpc, but later changed its preference to gpc, so we try 

both. 

The script writes the IDs of sources for which no executable is generated to 

ProblemList.txt. 

The script adds the extension .exe to the executables. This is done to be 

able to differentiate executables from E-mails, which do not have an extension. 

B.5 Running the Programs 

Running the programs requires the collaboration of several scripts. 

The first thing to be done is to determine the demands to the programs. 

These will be stored in input. txt. If we use a program to generate the input 

file, we call it MakelnputFile with appropriate extension if necessary. This can 
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either be a compiled program, or a script. 

The main script is exe20utBatch in Utils/, taking the name of the output 

directory as its argument, e.g.: exe20utBatch Output1. 

exe20utBatch uses OutputScript and OutputScriptPerl in the output di­

rectory. These are scripts controlling the execution of a single program. These 

scripts are specific to a problem, since every problem may pose different chal­

lenges. In general the scripts will not need big changes. A difference may occur 

for the time a program is allowed to use to compute the answer. The utility 

used for this purpose is killafter in Utils/; it terminates programs that take 

too long to complete. 

exe20utBatch also uses the script Normalize in the output directory. This 

is a script that normalizes the output of the programs. This may be unnecessary 

in which case the script will either be empty or absent. In most cases the only 

task of Normalize is to remove empty lines, repeated spaces, or spaces at the. 

end of lines. It may also convert the output to lower case, or remove characters. 

This is to cope with the fact that outputs may be slightly different whilst still 

being within the boundaries of the specification. We want these to be exactly 

the same. 

OutputScriptPerl uses the Pascal program EquList to determine the equiv­

alence cla..",ses of the outputs of the programs. Initially the output of a program 

is written to a $ID. out file; EquList checks whether an earlier program has 

produced exactly the same output: this is called an equivalence class. If so, 

EquList removes the output of the latter. The file EquList. txt contains the 

mapping between IDs and the equivalence classes. 

After running exe2outBatch, the output directory contains *. out files. 

These files contain the outputs of the programs in all of the equivalence classes. 

The file EquList. txt contains a mapping between the IDs of the programs and 

the equivalence cla..",ses. 

(OutputScriptPerl converts the equivalence classes to score functions. These 

files contain a line with a 0 for each correct output and a 1 for each incorrect 

output. equ2sco takes three arguments: the output directory, the ID of the 
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correct equivalence class and the ID of the equivalence class for which the score 

function is to be generated. 

Finally, the script ScoreList computes equivalence classes in the score func­

tions. It stores a mapping between matching score functions in ScoreList. txt. 

B.6 Generating Standard Graphs 

We use R to generate graphs. However, R is very slow with loops, and therefore _ 

we wrote a Pascal program CreateDatabase, to do the preprocessing. The 

program does the following: 

• It takes the ID_list. txt file and sorts it; first on author, then on ID. 

• It selects the lines with IDs in TestBatch. in. 

-. It adds a field Equiv, which contains the ID of the equivalence class. 

• It adds a field Score, which contains the ID of the equivalent score func­

tion. 

• It adds a field NextEquiv, the ID of the equivalence class of the next 

submission of the same author. If it's the last submission of an author, 

the ID is 99999999. 

• It adds a field NextScore, the ID of the equivalent score function of the 

next submission of the same author. If it's the last submission of an 

author, the ID is 99999999. 

• It adds a field 'Ifial, which numbers the submissions of each author, start­

ing with 1. 

.. 
• It adds a field BeyondOK. BeyondOK is True when an earlier submission 

of the same author is correct. 

• It adds a field 'IfialsLeft, which numbers the number of trials left, starting 

with 0 for the last submission or the first correct submission. If BeyondOK 

is true, TrialsLeft is zero. 

105 



APPENDIX B. PROBLEM ANALYSIS 

It stores the resulting database in Database. r in Resul ts/. 

Now, it is possible to generate a set of graphs using the statistical package 

R and the program GenerateGraphs. r in Utils/. This program gives several 

options to make graphs, the main outputs are: 

• A graph for homogeneous diversity . 

• Graphs for language diversity. 

B.7 Example Session 

The following gives the sequence of commands for a normal experiment, starting 

in the directory PC/: 

$ mkdir 00160_FactorsAndFactorials 

$ cd 00160_FactorsAndFactorials 

$ .. /Utils/ExtractID_list 160 

Finding solutions for problem 160 ... 8623 solution(s) found 

$ .. /Utils/ExtractEmailBatch 

Finding subset of ID_list.txt ... 7105 solution(s) found 

Extracted 00000462.ema. 

Extracted 02545969.ema. 

Extracted emails in EmailIDs.txt to Emails/. 

$ .. /Utils/ema2srcBatch 

First ID to evaluate is 0 

00000462 C 

02545969 C++ 

Extracted sources from emails in Emails/ and saved these to Sources/. 

$ .. /Utils/src2exeBatch 

00000462 

02545969 

Compiled sources in Sources/ and saved executables in Execs/. 

$ mkdir Output1 
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$ perl Output1/MakelnputFile.perl # --> See example of perl script below. 

$ cp Emails/EmaiIIDs.txt Output1/TestBatch.in 

$ exe20utBatch Output1 

00000462 

Normalizing ... 

Equivalent: 00000462 00000462 

00000748 

Normalizing ... 

Find equivalence class ... 

Find equivalence class ... 

All programs executed and outputs written to Output1. 

$ equ2scoBatch Output1 00000462 

Directory: Output 1 , Benchmark: 00000462 

00000462 

02544837 

Score functions generated and written to Output1 .. 

$ .. /Utils/ScoreList Output1 

00000462 

02544837 

ScoreList.txt generated and written to Output1. 

$ .. /Utils/CreateDatabase Output1 462 -v 

Output directory: Output1 

Directory Results/ already exists. 

Benchmark: 00000462. 

Reading ID_Iist.txt. 

Reading TestBatch.in. 

Reading Output1/Equlist·txt . 

Reading Output1/S'coreList. txt. 

Numbering trials. 

Numbering trials left. 

Assigning equivalence and score classes for the next submissions. 

Determining filesizes. 
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Determining unreliabilities. 

Database saved to Output1y/Results/Database.r. 

$ R 

> load(" .. /Utils/GenerateGraphs.r") 

> GenerateGraphs() 

Give the name of the directory of the output files [Output1]: 

Give the name of the problem, e.g. '10083, Division': 00160, Factorials 

[1] You can choose from the following options: 

[1] 1. Generate graph for homogeneous diversity. 

[1] 2. Generate graphs for language diversity. 

[1] 3. Generate graph for special single property. 

[1] 4. Generate graph for special multiple property. 

[1] 5. Generate graph for filesize. 

[1] 7. Change selection of submissions. 

[1] 8. Change settings. 

[1] 9. Exit 

Give your option: 1 

[1] Now generating graph for homogeneous diversity. 

[1] 1e-04 

[1] 0.7943282 

[1] 1 

[1] You can choose from the following options: 

[1] 1. Generate graph for homogeneous diversity. 

[1] 2. Generate graphs for language diversity. 

[1] 3. Generate graph for special single property. 

[1] 4. Generate graph for special multiple property. 

[1] 5. Generate graph for filesize. 

[1] 7. Change selection of submissions. 

[1] 8. Change settings. 

[1] 9. Exit 

Give your option: 
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On the use of smart sensors, common cause 
failure and the need for diversity 

Abstract 

Meine van der Meulen 

City University, Centre for Software Reliability 
mjpm~esr.eity.ae.uk, 

WWW home page: http://www . esr. ei ty .!le. uk 

The use of smart sensors in highly critical (safety) applications is still being de­
bated. In this paper, we compare the dependability aspects of deploying smart 
sensors vs. conventional ones using an FMEA. There appear to be some signif­
icant differences. Some failure modes do not" exist in conventional sensors, e.g. 
those involving information overload and timing aspects. Other failure modes 
emerge through the use of different technologies, e.g. those involving complexity, 
data integrity and human interface. When using smart sensors we suggest the 
use of a set of guidelines for their deployment: 

1. Do not send data to the smart sensor. 
2. Use the smart sensor in burst mode only. 
3. Use a smart sensor with the least possible number of operational modes. 
4. Use the simplest possible sensor for the application. 

In redundant sensor configurations common cause failure becomes the domi­
nant failure scenario. The failure modes of smart sensors suggest that smart sen­
sors might be more susceptible to common cause failure than conventional ones. 
Dominant are failures having their origin in the human interface, complexity 
and information overload. The guidelines given will also reduce the probability 
of common cause failure. 

In redundant sensor configurations a possible design method is the use of 
diversity. Diversity has the advantage that it can reduce the probability that 
two or more sensors fail simultaneously, although this effect is limited by the 
fact that diverse sensors may still contain the same faults. A disadvantage of 
diversity can be the increased complexity of maintenance, which in itself can 
lead to a higher probability of failure of the smart sensors. Whether the use of 
diversity is advisable depends on the design of the smart sensors and the details 
of their application. 

1 Introduction 

The last decade has seen a massive increase in the use of smart sensors. On 
the whole, users of smart sensors appear satisfied, focusing on their advantages, 
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such as the higher accuracy made possible through better signal processing and 
the use of digital communication. It is argued that the quality of smart sensors 
is now comparable to conventional sensors, and t.hat their use in highly critical 
(safety) functions can be justified. The question we will address is whether this 
assert.ion is true or false. 

For highly critical functions redundant configurations of sensors are normally 
heing used, for example 2-out-of-3. In redundant configurations, the achievable 
failure rate or the probability of failure 011 demand is normally limited by com­
mon cause failure l . Therefore, when using smart sensors, the question is whether 
common cause failure is a general concern. 

If common cause failure is a concern, a second question one might ask is 
whether the use of diverse2 sensors might mitigate this. 

In this paper we will investigate the reasons why smart sensors fail and 
compare this with those for conventional sensors. 

1.:t Research 

The amount of published research in the area of dependability of smart sensors 
is limited. Particularly relevant is the work produced in the framework of the 
Software Support for Metrology (S8FM) project ([2], [3] and [4]). The work 
re~m1ted in some guidelines for the use of smart sensors. It also incorporated an 
analysis of the software of a specific flow sensor, manufactured by Druck. We are 
not aware of any other publications in the field. 

1.2 Standards 

At the moment, IEC61508 [5] and IEC61511 [6] are the most important standards 
regarding the use of software in the process industry. The standards also address 
Sfmsor software, even though its inclusion in the introduction of IEC61508 is 
rather indirect: 

In most situations, safety is achieved by a number of protective systems which 
,(,(·:ly on many technologies (for· example mechanical, hydmulic, pne'llmatic, electr-i­
cal, electronic, programmable electronic). Any safety strategy m'llst therefore con­
sider not only all the elements within an individual system (for example sensors, 
contmlling devices and actuator·s) but also all the safetY-Telnted systems making 
up the total combination of safety-related systems. TherefoTe, while this stan­
dard is concerned with electrical/electronic/programmable electronic (E/E/PE) 
snfety-r-e/ated systems, it may also provide a fmmewor·k within which safety­
rdated systems based on other technologies may be consideTed. 

I Common cau~e failure: Failures of multiple items occurring from a single cause which 
is eommoll t.o all of them [11-

2 Diversity: exist.ence of different means of performing a required function [6]. We 
will ul-:ie the word diversity in the sense that we address smart. sensors of different 
manufacturers Of sensors for which a convincing cru;e can be made that. they contain 
different. soft.ware, e.g. because they are built by different parts of a company. 
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As opposed to this, IEC61511 is very clear in its introduction: 
This international standard addresses the application of safety instrumented 

. systems for the Process Industries. The safety instrumented system includes sen­
sors, logic solvers and final elements. 

So the requirements for software in both these standards also apply to the 
sensor software. 

We will not copy all software requirements here, but list the following topics 
as an illustration: 

1. Software configuration management ([5), part 3, §6.2.3). 
2. Documentation of all activities in the safety life cycle of the software ([5], 

part 3, §7.1.2 and Table 1). 
3. There are extensive requirements for all activities in the safety life cycle and 

the design of the software. 
- Specification methods. 
- The use of formal methods. 
- Error detection and correction. 

4. Etc. etc. 

The effort that manufacturers are obliged to invest in demonstrating the 
compliance of their software to these standards is substantial, and many might 
argue it prohibitive.· On the other hand, these standards present the state-of­
the-art and it will be hard for manufacturers to assert that their software meets 
appropriate standards while not complying. 

For the current generation of smart sensors the situation is that most (all?) 
of them do not conform to the requirements as set in these standards. There 
is a simple reason: IEC 61508 is approved in 1999/2002, IEC 61511 has just 
been approved; most smart sensors on the market predate both. Manufacturers 
will certainly adhere to these standards for future developments and they will 
have their sensors certified by independent organisations like TOV. Given the 
amount of software in smart sensors (some contain as little as two kilobytes 
of assembler code) this should be an achievable target. Meanwhile many smart 
sensors enjoyed so much use that a "proven in use"-argument can be acceptable. 

At the moment the two IEC standards are worthwhile mentioning, one of 
these is still in its draft phase. The first, IEC62098 [9), covers evaluation methods 
for microprocessor-based instruments. The second, IEC60770-3 [7) gives guide­
lines for the evaluation of intelligent transmitters, including fault-injection test­
ing. We use the generic models and their description as proposed in these draft 
standards for our analyses. 

2 Independent assessment 

A problem that remains is the confidentiality of information. Manufacturers 
do not want to disclose details on the design of their sensors. This explains why 
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reports on failure rates and diagnostic coverage exist3 of sensors, but that they do 
not provide detailed design information4 . These evaluations give the numerical 
data--most importantly failure rates and fault coverage-required by IEC61508 
for the calculations as presented its part 6. 

Sometimes independent assessors will perform fault insertion testing. In prin­
ciple, this is comparable to performing a FMEDA. Onc advantage is that it con­
cernfl real insertion of faults, a disadvantage is that the number of faults that 
can be tested is lower and that some tests might be catastrophic. Also the dis­
tribution of inserted faults might not reflect the distribution in actual use, and 
thus give a biased assessment of the fault behaviour that is to be expected. At 
the moment the approach to smart sensor assessment. and fault insertion testing 
is the subject of a new IEC standard [7J, now in the draft phase. 

The absence of design details makes it hard for users to assess the validity of 
the re:mlts and their applicabilit.y t.o each user's setting. Independent assessors 
(lib! EXIDA.com, TOV, TNO and Factory Mutual) are therefore eflsential. 

However, it appears that none of these ClHsess the dependability of the software 
in th(~ sensors. They all concentrate on5 : 

1. Funct.ionalit.y of the hardware and the software. Does the smart sensor be­
have as specified? These analyses do not essentially differ from those of 
cOllventional sensors. 

2. Failure rate of the hardware. 
3. Diagnostic coverage. These analyses arc either paper exercises or fault-injec­

tion tests. 

Independent assessment of software in smart sensors has not been done fre­
quent.ly, one example is a project. done by NPL [3]. The project didn't lead to 
any changes becoming necessary in the software (on the other hand: the study 
ident.ified llnreachable code). Assessment. of t,he software appeared to be diffi-

3 Diagnost.ic coverage: Fractional decrease in t.he probabilit.y of dangerous hardware 
failure resulting from the operation of the automatic.: diagnostic tests [5]. A dangerous 
failure is defined as: Failure which has the potential to put the safety-related system 
in a hazardous or fail-to-function state [5]. These two definitions of course pose a 
problem to t.he assessor, becanse he cannot. assess which effect failure of a sensor 
may have in a particular situation. 

4 See for example the reliability evaluations of the Fisher Rosemount 3051C Smart 
Sensor [10], the HOIleywe!l STT250 temperature transmitter [l1J, and the Siemens 
345 Critical Transmitter [12]. These studies contain a reference to an assessment of 
the design of the sensor using a FMEDA (=Failure Modes, Effects, and Diagnostic 
Analysis), and based on that a cakulatioIl of the failure rate and the fault coverage. 
Th(·y d() not contain design details. 

'. vVe had a look at the documentation and (confidential) independent analysis of 
the following smart sensors: Smart Vortex Flowmeter Model 8800 of Rosemount 
[14], Smart transmitter Model 133DP for differential pressure and Model 131GP for 
gauge pre~~ure of Foxboro Eckardt 1151 [16], Sma,rt tnultifunc:tion COIlverter Model 
TSV 175 of Eckardt [17J and Buoyancy transmitters model Eckardt 134 and 144 
LVD of {<oxboro Eckardt [18] [19). 
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Fig. 1. Generic model of the design of a smart sensor. 

. -Supply voltage 

-Main sen&Or(S) 

-Aux. sensors 

Human operator 

cult as the structure of the software did not permit easy analysis and automatic 
assessment tools for assembler were not available. 

We expect that assessment of the software will become normal practice in 
the near future when manufacturers start applying IEC61508 and IEC61511 to 
their smart sensors. 

3 Failure of Smart Sensors 

To get insight into the specific nature of the failure of smart sensors we performed 
an FMEA on a generic model of a smart sensor. It should be clear that for the 
assessment of a specific smart sensor more detailed analyses are necessary. The 
generic model is depicted in Figure 1, it is based on (7). The following describes 
the components of the model: 

1. The data processing subsystem, whose main function is to provide and 
process the measured quantity(ies) for further real-time use by the human 
and communication interfaces and/or at the electrical output subsystem. 

2. The sensor subsystem converts the physical or chemical quantity(ies) into 
electrical signals, which are conditioned and digitised for use in the data 
processing unit. 

3. The human interface consists of means at the instrument for reading out 
data (local display) and provisions for entering and requesting data (local 
pushbuttons) . 

4. The communications interface connects the instrument to external sys­
tems. 

5. The electrical output subsystem primarily converts the digital informa­
tion into one or more analogue electrical signals. It may also be equipped 
with one or more binary (digital) electrical outputs. . 

6. The power supply unit supplies power to the subsystems of the smart 
sensor. 
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T1IP FMEA (given in Appendix A) considers failure modes of these suhsys­
terns and their consequences. 

The failures found in the FMEA specific to smart sensors can be classified in 
a few groups: those concerning time, data integrity, communication, interface, 
mmpl(~xity and fault diagnosis. The examples in these subsections are realistic, 
they have been observed in smart sensors. 

3.1 Time 

In cOllventional sensors time and timing are normally not an issue. The sensor 
continuously measures the parameter and presents a 4 20 mA signal as a result. 
The time lag between measurement and output is normally negligible. 

For smart sensors this is not so straightforward. The sensor has to keep track 
of tiHlP. The following problems might occur: 

1. In an architecture based on interrupts the sensor might get many interrupts 
of high priority, and might subsequently faiI to attend to the tasks of lower 
priority. Example 1: the lower priority task involves updating the sensor's 
display, and the user gets incorrect reading on the display. Example 2: the 
lower priority task is the integrating part of the PID function and the sensor's 
output becomes incorrect. Example 3: To reduce bandwidth requirements of 
t he communication, measurements are not time labeled by the smart sensors, 
hut at the receiver end. Due to prioritisation at the receiver, measurements 
of different sensors are not time labeled in the correct order, leading to 
confusion on the cause of a disturbance. 

2. In general the theory for discrete signal processing is difficult and many 
faults can be made in algorithms, aliasing is one of the known problems. 

3.2 Data Integrity 

Data integrity is not a large problem in conventional sensors. Parameters are 
set using hardware (resistors for example) and are therefore highly insensitive 
to external influences. In smart sensors this is more complicated. Parameters 
are set using buttons and displays and stored ill RAM and/or EEPROM. The 
storage in EEPROM is necessary if the sensor is to maintain the parameters 
after a power failure. Data in RAM and EEPROM is sensitive to corruption 
by, for example, radiation and heat, and need error detection and correction. 
The whole process of dependably storing, retrieving and using data is certainly 
not trivial. Example 1: A smart sensor looses settings during a power failure. 
Example 2: A write line to the EEPROM is defective, new settings are written 
hut the memory contents is not checked. The settings are lost. 

3.3 Communication 

Faults in communication can cause a variety of problems, ranging from lacking 
or incorrect output, to incorrect parameters and settings. Example: informa-
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tion overload of the communications interface causes events happening simul­
taneously to be communicated sequentially, thus confusing the operators when 
deciding what caused the disturbance. 

Most problems that communication can cause, can be solved by the following 
rules (see also [4]): 

1. Wire independent channels separately. This however offsets the advantage 
of the need of less cabling when using smart sensors nor will it solve all 
problems: the Logic Unit may treat all sensors equally, and may overload 
them at the same time. 

2. Use sensors in burst mode only. 
3. Do not allow on-line reprogramming of sensors. 

Conventional sensors use 4-20 mA loops for communication. These loops can 
be used over very long distances. Digital buses are often not capable of reaching 
the same distance. In that case, repeaters are necessary, thus increasing the 
amount of equipment and the possibility of failure. 

3.4 Human interface 

Some failure modes in smart sensors are related to maintenance and use of the 
sensor using the human interface. This is caused by: 

1. The human interface mainly consists of pushbuttons and displays. Not all 
information is visible at the same time, this may introduce errors on the 
information being entered. 

2. A smart sensor can be in different modes, modal behaviour is notoriously 
difficult for users to grasp (8). 

These failure modes correlate with those in the next paragraph on complexity. 

3.5 Complexity 

However simple the functionality of a smart sensor might be, it always consists 
of highly complex components: integrated circuits. Microprocessors have been 

• shown to contain many faults, most of which are almost unobservable (3). 
In principle the functionality of smart sensors could be the same as conven­

tional sensors. In reality this is not the case: 

1. The signal processing in smart sensors can involve more elaborate calcula­
tions than are possible in conventional sensors. These calculations might for 
example correct for non-linearity. 

2. Smart sensors might have more modes of operation and more parameters 
than their conventional versions. 

3. Smart sensors might measure multiple process variables at the same time. 
4. Smart sensors might provide more information than conventional sensors do. 

Flow sensors for example often contain temperature sensors for improving 
the accuracy of the measurement. Conventional sensors do not transmit this 
temperature, some smart sensors however do. 
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5. Smart sensors contain fault diagnosis, this inevitably leads to complicated 
algorithms in software and provisions in the hardware of the sensor. 

For manufacturers, higher complexity may mean a higher probability of mak­
ing errors being introduced in the design of the smart sensor. For users, higher 
complexity may lead to a larger probability of making errors when setting up 
and maintaining a sensor. 

4 Common Cause Failure 

The failure rates of smart sensors seem to be comparable to those of conventional 
sensors6. There is no reason to believe that the failure rate of smart sensors will 
be significantly better, because typically conventional sensors are built using 
robust components. Smart sensors may contain more vulnerable components 
and their failure rate might then even be worse. 

Given the fact that failure rates are comparable, the difference between the 
dependabilities of a redundant smart sensor configuration and its counterpart 
using conventional technology is determined by common cause failure. The ques­
tion then reduces to: Are smart sensors more prone to common cause failure than 
conventional sensors? We will first answer the following question: How many of 
the failure modes addressed in the FMEA are likely to be candidates for common 
cause failure? 

In Table 8 we list the failure modes and assess their likelihood for common 
cause failure on a relative scale. The table uses the following terms: 

1. Information overload. This can occur when the data processing subsystem 
or the communications interface (other subsystems can also suffer informa­
tion overload, but this is less likely) have to cope with too many demands. 
Information overload can largely be avoided by riot sending information to 
a smart sensor and by using it in burst mode only. 

2. Core functionality. The core functionality of a smart sensor is thoroughly 
tested and is therefore least likely to lead to common mode failures. 

3. Complexity. See paragraph on complexity above. To reduce the contribution 
to common mode failure the complexity of a smart sensor should be as 
low as possible. Also, the environment should whenever possible not use 
functionality of the smart sensor that is not part of the core functionality. 
This reduces the probability that possible errors in the software are triggered. 

4. HC!. The human computer interaction plays a role in common cause failure. 
The HCI component can be reduced by making it is simple as possible. The 
smart sensor should have the least possible number of operational modes 
and settings. 

6 Some examples: Failure rate of the Honeywell STT250 smart temperature transmit­
ter is calculated to be 3.9 x 1O-7 /h [11]. Failure rate of the Fisher-Rosemount 3051C 
Pressure Transmitter is 7 x 1O-7/h [10]. Both failure rates are for all failure modes. 
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5. EM!. Electromagnetic interference might cause failure of different smart sen­
sors since the components used might be more susceptible, but it is highly 
unlikely that both sensors fail the same way. The effects of EMI can be 
mitigated by proper shielding. 

Given the above, there is sufficient reason to believe that common cause 
failure might be a larger problem for smart sensors. However, there are many 
ways to mitigate the problem: 

1. Do not send data to the smart sensor. No setting of parameters, no change 
of operational mode, no requests for data. 

2. Use the smart sensor in burst mode only. The data the smart sensor produces 
should be sufficient for all purposes, it should include the necessary infor­
mation on fault diagnosis, operational mode, settings and parameters. The 
latter information is necessary to detect possible errors during maintenance. 

3. Use a smart sensor with the least possible number of operational modes, 
settings and parameters. A user can assess this using the documentation. 

4. Use the simplest possible smart sensor for the application. This includes 
signal processing and fault diagnosis. This is very hard to assess for a user, 
and the opinion of an independent assessor plays an important role. 

5. Diversity. See next paragraph. 

5 The Case for Diversity 

To answer the question whether diversity improves the dependability of redun­
dant smart sensor configurations, we first consider how diversity influences the 
main causes of common cause failure--information overload, complexity and 
HCI-as identified in the previous paragraph. 

1. Information overload. Diverse sensors might react differently to overload 
conditions. However, it remains best to not send information to the sensors 
and to avoid the problem. 

2. Complexity. Smart sensors designed for the same use will have comparable 
design, algorithms and complexity. Although it can not be excluded that 
different sensors contain the same errors, diversity will reduce the possibility 
of common cause failure due to complexity (see for example [21]). 

3. HO!. Diverse smart sensors will have different human interfaces. Although 
it is possible that a user makes the same mistake twice, it is less likely. 

It is clear that the use of diversity has advantages with respect to dependabil­
ity. However, there are also disadvantages that have to be considered. First of 
all, maintaining diverse sensor configurations is more difficult and maintenance 
personnel has to be trained to maintain different types of equipment. One might 
even argue that this can lead to more maintenance errors. These errors will in­
crease the failure rate, not the probability of common cause failure. There might 
also be a larger need for keeping stocks of spare parts, so diversity can increase 
cost. 
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The trade-off is hard to make and depends on details of the application. 
At this stage, it is not possible to give general recommendations for the use 
of diversity. It is obvious that the advantages of diversity become less when 
more of the design measures described in the previous section are applied. For 
the extreme case where very simple smart sensors are deployed and all design 
measures are effectively applied, the advantage of diversity seems to be very 
small indeed. However, when the complexity of the smart sensor increases and 
it is not possible to apply the recommended design measures, diversity becomes 
an option to consider when dependability is a major concern. When in doubt 
reliability analyses are necessary to assess the specific application. 

6 Conclusion 

The use of smart sensors in applications where a high dependability is required 
is still being debated. It seems that the dependability of smart sensors is becom­
ing comparable to that of their conventional counterparts. The special nature 
of the design of smart sensors gives the possibility of some new failure modes. 
Especially the problems of information overload, increased complexity and hu­
man interfacing are to be mentioned. Most of these problems can be mitigated 
by applying simple guidelines. 

