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"To suppose that the eye with all its inimitable contrivances for adjusting 

the focus to different distances, for admitting different amounts of light, and for 

the correction of spherical and chromatic aberration, could have been formed by  

natural selection, seems, I freely confess, absurd in the highest degree (…). 

Reason tells me, that if numerous gradations from a simple and imperfect eye to 

one complex and perfect can be shown to exist, each grade being useful to its 

possessor, as is certainly the case; if further, the eye ever varies and the variations 

be inherited, as is likewise certainly the case; and if such  variations should be 

useful to any animal under changing conditions of life, then the difficulty of 

believing that a perfect and complex eye could be formed by natural selection, 

though insuperable by our imagination, should not be considered as subversive 

of the theory."  – Charles Darwin, On the Origin of Species (1859). 

 

"For the eye has every possible defect that can be found in an optical 

instrument, and even some which are peculiar to itself; but they are all so 

counteracted, that the inexactness of the image which results from their presence 

very little exceeds, under ordinary conditions of illumination, the limits which 

are set to the delicacy of sensation by the dimensions of the retinal cones. But as 

soon as we make our observations under somewhat changed conditions, we 

become aware of the chromatic aberration, the astigmatism, the blind spots, the 

venous shadows, the imperfect transparency of the media, and all the other 

defects of which I have spoken. The adaptation of the eye to its function is, 

therefore, most complete, and is seen in the very limits which are set to its 

defects. Here the result which may be reached by innumerable generations 

working under the Darwinian law of inheritance, coincides with what the wisest 

Wisdom may have devised beforehand. A sensible man will not cut firewood 

with a razor, and so we may assume that each step in the elaboration of the eye 

must have made the organ more vulnerable and more slow in its development."  

– Hermann von Helmholtz, Popular scientific lectures (1885) 
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Abstract 

     In this thesis the laser ray tracing (LRT) technique for measurement 
of ocular aberrations has been implemented, validated and applied, in 
conjunction with complementary techniques, to the study of ocular 
aberrations in human eyes. In particular, we studied optical aberrations in 
myopic and hyperopic eyes and the optical changes induced by refractive 
surgery for myopia and hyperopia.  

     We have studied the impact of the optimisation of some experimental 
parameters on the estimation of the wave aberration. We demonstrated that 
although the polarisation state and wavelength of the illumination light 
affected the intensity patterns of the images obtained using reflectometric 
aberrometry (LRT and Hartmann Shack sensor), these changes did not affect 
the estimation of aberrations. We also showed that the difference in the 
defocus term (focus shift) due to the use of different wavelengths is in 
agreement with the Longitudinal Chromatic Aberration of the Indiana 
Chromatic Eye Model for average normal eyes, although intersubject 
variability is not negligible. In addition, we studied experimentally the 
influence of the geometrical distribution and density of the pupil sampling on 
the estimation of aberrations using artificial and normal human eyes, and 
performed numerical  simulations to extend our results to "abnormal"eyes. 
We found that the spatial distribution of the samples can be more important 
than the number of samples, for both our measured as well as our simulated 
"abnormal" eyes. Experimentally, we did not find large differences across 
patterns except, as expected, for undersampled patterns. 

     We found that hyperopic eyes tended to have more positive 
asphericity and greater total and corneal spherical aberration than myopic 
eyes, as well as greater 3rd and higher order aberrations. Although we found 
no significant differences between groups in terms of internal aberrations, 
internal spherical aberration showed a significant age-related shift toward 
less negative values in the hyperopic group. We also assessed the impact of 
the LASIK corneal surgery, a popular surgical technique for correction of 
refractive errors, on the optical quality for both myopic and hyperopic 
standard techniques.  Third and higher order ocular and anterior corneal 
aberrations increased with the surgery. Ocular and corneal spherical 
aberration changed towards more positive values with myopic LASIK, and 
towards more negative values with hyperopic LASIK. Changes in internal 
spherical aberration were of opposite sign than those induced in corneal 
spherical aberration. Changes induced by hyperopic LASIK were larger than 
those induced by myopic LASIK for a similar attempted correction.    
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KEY FOR SYMBOLS AND ABBREVIATIONS 

2D two dimensional 

3D three dimensional 

A49 Albrecht pattern with 49 samples 

AL Axial Length 

AL/CR Axial Length to Corneal Radius ratio 

ANOVA Analysis of Variance 

CCD Coupled Charge Device 

Cn Circular pattern with n samples 

CPP Conjugate Pupil Plane 

CR Corneal Radius 

CRT Cathode Ray Tube 

CSF Contrast Sensitivity Function 

D Dioptres 

DF Dichroic Filter 

FA Field Aperture 

FB Focusing Block 

GRIN Gradient Index 

HCA Hierarchical cluster analysis 

He-Ne Helium Neon  

Hn Hexagonal pattern with n samples 

HOA 3rd and Higher Order Aberrations (excluding piston, tilts, defocus 
and astigmatism) 

HS Hartmann-Shack 

i.e. id est, this is 

IR Infrared 

J49 Jacobi pattern with 49 samples 

λ Wavelength 

L lens 

L49 Legendre pattern with 49 samples 
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LASIK Laser Assisted In situ Keratomileusis 

LCA Longitudinal Chromatic Aberration 

LED Light Emitting Diode 

LP Linear Polariser 

LRT Laser Ray Tracing 

LRT1 1st generation laser ray tracing device 

LRT2 2nd generation laser ray tracing device 

μm microns 

MPE Maximum Permitted Exposure 

mrad milliradians 

MTF Modulation Transfer Function 

nm nanometres 

º degrees 

OCT Optical Coherence Tomography 

PCBS Polarising Cubic Beam Splitter 

PRK PhotoRefractive Keratectomy 

PSF Point-Spread Function 

Q Asphericity 

QWP Quarter Wave Plate 

R Radius of curvature 

RMS Root Mean Square wavefront error 

Rn Rectangular pattern with n samples 

RPE Retinal Pigment Epithelium 

SA Spherical Aberration 

SE Refractive error Spherical Equivalent 

SF Spatial Filter 

SRR Spatially Resolved Refractometre 

std standard deviation 

TCA Transverse Chromatic Aberration 

vs Versus, compared to 
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Chapter 1  

 

INTRODUCTION 

The human eye shows such a brilliant design “with all its inimitable 

contrivances for adjusting the focus to different distances, for admitting 

different amounts of light, and for the correction of spherical and 

chromatic aberration” (Darwin, 1859) that it was one of the weak points of 

Darwin’s evolution theory. The eye, paradoxically, has eventually turned 

into one of the confirmations of Darwin’s theory (Land and Nilsson, 2002, 

Nilsson and Arendt, 2008). Helmholtz, aware of the fact that the optics of 

the eye were far from perfect, also recognized that the eye was so adapted 

to its function that its limits were set to its defects (Helmholtz, 1885). 

Since Helmholtz’s times, technology has advanced to the point of 

introducing ocular aberrations measurement in clinical environments or 

making corneal laser refractive surgery an extended alternative for 

refractive error correction. Knowledge on the aetiology of refractive errors 

of the eye as well as structural differences across refractive groups has also 

advanced in the last century. Whereas the exact mechanisms that lead the 

eye to become ametropic remain unknown, the retinal image is known to 

have a role in this mechanism (Wallman, 1993, Wildsoet, 1997, Wallman 

and Winawer, 2004).  The aim of this work is to study ametropia in 

humans, as well as to assess the outcomes of a correction method such as 
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corneal refractive surgery, using an optical approach, i.e., measurement of 

ocular aberrations using the laser ray tracing technique (LRT). 

Additionally, a study of the effect on the estimation of aberrations of 

different parameters that can be optimised for measurements under 

particular conditions, such as natural accommodation, is included in this 

thesis. As an external student, I have carried out this experimental work at 

Instituto de Óptica (Consejo Superior de Investigaciones Científicas) in 

Madrid (Spain). 

In this introductory chapter a description of the eye is first presented. 

A short review of the history of aberrometry will follow where the 

different existing techniques to measure ocular aberrations will be 

described. Then, the advantages of applying aberrometry to the study of 

myopia and to assess refractive surgery as a correction method for 

ametropic eyes will be pointed out. An introduction of the aspects related 

to aberrometry that will be treated in this thesis will follow: the effect of 

the interactions of polarisation and wavelength of the light used in the 

measurement as well as the sampling pattern used to sample the pupil in 

the estimation of wavefront aberration. Finally, a review of ametropia and 

the emmetropisation process, followed by a short revision of corneal 

refractive surgery will complete this chapter. 

1.1.- THE HUMAN EYE 

Figure 1.1 shows a cross-section of the eye (horizontal section), 

where it is evident the roughly circular shape of the ocular globe. The axial 

length of an average adult is approximately 24 mm. The eye is  an image 

forming device, where the cornea and the lens are the optical elements 

that form a focused image of the outer world on the retina. The refractive 

power of the eye is about 60 D (Atchison and Smith, 2000).  
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1.1.1.- CORNEA 

The cornea contributes about two-thirds of the power of the relaxed 

eye (~42 D) (Atchison and Smith, 2000), with anterior and posterior 

paraxial powers of about +49 D and – 6D, respectively (Charman, 1991b). 

It forms a meniscus which is thinner in the centre (~500 μm) than at the 

edge (~700 μm), with a refractive index of 1.376 (depending on 

wavelength and temperature at which it is measured).   

Histologically, the cornea can be divided in 5 layers (see Figure 1.2) 

(Atchison and Smith, 2000): the epithelium, in direct contact with the tear 

film, acts as a barrier against water (to keep corneal transparency) and 

toxic substances; Bowman’s membrane, consisting mainly on randomly 

arranged collagen fibrils; the stroma, comprising 90% on the corneal 

thickness; Descemet’s membrane, basement membrane of the endothelial 

cells; and the endothelium, consisting on a single layer of hexagonal cells 

that tile the posterior corneal surface and regulate the corneal hydration in 

Figure 1.1. Cross-section of the eye (horizontal section) showing the main elements of 
the eye. Image obtained from http://www.99main.com/~charlief/Blindness.htm 
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order to keep transparency. Although the tear film and each corneal layer 

have their own refractive index (Barbero, 2006), a mean value is usually 

used (n=1.376) (Atchison and Smith, 2000). The optical inhomogeneity of 

the cornea contributes to the scattering of light that makes it susceptible to 

be observed in optical section using a slit-lamp or optical coherence 

tomography (OCT). Of special optical interest is the stroma, and 

particularly the way the constituent collagen fibres are arranged, which 

leads to birefringence (see section 1.2.5.1.-) and is crucial to keep corneal 

transparency, and the mechanical structure of the cornea. The fibres are 

arranged in approximately regular lattices called lamellae, which are 

stacked layer upon layer and run from limbus to limbus parallel to the 

corneal surface, frequently interweaving (Komai and Ushiki, 1991). The 

orientation of the lamellae is not completely random, but there exists a 

preferential direction, usually nasal downwards, although there is 

intersubject variability. 

 

Figure 1.2. Histological section of the cornea showing the different layers. Image from (Yu et 
al., 2006). 
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Anatomically, the cornea is oval, its vertical and horizontal diameters 

being about 12 and 11 mm, respectively. It is continued by the sclera, a 

dense whitish fibrous layer that gives structure to the eye and that 

backscatters light strongly (Atchison and Smith, 2000). The cornea is 

covered by the tear film that, with a thickness of 4-7 μm (Atchison and 

Smith, 2000), has the optical function of maintaining a smooth optical 

surface. The anterior corneal surface usually presents different radius at 

vertical and horizontal meridians (toricity), which produces astigmatism. 

Generally, in young eyes, the vertical meridian is steeper than the 

horizontal one, although this tendency reverses with age (Atchison and 

Smith, 2000). The contour of the anterior cornea can be approximated to a 

conicoid with rotational symmetry about the z-axis (Kiely et al., 1982), 

defined by a radius of curvature (CR) and asphericity (Q), which specifies 

the form of the conicoid. Thus, for Q>0, the conicoid is an oblate ellipsoid 

(major axis parallel to  the y-axis), for Q=0 a sphere, or for -1<Q<0 a 

prolate ellipsoid (major axis along the z-axis) (Figure 1.3). Kiely et al found 

human corneas to be prolate ellipsoids, i.e., the cornea flattens towards the 

periphery, with mean CR and Q being 7.72 ± 0.27 mm and -0.26 ± 0.18. 

This asphericity is not enough to compensate for corneal spherical 

aberration, which is usually positive. Corneas that have suffered LASIK 

for myopic correction typically present an oblate shape, which results in 

an increased spherical aberration (see Chapter 7). 

Figure 1.3. Diagram showing the shape of cross-sections of a prolate and an oblate ellipsoids 
compared to a sphere, according to their asphericity (Q) value. 
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        The posterior corneal surface has a smaller importance in optical 

terms than the anterior surface due to the smaller index difference in the 

cornea-aqueous humour interface. In addition, due to the strong influence 

of the anterior surface, it has been more difficult to measure. Dubbelman 

et al. (2006) measured the shape of anterior and posterior aging cornea 

using a Scheimpflug camera (Brown, 1972) and found that the posterior 

corneal surface had an average radius of 6.53 ± 0.25 mm, the vertical 

meridian being steeper than the horizontal one, same as for the anterior 

surface. They also reported that the posterior astigmatism was twice that 

of the anterior surface. Their posterior Q values varied significantly 

between meridians, the mean value across the eyes they measured being 

0.48 ± 0.26. With age, the Q of both, anterior and posterior surfaces 

changed significantly, producing a peripheral thinning. 

1.1.2.- CRYSTALLINE LENS 

The lens has the shape of a biconvex lens (see Figure 1.4). Different 

parts can be distinguished (Atchison and Smith, 2000). The lens capsule or 

sack, which is a transparent elastic membrane, is attached to the ciliary 

body by the zonules (see Figure 1.1), and plays an important role in 

accommodation. Contraction of the ciliary muscle within the ciliary body 

decreases the tension of the zonules, allowing the lens to take up a more 

curved shape. This leads to changes in the curvature and index 

distribution that increase the power of the lens, and therefore of the whole 

eye to allow focusing near objects. The lens epithelium extends from the 

anterior pole to the equator and it is responsible for the continuous growth 

of the lens throughout life with new epithelial cells forming at the equator. 

These cells elongate wrapping the older fibres, under the capsule and the 

epithelium, meeting at the sutures of the lens, originating its characteristic 

“onion-like” layered structure. The older fibres lose their nuclei and other 

intracellular organelles, forming a stratified structure of fibre membranes 

and interstitial cytoplasm (Bettelheim, 1975).  The older more central fibres 
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are squeezed by the younger peripheral ones and have a smaller water 

content, determining the nucleus of the lens, which is less elastic and shows 

the highest refractive index (about 1.41) (Charman, 1991b). The continuous 

growth of the nucleus and loss of elasticity is thought to be one of the 

factors involved on the gradual loss of accommodation with age that leads 

to presbyopia (complete loss of accommodation) that may occur from 35-

40 years. The more peripheral fibres form the cortex, which presents the 

smallest refractive index in the lens (about 1.38). Therefore, the lens has a 

gradient-index (GRIN), which is thought, together with aspheric surfaces, 

to reduce spherical aberration. For some purposes, an equivalent 

refractive index (1.42) is used. 

 

Average (± standard deviation) values of the geometrical parameters 

of the lens for emmetropic eyes can be found in (Atchison et al., 2008). 

Reported data for anterior lens radius are 10.32 ± 1.41 mm and 10.53 ± 1.40 

mm for males and females, respectively, and for posterior lens radius -6.77 

± 0.78 mm and -6.95 ± 0.91 mm for males and females, respectively, all 

obtained from Purkinje images. Lens central thickness reported values are 

Figure 1.4. Diagram showing a cross-section of the crystalline lens, from (Gupta et al., 2004). 
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4.19 ± 0.47 mm and 4.13 ± 0.40 mm, for males and females, respectively, 

obtained from ultrasonography. Lens diameter reported values from 

magnetic resonance imaging (MRI) are 9.21 ± 0.26 mm and 9.31 ± 0.37 mm 

for males and females, respectively. The reported values of the lens power, 

obtained from Purkinje images are 23.36 ± 2.09 D and 24.48 ± 2.40 D for 

males and females, respectively. 

1.1.3.- CHAMBERS OF THE EYE 

The eye is divided into three chambers: vitreous, anterior and 

posterior chambers. Anterior and posterior chambers are limited by 

posterior corneal surface and the iris, and the iris and the crystalline lens 

anterior surface, respectively (see Figure 1.1). Both chambers are 

connected by the pupil and filled by the aqueous humour, a transparent 

liquid with a refractive index about 1.337, very similar to that of the 

cornea. The aqueous humour is produced in the ciliary processes, at the 

posterior chamber, and drained at the irido-corneal angle at the anterior 

chamber. Therefore, it is constantly moving from the posterior to the 

anterior chamber through the pupil. Under normal conditions it is quite 

homogenous and does not scatter much light. The vitreous chamber, 

limited by the posterior surface of the lens and the retina, is the largest 

chamber in the eye. It is filled by the vitreous body, a transparent gel that 

fills the vitreous chamber and helps to maintain the structure of the eye. 