Some of the failure modes of smart sensors might lead to common cause 
failure. Therefore, in redundant configurations there might still be a difference 
between the use of smart sensors versus the use of conventional sensors. The 
usage guidelines will also mitigate many of the problems of common cause failure. 

Some causes of common cause failure can not be addressed in this way, espe­
cially with respect to human interfacing and complexity. These problems can be 
addressed by using diversity. Diversity also has disadvantages, mainly of opera­
tional nature. The decision when to apply diversity depends on the details of the 
application. Further research will investigate guideline.s for taking this decision 
and the procurement of field data on common cause failure of smart sensors to 
support the decision process. 
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Appendix. Failure Modes and Effects Analysis of a Generic 
Smart Sensor 

The FMEA is based on Figure 1. 

Table 1. FMEA of power supply. 

Failure mode Possible 
cause 

Power supply to Defect. 
all components 
fails. 

Power sup- Wire defect. 
ply to sensor 
subsystem fails. 

Power supply to Wire defect. 
communication 
interface fails. 
Power supply to Wire defect. 
data processing 
subsystem fails. 

Power supply to Wire defect. 
human interface 
fails. 
Power supply to Wire defect. 
electrical output 
su bsystem fails. 

Possible 
consequence 

Possible 
measure 

Failure of entire sensor. Redundant 
Loss of calibration infor- power supply. 
mation. Loss of settings Uninterruptable 
information. Loss of sig- power supply. 
nal history information. 
No measurement of in­
put signal. 

Wrong measurement of 
input signal (e.g. be­
cause reference voltage 
incorrect) . 
No or incorrect output. Fault diagnosis. 
No or incorrect settings. 

No or incorrect output. Fault diagnosis. 
Loss of calibration infor-
mation. Loss of settings 
information. Loss of sig-
nal history information. 

No display of data to Fault diagnosis. 
user. Setting of parame-
ters not possible. 
No or incorrect output. Fault diagnosis. 

Table 2. FMEA of electrical output subsystem. 

Failure mode Possible Possible Possible 
cause consequence measure 

Defect in DIA Hardware error. Incorrect output. Fault diagnosis. 
conversion. Robust design. 
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Comparison with 
conventional sen­
sor 
Conventional sen­
sors might be better 
at keeping calibra­
tion information. 

Same. 

Same. 

Not existent in con­
ventional sensors. 

Conventional sensor 
has analog data pro­
cessing, in general 
without signal his­
tory memory. Cali­
bration and settings 
are done using hard­
ware. 
Depends on imple­
mentation. 

Same. 

Comparison with 
conventional sen-
lIor 
Not existent in con-
ventional sensors. 
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Table S. FMEA of sensor subsystem. 

Failure mode Possible 
cause 

Possible 
consequence 

Digitisation of Defect in AjD Incorrect output. 
data from sen- conversion. 
sor is incorrect Software error. 
in the value 
domain. 
Digitisation of Software error. 
data from sen-
sor is incorrect 
in the time 
domain. 

Incorrect output (e.g. in­
tegration might be in­
correct). 

Conditioning of Software error. Incorrect output. 
data from sensor 
is incorrect. 

Incorrect setting Software error. Incorrect output. 
(e.g. of measure- Wire defect. 
ment range). Maintenance 

error. 
Processing of Software er- Incorrect output. 
signal of aux- ror (e.g. in 
iliary input compensation 
sensors. algorithm). 

Possible 
measure 

Comparison with 
conventional sen­
sor 

Redundant digi- Not existent in con-
tisation. ventional sensors. 

Software valida- Not existent in con-
tion. ventional sensors. 

Software valida- Conditioning of in­
tion. put data can be 

more elaborate in 
smart sensor. 

Fault diagnosis. Not existent in con­
ventional sensors. 

Software valida- Not existent in con-
tion. ventional sensors. 

Table 4. FMEA of communications interface. 

Failure mode Possible Possible Possible Comparison with 
cause consequence measure conventional sen-

sor 
Corrupts signals Software error. No or incorrect output. Software valida- Not existent in con-
to external sys- Information Incorrect information on tion. Change of ventional sensors. 
tem. overload. Fault diagnosis to exter- external system 

nal system. or communica-
tion interface, 
such that infor-
mation overload 
cannot occur. 

Corrupts signals Software error. No or incorrect output. Same. Not existent in con-
to data process- Information No or incorrect setting of ventional sensors. 
lng subsystem. overload. sensor subsystem. 
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Table 5. FMEA of data processing subsystem. 

Failure mode Possible 
cause 

Error in signal Software error. 
processing. 

Error in fault di- Software error. 
agnosis. 

Error in calibra­
tion. 

Software error. 
Failure of com­
munications in­
terface. 

Possible 
consequence 

Incorrect output 

Incorrect information on 
fault diagnosis to exter­
nal system. 
Incorrect output. 

Possible 
measure 

Comparison with 
conventional sen­
sor 

Software valida- Signal process­
tion. ing can be more 

elaborate in smart 
sensor. 

Software valida- Not existent in con-
tion. ventional sensors. 

Software valid a- Calibration can be 
tion. Fault diag- more elaborate in 
nosis. smart sensors. 

Error in 
storage 

data Software error. Incorrect settings. Incor- Software vali- Not existent in con­
Hardware error. rect output. Incorrect dation. Redun- ventional sensors. 

Failure mode 

Incorrect dis-
play of data. 

No or incorrect 
setting of pa-
rameters. 

Failure mode 

Clock not 
present. 
Clock has wrong 
or changing fre-
quency. 

calibration. dancy, e.g. error 
correcting/ detec­
ting codes. 
Hardware 
checks. 

Table 6. FMEA of human interface. 

Possible Possible Possible 
cause consequence measure 

Software error. Software error. Incorrect Software valida-
Human error. action by controller. tion. Improve-

ment of inter-
face. 

Software error. Incorrect output. Software valid a-
Human error. tion. Improve-

ment of inter-
face. 

Table 7. FMEA of clock signal. 

Possible Possible Possible 
cause consequence measure 

Hardware error. No or incorrect output. Fail-safe design~ 

Hardware error. Incorrect output (e.g. in- Robust design. 
tegration might be In- Fault diagnosis. 
correct). 
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Comparison with 
conventional sen-
sor 
Conventional sen-
BOfS exhibit other 
failure behaviour, 
e.g. graceful degra-
dation is more 
likely. 
Setting of parame-
ters might be more 
visible with conven-
tional sensors. 

Comparison with 
conventional sen-
sor 
Not existent in con-
ventional sensors. 
Not existent in con-
ventional sensors. 
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Table 8. Rating of failure modes with respect to common cause failure. The rating 
"R" is a relative measure, 1 is for the lowest likelihood of common cause failure, 5 for 
the highest. (HCI=Human Computer Interface, EMI=Electromagnetic Interference.) 

Failure mode R Rationale for rating 

Power supply failure 4 Only when sensors have the same power sup-
ply. 

Digitisation of data from sensor is 1 Core functionality. 
incorrect in the value domain. 
Digitisation of data from sensor is 2 Core functionality. Information overload. 
incorrect in the time domain. 
Conditioning of data from sensor is 1 Core functionality. 
incorrect. 
Incorrect setting (e.g. of measure- 5 HCI. 
ment range). 
Processing of signal of auxiliary in- 2 Complexity. 
put sensors. 
Communications interface corrupts 3 Information overload. 
signals to external system. 
Communications interface corrupts 3 Information overload. 
signals to data processing subsys-
tem. 
Error in signal processing. 2 Core functionality. Complexity. 
Error in fault diagnosis. 1 Although faults in the software for fault di­

agnosis are the same for sensors of the same 
type, the error only becomes apparent when 
a fault occurs. 

Error in calibration. 2 Core functionality. New calibration or loss of 
calibration might have same cause. 

Error in data storage 1 

Incorrect display of data. 4 
No or incorrect setting of parame- 5 
ters. 
Defect in D / A conversion. 1 
Clock not present. 1 

Clock has wrong or changing fre- 1 
quency. 

EMI. Core functionality. But: the occurrence 
of errors in data storage will be highly inde­
pendent. 
HCI. 
HCI. 

Core functionality. EM!. 
Failure of clocks in different sensors will be 
highly independent. 
Failure of clocks in different sensers will be 
highly independent. 
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Abstract. The theory developed by Eckhardt and Lee (and later extended by 
Littlewood and Miller) utilises the concept of a "difficulty function" to estimate 
the expected gain in reliability of fault tolerant architectures based on diverse 
programs. The "difficulty function" is the likelihood that a randomly chosen 
program will fail for any given input value. To date this has been an abstract 
concept that explains why dependent failures are likely to occur. This paper 
presents an empirical measurement of the difficulty function based on an 
analysis of over six thousand program versions implemented to a common 
specification. The study derived a "score function" for each version. It was 
found that several different program versions produced identical score 
functions, which when analysed, were usually found to be due to common 
programming faults. The score functions of the individual versions were 
combined to derive an approximation of the difficulty function. For this 
particular (relatively simple) problem specification, it was shown that the 
difficulty function derived from the program versions was fairly flat, and the 
reliability gain from using multi-version programs would be close to that 
expected from the independence assumption. 

1. Introduction 

The concept of using diversely developed programs (N-version programming) to 
improve reliability was first proposed by Avizienis [I]. However, experimental 
studies of N-version programming showed that the failures of the diverse versions 
were not independent, for example [2, 4] showed .that common specification faults 
existed, and Knight and Leveson [6] demonstrated that failure dependency existed 
between diverse implementation faults to a high level of statistical confidence. More 
generally, theoretical models of diversity show that dependent failures are likely to 
exist for any pair of programs. The most notable models have been developed by 
Eckhardt and Lee [5] and Littlewood and Miller [7]. A recent exposition of these 
theories can be found in [8]. These models predict that, if the "difficulty" of correct 
execution varies with the input value, program versions developed "independently" 
will, on average, not fail independently. A key parameter in these models is the 
"difficulty function". This function represents the likelihood that a randomly chosen 
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program will fail for any given input scenario (i.e. the probability that the programmer 
is more likely to make a mistake handling this particular input scenario). 

While there has been considerable theoretical analysis of diversity, and empirical 
measurement of reliability improvement, there has been little research on the direct 
measurement of the difficulty function. This paper presents an empirical analysis of 
many thousands of "independently" developed program versions written to a common 
specification in a programming contest. The objectives of the study were: 
• to directly measure the failure regions for each program version, 
• to examine the underlying causes for faults that lead to similar or identical failure 

regIOns, 
• to compute the difficulty function by combining the failure region results 
• to assess the average reliability improvement of diverse program pairs, and 

compare it with the improve expected if the failures were independent. 
The focus of this study was on diverse implementation faults. The correctness, 
completeness and accuracy of the specification were considered to be outside the 
scope of this project. However, specification-related problems were encountered in 
the study, and are discussed later in the paper. 

In Section 2 of the paper we describe the source of the program versions used in 
this study, Section 3 summarises the difficulty function theory, Section 4 describes 
the measurements performed on the programs, while Sections 5 and 6 present an 
analysis of the results. Sections 7 and 8 discuss the results and draw some preliminary 
conclusions. 

2. The Programming Contest software resource 

In the past, obtaining many independently developed program versions by different 
authors to solve a particular problem would have been difficult. However, with wider 
use of the Internet, the concept of "programming contests" has evolved. "Contest 
Hosts" specify mathematical or logical challenges (specifications) to be solved 
programmatically by anyone willing and able to participate. Participants make 
submissions of program versions that attempt to satisfy the published specification. 
These are then "judged" (usually by some automated test system at the contest site) 
and then accepted or rejected. 

We established contact with the organiser of one of these sites (the University of 
Valladolid) which hosts contest problems for the ACM and additional contest 
problems maintained by the University [9]. The organiser supplied over six thousand 
program submissions for one of its published problems. The programs varied by 
author, country of origin, and programming language. Authors often submitted 
several versions in attempting to produce a correct solution to the problem. This 
program corpus formed the basis for our research study. 

Clearly, there are issues about realism of these programs when compared to "real 
world" software development practices, and these issues are discussed in Section 7. 
However the availability of so many program versions does allow genuine statistical 
studies to be made, and does allow conjectures to be made which can be tested on 
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other examples. In addition such conjectures can be evaluated on actual industrial 
software and hence have the potential to be extended to a wider class of programs. 

3. Probability of failure and the difficulty function 

Two of the most well known probability models in this domain, are the Eckhardt and 
Lee model [5], and, the Littlewood and Miller extended model [7]. Both models 
assume that: 
1. Failures of an individual program 1i are deterministic and a program version either 

fails or succeeds for each input value x. The failure region of a program 1i can be 
represented by a "score" function" ai,,1I; x) which produces a zero if the program 
succeeds for a given x or a one if it fails. 

2. There is randomness due to the development process. This is represented as the 
random selection of a program from the set of all possible program versions n that 
can feasibly be developed and/or envisaged. The probability that a particular 
version 11; will be produced is P(n). 

3. There is randomness due to the demands in operation. This is represented by the 
(random) set of all possible demands X (i.e. inputs and/or states) that can possibly 
occur, together with the probability of selection of a given input demand x, P(x). 

Using these model assumptions, the average probability of a program version failing 
on a given demand is given by the difficulty jUnction, ~x), where: 

8(x) = LW(1i,X)P(1i) (1) 

The average probability of failure per demand (Pfd) of a randomly chosen single 
program version can be computed using the difficulty function and the demand profile 
P(x): 

(2) 

" 
The average pfd of randomly chosen pair of program versions (1iA,1iB) taken from two 
possible populations A and B is: 

(3) 

" The Eckhardt and Lee model assumes similar deVelopment processes for A and Band 
hence identical difficulty functions 

(4) 

" 
where 8(x) is the common difficulty function. If 8(x) is constant for all x (i.e. the 
difficulty function is "flat") then, the reliability improvement for a diverse pair will 
(on average) satisfy the independence assumption, i.e.: 

E(Pfd2) = E(Pfd1)2 (5) 

However ifthe difficulty function is ''bumpy'', it is always the case that: 

E(Pfd2) <! E(Pfd1)2 (6) 
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If there is a very "spiky" difficulty surface, the diverse program versions tend to 
fail on exactly the same inputs. Consequently, diversity is likely to yield little benefit 
andpfd2 is close to pfdl • If, however, there is a relatively "flat" difficulty surface the 
program versions do not tend to fail on the same inputs and hence p(d2 is closer to 
pfd l

2 (the independence assumption). 
If the populations A and B differ (the Littlewood and MilIer model), the 

improvement can, in principle, be better that the independence assumption, i.e. when 
the "vaIleys" in BA(x) coincide with the "hiIls" in BB(X), it is possible for the expected 
p(d2 to be less than that predicted by the independence assumption. 

4. Experimental study 

For our study we selected a relatively simple Contest Host problem. The problem 
specified that two inputs, velocity (v) and time (t) had to be used to compute a 
displacement or distance (d). The problem had defined integer input ranges. Velocity 
11 had a defined range of (-100 :<::: v :<::: 100), whilst time t was defined as (0 :<::: t:<::: 200). A 
set of 4040 I unique values would therefore cover alI possible input combinations that 
could be submitted for the calculation. However, this was not the entire input domain, 
because the problem specification permitted an arbitrary sequence of input lines, each 
specifying a new calculation. If all possible sequences of the input pairs (v, t) were 
considered, assuming no constraints on sequencing or repetition, the input domain for 
the program could be viewed as infinite. However, as each line of input should be 
computed independently from every other line, the sequence order should not be 
relevant, so the experiment chose to base its analysis on the combination of all 
possible values of 11 and t. This can be viewed as a projection of the input domain 
(which has a third "sequence" dimension) on to the (v, t) plane. 

The experiment set up a test harness to apply a sequence of 40401 different values 
of v and t to the available versions. The results for each version were recorded and 
compared against a selected "oracle" program. The success or failure of each input 
could then be determined. Some versions were found to have identical results to 
others for all inputs. The identical results were grouped together in "equivalence 
classes". 

In terms of the difficulty function theory outlined, each equivalence class was 
viewed as a possible program, 7[, taken from the universe of all programs, 11, for that 
specification. The record of success/failure for each input value is equivalent to the 
score function, w(7[, x) for the equivalence class as it represents a binary value for 
every point in the input domain, x, indicating whether the result was correct or not. 
For the chosen problem, the input domain, x, is a two-dimensional space with axes of 
velocity (v) and time (t), and the score function represented the failure region within 
that input domain. 

P(7[) was estimated by taking the ratio of the number of instances in an equivalence 
class against the total number of programs in the population. The size of the failure 
region was taken to be the proportion of input values that resulted in failure. The 
failure regions can be represented two dimensionally on the v, t plane, but it should be 
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emphasised that this is only a projection of the overall input domain. It is only 
possible to sample the total input domain. 

5. Results 

The results revealed that the 2529 initial program versions produced by the authors 
(the ''vI'' population) formed 50 equivalence classes. The five most frequent 
equivalence classes accounted for approximately 96% of the population. The results 
of the analysis are summarised in Table 1. 

Table 1. Population vI equivalence classes (frequent) 

Equivalence Number of 
P(1l) 

Size of Failure 
Class (7Z) versions Region 

ECI 1928 0.762 0.000 
EC2 201 0.079 1.000 
EC3 189 0.075 0.495 
EC4 90 0.036 0.999 
EC5 27 0.011 0.990 

Equivalence class 1 agrees with the oracle program. There are no known faults 
associated with this equivalence class result, consequently the size of the failure 
region was 0%. 

For equivalence class 2, analysis of the programs revealed a range of different 
faults resulted in complete failure across the input domain. 

For equivalence class 3, failures always occurred for v < O. This was due to a 
specification discrepancy on the Contest Host web site. Two specifications existed on 
the site-one in a PDF document, the other on the actual web page. The PDF 
specification required a distance (which is always positive) while the web 
specification required a displacement which can be positive or negative. The 
"displacement" version was judged to be the correct version. 

Equivalence class 4, typified those versions that lacked implementation of a loop to 
process a sequence of input lines (i.e. only computed the first input line correctly). 

For equivalence class 5, inspection of the program versions revealed a variable 
declaration fault to be the likely cause. 

A similar analysis was performed on the fmal program version submitted by each 
author (the ''vFinal'' population). The results revealed that of the 2666 final program 
versions could be grouped into 34 equivalence classes. The five most frequent 
equivalence classes accounted for approximately 98% of the population. The results 
of the analysis are summarised in Table 2. 
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Table 2. Population vFinal: equivalence classes 

Equivalence Number of 
P(n-) 

Size of Failure 
Class (n) versions Region 

ECI 2458 0.922 0.000 
EC2 70 0.026 1.000 
EC3 40 0.015 0.495 
EC4 21 0.008 0.999 
EC5 l3 0.005 0.990 

Note that there is some overlap between the "fIrst" and "fInal" populations as some 
authors only submitted one version. It can be seen that the dominant equivalence 
classes are the same as in the fIrst version, but the proportions of each equivalence 
class have decreased (apart from ECI) presumably because some programs have been 
successfully debugged. 

Figure I shows examples of the less frequent equivalence class failure regions. 
'00 -r----------, 'OOr---------------, 
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Fig. 1. Failure regions for some of the infrequent equivalence classes 

These graphs show that there is a remarkable variation in the failure regions even 
for such a simple problem. The failure regions for the frequent ECI to EC5 
equivalence classes are simpler in structure, i.e. all "white" for ECI, almost all 
"black" for EC2, EC4 and EC5 and a black rectangle for EC3 covering the negative 
portion of the input domain. 
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6. Analysis 

The "score functions" and frequency data of the equivalence classes can be combined 
to estimate the difficulty function for the specific problem. Note that this is an 
approximation to the actual difficulty function which should be an average taken over 
the population of all possible programs. It is unlikely that the set of all possible 
programs (ll) are limited to the 50 equivalence classes identified in this study. 
However, a computation of B(x) based on the known equivalence classes should give 
a good approximation to the difficulty function, as 95% (vI) and 97% (vFinal) of the 
program versions belonged to four of the most frequently occurring known 
equivalence classes so uncertainties in the "tail" of the population of programs will 
only have a marginal effect on the difficulty function estimate. 

One issue that needed to be considered in the analysis was the effect of the 
specification discrepancy. The discrepancy will bias the estimate of implementation 
difficulty as equivalence class EC3 might not have occurred if the specification had 
been unambiguous. On the other hand, such specification problems might be typical 
of the effect of specification ambiguity on the difficulty function. We therefore 
calculated the difficulty function in two ways: 
• including all equivalence classes 
• all equivalence classes except EC3 (the adjusted difficulty function) . 

6.1 Calculation of the difficulty function 

For each input value, x, the difficulty function value B(x) was estimated using 
equation (1) and the result for the vI population is shown in Figure 2. 

025 

Prob~ltity 

Fig. 2. Difficulty function for the vI population 
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This calculation assumes that "is the same as an equivalence class, the score function 
w(n; x) is the same as the observed failure region and pen) is the relative frequency of 
the equivalence class in the population. Effectively the calculation takes a weighted 
average ofthe individual failure regions in the vI population. 

Note that the difficulty function shown in Figure 2 has not accounted for any bias 
introduced by the specification discrepancy and the "step" in difficulty for v < 0 is due 
to the specification ambiguity. 

The probability of failure also decreases for certain "special" values-the velocity 
axis v=0, and time axis t=0. This might be expected since an incorrect function of v 
and t might well yield the same value as the correct function for these special values 
(i.e. a displacement of zero). There is also a low probability value at v=-100, t=0 
which is due to faults that fail to execute subsequent lines in the input file, and the 
first test input value happens to be v=-100, t=O. If the test input values had been 
submitted in a random order, this point would have been no more likely to fail than 
adjacent points. 

It can also be seen that there is a certain amount of "noise" on the two "flat" 
regions of the difficulty surface. This is caused by some of the highly complex failure 
patterns that exist for some of the infrequent equivalence classes (as illustrated in 
Figure 1). 

The results were adjusted to account for specification bias by eliminating the 
equivalence class EC3 and Figure 3 shows the adjusted difficulty function. 

Time (t) 

-100 ° Velocity M 

0.165 . 

0.16 

0.155 

0.15 

0.145 

0.14 
Probmillty 

0.135 

Fig. 3. Adjusted difficulty function for the vI population 

With the adjustment for specification bias, the difficulty function is now almost "flat" 
apart from the "special case" values on the velocity axis, v=0, and time axis, t=0. 

The difficulty functions for the final version populations (adjusted and unadjusted) 
are very similar in shapes observed in the vI population. The adjusted vFinal 
difficulty function is shown in Figure 4. 
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...,-----------.----,------r-----.... O.0625 

Probability 

Fig. 4. Adjusted difficulty function for the vFinal population 

While the difficulty functions are similar in shape to the vI population difficulty 
functions, the mean value of f:(x) is about one third that ofthe vI population- mainly 
because the vFinal population contains a higher proportion of correct program 
versions. 

The mean values forf:(x) are summarised in the table below. 

Table 3. Mean difficulty values for different program populations 

Program 
Population 
vi 
vFinal 

Mean Value of e 
Unadjusted Adjusted 
0.186 0.161 
0.064 0.058 

6.2 Expected pfd of a single version and a pair of versions 

To compute the pfd for an average program from equation (2), we need to know the 
execution profile P(x). This could vary from one application context to another. 
However, assuming any input is equally likely, the pfd of a single version is the mean 
value of e, while the dangerous failure rate of a fault-detecting pair, pfd2, given in 
equation (4) reduces to the mean of ()(x/ averaged over the input space. Note that this 
assumes the same difficulty function for both programs, i.e. they are drawn from the 
same population (the Eckhardt and Lee assumption [5]). 

The expected pfds for a single version and a pair of versions were computed for the 
vI and vFinal program populations (and the adjusted versions). The results are shown 
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in the table below and compared with the pfd expected from the independence 
assumption (Pfd J

2
). 

Table 4. Comparison of expected probability of failure on demand 

Program 
pfd j pfd2 pfd j

2 

Population 
vI 0.186 0.0361 0.0347 
vI adjusted 0.161 0.0260 0.0260 
vFinal 0.064 0.0042 0.0041 
vFinal adjusted 0.058 0.0033 0.0033 

The increase in the pfd of a diverse pair (Pfdz) relative to the independence 
assumption (Pfd j

2
) was relatively small for all populations, and for the adjusted 

populations, the difference between pfdz and the independence assumption is almost 
negligible. The worst-case increase relative to the independence assumption was 
observed to be 1.04 (for the unadjusted vI population). This is consistent with 
expectations, as the difficulty surface was much flatter for the adjusted versions. 

7. Discussion 

While the results are interesting, we have to be cautious about their applicability to 
"real world" programs. Programming contests can provide many thousands of 
versions and this is a clear benefit for statistical studies. On the other hand, the results 
may be unrcpresentative of software development in industry, especially in that: 
I. many of the developers are probably amateurs or students rather than professional 

developers; 
2. the program specifications are not overly complex, so that the programs are not 

typical of software developed in industry, and whole classes of faults that arise in 
the development of complex software may be missing; 

3. the development process is different from the processes applied in industry; 
4. there is no experimental control over program development, so independence could 

be compromised, e.g. by copying other participants' programs, or by submitting 
programs produced collectively by multiple people. 

Discussions with the contest organiser suggests that plagiarism is not considered to be 
a major issue and, in any case, the main effect of plagiarism of correct versions would 
be to increase the number of correct versions slightly. In principle, it should be 
feasible to trap programs from different authors that are identical or very similar in 
structure. 

With regard to programming expertise, the top participants are known to take part 
in international programming contests under controlled conditions (in a physical 
location rather than on the internet). So it seems that there is a very broad range of 
expertise. In future studies we might be able to obtain more information about the 
participants so that the level of expertise can be more closely controlled. 

The example we have studied is "programming in the small" rather than 
"programming in the large". It is therefore likely that there are classes of "large 
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program" fault, such as integration and interface faults, that will not be present in our 
example. In addition the processes used differ from industry practice. However 
experience with quite large programs indicates that many of the faults are due to 
localised programming errors that remained undetected by industrial verification and 
validation phases. So it is likely the errors committed in small contest-derived 
programs will also arise in large industrial programs, although we have to recognise 
that the set of faults will be incomplete and the relative frequency of the fault classes 
is likely to differ. . 

From the foregoing discussion, it is clear that we cannot make general conclusions 
from a single program example. However, the results can suggest hypotheses to be 
tested in subsequent experiments. One clear result of this experiment is that the 
difficulty surface is quite flat. The specification required a single simple ''transfer 
function" that applies to the whole of the input domain. One might conjecture that, for 
a fixed transfer function, the difficulty would be the same for all input values. . 
Similarly where the program input domain is divided into sub-domains which have 
different transfer functions, we might expect the difficulty to be flat within each sib 
domain. If this conjecture is correct, we would expect diverse programs with simple 
transfer functions to have reliability improvements close to that predicted by 
independent failure assumption. Indeed, diversity may be better suited to simple 
functions rather than entire large complex programs. However we emphasise that this 
is a conjecture, and more experiments would be needed to test this hypothesis. 