The vitreous body is quite homogeneous and clear, although with age it 

tends to liquefy and present refractive irregularities (Charman, 1991b).  

1.1.4.- UVEA  

The uvea is the pigmented vascular layer that lies between the 

corneoscleral layer and the retina. It consists, from back to front of the eye, 

of the choroids, the ciliary body and the iris. The iris acts as a variable 

aperture stop, which controls the amount of light entering the eye and the 

retinal image quality through its influence on diffraction, aberration and 
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depth of focus (Charman, 1991b).  It can change from about 2 mm to 8 mm 

in young eyes, but its maximum aperture decreases at old age (miosis). 

The aperture is called the pupil, and can be artificially dilated (mydriasis) 

with chemical substances called mydriatics, such as tropicamide. The 

ciliary body is involved in the accommodation process (see section 1.1.2.-) 

as well as the production of the aqueous humor (see section 1.1.3.-). The 

choroid lies behind the retina and due to its high vascularisation and 

melanin content (Atchison and Smith, 2000) it strongly absorbs short 

wavelengths and back-scatters long wavelengths (Delori and Pfibsen, 

1989). 

1.1.5.- RETINA 

The retina is the light sensitive tissue located at the eye fundus, and  

connected with the brain through the optical fascicle. The position of the 

retina in the unaccommodated eye in relation to the focused image 

projected by the cornea and the lens determines the refractive state of the 

eye. If the retina is in front of the image, the eye will be hyperopic, and 

conversely, if it is behind the image, the eye will be myopic. Histologically, 

it is composed of several cellular and pigmented layers and a nerve fibre 

layer (see Figure 1.5) that faces the vitreous body and forms the optical 

fascicle (also called nerve) (see Figure 1.1). Light reaches the retina at the 

inner limiting membrane, where there is some specular reflection 

(Atchison and Smith, 2000). The six layers between this and the 

photoreceptors are highly transparent. The radial arrangement of the 

fibres in the nerve fibre layer has some effect on polarised light (see 

Section 1.2.5.1.-). The photoreceptors are the light sensitive cells and are in 

contact with the retinal pigment epithelium (RPE). Light has to go through 

the rest of the retinal layers to reach them. There are two kinds of 

photoreceptors: rods, which are sensitive to low-level light, and the cones, 

which are wavelength sensitive and are classified as L, M and S depending 

on whether they are sensitive to long, medium or short wavelengths of the 
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visible spectrum, respectively. Photoreceptors have wave-guiding 

properties (Enoch and Lakshminarayanan, 1991). This implies that only 

light entering each photoreceptor with a particular angle will be guided 

through it and hence perceived. This also implies that light reflected by 

the photoreceptors (light in the visible range of the spectrum) will also be 

guided as opposed to scattered. This will be discussed in section 1.2.5.2.- 

and Chapter 4. The retinal pigment epithelium (RPE), which is in contact 

with the choroid, receives this name due to its high content of melanin. 

Therefore the RPE presents a strong absorption and scatter by melanin 

granules, although some light passes through it and enters the choroid 

(Atchison and Smith, 2000). The RPE is involved in the phagocytosis of the 

outer segment of photoreceptor cells. The residual of this process, a 

molecule called lipofuscin, accumulates throughout life and has the 

property of being fluorescent (Delori et al., 1995) (see Chapter 3).  

Anatomically, two important structures in the retina can be 

distinguished, the fovea and the optic disk. The fovea (Atchison and 

Smith, 2000), where cones predominate (no rods exist at its centre), is 1.5 

Figure 1.5. Diagram showing the different layers of the vertebrate retina (modified from 
http://www.skidmore.edu/~hfoley/images/Retina.jpg). 
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mm wide, and its centre is about 5º from the optical axis (see Section 1.1.6.-

). From an optical point of view, the fovea presents an area where the 

optical aberrations do not change significantly, the isoplanatic patch, with a 

reported diameter of about 0.80 ± 010º (Bedggood et al., 2008). The optic 

disk (Atchison and Smith, 2000) is approximately 5º horizontally by 7º 

vertically. With its centre located approximately 15º nasally and 1.5º 

upwards from the fovea, it is the region where vascular supply enters the 

eye and the optic fascicle leaves the eye. Therefore there are no 

photoreceptors in this region, and because of that the corresponding 

region in the visual field is called blind spot. 

1.1.6.- AXIS OF THE EYE 

 The eye is not a centred, rotationally symmetric optical system: the 

curvature centres of the ocular surfaces as well as the fovea do not lie in a 

single common axis (Atchison and Smith, 2000). Because of this, different 

axes are defined for the eye. The optical axis of the eye is defined as the line 

joining the centres of curvature of the anterior cornea and the posterior 

lens surfaces. The line of sight is the line joining the fixation point and the 

centre of the entrance pupil of the eye, and is the reference that will be 

used for the ocular aberrations maps (see section 1.2.1.-). The keratometric 

axis is that used in keratometers or corneal topographers and contains the 

centre of curvature of the anterior cornea, usually intercepting the line of 

sight at the fixation point. 

1.2.- ABERROMETRY 

1.2.1.- OPTICAL ABERRATIONS 

There are different methods to specify the image quality yielded by 

an optical system. The approach usually applied to describe the optical 

performance of the eye, is in terms of the wave aberration (see Figure 1.6). 

The wave aberration, W(x,y), describes the distortions of the wavefront as 
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it goes through an optical system. A mathematical description of the 

electromagnetic waves can be found in Born and Wolf (1993). The 

wavefront is the surface containing the points of a wave on the same 

phase, which are orthogonal to the corresponding ray pencils. Therefore, if 

an aberrations-free optical system forms a perfect point image, all the 

imaging rays will intersect this point to form the image, or equivalently, 

all the imaging wavefronts will be spherical, centred on the image point. 

Under these conditions the optical system will be estigmatic and tehe 

image of a point source will be a point. However, when the optical system 

is aberrated there is no longer a point focus: the rays will not intersect on a 

single point, and the wavefronts will no longer be spherical. When the 

system forms a perfect image focused at infinity, the rays will be parallel, 

and the wavefronts will be planes (spheres of infinite radius). Thus, the 

aberration can be described in terms of the distance that each point of the 

wavefront departs from the ideal sphere at the exit pupil (Charman, 

1991b). Wave aberration can be represented in a wave aberration map as 

shown in Figure 1.6, where the colour indicates the distance between the 

wavefront and the reference sphere, and the lines join points at equal 

distance. Therefore, optical aberrations can be represented as: wave 

aberration (departure of the wavefront from the ideal wavefront, as 

measured at the exit pupil), transverse aberration (departure of a ray from 

its ideal position at the image plane), or longitudinal aberration (departure 

of the intersection of a ray with the optical axis from its ideal position) 

(Atchison and Smith, 2000).  

Optical aberrations can be divided in chromatic and monochromatic 

(geometrical) aberrations. Chromatic aberrations are a consequence of the 

dispersion (variation of refractive index with wavelength) of the refractive 

media of an optical system. There are two types of chromatic aberrations. 

The longitudinal chromatic aberration (LCA) is produced because different 

wavelengths are focused at different image planes, and can be quantified 

as the variation in power with wavelength. The transverse chromatic 
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aberration (TCA) is produced when obliquely incident rays are focused at 

different transverse positions within the image plane.  

Monochromatic aberrations are those present when only one 

wavelength is considered, and arise from the geometry, irregularities, tilts 

and decentrations of the components of the optical system. The magnitude 

of the geometrical aberrations increases with the diameter of the exit pupil 

considered. Seidel (Seidel, 1856) named in 1856 the seven primary 

aberrations, which include, apart from the chromatic aberrations, five 

monochromatic aberrations: Astigmatism, Spherical aberration, Coma, 

Field Curvature and Distortion. In the presence of any of the first three 

aberrations, the optical system will not be able to image a point source as a 

point, and the resulting image will be blurred, degrading the retinal 

image. When astigmatism is present, parallel rays are focused down to 

two mutually perpendicular focal lines at different positions (see Figure 

Figure 1.6. Schematic representation of the wave aberration. Wave aberration values (distances 
between the distorted aberrated wanefront and the spherical reference) can be represented as z-
coordinate referred to the pupil plane (three-dimensional representation) or can be represented as a 
colour gradation (Aberration map). 
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1.7 A). Astigmatism is usually due to lack of symmetry of at least one 

surface, usually the anterior cornea in the eye (Atchison and Smith, 2000). 

Positive (negative) spherical aberration is present when parallel non-

paraxial rays do not intersect at the paraxial focus, but in front or behind it 

(see Figure 1.7 B). The further the ray is from the optical axis, the greater 

this effect will be. Spherical aberration (SA) is rotationally symmetric and 

depends on the radius of curvature (R) and on the asphericiy (Q) of the 

optical surfaces (SA decreases when R increases and increases with Q). In 

a rotationally symmetric system, coma is an off-axis aberration, where 

rays departing from an off-axis point reach the image plane at different 

points (see Figure 1.7 C). In the eye, coma-like aberrations present at  the 

fovea are the result of the lack of symmetry of the optical elements around 

an optical axis (Atchison and Smith, 2000). Field curvature and distortion 

are also off-axis aberrations. In both cases a source point is imaged as a 

point, but the position will be different from that predicted from paraxial 

optics: when field of curvature is present the point will be imaged in front 

of (for systems with components of positive power such as the eye) or 

behind the paraxial focal plane, and when distortion is present, the point 

is formed in the paraxial image plane but further away (positive 

distortion) or closer (negative distortion) to the optical axis than expected 

(Atchison and Smith, 2000).  

Piston, tilt and defocus are not considered Seidel aberrations, 

although tilt and defocus have the same dependence with pupil 

coordinates as distortion and field of curvature, respectively. Piston is the 

mean value of the wavefront across the pupil of an optical system, and tilt 

quantises the average slope of the wavefront in X and Y directions 

(Malacara, 1992). Defocus occurs when parallel rays (paraxial and not 

paraxial) converge in front of (positive defocus) or behind (negative 

defocus) the paraxial focus. Although not considered a Seidel aberration, 

defocus is considered a low order aberration when the wave aberration is 

described in terms of a polynomial series. 
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Apart from the optical aberrations, other retinal image quality 

criteria are commonly used, such as the point-spread fuction (PSF) and the 

Modulation Transfer Function (MTF). The PSF is the illuminance 

distribution of a point source of light in the image, and its shape depends 

on diffraction, defocus, aberrations and scatter. The PSF produced by the 

optical aberrations is proportional to the Fourier transform of the wave 

aberration function. The MTF quantifies how each spatial frequency is 

transferred by an optical system by measuring the amplitude of the output 

(image) for each spatial frequency in relation to an input (object) of known 

amplitude (de Valois and de Valois, 1988). The MTF can be calculated as 

the magnitude of the autocorrelation of the wave aberration function 

(Atchison and Smith, 2000). The quality of the visual system depends not 

only on optical factors, but on neural factors such as sizes and spacing of 

Figure 1.7. Illustration of those Seidel aberrations which prevent optical systems from forming a 
point image from a point object: astigmatism (A), spherical aberration (B) and coma (C). T, S, and 
C stand for the image planes corresponding to tangential rays, sagital rays and circle of minimum 
confusion. 
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retinal cells, the degree of spatial summation at the different levels from 

the retina to the visual cortex and higher level processing (Atchison and 

Smith, 2000). The Contrast Sensitivity Function (CSF) measures the 

contrast required by an observer for the detection of each of different 

spatial frequencies, and is expressed as the reciprocal of the contrast 

required for detection (de Valois and de Valois, 1988). It hence includes 

optical as well as neural factors. The MTF and the reciprocal of the CSF are 

therefore closely associated (Atchison and Smith, 2000). 

1.2.2.- ESTIMATION OF ABERRATIONS 

The wave aberration of a general optical system can be described 

mathematically by a polynomial series. Although some other polynomial 

series have been proposed (Howland and Howland, 1977), Zernike 

polynomial (Born and Wolf, 1993) expansion has become the standard for 

representing ocular wave aberration data, since they present some 

advantages for this purpose: 1) they are defined over the unit circle, and 

aberrations are usually referred to circular pupils; and 2) some terms can 

be easily related to Seidel aberrations (Born and Wolf, 1993).  Therefore, a 

wave aberration can be described as a summation of Zernike polynomial 

functions weighted by the so-called Zernike coefficients, which indicate 

the magnitude of each particular aberration present: 

),(),( YXZCYXW m
n
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m
n∑∑≈   ( 1.1) 

where ),( YXW  is the wave aberration phase in microns as a 

function of cartesian coordinates,  m
nC  and ),( YXZ m

n  are the Zernike 

coefficient in microns and Zernike polynomial (dimensionless), 

respectively, as a function of cartesian coordinates, corresponding to the 

radial order n and the meridional frequency m (see Figure 1.8). The 

Optical Society of America established a set of recommendations 

regarding sign, normalisation and ordering that will be followed 
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throughout this work (Thibos et al., 2000). A mathematical definition of 

the Zernike polynomials according to these recommendations can also be 

found in the same reference. Following this convention, W>0 means the 

wavefront is phase-advanced relative to the chief ray. Figure 1.8 shows the 

three-dimensional representation of the Zernike polynomials up to 6th 

order with the corresponding names and notation. As can be observed fro 

the figure, terms with meridional frequency zero are rotationally 

symmetric. The Root Mean Square wavefront error (RMS), defined as “the 

root square of the sum of the squares of the optical path differences as 

measured from a best-fit reference spherical wavefront over the total 

wavefront area”(Fischer et al., 2007), is typically used as a global metric for 

the optical quality. 

Figure 1.8. Representation of the Zernike base functions. Each row in the pyramid corresponds to a 
radial order of the polynomial, and each column to a meridional frequency. Positive and negative 
frequencies indicate harmonics in cosine and sine phase, respectively. Negative frequency 
astigmatism and n-foil terms are usually denominated “oblique” astigmatism or n-foil. Positive and 
negative frequency coma terms are usually denominated as horizontal or vertical coma, respectively. 
Although each mode can be assigned a single reference number, a double-script notation which 
designates each basis function according to its order (subscript) and frequency (superscript) is 
commonly used (Thibos et al., 2000). 
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Most methods of estimation of the wave aberration are based on local 

sampling of the pupil and measurement of the local wave aberration 

slope. The local slope (partial derivatives) of the wavefront is proportional 

to the  ray aberration (Born and Wolf, 1993): 
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where pp RR /,/ ηηξξ ==  are dimensionless canonical pupil 

coordinates and pR  is the pupil radius (Moreno-Barriuso et al., 2001a). 

The wave aberration is reconstructed by integrating the slopes of an array 

of beams intersecting the eye’s entrance (or exit in some cases) pupil 

(Howland, 2000). This reconstruction can be local (Southwell, 1980), modal 

(Cubalchini, 1979, Rimmer, 1974, Fried, 1977, Herrmann, 1981) (or a 

mixture of both), if the estimate is a phase value on a local area or a 

coefficient of an aperture function (Southwell, 1980). Usually, in any case a 

least-square estimation is used for phase reconstruction.  Some questions 

to consider when selecting the reconstruction model are the compatibility 

with the sampling geometry of the sensor, the reconstruction algorithm 

complexity (convergence problems, computation speed requirements), 

and the propagation error. The most widely used method in ocular 

aberrometry is a modal reconstruction that is based on the expansion of 

the derivatives of wave aberration as a linear combination of a set of base 

functions (most frequently the derivatives of Zernike polynomial 

expansion), and a subsequent least-squares fit of the expansion coefficients 

to the measured gradients (Rios et al., 1997). Southwell (Southwell, 1980) 

found that modal estimation was superior to zonal estimation in terms of 

noise propagation, particularly when only a fixed number of modes were 

of interest, and that modal estimation was computationally easier and 

faster.  These advantages enhanced as the number of samples increased. 

Regarding the compatibility with the geometry of the sensor, some 

geometries not currently being used might be better adapted to the 
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geometry of Zernike functions (see Section1.2.5.3.-). This topic will be 

addressed in Chapter 5 of this thesis. 

1.2.3.- HISTORY AND TYPES OF ABERROMETERS 

The history of aberrometry dates back to 1619 when Scheiner 

(Scheiner, 1619 in Biedermann, 2002) invented a disk with a central and a 

peripheral pinhole that was placed in front of the eye of a subject, so that 

an imperfect eye would form two retinal images when looking at a distant 

point light source. Helmholtz (1821-1894) was one of the pioneers who 

extensively investigated the structure of the human eye, including its 

aberrations. He foresaw that human ocular aberrations were significant 

enough to degrade the retinal image (Helmholtz, 1885). Around the same 

time, in 1894, Tscherning (Tscherning, 1894 in Biedermann, 2002) built 

what he called “an aberroscope” to measure human eye aberrations, 

consisting on a grid superimposed on a 5-diopter lens so that the  image of 

the grid was shadowed on the subject’s retina when viewing a distant 

point light source through the “aberroscope”. Aberrations were estimated 

from the distortions of the grid. In 1900 Hartmann (Hartmann, 1900 in 

Biedermann, 2002) used Scheiner’s idea to measure aberrations in mirrors 

and lenses, using an opaque screen perforated with numerous holes, 

which is commonly referred to as wavefront sensor. Independently 

Smirnov (Smirnov, 1961), in 1961 had the idea of sequentially rotating 

Scheiner’s disk in order to sample the whole pupil. One year before B. 

Howland (Howland, 1968) had invented the crossed cylinder aberroscope, 

a modification of Tscherning’s one that used a crossed cylinders lens, that 

he used to study aberrations in camera lenses. It was not until a few  years 

later that it was applied to measure aberrations of the human eye 

subjectively (Howland and Howland, 1976), with the subject drawing the 

perceived distorted grid. In 1984, Walsh et al. (1984) turned Howland’s 

aberroscope into an objective method by photographing the image of the 

grid on the retina. In 1971 Shack and Platt (Shack and Platt, 1971) 
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improved Hartmann’s screen by using an array of microlenses (or lenslets) 

instead of the perforations to analyse the wavefront coming out of the 

optical system to study. The array of microlenses is called a Hartmann-

Shack (HS) wavefront sensor, and it is composed of a number of 

microlenses with the same focal length, arranged in a known geometry. A 

diagram of the working principle of a HS is shown in Figure 1.9. In this 

technique (Liang et al., 1994), a point source is created in the object space, 

at the fovea. Light from the eye reaching each lenslet is brought to a focus 

in the focal plane of the lens array. When an ideal plane wave reaches the 

sensor, the image obtained in its focal plane reproduces the geometry of 

the sensor, given that each spot is located on the optical axis of the 

corresponding lenslet. The pattern of spots in this image will be used as a 

reference. When an aberrated wavefront is measured, the image spot 

produced by each lenslet shifts with respect to the corresponding point in 

the reference a distance proportional to the local phase distortion 

(transverse aberration). The HS sensor was first applied in astronomy. It 

was in 1994 when it was adapted by Liang et al (Liang et al., 1994) in 

Heidelberg for measuring aberrations of the eye, and a couple of years 

later it was developed in Rochester and integrated in an adaptive optics 

flood illumination fundus camera to image the human eye retina with 

unprecedented resolution by removing the eye aberrations using a 

deformable mirror (Miller et al., 1996). In this thesis a HS sensor has been 

used to measure ocular aberrations in Chapters 3 and 4.  
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Some years later, the Ray Tracing technique (LRT) (Navarro and 

Losada, 1997, Molebny et al., 1997) was applied to measure ocular 

aberrations. This technique, which has been used throughout this thesis 

will be more extensively described in Chapter 2, section 2.2. A diagram of 

the working principle of LRT is shown in Figure 1.10. Collimated laser 

pencils are sequentially delivered through different pupil positions, so 

that each pencil will be deviated an angle proportional to the local wave 

aberration, and will impact at a foveal location away from that of the 

reference central ray (transverse aberration). The joint plot of the impacts 

corresponding to the rays entering through different pupil locations is a 

spot diagram. There is a psychophysical version of the ray tracing, the 

Spatially Resolved Refractometer (SRR), where the ray aberration at each 

pupil point is computed as the angle that the subject has to tilt the 

incoming beam in order to visualize the ray centred on the retina (Webb et 

al., 1992, He et al., 1998). Some aberrometers measure the ray aberration 

on the retina or image space (“ingoing” techniques), i.e., they measure the 

deviation of the rays as they enter the eye. This is the case of the LRT, SRR 

or Tscherning’s type aberrometer (Seiler et al., 2000) previously described. 

Figure 1.9. Diagram of the working principle of Hartmann-Shack (SH) sensor. A point source at 
the retina emits spherical wavefronts which are distorted by the eye aberrations. Each lenslet will 
sample a portion of the wavefront on a different phase, and will form a point image away from its 
focal point a distance proportional to the phase distortion. Modified from original by S. Marcos. 
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In other aberrometers, aberrations are measured in the object space 

(“outgoing” techniques), i.e., as the light exit the eyes. This is the case of 

the Hartmann-Shack technique. Table 1.1 compares the different 

aberrometry techniques according to some of their features.  

Figure 1.10. Schematic diagram showing the working principle of Laser Ray Tracing (LRT): parallel 
rays sequentially delivered through different pupil positions deviate an angle proportional to the wave 
aberration will impact at a different foveal location. A spot diagram can be represented by plotting 
jointly the impacts sequentially collected for all the pupil locations. Modified from an original 
diagram by S. Marcos. 

Table 1.1.  Comparison of the features of the different techniques to estimate ocular aberrations 
from transverse aberrations. 
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In this work, the LRT technique to measure ocular aberrations has been 

mainly used. This technique has a large dynamic range and can measure 

largely degraded eyes given that, since images are captured sequentially, 

the entire CCD sensor is available for each aerial image. This makes LRT 

well-suited to study eyes with optical quality varying widely in 

magnitude in a wide range, as will be explained in section 1.2.6.-. The 

flexibility in its configuration has allowed us to carry out experiments that 

would have been more challenging with other techniques, such as the 

work described in Chapter 5. Finally, this objective method allows shorter 

measuring times compared to its psychophysical counterpart (SRR).  

1.2.4.- OPTICAL ABERRATIONS OF THE HUMAN EYE 

Ever since Helmholtz foresaw that the eye, far away from being a 

perfect optical system, presented even more optical aberrations than  the 

optical instruments at the time (Helmholtz, 1885), the measurement of 

aberrations has advanced to the point that there exist several studies 

characterising the aberrations of the general population and aberrometers 

have become available in the clinical practice. In this section a description 

of the characteristics of the aberrations pattern which are common among 

the normal population is presented. An overview of current knowledge of 

the aberrations of the entire eye will be presented, followed by the 

aberrations of the cornea and finally discuss the interaction of corneal and 

internal aberrations to yield the overall ocular aberrations pattern.  

1.2.4.1.- Ocular Aberrations 

Early studies on the ocular (total) aberrations of the human eyes 

(Von Bahr, 1945, Van Heel, 1946, Ivanoff, 1953, Smirnov, 1961, Van der 

Brink, 1962, Jenkins, 1963, Howland and Howland, 1976, Howland and 

Howland, 1977) already reported a large variation of the magnitude and 

distribution of the aberrations among individuals, which has been 

confirmed by later studies including a larger number of eyes. In addition, 
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optical aberrations are known to change with age (see below), be related to 

the refractive group of the eye (see section 1.3.1.-) and depend on the pupil 

size. However, some general conclusions across the population can be 

extracted.  

1) The defocus Zernike term, followed by both astigmatic terms 

(second Zernike order), are the main contributors to the total RMS (Porter 

et al., 2001, Castejon-Mochon et al., 2002, Thibos et al., 2002, Cheng et al., 

2004);  

2) In general, for each subject, the magnitude of the aberrations 

decreases as the Zernike order increases (Porter et al., 2001, Castejon-

Mochon et al., 2002, Thibos et al., 2002, Cheng et al., 2004), with terms 

beyond fourth Zernike order being practically zero (Castejon-Mochon et 

al., 2002, Cheng et al., 2004). Fourth order SA ( 0
4Z ) has been reported to be 

larger in magnitude than the previous third order terms (Porter et al., 

2001, Castejon-Mochon et al., 2002, Thibos et al., 2002). However, some 

studies also report third order aberrations (coma and trefoil) to dominate 

the HOA pattern of normal eyes (Howland, 2002, Applegate et al., 2007).   

3) The average value of each term across the population is zero, 

except for 4th order SA ( 0
4Z ), which has been found to be significantly 

positive across subjects, with reported values including, for example,  

0.037 μm  (6 mm pupil) (Plainis and Pallikaris, 2006), 0.065±0.083 μm (5 

mm pupil) (Cheng et al., 2004), 0.128±0.096 μm (6 mm pupil) (Salmon and 

de Pol, 2006) and 0.138 μm (5.7mm pupil) (Porter et al., 2001).  These 

values depend on characteristics of the studied population  such as age 

and refractive error. However, Plainis et al. reported that also oblique 

trefoil ( 3
3
−Z ) was significantly different from zero with an average value of 

-0.062 μm. Data reported by Salmon and de Pol (2006) support this finding 

(they report a mean value of 0.11 μm), and include vertical coma ( 1
3
−Z ), 

with a mean value of 0.14 μm, among the most prominent Zernike terms. 
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4) The aberrations of the eye seem to be related in such a way that 

the overall optical quality of the eye was optimised (McLellan et al., 2006). 

This feature was not found for corneal aberrations or for randomly 

generated sets of aberrations with the same RMSs as the measured eyes.  

5) The reported average RMS for HOA in a large young normal 

population is 0.22 μm (5 mm pupil) (Cheng et al., 2004), 0.26 μm (6 mm 

pupil) ) (Plainis and Pallikaris, 2006) and 0.33 μm (6 mm pupil) (Salmon 

and de Pol, 2006).  

6)A bilateral symmetry in the aberration patterns corresponding to 

both eyes of the same subject has been reported (Castejon-Mochon et al., 

2002, Marcos and Burns, 2000, Plainis and Pallikaris, 2006, Thibos et al., 

2002, Porter et al., 2001, Kelly et al., 2004). Aberration patterns from both 

eyes present a mirror symmetry, which is confirmed by negative 

correlations found between left and right eyes for most of the Zernike 

coefficients corresponding to asymmetric Zernike functions such as coma 

and astigmatism (Porter et al., 2001). The highest correlation between 

Zernike terms was found for defocus, followed by SA and astigmatic 

terms (Porter et al., 2001, Castejon-Mochon et al., 2002). 

Ocular aberrations have been reported to increase with age 

(Applegate et al., 2007, Artal et al., 2002, Mclellan et al., 2001, Calver et al., 

1999)  for a fixed pupil diameter, and in particular, the RMS for HOA has 

been found to increase significantly (McLellan). A change in SA with age 

towards positive values, attributed to a loss of the compensation between 

the cornea and the crystalline lens (Artal et al., 2001, He et al., 2003, 

Mclellan et al., 2001, Smith et al., 2001, El Hage and Berny, 1973, 

Radhakrishnan and Charman, 2007, Millodot and Sivak, 1979), has also 

been found. Salmon et al. (2006) found a gradual increase of SA with age, 

although the wide variability they found indicated the influence of other 

factors than age. Recent studies in emmetropic eyes (Atchison et al., 2008, 

Plainis and Pallikaris, 2006) did not confirm this change, suggesting that 
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interactions between age and refraction might have influenced the results 

of previous studies. Third order aberrations have also been reported to 

increase with age (Mclellan et al., 2001), particularly horizontal coma ( 1
3Z ) 

(Atchison et al., 2008, Salmon and de Pol, 2006). Salmon et al. (2006) also 

found correlations for terms 1
3
−Z , 2

4Z  and 4
4Z . McLellan et al. found a 

strong significant positive correlation between 5th and higher order 

aberrations RMS and age, and Salmon et al. found significant correlations 

for 3rd, 4th, 5th and 6th RMSs.  

1.2.4.2.- Corneal Aberrations 

Given that the cornea contributes about two-thirds of the power of 

the relaxed eye (Atchison and Smith, 2000), it has a great influence in the 

ocular aberrations. Currently, the most extended way to estimate anterior 

corneal aberrations is from the elevation maps obtained from a corneal 

topographer in combination with ray tracing through the optical surface 

defined by these maps (Applegate et al., 1996, Barbero et al., 2002b, Guirao 

and Artal, 2000). Similarly to ocular aberrations, corneal aberrations have 

been reported to vary widely among the population (Guirao et al., 2000, 

Wang et al., 2003b), and apparently corneal aberrations also present some 

bilateral symmetry (Wang et al., 2003b, Lombardo et al., 2006). The 

anterior cornea presents with-the-rule astigmatism (vertical meridian 

steeper), which generally reverses with age into against-the-rule, and 

positive SA. Wang et al. (2003b) reported average values of 0.280 ± 0.086 

μm, 0.248 ± 0.135 μm and 0.479 ± 0.124 μm for SA, coma and HOA, 

respectively for a population ranging from 20 to 79 years old (mean age 

was 50 years). In terms of aging, anterior corneal aberrations have been 

reported to increase moderately with age (Oshika et al., 1999a, Guirao et 

al., 2000, Atchison et al., 2008). Particularly, third order coma has been 

found to increase with age (Oshika et al., 1999a, Guirao et al., 2000). 

However, Atchison et al. only found a significant increase in the 6th order 
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terms, apart from HOA. The reason might be the interaction between age 

and refraction previously commented. 

The posterior corneal surface has a smaller effect on HOA of the eye 

(Dubbelman et al., 2007), due to the small index difference between the 

cornea and the aqueous humour (Atchison and Smith, 2000).  Using a 

distortion corrected Scheimpflug camera (Brown, 1972), Dubbelmann et al. 

(2006) found a compensation of 31% of the anterior corneal astigmatism by 

the posterior cornea. Using the same technique, Sicam et al. (2006) found 

that SA of the posterior cornea is negative in young eyes and becomes 

positive with age, disrupting the compensation of the positive SA of the 

anterior cornea. Dubbelman et al. (2007)  also found a coma compensation 

of 3.5% between both corneal surfaces, that disappeared with age.  

1.2.4.3.- Internal Aberrations: interaction between total and 

corneal aberrations 

Internal aberrations can be estimated from the subtraction of anterior 

corneal aberrations from ocular (total) aberrations, and include the 

aberrations of the lens and the posterior cornea (as the humours are not 

believed to play a significant role in terms of aberrations). Knowledge of 

the relative contribution of the cornea and the lens to the ocular wave 

aberration is important for both, basic study of the human eye and clinical 

applications, as will be shown in Chapters 6 and 7, respectively. 

The existing compensation of the positive corneal SA by the negative 

SA of the lens has been reported since the 70’s (El Hage and Berny, 1973, 

Millodot and Sivak, 1979), and has been confirmed since, using different 

techniques (Tomlinson et al., 1993, Smith et al., 2001, Artal and Guirao, 

1998, Artal et al., 2001, Barbero et al., 2002a, Kelly et al., 2004). This 

compensation had also been reported for astigmatism (Le Grand and El 

Hage, 1980, Artal et al., 2001, Kelly et al., 2004) and is quite well known in 

clinical practice. The development of tecniques to measure the aberrations 
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has allowed the initial studies on astigmatism and SA compensation to be 

expanded to other aberrations. Artal et al. (2001) found compensation in 

both astigmatism Zernike terms, SA, oblique trefoil and coma. Kelly et al. 

(2004) confirmed Artal’s findings for horizontal/vertical astigmatism ( 2
2Z ), 

horizontal coma ( 1
3Z ) and SA ( 0

4Z ), but they did not find compensation for 

oblique trefoil ( 3
3
−Z ) or oblique astigmatism ( 2

2
−Z ), maybe because only 

10% of their sample had oblique astigmatism axes.  Two different 

mechanisms have been suggested for this compensation (Artal et al., 2001, 

Barbero et al., 2002a, Kelly et al., 2004): a passive geometric mechanism 

resulting from the evolution and genetically programmed, responsible for 

the compensation of SA, for which the pattern is similar across the 

population (positive corneal/negative lens SA); and a fine-tuning active 

process that would take place during the development of the eye (similar 

to the emmetropisation process for the defocus that will be addressed in 

section 1.3.-), responsible of the compensation of those aberrations which 

pattern is more randomly distributed across the population, such as coma 

and astigmatism. Some years later, Artal et al. (2006) found that eyes with 

larger misalignments between the fovea and the optical axis, and therefore 

likely to have larger amounts of coma, had larger coma compensation. He 

suggested that the passive geometric evolutionary mechanism responsible 

for SA compensation could also be responsible for coma compensation. 

Corneal/internal compensation of horizontal coma has also been reported 

in patients with aspheric intraocular lenses implanted (Marcos et al., 2008), 

supporting that the mechanism is geometric. 

The increased optical aberrations (see section 1.2.4.1.-) present in the 

old years has been attributed to the loss of this compensation with age, 

reported for SA. Changes in the crystalline lens seem to be responsible for 

this balance disruption, as the corneal aberrations have been found to 

remain fairly constant (Smith et al., 2001). 
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1.2.5.- ABERRATION MEASUREMENT IN PATIENTS: INFLUENCE OF THE 

MEASUREMENT LIGHT AND SAMPLING PATTERN 

The generalised use of aberrometry in clinics has brought some 

additional needs such as speed in the measurement and comfort for the 

patient. In applications such as adaptive optics, speed in the data 

processing is crucial in order to achieve real time correction. Acquisition 

times can be reduced by reducing the number of samples in sequential 

aberrometers, or the exposure times. Using infrared (IR) wavelength 

(more reflected by the eye fundus than visible light (Delori and Pfibsen, 

1989)), or polarisation configurations that maximise light reflected on the 

photoreceptors layer (Lopez-Gil and Artal., 1997) can help to avoid stray 

light or unwanted reflections in the image, optimising processing time. 

The latter can also be minimised by decreasing the number of samples. 

However, given that some aberrometry techniques use light reflected back 

from the retina, the interaction of the light with the different retinal layers 

can influence the measured aberration pattern. In addition, changes in the 

number and distribution of samples can also influence the accuracy in the 

estimation of aberrations. 