It should also be noted the pfd reduction derived in Table 4 is the average 
reduction. For a specific pair of program versions it is possible for the actual level of 
reduction to vary from zero to complete reduction. A zero reduction case would occur 
if a pair of versions from the same equivalence class are selected. Conversely, 
complete reduction occurs if an incorrect version is combined with a correct version .. 
In Table 2, for instance, 92% of versions in the final population are correct so the 
chance that a pair of versions will be faulty is (1-0.92i, i.e. 0.64%. It follows that the 
chance of a totally fault detecting pair (where at least one version is correct) will 
99.36%. Pairs with lower detection performance will be distributed within in the 
remaining 0.64% of the population of possible pairs and some of these versions will 
behave identically and hence have zero failure detection probability. 

Another issue that we did not plan to examine was the impact of specification 
problems. However it is apparent that the problem we encountered was a particular 
example of specification ambiguity that arises in many projects. This illustrates how 
N-version programming can be vulnerable to common specification problems, and the 
need for appropriate software engineering strategies to ensure that specifications are 
sound. 

At a more general level, we have to ask whether such experiments are of practical 
relevance to industry. As discussed earlier, the examples we use are not typical as 
they are not as complex as industrial software and the development processes differ. 
However, the experiments could lead to conjectures that could be tested on 
industrially produced software, (such as the assumption of constant difficulty over a 
sub-domain). If such conjectures are shown to be applicable to industrial software, 
this information could be used to predict, for example, the expected variation in 
difficulty over the sub-domains and hence the expected gain from using diverse 
software. It has to be recognised that relating the research to industrial software will 
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be difficult and, at least initially, is most likely to be applicable to software 
implementing relatively simple functions (like smart sensors). We hope to address 
this issue in future research. 

8. Conclusions and further work 

We eoncl ude that: 
1. One significant source of failure was the specification. We were able to allow for 

the specification discrepancy in our analysis, but it does point to a more general 
issue with N-version programming, i.e. that it is vulnerable errors in the 
specification, so a sound specification is an essential prerequisite to the deployment 
ofN-version programming. 

2. For this particular example, the difficulty surface was almost flat. This indicates 
that there was little variation of difficulty and a significant improvement in 
reliability should (on average) be achieved, although the reliability or arbitrary pair 
of versions can vary significantly from this average. 
Wc conjecture that for programs with a single simple transfer function over the 

whole input domain (like this example), the difficulty function might turn out to be 
relatively flat. In that case, reliability improvements close to the assumption or 
independent failures may be achievable. However, more experiments would be 
needed to test this hypothesis. 

There is significant potential for future research on variations in difficulty. The 
possibilities include: 
I. Variation of difficulty for d(fJerent sub-populations (e.g. computer language, 

author nationality, level of expertise, e1c). The extended Littlewood and Miller 
theory suggests it is possible to have reliability better than the independence 
assumption value. An empirical study could be envisaged, to determine if this is 
observed when versions from different populations are combined. 

2. Extension to other contest host program examples, and more wide-ranging 
experiments to assess conjectures like the flat difficulty conjecture discussed 
above. 

3. Relating the hypotheses generated in the experiments to industrial examples. 
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Abstract 

A large part of software engineering research suf­
fers from a major problem-there are insufficient data 
to test software hypotheses, or to estimate pammeters 
in models. To obtain statistically significant results, 
a large set of progmms is needed, each set comprising 
many progmms built to the same specification. We have 
gained access to such a large body of progmms (writ­
ten in C, C++, Java or Pascal) and in this paper we 
present the results of an explomtory analysis> of around 
29,000 C progmms written to a common specification. 

The objectives of this study were to chamcterise the 
types of fault that are present in these progmms; to 
chamcterise how progmms are debugged during devel­
opment; and to assess the effectiveness of diverse pro­
gmmming. The findings are discussed, together with 
the potential limitations on the realism of the findings. 

1. Introduction 

To date software engineering research has been 
based on relatively small samples of programs; at most 
a few tens of programs have been used in controlled 
experiments to test hypotheses. Ideally far more pro­
grams, written to a common specification, are needed 
to undertake statistical analyses, and many different 
specifications are needed to demonstrate results are 
generally applicable. In this paper we identify such 
a body of programs, and present the results of our ex­
ploratory analysis. 

The UVa Online Judge Website is an initiative of 
Miguel Revilla of the University of VaIladolid [8]. It 
contains problems to which everyone can submit solu­
tions. The solutions are programs written in C, C++, 
Java or Pascal. The correctness of the programs is 
automatically judged by the "Online Judge". Most au­
thors submit solutions until their solution is judged as 

M. Revilla 

Department of Applied Mathematics 
University of Valladolid 
47011 Valladolid, Spain 

being correct. There are many thousands of authors 
and together they have produced more than 2,500,000 
solutions to the approximately 1500 problems on the 
website. 

From the perspective of algorithm design, the pro­
gramming contest is a treasure trove. There appear to 
be numerous ways to solve the same problem. But also 
for software reliability engineers this is the case: there 
are even more ways to not solve the problem. Most 
authors' first submission is incorrect. They take some 
trials to-in most cases-finally arrive at the correct 
solution. What happens between this first submission 
and their final one is illuminat.ing. 

Ideally analyses should be performed on different 
sets of programs to identify common features. But in 
this paper we focus on a single set of 29,000 C programs 
version written to a common specification, the "3n+ 1"­
problem. In this exploratory study, we examine three 
different aspects in software engineering: 

• what types of faults are introduced; 

• how programs are debugged during development; 

• whether diverse progranlS are likely to be effective. 

In the following sections we introduce the '''3n+l''­
problem, describe the environment used to test the 
programs and the results of our exploratory studies of 
these issues. The relevance of our findings are discussed 
and we make some conjectures that can be evaluated 
in future studies. 

2. The "3n+l"-problem 

The "3n+l"-problem can be summarised as follows: . 

1. input n 
2. print n 
3. if n • 1 then STOP 

©2007 IEEE. Reprinted, with permission, from the Proceedings of the 15th IEEE International Symposium of 
Software Reliability Engineering, pages 101-12, St. Ma.lo, Fra.nce, November 2004. 
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4. if n is odd then n := 3n + 1 
5. else n:- n/2 
6. GOTO 2 

For example, given an initial value 22, the following 
sequence of numbers will be generated 22 11 34 17 52 
26 13 40 20 10 5 16 8 4 2 1. 

It is conjectured that the algorithm above will ter­
minate (Le. stop at one) for any integer input value. 
Despite the simplicity of the algorithm, it is unknown 
whether this conjecture is true. It has been verified, 
however, for all integers n such that 0 < n < 1,000,000 
(and, in fact, for many more numbers than this). 

Given an input n, it is possible to determine the 
length of the number sequence needed to reach the final 
value of one. This is called the cycle-length of n. In 
the example above, the cycle length of 22 is 16. 

The "3n+1"-problem specification includes the fol­
lowing requirements: 

• For any two numbers i and j you are to deter­
mine the maximum cycle length over all int.egers 
between and including i and j. 

• The input will consist of a series of pairs of integers 
i and j, one pair of integers per line. All integers 
will be less than 1,000,000 and greater than O. 

• For each pair of input integers i and j the output 
is i, j, and the maximum cycle length for integers 
between and including i and j. These three num­
bers should be separated by at least one space with 
all three numbers on one line and with one line of 
output for each line of input. 

The specification is supplemented by sample input 
and output examples, e.g.: 

Sample Input. 
1 10 
100 200 

Sample Output. 
1 10 20 
100 200 125 

3. Program submissions 

The number of programs submitted to this problem 
is 66,696 at the moment ofthis analysis, of which 29,102 
are written in C. (We consider only those programs that 
are designated as being written in C by t.he author, at 
this moment we do not include C++ programs that 
are C compatible.) The online judge classifies 7,132 
(24.5%) of these as correct, 10,335 (35.5%) as "wrong 
answer" and 273 (0.9%) as "presentation error". The 
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latter category contains solutions that do not exactly 
conform to the output specification, but give the cor­
rect answer. The remaining 11,362 (39.0%) programs 
contain fatal errors, take to long to complete, use too 
much memory, or have other problems. In our analysis 
we only consider those programs that are either marked 
as "correct", "wrong answer" or "presentation error" . 

The number of authors that submitted C programs 
is 4317, 3444 (79.8%) of whom managed to solve the 
"3n+1"-problem. 

200l 

!1500+~~------------------------
1,000+-\+------------------------
Irro \ 
z '-
o+---~~~~~ .. ++~~~~~ 

o 10 15 25 
Number of submtnlohl 

Figure 1: Number of submissions until last or correct 
solution per author. 

The number of programs submitted per author, ex­
cluding those submissions after a correct submission, is 
depicted in Figure 1, the average is 2.9. 

4. Solutions to the problem 

The example C program in Table 1 shows the ap­
proach most programs take. We will use the pro­
gram's characterisation to describe the faults that au­
thors make. 

Of course, the actual programs differ from this ex­
ample, but most programs take a similar approach and 
only differ in aspects such as: the use of subroutines for 
the cycle length calculation and the determination the 
maximum value. The programs that differ most from 
the example are those that optimize on speed. These 
programs can be lengthy and complex, but constitute 
a minority. 

5. Program testing 

We submitted all the programs to a benchmark test. 
The benchmark input is a list of 2,500 pairs of num­
bers with all combinations of numbers between 1 and 
50. The outputs of the programs' executions are writ­
ten to a file for later analysis. We deleted all output 
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Table 1: Example program with typical algorithm. 

Program • 
#include <stdio.h> 
#include <stdlib.h> 

mainO 
{ 

int a. b, min, max, num; 
register n, cycle, cyclemax; 

Characterisation 

Variable declaration 

while (fscanf(stdin, "%d %d", ta, tb) !- EOF) { 
if (a < b) min=a; max=b; else min=b; max=a; 
for (cyclemax=-1, 

Read inputs 
Swap inputs 
Reset maximum cycle length 
Loop between bounds num=min; num<=max; num++) { 

for (n=num, cycle=1; n != 1; cycle++) 
if (n % 2) n=3*n+1; else n »= 1; Calculate cycle length 

Determine maximum if (cycle> cyclemax) cyclemax=cycle; . 
} 
printf ("%d %d %d\n", a, b, cyclemax); Write outputs 

} 

files smaller than half the size of the correct output and 
larger than twice its size, because we deemed these pro­
grams to be incorrect. The outp~t files smaller than 
half the size are in general either programs that do 
nothing at all (fake submissions) or only process one or 
a few inputs. The output files larger than double the 
size mostly contain intermediate results or text. 

It has to be noted that this approach does not iden­
tify all faults in the programs. An example of a known 
fault that is not considered in this analysis is numerical 
overflow, caused by intermediate results becoming very 
large. In our assessment, we discarded the programs 
by authors who needed more than 30 attempts as they 
were considered to be too incompetent to be typical of 
normal programming (some authors managed to sub­
mit over 500 trial versions). 

We were slightly more generous than the online 
judge in assessing the output files. We only compared 
the numbers in the output file, so if the output file 
contains commas, empty lines or short text like "The 
answer is:" we still treat it as a correctly formatted out­
put. The reason for ignoring commas and short texts 
might. be questioned, but this decision significantly re­
duces the number of different equivalence classes gen­
erated and enhances the opportunities for analysis. 

After submitting a correct program, many authors 
continue submitting, probably to optimise their pro­
gram, or to make it faster. We are not interested in 
these aspects, so we discard all programs of an author 
after submission of a correct program. 

When running and comparing these programs it was 

striking how many different behaviours were observed. 
In total, 516 different output results were generated. 
Many are only slightly different, but the fact that such 
a simple program can be programmed incorrectly in so 
many ways is surprising. 

After eliminating programs that did not conform to 
the criteria outlined above, a set of 11,951 program 
versions were available for subsequent analysis. 

Three main analyses were performed in this ex­
ploratory study: 

• analysis of the types of fault introduced (see sec­
tion 6.); 

• analysis of the debugging process, e.g. what faults 
are removed in successive "releases" submitted by 
the author (see section 7.); 

• assessment of the effectiveness of diversity (see sec­
tion 8.). 

6. Analysis of program faults 

6.1 Equivalence classes 

We observed that there were many different pro­
grams that produced identical results. These were gen­
erally due to the existence of similar faults in the dif­
ferent versions. We grouped the program versions that 
produced identical results into "equivalence classes" 
and used these equivalence classes in our subsequent 
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analysis. Given the limited space, in this paper we 
will only consider equivalence classes that contain more 
than 5 programs. 

After grouping the output files of the programs into 
equivalence classes, we characterised them by the faults 
they contained (see Table 2). The 36 most frequent 
equivalence classes are shown, with their total frequen­
cies, the frequencies with which they occur in the first 
and last programs submitted by the authors, their re­
liability (Le. the fraction of correct responses to the 
2,500 demands), and a description of the faults that 
were identified as being present in that class of pro­
grams. An assumption we made here is that programs 
that behave similarly contain the same kind of faults. 
This may not always be correct, but no counterexam­
pies have yet been found. 

6.2 Types of fault 

The characteristicis of the faults found in each equiv­
alence class are described below. 

Swap: missing or incorrect. This is related to 
test cases where input i is larger than input j. This 
is normally handled by swapping the two input values. 
(Strictly speaking a swap is not necessary, because this 
functionality can also be implemented in the loop by 
counting down, but most authors do not use this al­
ternative solution. So we have labelled this a "Swap" 
problem). 

A missing swap indicates incorrect interpretation of 
the specification: the author did not anticipate the pos­
sibility that the second input may be smaller than the 
first. This is the most frequent mistake: 31% of the 
programs in the selected equivalence classes exhibit this 
problem. 

Incorrect implementation of the swap is less frequent 
(14%), in most cases the author did not consider the 
consequences for bouncing i and j. In some cases it is 
caused by a slip in a routine programming task. 

Write: incorrect order. Returning the input val­
ues is one of the possible consequences of implementing 
the swap incorrectly. The specification clearly specifies 
that the returned inputs should appear in the same or­
der. The author manages to implement the swap, but 
forgets to consider the consequences for the write step. 
The problem is in general solved by either returning the 
inputs before swapping or by remembering the order of 
the inputs in separate variables. 

Reset maximum cycle length. The author for­
gets to reset the maximum cycle length for the next set 
of input values (3.7%). In this case the program will 
fail if the maximum cycle length for these i, j values is 
lower than the highest one calculated since the start of 
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the program. This problem is caused by not initialising 
the loop correctly. 

Loop. There appear to be many ways to implement 
the loop incorrectly (3.6%). Most frequent is the omis­
sion of the last value in the loop. An example is' shown 
below: 

for (StartSequence = StartCounter; 
StartSequence < LastCounter; StartSequence++) 

Another case is the omission of the first and the last 
values in the loop, e.g.: 

.for(i=min(a,b)+l;i<max(a,b);i++) 
New line. Some programs (3.4%) do not output a 

new line between subsequent iterations. 
Calculation. Very few programs (0.3%) contain a 

fault in the calculation of the maximum cycle length. 
This is probably due to the fact that if the algorithm 
responds well to the sample outputs given in the prob­
lem specification, it will perform well for all inputs. 
The main problem found is putting step 3, testing for 
n = 1, after step 4 and 5 in the program (see pseu­
docode in introduction). The program will not check 
for n = 1 immediately, leading to the sequence "1 4 2 
I" and a calculated sequence length of 4 instead of 1. 

6.3 Failure sets 

We also plotted the failure sets that characterised 
each equivalence class, i.e. for each input pair i, j we 
noted whether the result was a success or a failure and 
plotted the failure set as a two-dimensional map. The 
failure sets are shown in Figure 2. 

The triangular pattern, e.g. a), i) and 0), is related 
to the i, j swup problem, Le. the correct answer is only 
generated when i is less or equal to j. The diagonal 
structures like h), p), q) and s) are related to loop im­
plementation problems where either one or both of the 
i , j endpoint values is not included in the cyclic length 
calculation. An entirely black square, n), is associated 
with problems like failing to generate any output, out­
putting in the wrong format or generating too much 
output. The most common equivalence class is a com~ 
pletely blank square (not depicted), which represents 
the case where all test inputs were correct. 

The shape of some failure sets depends on the order 
of the numbers in the input file: b), f), w) and x). 

We also see regions that appear to be the super­
position of two different failure sets, for example, v) 
seems to be the superposition of a) and h). This might 
be the explanation for the large number of different 
equivalence classes found in the study. For example, 
256 different failure set patterns can be generated with 
only 8 basic patterns found. 
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Table 2: Equivalence classes and faults. EC: Equivalence Class; Freq.: Frequency of the equivalence class; First: 
Frequency of the EC as the first attempt; Last: Frequency of the EC as the last attempt; ReI.: Fraction of correct 
responses to the 2,500 demands; Description: Description of the faults found in the EC, with the consequences of 
the fault for another program step between brackets. 

EC Freq. First Last ReI. Description 
ECOO 3444 1512 3444 100.00% Correct program. 
ECOl 1735 707 133 51.00% Swap: missing. (Calculation: results in 0). 
EC02 921 158 67 51.00% Swap: incorrect. (Write: bounces i and j in incorrect order when i > j). 
EC03 426 168 37 51.00% Swap: missing. (Calculation: leads to result 1). 
EC04 295 77 17 52.84% Reset maximum cycle length: not included after first calculation. 

Swap: missing. (Calculation: results in maximum cycle length of all previous calcu-
lations.) 

EC05 277 63 9 0.04% New line: no new line between outputs. (Often hides other faults.) 
EC06 211 77 29 58.00% Swap: missing. (Loop: only lowest number when i > j.) 
EC07 76 17 3 99.88% Calculation: wrong for n = 1 (program step 3 after 5), leads to result 4. 
EC08 74 12 2 26.96% Reset maximum cycle length: not included after first calculation. 
EC09 63 33 3 43.76% Loop: highest element not included. 

Swap: missing (Calculation: results in 0.) 
EClO 63 16 1 87.52% Loop: highest number not included, leads to result 0 when i = j. 
ECll 60 11 22 52.96% Swap: incorrect. (Write: After first time i > j bounces inputs written in reversed 

order when i > j.) 
EC12 39 lO 3 54.96% Swap: incorrect, leads to i = j = max{i,j) when i < j. 
EC13 38 6 5 0.04% Calculation: missing, leads to result 1. 
EC14 36 8 40.24% Loop: lowest and highest number not included. 

Swap: missing, leads to result O. 
EC15 36 2 1 87.52% Loop: highest number not included. (Calculation: leads to result -1 when i = j.) 
EC16 35 4 3 99.96% Calculation: aborts when n = I, leads to result O. 
EC17 32 16 1 50.92% Swap: missing. (Calculation: results in 0). 

Calculation: wrong for n = 1 (program step 3 after 5), leads to result 4. 
EC18 25 4 0.00% . Calculation: result one too low. 

Swap: missing. (Calculation: results in 0.) 
EC19 24 6 50.96% Calculation: aborts when n = I, leads to result O. 

Swap: missing (Calculation: leads to result 0.) 
EC20 21 3 1 02.00% Loop: lowest element not included. 
EC21 21 7 2 50.92% Loop: only lowest number when i < j . 

Calculation: wrong for n = 1 (program step 3 after 5), leads to result 4. 
EC22 21 3 9 0.00% Other: second output is zero. 
EC23 20 4 3 51.00% Swap: incorrect, leads to i = j = min{i,j). 
EC24 19 4 2 80.48% Loop: lowest and highest number not included. 
EC25 16 1 1 2.00% Swap: incorrect, leads to loop being only correct for i = j. 
EC26 15 4 2 50.92% Swap: incorrect, bounces i and j in incorrect order. 

Calculation: wrong for n = 1. 
EC27 14 5 13 89.52% Loop: highest number not included, except when i = j. 
EC28 14 2 1 2.00% Other: no output line when i < j. 
EC29 14 4 1 43.76% Loop: highest number not included. 

Swap: incorrect. (Write: bounces i and j in incorrect order when i > j.) 
EC30 12 2 1 2.00% Swap: incorrect (swaps when i < j), leads to incorrect answer when i # j. 
EC31 11 5 1 43.80% Swap: missing, leads to result 1. Loop: last element missing. 
EC32 lO 2 1 51.00% Swap: incorrect, leads to i = j = max{i,j). (Write: bounces "i i" if i > j.) 
EC33 lO 3 3 54.76% Swap: missing, leads to last calculation result. 
EC34 9 1 2 99.96% Calculation: wrong for n = 1 (increment of cycle length incorrect for n = I), leads 

to result 2. 
EC35 6 48.32% Loop: incorrect, leads to result being one too low if maximum cycle length of longest 

sequence is one higher than the next highest length. 
EC36 5 2 99.92% Calculation: wrong for (i,j) = (I, 2) or (i,j) = (2,1) (program step 3 after 5), leads 

to result 4. 
Total 8148 2960 3828 

7. Analysis of the debugging process for the same underlying programming fault. We have 
also seen that these basic faults appear to be superim­
posed on each other, Le. an equivalence class consists We have seen that there are a several types of faults 

which can appear in a number of different "varieties" 
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Figure 2: Failure sets for the equivalence classes. 

a combination of one or more "basic" faults. 
We might therefore expect the debugging process 

to result in the removal of successive bugs and hence 
there would be a transition from one equivalence class 
to another with fewer basic faults. If this supposition 
is correct, we would expect that: 

• relatively few transition steps are needed before 
the final "correct" equivalence class is reached; 
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• few equivalence classes are "reachable" from an­
other class (Le., only the ones with one more or 
one less basic fault). 

At a more global level, it may be the case that some 
faults are more difficult to eliminate than others, so 
we might expect to see different proportions of basic 
defects as debugging progresses. These issues are ex­
amined in the sections below. 

7.1 Transitions between the equivalence 
classes 

An analysis was performed of the transitions be­
tween equivalence classes. In Table 3 we show the mean 
number of transition steps needed to arrive at a correct 
program from a program in a given equivalence class. 
The table also shows the number of steps it takes to 
arrive at a correct program, for those cases in which 
the author manages to do this, and the percentage of 
submissions for which the author does not manage to 
correct the program. 

An "ideal" debugging process would eliminate a ba­
sic fault at each step, but in practice it can be seen that 
the number of steps needed to correct faults is higher: 
on average 2.8 steps for correcting one fault and 3.1 for 
correcting two faults. The number of faults here is the 
number identified inTable 2; this number is however 
not exact, because some authors may correct two faults 
at the same time, and a program can contain more 
faults than listed. One possible cause of these extra 
transitions might be correction-induced faults, where a 
new fault is sometimes added to the set. However our 
analysis indicates that the primary reason for the addi­
tional transitions is that the next release has the same 
equivalence class. The probable explanation for that 
is that the Contest Host provides no debugging infor­
mation, i.e. it does not provide any information about 
the test input values that caused the failure or which 
element of the answer is incorrect. This could result in 
the programmer making cosmetic changes rather than 
addressing the actual problem. Table 3 also shows the 
probability of staying in the. same class for the different 
equivalence classes. 

It can be seen that for some equivalence classes there 
is a 100% probability of staying in the same class, while 
in other cases there is oruy a 4% percent probability. 
However there is no obvious relationship between the 
faults present in the class and the transition probabil­
ity. 

A full transition matrix bet~een equivalence classes 
is given in the final table at the end of the paper. From 
this table it is dear that authors do not insert faults of 



Table 3: The probability of staying in the same equiv­
alence class for a program in a given equivalence class, 
the mean number of steps to correct the program, and 
the percentage of programs that are never corrected. 
(#Tr.: Number of transitions.) 

#Tr. Total Mean 
to #Tr. % #Steps % 

Equiv. same from within to never 
class EC EC EC correct corrected 
EC01 702 1602 44 % 3.1 23 % 
EC02 324 854 38% 2.1 16 % 
EC03 174 389 45 % 3.3 25 % 
EC04 96 278 35 % 2.8 17 % 
EC05 117 265 44 % 3.3 19 % 
EC06 80 182 44% 3.1 38 % 
EC07 32 73 44 % 2.1 14 % 
EC08 28 72 39 % 3.7 20 % 
EC09 14 60 23 % 4.6 16 % 
EClO 24 62 39 % 2.3 13 % 
EC11 20 38 53 % 1.7 67 % 
EC12 19 36 53 % 1.5 51 % 
EC13 22 33 67% 2.6 76 % 
EC14 4 35 11% 4.2 22 % 
EC15 21 35 60 % 4.1 3% 
EC16 11 32 34 % 1.7 31 % 
EC17 12 31 39 % 4.6 16 % 
EC18 1 24 4% 4.3 12 % 
EC19 6 23 26 % 3.5 21 % 
EC20 6 20 30 % . 2.2 19 % 
EC21 11 19 . 58% 3.8 38 % 
EC22 11 12 92 % NjA 100% 
EC23 6 17 35 % 5.3 20 % 
EC24 5 17 29 % 2.8 16 % 
EC25 4 15 27 % 1.7 6% 
EC26 3 13 23 % 2.4 53 % 
EC27 1 1 100% NjA 100% 
EC28 5 14 36 % 2.1 0% 
EC29 1 14 7% 4.2 14 % 
EC30 2 12 17 % 2.0 8% 
EC31 3 11 27 % 5.8 18 % 
EC32 2 9 22 % 1.4 20 % 
EC33 3 7 43 % 1.5 40% 
EC34 2 7 29 % 1.5 33 % 
EC35 1 6 17 % 1.7 50 % 
EC36 2 4 50% NjA 100 % 

an entirely different category. e.g. there are no transi­
tions from EC07 to EC06 where the faults are disjoint. 
The diagonal is a dominant feature of the transition ta­
ble. These are transitions within the same equivalence 
class. 

7.2 Reliability of successive releases 

It is difficult to talk about the reliability of a pro­
gram version without defining its operational profile. 
Take for example, the program failure set in Figure 2a. 
If the input profile was restricted to the top triangular 
portion the program would always fail, while an in-
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put profile that remained in the bottom triangle would 
never fail. However on average, we would expect relia­
bility to be better when the failure sets become smaller, 
and if we assume that each input value is equally likely, 
the probability of failure is proportional to the size of 
the failure set. 

In Figure 3, we show the distribution of the reli­
ability (assuming each input value is equally likely). 
for successive program "releases" by the authors. The 
lowest line is the distribution of reliabilities of the first 
submissions. The second lowest is the second submis­
sion, and so forth. It can be seen that: 

• the reliability of the program versions improves 
with successive attempts; 

• the gain in reliability per release is decreasing. 

This is consistent with the reliability growth be­
haviour that might be expected if the faults present 
in a program are removed in successive releases, and 
the faults with the highest failure rates are removed 
first. 

0.2 0.4 0.0 0.8 

" .... bltty 

Figure 3: Reliability profile (successive releases). 

We also see that there are significant "steps" at cer­
tain reliability values, for example a significant fraction 
of the programs have reliabilities clustered around 0.5. 
This is caused by one of the basic faults-a missing 
or incorrect swap (the triangular failure set shown in 
Figure 2a) which occupies 50% of the input space. We 
also note that these steps in the distribution remains 
similar relative to each other, suggesting that there is 
little difference in the debugging of the difference ba­
sic faults within the programs. If for example, the 50% 
triangle fault was easy to remove, the large step at 50% 
would disappear after the first release, but in fact all 
"steps" seem to be removed at a similar rate. 
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8. Effectiveness of diversity 

Two of the most well known probability models in 
this domain are the Eckhardt and Lee model [3] and 
the Littlewood and Miller extended model [5]. Both 
models assume that: 

1. Failures of an individual program are deterministic 
and a program version either fails or succeeds for 
each input value x. The failure set of a program 
7r can be represented by a "score function" w( 7r, x) 
which produces a zero if the program succeeds for 
a given x or a one if it fails (see the example in 
Figure 5). 

2. There is randomness due to the development pro­
cess. This is represented as the random selection 
of a program from the set of all possible program 
versions IT that can feasibly be developed and/or 
envisaged. The probability that a particular ver­
sion 7r will be produced is P(7r). This can be re­
lated to the relative numbers of equivalence classes 
in Table 2. 

3. There is randomness due to the demands in oper­
ation. This is represented by the (random) set of 
all possible demands X (Le. inputs and/or states) 
that can possibly occur, together with the proba­
bility of selection of a given input demand x, P(x). 

Using these model assumptions,. the average proba.­
bility of a program version failing on a given demand 
is given by the difficulty function, 9(x) where: 

(1) 

" 
The average probability of failure on demand of a 

randomly chosen single program version can be com­
puted using the difficulty function and the demand pro­
file, 

(2) 

'" 
The Eckhardt and Lee model assumes similar de­

velopment processes for the two programs A and B 
'. and hence identical difficulty functions. So the average 

pfd for a pair of diverse programs (assuming that only 
agreement on the wrong answer is dangerous) would 
be: 

(3) 

If 9(x) is constant for all x (Le. the difficulty func­
tion is "flat") then, the reliability improvement for a 
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diverse pair will (on average) satisfy the independence 
assumption, Le.: 

(4) 

However if the difficulty function is "bumpy", it is 
always the case that: 

(5) 

If the difficulty surface is very "spiky" the diverse 
program versions tend to fail on the exactly the same 
inputs (where the "spikes" are). In this case, diver­
sity is likely to yield little benefit and pfd2 could be 
close to pfd1 . If, however, there is a relatively "flat" 
difficulty surface there is no a priori reason for pro­
gram versions to fail on the same inputs and hence 
pdf2 should be closer to the value implied by the inde­
pendence assumption. 

If the development processes for A and B differ (the 
Littlewood and Miller model), the improvement can, 
in principle, be better than the independence assump­
tion, i.e. when the "dips" in 9A(X) coincide with the 
"spikes" in 9B(X),· it is possible for the expected value 
of pfd2 to be less than that predicted by the indepen­
dence assumption. 

At this stage however we have not used programs 
that can be readily separated into different populations 
(e.g. by programming language) so our study of effec­
tiveness was confined to deriving a difficulty function 
for the whole population. 

This 'is fairly simple to derive: for each point in the 
input space we add up the number of program version 
that fail and divide by the total number of program 
versions. The resultant difficulty surface 9(x) for the 
"3n+1"-problf'JIl is shown in Figure 4. 

Figure 4: Difficulty function for the final version of the 
"3n+1"-problem. 

As the difficulty surface is the weighted average of 
the failure sets of the individual equivalence classes, it 



is not surprising that the surface is dominated by the 
most frequently occurring failure set-the triangular 
region of the "swap"-fault. 

To estimate the pfd using equations 2 and 3, we need 
to specify the input profile P(x). Assuming that all 
inputs are equally likely we can compute the expected 
pfd for a single version and a diverse pair: 

Table 4: Expected pfd's (from the difficulty function). 

Parameter Initial Final 
version version 

pfdl 0.283 0.0624 
pfd2 0.118 0.00518 
pfdi (independent) 0.0800 0.00390 
Ratio 1.48 1.33 

This can be compared with another difficulty func­
tion study using a different problem from the same 
archive [2]. The difficulty surface for the final release 
versions is shown in Figure 5. 

Figure 5: Difficulty function for the final version of the 
alternate problem. 

The equivalent pfd results for the second problem 
are given in Table 5. 

Table 5: Expected pfd's, from [2]. 

Parameter 

pfd l 
pfd2 
pfdi (independent) 
Ratio 

Initial Final 
version version 
0.186 
0.0361 
0.0347 
1.04 

0.064 
0.0042 
0.0041 
1.02 
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It is notable that, in both problems, the dominant 
failure set in the difficulty surface was a specification 
problem. A specific sub-domain of the input space (i > 
j in the first example and v < 0 in the second example) 
was not handled in the correct way. This resulted in a 
large failure set zone that was present in many different 
program versions. The other notable feature is that the 
expected pfd of a diverse pairs is actually quite close 
to the independence assumption in both examples. 

9. Discussion 

9.1 Relevance of results 

In presenting these exploratory results it is impor­
tant to note any limitations in their applicability to 
software engineering in general. There are a number of 
issues involved in using programs from a contest host 
site. 

• disparities in programmer experience and exper­
tise; 

• disparities in the size and complexity of the spec­
ifications and the programs; 

• disparities in the software development process; 

• bias in program submissions, e.g. multiple sub­
missions under different names or by submitting 
programs produced collectively by multiple peo­
ple. 

As there are no large-scale data sources that are free 
from such bias, the only way forward is to take ac­
count of the limitations and to be careful about what 
observations can be generalised. In particular, we have 
attempted to eliminate programmers who do not ap­
pear to be competent (judged by the number of sub­
missions). We also know that at the other end of the 
spectrum, there are some very professional authors who 
participate in international time-limited competitions 
under controlled conditions. We hope to get more infor­
mation on the backgrounds of authors for subsequent 
analyses. 
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Despite these precautions it must be recognised that 
both the specifications and the programs are much 
smaller than those used in industrial scale software. 
Also there is no control over the engineering process 
used to develop individual releases. So the results prO-: 
duced here a more typical of ''programming in the 
small" rather than "programming in the large" and 
the faults might be similar to those present in a sin­
gle program module produced by a programmer prior 
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to verification and validation. These caveats apply to 
the discussions below. 

9.2 Characterisation of faults 

Most faults related to poor interpretation of the 
specification: In particular common faults were related 
to: 

• Not realising that the second input can be smaller 
than first. This was not mentioned in the specifica­
tion but the author should not aissume otherwise. 

• Not realising that returned input values should be 
in the same order. This is explicitly mentioned in 
the specification. 

It was also notable that almost no faults were found 
in the mathematical part of problem. Possibly because 
the algorithm is "homogeneous", i.e. the same algo­
rithm is used regardless of the input value. So .if the 
program works for the sample inputs, it likely works 
for all inputs. 

Most of the implementation faults were related to 
well known programming "slips", e.g. 

• first value of loop forgotten; 

• last value of loop forgotten; 

• first and last value of loop forgotten; 

• initialisation of variable omitted. 

In this respect the faults found in the study are 
similar to those found in more typical software exam­
ples [1]. However, they do lack "large program" faults 
like inconsistent procedure calls and inappropriate use 
of functions. 

One interesting feature of this study is that faults are 
not arbitrary; there are certain basic faults that appear 
many times over in different versions. From our ex­
ploratory analysis it seems that the majority of equiv­
alence classes are combinations of the basic faults and 
the failure sets are a superposition of the failure sets 
of the basic faults. This supports a common assump­
tioIl in software engineering [7] that software faults can 

. be viewed as separate entities that can be inserted or 
corrected individually. 

9.3 The debugging process 

As noted earlier, the debugging environment is atyp­
ical because there is no diagnostic feedback to help 
identify the error. The programmer does not know 
which of the test values used by the on-line judge re­
sulted in failure, and this information should help to 

locate the cause. However it appears that this diffi­
culty did not result in the introduction of new faults, 
it just delayed the removal of faults. 

The delay in removal differs from a standard reliabil­
ity modelling assumption that defects are removed once 
a failure occurs [6]. This situation could be due to the 
lack of failure information, and it would be interesting 
to see what impact additional test result information 
would have on the debugging process. 

On the other hand, the study supports the com­
mon assumptions that there is a specific set of faults in 
the program and the debugging process removes these 
faults one by one. 

9.4 Effectiveness of diversity 

The results obtained for the two problems are rather 
surprising as they predict the reliability improvement 
could be close to the independence assumption. This 
result is not supported by other experiments on larger 
programs, particularly [4]. However we must be careful 
not to over-interpret our results. In both problems, the 
difficulty surface is dominated by quite "large" faults 
that are related to the specification, and one might 
question whether such large faults would remain in a 
real software development. It may be better to examine 
the difficulty surface that would be obtained if we ex­
cluded all the large faults (on the assumption that these 
would be removed by the standard debugging process). 
On the other hand, one might argue that we might ex­
pect a fault to occupy particular sub-domains of the 
input space, so "flat" difficulty functions over the sub­
domain might be the norm, even for large programs. 

The current study did not attempt to identify dif­
ferent populati~ns that could (potentially) lead to dif­
ferent difficulty surfaces and more effective diversity. 
Furthermore, another issue we need to consider is that 
the theories predict the reliability improvement on av­
erage. As we have seen in Figure 5, it is possible for two 
program versions to have identical failure sets and in 
this case diversity would be ineffective (although a dis­
parity would be detected for different "varieties" where 
wrong, but different, answers are produced). In other 
cases, the failure sets could be disjoint or not exist at 
all. So we need to look at the distribution of possi­
ble reliability improvement for the range of equivalence 
classes. We plan to look ~t these aspects of diversity 
in later studies. 

,10. Conclusions 
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The analysis of programs submitted to the UVa On­
line Judge Website gives numerous opportunities for 



software engineering research. This paper presents 
some exploratory findings related to: 

• the types of faults that are introduced; 

• the debugging process; 

• the effectiveness of diversity. 

The results tend to support some of the common 
assumptions made in software engineering such as: 

• a distinct set of faults; 

• progressive removal of these faults during debug­
ging. 

However the study also suggests that other assump-
tions such as: . 

• immediate detection and removal of faults; 

• large variations in "difficulty" for different input 
values in diverse programs; 

were not supported. 
It must be emphasised however that the programs 

used may not be typical of normal software engineering 
practice, and further studies are planned to address 
some of the limitations of the current study and to 
investigate some the conjectures made in this paper. 
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Abstract. System designers using off-the-shelf components (OTSCs), 
whose internals they cannot change, often use add-on "wrappers" to 
adapt the OTSCs' behaviour as required. In most cases, wrappers are 
used to change ''functional'' properties of the components they wrap. In 
this paper we discuss instead ''protective wrapping", the use of wrappers 
to improve the dependability - i.e., "non-functional" properties like avail­
ability, reliability, security, and/or safety - of a component and thus of a 
system. A wrapper improves dependability by adding fault tolerance, e.g. 
graceful degradation, or error recovery mechanisms. This paper discusses 
the rational specification of such protective wrappers in view of system 
dependability requirements, and highlights some of the design trade-offs 
and uncertainties affecting system design with OTSCs and wrappers, and 
differentiating it from other forms of fault-tolerant design. 

1 Introduction 

As building "component-based" software systems becomes more common, it be­
comes more often necessary to combine existing components - hardware as well 
as software - that were not necessarily designed to work together. Wrapping is 
a popular, often cost-effective technique for integrating pre-existing components 
into a system. When designing a new system, ad hoc ''wrappers'' are developed, 
i.e. new, small components that will be interposed between the others, reading 
and altering the contents of the communications they exchange. Wrapping has 
the advantage of not requiring detailed knowledge of the internal structure of 
the components being wrapped. 

In most cases, wrappers are used to adapt the functionality .of a component 
to the requirements set for it by the system's design: they often perform simple 
functions like translation between the argument formats used by two commu­
nicating components. In this paper we look instead at the use of wrappers for 
improving dependability. We call such wrappers protective wrappers. Protec­
tive wrapping is a way of structuring the provision of standard fault tolerance 
functions, like error detection, confinement and recovery, plus the less common 
function of preventing component failures, in a component-based design where 
dependability is a concern. We wish to clarify how these wrappers can be ra­
tionally specified, the trade-offs facing system designers (simply "designers" for 
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the rest of the paper), and the peculiarities of this form of fault-tolerant design, 
compared to the general case. 

When designing a system with off-the-shelf components ("OTSCs"), it is often 
the case that an OTSC's functionality, and even more often its dependability, is 
insufficiently documented. Both these deficiencies are threats to system depend­
ability: wrong assumptions about how an OTSC is intended to behave lead to 
system design faults; optimistic assumptions about an OTSC's probability of be­
having as intended may lead to overestimating the dependability levels achieved 
by the chosen system design. Wrapping can help a designer to compensate for 
this lack of information. 

Wrapping for dependability has been addressed by other authors. Wrappers 
are used to transform or filter unwanted communications that may cause fail­
ures. Fault injection may be used to identify such failure-causing values [1,6,3]. 
Wrappers are proposed to protect OTS applications that do not deal properly 
with kernel-raised exceptions, by transforming these into other exceptions or er­
ror return codes [1]; or to protect OTS kernels against inappropriate requests 
([6]; here, an extended notion of wrappers is proposed that can access the ker­
nel's internal data). In [3], the goal is automatic protection oflibrary components 
against failure-causing parameter values, submitted by accident or malice. In [2], 
wrappers protect name servers from receiving unverifiable requests. A somewhat 
general approach to wrappers for common security concerns is described in [4]. 

Most of this previous work assumes that a good knowledge can be gained 
about which communications will cause OTSC failure. We propose a more gen­
eral view of protective wrapping, taking into account the fact that this knowledge 
is usually deficient, the specification of the OTSC may be incomplete, and a de­
signer need to be concerned with both failures of the OTSC and of the ROS. We 
discuss issues of design, verification and quantitative dependability trade-offs. 

In the rest this paper, Section 2 introduces terminology and an illustrative 
example of a system using wrapped OTSCs. Section 3 introduces the specifi­
cations of components in relation to system-level requirements, including those 
concerning fault-tolerant behaviour. Sections 4 and 5 discuss the actual seman­
tics of wrappers, i.e. the "cues" that may trigger their intervention and the forms 
of these interventions, in general terms and then through examples. Section 6 
sets the previous discussion of wrapper specifications in the context of proba­
bilistic system dependability requirements and discusses the important design 
trade-offs that arise. Our conclusions follow. 

2 System Model and Example 

Throughout the paper, we will use a simple example to clarify the concepts in­
troduced. The example system (Figure 1) is a water boiler. We focus on a single 
OTSC, in this case a PID (Proportional-Integral-Derivative) controller which 
provides feed-back control for the burner of the boiler, and on its communica­
tions with the rest of the system, seen as a single black box ("ROS"); the ROS 
may contain other OTSCs. This example omits some of the possible compli-
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Fig. 1. The boiler control system used as an example. 
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cations of a real system (an OTSC may have direct communication links with 
the environment around the system, or communication links with the ROS that 
cannot be intercepted by a wrapper) but will suffice for this brief discussion. 

The ROS outputs readings of the pressure and temperature in the boiler, 
(p, T), and accepts a burner control input, BC', and an exception signal, ETTH, 

which causes an alarm to a human operator. The OTSC accepts as inputs two 
real numbers (p', T') and a reset signal, and outputs a (real) control signal for 
the burner, BC'. 

The designer is concerned with the dependability of this system: how fre­
quently the components will behave "abnormally" (will fail), whether these com­
ponent failures will cause system failure, and whether the frequency and severity 
of these failures will be acceptably low. Because of this concern, instead of con­
necting the ROS outputs directly to the OTSC's inputs and vice versa, the 
designer introduces a protective wrapper between the ROS and the OTSC, as 
depicted, which transforms pinto p', etc. 

The wrapper monitors communications between the ROS and OTSC, and 
possibly changes the values transmitted to the ROS or the OTSC. The ROS sees 
the combination of the OTSC and wrapper as one component, which we call the 
"wrapped OTSC" (WOTSC); likewise, the OTSC sees a ''wrapped ROS". 

For the sake of simplicity, we assume here that the OTS and ROS, if con­
nected without the protective wrapper, would, in the absence of failures, produce 
the combined behaviour required from the system. So, the OTSC in Figure 1 does 
not need "functional" wrapping, limiting our discussion to ''protective'' wrapping. 

Our discussion does not depend on whether the OTSC, ROS and wrapper 
are realised in hardware or software (or both). 

3 Roles of Components and Protective Wrappers 

3.1 System requirements, components and interfaces 

The designer's problem is how to ensure the required behaviour of the whole 
system, using a given OTSC. When considering dependability, a designer usu­
ally deals with multiple sets of requirements on system behaviour. First, there is 
a specified ''nominal behaviour": what the system ought to do, at least if none of 
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its components fail. The designer usually has an understanding of a ''nominal be­
haviour" for each component, and makes sure that if all components exhibit their 
nominal behaviours, then so will the system. Making the system fault-tolerant 
means ensuring that even if components violate their nominal behaviours (they 
fail), the system will still exhibit nominal behaviour (failure masking) or some 
"degraded" but acceptable behaviour (graceful degradation) or at least will re­
main within an envelope of "safe behaviours"; the choice being determined by 
the system dependability requirements and by the costs of these various options. 

The complete dependability requirements will inevitably be probabilistic: in 
addition to defining a nominal behaviour and zero or more degraded behaviours 
or ''modes'' of operation, it will include required probabilities of these assertions 
holding during operation of the system 1 • A similar hierarchy of a nominal be­
haviour and more or less acceptable failure behaviours applies to dependability 
requirements for any component or subsystem. 

In this and the next two sections, we will discuss the deterministic part 
of these dependability properties. In a proper design, the specified system-level 
properties need to be verifiable, in the sense that, given clear descriptions (models 
in what follows) of how the various components will behave (in their nominal and 
degraded modes) and of their connections, one can deduce that the requirements 
for the whole system (for a nominal or degraded mode, as specified) are satisfied. 
The required and expected behaviours of the components and of the system 
need to be described in some unambiguous language, e.g., preconditions and 
postconditions characterising the relation between their inputs and outputs [7]. 

These descriptions need not specify all details of behaviour of a component, 
i.e. they may be partial specifications. We might for instance describe a compo­
nent in a numerical library as computing a certain floating-point result with a 
relative error of less than 1%, although in reality the relative error is smaller, and 
variable; or, rather than trying to describe in detail what a component would do 
if it failed, we would rather describe an envelope of plausible behaviours it may 
exhibit, and prove that some system-level requirement will be satisfied provided 
the component remains within that envelope. 

The behaviour that the designer expects the OTSC, as procured, to exhibit 
can be described abstractly as pairs of pre and post-conditions [7]. The looser 
the postconditions (the fewer the restrictions assumed on the behaviour of the 
OTSC), the more arbitrary behaviours of the OTSC one will need to require 
the wrapper and ROS to cope with in order to guarantee any given system-level 
requirement. This may make the system more robust, but at a cost, which will be 
the more acceptable, the more likely the extra erroneous behaviours allowed by 

1 It is true that such a formal way of specifying dependability requirements is only in 
common use for few categories of systems. For many everyday systems, probabilities 
may not be mentioned at all, for instance. Yet, we think that any rational definition 
of requirements will include some idea of what probabilities would be unacceptably 
high for each given failure mode, and a partial ordering between more and less 
acceptable modes. 
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the less restrictive model of the OTSe are in reality. Symmetrical considerations 
apply to the designer's expectations about the ROS's behaviour. 

3.2 The Model of the OTSC 

. We assume that the designer has chosen a particular OTSe, either procured on 
the market or already available within the same company. If the OTSe has been 
procured on the market, some documentation will be available, but its quality 
may be low and procuring extra information is often cumbersome and expen­
sive. On the other hand, the component may be in frequent use, and suppliers 
sometimes have reliable data on their dependability. 

For some OTSes, publicly available dependability data exist - e.g., collec­
tions of bug reports for software packages - and may provide valuable input 
Relevant other information about the OTSe may concern maintenance require­
ments, failure modes and their failure rates. 

The documentation of the OTSe may not specify its behaviour in certain 
circumstances, and the designer's most prudent approach would then be to as­
sume that it is completely undetermined. At the opposite extreme, designers 
may choose to guess the OTSe's behaviour, based on previous experience, ex­
pert knowledge or other information. 

Boiler example A PID controller has been chosen. Its documentation is 
unclear about what happens when either p or T becomes negative. The designer 
assumes that its behaviour is undefined for these values in his OTSe model. 

3.3 Requirements on the Wrapped OTSC 

The designer's specification for the WOTSe may differ from the model of the 
OTSe even in its nominal behaviour, e.g. by hiding from the ROS some of the 
functions offered by the OTSe. In addition, the WOTSe specification has to de-

. scribe dependability requirements, which determine the need for fault tolerance 
provisions in the wrapper. 

Boiler example The boiler needs from the PID controller a control signal, 
BC, derived from the pressure and the temperature of the boiler according to a 
PID control law. If either p or T becomes negative, the burner has to be switched 
off (BC = 0), as a system safety precaution. 

3.4 The model of the ROS 

The designer can control the properties of the ROS to a very large extent, this 
in contrary to the ROS. As already stated: the looser the postcondition (the 
fewer restrictions one assumes on the behaviour of the ROS), the more arbitrary 
behaviours of the ROS the OTSe has to cope with. 

Boiler example The designer may choose to pose no restriction at all on 
the outputs p and T. In this case, if the OTSe requires p and T to be always 
positive, the wrapper has to guarantee this property. 
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3.5 Requirements on the (Wrapped) ROS 

The OTSC sees the ROS through the wrapper. The wrapper is introduced to 
protect the OTSC against violations of its input requirements by the ROS. The 
more robust the OTSC, the fewer restrictions it requires on the interface be­
haviour it sees, and the less the wrapper is required to do. 

Boiler example The OTSC requires p and T to be positive. 

4 Specifying the Protective Wrapper: Cues for Action 

Usually, the designers of a fault-tolerant system use the detection of errors to 
trigger defensive actions. This depends on a fairly accurate knowledge of the 
behaviour of all components when failure-free. In designing with OTSCs, though, 
this knowledge cannot be assumed. Furthermore, the design of OTSCs often 
precludes close monitoring for early error detection. So, deSigners may want their 
wrappers to react to a pattern of component behaviour that merely suggests a 
failure, although it may be correct, especially if the type and circumstances of 
the suspected failure would cause severe consequences to the system. 

So, designers may take an attitude similar to that frequently taken in design­
ing for safety: aiming more at keeping the behaviour of components within an 
envelope of behaviours that prevent unacceptable damage at system level, than 
at guaranteeing correct (nominal) behaviour of the components. They also face 
the same kind of trade-offs: the interventions of the wrapper will usually prevent 
some requested operation of theOTSC, possibly providing in its place a safe 
failure, or an alternative, degraded or less efficient service. Designers thus know 
that the more cues they decide to react to, the less likely that the system will 
fail in unpredictable ways, but also the more likely for any wrapper intervention 
to be the result of a false alarm, and the more degradation in performance or 
availability. 

The wrapper, as depicted in Figure 1, can observe the outputs ofthe ROS and 
of the OTSC, and can manipulate the corresponding inputs to the OTSC, and 
to the ROS. These signals may include exceptions, indicating error conditions. 

The wrapper gets its cues by monitoring signals from the ROS and the OTSC. 
It checks for violations of properties of (combination of) signals (possibly de­
pending on the previous history of the signals), which define either requirements 
on the various components' behaviours, or bounds of the region of operation of 
the OTSC in which the OTSC is trusted to behave reliably. In the wrapper's 
speCifications, pre-conditions describing the possible cues will be matched with 
postconditions about the actions the cues must elicit from the wrapper. 

5 Examples of Specifications for Wrapper Actions 

For any given cue, the designer may choose among various possible reactions by 
the wrapper, depending on the system's architecture and dependability require­
ments. For instance, assume that the postcondition of the ROS states that the 
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pressure output will always be positive. If a failure leads to a negative value,' 
this also violates a precondition for the PIn controller, whose behaviour is then 
unspecified. The wrapper could mitigate the consequences of such a failure by 
substituting this erroneous, dangerous or suspicious signal value with other val­
ues: e.g. if p < 0, p' will be O. This keeps the PID controller in a region of 
operation for which its behaviour is predictable. This may not ensure correct 
system behaviour, but it may be sufficient protection e.g. against noise spikes 
on sensor readings, given the robustness of the PID control law. 

In many cases, though, it is not judged useful to correct a "suspicious" input 
value to the ROS or the OTSC. It may still be possible to prevent harm by 
checking and if necessary correcting their subsequent outputs. Suppose that a 
failure causes "suspicious" values of p. The designer may decide that the wrap­
per will then perform additional plausibility checks on the output of the PID 
controller. If the checks fail, the wrapper could ensure graceful degradation by 
providing a simpler version of the OTSC's (or ROS's) function. The designer 
might specify this kind of switch if the degraded control were proven to keep 
the boiler in an acceptable degraded mode of operation for as long as the OTSC 
cannot be trusted to perform correctly. 

All these palliative measures may only be acceptable for a short time. A 
reaction can be for the wrapper enforce at least safe system-level behaviour, 
switching the burner off (BC' = 0): this is an extreme form of graceful degrada­
tion suitable for all undesired situations. 

Another possibility is error recovery. In many OTSCs it is an established 
fact that when they fail, a reset is sufficient to restore an internal state such 
that the OTSC will subsequently function according to its specifications. In our 
example, the wrapper could reset the PID controller (OTSCS) if its output is 
clearly out of bounds. Reset erases the OTSC's memory of previous history: 
it does not generally guarantee that its future behaviour will be correct from a 
system viewpoint, but it may in a control system like our example, if the designer 
can demonstrate that the internal state of the OTSC will then return to a correct 
state (through the OTSC reading and processing its inputs) quickly enough for 
the boiler not to be affected badly by the transient. 

More complex recovery actions can be specified. If, for instance, an OTSC has 
an ''undd' operation, the wrapper could use it for backward recovery and retry; a 
wrapper could store sequences of input messages to an OTSC and replay them 
after recovery, possibly even with slight variations to reduce the. risk of repeated 
failure (''retry blocks" architecture [5]). The possibilities.here are bounded by 
the risk implicit in increasing the complexity of the wrapper, and thus the risk 
of specification or implementation errors. For instance, designers may often limit 
themselves to stateless wrappers. 

A wrapper can also deal with exception signals. Often failure of the OTSC 
is not catastrophic and can be recovered by actions of other system components 
or by human intervention. In these cases the wrapper may generate exception 
signals. For instance, the wrapper can be used to generate an exception signal 
to the ROS,. ETT H, when the temperature becomes too high. 
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Last, many of the actions described so far may not be effective, e.g. if the 
cue to which they react is caused by a permanent or recurrent fault. If this event 
is considered too likely, wrappers may be designed to escalate to more drastic 
and safer actions (multi-level recovery). E.g., once it has entered a "graceful 
degradation" state, a wrapper may be programmed to become sensitive to cues 
that it would otherwise ignore, and trigger a more drastic action if any of these 
cues occurs. After the wrapper has reset the PID controller, it may wait for a 
pre-set length of time for it to restart issuing apparently correct control signals 
again, after which it may shut down the boiler (BC = 0). The wrapper could 

. also or instead count its own interventions, and escalate to a more drastic one 
if they become too frequent. Again, d~signers will need to judge at which point 
the added complexity becomes counterproductive. 