1.2.5.1.- Polarisation State of the measurement light 

Polarisation is a property of transverse waves that describes the 

behaviour of the electric field vector E
r
 as the wave propagates (see Figure 

1.11). When E
r
 rotates uniformly through 2π radians over one wave period, 

the wave is said to be elliptically polarised, since the end point of E
r
 will 

describe within each wave period what is called a polarisation ellipse (Born 

and Wolf, 1993) perpendicular to the direction of propagation (Figure 1.11 

C). If the modulus of E
r
 is constant in time, then the elliptic polarisation 

will degenerate into circular polarisation (Figure 1.11 B). This happens 

when the phase difference between the orthogonal components of E
r
, ϕ, is 

an odd multiple of π/2.  When E
r
 vibrates always on the same plane, the 
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wave is said to be linearly polarised (δ is 0 or a positive multiple of 

π) (Figure 1.11 A). 

 

There are different ways in which matter interacts with polarised 

light as it travels through it. The interaction of most importance in the 

human eye is the retardation due to birefringence. Birefringence results 

from the existence of two or three different refractive indices in the same 

material, depending on whether it is uniaxial or biaxial. When light enters 

a birefringent material, the incident beam is split in two different beams 

that travel at different speeds (depending on the refraction index they 

find) and therefore a phase shift will be produced between both 

components (retardation). When linearly polarised light goes through a 

birefringent material the phase shift will produce elliptically polarised 

Figure 1.11. Diagrams showing different states of polarisation depending on the behaviour of electric 
field vectorE

r
: linear polarisation (A), circular polarisation (B) and elliptical polarisation (C). ϕ 

indicates the phase difference between the x and y components of E
r
. Image obtained from 

http://spie.org/x17069.xml?ArticleID=x17069 
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light. If the phase shift is π/2 (quarter wave plate) the resulting beam will 

be circularly polarised. Dichroism consists on the selective absorption of 

light by a material, depending on the propagation direction, and that 

results in partial polarisation of the light. It is present in the fovea together 

with birefringence (Van Blokland, 1985). 

 The cornea, the crystalline lens and the retina interact with polarised 

light (Van Blokland, 1986, Bueno, 1999, Bour, 1991), producing mainly 

retardation (Figure 1.12 A). The cornea is the optical element of the eye 

that most affects polarised light. Corneal epithelium and endothelium (see 

Figure 1.2) can be considered optically anisotropic. However, the stroma 

(see section 1.1.1.-), accounting for 90% of corneal thickness, shows 

birefringence. Although the intrinsic birefringence of the cylindrical 

collagen fibrils is cancelled out as a consequence of the different 

orientations of the lattices (Van Blokland and Verhelst, 1987), each lamella 

shows form birefringence due to the arrangement of the collagen fibrils 

and can be considered as a retarding plate, with its fast axis aligned with 

the axis of the collagen fibrils (Farrell et al., 1999). Because there exists a 

preferential direction in the orientation of the lamellae, usually nasal 

downwards, the cornea behaves as a biaxial crystal (Van Blokland and 

Verhelst, 1987), i.e., optically anisotropic in three directions, with the 

fastest axis lying along the normal to the corneal surface and the slowest 

axis, parallel to the corneal surface lying usually along the nasal 

downwards direction (from 10º to 30º from the horizontal). The 

retardation measured for human corneas varies between  30º to 90º, and 

increases from the centre to the periphery (Bueno and Jaronski, 2001, 

Jaronski and Kasprzak, 2003, Gotzinger et al., 2004, Van Blokland and 

Verhelst, 1987) and in depth (Gotzinger et al., 2004, Van Blokland and 

Verhelst, 1987). The birefringent structure of the cornea can be seen when 

the cornea is placed between two crossed polarisers: a typical polarisation 

cross pattern appears as seen in Figure 1.12 B. The crystalline lens would 

be expected to show form birefringence due to the structure of the cortex 
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(Bour, 1991), consisting on a stratified structure of fibre membranes and 

interstitial cytoplasm (Bettelheim, 1975) arranged like the layers of an 

onion (See section 1.1.2.-). It also exhibits intrinsic birefringence, probably 

induced by a regular arrangement of water-insoluble proteins that form 

the cytoskeletal bodies of its fibre cells (Philipson et al., 1975). However, 

the contribution of the crystalline lens to the birefringence of the eye is 

almost negligible, given that intrinsic and form birefringence values are 

similar in magnitude and of opposed signs, and therefore they cancel each 

other (Bettelheim, 1975). The retina has been reported to be dichroic as 

well as birefringent (Bueno, 1999, Hocheimer and Kues, 1982, Naylor and 

Stanworth, 1954) apparently due to the orientation of the molecules of 

macular pigment (intrinsic) and the Henle fibres layer (form). A minor 

contribution from the external segment of the cones to both intrinsic and 

form birefringence has also been suggested. However, the retardation and 

the dichroism in the central fovea are quite small. 

A mean retardation of 70º, which varied across the pupil, was found 

experimentally with double-pass ellipsometric measurements (λ=514 nm) 

of the polarization properties of ocular structures (Van Blokland, 1986). 

This shift will produce an average phase difference of λ/5 when changing 

the polarization of the incident light and/or analyser in the imaging 

channel in imaging aberrometers. Some HS set-ups described in the 

literature (Liang et al., 1994) use polarised light in order to avoid corneal 

reflexes that would make the data processing difficult. The use of 

polarizers in the illumination and detection channels affects the intensity 

of the raw data (aerial retinal images captured on a CCD camera). 

Changes in the polarization state of light passing through the eye produce 

different intensity patterns after the light passes through an analyzer. 

These changes of intensity have a large impact on the point-spread-

function (PSF) estimates obtained by using a double-pass arrangement 

that incorporates a polarizing channel and an analyzer channel (Bueno 

and Artal, 1999). As opposed to the conventional double-pass technique, 
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the aerial images recorded in LRT or HS systems are used only to compute 

the centroid of several intensity patterns. However, relative differences in 

intensity in the core and tails of the retinal image or differences in shape 

could result in changes in the estimation of the centroid and have an 

impact on the wave aberration estimate. A previous study (Prieto et al., 

2001) using a SRR showed no difference in the wave aberration measured 

with different states of polarization of the illuminating channel. The 

possible effect of the polarisation state of the incident and collected light in 

objective aberrometers (LRT and HS) will be studied in Chapter 3 of this 

thesis. 

1.2.5.2.- Measurement LightWavelength 

Most of the currently available wavefront sensing techniques use IR 

illumination, due to its advantages over visible light. It is more 

comfortable for the patient because the human eye is less sensitive to IR 

(Wyszecki and Stiles, 1982); the safety limits for retinal exposure to light 

are larger in IR range, so more intensities can be applied to the eye (ANSI, 

2000); pupil dilation is not strictly required; the retina reflects a higher 

percentage of the incident light compared with shorter wavelengths 

(Delori and Burns, 1996); and backscatter by the anterior optics is reduced 

Figure 1.12. Polarisation effects in the eye. (A) Schematic diagram showing the changes that linearly 
polarised light suffers when it double passes the eye. The corneal and the lens, due to their 
birefringence, change the light to elliptically polarised. Scattering at the eye fundus produces 
additional retardation and partial depolarisation. The cornea and the lens introduce additional 
retardation to the remaining polarised light. Modified from (Van Blokland, 1986). (B) .The corneal 
polarisation cross. Image from (Cope et al., 1978) 
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(Van Den Berg, 1997). Dynamic measurement (Hofer et al., 2001b, 

Fernandez et al., 2001) of aberrations is then possible using IR illumination 

with natural accommodation because mydriasis (and its associated 

cycloplegic effects, such as paralysation of accomodation) is not necessary. 

However, given that the visual function takes place under visible light 

conditions, data from visible light are desirable. For direct comparison 

between optical measurements (estimated from the wave aberration) and 

visual performance verification of the equivalence between results 

obtained with IR light and with visible light is needed. This is particularly 

important if the measured wave aberration is planned to be used to guide 

ablation in refractive surgery procedures (see section 1.4.1.-), where the 

aim is to improve the patient’s visual performance. Knowledge of the 

defocus shift between IR and visible wavelengths is essential if the results 

are to be used to predict refraction.  

It has been reported (Delori and Burns, 1996) that visible light is 

more likely to be reflected by the photoreceptor outer segments which 

behave as waveguides (Enoch and Lakshminarayanan, 1991, Marcos and 

Burns, 1999) whereas near IR light is reflected more by deeper layers RPE 

and choroid, which backscatter longer wavelengths (Delori and Pfibsen, 

1989) (see sections 1.1.4.- and 1.1.5.-). It is also known that the estimation 

of defocus is affected by the retinal layer in which the light is reflected for 

the measurement (Howland, 1991 ). Refraction estimates from retinoscopy 

are systematically more hyperopic than those from subjective refraction 

(Safir et al., 1971) and this effect is attributed to the light from the 

retinoscope reflecting on a retinal layer in front of the photoreceptors 

(Glickstein and Millodot, 1970). In addition, the longitudinal chromatic 

aberration (LCA) based on reflectometric double-pass measurements 

(Rynders et al., 1998, Charman and Jennings, 1976) has been reported to be 

lower than conventional psychophysical estimates. These findings suggest 

that reflections at different retinal layers, as well as differences in 

reflectance and scattering across wavelengths may affect the estimation of 
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ocular aberrations. They also open the question whether the focus 

difference can be explained by the LCA and therefore be reasonably 

predictable across subjects.  These questions will be addressed in the study 

presented in the Chapter 4 of this thesis. 

1.2.5.3.- Pupil Sampling Pattern 

The actual sampling pattern and density of sampling sub-apertures 

differ across aberrometers. The lenslets in HS wave aberration sensor are 

typically arranged in either a fixed rectangular or hexagonal 

configuration, and the number of samples range from around 50 to more 

than 15,000 spots within the dilated pupil. Ray tracing aberrometers (such 

as the LRT or SRR), on the other hand, sample the pupil sequentially and 

can use a variable sampling configuration. However, given the sequential 

nature of these devices, high sampling densities are not typically used, to 

reduce measuring times.  

In the case of HS sensor increasing the number of lenslets, and 

therefore the sampling density, involves: 1) smaller lenslet diameters, 

which implies a decrease in the amount of light captured by each lenslet 

and an increase the size of the diffraction-limited spots; 2) greater number 

of spots, and therefore compromising the dynamic range of the device, as 

well as an increase of the processing time and potentially decrease the 

reproducibility, due to the lower signal strengths. In addition, increasing 

the number of samples may not decrease the variance of the estimates of 

the wave aberration (Cubalchini, 1979) nor the aliasing error (Soloviev and 

Vdovin, 2005). For sequential aberrometers, the determination of a 

sampling pattern with the minimum sampling density providing accurate 

results is a matter of practical importance, as it decreases measurement 

time.  

The question of the minimum number of samples necessary is of 

general interest to better understand the trade-offs between aberrometers, 

but in addition, to study the influence of the sampling pattern will be 
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useful to determine whether there are sampling patterns that are better 

adapted to typical ocular aberrations, or particular sampling patterns 

optimized for measurement under specific conditions. Rectangular and 

hexagonal distributions are geometries typically used in Harmann-Shack 

sensors (Liang et al., 1994, Thibos et al., 1999, Porter et al., 2001, Fernandez 

and Artal, 2008) or sequential aberrometers (He et al., 1998, Moreno-

Barriuso et al., 2001b, Dorronsoro et al., 2003b). However, circular 

sampling geometries might be more adequate for modal estimation using 

Zernike coefficients (see section 1.2.2.-), given the circular nature of these 

functions. Additionally, circular geometry might be more adequate to 

measure eyes with multifocal contact or intraocular lenses with concentric 

geometries (Martin and Roorda, 2003, Bennett, 2008). Also, some 

geometries could be more adequate for specific sampling patterns and 

need smaller number of samples to accurately retrieve the wave aberration 

than other geometries.  

The first studies on wavefront estimates date from 1979, when 

Cubalchini (Cubalchini, 1979)  was the first to study the modal estimation 

of the wave aberration from derivative measurements using a least 

squares method. He concluded that modal estimates of the wavefront 

obtained using this method, which is almost a standard today in the 

aberrometry community in combination with the Zernike polynomial 

series (Rios et al., 1997), were sensitive to the number of samples and their 

geometry.  The problem of the optimal sampling pattern has been 

investigated theoretically, from both, analytical (Diaz-Santana et al., 2005, 

Soloviev and Vdovin, 2005) and numerical simulation (He et al., 1998, 

Burns and Marcos, 2000, Burns et al., 2003) approaches. The findings by 

previous theoretical studies, described in more depth in chapter 5, section 

5.2, can be summarised as follows: 

1) Number of samples: errors can be minimised by using the 

minimum number of samples necessary to estimate a fixed number of 
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Zernike terms (Cubalchini, 1979), and extracting the coefficients 

corresponding to the maximum complete order possible (He et al., 1998). 

2) Spatial distribution of the samples on the pupil:  Samples should 

be taken as far from the centre of the aperture as possible in order to 

minimise the variance of higher order Zernike terms (McLellan et al., 2006, 

Applegate et al., 2002, Cubalchini, 1979).  

3) Sampling sub-aperture: a sampling aperture size so that the 

measured extent of the pupil is practically covered minimises the fit error, 

and the error arising from using the value of the slope at the centre of such 

large sampling sub-apertures has a small  overall effect (He et al., 1998). 

Using the average slope across the sub-aperture instead of using a point 

estimator for the derivative at the centre of the aperture decreases modal 

aliasing (Burns et al., 2003). 

4) Sampling patterns (density and distribution): The number of 

samples and geometry influences modal estimates of the wave aberration 

by least squares (Cubalchini, 1979). Non-regular distributions seem to 

perform better in terms of error minimising in presence of sampling noise 

than regular patterns, such as rectangular or hexagonal grids of similar 

density (Burns et al., 2003, Diaz-Santana et al., 2005, Soloviev and Vdovin, 

2005). Cubatures have been suggested as an example of non-regular 

sampling schemes (Burns et al., 2003, Rios et al., 1997), and particularly 

Albrecht cubatures (Bará et al., 1996)  have been found to be a good 

candidate for modal wave aberration reconstruction due to its circular 

geometry, and greater density in the periphery (Rios et al., 1997). Recent 

theoretical studies Diaz-Santana et al. (2005) found that the optimal 

pattern depends on the statistics of the aberration to be measured and the 

system error, and therefore there is no universal optimal pattern. 

The determination of a sampling pattern with the minimum 

sampling density that provides accurate estimates for the ocular 

aberrations to be measured is of practical importance for sequential 
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aberrometers, since it would decrease measurement time, and of general 

interest to better understand the trade-offs between aberrometers. It is also 

useful to determine whether there are sampling patterns that are better 

adapted to typical ocular aberrations, or particular sampling patterns 

optimized for measurement under specific conditions. Although 

interesting conclusions have been reached from previous theoretical 

studies, the applicability to human eyes should be tested experimentally. 

This question will be addressed in Chapter 5. 

1.2.6.- APPLICATIONS 

Aberrometry has been used to study many different eye-related 

issues. Some examples are: 1) Ocular aberrations as a function of 

accommodation (Atchison et al., 1995, He et al., 2000, Hofer et al., 2001a, 

Plainis et al., 2005) and aging (Calver et al., 1999, Oshika et al., 1999a, 

Guirao et al., 2000, Mclellan et al., 2001); 2) the study of ametropic eyes 

(Charman, 2005, Paquin et al., 2002, Radhakrishnan and Charman, 2007, 

Collins et al., 1995); 3) the assessment of refractive correction techniques  

such as refractive surgery (Seiler et al., 2000, Moreno-Barriuso et al., 

2001b), cataract surgery (Guirao et al., 2002, Barbero, 2003) or contact 

lenses (Hong et al., 2001, Martin and Roorda, 2003, Dorronsoro et al., 

2003a); 4) the correction of ocular aberrations to visualize the eye fundus 

(Liang et al., 1997, Roorda et al., 2002, Burns et al., 2002). In this work 

aberrometry has been applied to the study of the ametropic eye (myopic 

and hyperopic eyes), and to the assessment the LASIK corneal surgery as a 

technique to correct refractive error. 

A study of ametropia from an aberrometric approach can contribute 

to different interesting aspects of research in this topic: 1) Combined 

measurements of biometry and aberrometry in the same eyes will allow 

identification of geometrical features leading to given optical properties. 2) 

Given that the development of myopia and hyperopia are likely 

substantially different, a comparison between biometry and aberrations in 
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myopic versus hyperopic eyes may give clues into the development of 

ametropias. In addition, it has been shown that degraded retinal image 

quality might lead to elongation of the eye and therefore to myopia, 

raising the question whether degradation imposed by increased ocular 

aberrations might lead to development of myopia or increased aberrations 

in myopic eyes can be a consequence of the structural differences of the 

myopic ocular components. 3) Knowledge of the optical properties of 

ametropic eyes (i.e. typical corneal shapes, internal aberrations, etc…) will 

help in the customisation of correction methods, such as refractive surgery 

or contact lenses. 