6 Probabilistic Dependability Properties 

Up to this point,we have approached wrapper design mostly from a determin­
istic viewpoint: the designer considers the possibility of certain unplanned-for 
sequences of actions of the OTSC or ROS, and specifies the wrapper so that it 
will mask or alter those behaviours in ways that appear desirable, to achieve one 
of the specified nominal or degraded modes of operation. 

This desirability must be determined in view of the system-level dependabil­
ity requirements, which are inevitably, in their general form, probabilistic, as 
outlined in Section 3. 

A wrapper may be meant to avoid a system failure, i.e. to increase the prob­
ability of nominal behaviour, or to mitigate it, i.e. to shift some probability from 
more severely to less severely degraded behaviours. 

As always with fault tolerance, wrapping faces two kinds of trade-offs, i.e. 
between the improvement in dependability that it produces by avoiding or mit­
igating some failures, and (i) its direct costs, in development effort and in terms 
of run-time resources; and (ii) the dependability loss that wrappers cause by 
causing failures or making them more severe. 

Costs are generally the easiest factor to estimate. Estimating dependability 
improvements may be difficult, especially when a system is already reasonably 
dependable before the improvement. Even with this uncertainty, designers will 
think it reasonable to provide abilities at least to deal with predictable compo­
nent failures that have a clear potential for severe effects and can be avoided 
or tolerated at low cost. This appears to be the approach, for instance, of the 
HEALERS project [3]. In other cases, system failures due to specific failure 
modes of OTSCs are observed often enough that it is easy to assess the expected 
effect of avoiding them. 

The second trade-off is also complex. There are two ways for a wrapper 
to cause failures. First, it may simply be faulty, and deliver a wrong output 
towards the ROS despite having received a correct OTSC output. This could be 
due to mistakes in developing the wrapper, which are always possible, especially 
for complex wrappers. In many design situations this problem will not arise, 
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because very complex wrappers are not affordable; otherwise, the designer must 
decide how sophisticated the wrapper may be specified to be before this very 
sophistication becomes counterproductive. To make the transition less sharp, it 
may be worthwhile to seek wrapper design techniques that bias wrappers towards 
''benign'' failures, whose consequences can be assessed, rather than uncontrolled 
ones, e.g. injecting arbitrary values in a communication stream. 

But, more importantly, a wrapper may also cause failure because of the 
designer's direct decision to behave prudently in response to a "cue". The designer 
may wish to specify wrappers to prevent as many unpredicted, uncontrolled 
behaviours as possible. However, this may mean that many occurrences of "cues" 
will be "false alarms", triggered by communications that are neither erroneous 
(for the sender) nor dangerous (for the receiver); and many systems will differ 
from our boiler example in that the effects of wrapper interventions on the 
behaviour of the whole system will be complex to trace. If, for instance, a wrapper 
changes any message values from the ROS that may cause uncontrolled OTSC 
failure to default values for which the OTSC's behaviour is known, it becomes 
easier to deduce what level of service (nominaJ, or which degraded level) the 
system will exhibit after the ROS outputs those values; but not to know whether 
this is better or worse than what would have occurred without the wrapper's 
intervention, and thus whether, statistically, dependability will be improved. 

Uncertainty also affects the failure of wrappers to react effectively to compo­
nent failures. In many practical uses of protective wrapping, the main cause of 
such wrappers ''failures'' may not be, as it is for other components, development 
mistakes or hardware failures, but rather inescapable limits of the algorithms 
that the designer can feasibly apply in the wrapper. Error detection, for ex­
ample, often depends on reasonableness checks, which cannot flag values that 
are erroneous but ''reasonable''; algorithms that guarantee perfect state recovery 
may take too long for the real-time requirements of the system, or require more 
resources than can be made available2 • The designer may, on the other hand, 
have some control on the stringency of the checks applied for error detection, 
and decide, as indicated before, to err on the side of ''prudence''. 

7 Conclusion 

We have tried to clarify some issues concerning protective wrapping. Protective 
wrappers are components that monitor and ensure the non-functional properties 
at interfaces between components. We have described the role of wrapping as a 
special case of fault-tolerant design, from both the viewpoints of deterministic 
and of probabilistic dependability properties. 

These considerations should help designers in specifying wrappers, using the 
spectrum of fault-tolerance techniques within the special constraints of wrapping 

2 So, designers may know with almost complete certainty which component failure 
modes the wrappers will not detect or tolerate. Unfortunately, they still do not 
usually know the frequency of these failure modes, so that the uncertainty on the 
actual dependability improvement achieved by wrapping is not resolved. 
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as a design structuring scheme. These peculiarities are not always acknowledged 
in previous literature. The main considerations we have made are: wrappers 
can be rigorously specified on the basis of the designers' specification of the 
OTSC's behaviours in its possibly multiple modes of operation: from nominal, 
correct behaviour to manageable, non catastrophic failure modes. Also, due to 
poor ability to detect run-time errors inside off-the-shelf components, protective 
wrappers may have to act on "cues" of potentially erroneous and/or potentially 
error-causing communications between components. All of this increases the im­
portance of design trade-offs between reducing the probabilities of the more 
dangerous system failure modes and avoiding too frequent false alarms leading 
to degraded service or " safe" system failures. 

Research developments that appear desirable concern formal proof, proba­
bilistic modelling and experimental evaluation. Formal proof methods are de­
sirable that are simple to apply to the restricted sets of structures defined by 
wrapping and the kinds of properties it involves. Probabilistic modelling should 
support designers in choosing trade-offs as discussed here; this modelling must 
include both the structural aspects of how component failures cause system fail­
ure, aspects that are well developed in modelling of hardware fault tolerance, 
and the uncertainty on the reliability of the individual components and their 
probabilities of failing together, as studied in software reliability and the as­
sessment of software diversity. And finally, experimental evaluation of systems 
using wrapping is required, to document the levels of coverage and of system 
dependability achieved with various classes of wrapper designs and of OTSC 
components and thus some basis for rational, probabilistieally based decisions. 
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Abstract. Software reliability can be increased by using a diverse pair 
of programs (l-out-of-2 system), both written to the same specification. 
The improvement of the reliability of the pair versus the reliability of a 
single version depends on the degree' of diversity of the programs. The 
choice of programming language has been suggested as an example of 
a diversity seeking decision. However, little is known about the validity 
of this recommendation. This paper assesses the effect of language on 
program diversity. 
We compare the effects of the choice of programming language as a diver­
sity seeking decision by using programs written to three different speci­
fications in the "UVa Online Judge". Thousands of programs have been 
written to these specifications; this makes it possible to provide statistical 
evidence. 
The experiment shows that when the average probability of failure on 
demand (pfd) of the programs is high, the programs fail almost inde­
pendently, and the choice of programming language does not make any· 
difference. When the average pfd of the pools gets lower, the programs 
start to fail dependently, and the pfd of the pairs deviates more and 
more from the product of the pfds of the individual programs. Also, we 
observe that the diverse C/Pascal or C++/Pascal pairs perform as good 
as or better than the other possible pairs. 

1 Introduction 

The use of a diverse pair of programs has often been recommended to achieve 
high reliability 11] 12] 13] 14] 15]. Software diversity may however not lead to a 
dramatically high improvement. This is caused by the fact that the behaviour of 
the programs cannot be assumed to be independent 13] IS] 16] 17]. Two program 
versions written by independent teams can still contain similar programming 
mistakes, thus limiting the gain in reliability of the diverse pair. 

In spite of this, the case for diversity for achieving high reliability remains 
strong. The possible gain using diversity appears to be higher than can be 
achieved by tryi~g to write a high reliability single program 16]. 
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Abstract. Run-time checks are often assumed to be a cost-effective way 
of improving the dependability of software components, by checking re­
quired properties of their outputs and flagging an output as incorrect if 
it fails the check. However, evaluating how effective they are going to 
be in a future application is difficult, since the effectiveness of a check 
depends on the unknown faults of the program to which it is applied. A 
programming contest, providing thousands of programs written to the 
same specifications, gives us the opportunity to systematically test run­
time checks to observe statistics of their effects on actual programs. In 
these examples, run-time checks turn out to be most effective for unreli­
able programs. For more reliable programs, the benefit is relatively low 
as compared to the gain that can be achieved by other (more expensive) 
measures, most notably multiple-version diversity. 

1 Introduction 

Run-time checks are often proposed as a means to improve the dependability 
of software components. They are seen as cheap compared to other means of 
increasing reliability by run-time redundancy, e.g. N-version programming. 

Run-time checks (also called executable assertions and other names) can be 
based on various principles (see e.g. Lee and Anderson [3] for a summary), and 
have wide application. For instance, the concept of design by contract [5] enables 
a check on properties of program behaviour. 

Some run-time checks can detect all failures, for example checks that perform 
an inverse operation on the result of a software component [1,2]. If the program 
computes y = f(x), an error is detected if x =f. f-l(y). This is especially attrac­
tive when computing f(x) is complex, and the computation of the inverse f- 1 

relatively simple. The argument is then that because computing f- 1 is simple, 
the likelihood of failure of this run-time check is low. Also, it seems unlikely 
that both the primary computation and the run-time check would fail on the 
same invocation and in a consistent fashion. Together, these factors lead to a 
high degree of confidence that program outputs that pass the check will be cor­
rect. However-as these authors readily admit-such theoretically perfect checks 
do not exist in many cases, maybe even not in the majority of cases. Run-time 
checks can then still be applied, but they will in general not be capable of finding 
all failures. Examples of these partial run-time checks are given by e.g. [12]. 
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Previous empirical evaluation of run-time checks have generally used small 
samples of programs, or single programs [4,7,11]. Importantly, we run these mea­
sures on a large population of programs. Indeed, if we wish to learn something 
general about a run-time check, we need this statistical approach. Measuring 
the effectiveness of a run-time check on a single program could, given a certain 
demand profile and enough testing, determine the fraction of failures that the 
check is able to detect (coverage) for that program, given that demand profile. 
But in practice, this kind of precise knowledge would be of little value: if one 
could afford the required amount of testing, at the end one would also know 
which bugs the program has, and thus could correct them instead of using the 
run-time check. However, a software designer wants to know whether a certain 
run-time check is worth the expense of writing and running it, without the ben­
efit of such complete knowledge. The run-time check can detect certain failures 
caused by certain bugs: the coverage of the check depends on which faults the 
program contains; and the designer does not usually know this. What matters 
are the statistics of the check's coverage, given the statistics of the bugs that may 
be present in the program. If a perfect check cannot be had, a check that detects 
most of the failures caused by those bugs that are likely to be in a program has 
great value. A check that detects many failures that are possible but are not 
usually produced, because programmers do not make the mistakes that would 
cause them, is much less useful. In conclusion, the coverage of a check depends 
on the distribution of possible programs in which it is to be used. 

Here, we choose three program specifications for which we have large numbers 
of programs, and for each of the three we choose a few run-time checks, then 
study their coverage. We thus intend to provide some example "data points" 
of how the coverage can vary between populations of programs. In addition 
to such anecdotal evidence-evidence that certain values or patterns of values 
may occur-such experiments may contribute to software engineering knowledge 
if they reveal either some behaviour that runs contrary to the common-sense 
expectations held about run-time checks, and/or some apparent common trend 
among these few cases, allowing us to conjecture general laws, to be tested by 
further research. 

For lack of space, we only discuss coverage, or equivalently the probability 
of undetected failure. We will also not discuss other dependability issues like 
availability (possibly reduced by false alarms from run-time checks), although 
these should be taken into account when selecting fault tolerance mechanisms. 

2 The Experiment 

2.1 The UVa Online Judge 

The "UVa Online Judge"-Website [8] is an initiative of one of the authors (Re­
villa). It contains program specifications for which anyone may submit programs 
in C, C++, Java or Pascal intended to implement them. The correctness of a 
program is automatically judged by the "Online Judge". Most authors submit 
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Table 1. Some statistics on the three problems. 

3n+l Factovisors Prime Time 
C C++ Pascal C C++ Pascal C C++ Pascal 

Number of authors 5,8976,097 1,581 212 582 71 467 884 183 
First submission correct 2,4792,434 593 112 294 41 345 636 125 

programs repeatedly until one is judged correct. Many thousands of authors con­
tribute and together they have produced more than 3,000,000 programs for the 
approximately 1,500 specifications on the website. 

We study the C, C++ and Pascal programs written to three different specifi­
cations (see Table 1 for some statistics, and http://acm.uva.es/problemset/ 
for more details on the specifications). We submit every program to a test set, 
and compare the effectiveness of run-time checks in detecting their failures. 

There are some obvious drawbacks from using these data as a source for 
scientific analysis. First, these are not "real" programs: they solve small, mostly 
mathematical, problems. Second, these programs are not written by professional 
programmers, but typically by students, which may affect the amount and kind 
of programming errors. We have to be careful not to overinterpret the results. 

All three specifications specify programs that are memory-less (Le. earlier 
demands should not influence program behaviour on later ones), and for which 
a demand consists of only two integer input values. Both restrictions are useful 
to keep these initial experiments simple and the computing time within reason­
able bounds. The necessary preparatory calculations for the analysis of these 
programs took between a day and two weeks, depending on the specification. 

2.2 Running the Programs 

For a given specification, all programs were run on the same set of demands . 
. Every program is restarted for every demand, to ensure the experiment is not 
influenced by history, e.g. when a program crashes for certain demands or leaves 
its internal state corrupted after execution of a demand (we accept the drawback. 
of not detecting bugs with history-dependent behaviour). We set a time limit 
on the execution of each demand, and thus terminate programs that are very 
slow, stall, or crash. We only use the first program submitted by each author 
and discard all subsequent submissions by the same author. These subsequent 
submissions have shown to have comparable fault behaviour and this dependence 
between submissions would complicate any statistical analysis. 

For each demand, the outputs generated by all the programs are compared. 
Programs that produce exactly the same outputs on every demands form an 
"equivalence class". We evaluate the performance of each run-time check for each 
equivalence class. 

For all three specifications, we chose the equivalence class with the highest 
frequency as the omcle, i.e. the version whose answers we consider correct. We 
challenged each oracle in various ways, but never found any of them to have 
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Table 2. Classification of execution results with plausibility checks. 

Output of Output Plausibility Effect from 
primary valid check system viewpoint 
Correct Yes Accept Success 
Correct Yes Reject False alarm 
Incorrect Yes Accept Undetected failure 
Incorrect Yes Reject Detected failure 
Incorrect No Detected failure 

failed. For each specification, the test data were chosen to exhaustively cover a 
region in the 'demand space. In other words, we assume (arbitrarily) a demand 
profile in which all demands that occur are equiprobable. 

2.3 Outcomes of Run-Time Checks 

Run-time checks test properties of the output of a software component (the 
primary), based on knowledge of its functionality. In the rest of this paper we 
distinguish two types ofrun-time checks: plausibility ' checks and self-consistency 
checks (SCCs). The latter, inspired by Blum's "complex checkers" [121, use ad­
ditional calls to the primary to validate its results, by checking whether some 
known mathematical relationship that must link its outputs on two or more 
demands does hold. 

Checks on the values output by the primary are only meaningful if the output 
satisfies some minimal set of syntactic properties, one of which is that an output 
exists. Other required properties will be described with each specification. We 
call an output that satisfies this minimal set of properties "valid" (in principle 
this validaty check also constitutes a run-time check). We separate the check for 
''validity'' from the "real" run-time checks, because it otherwise remains implicit 
and a fair comparison of run-time checks is not possible. 

Table 2 shows how we classify the effects of plausibility checks. There are 
two steps: first, a check on the validity of the output of the primary; second, if 
this output is valid, a plausibility check on the output. There is an undetected 
failure (of the primary) if both the primary computes an incorrect valid output 
and the checker fails to detect the failure. Our plausibility checks did not cause 
any false alarms. Also note that a correct output cannot be invalid. 

With self-consistency checks, the classification is slightly more complex (Ta­
ble 3): we have to consider that one way the self-consistency check may fail is 
because its additional calls to the primary do not elicit valid outputs (e.g., they 
cause the primary to crash). We then assume that the self-conSIstency check will 
fail to reject the primary's output, i.e., that an undetected failure ensues. We 
could have made the decision to reject the output of the primary if the self­
consistency check fails in this way; this would lead to slightly different results. 
False alarms did occur, which we do not analyse here for lack of space. 
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Table 3. Classification of execution results with self-consistency checks. 

Output of Output Output of second call to primary Effect from 
primary valid by self-consistency check system viewpoint 
Correct Yes Consistent Success 
Correct Yes Inconsistent False alarm 
Correct Yes Invalid output Success 
Incorrect Yes Consistent Undetected failure 
Incorrect Yes Inconsistent Detected failure 
Incorrect Yes Invalid output Undetected failure 
Incorrect No Detected failure 

3 Results for the "3n+l" specification 

Short specification. A number sequence is built as follows: start with a given 
number n; if it is odd, multiply by 3 and add 1; if it is even, divide by 2. 
The sequence length is the number of required steps to arrive at a result of 1. 
Determine the maximum sequence length (max) for all values of n between two 
given integers i, j, with 0 < i, j :::; 100,000. The output of the program is the 
triple: i, j, max .. 

We tested "3n+l" with 2500 demands (i,j E 1..50). The outputs of the 
programs were deemed correct if the first three numbers in the output exactly 
matched those of the oracle. We consider an output "valid" if it contains at least 
three numbers. In the experiment we discard non-numeric characters and the 
fourth and following numbers in the output. The programs submitted to "3n+ I" 
have been analysed in detail in 191; this paper provides a description of the faults 
present in the equivalence classes. 

3.1 Plausibility Checks 

We use the following plausibility checks for the "3n+l"-problem: 

1. The maximum sequence length should be larger than O. 
2. The maximum possible sequence length (given the range of inputs) is 476. 
3. The maximum sequence length should be larger than log2(max(i,j)). 
4. The first output should be equal to the first input. 
5 .. The second output should be equal to the second input. 

We measure the effectiveness of a run-time check as the improvement it 
produces on the average probability of undetected failure on demand (pufd). 
Without run-time checks, a program's probability of undetected failure equals 
its probability of failure per demand (pfd). 

Figure 1 shows the improvement in average pufd given by these plausibility 
checks, depending on the average pufd of a pool of programs. We manipulate 
this average by removing, one by one, from the original pool of 13575 programs, 
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Fig. 1. The improvement of the pufd of the primary for the various plausibility checks 
for "3n+l". The curves for "1st input = 1st output" and "2nd input = 2nd output" are 
invisible because they coincide with the curve for "Valid output". 

the programs with the highest pufd. The more programs have been removed, the 
lower the average pufd of the remaining pool. 

The graph clearly shows that many of these run-time check are very effective 
for unreliable programs (the right-hand side of the graph). More surprising is 
that the impactjs quite pronounced at a pufd of the pool around 10-4 , while it 
is much lower for the rest of the graph. Apparently, these checks are effective for 
some equivalence classes that are dominant in the pool for that particular pufd 
range. Upon inspection, it appears that these programs fail for i = j. 

The gain in pufd is for most of the graph only about 20%, but the peak 
reaches a factor of 3.2 for the plausibility check "Result> log2(max(i,j))", a 
significant improvement over a program without checks. The check "Result>O" 
is mainly effective for programs that initialise the outcome of the calculation of 
the maximum sequence length to 0 or -1, if they abort the calculation before 
setting the result to a new value. This appears to be caused by an incorrect 
"for"-loop which fails when i > j. The check "Result<477" is not very effective. 
The failures it detects have mostly to do with integer overflow and uninitialised 
variables. 

The check "Result> log2(max(i,j))" is the most effective of all. It catches 
a few more programming faults than "Result> 0", especially of those programs 
that do not cover the entire range between the two inputs i and j for the calcu-
lation of the maximum sequence length. .. 

Figure 2(a) gives some more detail of the performance of this plausibility 
check. It shows the percentage of failures detected for each equivalence class. We 
can make various observations. First, for many equivalence classes there is no 
effect (many crosses with a coverage of 0%). Second, since there are more crosses 
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Fig. 2. Values of the error detection coverage of (a) the plausibility check "Result > 
log2(max(i,j»" for the equivalence classes of "3n+1" programs, and (b) the plausibility 
check "i ::; j" for the equivalence classes of "Factovisors" programs. Each cross repre­
sents an equivalence class. The horizontal axis gives the average pfd of the equivalence 
class, the vertical axis the percentage of its incorrect outputs that the check detects. 

in the right-hand side of the graph, this check seems to be more effective when 
the primary programs tend to be less reliable (i.e., for development processes 
that tend to deliver poor reliability). We must say "seem" here, because this 
graph lacks information about the frequencies of the various programs (sizes of 
the equivalence classes). Third, this plausibility check still detects faults in the 
left-hand side of the graph, i.e. for the more reliable programs. 

The plausibility check "First output equals first input" mainly catches prob­
lems caused by incorrect reading of the specification: some programs do not 
return the inputs, or not always in the correct order. These faults lead to very 
unreliable programs, and the effects of this plausibility check are not visible in 
Figure 1 because they manifest themselves (i.e. differ from the curve for ''Valid 
output") for average pufds larger than 0.1. 

The result of the plausibility check "Second output equals second input" is 
almost equal to the previous one. There are a few exceptions, for example when 
the program returns the first input twice. 

3.2 Self-Consistency Checks 

If we denote the calculation of the maximum sequence length as f(i,j), then: 

f(i,j) = f(j, i) (1) 

and: 
f(i,j) = max(f(i,k),f(k,j)) for k E iooj (2) 
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Fig. 3. Improvement in the average pufd of the primary for the various self-consistency 
checks for "3n+l", 

and, if we combine these two properties: 

f(i,j)=max(f(j,k),f(k,i)) for kEi .. j (3) 

Figure 3 presents the effectiveness of these self-consistency checks (for the 
experiment, we choose k = l(i + j)/2J). Like our plausibility checks, these self­
consistency chec~s appear to be very effective for unreliable programs. 

The first self-consistency check mainly detects failures of programs in which 
the calculation of the maximum sequence length results in 0 or -1 for i > j. The 
second mainly finds failures caused by incorrect calculations of the maximum 
sequence length. 

The third self-consistency check attains an improvement comparable to that 
of the plausibility check "Result> log2(max(i,j))", but with a shifted peak. It 
appears that they catch different faults in the programs. As already stated, the 
peak of "Result > log2(max(i,j))" is caused by programs failing for i = j (which 
none of our self-consistency checks can detect) while this self-consistency check 
detects failures caused by faults in the calculation of the maximum sequence 
length as well as programs that systematically fail for i > j. 

The fact that the plausibility checks and the self-consistency checks tend to 
detect different faults is highlighted by Figure 4, which shows the performances 
of the combined plausibility checks, the combined self-consistency checks and 
the combination of all run-time checks. 

4 Results for the "Factovisors" specification 

Short specification. For two given integers 0 :5 i,j :5 231 , determine whether 
j divides il (factorial i) and output "j divides il" or ''j does not divide il". 
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Fig. 4. Improvement in the average pufd of the primary for combinations of run-time 
checks for "3n+l". 

We tested "Factovisors" with the 2500 demands (i,j E 1..50). We consider 
an output ''valid'' if it contains at least two strings and the second is "does" or 
"divides". The main reason for invalid outputs appears to be absence of outputs. 

4.1 Plausibility Checks 

We use the following plausibility check for "Factovisors": 

1. If i ;::: j, the result should be "j divides i!". 

Figure 2(b) shows the coverage of the run-time check "i ;::: j" for each equiv­
alence class. It is remarkable, again, that the crosses are spread over the entire 
plane: this check has some effect for equivalence classes with a large range of . 
reliabilities. We also again observe the large number of crosses for a coverage of 
0%, showing the check to detect no failure at all for that class of programs. 

Figure 5 shows the pufd improvement caused by the plausibility check. As 
for "3n+1", we observe that the run-time check is very effective for unreliable 
programs. For pools of programs with average pufd between 10-4 and 10-2 the 
reliability improvement varies between 1 and 1.6. 

The graph shows a peculiarity for pufds smaller than 10-4 : the improvement 
approaches infinity. This is because as we remove programs from the pool, the 
faulty programs in the pool eventually become a "monoculture", a single equiv­
alence class, and the check happens to detect all the failures of this class of 
incorrect programs. Here, the pool with the lowest non-zero average pufd con­
tains 447 correct programs and 21 incorrect ones in the same equivalence class; 
the plausibility check detects the failures of these 21 incorrect programs .. 
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Fig. 5. The effectiveness of the run-time checks for "Factovisors". 

4.2 Self-Consistency Checks 

If we call g(i,j) the Boolean representation of the output of the program, with 
g(i,j) = true == "j divides i!", g(i,j) = false == "j does not divide i!", then: 

g(i -1,j) ===> g(i,j) with i:f 1 (4) 

As can be seen in Figure 5, the effect of this self-consistency check is minimal: 
the reliability improvement is never substantially greater than that given by the 
validity check. 

5 Results for the "Prime Time" specification 

Short specification. Euler discovered that the formula n2 + n + 41 produces 
a prime for 0 ::; n ::; 40; it does however not always produce a prime. Calculate 
the percentage of primes the formula generates for n between two integers i and 
j with 0 ::; i ::; j ::; 10,000. 

We tested "Prime Time" on 3240 demands (i E 0 .. 79, j E i..79). The outputs 
were deemed correct if they differed by most 0.01 from the output of the oracle, 
allowing for round-off errors (the answer is to be given with two decimal digits). 

The output is considered ''valid'' when it contains at least one number. We 
discard all non-numeric characters and subsequent digits from the output. 

5.1 Plausibility Checks 

The programs for "Prime Time" calculate a percentage, therefore: 

1. The result should be larger than or equal to zero. 
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Fig. 6. The effectiveness of the run-time checks for "Prime Time". The curve for the 
plausibility check "Result ~ 0" is not visible, because it coincides with the one for 
"Valid output". 

2. The result should be smaller than or equal to a hundred. 

Figure 6 presents the effectiveness of the plausibility checks for "Prime Time". 
The plausibility check "Result ~ 0" appears to have virtually no effect. The 
plausibility check "Result ~ 100" has some effect, but not very large. 

5.2 Self-Consistency Checks 

If we denote the result of the calculation of the percentage with h(i,j), then: 

h(i .) = ~.(i, k) x (k - i + 1) + h(k + 1,j) x (j - k) 
,J . .+ 1 J - ~ 

for i ~ k < j (5) 

Obviously, this check is not available when i = j. It is quite elegant: the comput­
ing time will not be excessively more than computing h(i,j). For the experiment, 
we choose k = L(i + j)/2J. 