On the other hand, aberrometry has shown to be a useful tool to 

assess objectively the outcomes of Refractive Surgery. Information from 

both, corneal topography and ocular aberrometry before and after the 

surgery will also allow: 1) to assess the role of the crystalline lens 

aberrations in the surgical outcome; 2) to evaluate the changes on the 

posterior corneal surface and therefore potential role of biomechanical 

factors; 3) to identify factors related to aberration induction; 4) to 

understand individual surgical outcomes. 5) to understand better the 

corneal biomechanics, and to optimise ablation patterns. 
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1.3.- AMETROPIA AND EMMETROPISATION 

Ametropia can be defined from the optical point of view as the 

refractive condition in which best focus for distant objects is not located on 

the retina of the unaccommodated eye. When best focus is in front of the 

retina, the eye is said to be myopic, and when it is behind the retina, the 

eye is hyperopic (see Figure 1.13). Therefore, the image will be perceived 

as blurred unless the eyes are corrected by refractive means, or in the case 

of hyperopic eyes, the eye accommodates to bring the image to the retina.  

Whereas there is a considerable variation of ocular biometric 

parameters (surface curvatures, distances between components and axial 

length), each of which following approximately normal distributions 

(Sorsby et al., 1957, Sorsby et al., 1981, Stenström, 1946 in Charman, 

1991b), there is a marked excess of refractions around emmetropia in the 

population not expectable from a random combination of these 

parameters. This implies some degree of correlation between the different 

ocular parameters, which agrees with  the observations in the population 

(Young and Leary, 1991). Straub (1909) called emmetropisation the process 

that guides the ocular development towards emmetropia (the absence of 

refractive errors) by adjusting its axial length to the optical power of the 

Figure 1.13. Cross-section of ametropic eyes. (A) myopic eye, and (B) hyperopic eye). The main 
differential feature is the axial length, longer in the myopic eye and shorter in the hyperopic eye, 
compared to the emmetropic eye, which is used as a refference. Modified from 
http://www.drsheingorn.com/CSlasik1.htm 
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eye, although van Alphen (van Alphen, 1961) owns the credit for the 

development of the concept (Young and Leary, 1991). The key feature in 

his theory is that the retinal image quality is continuously monitored at 

the retinal level, any error signal producing adjustments in axial length. 

This mechanism has been shown to be visually guided (Wallman, 1993, 

Wildsoet, 1997, Wallman and Winawer, 2004). Studies using experimental 

animal eye models show that developing eyes are able to change their 

structural components (mainly axial length) in order to compensate for the 

refractive error induced by ophthalmic lenses (Wallman and Winawer, 

2004, Schmid and Wildsoet, 1997, Smith and Hung, 1999, Schaeffel and 

Diether, 1999). In addition, corneal (Gee and Tabbara, 1988) and lens 

opacities, which make difficult that the retina receives a clear image 

(Rasooly and BenEzra, 1988), induce excessive eye elongation in infants.  

While ametropia can be regarded as a failure in the emmetropisation 

process, the exact cause for the disruption in the eye growth coordination 

remains unknown. However, the prevalence of myopia related to parental 

history of myopia seems to point out inheritance has a role in myopia 

development, and environmental factors related to visual experience (near 

work, accommodative errors, retinal defocus) seem to be also involved 

(Gilmartin, 2004, Weale, 2003). 

While hyperopia has been usually less studied than myopia because 

of its  smaller prevalence in developed countries, relatively stability and 

difficulties to measure in young hyperopes (Strang et al., 1998), myopia 

has attracted even more attention in the last decades. The association of 

myopia to a greater risk of ocular pathologies, has turned it into an 

important public health issue (Saw, 2003), specially in Asia and other 

developed and developing countries where the prevalence has increased 

in the last decades (Saw, 2003) (Figure 1.14). Prevalence rates are strongly 

associated to age and genetics (parental myopia, ethnicity) and 

environmental (near work, school achievement, nutrition) factors: rural 

areas tend to have a smaller prevalence of myopia than urban areas (Ip et 
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al., 2008, Saw, 2003), and in terms of ethnicity, high prevalence rates of 

myopia are found in Chinese and Japanese populations (Saw, 2003). 

Figure 1.14 shows myopia prevalence and progression in different 

populations of the world, where the geographical differences are evident 

in spite of the differences in protocols among studies (Gilmartin, 2004). 

Most humans are born hyperopic (Wallman and Winawer, 2004), and 

during the first three years of life (Sorsby et al., 1961) the cornea and the 

lens have to compensate about 20 D for a 5 mm increase in axial length 

(AL), adult dimensions being approximately reached at 2 years of age 

(Gilmartin, 2004). A juvenile phase comes then, between 3 and 13 years of 

age, where the refractive compensation decreases to about 3 D for about 1 

mm increase in AL. Although coordinated biological growth of the eye 

ceases around 15 years of age, for an important proportion of myopes  

myopia starts as late as in their early twenties (Gilmartin, 2004). 

The significant correlations found between AL and refractive errors 

points AL out as a major contributor to the refractive state of the eye. In 

addition, the role of AL in determining the structure of the ocular globe 

Figure 1.14. Prevalence rates (%) of myopia around the world as a function of age, from  (García 
de la Cera, 2008). 
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(Sorsby et al., 1961), added to the fact that retinal neurons can be 

stimulated by hyperopic defocus to release growth factors to enhance 

scleral growth, thus resulting in an increase of AL (Schaeffel et al., 2003), 

confirms this as the main variable in the emmetropisation process. This is 

also supported by the fact that AL has been found to be significantly 

larger in myopic and smaller in hyperopic eyes than in emmetropic eyes 

(Strang et al., 1998, Carney et al., 1997, Mainstone et al., 1998, Grosvenor 

and Scott, 1994). In general, the myopic eye described by the literature 

(bearing in mind that not all studies agree) is larger than hyperopic or 

emmetropic eyes in all three dimensions, with a prolate shape (Cheng et 

al., 1992, Atchison et al., 2004), i.e., more elongated in the axial than in the 

horizontal and vertical directions (see section 1.1.1.-), apparently due to 

the constraints imposed by the orbit of the eye (Atchison et al., 2004). This 

elongation seems to take place at the posterior segment, given that deeper 

vitreous chambers have been reported for these eyes than for emmetropes 

(Goss et al., 1997, McBrien and Adams, 1997, Bullimore et al., 1992, 

Grosvenor and Scott, 1991). Myopic eyes corneas tend to be steeper 

(smaller anterior CR) than those of hyperopic eyes (Grosvenor and Goss, 

1998, Carney et al., 1997, Sheridan and Douthwaite, 1989), and more 

oblate, i.e., less negative Q values (See section 1.1.1.-) (Carney et al., 1997, 

Horner et al., 2000, Budak et al., 1999). The crystalline lens power has been 

reported to be lower in myopic than in emmetropic eyes (Garner et al., 

1992, Goss et al., 1997, Weale, 2003), and the anterior chamber deeper in 

myopic (and emmetropic) eyes than in hyperopic eyes (Weale, 2003). 

These structural differences between hyperopic and myopic eyes are 

likely to determine differences in the optical quality of these eyes. On the 

other hand, since the emmetropisation process is visually guided, 

differences in the optical quality of some eyes, and consequent differences 

in imposed retinal degradation, might play a role in the development of 

myopia or hyperopia. Knowledge of optical aberrations in the different 

refractive groups will contribute to develop better correction strategies for 
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these eyes, but additionally might give some information on the 

development of ametropia. 

1.3.1.- AMETROPIA AND OPTICAL ABERRATIONS 

There are not many studies comparing optical aberrations (see 

section 1.2.4.-) across refractive groups, and the results are somewhat 

controversial. While some authors did not find a correlation between 

aberrations and refractive error (Porter et al., 2001, Cheng et al., 2003), or 

differences in the amount of aberrations across refractive groups (Cheng et 

al., 2003), other authors reported higher amounts of aberrations in myopes 

when compared to emmetropes (Collins et al., 1995, He et al., 2002, Paquin 

et al., 2002, Marcos et al., 2002a). For the SA specifically, some authors find 

a significant correlation with myopic error (Collins et al., 1995); or 

significant differences across high myopes with respect to low myopes, 

emetropes or hyperopes (Carkeet et al., 2002) while others did not find a 

significant correlation between SA and a wide range of myopia  (Marcos et 

al., 2002a).  

Given that optical aberrations degrade the retinal image quality, and 

a sharp image is required for proper emmetropisation, a deeper 

knowledge on the aberration pattern of the ametropic eye, and its 

relationship with the geometrical structure of the optical components will 

help to understand possible cause-effect relationships between optical 

aberrations of the eye and myopia. These effects have been debated both 

in humans (Thorn et al., 2003) and animal models (de la Cera et al., 2006, 

Kisilak et al., 2002, Smith, 1998). 

1.4.- LASIK AS A CORRECTION OF REFRACTIVE ERRORS 

Given that the anterior cornea is the ocular surface that contributes 

most to the refractive state of eye (Atchison and Smith, 2000) and its easy 

access, it is not surprising that corneal refractive surgery is currently one 
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of the most popular surgical approaches to correct ametropia. Incisional 

corneal surgery first attempts date from 1885 (Sakimoto et al., 2006), and 

the technique evolved through the 1930s and 40s with Sato (Sato, 1942) to 

the early 80s when Fyodorov (Fyodorov and Durnev, 1979) developed a 

systematic more predictable radial keratotomy process that he applied to 

thousands of patients.  In the 1960s, Barraquer (Barraquer, 1964, 

Barraquer, 1967) invented the Keratomileusis, the first lamellar surgical 

technique. This technique consisted on separating a thin layer of the 

superficial corneal tissue using a microkeratome,  removing a small piece 

of cornea, changing its curvature using a lathe, and then suturing it back 

into place. In the 1980s,  Trokel et al. (1983) applied an argon-fluoride 

excimer laser (with an emission wavelength of 193 nm, which breaks 

carbon molecules at the corneal stroma) directly on the most external 

layers of bovine corneas, after previous mechanical removal of the outer 

layer of the cornea (corneal epithelium) thus giving birth to 

Photorefractive Keratectomy (PRK). A couple of years later, Seiler (Seiler 

and Wollensak, 1986) applied for the first time the excimer laser to treat a 

blind eye to treat ametropia, and in 1989 the first PRK surgery on a 

myopic seeing eye was performed by McDonald et al. (1989). Munnerlyn 

et al. (1988) calculated the thickness of tissue necessary to be removed to 

correct myopia and hyperopia, as a function of the distance to the optical 

axis. Their suggested ablation pattern included the attempted correction, 

the radius of curvature of the cornea to be treated, the treatment zone 

diameter and the corneal refractive index as parameters. However, PRK 

was limited by unpredictability in higher ranges of refractive error and 

higher risk of corneal haze after surgery (Corbett et al., 1995). In 1990s 

Pallikaris (Pallikaris et al., 1990) combined these two techniques 

(Keratomileusis and PRK), creating the Laser Assisted In situ 

Keratomileusis (LASIK), which has become the most popular refractive 

surgery technique. In this technique a hinged flap is created in the cornea 

by means of a microkeratome (Figure 1.15 B and C), and folded back to let 
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the stroma exposed (Figure 1.15 D). An excimer laser is then used to 

photoablate the stroma in the corresponding shape, depending on the 

kind of treatment (Figure 1.15 E and F). Finally the flap is repositioned in 

its original place without suturing (Figure 1.15 G). The shape ablation 

pattern depends on the ametropy to be corrected. In myopic treatment, 

stromal tissue is removed from the centre of the cornea (Figure 1.16 A) so 

that the curvature of the central cornea is flattened (Figure 1.16 B), and 

therefore the excessive refractive power of the myopic eye is compensated. 

In the case of hyperopic correction the laser removes a ring of tissue in the 

mid-peripheral zone of the corneal stroma (Figure 1.16 C), resulting in a 

cone-like corneal profile (Figure 1.16 D), which produces an increased 

corneal refractive power. The ablation profile in these eyes requires a 

smooth transition zone to prevent an abrupt step and the peripheral edge 

(Dierick and Missotten, 1996).  

Figure 1.15. LASIK surgical procedure: A hinged flap is created using a microkeratome (B and 
C), and folded back to let the stroma exposed (D). The stroma is photoablated with an excimer 
laser in the corresponding shape, depending on the kind of treatment (E and F). Finally the flap is 
repositioned in its original place without suturing (G and H). http://www.eyeclinicpc.com 
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Although the predictability and accuracy in terms of refraction were 

quite good in PRK and LASIK within the prescription range suitable for 

each technique, the patients complained of decreased vision and glare in 

mesopic and scotopic light levels, i.e., night vision problems. This was 

illustrated by a decrease in low contrast visual acuity and contrast 

sensitivity (Verdon et al., 1996, Fan-Paul et al., 2002, Montes-Mico and 

Charman, 2002). This decrease in visual performance was attributed to 

haze and scars, and to optical aberrations (Seiler et al., 2000). However, 

glare disability and decrease in contrast sensitivity do not appear to be 

correlated with the magnitude of haze after PRK (Seiler et al., 2000), 

whereas patients with clear corneas also reported these problems 

(Martinez et al., 1998), and moreover, haze is reduced in LASIK. The fact 

that optical aberrations are more significant for larger pupils (night vision) 

Figure 1.16. Cross-sectional representation of the ablation patterns for myopia and hyperopia 
correction. In myopic treatment, stromal tissue is removed from the centre of the cornea so that the 
curvature of the central corneal is flattened (A). In hyperopic correction the laser removes a ring of 
tissue in the mid-peripheral zone of the corneal stroma, resulting in a cone-like corneal profile (B). 
RPRE abd RPOST are pre- and post-sugical CR, respectively; OZstands for optical zt is the 
maximum thickness ablated in the optical zone.After  Munnerlyn et al. (1988).  
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suggests that those are the most likely to be responsible for the reduced 

visual performance. In fact, the decrease in the area under the contrast 

sensitivity function has been shown to match the decrease in the area 

under the modulation transfer function obtained from wave aberrations 

pointing out at the optical aberrations as the main responsible of post-

surgical degradation in the visual performance.  

The implementation of aberrometry in refractive surgery has meant a 

turning point in the history of laser refractive surgery since, along with 

other technological advances including improvements in surgical lasers 

(such as flying spot lasers), ablation algorithms and eye-tracking 

(Mrochen, 2001) the measurement of ocular wave aberrations has opened 

the potential for improved refractive surgery, aiming not only at 

correcting refractive errors but also to minimise optical aberrations of the 

eye.  

1.4.1.- REFRACTIVE SURGERY AND OPTICAL ABERRATIONS 

Objective assessment of the optical changes induced by refractive 

surgery is important to understand the surgical outcomes and optimise 

corneal laser ablation patterns. Two approaches have been followed, both 

to assess and to guide ablation procedures: wavefront aberrations, which 

describe the aberrations of the ocular optical system (Seiler et al., 2000 , 

Moreno-Barriuso et al., 2001b, Campbell et al., 1999, Thibos et al., 1999), 

and corneal topography {Applegate R.A., 1998 #1386; Oshika, 1999 #1677; 

Oliver, 1997 #710; Oliver, 2001 #1379}, which allows to estimate 

aberrations of the anterior surface of the cornea as well as geometry data 

(CR and Q). Given that the ablation takes place at the anterior corneal 

surface, anterior corneal topography seems a suitable tool to assess the 

outcomes of the surgery. As mentioned above, high correlations between 

corneal aberrations (wavefront variance) and visual performance (area 

under contrast sensitivity function) (Applegate et al., 2000) as well as 

under pre/post- surgical MTF and CSF ratios (Marcos, 2001) have been 
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reported. However, it is not clear whether aberrations estimated from 

corneal topography are a sufficient tool to assess optical outcomes, given 

that even though refractive surgery takes place on the anterior surface of 

the cornea, the optical properties of this surface are combined with those 

of the other ocular surfaces to yield the ocular (total) optical quality. 

Information from both corneal topography and ocular aberrometry is 

important in understanding individual surgical outcomes, since 

information of the influence of other optical components of the eye in 

combination with the cornea on the overall optical quality can be obtained. 

It also provides insights into the biomechanical response of the cornea 

(both the anterior and posterior surfaces) to laser refractive surgery, and 

therefore changes on the posterior surface of the cornea could be assessed. 

Published studies on the change of aberrations with refractive 

surgery  for myopia report  an  increase of total (Seiler et al., 2000, Moreno-

Barriuso et al., 2001b) and corneal (Oshika et al., 1999b, Oliver et al., 1997) 

HOA (i.e. excluding tilts, defocus and astigmatism), mainly due to an 

increase of SA towards more positive values, although a significant 

increase in the coma term was also found.  Earlier studies of hyperopic 

correction with excimer laser also suggest an increase of optical 

aberrations with the procedure. Oliver et al (Oliver et al., 2001) reported a 

change with PRK in corneal SA from positive in all cases towards negative 

values and a significant increase in coma RMS. This change in corneal 

aberrations was greater than that obtained in their previous study on 

myopic PRK, and consistent with the change in corneal asphericity 

towards more negative values reported by Chen et al (Chen et al., 2002).  

Ma et al. (2004) found the greatest RMS and most negative total and 

corneal SA in their hyperopic LASIK group when compared to their 

control eyes group and lensectomy group corrected (with intraocular lens 

implantation) for hyperopia. Additionally, they found significant 

differences in the internal SA in the LASIK group. 
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The reported increase in aberrations after surgery, specifically SAs, 

has driven the advance of corneal refractive surgery due to its impact on 

postsurgical visual quality. With the insight gained in recent years, the 

expectations on wavefront-guided procedures have now changed from 

eliminating to reducing the natural aberrations of the eye, and to minimise 

the aberrations induced by the procedure (Padmanabhan et al., 2008, Kim 

et <al., 2004, Schallhorn et al., 2008, Kim and Chuck, 2008, Zhang et al., 

2008, Netto et al., 2006, Mrochen, 2006). Technological advances (high 

frequency eye-tracking, improved laser delivery systems, flap creation by 

femtosecond lasers) (Netto et al., 2006) as well as the greater experience of 

the surgeons with the platforms available and nomogram optimisation 

may explain the improvement in the outcomes of wavefront-guided 

surgery in terms of decrease of induced aberrations reported by more 

recent studies (Kimet al., 2004, Zhang et al., 2008). Theoretical (Anera et 

al., 2003, Jimenez, 2004a, Jimenez, 2004b, Kwon et al., 2008, Arba-

Mosquera and de Ortueta, 2008) and experimental (Dorronsoro et al., 

2006) models are being used to identify the different factors that 

contribute to the induction of the aberrations during the surgery. These 

different works are being carried out in order to avoid the induction of 

aberrations by the corneal refractive surgery and they reflect the influence 

of the experimental work presented in Chapter 6 of this thesis on the 

evolution of the this field.  

1.5.- THESIS SYNOPSIS 

The body of this thesis is structured as follows: 

In Chapter 2 a description of the common methods used throughout 

this thesis is given, specifically the laser ray tracing technique used to 

measure ocular aberrations in subjects. A description of the setup and the 

control and processing software follows. Finally, some calibrations of the 

system are reported. 
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Chapter 3 presents the study carried out to verify whether the 

polarisation state of the measurement light used in aberrometry 

reflectometric techniques (Laser Ray Tracing and Hartmann-Shack) to 

measure aberrations influences the estimated wavefront. For this purpose, 

wavefront estimations obtained from different states of light and analyser 

polarisation are studied as well as the changes in the raw images obtained. 

In Chapter 4 the study performed in order to find out the effect of   

using IR (786 nm) instead of visible (543 nm) light to measure aberrations 

using reflectometric techniques is explaned. The consistence between the 

difference in the defocus term with both wavelengths (focus shift) and the 

shift due to longitudinal chromatic aberration has also been verified. This 

has important implications for the computation of the refractive error 

from aberrations measurements. 

In Chapter 5 the effect of applying different patterns to sample the 

pupil when measuring ocular aberrations on the wavefront estimates is 

analysed. For this purpose artificial and human eyes were measured using 

different sampling distributions and densities on the pupil, and the 

resulting aberrations were studied. In addition numerical simulations 

were used to extend the extent of the experimental results to abnormal 

eyes, such as keratoconic or post-surgical eyes. 

Chapter 6 compares optical and biometric properties in two age and 

refractive error matched groups of myopic and hyperopic eyes, using an 

optical and geometrical approach. Measurements of anterior corneal and 

ocular aberrations were performed as well as axial length, and corneal 

radius and asphericity. The combination of this information gives us an 

insight on the relationships between the different parameters, as well as 

the contribution of the crystalline lens to the ocular aberrations. 

Chapter 7 presents the application of ocular and corneal aberrometry 

to assess the changes produced by LASIK surgery in myopic and 

hyperopic eyes. 
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Finally, Chapter 8 summarises the major findings of this work, and 

presents a discussion on the implications of the results. 
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Chapter 2  

 

METHODS 

In the current chapter the experimental techniques used in this work 

are described, and specifically, the Laser Ray Tracing (LRT) technique. The 

contributions of the author of this thesis have been mainly in the 

processing software (sections 2.2.2.2.- and 2.2.2.3.-), as well as calibrations 

(section 2.3.-) of the LRT device. Specifically, in this chapter are presented: 

1) the general principles of the technique and the optical implementation 

of LRT used in the lab to measure the aberrations; 2) the software 

developed to control the device, as well as the software to process the raw 

images in order to compute the aberrations and to estimate eye 

movements during the measurement; 3) Different calibrations carried out 

to get the system ready for measurements; 4) the general protocol 

followed in the measurement sessions. The first description of the new 

LRT device, was presented as part of a poster (Dorronsoro et al., 2003b), at 

the Spanish Optical Society (SEDO) annual meeting (2003), where C. 

Dorronsoro won a Young Investigator Award as first author of this work, 

and as a talk at the Spanish Physics Society meeting the same year. The 

authors of this work were: Carlos Dorronsoro, Elena García de la Cera, 

Lourdes Llorente, Sergio Barbero and Susana Marcos.  

The contribution of the author was: 1) participation on the design 

and implementation of the device (assistance in placement and alignment 



 80

of elements in the setup, in hardware connections and in the installation of 

drivers); 2) testing and debugging the control software, giving feedback 

from the measurements and suggesting possible improvements; 3) 

developing of a new software for computing ocular aberrations from the 

retinal images using some routines from the previous device; 4) 

automating the software to compute eye movements from the pupil 

images; 5) calibration of the setup.  An statistician advised most of the 

statistics used in this chapter. 

2.1.- MEASUREMENT OF OCULAR ABERRATIONS: THE 

LASER RAY TRACING TECHNIQUE.  

As mentioned in Chapter 1, there are different techniques to measure 

ocular aberrations. Most of the experimental measurements of aberrations 

in this thesis were performed using Laser Ray Tracing (LRT) technique. 

This technique was chosen for its advantages versus other techniques such 

as Hartmann Shack (HS) (see Chapter 1): greater dynamic range, which 

allowed to measure highly aberrated eyes without complications (see 

Chapter 7), and flexibility in the configuration of the sampling pattern (see 

Chapter 5). 

The LRT technique was first applied to measure ocular aberrations in 

human eyes in 1997 (Navarro and Losada, 1997, Molebny et al., 1997). A 

deeper description of the method can be found at Moreno-Barriuso’s 

thesis  (Moreno-Barriuso, 2000). This is a double pass technique, since light 

is delivered into the eye and the reflection from the retina is captured on a 

CCD camera (see Figure 2.1). In the first pass the pupil of the eye is 

sequentially sampled with laser pencils parallel to the optical axis. Each 

ray is deflected at a specific angle α depending on the slope of the 

wavefront at that particular point of the pupil plane (defined by the 

optical characteristics of the surfaces it goes through), and therefore will 

impact the retina at a specific point. In an aberration-free system, all rays 
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superimpose on the same retinal location. However, when optical 

aberrations are present the rays hit the retina at different positions. In the 

second pass the light is reflected off the retina, exiting the eye through the 

whole pupil, and forming an aerial image of the double-pass (or rather 

one-and-a-half-pass (Navarro and Losada, 1995)) point spread function 

(PSF) on a plane conjugated with the retina, but displaced an angle α away 

from the reference (chief ray, entering the eye through the pupil centre). 

This angle α is proportional to the slope of the wavefront at the point 

where the incoming beam entered the eye. This image is collected by a 

high resolution cooled CCD camera. Although in this second pass the 

aberrations of the eye affect the PSF, its position relative to the reference is 

not affected (as long as the PSF is contained within the isoplanatic area of 

the retina). Therefore, the angles are preserved, and the ray (transverse) 

aberration can be computed from the distance between the position 

(centroid) of the aerial image corresponding to each pupil location, and 

that corresponding to the aerial image for the reference ray (chief ray). The 

sampled pupil size is defined by the diameter of the sampling pattern 

projected on the pupil, and therefore, can be controlled by software (as 

long as the eye pupil is at least of the programmed diameter). 
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The wavefront phase is estimated by modal (Cubalchini, 1979) fitting 

of the directional derivatives of the wave aberration (transverse ray 

aberration) to the derivatives of the Zernike polynomials, using a standard 

least squares procedure. This approach has been chosen instead of zonal 

(Southwell, 1980) fitting due to the advantages previously mentioned (see 

Chapter 1, section 1.2.2) and because it is the standard in the visual optics 

field. A seventh-order Zernike polynomial expansion has been used in this 

thesis, unless indicated otehrwise. A representation of the Zernike 

functions can be seen in Figure 1.8, Chapter 1. In addition to Zernike 

polynomials, the Root Mean Square (RMS) wavefront error will also be 

used as a global metric for the optical quality. RMS is computed directly 

from the Zernike coefficients, using the following approximation:  

Figure 2.1. Laser Ray Tracing Technique.  

In the 1st pass (top) rays are deviated due to the aberrations, in the 2nd pass (bottom) light 
reflected off the retina exits the eye through the whole pupil and is recorded by a CCD camera. 
O and A indicate the position where the chief and marginal rays strike the retina, respectively, 
separated an angle α. O’ and A’ indicate the position (centroids) of the aerial images 
corresponding to the chief and marginal rays, respectively, collected by the CCD camera. These 
are separated an angle α  in the CCD. Modified from original diagram by S. Marcos and E. 
Moreno. 
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nZ is the Zernike coefficient corresponding to the order n and 

frequency m. This approximation is considered valid, given that terms 

beyond 7th order can be considered negligible for human ocular 

aberrations(Porter et al., 2001, Castejon-Mochon et al., 2002, Thibos et al., 

2002).  

2.2.- THE LASER RAY TRACING DEVICE. 

Two different LRT devices, both built at the Instituto de Óptica, 

Madrid (Spain), were used to measure ocular aberrations in this work. The 

first device (LRT1) was built by Esther Moreno during her doctorate 

research (Moreno-Barriuso, 2000, Moreno-Barriuso and Navarro, 2000, 

Moreno-Barriuso et al., 2001a, Moreno-Barriuso et al., 2001b)  and was 

validated by comparison with other aberration measurement techniques, 

such as HS and the SRR (Moreno-Barriuso and Navarro, 2000, Moreno-

Barriuso et al., 2001a). This device has been used in the work presented in 

Chapters 3, 4, and 7, and in part of Chapter 6. A diagram of this setup can 

be found in Chapters 3 and 4.  The second device (LRT2), which will be 

briefly described in the next section, was developed during this work, and 

used in the work presented in Chapter 5 and part of Chapter 6. LRT2 

incorporates some additional features especially advantageous for 

measurements in ametropic eyes (Dorronsoro et al., 2003b, Llorente et al., 

2004a). The most important advantage of LRT2 over LRT1 is the 

possibility of correcting large amounts of spherical defocus continuously 

by means of a Badal system (see Section 2.3.5.- of this chapter) and the 

presence of a plane conjugate to the pupil plane (CPP), where trial lenses 

can be placed. Other improvements include: 1) the use of infrared (IR) 

light in addition to visible green light; 2) increase of the speed to less than 

2 seconds for an entire typical run; 3) continuous display of pupil images 
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during the measurement and simultaneous recording of the pupil and of 

retinal aerial images; 3) easy selection of the pupil sampling density and 

pattern by software; 4) fully automated control software; 5) it is more 

compact and lighter, what is especially advantageous to avoid 

misalignments of the optical components during transportation. The 

equivalence between both devices was verified, as will be shown in 

Section 2.3.8.- of this chapter, and was first reported in Llorente et al. 

(2004a). Measurements performed with both devices, unless differently 

indicated, followed the same protocols and were carried out under the 

same conditions (see section 2.4.-). 

2.2.1.- EXPERIMENTAL SETUP 

A schematic diagram of the LRT2 setup, as well as a photograph of 

the actual device are shown in Figure 2.2 A and B. The system consists of 

four channels; 1) Illumination channel, with two possible light sources 

(green 532 nm or IR 785nm laser diodes) focused on the XY scanner, and 

then collimated by the lens L3 in order to compose the desired sampling 

pattern on the pupil plane. 2) Retinal imaging channel, where the light 

reflected back from the retina is captured by the retinal CCD. 3) Pupil 

monitoring channel, where the pupil CCD captures the corresponding 

image of the eye’s pupil, simultaneously with the retinal spots on the 

retinal CCD; 4)  Fixation channel, where a target is displayed on a CRT 

monitor during the measurement. All channels share a Badal system, for 

compensation of defocus, formed by lenses L1 and L2 and mirrors M1, M2 

and M3. P marks the position of a pupil conjugate planes, and R marks the 

position of retinal conjugate planes. 
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Figure 2.2. LRT2 setup described in the text.  

A Schematic diagram of the device. L1 and L2 are 100-mm focal length achromatic doublets, 
and L3 and L4 are 50.8-mm focal length achromatic doublets, all with 25.4 mm diameters, 
M1, M2, and M3 are plane mirrors, HM is a hot mirror, CBS1 and CBS2 are cube beam 
splitters, PBS is a pellicle beam splitter, F1 and F2 are interferometric filters for 785 and 532 
nm, respectively, and P and R are planes conjugate to the pupil and the retina, respectively. 
(B) Detail of the actual system during a measurement on a subject. 



 86

The light source can be selected between two diode lasers emitting in 

green (532 nm; Brimrose, Baltimore, USA) and IR wavelengths (785 nm; 

Schäfter + Kirchhoff, Hamburg, Germany). Prior to the systematic use of 

IR wavelength in the measurements, the equivalence of IR and green light 

in the measurement of ocular aberrations was confirmed (see Chapter 4). 

Both lasers were attenuated below safety limits using neutral density 

filters. The maximum permitted exposure (MPE) (ANSI, 2000, Delori et al., 

2007) power thresholds for 532 nm and 785 nm (for 10 s exposure) were 

576.2 μw and 54.μm respectively. At least three ND4 neutral density filters 

were used to attenuate the power down to 4.1 μw and 6.8 μw, and more 

filters where added when possible. Exposure times (about 1.5 seconds for 

a typical run with 37 samples) were controlled by an electronic shutter 

(Vincent Associates, Rochester NY, USA). 

The XY scanner (mod.6210, Cambridge technologies, Lexington, 

USA), consists of two rotating mirrors that deflect the incoming 

unexpanded laser pencil in order to compose the sequential sampling 

pattern in combination with collimating lens L3 (f’=50.8 mm). Due to the 

distance between the two mirrors (~5 mm), some astigmatism is induced 

in the system (Navarro and Moreno-Barriuso, 1999), and therefore a trial 

lens attached to the collimating lens (+2.50 at 0º) is used to correct this 

astigmatism (see Section 2.3.3.-). Lens L4 (f’= 50.8 mm) forms the image of 

the laser waist on the scanner in order to obtain the smallest sampling 

aperture on the pupil plane (~400 μm). The flexibility provided by the 

scanner to configure sampling patterns with different distributions and 

densities of the samples was essential for the study on sampling patterns 

reported in Chapter 5. 

The light reflected off the retina is collected by a cooled highly 

sensitive CCD camera, conjugated to the eye retinal plane (retinal 

channel). The features of this camera are: 12 bits, 30 frames per second 

with 2x2 binning, 1024x1024 pixels, 14 μmx14 μm pixel size, 20% nominal 
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maximum quantum efficiency (700 nm); model 1M15 by Dalsa, Waterloo, 

Canada. In addition to record aerial images, this camera can display them 

in real time. This allows to find objectively the best focus position while 

assessing the aerial image for a centred ray. During the measurement, the 

retinal camera is synchronised with the scanner and the pupil camera. 

In the pupil channel a CCD continually monitors the pupil and 

records pupil images during the measurement. The features of this camera 

are: 8 bits, 60Hz (video), 646 (horizontal) x 485 (vertical) pixels, 

7.4μmx7.4μm pixel size; model XC-55 by Sony Corp., Tokyo, Japan. Pupil 

real time images combined with the marks superimposed to the pupil 

image in the control program (see Figure 2.3), help to verify that 

everything is ready for the measurement: pupil located on the 

corresponding plane (pupil edges focused), alignment of the centre of the 

pupil and the optical system (centration cross) and suitability of the 

sampling pattern to the pupil diameter (small circumferences for samples 

entry locations and circumferences of different diameters to estimate pupil 

size). Pupil monitoring during the measurement allows to verify that no 

anomalies, such as blinking, large eye movements, tear problems, etc, 

occurred as well as to ensure the eye’s stability. Five IR LEDs (peak 

wavelength 880±80 nm) arranged in a circular frame in front of the eye 

illuminate the pupil during the alignment (frontal-illumination). In 

addition, back-illumination is also possible when only the measurement 

light is used, and has proved to be very useful to visualise some features, 

such as crystalline lens opacities or tear film break up. Recorded images 

can also be used for passive eye-tracking (see Section 2.2.2.3.-), i.e. post-

measurement correction on the pupil sampling coordinates when the eye 

moved during the measurement. 