The effectiveness of the self-consistency check is shown in Figure 6. It is 
much more effective than the plausibility check "Result ~ 100". We observe the 
same phenomenon for low pufds as for "Factovisors": the effectiveness of the self­
consistency check approaches infinity. When we combine the plausibility checks 
and the self-consistency check, we observe that the two complement each other: 
the combination is (slightly) more effective than the self-consistency check alone. 
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Fig. 7. Improvement of the pufd of a pair of randomly chosen C programs for "3n+l", 
relative to a single version. The horizontal axis shows the average p'11fd of the pool from 
which both C programs are selected. The vertical axis shows the pufd improvement 
(pUfdA/pufdAB ). The diagonal represents the theoretical reliability improvement if the 
programs fail independently, i.e. pufdAB = pufdA'pufdB' (This figure is based on [lOJ.) 

6 Run-Time Checks vs. Multiple-Version Diversity 

A question that begs answering is: how do run-time checks compare to other 
forms of run-time fault tolerance? Using results we reported previously [101, we 
can compare our run-time checks against multiple-version diversity for "3n+1". 

We observed (see Figure 7) that two-version diversity would become more 
effective with decreasing mean probability of failur~ on demand of the pool of 
programs from which the pair is selected, until a ''plateau'' is reached (between 
a pufd of 10-5 and 10-3 ) with an improvement factor of about a hundred (note 
that the opposite trend-effectiveness decreasing with decreasing mean pfd-is 
also possible, as proved by models and empirical results [6]). For run-time checks 
the opposite occurs: their effectiveness decreases with decreasing average pufd of 
the primary reaching a fairly low improvement factor. The improvement factor 
of using diversity is significantly higher than that of applying run-time checks. 

For these programs, it seems that these run-time checks could be the better 
choice for testing in the early phases of development, when the pufd of programs 
is still high, and multiple-version diversity when pufds of programs become low. 

7 Conclusion 

The results in this paper are of course specific to these three specifications, 
the programs submitted by these anonymous authors, the run-time checks we 
devised, and the demand profiles we used (uniform in a subset of the demand 
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space). There are however some commonalities among the three sets of results, 
and we will tentatively discuss these here, while keeping in mind the limitations 
of this research. 

First, we observe that the majority of the run-time checks considered are 
very effective for unreliable programs or have no effect at all. 

Then, if we only look at pools of primaries with average pufd between 10-4 

and 10-2 , the pufd improvement factor of the primary-checker pair is compa­
rable for all three specifications: in the range 1-4. Over this range, the average 
improvement is less than 2 for all run-time checks considered. 

Some run-time checks provide almost no benefit. It would be of great impor­
tance to be able to predict which checks are effective and which are not, but for 
the time being this seems not to be possible. 

These plausibility checks appear to detect a different set of failures than the 
self-consistency checks, so that combining them is more effective than applying 
either one alone. So, the apparent "diversity" between the two kinds of checks 
did bring the benefit of some complementarity. 

For pools of primaries with an average pufd lower than 10-2 , the pufd im­
provement achieved by the run-time checks'considered for "3n+l" is far less than 
would have been achieved by applying multiple-version redundancy. In these 
analyses, the pufd improvement realised by multiple-version redundancy is at 
least a factor of a hundred better. 

A natural comment on this work could be that since we have implemented 
simple-minded checks, it is not surprising that they only catch the simple-minded 
programming errors that cause highly unreliable programs. But this is actually 
a non sequitur. It is true that we do not expect expert programmers to pro­
duce highly unreliable programs, but our checks are "simple-minded" only in 
being based on simple mathematical properties of these specifications. There is 
no a priori reason why they should only catch simple-minded implementation 
errors: implementation errors are often caused by misunderstanding details of 
the specification or of the program itself, not of some mathematical property of 
the specification that is of little interest to the programmers. Likewise, there is 
no a priori reason for naive errors normally to cause faults which cause very high 
failure rates. 

A tempting conjecture generalising the results we observed is that for some 
reason simple run-time checks tend (in some types of programs?) only to detect 
the failures in very unreliable programs. This would be an attractive "natural 
law" to believe and would simplify many decisions on applying run-time checks, 
so that it may be worth exploring further, since without some solid, plausible 
explanation (e.g. based on the psychology of programmers) or overwhelming 
empirical evidence, it would appear wholly unjustified. 

Our mea..'lure of effectiveness as average improvement in pufd may be ques­
tioned. It is such that even if a check C has 100% coverage for the failures 
produced by a set of dangerous possible bugs, B, it will still be assessed as hav­
ing negligible effectiveness if the bugs in set B occur with negligible probability 
in actual software development. Some may object that if C is the only check 

13 

189 



APPENDIX C. PUBLICATIONS 

that can detect the effects of B-type bugs, and given the uncertainty on the 
probabilities of B these bugs being actually produced, a prudent designer will 
still use C. This objection is certainly right if C has negligible cost (implementa­
tion cost, cost in run-time resources, risk of bugs in C causing false alarms, etc). 
But whenever these costs are non-negligible, they must be weighted against C's 
potential benefits, as we do. 
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Abstract. Run-time checks are often assumed to be a cost-effective way 
, of improving the dependability of software components, by checking re­

quired properties of their outputs and flagging an output as incorrect if 
it fails the check. Run-time checks' main point of attractiveness is that 
they are supposed to be easy to implement. Also, they are implicitly as­
sumed to be effective in detecting incorrect outputs. This paper reports 
the results of an experiment designed to challenge these assumptions 
about run-time checks. 
The experiment uses a subset of 196 of 867 programs (primaries) solv-

o ing a problem called "Make Palindrome". This is an existing problem on 
the "On-Line Judge" website of the university of Valladolid. We formu­
lated eight run-time checks, and posted this problem on the same web­
site. This resulted in 335 programs (checkers) implementing the run-time 
checks, 115 of which are used for the experiment. 
In this experiment: (1) the effectiveness of the population of possibly 
faulty checkers is very close to the effectiveness of a correct checker; (2) 
the reliability improvement provided by the run-time checks is relatively 
small, between a factor of one and three; (3) The reliability improvement 
gained by using mUltiple-version redundancy is much higher. Given the 
fact that this experiment only considers one primary /Run-Time Check 
combination, it is not yet possible to generalise the results. 

1 Introduction 

Redundancy is a means to improve the reliability of software components. Much 
research has been invested in multiple-version redundancy, e.g. 1-out-of-2 sys­
tems. Much less research has been invested in asymmetrical redundancy, e.g. the 
use of run-time checks, RTCs, see Figure 1. In these cases a primary program is 
checked by an, ideally relatively simple, RTC. 

RTCs are often proposed as a means to improve the dependability of software 
components. They are seen as cheap compared to other means of increasing relia­
bility by run-time redundancy, e:g. N-version programming. We are interested in 
answering questions like whether RTCs are effective and how their performance 
compares to that of symmetrical redundancy. We also want to confirm or reject 
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Input 
Primary 

Primary Output 

Checker Output 

Fig. 1. Primary/Checker model. 

common conjectures, such as that RTCs are so simple that we may assume that 
they are correctly programmed. 

RTCs (also called executable assertions and other names) can be based on 
various principles (see e.g. Lee and Anderson 131 for a summary), and have wide 
application. For instance, the concept of design by contract 151 enables a check 
on properties of program behaviour. 

Some RTCs can detect all failures, for example checks that perform an inverse 
operation on the result of a software component 11,21. If the program computes 
y = f(x), an error is detected if x f:. f-l(y). This is especially attractive when 
computing f(x) is complex, and the computation of the inverse f- 1 relatively 
simple. The argument is then that because computing f- 1 is simple, the likeli­
hood of failure of this RTC is low. Also, it seems unlikely that both the primary 
computation and the RTC would fail on the same invocation and in a consistent 
fashion. Together, these factors l{lad to a high degree of confidence 'that program 
outputs that pass the check will be correct. However-as these authors readily 
admit-such theoretically perfect checks do not exist in many cases, maybe even 
not in the majority of cases. RTCs can then still be applied, but they will in 
general not be capable of finding all failures. Examples of these partial RTCs 
are given by e.g. 1111. 

Previous empirical evaluation of RTCs have generally used small samples 
of programs, or single programs 14,7,101. Importantly, our experiment involves 
a population of programs, both of the primary and of the checker, because we 
think that in order to learn something general about RTCs, we need a statistical 
approach. We can now study the complex interplay between (possible faulty) 
primaries combined with (partial, possibly faulty) checkers. 

The interaction between the primary and the checker is complex because the 
performance of the checker is dependent on that of the primary. An example 
of this interaction is that it may be that improving the primary may lead to 
a rise in the probability of undetected failure. Suppose that a primary (e.g., to 
compute f(n) = (n+2)(n-2)) is incorrect (/(5) = 27) and that the checker (e.g., 
f(n) ~ n 2

) detects the incorrect outputs of the primary. Now, the programmer 
changes the primary (/(5) = 23); its output is now closer to the correct answer, 
but still incorrect. It may now be that the checker is unable to detect the incorrect 
outputs. As a result, the probability of undetected failure may have increased. 
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Table 1. Sample inputs and sample outputs for the primary. 

Sample Input Sample Output 
abed 3 abedeba 
aaaa 0 aaaa 
abe 2 abeba 
aab 1 baab 
abababaabababa 0 abababaabababa 
pqrsabedpqrs 9 pqrsabedpqrqpdebasrqp 

2 The Experiment 

2.1 The UVa Online Judge 

The "UVa Online Judge"-Website (http://acm.uva.es, [8]) is an initiative of 
one of the authors (Revilla). It contains program specifications for which anyone 
may submit programs in C, C++, Java or Pascal intended to implement them. 
The correctness of a program is automatically judged by the "Online Judge". 
Most authors submit programs repeatedly until one is judged correct. Many 
thousands of authors contribute and together they have produced more than 
3,000,000 programs for the approximately 1,500 specifications on the website. 

2.2 Specification of the primary 

For the primary, we took a specification from the Online Judge formulated by 
Md. Kamruzzaman: a program to generate palindromes. It takes an input string 
of 1000 or less lower case characters and makes it into a palindrome by inserting 
lower case characters into the input string at any position. The number of char­
acters inserted shall be as low as possible. The output is the number of characters 
inserted, followed by the resulting palindrome. See for a complete specification 
the Online Judge website, http://acm. uva. es/p/vl04/10453 .html, and Ta­
ble 1 for some examples of correct input and output combinations. 

2.3 Specification of the checker 

Based on the specification of the primary, we formulated a specification for its 
checker. The checker (http://acm. uva. es/p/vl04/10848 .html) takes as its in­
put a string of 5000 or less ASCII characters (5000 to allow for faults in the 
primary, leading to the output of many characters). It tests tbis string for the 
following properties: 

P1. It consists of a first string of lower case characters (length::; 1000), a single 
space, an integer (~ 0, ::; 1000), a single space, and a second string of lower 
case letters (length::; 2000). 
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Table 2. Sample inputs and sample outputs for the checker. 

Sample Input Sample Output 
abcd 3 abcdcba 
aaaa 3 abcdcba 
abc 2 abdcba 
aab b baab 

lIlIIIr The 
TTIFFTT The 
TFTTTFT The 
FFFFFFF The 

abababaabababa 0 abababaabababa TIIIIll The 
pqrsabcdpqrs 9 pqrsabcdpqrqpdcbasrqplllllll The 

P2. PI & the second string is a palindrome. 

solution is accepted 
solution is not accepted 
solution is not accepted 
solution is not accepted 
solution is accepted 
solution is accepted 

P3. PI & all letters of the first string appear in the second string. 
P4. PI & the frequency of every letter in the second string is at least the fre­

quency of this letter in the first string. 
P5. PI & the first string can be made out of the second string by removing 0 or 

more letters (and leaving the order of the letters intact). 
P6. PI & the length of the second string is equal to the length of the first string 

plus the value of the integer. 
P7. PI & the value of the integer is smaller than the length of the first string. 

Obviously, when all properties are true, the output of the primary may still 
be faulty. 

The output consists of the value "T" or "F" (for True and False) for every 
property in the list above, and a statement "The solution is accepted" if all 
properties are true, and "The solution is not accepted" otherwise. We will call 
this property P8. See Table 2 for some examples of correct input and output 
combinations. 

Although the checkers implement all eight different properties, we will analyse 
these separately, as if the checker programs only implement one of these. When 
we address any of the run-time checks, we will use the abbreviation RTC. When 
we address the implementations of one of the properties PI-8, we will use the 
abbreviations RTCI-8. 

2.4 System Behaviour 

Table 3 shows how we classify the effects on the system based on the outputs of 
the primary and the run-time checks. The effects from the system viewpoint are 
rather obvious, except for the consequences of "No output" from the RTC (this 
includes invalid output). We have chosen to accept the output of the primary 
in these cases; the other option would also have been possible, it would have 
increased the number of false alarms. Our choice is based on the assumption 
that false alarms of RTCs are in general very undesirable. 

RTCI differs from RTC2-8, because it is purely a syntactical check of the 
input. It is a necessary precondition to be able to do any of the other checks. It 
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Table 3. Classification of execution results with RTCs. 

Output of run-time Effect from 
primary check system viewpoint 
Correct Accept Correct 
Correct Reject False alarm 
Correct No output Correct 
Incorrect Accept Undetected failure 
Incorrect Reject Detected failure 
Incorrect No output Undetected failure 

is interesting to separate this check from RTC2-8, because it gives us an idea how 
much the more application specific RTC2-8 add to this basic syntactic check. 

2.5 Equivalence Classes 

We subjected the primary to 10,000 demands: strings of lower case characters. 
Each string has a random length between 1 and 30 characters with random 
characters from the set "a" .. "e". The reason for the limited character set is that 
cases with character repetition will more frequently occur. The reason for the 
maximum length of the string is to limit the execution time of the primary. 

We sorted the primaries in "equivalence classes", i.e. sets of programs pro­
ducing exactly the same output. There is more than 1 correct equivalence class, 
because for almbst all inputs there is more than one correct solution, e.g. the 
correct output to the input" ab" may be "1 aba" or "1 bab". 

The primaries gave mostly equal, but also many different outputs to the 
10,000 demands; in total there were 529,433 different outputs to the 10,000 
inputs. to reduce computing time, we randomly selected 17,241 of these (ap­
proximately 1/30). We generated an input file to the checkers by combining 
each output with the corresponding input. This input file is used to determine 
the equivalence classes of the checkers and was only used for this purpose; for 
the rest of the experiment we used the 10,000 demands as used for determin­
ing the primary equivalence classes. We assumed that these 17,241 demands are 
sufficient to discern the different checker equivalent classes. 

For every primary equivalence class we made an input file for the checkers 
by combining the 10,000 demands (the same for every primary) and their out­
puts. We executed every combination of primary and checker equivalence classes 
with the appropriate input files. This was computationally quite intensive; the 
computation took approximately three days. 

2.6 Score Functions 

Assume a specification for the primary, 8,,: 
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811" (x, y) =- "y is valid primary output for input x" 

Then, we define the score function W1l" for a random primary 7r as: 

W1l"(7r,x) =- -,8(x,7r(x)) 

(1) 

(2) 

I.e., the score function is true when the primary 7r fails to compute a valid 
output y for a given input x. 

The behaviour of an RTC u can be described as: 

u(x, y) =- "y is accepted as valid primary output for input x" (3) 

Note the similarity to the specification of the primary, 811"' Whereas the specifi­
cation is supposed to be correct, we assume that the checker may be faulty: it 
may erroneously accept an incorrect pair (x, y). The checker fails if there is a 
discrepancy with the specification. The score function Wu for an RTC is; 

Wu(u, x, y) =- 811" (x, y) ID u(x, y) (4) 

I.e., the score function is true when the checker fails to recognize whether y is 
valid primary output for input x or not. 

For our system as depicted in Figure 1 and the variables (x, 7r, u) for the 
input, the primary and the checker, there are four possibilities: 

1. -'W1l"(7r, x) 1\ -,wu(u, x, 7r(x)): Correct operation. 
2. -'W1l"(7r, x) 1\ wu(u, x, 7r(x)): False alarm. 
3. w1l"(7r,x) l\-,wu(u,X,7r(x)): Detected failure. 
4. W1l"(7r,X) I\wu(u,X,7r(x)): Undetected failure. 

We have calculated the score functions W1l"(7r, x) and wu(u, x, y) for the pri­
mary and the checker equivalence classes. 

2.7 Subsets for the Experiment 

There are 867 submissions for the primary specification. We included the pri­
maries that are written in C, C++ or Pascal, compile and provide output within 
one second. This left 566 primaries. Then we excluded primaries that fail for all 
inputs, that left 484 primaries. From these we used the first submission of each 
author: 196 primaries. There are various reasons for selecting the first submis­
sions: 

1. We do not want to include more than one submission of a single author, 
because subsequent submissions are shown to be highly similar, and that 
would corrupt our statistical analyses. 

2. The variability between first versions is higher, e.g. because later submissions 
are more likely to be correct. This gives more room for statistical analyses. 
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3. A first submission is most comparable to a first submission in a "normal" 
development process, because feedback to the authors differs from normal 
feedback in various ways, e.g. the Online Judge will not communicate for 
which input the program failed. 

There are 395 submissions for the checker specification. We included the 
checkers that are written in C, C++ or Pascal, compile and provide output 
within one second. Tilis left 335 checkers. 

For these checkers we compute the average FAR (false alarm rfLte, the fraction 
of false alarms) for a specific primary 7r for RTC8 (for the calculations: T RU E = 
1,FALSE = 0): 

F AR(7r) = E E (1 - w,..(7r, x)) . wu(O", x, O"(x)) . Q(x) (5) 
xEDuER" 

Ru is the set of checkers, Q(X) is the demand profile over the demand space 
D. D is the test set of 10,000 demands; we assume that each of the 10,000 
demands is equiprobable, and therefore: Q(x) = 1/10,000. 

We excluded checkers that have a FAR of more than 0.1 for any primary 
or do not provide sensible output at all (manual check), that left 306 checkers. 
From these we used the first submission of each author: 118 checkers. 

The rationale for excluding checkers with a high FAR is that these will nor­
mally be quickly detected during development. This is our modelling of the de­
bugging process of the checkers. There is only one checker left with a FAR larger 
than zero. This checker fails for RTC1 (and subsequently.often for RTC2-8) in 
a rather erratic :!lay. 

3 Observations 

3.1 General 

The first observation was already done during selection of a suitable primary 
for this research. It appeared that it is only possible for a small subset of the 
problems of the Online Judge to formulate meaningful RTCs. In many cases, 
the output of a program is a (set of) number(s) for which it is not possible 
to formulate an inverse function to the input, or even an interesting weaker 
relationship. 

We chose this primary because it is possible to define RTCs, and a sufficient 
number of submissions for the primary is available. 

3.2 The Specification of the Checker 

The checker specification appeared to be incomplete: we forgot to specify a lower 
bound on the length of the strings. This leaves it to the programmers to decide 
whether an empty string is correct input or not. As it appears, some of the 
authors allow empty strings. This ambiguity has consequences for property 2: is 
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Table 4. Most frequent equivalence classes in the first submissions for the primary. 

Fault 
Correct 
Adds too many characters to input string. 
Forgets last character in input string. 

Adds too many characters to input string. 
Output string is not always a palindrome. 

Often fails to output second string. 
Often outputs very large integers. 

Freq. PFD Detection 
129 0.00 No detection. 
5 0.54 No detection. 
2 0.69 P3 (28%), P4 (55%), 

P5 (100%), P8 (100%) 
2 0.55 No detection. 
2 0.12 P2 (100%), P8 (100%) 

1 0.94 P1-8 (100%) 
1 0.99 P126 (93%), P345 (96%), 

P8 (100%) 

No integer in output. 0 
Often outputs control character at end of 0 
second string. 

1.00 P1-8 (100%) 
0.94 P1-8 (100%) 

an empty string a palindrome or not? As it happens some authors who accept 
empty strings consider an empty string to be a palindrome, others don't. 

A peculiar problem occurs for property 4: PI & the frequency of every letter 
in the second string is at least the frequency of this letter in the first string. We 
intended to write: PI & the frequency of every letter in the first string is smaller 
than or equal to the frequency of this letter in the second string. Peculiarly, 
most authors interpreted it this way. They thus wrote a stronger test than was 
specified. 

We argue that problems with specifications are common, and that this ob­
servation does therefore not invalidate the conclusions of the paper. Maybe even 
to the contrary: they might even be supporting it, since specifying is part of the 
development process, and a possible source of errors. 

There is one equivalence class containing a correct checker, i.e. a program that 
does not accept empty strings and interprets P4 as written in the specification. 
Nobody submitted a correct program as their first submission. This implies there 
is no correct submission in the set of programs we do our analyses on in this 
paper, c.f. 2.7. 

3.3 Faults in the primary 

To give an idea of the kinds of faults made, Table 4 presents some of the equiv­
alence classes of the primaries. There are 17 correct equivalence classes, with 
in total 129 submissions. There are 67 incorrect submissions in 59 equivalence 
classes. Only five equivalence classes contain more than one submission, these 
are listed in the table. The fact that equivalence classes tend to only contain one 
program indicates that authors tend to choose different approaches and tend to 
make different mistakes. Furthermore, the presence of many different equivalence 
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Table 5. Most frequent equivalence classes in the first submissions for the checker. 

Fault Freq. 
Correct, except that P4 is interpreted more extensively. 54 
Fails when input contains control characters. 5 
Fails when integer in input string is very large. 4 
Always outputs "TTTTTT The solutions is accepted". 3 
Fails when second string is absent. 2 
Fails when there is a control character in the second string. 2 
Fails when integer in input string is very large. 2 
Fails when there is a control character in the integer or in the second string. 2 

Fails for P4, behaves partly as specified. 1 
Fails for P4, behaves as specified, but strange other fault. 1 
Accepts empty second string, assumes empty string is palindrome. 1 

Correct. 0 

classes for correct solutions indicates that authors do not tend to copy solutions 
from each other, one of the worries for the usefulness of the data. 

The table also shows whether the faults are detected by a correct checker, 
and how effective these checks are. 

3.4 Faults in the checker 

Table 5 presents some of the equivalence classes of the checkers. There are 54 
correct submissions in one equivalence class (there is only one way to solve this 
problem). There are 64 incorrect submissions in 51 equivalence classes, only 
seven of these contain more than one submission. This again indicates that the 
authors do not tend to make exactly the same mistake. 

Seven submissions give no output when the second string is empty. 

The most frequent mistake is that a checker fails when there are special 
ASCII characters in the input string, e.g. the NULL character. This is problem­
atic, because some primaries fail in a way that produces exactly these characters. 
This is caused by the fact that the solution to the "Make Palindrome"-problem 
typically includes array manipulation. This, combined with a bug leading to a 
pointer being out of array bounds, leads to possibly outputting these charac­
ters. Important is here that this observation may undermine the conjecture of 
independence between primaries and checkers. 
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Fig.2. (a) Histogram of the PFDs of the primaries; (b) Histogram of the average 
probability of undetected failure for the same primaries, with RTC8. Both graphs 
exclude the 129 correct primaries. 

4 Statistical Calculations 

4.1 Reliability Improvement 

To know the reliability improvement the checkers give, we first have to compute 
the probability of failure on demand'of the primaries: 

PFD(7r) = L w1r (7r,x), Q(x) (6) 
xED 

Figure 2(a) presents the distribution of the PFDs of the primaries in a his­
togram. 

The probability of undetected failure of a primary, averaged over the checkers 
is: 

PUFD(7r) = L L w1r (7r,x), w,,(a,x, a(x)) . Q(x) (7) 

Figure 2(b) shows the distribution of the probability of undetected failure 
after applying RTC8. As can be expected, there is a significant shift to the left. 

We now calculate the improvement of the primary PFD for various checkers 
for subsets of the primary programs: 

E1rEk PFD(7r) 
I(PFDmin,PFDmax) = E1rEk,,"PUFD(7r) 

with R" = {7rIPFDmin < PFD(7r) ~ PFDmax }. 
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Fig. 3. The improvement of the probability of undetected failure in various PFD ranges 
for RTCs 1, 2, 4, 6 and 8 for a correct checker. The improvement in the range 0·0.1 
excludes correct primaries. 

We choose 10 subsets R1J: of the primary programs such that: 0 < P F D( 7r) ~ 
0.1, 0.1 < PFD(7r) ~ 0.2, and so on. Figure 3 shows the improvement of the 
probability of undetected failure in the various PFD ranges for RTCs 1, 2, 4, 6 
and 8 for a correct checker (we do not show all, because this makes the figure 
unreadable; the other RTCs show similar erratic behaviour). There appears to 
be no obvious relation between the PFD of the primaries and the effectiveness of 
RTCs. Who would have expected that RTC6 would be very effective for reliable 
primaries? 

Some RTCs are very effective, others are not. Some are effective for low 
primary PFDs, others for high. It is however not predictable which RTCs will be . 
effective, since this depends on factors as the demand space and the programming 
faults made in the primary. 

The graph gives rise to one possible conclusion: RTCs may still be effective 
for reliable primaries. 

4.2 Effectiveness of the RTCs for Decreasing Average PUFD 

We now investigate the effectiveness of RTCs as a function of the average PFD 
of primaries. To vary the PFD, we take the pool of 196 primaries and we one 
after another remove primaries with the highest PFD. The result is shown in 
Figure 4. 

As observed in our earlier paper [91, the effectiveness of RTCs shows a rather 
unpredictable pattern. The PFD-improvement of RTC1-7 remains well below a 
factor three in almost the entire graph. RTC6 and 8 become infinity for low 
PUFDs, but that is mainly caused by the fact that the number of primaries in 
this region becomes very small and the checkers manage to capture the faults in 
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Fig. 4. The effectiveness of the eight RTCs as with decreasing average PFD of the 
pool of primaries. The PFD is lowered by subsequently removing the most unreliable 
programs. (a) For a correct checker; (b) averaged over the pool of checkers. 

these few programs. The numbers computed in this region of the graph should 
be considered with care. RTC8 is the conjunction of RTCl-7, and reaches an 
average PFD improvement of about a factor three. 

When we compare the PUFD of the correct checker with the average of the 
checkers, we can observe that there is little difference, except for highly reliable 
primaries. Here, the performance of the checkers is reduced, because of faults in 
some checkers. 

There may be a turning point at which a checker's effectiveness becomes ques­
tionable: when the ratio between false alarms and detection of primary failure 
becomes worse. Here we see a complex interplay between improving the quality 
of the primary and the checker. Improving the quality of the checker may have 
low priority, thus possibly resulting in poor specificity of the average checker. 

5 RTCs vs. Multiple-Version Diversity 

We now compare the effectiveness of RTCs with 1-out-of-2 diversity. We make a 
graph in the same way as Figure 4, except that we take two primaries from the 
pool instead of one. 

We observe (see Figure 5) that 1-out-of-2 diversity becomes more effective 
with decreasing PFD of the pool of primaries from which the pair is selected. 
The reliability improvement ranges from a factor 25 to 100 for primary PFDs 
between 0.01 and 0.001. The effectiveness seems to reach a peak at a PFD of 
0.001. (note that the opposite trend-effectiveness decreasing with decreasing 
mean PFD-is also possible, as proved by models and empirical results [6]). The 
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Fig. 5. Improvement of the PUFD of a pair of randomly chosen primaries, relative 
to a single' version. The horizontal axis shows the average PUFD of the pool from 
which both primaries are selected. The vertical axis shows the PUFD improvement 
(PU F D AI PU F D AB)' The diagonal represents the theoretical reliability improvement 
if the programs fail independently, i.e. PU F D AB = PU F D A . PU F DB. 

improvement factor of most run-time checks remains fairly constant between 1 
and 3 over this range, depending on the RTC. Only RTC8 reaches a factor of 
10, when the PFD of the primaries is around 0.02. The improvement factor of 
using diversity i§ significantly higher than that of applying RTCs. 

These results also confirm those in our earlier publication on the effectiveness 
ofRTCs [91. 

6 Conclusions 

In this paper, we examined the effectiveness of Run-Time Checks without the 
assumption that these are fault-free. The effectiveness of the average checker 
appears to not deviate much from that of a perfect checker. 

The effectiveness of the Run-Time Checks is comparable to that in our earlier 
study [91, a factor between one and three. We also confirmed the earlier result 
that multiple-version diversity is far more effective for decreasing the PUFD. 

As yet, it seems not predictable which Run-Time Checks will be most effec­
tive, although in this study it is obvious that RTC8 will have the best coverage, 
simply because it is the conjunction of all the others. As a side effect, RTC8 also 
has the highest false alarm rate. Here again, it is hard to make a well-informed 
choice, because it is virtually impossible to predict the false al~rm rate. 

The results also show that Run-Time Checks may remain effective, also for 
the more reliable primaries. It may therefore be useful to keep the RTCs in 
primaries, also after extensive debugging. This however needs to be a trade-off 
with the possibility of raising false alarms. 
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We have to keep in mind that this research only considers one primary /Run­
Time Checker combination, and that we can as yet not generalise, except perhaps 
for those observations that confirm those in our earlier publication on Run-Time 
Checks. 
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Large Population of Small C/C++ Programs 
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Abstract 

Software metrics are often supposed to give valuable in­
formationfor the development of software. In this paper we 
focus on several common internal metrics: Lines of Code, 
number of comments, Halstead Volllme and McCabe 's Cy­
clomatic Complexity. We try to find relations between these 
internal software metrics and metrics of software depend­
ability: Probability of Failure on Demand and number of 
defects. 

The research is done using 59 specifications from a pro­
gramming competition-The Online Judge--on the internet. 
Each specification provides us between 111 and 11,495 pro­
grams for our analysis; the total number of programs used 
is 71,917. We excluded those programs that consist of a 
look-up table. 

The results for the Online Judge programs are: (J) there 
is a very strong correlation between Lines of Code and Hal­
stead Volume; (2) there is an even stronger correlation be­
tween Lines of Code and McCabe 's Cyclomatic Complex­
ity; (3) none of the internal software metrics makes it pos­
sible to discern correct programs from incorrect ones; (4) 
given a specification, there is no correlation between any of 
the internal software metrics and the software dependability 
metrics. 

1 Introduction 

Miguel A. Revilla 
Department of Applied Mathematics 

University ofValladolid 
47011 Valladolid, Spain 

ested in [2]. In this paper we concentrate on a few internal, 
product-related software metrics: Lines of Code, number 
of comments, Halstead Volume and McCabe's Cyclomatic 
Complexity. We contrast these with two external software 
metrics: number of defects and Probability of Failure on 
Demand (PFD). 

There have been many attempts to use software metrics 
in the development of software. Kafura reports that a collec­
tion of software metrics can be used to identify those com­
ponents which contain an unusually high number of errors 
or which require significantly more time to code than the 
average [5]. In general however, the results have been am­
biguous at least. Fenton, in [I], states: "Specifically, we 
conclude that the existing models are incapable of predict­
ing defects accurately using size and complexity metrics 
alone. Furthermore, these models offer no coherent expla­
nation of how defect introduction and detection variables 
affect defect counts." 

In this paper we investigate which correlations between 
internal software metrics and dependability metrics exist by 
analysing a very large collection of small C/C++ programs 
submitted to the "Online Judge". 

2 The experiment 

2.1 The UVa Online Judge 

http://acm.uva.es, the "UVa Online Judge"-Website [8], 
is an initiative of one of the authors (Revilla). It contains 

Software metrics have been subject of research since the program specifications for which anyone may submit pro-
seventies, and expectations were high that metries would grams in C, C++, Java or Pascal intended to implement 
exist to help managerial decision making during the soft- them. The correctness of a program is automatically judged 
ware lifecycle. Software metries come in many flavours by the "Online Judge". Most authors submit programs re-
(e.g. described by Fenton e.a. in [3]). Essentially any peatedly until one is judged correct. Tenthousands of au-
metric is an attempt to measure or predict some attribute thors contribute and together they have produced more than 
(internal or external) of some product, process or resource. 3,000,000 programs for the approximately 1,500 specifica-
Normally, the internal attributes are those that we can di- tions on the website (as of May 2004, the programs submit-
reetly measure, and the external ones those that we are inter- ted at that date are used in this experiment). 

©2007 IEEE. Reprinted, with permission, from the Proceedings of the 18th IEEE International Symposium of 
Software Relia.bility Engineering, pa.ges 203-8, Trollhatta.n, Sweden, November 2007. 
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Figure 1. Histograms of Internal software metrics of the correct submissions for the "Unidirectional 
TSP"-problem. The vertical axis presents the number of programs. 

The program specifications of the Online Judge contain 
a short description of the problem, mainly in natural lan­
guage, and some example input and output. The formalism 
of the specifications differs from specification to specifica­
tion, but most are more or less informal. 

Note that we do not use the test results of the Online 
Judge, except that we only use those programs that the On­
line Judge can run, see Section 2.2. We test the programs 
ourselves for determining the external metric PFD as ex­
plained in Section 3.2. 

2.2 Selection of specifications and pro­
grams 

We selected 59 specification from the Online Judge from 
different domains: graph theory, string operations, mathe­
matical puzzles, etc. To enable statistical analysis, we se­
lected specifications for which many submissions existed. 
From all the programs submitted to the Online Judge for 
these 59 specifications, we use: 

Programs running under the Online Judge. We only 
use those programs that the Online Judge can execute, i.e. 
the Online Judge was able to compile the program, was able 
to run it, and the program runs using prescribed time and 
memory resources. This first filter saves us much time, and 
also protects us from malicious programs like fork bombs. 

Programs in C or C++. We only chose programs in 
C or C++, because our tools calculate the internal metrics 
for these programming languages. Apart from this practi­
cal reason, mixing programming languages in this research 
might invalidate the results, or at least complicate their in­
terpretation. 

Programs that succeed for at least one demand. We 
excluded the completely incorrect submissions, because 
there is obviously something wrong with these in a way 
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that is outside our scope (these are often submissions to 
the wrong specification, or apply incorrect formatting to the 
output). 

First submission of each author. We only used one pro­
gram submitted by each author and discard all other submis­
sions (except for the determination of the number of defects, 
see Section 3.2). Subsequent submissions have comparable 
fault behaviour and this dependence between submissions 
would invalidate the statistical analysis. 

Programs smaller than 40kB. A manipulation of the 
data we allowed ourselves is that we remove those programs 
from the analysis that have a filesize over 40kB. This is the 
maximum size allowed by the Online Judge, but was not 
enforced for 8: small period of time, and during this time 
some authors managed to submit programs exceeding this 
limit. Imposing this restriction does therefore only enforce 
a restraint that already in principle existed. 

No look-up tables. We also disregarded those programs 
that consist ofIook-up tables, because their software metrics 
are completely different (the Halstead Volume is in general 
more than ten times the average for all programs written to 
a specification, thus completely dominating statistical anal­
ysis). These programs are very easily distinguishable from 
others, because they combine a very high Halstead Volume 
with a very Iow Cyclomatic Complexity. In rare cases a 
look-up table has a very high Cyclomatic Complexity, more 
than a hundred; in these cases the table is programmed with 
if-then-else statements. We deleted these programs manu­
ally from the analysis. In total 314 of the 41,685 remaining 
correct programs (0.75%), and 132 of the 30,232 remaining 
incorrect programs (0.43%) were disregarded. 

The total number of submissions to the 59 specifications 
used in our analyses was 71,917, on average 1,219 per spec­
ification. 
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Figure 2. Histograms of the correlations between the various internal software metrics. The vertical 
axis depicts the number of specifications. 

3 Measurement of software metrics 

3".1 Internal metrics 

We automatically measured the following internal soft­
ware metrics: Lines of Code (LOC), the number of com­
ment lines, the Halstead Volume (Volume) [4], and Mc­
Cabe's Cyclomatic Complexity (CC) [6]. These four are 
very commonly used in the assessment of programs and 
many (commercial) tools give the possibility to measure 
them. The distributions of these metrics is similar for all 
specifications. Figure 1 presents a typical example for one 
specification, named "Unidirectional TSP". 

We determine the Cyc10matic Complexity as follows. 
We first measure the CC of the main body of the program 
and the subroutines and functions separately. We determine 
the CC of the entire program by summing the CCs of the 
constituent parts. 

The Cyc)omatic Complexity appears to have a broad 

range for every specification, Figure I (d) gives it for the cor­
rect programs for the specification "Unidirectional TSP". 
The CC goes well beyond 50, and many correct programs 
have a CC above 20. This observation is valid for all speci-
fications. . 

3.2 Dependability metrics 

We also measured two external software metrics related 
to dependability: the Probability of Failure on Demand 
(PFD) and the number of defects (D). 

To determine the PFD, we used three different testing 
strategies. For some specifications, a complete test is pos­
sible. For other specifications this is not the case, we then 
completely tested part of the demand space or we did a ran­
dom test. The number of demands is either 2,500 or 10,000 
for all specifications, except for those for which we did 
a complete test, in those cases the number of demands is 
equal to the number of possible demands. 
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Figure 3. Density plots of the LOCNolume and LOC/CC distribution of all correct programs of all 
specifications combined. The x's are the means for the 59 specifications. The lines are unweighted 
regressions of these means. The background of the figure shows a density plot of the Volume-LOC 
and CC-LOC pairs of all the programs Involved, with every specification having the same weight. 

The PFD is the fraction of demands for which the pro­
gram fails, i.e. we assume that every demand is equiprob­
able. This assumption seems to be as good as any other 
assumption, and we do not have any indication that it influ­
ences our results. 

We determined the number of defects as follows. In our 
approach this is only possible for those authors who manage 
to submit a correct program (we disregard all submissions 
after a first correct submission). We assumed that the num­
ber of defects in this correct submission is zero, and in the 
penultimate submission is one. Then, we assess the submis­
sion before the penultimate submission of this author; if its 
behaviour is different from that of the penultimate submis- . 
sion, we add one to the defect count, otherwise we assume 
the defect count is the same. We repeat this procedure until 
the first submission of the author. The defect count of this 
submission is used for the analysis. 

4 Correlations between internal software 
metrics 

For every specification, we determined the correlation 
between the internal software metrics. This gives us 59 
measurements for every pair of metrics. These are presented 
in histograms in Figure 2. 

There are a some very strong correlations: CC vs. LOC 
(mean=0.78), Halstead Volume vs. CC (0.75), Halstead 
Volume vs. LOC (0.82). 

The correlations between Comment Lines and 
LOCNolume/CC (mean=0.29, 0.28 and 0.23) are rather 
unexpected. They might be explained by assuming that 
programmers who write comments, also tend to write more 

210 

elaborate code. Writing comments in code for the Online 
Judge is completely voluntary. 

5 Lines of Code vs. Halstead Volume and Cy­
c10matic Complexity 

The correlations in Figure 2 suggest a very strong rela­
tionship between LOC on the one hand, and Volume/CC on 
the other. We would like to investigate this a little bit fur­
ther. 

We plot the mean Volume and CC of all the specifica­
tions against the mean LOC, see Figure 3. In both cases, the 
correlation is very strong (0.97 and 0.95). For the means, we 
determined the following regression lines: 

Volume = 45 x LOC - 428 

cc = 0.22 x LOC + 1.9 

(1) 

(2) 

For CC this can informally be interpreted as: on average, 
programmers write a branch in almost every five lines of 
C/C++code. 

6 Are internal software metrics different for 
incorrect programs? 

To discover whether there is a relationship of any of 
the internal metrics with correctness of program, we deter­
mined the ratio between the means of the internal metrics of 
the correct programs and those of the incorrect programs for 
every specification. This gives us 59 measurements for the 
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Figure 4. Histograms of the ratio of Internal metrics of correct programs and Incorrect programs for 
59 specifications, for (a) LOC, (b) Comment Lines, (c) Halstead Volume, (d) Cyclomatic Complexity. 

four internal metrics, which we depict in histograms in Fig­
ure 4. It appears that although the change in internal metrics 
can be large for some specifications, these changes go either 
way, and on average the internal metrics are practically the 
same for correct and incorrect programs. 

Number of Comment Lines. There is no requirement 
to insert comments in the code submitted. Beforehand, we 
conjectured that the number of comment lines in submis­
sions would correlate with lower PFD (also reported by 
Runeson [7]), the rationale being that someone who vol­
untarily adds comments, thinks about the program more 
carefully. However, only a small change in this metric was 
found, correct programs have on average 10% more com­
ment lines; the spread on the distribution is very large. 

Halstead Volume and Cyclomatic Complexity. On av­
erage, the Volume and the CC of correct and incorrect pro­
grams are the same. 

7 Correlations between internal metrics and 
dependability 

We determined the correlation between the internal soft­
ware metrics and the two dcpendability software metrics. 
We depict this information in eight histograms in Figure 5. 

Lines of Code. Figure 5 shows that in our experiment 
the mean correlation between LOC and number of defects 
or PFD is close to zero. 

Number of Comment Lines. Figure 5 shows that the 
average correlation of the number of comment lines with 
the number of defects and PFD is very close to zero. This 
adds to our finding in Section 6: although correct programs 
have slightly more comment lines, it now appears that the 
number of comment lines is not correlated to the number of 
defects. 

Cyclomatic Complexity and Halstead Volume. In our 
experiments, there is no correlation between these metrics 
and PFD nor number of defects. 

8 Discussion 

This research suffers from one major point of criticism: 
the programs are not 'real', they are most probably writ­
ten by students and not by professional programmers. Even 
so, we argue that if there is a relationship between one of 
these internal software metrics and PFD and number of de­
fects, this relationship would even be stronger if less rigor­
ous programming methods are followed. A higher Cyclo­
matic Complexity is more problematic in a 'trial and error 
program' then in a rigorously developed program and be­
comes irrelevant if the correctness of a program is formally 
proved. 

Another point of criticism is the size of the programs, 
varying between several dozens and several hundreds of 
lines of code. This is comparable to the size of subroutines, 
and the results should be interpreted at that level. We can 
only conjecture that these results are applicable to bigger, 
more realistic programs. 

In our approach to counting defects, we assume that pro­
grams of the same author that have the same behaviour have 
the same number of defects and that the number of defects 
removed in one step is one. Both assumptions most prob­
ably lead to underreporting of defects. A possible other 
way to measure the number of defects is to simply use the 
number of attempts to the first correct submission. This ap­
proach would probably lead to overreporting, assuming that 
authors on average remove less than one fault per attempt 
We also tried this approach, and the results are virtually the 
same, and for that reason we do not publish these. 

9 Conclusion. 

We analysed the relations between various internal and 
external software metrics in a large collection of C/C++ pro­
grams submitted to a programming competition, the Online 
Judge. 
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Figure 5. Histograms of the correlations between various internal software metrics and PFD or Num­
ber of Defects. The vertical axis reflects the number of specifications. 

The experiment shows very strong correlations between 
. the internal software metrics Lines of Code (LOC), Hal­
stead Volume (V) and Cyc10matic .complexity (CC). We 
derived the following relations between the means of their 
distributions: V = 45 x LOC - 428 and CC = 0.22 x 
LOC + 1.9. These give the best estimates for V and CC 
when LOC is given. 

In the experiment, the internal software metrics have no 
predictive power with respect to the Probability of Failure 
on Demand nor the number of defects of programs. The 
internal metrics are on average the same for correct and in­
correct programs. 
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The Effectiveness of Software Diversity in a Large 
Population of Programs 

Meine J.P. van der Meulen, Member, IEEE, Miguel A. Revilla, Member, IEEE 

Abstrac#- In this paper, we first present an exploratory anal­
ysis of the aspects of multiple-version software diversity using 
36,123 programs written to the same specification. We do so 
within the framework of the theories of Eckhardt & Lee and 
Littlewood & Miller. We analyse programming faults made, 
explore failure regions and difficulty functions, show how effective 
l-out-of-2 diversity is and how language diversity increases this 
effectiveness. 

The second part of the paper generalizes the findings about 
l-out-of-2 diveristity, and its special case language diversity by 
performing statistical analyses of 89,402 programs written to 60 
specifications. Most observations in the exploratory analysis are 
confirmed; however, although the benefit of language diversity 
can be observed, its effectiveness appears. to be low. 

Index Terms-Reliability, fault-tolerance, redundant design. 

1. INTRODUCTION 

T o date, software reliability research has been based on 
relatively small samples of programs; at most a few tens 

of programs have been used in controlled experiments to test 
hypotheses about multiple-version diy.ersity [1], [2], [3], [4], 
[5], [6], [7]. Ideally far more programs-written to a common 
specification-are needed to undertake statistical analyses, and . 
many different specifications are needed to demonstrate that the 
results are generally applicable. 

The UVa Online Judge Website is an initiative of Miguel 
Revilla of the University of Valladolid [8]. It contains problems to 
which everyone can submit solutions. The solutions are programs 
written in C, C++, Java or Pascal. The correctness of the programs 
is automatically judged by the "Online Judge". Most authors 
submit solutions until their solution is judged as being correct. 
There are many thousands of authors and together they have 
produced more than 3,000,000 solutions to the approximately 
1500 problems on the website. 

From the perspective of algorithm design, the programming 
contest is a treasure trove. There appear to be numerous ways to 
solve the same problem. But also for software reliability engineers 
it is interesting: there are even more ways to not solve the 
problem. The first submission is often incorrect, but most authors 
eventually arrive at the correct solution. 

Section H of this paper explains the theory of multiple-version 
diversity of Eckhardt & Lee [9], later generalized by Littlewood 
& Miller [10]. This gives the mathematical background for the 
calculations in the rest of the paper. 

Then, in Section Ill, an exploratory analysis of multiple­
version diversity follows, using the submissions to one of the 
specifications (the "3n+l "-problem). This analysis highlights 
the issues involved, mainly confirming earlier published results. 

Manuscript received 28 October, 2007. 
Meine van der Meulen ill with the Centre for Software Reliability at City 

University, London. 
Miguel Rcvilla ill with the University of Valladolid, Spain. 

The main difference with these earlier studies is the amount of 
submissions: our study uses tens of thousands of submissions. 
Additionally, we are able to depict failure regions and difficulty 
functions. 

Finally, in Section IV, we generalize the issues by calculating 
some of the observed properties and averaging them over similar 
analyses of sixty other specifications. In total, the study covers 
89,402 programs, on average 1,466 per specification. 

11. THEORY 

A. Modelling of Multiple-Version Diversity, Including Language 
Diversity 

Two of the most well-known probability models in the domain 
of multiple-version diversity are the Eckhardt & Lee model [9] 
and its generalization, the Littlewood & Miller extended model 
[10]. Both models assume that: 

1) Failures of an individual program are deterministic and a 
program version either fails or succeeds for each input value 
x. The failure set of a program 11' can be represented by 
a "score function" w( 11', x) which produces a zero if the 
program succeeds for a given x or a one if it fails. 

2) There is randomness due to the development process. This 
is represented as the random selection of a program, IT, 
from the set of all possible program versions that can 
feasibly be developed and/or envisaged The probability that 
a particular version 11' will be produced is P(IT = 11'). 

3) There is randomness due to the demands in operation. This 
is represented by the random occurrence of a demand, X, 
from the set of all possible demands. The probability that 
a particular demand will occur is P(X = x), the demand 
profile. In this experiment we assume a contiguous demand 
space in which every demand has the same probability of 
occurring. 

Using these model assumptions, the average probability of 
a program version failing on a given demand is given by the 
difficulty function, O(x), where: 

O(x) = L:w(1I',x)P(IT = 11') (1) 

" 
The average probability of failure on demand of a randomly 

chosen single program version HA developed using some method 
A can be computed using the difficulty function for method A and 
the demand profile: 

pfdA := P(ITA fails on X) = L:OA(X)P(X = x) (2) ., 
The average pfd for a pair of diverse programs, ITA and ITB, 

developed using methods A and B (assuming the system fails 
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when both versions fail, i.e. a I-out-of-2 system) would be: 

pfdAB := P(IIA fails on X and IIB fails on X) 

= L OA(X)OB(X)P(X = x) 
x 

And with [10]: 

(3) 

pfdAB = pfdA.pfdB + covx (OA(X), OB(X)) (4) 

If the difficulty function is constant for all x, and therefore 
COVX(OA(X),OB(X)) = 0, the reliability improvement for a di­
verse pair will (on average) satisfy the independence assumption: 

(5) 

If the difficulty function is not constant, the impact of the 
difficulty functions differs between the Eckhardt & Lee model 
and the Littlewood & Miller model. The Eckhardt & Lee model 
assumes similar development processes for the two programs A 
and B and hence identical difficulty functions. i.e. that 0 A (:1:) = 
OB(X). So the average pfd for a pair of diverse programs reduces 
to: 

= pfd~ + varX(OA (X)) 
(6) 

It is always the case that varx(O(X)) ~ 0, and therefore: 

pfdAB ~ pfd~ (7) 

In practice the variance plays an important role, and is often 
the main factor of system unreliability. The intuitive explanation 
for this is that it is harder for the program developers to properly 
deal with some demands. The difficulty function will then be 
"spiky", and the diverse program versions tend to fail on the same 
demands. Diversity is then likely to yield little benefit and pfdAB 
could be close to pfdA. 

The Littlewood & Miller model does not assume similar 
development processes for program versions A and B, and the 
pfd of the pair remains: 

pfdAB = pfdA-pfdB +COVX(OA(X),OB(X)) (8) 

We will use the Littlewood & Miller model in our language 
diversity experiments in which the pair consists of two programs 
in different programming languages. 

Ill. EXPLORATORY ANALYSIS 

A. The Problem 

We analyse a single set of 107,522 C, C++ and Pascal programs 
version written to a common specification, the "3n+I"-problem. 
The "3n+ 1 "-problem can be summarised as follows: 

1. input n 
2. print n 
3. if n = 1 then STOP 
4. if n is odd then n := 3n + 1 
5. else n:= n/2 
6. GOTO 2 

For example, given an initial value 22, the following sequence 
of numbers will be generated 22 11 34 17 52 26 13 4020 105 
16842 1. 
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It is conjectured that the algorithm above will terminate (i.e. 
stop at one) for any integer input value. Despite the simplicity of 
the algorithm, it is unknown whether this conjecture is true. 

Given an input n, it is possible to determine the length of the 
number sequence needed to reach the final value of one. This 

. is called the cycle-length of n. In the example above, the cycle­
length of 22 is 16. 

The "3n+ 1 "-problem specification includes the following re­
quirements: 

• For any two numbers i and j, determine the maximum cycle­
length over all integers between and including i and j. 

• The input will consist of a series of pairs of integers i and 
j, one pair of integers per line. All integers will be less than 
1,000,000 and greater than O. 

• For each pair of input integers i and j the output is i, j, . 
and the maximum cycle-length for integers between and 
including i and j. These three numbers should be separated 
by at least one space with all three numbers on one line and 
with one line of output for each line of input. 

The specification is supplemented by sample input and output 
examplcs, e.g.: 

Sample Input: 
1 10 
100 200 

Sample Output: 
1 10 20 
100 200 125 

B. Testing 

We submitted all the programs to a benchmark test. The 
benchmark is constituted of 2,500 pairs of numbers with all 
combinations of numbers between and including 1 and 50. We 
call every pair of inputs a demand. The demands are processed by 
the programs separately, i.e. the programs are restarted for every 
demand. The outputs of the programs' executions are written to 
a file for later analysis. 

It has to be noted that this benchmark approach does not claim 
to identify all faults in the programs. An example of a known 
fault tliat will not be found in this analysis is numerical overflow, 
caused by intermediate results becoming very large, because the 
small numbers used in the benchmark will not trigger these 
overflow conditions. Another fault that this benchmark approach 
will not identify is an arbitrary limit on the number of lines of 
input a program can accept (e.g. 4, 10, or 50 lines) because the 
program is restarted for each demand. It also follows that we 
carmot identify faults that depend on particular sequences of input 
lines to a program as we only use a single line of input per 
demand. Examples of the latter two types of fault were identified 
in an earlier study presented at the ISSRE conference in St. 
Malo [11]. 

We were slightly more generous than the Online Judge in 
assessing the output files. We only compared the numbers in the 
output file, so if the output file contains commas, empty lines 
or short text like "The answer is:" we still treat it as a correctly 
formatted output. The reason for ignoring commas and short texts 
might be questioned, but this decision significantly reduces the 
number of different equivalent failure behaviours observed and 
enhances the opportunities for analysis. 

A side effect of our testing programme was an independent 
check of the effectiveness of the Online Judge's benchmark. The 
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benchmarks of the Online Judge proved to be quite accurate, only 
few of the programs that we identified as incorrect were accepted. 
We were able to generate minimum sets of extra tests to add to the 
benchmarks. The augmented benchmarks findy all the programs 
that we classified as incorrect. 

When running and comparing these programs it was striking 
how many different behaviours were observed. In total, 1991 
different output behaviours were generated when the benchmark 
test was applied to the set of programs. In many cases the outputs 
were only slightly different, but the fact that such a simple 
program can be programmed incorrectly in so many ways is 
surprising. 

In the following paragraphs, we provide some statistics of the 
submissions, Section lII-C, and the structure of the submitted 
programs, Section Ill-D. 

Three main analyses were performed in this exploratory study: 

• Analysis of the types of fault introduced (see Section Ill-E). 
• Assessment of the effectiveness of multiple-version diversity 

(see Section Ill-F). 
• Assessment of the effectiveness of language diversity (see 

Section Ill-G). 

C. Program submissions 

The number of programs submitted to this problem was 
107,522 when this analysis was performed. Table I presents some 
statistics, sorted by programming language. 

The table also presents the judgement of the Online Judge. 
The Online Judge assesses all submissions, and has many cate­
gories ranging from "Compilation error'·\ "Time limit exceeded", 
"Memory limit exceeded" to "Run-time error". In our analysis 
we only consider those submissions that are in the categories 
"Accepted", "Wrong answer" or "Presentation error". The latter 
category contains solutions that do not exactly coliform to the 
output specification, but slightly differ in terms of presentation of 
the output. We do not consider the other categories in our analyses 
because these do not produce meaningful output. 

There are some discrepancies between !)le verdict of the Online 
Judge and ours. The most important reason for these is that we are 
more generous in accepting solutions, e.g. by accepting solutions 
that output some additional text. Also, the Online Judge does not 
perform a complete test, and sometimes our tests reveal incorrect 
outputs, not identified by the Online Judge. We therefore always 
retest submissions, irrespective of the verdict of the Online Judge. 

'. D. Solutions to the problem 

The example C program in Table II shows the approach most 
programs take. We will use the program's characterisation to 
describe the faults that authors make. 