Recordings of a typical run can be seen at 

http://www.journalofvision.org/4/4/5/article.aspx#Movie1 (find also 

file movieLRT.mov attached to the electronic copy of the manuscript). In 
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this file a video of the pupil (front-illuminated) as the entry beam scans 

discrete locations of the pupil is shown on the left. The ray entry position 

are marked with a circle. The corresponding retinal aerial images are 

shown on the right as the beam moves across the pupil. Figure 2.4 shows a 

frame of the movie. 

 

Figure 2.4. Frame of a movie showing a typical run with LRT2. The left image shows a frame 
of the (front-illuminated) pupil, with the entry point of the ray marked with a circle, and the 
right image shows the corresponding retinal aerial image. Both images belong to a frame of the 
movie that can be found at http://www.journalofvision.org/4/4/5/article.aspx#Movie1, 
showing recordings of a typical run with LRT2.  

Figure 2.3 Snapshot of the control program developed by Carlos Dorronsoro for LRT2. Top 
right and bottom left are the pupil and retinal images, respectively 
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A 15 inches CRT monitor (Sony Corp., Tokyo, Japan) is used to project 

stimuli to help the subject  to keep his/her eye fixed in optical axis 

direction of the system, and unaccommodated during the measurement. 

The fixation test, consisting of a green circle with black radial lines 

thickening towards the periphery (see fixation test in Figure 2.2 A), can be 

used to assess subjectively the refractive state of the subject’s eye to be 

measured.  

Finally, defocus correction in the system is carried out by a Badal 

system (Smith and Atchison, 1997), which allows to change the vergence 

of the rays (and hence defocus) without changing magnification, and 

therefore ensuring that the pupil magnification or the sampling density 

will not be affected by defocus correction. Our Badal system shares path 

with the different channels of the setup (see Figure 2.2 A), so that defocus 

is corrected in the illumination, imaging and fixation channels as well as 

the pupil monitoring channel. It is composed by two achromatic doublets 

(L1 & L2) of equal focal lengths (100 mm), that form an afocal system of 

magnification X1, and three flat mirrors: M3, which bends the optical path 

to obtain a more compact device, and M1 and M2, which can be moved as 

a block (Focusing Block) to change the optical path between the lenses, 

and consequently the dioptric correction (see Section 2.3.6.-). Moving the 

mirrors instead of the lenses has the advantage of not displacing the 

optical planes of the system. Spherical error corrections ranging from -5.50 

D to +13 D can be induced with this system. Furthermore, easy access to 

pupil conjugate plane (P) allows to position trial lenses when a higher 

dioptric correction is needed. 

2.2.2.- SOFTWARE 

The software development was aimed at an intuitive and user-

friendly, control program. The interface was written in visual basic 

(Microsoft Visual Basic; Microsoft Corp., USA), combined with Matlab 

(Matlab; Mathworks, Natik, MA) scripts. The data structure was organised 
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so that data interchange between programs, such as control and 

processing software, was efficient, and tracking error sources was 

straightforward. The next subsections describe the control software, and 

processing software for retinal and pupil images software.  

2.2.2.1.- System Control Software 

New control software was created for the LRT2 setup by Carlos 

Dorronsoro. The aim was to make the measurements faster (less than 2 

seconds compared to 4 seconds for the former LRT1, for 37 samples), and 

more flexible. The program also allowed to change easily the sampling 

pattern (scanned pupil diameter, sampling arrangement and density), 

what was very useful for the study comparing sampling patterns 

presented in Chapter 5. Figure 2.3 shows a snapshot of the control 

program. Pupil and retinal images can be visualised in real time, so that 

measurements could be discarded on-line, and a new series immediately 

be run. The software also facilitates alignment and calibration operations 

(see sections 2.3.2.- and 2.3.3.-.)  

Particularly, the routine “Test LRT” allows to verify the correct 

delivery of the programmed pattern on the pupil. When this routine is 

activated, a series of circumferences indicating the nominal position of the 

samples and a centration cross appear superimposed to the pupil image 

(see pupil image frame in Figure 2.3). Simultaneously the shutter opens 

and the scanner starts to scan the programmed sampling pattern. A 

thicker circumference indicates the nominal position for the corresponding 

sample, i.e., the position where the laser spot should lie. When the central 

position is selected for the beam, alignment of the laser and optical axis 

the overlapping between the spot and the centration cross can be verified.  
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2.2.2.2.- Processing Software for retinal images (ocular 

aberrations) 

The software to estimate the ocular aberrations from the set of aerial 

images was profoundly improved from its original LRT1 (Moreno-

Barriuso, 2000) version in order to make the computation of aberrations 

easier, quicker, more robust and efficient, with better quality and 

traceability of errors or problems detection, and adapted to the new setup 

parameters and possibilities. The contribution of the author of this thesis 

in this software includes: collaboration in the design of the new data 

structure; writing of the new Matlab code; testing and debugging of the 

software; collaboration in the Visual Basic interface. Some specific 

improvements in the software include: 

1) Calculation of those parameters necessary for the processing that 

depend on specific characteristics of the optoelectronics setup and 

inclusion of their values in the corresponding calibration data file; 

2) Adaptation of the software to the new data structure defined by 

the control software:  input data were read from the files created during 

the measurements, and structured result files were created for the output 

data; 

3) Organisation of the program as a modular structure to allow for a 

Visual Basic interface, more efficient for the processing and more user-

friendly; 

4) Regarding image processing: possibility of choosing different 

processing parameters (thresholds, Zernike order to fit), as well as using 

default values; manual selection of the region of interest or of the images 

to exclude from the processing when necessary; possibility of undoing the 

last change; on-line visualisation of parameters significant for the 

processing such as maximum intensity of the images or spot diagram 

(joint plot of the centroids of the images already processed). 
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5) A graphic as well as numeric presentation of the results that 

allows to easily detect series that do not follow the common trend or do 

not have the same measurement conditions as the rest of the series of the 

same session. The results file also includes a worksheet where corneal 

aberrations are saved when available (see chapters 6 and 7), in order to 

summarise all the related results in one file. 

A snapshot of the processing software interface is shown in Figure 

2.5. Basically, raw images are processed (background subtraction, filters 

and masks application, thresholds setting, etc) in order to isolate each 

aerial image and localise the corresponding centroid. Then, the relative 

distance of each centroid to the central ray centroid is calculated 

(transverse aberration), and the wave aberration is then estimated by 

fitting the transverse aberration corresponding to each sampled point to 

the derivatives of the Zernike polynomials, using a least squares method 

(Cubalchini, 1979). The interface, as shown in Figure 2.5, allows the user to 

visualise the raw images, select the next processing to apply to the image 

and check the image appearance after processing has been applied, with 

the corresponding centroid position superimposed on the image. As 

previously mentioned, a joint plot with all the centroids positions (spot 

diagram) is also available. The program extracts the input data necessary 

for the wave aberration estimation from the corresponding excel file 

stored during the measurement, and saves the results in a new excel file in 

the corresponding project folder. 
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2.2.2.3.- Processing software for pupil images (passive eye-

tracking) 

A passive eye-tracker, based on the pupil images obtained during the 

measurements, was developed using image processing techniques to 

detect the pupil edge. This program made it possible to account for the 

influence of eye movements in the uncertainty of the measurement (see 

Chapter 5, Section 5.5.1). 

As in the previous processing software, the parameters from the 

measurement necessary for this program are automatically read from the 

corresponding excel files, and the pupil images in the series are 

automatically opened (Figure 2.6 A).  The program detects the edges 

within each image, and labels them (Figure 2.6 B). The edge corresponding 

to the pupil is selected by choosing those labelled areas which extension is 

larger than a set minimum. Then a binary image containing only the 

Figure 2.5. Snapshot of the processing software interface showing some images before (top 
right) and after (top left) processing. 
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selected edge (Figure 2.6 C) is correlated with circumferences of different 

radius and thickness. The radius is chosen within a reasonable interval, 

considering the dimensions of the previously detected pupil edge, as well 

as realistic values for pupil radius, and the thickness is given by the 

desired tolerance. The greatest value across the maximum correlation 

values for each constructed circumference determines which 

circumference (radius) corresponds to the edge of the pupil, and its 

coordinates within the image indicate the position of the centre of the 

pupil (Figure 2.6 D). The circumference that yielded the best correlation is 

then used for the rest of the images of the series, as the changes in the 

dilated pupil radius are considered negligible within a series. Actual pupil 

coordinates (ray entry locations at the pupil, considering the pupil 

misalignment) are computed from the distance between the reference 

(optical axis of the system, where the pupil centre should be located 

during the measurement) and misaligned pupil centres (Figure 2.6 E). The 

output of the program includes the rays order, the nominal and actual ray 

pupil entry locations, and the radius and coordinates of the pupil centre 

(from the fitted circumference). Output figures include the outline (red 

dots) and centre (red cross) of the pupil circumference, as well as 

corresponding nominal (blue cross) and actual (red open circle) entry 

positions and the reference location (green cross) superimposed to each 

pupil image (Figure 2.6 E). Two summary images with joint plots are also 

produced: 1) nominal (blue crosses) and actual (red open circles) rays 

entry locations for all the images in the series (Figure 2.7 A), and 2) pupil 

centres computed for each images (blue Xs), with the reference (green 

cross) (Figure 2.7 B). The program takes about 255 seconds to process a 

series of 37 images. This speed was sufficient for our purposes, although 

further improvements of the program would result in a higher speed. 
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This algorithm has proved to be robust for our back-illuminated 

images, even in the presence of strong reflections, or when the pupil was 

vignetted (see Figure 2.6 E) or partially occluded by the eyelid (see Figure 

2.6 F).  In the last case, it is important that the pupil is not occluded by the 

eyelid in the first image of the series. The algorithm was also tested for 

images of pseudophakic eyes, where the intraocular lens edge could be 

seen through the pupil. In this case, too many circles appeared in the 

image and the pupil could not be correctly identified. This algorithm may 

not work properly either for very elliptical (for example, in off-axis 

measurements) or asymmetric pupils. In the first case, using an ellipse 

instead of a circumference for the correlation would solve the problem. 

The second case is more complicated, as the pupil centre definition may 

not be very clear, to start from Since the algorithm was appropriate for 

Figure 2.6. Illustration of the steps performed by the pupil processing software:. (A) input 
pupil image obtained from the control software; (B) same image labelled edges; (C) same image 
with only selected edges; (D) correlation values throughout the image for the selected 
construction circumference; (E) initial image with the resulting circumference outline (red 
dots) and centre (red cross) as well as corresponding nominal (blue cross) and actual ray (red 
open circle) entry locations. 
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 the images to process, no work further along this line was made although, 

as explained, there is room for improvement. 

The analysis of the data provided by this programme allows to 

identify two different effects of the eye shift patterns: a shift similar to an 

offset that deviates the pupil from the reference position to another 

“balance” position (0 mm for x and 0.05mm for y, for the eye in Figure 

2.7), and smaller shifts around this “balance” position during the 

measurement, where the pupil position changes slightly (0.05±0.06mm for 

x and 0.05±0.03mm for y for the eye in Figure 2.7). The first component 

will not only affect sequential techniques to measure eye aberrations, but 

any device that does not actively track the pupil and compensates for its 

shifts (active eye tracking). The actual pupil positions obtained from the 

programme can be used to compute the wave aberration and compare it 

with that obtained using the nominal positions. Figure 2.8 shows the wave 

aberration maps obtained for the eye in Figure 2.7, computed using the 

nominal coordinates (Figure 2.8 A), and the actual coordinates including 

only the second effect previously mentioned (Figure 2.8 B), and including 

both effects (Figure 2.8 C) as pupil sampling coordinates. Figure 2.8 D and 

F show the difference maps corresponding to the subtraction of A minus B 

and A minus C, respectively, both in the same scale. This algorithm was 

applied to the study reported in Chapter 5, where it was important to 

Figure 2.7. Example of output figures from the pupil processing showing: (A) joint plots of 
nominal (blue cross) and actual (red open circle) ray pupil entry locations, and (B) of the 
reference location and the pupil centre, across the pupil images corresponding to one series. 
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rule out the influence of the eye movements in the comparison across 

patterns. 

 

2.3.- SYSTEM CALIBRATION   

2.3.1.- RETINAL CAMERA 

Calibration of the equivalence between pixels and angles in the 

retinal camera images was achieved as follows. For this purpose, a metal 

calliper was placed at a plane conjugate to the sensor of the retinal camera, 

i.e., at the focus of the lens L2 (see Figure 2.2 A), and recorded the 

corresponding image with the CCD camera, illuminating the calliper with 

a lamp (see Figure 2.9A). In the recorded image (see Figure 2.9 B), the 

notches corresponding to a separation of 1 mm can be distinguished as 

lighter than the background. Matlab was used to process the image and 

determine the distance between notches in pixels. First the image was 

Figure 2.8. Wave aberration maps for the eye in figure 2.7 A computed using as pupil coordinates 
(A) the nominal entry pupil coordinates, (B) actual coordinates excluding offset effect , and (C) the 
actual coordinates including all eye movements effects. (D) and (F) show the difference maps (A) 
minus (B) and (A) minus (C), respectively, both represented in the same scale. The colour –bars 
unit is microns. 
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rotated until the notches were parallel to the vertical arrays of pixels of the 

image. Then, the edges of the image were detected, obtaining a binary 

image, and discarded those edges smaller than a set threshold to eliminate 

noise. Next, a region of interest was detected within the image (see Figure 

2.9 C), which included the six notches on the right side. The position of the 

edges of the notches in this image were found, and the distance between 

the left edges of the first and last (6th) notches in the image computed. This 

distance was divided by 5 (number of separations between the notches) to 

find the distance separating the notches from each other. The result, 

averaged across the 89 rows of the image, was 27.0 pixels, and the 

standard deviation (std) was 0.8 pixels. This process was repeated for the 

right edges of the same notches, obtaining a value of 27.1 pixels with a std 

of 0.2 pixels. As a last verification, the distances between the centres of 

each notch were computed, obtaining an average of 27 pixels (std=1 pixel) 

across the 445 values (6 notches * 89 rows). 

From Figure 2.9 A, α = arctan (1/100)=0.5729º = 34.38 arc min=0.01 

rad. Therefore 1mm (27 pixels) subtends 34.37 arc min , and 1 pixel 

subtends 1.27 arc min. Consequently, since 1mm=27 pixels subtends 0.01 

rad, then 1 rad = 27/0.01=2700 pixels, and hence 1 pixel subtends 0.37 

mrad1. This value is used in the processing program to compute 

transverse ray aberration from the deviations of the spots in the CCD. 

                                                 

 

1 According to the manufacturer (Newport) the tolerance in the focal length of the 

lens L2, is ±2% at 589 nm. This implies an error of ±0.0002 rad (0.69 arc min) in α, and 

therefore an error of ±0.007 mrad in the angle subtended by 1 pixel, i.e., ±2% of the error 

in α. The effect of this error in the estimates of the RMS wavefront error  is ± 2%. 



 99

 

 

2.3.2.- PUPIL CAMERA 

The pupil camera had several roles in the setup. It is used to ensure 

alignment of the eye pupil with the optical axis of the system, using the 

centration cross shown in Figure 2.3 as a reference. It can also be used to 

visualise the sampling pattern superimposed to the pupil, as well as to 

assess distances, such as the pupil diameter or pupil misalignment. 

Therefore, a) alignment between the centration cross (see section 2.2.2.1.-) 

and the optical axis must be ensured, by introducing the necessary offset, 

as the centre of the CCD might not coincide with the optical axis of the 

system and b) the scale of the camera must be calibrated so that distances 

and sizes can be accurately measured in the pupil images, or assessed in 

real time during the aberrations measurement session. 

Figure 2.9. Retinal Camera Calibration: (A) Schematic diagram of the retinal camera 
calibration image acquisition. (B) Calibration image obtained; the lighter lines (corresponding 
to the notches of a calliper) are separated 1 mm. (C) Binary image showing the calliper notches 
edges of the region of interest delimited by the rectangle on image B, after rotation. 
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(a) Offset 

Superimposition between the centration cross displayed on the pupil 

image shown by the control software (Figure 2.3) and the optical axis of 

the system was ensured by placing a paper screen at the pupil plane 

(plane where the subject’s eye pupil is placed for the measurement), with 

the shutter open, and the scanner in the “centred” position, i.e., the 

measurement laser beam was co-aligned with the optical axis of the 

system. Under these conditions, the diffuse reflection of the laser (spot) 

was displayed on the pupil camera screen next (misaligned) or 

superimposed (aligned) to the centration cross. The cross was displaced by 

introducing new offset values for x and y directions in the calibration file, 

until overlapping the spot. 

(b) Scale (equivalence between pixels and millimetres) 

As mentioned above, the equivalence between pixels and millimetres 

on the pupil plane for the pupil camera was needed to measure distances 

in the pupil images. To determine this value, a graph paper screen was 

placed at the pupil plane so that the graph paper lines appeared as sharp 

as possible on the pupil camera, and captured the image under ambient 

light illumination. This image can be seen in Figure 2.10 A. The same 

procedure used for the retinal camera calibration to detect the edges of the 

squares could not be followed because the images were too noisy to detect 

the edges accurately. A different procedure was used instead. After 

rotating the image (-2.2º) so that the lines coincided as much as possible 

with rows and columns of the image matrix, the intensity values of the 

image were added up across rows to obtain the profile shown in Figure 

2.10 B, and then the local minima were found (with an accuracy of one 

pixel). The most abrupt minima (indicated by crosses) correspond to the 

black lines of the grid, the wider of which corresponds to the wider line. 