Of course, the actual programs differ from this example, but 
most programs take a similar approach and only differ in aspects 
such as: the use of subroutines for the cycle-length calculation or 
the determination of the maximum value. The programs that differ 
most from the example are those that optimize on speed. These 
programs can be lengthy and complex, but constitute a minority. 

E. Analysis of program faults 

1) Equivalence classes: We observed that there were many 
different programs that produced identical results. These were 

generally due to the existence of similar faults in the different 
versions. We grouped the program versions that produced identi­
cal results into "equivalence classes" and used these equivalence 
classes in our subsequent analysis. 

After grouping the output files of the programs into equivalence 
classes, we characterised them by the faults they contained (see 
Table IV). The 36 equivalence classes are shown, with their 
total frequencies and their totals for each programming language, 
their reliability (Le. the fi-action of correct responses to the 2,500 
demands), and a description of the faults that were identified as 
being present in that class of programs. An assumption we made 
here is that programs that behave similarly contain the same kind 
of faults. This may not always be correct, but only very few 
counterexamples have been found. 

2) Types of fault: We can characterise the faults found in each 
equivalence class as follows. 

Swap: missing or incorrect. This is related to demands where 
input i is larger than input j. This is normally handled by 

, swapping the two input values. (Strictly speaking a swap is not 
necessary, because this functionality can also be implemented in 
the loop by counting down, but most authors do not use this 
alternative solution. So we have labelled this a "Swap" problem). 

A missing swap indicates incorrect interpretation of the specifi­
cation: the author did not anticipate the possibility that the second 
input may be smaller than the first. This is the most frequent 
mistake: 33% of the authors' first submissions in the selected 
equivalence classes exhibit this problem. 

Incorrect implementation of the swap is less frequent (5.5%), 
in most cases the author did not consider the consequences for 
exchanging i and j. In some cases it is caused by a slip in a 
routine programming task. 

Retuming the input values in the incorrect order is one of the 
possible consequences of implementing the swap incorrectly. The 
specification clearly states that the returned inputs should appear 
in the same order. The author manages to implement the swap, 
but forgets to consider the consequences for the "write" -step. The 
problem is in general solved by either returning the inputs before 
swapping or by remembering the order of the inputs in separate 
variables. 

Loop. There appear to be many ways to implement the loop 
incorrectly (2.9%). Most frequent is the omission of the last 
value in the loop. An example is: for (StartSequence 
= StartCounter;'StartSequence < LastCounter; 
StartSequence++). 

Another case is the omission of the first and the last 
values in the loop, e.g.: for(i = min(a,b) + 1; i < 
max(a,b); i++). 

Calculation. Very few programs (3.1%) contain a fault in the 
calculation of the maximum cycle-length. This is probably due to 
the fact that if the algorithm responds well to the sample outputs 
given in the problem specification, it will perform well for all 
inputs. The main problem foUnd is putting step 3, testing for 
n = 1, after step 4 and 5 in the program (see pseudocode in 
introduction). The program will not check for n = 1 immediately, ' 
leading to the sequence "1 4 2 1" and a calculated sequence length 
of 4 instead of 1. 

Output. There are also various ways to incorrectly format the 
output (1.8%). Programs may not print the two inputs, and they 
may not print any output at all (sometimes conditionally, e.g. 
when i > j). . 
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TABLE I 
STATISTICS ON SUBMISSIONS TO THE "3N+ \"-PROBLEM. THE FILTER INCLUDES ALL SUBMISSIONS ASSESSED BY THE ONLINE JUDGE AS "ACCEPTED", 

"WRONG ANSWER" OR "PRESENTATION ERROR", AND EXCLUDES ALL SUBMISSIONS AFTER A CORRECT SUBMISSION OF THE SAME AUTHOR. 

Filtered Parameter C C++ Pascal Total 
Number of authors 5,897 6,097 1,581 13,575 
Number of authors solving the problem 5,020 5,141 1,152 11,313 
Percentage of authors solving the problem 85% 84% 73% 83% 

Not filtered Number of submissions 46,397 49,191 11,934 107,522 
Online Judge assessment: accepted 12,056 12,999 2,453 27,508 
Online Judge assessment: presentation error 391 365 26 782 
Online Judge assessment: WTong answer 15,271 17,048 4,809 37,128 

Filtered Number of submissions 15,705 16,225 4,193 36,123 
Average number of submissions 2.6 2.7 2.7 2.7 
Online Judge assessment: accepted 4,442 4,198 816 9,456 
Online Judge assessment: presentation error 160 184 7 351 
Online Judge assessment: WTong answer 11,103 11,843 3,370 26,316 

TABLE IT 
EXAMPLE PROGRAM WITH TYPICAL ALGORITHM. (NOTE THAT THIS PROGRAM DOES NOT COMPLY WITH THE CIJRRENT VERSION OF THE C STANDARD.) 

Program 
#include <stdio.h> 
#include <stdlib.h> 

main() 
{ 

int a, h, min, max, numi 
register n, cycle, cyclemaxl 

aractensalIon 

Variable declaration 

while (fscanf (stdin, "%d %d", &a, &b) 1- EOF) { 
if (a < b) {min=al max=bl} else {min-bl max-al} 
for (cyclemax=-l, 

Read inputs 
Swap inputs 
Reset maximum cycle-length 
Loop num=minl num<=maxI num++) { 

for (n=num, cycle=11 n 1- 11 cycle++) 
if (n % 2) n=3*n+11 else n »= 11 

if (cycle > cyclemax) cyclemax=cyclel 
Calculation 

} 
printf ("%d %d %d\n", a, b, cyclemax); Output 

} 

Most faults related to poor interpretation of the specification: 
In particular eommon faults were related to: 

• Not realising that the second input can be smaller than first. 
This was not mentioned in the specification but the author 
should not assume otherwise. 

• Not realising that returned input values should be in the same 
order. This is explicitly mentioned in the specification. 

3) Failure sets: Figure 1 shows graphic representations of 36 
failure sets. For each input pair i, j a failure is indicated by a 
black dot, the 50*50 dcmands produce two-dimensional maps for 
each equivalence class. 

The triangular pattern, e.g. (b), (e) and (k), is related to the i, 
j swap problem, i.e. the correct answer is only generated when i 
is less or equal to j. The diagonal structures like (h), (i) and (r) 
are related to loop implementation problems where either one or 
both of the i, j endpoint values is not included in the cyclic 
length calculation. An entirely black square, (f), is associated 
with problems like failing to generate any output or outputting 
in the WTong format. The most common equivalence class is a 
completely blank square, (a), which represents the case where all 
test inputs were correctly evaluated. 

We also see regions that appear to be the superposition of 
two different failure sets, for example, (d) seems to be the 
superposition of (b) and (h). This might be the explanation for the 
large number of different equivalence classes found in the study. 
For example, 256 different failure set patterns can be generated 
with combinations of 8 basic patterns. Even more combinations 
are possible when we note that different equivalence classes can 
have the same pattern but have different (but equally wrong) 
output values. 

F. Multiple-Version Diversity 

We will first investigate the effectiveness of multiple-version 
diversity using a common difficulty function (the Eckhardt & Lee 
model). For this analysis, we assume that both programs in the 
diverse pairs are taken at random from the first submissions of 
all the authors (a common "pool" of programs). The difficulty 
functions for both programs are therefore the same. To estimate 
the pfd using equations 2 and 3, we need to specify the input 
profile P(x). Assuming that all inputs are equally likely, we can 
compute the expected pfd for a randomly chosen single version 
and a randomly chosen diverse pair. The difficulty function O(x) 
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Fig. 1. Failure sets for the equivalence classes. 

is fairly simple to derive: for each point in the input space we 
add up the number of program version that fails and divide by 

3n+1; Homogeneous Diversity 

....... ; .. . ... ; ...... . 

.. , ............... !........... ..~ 

.! ....... 

.. ; ............... -:'" 

0.00001 0.0001 0.001 0.01 0.1 

Average pfd 

Fig. 2. Reliability improvement of a diverse pair, relative to a single version. 
The horizontal axis shows the average pfd of the pool from which both 
programs are selected. The vertical axis shows the reliability improvement 
(pfdA/pfdAB ). The diagonal represents the theoretical reliability improve­
ment if the programs fail independently, i.e. pfdAB = pfdkpfdB • 

the total number of program versions. 
As the difficulty surface is the weighted average of the failure 

sets of the individual equivalence classes, it is not surprising that 
the surface is dominated by the most frequently occurring failure 
set: the triangular region of the "swap" -fault. 

Since the effect of diversity is likely to be dependent on the 
quality of the "pool" of programs, we artificially manipulate the 
average pfd of the pool by removing programs from the pool, 
starting with the most unreliable ones. This is comparable to the 
approach taken in the "four university experiment" [3]. 

Figure 2 shows the reliability improvement of the pair with 
respect to a single version. The horizontal axis shows the average 
pfd of the programs of the pool. For every pool, we compute the 
reliability of the pair using equations 2 and 3. The vertical axis 
shows the reliability improvement, i.e. pfdA/pfdAB' 

We can observe that for the more unreliable pools, on the right 
hand side of the graph, the reliability improvement is close to the 
independence assumption. When the pools become more reliable, 
the effectiveness of diversity flattens. For pools with a pfd lower 
than 5.10-3 the reliability improvement is approximately a factor 
of a 100. Eckhardt & Lee earlier observed this in [6]. 

Figure 4 illustrates how the difficulty function of the pool 
changes as function of its pfd. It shows (e.g. by comparing the 
difficulty functions with the shapes of the failure sets in Figure I, 
or by looking at the distribution of equivalence classes, as we 
did), and their description in table IV) that "swap"-faults are 
dominant in (a), "Ioop"-faults -in (b), and "calculation"-faults in 
(c) (although some other faults seem to also play a role in this 
latter category). 

G. Language Diversity 

To improve the reliability of diverse pairs, one may try to force 
diversity between the pools from which the programs are selected. 
A frequently made assumption is that programmers using different 
programming languages make different mistakes, and that the 
failure behaviour of the pairs will be better than it would have 
been when the pools would have been the same (as in the previous 
section). . 
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Fig. 3. Relative frequencies of occurrence rates of equivalence classes, as compared to their occurrence rate in C, for those equivalence classes with a fault 
classified as "loop". 

The present experiment provides some indications that the 
programmers indeed make different mistakes in different pro­
gramming languages. In this case the difference is largest and 
most clearly observable in the equivalence classes with a fault 
in the construction of the loop. Figure 3 shows the relative 
frequencies of the occurrence rates of the equivalence classes as 
compared to their occurrence rates in C (obviously, the relative 
frequencies for C are all I). The figure clearly shows that faults in 
the construction of the loop are rare in Pascal in most equivalence 
classes. 

Further investigation of the Pascal programs in these equiva­
lence classes provides the following information: 

• There are some occurrences of faults in the loop in equiv­
alence class 6. Investigation of these cases shows that 
the author did not use the normal Pascal "for"-Ioop, but 
constructed it using a "while" and made a mistake. 

• The cases in equivalence class 14 are caused by authors writ­
ing e.g.: for f:=i+l to j-l do. Even Pascal cannot 
protect against this kind of mistake. 

• The fault in equivalence class 23 is caused by misinterpre­
tation of the specification. The program only calculates the 
sequence length for i and i, and returns the maximum of the 
two as the result of the calculation. This fault can be made 
both in C and in Pascal. 

• The cases in equivalence class 30 are caused by authors 
writing: for f: =i+l to j do, or by constructing the 
"for"-Ioop with a ''while'' and making a mistake. 

We conclude that if an author uses the "for"-Ioop in Pascal, 
the probability of a mistake in the construction of the loop is far 
smaller than when using the "for"-Ioop in C or constructing the 
loop with ''while''. 

Note that the issue of the discussion above is not to conclude 
that Pascal is a better program language than C. The point we 
make is that different mistakes are made, depending on the 
programming language. This makes language diversity interesting 
for improving the effectiveness of multiple-version diversity. 

From the above, it appears that the relative frequencies of 
faults made in Pascal programs differ from those in C or C++ 
programs, and indeed, this has also been observed by other 
researchers e.g. [6]. Based on this, language diversity may lead 
to more reliable pairs than homogeneous diversity. To examine 

this conjecture, we conducted the same diverSity experiment as 
in Section III-F, but selected the two programs from different 
pools, each pool only containing programs in C, C++ or Pascal. 
Figure 5 presents the results of these calculations. 

The figure shows the reliability improvement trend is similar to 
that for homogeneous diversity: the reliability improvement of the 
pair is close to the independence assumption when the average 
failure rate of the programs in the pool is high, and reaches a 
"plateau" of around 100 when the average failure rate is low. 
However, between these two extremes, we can observe differences 
between same/similar language pairs (C/C, C/C++, C++/C++ and 
PascallPascal) and diverse language pairs (C/Pascal, C++/Pascal). 
The diverse language pairs systematically rerform better in the 
reliability region of the pools between 10- and 10-2 • 

IV. STATISTICAL ANALYSIS 

We will now investigate whether the observations in our ex­
ploratory analysis can be generalized. We do so by repeating some 
of the analyses for sixty more specifications. We calculate the 
effectiveness of multiple-version diversity and language diversity 
for all these specifications and we then statistically analyse the 
results. 

A. Selection of the specifications 

We selected specifications from the Online Judge, based on the 
following criteria: 

• There are more than 1,000 submissions for the problem. It 
is necessary to have a high number of submissions, to be 
able to perform the statistical analyses in this paper. 

• There is only one correct output for each input. In some 
cases, we accept rounding-off, although none of the problems 
specifies the maximum error. In these cases, we use a 
"reasonable" estimate of the maximum round-off error. 
We do not accept problems that can have different correct 
answers, because multiple-version diversity is not a valid 
fault tolerance technique in these cases: if the answers differ, 
the system must be deemed to have failed, even if they 
are both correct. (However, other diversity mechanisms like 
Run-Time Checks may still work [12].) 

• It is relatively easy to generate test cases automatically. In 
some cases this is difficult, e.g. when the input consists of 
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(a) pfd=5.1O-2 

(b) pfd=5.1O-3 

(c) pfd=5.1O-4 

Fig. 4. Difficulty functions for three of the pools ofprograrns used to generate 
Figure 2, for average pfds of 5.10-2,5.10-3 , and 5.10-4 • The three graphs 
show the gradual removal of failure sets from the pools. In (a) "swap"-faults 
are dominant, in (b) "loop"-faults, and in (c) "calculation"-faults. 

plain text or must obey a complicated mathematical criterion, 
these specifications have not been selected, because the 
creation of the benchmark may then in itself be error-prone. 

As for the "3n+ I" -problem, we only use first submissions, that 
were classified as either "AC", "WK', or "PE" by the Online 
Judge. This reduces the number of submissions actually used 
in our analysis. Figure 6 shows a histogram of the number of 
submissions used for the specifications. We analysed 61 spec­
ifications, with a total number of 89,402 submissions, of which 
30,130 (34%) were written in C, 48,369 (54%) in C++ and 10,877 
(12%) in Pascal. 
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Fig. S. Reliability improvement for 1-out-of-2 pairs with diverse language 
diversity. Each figure is for a given first choice of programming language for 
the first program and depicts the reliability improvement depending on the 
choice of programming language for the second program. 

B. Testing 

We systematically tested all the programs, using three different 
test regimes: 

• Complete test. This is used when the demand space is small, 
less than 5,000 possible demands. 

• Random test. This is used when the demand space is large. 
The Perl "randO"-function is used for this purpose. The 
number of demands is 2,500 or 10,000. 

• Complete test of a part of the demand space. This testing 
strategy is sometimes used instead of Random Test, for 
example in the "3n+ I" -problem in our exploratory analysis. 
The number of demands is at least 2,500. 

We found no differences with respect to the findings in this 
paper related to the choice of test regime or number of demands. 

Depending on the problem, testing takes between approxi­
mately several hours and several weeks on a 3.2 GHz Linux 
machine with 2 Gigabyte RAM. . . 
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Fig. 7. The reliability improvements of multiple-version diversity (a) for ten 
randomly chosen specifications, (b) averaged over sixty specifications. 

C. Multiple-Version Diversity 

For each specification, we computed the average PFD­
improvement for pairs of two programs randomly taken from the 
pool of programs, in the same way as described in Section m-F. 
We cut off the graphs on both sides, on the left hand side, when 
there is no incorrect program in the pool left; on the right hand 
side, when the pfd of the pool is reached. 

Figure 7(a) shows the reliability improvements for ten different 
specifications (depicting more specifications makes the graph 
unreadable, the observations remain the same). Figure 7(b) shows 
the average over the sixty specifications. These figures confirm 
the earlier observations in our exploratory analysis: 

• For unreliable pools, the average reliability improvement is 
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close to the independence assumption. 
• For reliable pools, the average reliability improvement levels 

off to a factor of around a hundred. 
However, as can be seen in Figure 7(a), the graphs of some 

specifications do not follow this pattern. Sometimes, the effec­
tiveness of multiple-version diversity decreases with decreasing 
pfd of the pool. This is the case when only one fault becomes 
dominant in the most reliable programs. This for example applies 
to the specification "Just the facts (00568)", in which programs 
tend to fail for inputs that are multiples of powers of five. The 
most reliable incorrect programs all fail for the input 9375 (3x55

). 

In those cases, the effectiveness of multiple-version completely 
disappears. 

The average PFD-improvement over the range 10-4_10-3 is 
135, over the range 10-3_10- 2 it is 68 and over the range 10-3_ 

10-2 it is 19. 
Figure 8 presents a histograms of the PFD-improvement for all 

specifications at PFDs of the pool of 5.10-4 ,5.10-3 and 5.10-2• 

We observe that the spread of the improvement is very large, 
especially for the most reliable pool, which means that the actual 
improvement of the pfd is hard to predict. But even though there 
is no guarantee about the reliability of a particular diverse pair, 
it nevertheless seems sensible to use results such as these as a 
guide for selecting methodologies for building diverse systems. 

There is no correlation between the effectiveness of l-out­
of-2 diversity and the number of submissions to a specification 
(0.09). We checked this, because one may argue that the diversity 
increases with an increasing number of submissions, and therefore 
the effectiveness of diversity. This effect is not observeable, 
indicating that the size of the experiment is large enough. 

D. Language Diversity 

We will now address the average effectiveness of language 
diversity. This is complicated by the fact that partitioning the 
entire pool of programs in different pools will in itself increase 
diversity between the pools, and this effect will be different 
for the three programming languages, because the size of their 
pools differ. To judge the effect of language diversity, we have 
to differentiate between the effects of the partitioning and of 
language diversity. This is mainly important for the Pascal pools, 
because the number of Pascal programs for some problems is 
not very high, and the effects of partitioning will then be most 
apparent. 

We measured the effect of the partioning itself by randomly 
partitioning the set of programs of a problem in the pools, whilst 
retaining the proportion of C, C++ and Pascal programs for that 
problem. We subsequently measured the effectiveness of software 
diversity of programs taken from these different pools. For every 
problem, we did 20 of such measurements and our estimate was 
the average over those measurements. 

We then computed the average PFD-improvement for pairs of 
two programs taken from three different pools of programs: C, 
C++ and Pascal, in the same way as in our exploratory analysis 
(Section m-G). 

Table III shows the average additional (as compared to the 
random improvement as calculated above) PFD-improvements for 
the nine possible language pairs. 

The PFD-improvements of the C/C, C++/C++, and Pas­
callPascal pairs are less than unity. We explain this by the fact 
that these pairs actually have less diversity than the random pairs. 
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Fig. 8. Histograms of the PFD improvement of implementing l-out-of-2 
diversity for the sixty rifications, at a pfd of the pool of (a) 5.10-4, (b) 
5.10-3 and (c) 5.10- . 

We also observe that a C/C++ pair is only slightly better than 
random. This improvement is probably so little, because most 
programmers do not use the special C++ language features. 

The ClPascal and C++lPascal pairs perform best, but the 
improvement is only around 10%. The improvement may be so 
small because the difference between the C and Pascal language 
is not very big. 

V. DISCUSSION 

In presenting these results it is important to note any limitations 
in their applicability to software engineering in general. There are 
a number of issues involved in using programs from a contest host 
site. 

• Disparities in programmer experience and expertise. 

TABLE III 

ADDITIONAL PFD-IMPROVEMENTS FOR THE LANGUAGE PAIRS. 

C C++ Pascal 
C 0.95 1.02 1.13 
C++ 1.02 0.97 1.07 
Pascal 1.13 1.07 0.97 

• Disparities in the size and complexity of the specifications 
and the programs. 

• Disparities in the software development process. 
• Bias in program submissions, e.g. multiple submissions 

under different names or by submitting programs produced 
by a group of people. 

As there are no large-scale data sources that are free from such 
bias, the only way forward is to take account of the limitations 
and to be careful about what observations can be generalised. 

It must be recognised that both the specifications and the 
programs are much smaller than those used in industrial scale 
software. Also there is no control over the engineering process 
used to develop individual releases. So the results produced here 
may be more typical of "programming in the small" rather than 
"programming in the large" and the faults might be similar 
to those present in a single program module produced by a 
programmer prior to verification and validation. 

VI. CONCLUSION 

Our analyses confirm many of the findings in earlier work about 
software diversity. General observations are: 

• The effectiveness of multiple-version diversity is close to the 
independence assumption for unreliable programs. 

• The effectiveness of multiple-version diversity levels off for 
reliable programs, on average a factor of approximately a 
hundred for program pools with an average pfd of better 
than 0.001. 

• In different programming languages, programmers may 
make different faults. In our exploratory analysis of the 
"3n+l"-problem this was shown to be the case for loops. 
Pascal programmers appear to be much less likely to make 
mistakes in loops then C/C++ programmers. 

• Because programmers may make different faults when pro­
gramming in different programming languages or similar 
mistakes may have different effects, language diversity may 
lead to a higher benefit of multiple-version diversity. In our 
experiments, we observed a maximum additional pfd gain of 
around 13% for ClPascal pairs. This gain is small compared 
with the gain of multiple-version diversity only. 

A correlation with program size (Lines of Code) has not been 
found in any of the observations. It must be stressed however that 
the programs analysed are all small. 
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TABLE IV 

EQUIVALENCE CLASSES AND FAULTS FOR THE FIRST SUBMISSIONS. EC: EQUIVALENCE CLASS; NUMBER OF OCCURRENCES OF THE EC IN THE 

VARIOUS PROGRAMMING LANGUAGES; REL.: FRACTION OF CORRECT RESPONSES TO THE 2,500 DEMANDS; DESCRIPTION: DESCRIPTION OF THE 

FAULTS FOUND IN THE EC, WITH THE CONSEQUENCES OF THE FAULT FOR ANOTHER PROGRAM STEP BETWEEN BRACKETS. 

!l~ ~ ~++ Pascal Total Rei. Descnptton 
ECoo 2483 2442 593 5518 100.00 % Correct program. 
EC01 1308 1456 350 3114 51.00 % Swap: missing. (Calculation: results in 0 when i > ;.) 
EC02 272 314 54 640 51.00 % Swap: incorrect. (Write: returns i and j in incorrect order when i > ;.) 
EC03 242 229 70 541 51.00 % Swap: missing. (Calculation: leads to result I when i > ;.) 
EC04 95 96 40 231 58.00 % Swap: missing. (Loop: only lowe't number when i > ;.) 
EC05 62 73 10 145 51.00 % Swap: missing. (Calculation: leada to result -I when i > ;.) 
EC06 72 68 2 142 43.76 % Loop: highest element not included. 

Swap: missing. (Calculation: results in 0 when i > ;.) 
EC07 44 40 22 106 50.92 % Swap: missing. (Calculation: results in 0 when i > j.) 

Calculation: wrong for n = 1 (program step 3 after 5), leads to result 4. 
EC08 33 46 21 100 0.00 % Swap: missing. (Calculation: results in 0 when i > ;.) 

Output: does not bounce inputs. 
EC09 37 33 11 81 99.88 % Calculation: wrong for n = 1 (program step 3 after 5), leads to result 4. 
ECIO 33 37 0 70 87.52 % Loop: highest element not included, leada to result 0 when i = j. 
ECII 22 28 S 55 0.00 % Output: doea not return inputs. 
EC12 14 17 5 36 0.00 % Swap: missing. (Calculation: results in 0 when i > ;.) 

Calculation: all results one too low. 
ECI3 11 24 0 35 89.52 % Loop: highest element not included, except when i = j. 
ECI4 16 14 2 32 40.24 % Loop: lowest and highest number not included. 

Swap: missing. (Calculation: results in 0 when i > ;). 
EC15 12 16 31 S1.OO % No output line when i < j. 
ECI6 9 18 29 SO.9.6 % Calculation: aborts when n = I, leads to result o. 

Swap: missing. (Calculation: leada to result 0 when i > ;.) 
EC17 21 7 1 29 0.00 % Output: prints the 'equence for the first inpuL 
ECI8 13 12 I 26 S4.96 % Swap: incorrect, leads to i = ; = max(i,;) when i < ;. 
EC19 9 13 4 26 SO.92 % Swap: missing. (Calculation: results in 1 when i > ;.) 

Calculation: wrong for n = 1 (program step 3 after S), leads to result 4. 
EC20 12 24 SO.92 % Swap: incorrect. (Write: returns i and j in incorrect order when i > j.) 

Calculation: wrong for n = 1 (program step 3 after S), leads to result 4. 
EC21 12 23 0.00 % Swap: missing. (Calculation: leads to result 0 when i > j.) 

Calculation: all results one too low. 
EC22 9 12 23 99.96 % Calculation: aborts when n = 1, leads to result O. 
EC23 12 10 23 22.64 % Loop: only calculates sequence length for the two inputs. (Output highest of the two sequence 

EC24 12 11 0 23 43.80 % 
lengths.) 
Loop: highest element not included when i < j, lowest element not included when i > j. 

EC2S 9 9 3 21 0.00 % Output: only outputs result. 
EC26 13 8 0 21 43.76 % Loop: highest element not included. 

Swap: incorrect. (Write: returns i and ; in incorrect order when i > j.). 
EC27 10 0 18 0.00 % Calculation: all outputs are equal to 1108544020, overflow, because of error in recursion. 
EC28 S 3 17 48.32 % Swap: missing. (Calculation: results in 0 when i > ;.) 

Calculation: incorrect, leads to result being one too low if maximum cycle.length of longest sequence 
is one higher than the n .. t highest length. 

EC29 15 0.00% Output: all results are O. 
EC30 IS 46.00 % Swap: missing. (Calculation: results in 0 when i > ;.) 

Loop: lowest element not included. 
EC31 7 8 0 15 0.00 % Initialisation: variable not initialised. 
EC32 5 10 0 IS 87.56 % Loop: highest element not included. 
EC33 4 10 0 14 0.04 % Calculation: always leada to result 1. 
EC34 7 6 1 14 Sl.OO % Swap: incorrect, leads to i =; = min(i,j). 
EC3S 3 11 0 14 99.96 % Calculation: wrong for" = 1 (increment of cycle-length incorrect for n = I), leada to result 2. 
EC36 6 7 0 13 52.76 % Loop: highest element not included. 

Total 5897 6097 1581 13575 
Loop: only first element when i > j. 
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