Two minima (indicated with open circles in the figure) were selected and 

the distance between both points was computed and divided by the 
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number of lines (millimetres) existing between them The value obtained 

was 43 pixels/mm. The procedure was repeated adding up the columns 

instead of rows and the same value was obtained, as expected, since the 

pixels of the camera are square. 

2.3.3.- ASTIGMATISM CORRECTION AND SCANNER CALIBRATION. 

In the absence of aberrations, a motionless spot was expected to 

appear at the focal point of L2 (see section 2.1.-) with the scanner on. 

However, a vertical line was scanned by the laser instead, indicating that 

some astigmatism was present in the system. As previously mentioned in 

section 2.2.1.-, some astigmatism was induced by the scanner due to the 

distance between its two rotating mirrors (Navarro and Moreno-Barriuso, 

1999). The first mirror changed the horizontal (X) position of the beam, 

and this resulted on a line scanned on the second mirror, i.e., the object for 

the second mirror was a horizontal line. The theoretical astigmatism 

(Moreno-Barriuso, 2000) induced due to the distance between the mirrors 

of the scanner, d=4.9 mm, depended also on the focal length of the 

collimating lens used, f’=50.8 mm, and in this case was: 

Figure 2.10. Illustration of the Pupil Camera Calibration process: (A) Image of a grid used for 
the calibration, after rotation. (B) Profile of the image intensity integrated across rows. Crosses 
indicate local minima, and circles indicate the points used to measure the distance. 
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Some astigmatism could also be introduced by other elements of the 

setup, such as lenses not completely perpendicular to the optical axis. 

(a) Astigmatism compensation 

As the major contributor to the astigmatism in the system was the 

scanner (Navarro and Moreno-Barriuso, 1999) a cylindrical trial lens was 

placed right after the collimation lens of the scanner, with its axis 

perpendicular to the line joining the mirrors of the scanner (axis at 0º). To 

estimate the power of the cylindrical lens experimentally a paper screen 

was placed on the focal plane of lens L2. This position was found 

experimentally by slightly changing the location of the screen until the 

image scanned by the measurement laser spot was a line, as previously 

mentioned. With this configuration, cylindrical trial lenses of different 

powers were tested until the lens (+2.50 D at 0º) that minimised the 

astigmatism was found. With this lens, the spot appeared static on the 

retinal plane during the scanning, once defocus was corrected, indicating 

that the astigmatism was corrected and that the system did not include 

other significant aberrations.  

(b)  Scanner calibration 

 Scanner offset and slope were set up by Carlos Dorronsoro. The 

offset was chosen to obtain a laser beam aligned with the optical axis of 

the setup when coordinates (0,0) were selected. Regarding the slope, or 

ratio scanner voltage/laser displacement, it was selected to obtain the 

displacement of the laser spot necessary to obtain the desired pattern. For 

this purpose, a screen with a square grid pattern (1 mm squares) was 

placed at the pupil plane with the shutter open to see both the spot and 

the grid. The ratio scanner voltage/laser displacement was calculated as 

one tenth of the voltage needed to move 10 mm the laser spot impacting 

on the screen (as observed by the camera) and taking the grid as a 
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reference. After this calibration, most of the astigmatism introduced by the 

system was compensated. The residual astigmatism was then estimated by 

measuring the aberrations of an artificial eye consisting of an achromatic 

doublet of f’=200 mm and a screen acting as a “retina” placed on a sliding 

support that could be displaced to change the defocus of the eye. 

Therefore, this artificial eye may be considered nominally unaberrated. 

The value of the astigmatism was computed from the coefficients 2
2
−Z  and 

2
2Z  (oblique and perpendicular astigmatism, respectively) using the 

equation: 
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where Rpupil is the radius of the measured pupil. The value obtained 

was 0.18±0.03 D (mean ± std across 5 measurements). This value was 

subtracted from the astigmatism obtained in the measurements. 

2.3.4.- SAMPLING PATTERN VERIFICATION 

Once the astigmatism of the system was compensated and the 

scanner calibrated, verification of correct delivering of the sampling 

pattern selected on the pupil plane was made. To verify this objectively, a 

paper screen was placed at the pupil plane and captured the images of the 

spot reflected on the screen for each sample position during a typical run. 

These images were processed by fitting the spot to a 2-dimensional 

Gaussian function, with different widths for X and Y axis (because of the 

asymmetry of the IR laser spot due to astigmatism produced by the laser 

cavity). In this way the coordinates of the spot position are obtained as the 

coordinates of the peak, and the spot size in each direction as the 

corresponding half-width position of the fitted Gaussian function. Figure 

2.11 A shows the peak position (red cross) and the position of the half-

width on the X and Y axis (blue asterisk) of the fitted Gaussian function 

superimposed to the image of the corresponding spot. Figure 2.11 B shows 
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a comparison of the nominal sampling positions (black Xs) and those 

obtained experimentally (red asterisks); error bars indicate the size of the 

spot in X and Y directions. The largest difference between nominal and 

experimental coordinates was 0.18 mm, and the mean value (±std) across 

all 37 spot positions was 0.05 (±0.04) mm; 0.08 (±0.05) mm and 0.03 (±0.02) 

mm across X and Y coordinates, respectively. It should be noted that these 

differences are smaller than those found for some of our subjects due to 

their eye movements, and which were below the variability of the 

measurement (see Chapter 5, section 5.5.1). Same as described in section 

2.2.2.3.-, the wave aberration maps obtained with the nominal and the 

actual (experimentally obtained) coordinates were compared using 

aberration data corresponding to one of the human eyes studied in 

Chapter 5 in order to confirm that these differences (some of which can be 

attributed to the image capture and processing algorithm) did not affect 

significantly the estimation of aberrations in real eyes. As can be seen in 

Figure 2.10 C, the differences between the wave aberration maps obtained 

from nominal (left) and actual experimental (right) coordinates for the 

same eye, are negligible. The RMSs for these wavefronts were 0.49 μm and 

0.48 μm, respectively. The RMS of the corresponding difference map was  

0.03μm, which is negligible compared to the values obtained for human 

eyes (see section 5.5.1 of Chapter 5). 
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The correct delivery of the samples on the pupil plane was crucial to 

obtain a reliable measurement. Once the correct delivery of the samples on 

the pupil plane was confirmed, correct identification of the sampling rays 

with the corresponding retinal aerial images was ensured. For this 

purpose, the artificial eye described in Section 2.3.3.-(b) was used with the 

retina displaced closer to the doublet than the focal point in order to make 

the eye hyperopic. Thus, the spots of the retinal spot diagram will not 

overlap and no inversion will occur. Then, the correct labelling of the rays 

in the resulting spot diagram according to the programmed sampling 

pattern was verified. The spot diagram obtained is shown in Figure 2.12. 

 Figure 2.11. Verification of the pupil sampling pattern.  

(A) Image of one of the laser spots  at the pupil plane. The peak (+) and the half-with (·) 
positions for the main axes of the fitted Gaussian are superimposed. (B) Nominal (X) and 
actual (*) positions of the pupil samples. Error bars indicate the size (Gaussian half-width) of 
the spots in X and Y directions. 



 106 

Finally, to verify that the processing programme was correct, 

transverse ray aberrations were computed from the wave aberration 

(obtained after processing the experimental data) and the corresponding 

spot diagram positions were verify to coincide with those of the spot 

diagram obtained experimentally.   

2.3.5.- FOCUSING BLOCK SCALE CALCULATION  

As explained in section 2.2.1.-, a Badal system was included in the set 

up to compensate for the subject’s refractive error. Figure 2.13 shows the 

different configurations obtained for different distances between the 

lenses of the Badal system. For the sake of clarity, the mirrors used to 

change the distance between the Badal lenses have been removed from the 

diagram. When the distance between the lenses is equal to the sum of their 

focal lengths, an afocal configuration is obtained and therefore no 

correction is induced (see Figure 2.13 A). When the distance between the 

Figure 2.12. Spot diagram corresponding to an artificial eye with positive 
defocus. The typical sampling pattern used by LRT1 and LRT2 devices to 
measure aberrations as seen at the retinal plane when positive defocus is 
present. 
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lenses is longer than the addition of their focal lengths, rays converge 

towards the eye to compensate hyperopic refractive error (see Figure 2.13 

B). When the distance between the lenses is shorter than the sum of their 

focal lengths, rays diverge towards the eye to compensate myopic 

refractive error (see Figure 2.13 C). 

Since the Badal system in the setup fulfills   f’1=f’2=f’, where f’1 and f’2 

are the focal lengths of L1 and L2, respectively, the Abbe invariant was 

applied as follows. For L1:  ''1'1'1 111 fsssf =⇒−= ,  where s1 and s’1 

are the object and image distances, respectively, for L1. For L2: 

)'(2 dfs +−=  and ( ) ddffsssf +=⇒−= '''1'1'1 222 ,  where s2 and s’2 

are the object and image distances, respectively, for L2. The distance deye 

between the image yielded by L2 and the position of the eye (at F’2) is 

( ) dffddfffsdeye
2

2 '''''' =−+=−= , and therefore 2'1000 fdDeye = , or:       

  
1000

'2fD
d eye= ,  ( 2.4) 

where: 

 -d is the distance between the L1 image focus (F’1) and L2 object 

focus (F2), 

 - deye is the distance between the eye (pupil plane) and the position 

of its far point. 

 - Deye is the refractive error of the eye. 

If the block of two mirrors, or Focusing Block (FB), is moved instead 

of the lens L2, to introduce a displacement d in the system the 

displacement of the mirrors should be d/2. Therefore, for a focal length of 

100 mm for each Badal lens, the distance d should be 10 mm per dioptre. 

This means that, in order to induce +1D (i.e., to correct 1 D of hyperopia), 

the mirrors should be displaced +5 mm. Positive distances indicate the FB 

moves further away from the eye, and negative distances the opposite. 
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The position in the setup where 0 D of the FB scale was determined 

by placing the same nominally non aberrated artificial eye described in 

Section 2.3.3.-(b) with the screen in its image focal plane (which was found 

by the autocollimation method) at the pupil plane of the setup. The 

mirrors were displaced until the scanning spot appeared motionless on 

the screen of the artificial eye and the retinal camera, and therefore the 

Figure 2.13. Different configurations of the Badal system for refractive error correction. (A) 
Afocal configuration: distance between the lenses is the sum of their focal lengths, and no 
correction is induced; (B) When the distance between the lenses is longer than the sum of their 
focal lengths, and rays converge towards the eye to compensate for hyperopic refractive error; 
(C) When the distance between the lenses is shorter than the sum of their focal lengths, and 
rays diverge towards the eye to compensate myopic refractive error. 



 109 

defocus induced was 0, and that location was marked as 0 Dioptres. The 

precision in the focusing, computed as the magnitude of the Zernike term 

for defocus ( 0
2Z ) in Dioptres, obtained when measuring aberrations with 

defocus compensated (i.e., the measurement spot was motionless in the 

retina of the artificial eye while the scanning was on) was -0.05 ± 0.09D 

(average across 5 measurements ± std). 

2.3.6.- COMPENSATION OF DEFOCUS BY THE FOCUSING BLOCK (FB)  

In our experimental protocols defocus was systematically corrected 

using the FB in order to obtain more compact aerial images (and therefore 

reduce the variability in the processing) and to provide a sharper fixation 

for the subject. For this reason, a calibration of the defocus compensation 

by the FB was performed rather than a calibration of the defocus 

measured by the system. That is, instead of inducing defocus and 

measuring it, defocus was induced by using trial lenses just in front of an 

emmetropised (using autocollimation) unaberrated artificial eye (see 

section 2.3.3.-(b)), and this induced defocus was compensated with the FB. 

This procedure allowed us to confirm experimentally that the theoretical 

calculations made in the previous section worked for our system, and that 

defocus was perfectly compensated by our FB. For this purpose, the 

scanner was set for continuous scanning so that the green laser beam was 

constantly moving and turned on the retinal image real time display. 

Then, for each trial lens, the FB was displaced until the image of the spot 

in the camera was motionless, indicating that the refractive error induced 

on the artificial eye by the trial lens had been compensated by the FB. 

Finally, an aberration measurement was performed in these conditions to 

verify that the residual defocus after compensation was negligible. This 

procedure was repeated for different trial lenses (-4D, -3.25 D, -2 D,  -1 D, 

+1 D, +2 D, +3 D, +4 D), obtaining for each lens a value of the FB position 

in dioptres that compensates for the trial lens power (the same magnitude, 

with opposite sign would be expected). Figure 2.14 A shows a plot of the 
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nominal compensation by the FB in diopters versus the nominal value of 

the trial lens (fit: y=-0.98x-0.53; r=0.9996; p<0.0001). As expected, the slope 

of the fit was practically -1. However, a slight off set was found (-0.53 D). 

This offset was due mainly to the FB, given that the distance between 

lenses L1 and L2 of the Badal system for the zero position was slightly 

shorter than the addition of their focal lengths, and therefore some 

negative defocus was being introduced in the system.  

 

For further confirmation, a commercial artificial eye with known 

defocus was measured, and a residual defocus value similar to the offset 

found was obtained. However, this small offset in the defocus would not 

have affected our studies, since refractive error was used in relative terms. 

In addition, our measurements were performed using IR wavelength and 

Figure 2.14. Spherical error correction by the Focusing Block versus the nominal value of the 
trial lens, with the corresponding regression line and equation. The correlation was 
statistically significant (p<<0.0001, r2=0.9996). 
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spherical error varies with wavelength as will be described in more detail 

in Chapter 4. Refraction was also obtained from commercial 

autorrefractometer or subjective refraction, depending on the study.  

Finally, regarding the residual uncorrected defocus accounted for by 

the aberrations measurement ( 0
2Z ), the average across the values obtained 

for the different trial lenses was -0.05±0.09 D. No correlation between the 

trial lens power and the corresponding residual defocus existed. 

2.3.7.- OPTICAL ABERRATIONS INTRODUCED BY THE SYSTEM 

Before measuring aberrations of human eyes, a verification that 

neither geometrical nor chromatic aberrations were being introduced by 

the system was carried out.  

(a) Geometrical aberrations 

In order to discard that geometrical aberrations were being 

introduced by the system, the aberrations of the nominally aberration-free 

artificial eye described in section 2.3.3.-(b) were measured. Table 2.1 shows 

the RMS values excluding: piston and tilts (2nd through 7th order); and 

piston, tilts and defocus and astigmatism (3rd through 7th order). 

Marèchal’s criterion (Born and Wolf, 1993), states that an optical system 

can be considered well corrected in terms of optical aberrations if the RMS 

departure of the wavefront from the reference sphere is less than λ/14. In 

our case, this limit is 0.038 μm and 0.056 μm for λ=532 nm and λ=785 nm, 

respectively. From the table, the Marèchal’s condition fulfils for 3rd and 

higher order aberrations up to the second decimal. Regarding 2nd order 

aberrations (defocus and astigmatism), the residual values (see sections 

2.3.6.- and 2.3.3.-(b)) will be subtracted to the measured values. Therefore, 

the system can be considered sufficiently corrected for our purposes. 
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(b) Chromatic aberrations 

Absence of chromatic aberration in LRT1 was verified by measuring 

the aberrations of a phase plate (Navarro et al., 2000) in front of the 

artificial eye described in Section 2.3.3.-(b), but with a rotating diffuser 

acting as a retina. The measurements were performed using 543 nm and 

786 nm as test wavelengths. The chromatic aberration introduced by the 

phase plate, which was 12 μm thick, can be considered negligible. The 

difference in defocus obtained with both wavelengths was 0.04 D. 

Similarly, optical aberrations of the artificial eye described in Section 

2.3.3.-(b) were measured using IR wavelength (785 nm), under the same 

conditions (defocus correction, artificial eye position) used for a 

wavelength of 532 nm. The difference between the values of defocus for 

both wavelengths was 0.12 D. 

2.3.8.- HIGH ORDER ABERRATIONS IN HUMAN EYES 

Since two different systems were used in work (particularly, in 

Chapter 6 both are used simultaneously), confirmation of the equivalence 

between both systems was required. Also LRT1 had been previously 

validated with systems from two other independent laboratories, SRR 

based in a psychophysical technique, in Boston (Moreno-Barriuso et al., 

Table 2.1. RMS values for different orders for the two wavelengths of the setup. 
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2001a) and a HS sensor in London (Marcos et al., 2002b, Llorente et al., 

2003), and therefore the technique, setup and routines to estimate 

aberrations were independent from ours. Hence, confirmation of the 

equivalence between both systems also implied a general verification of 

LRT2. 

2.3.8.1.-  LRT1 vs LRT2 

(a)  Phase Plate 

As a first approach for the comparison of high order aberrations 

measurement by LRT1 and LRT2 a phase plate with an aberration pattern 

sculptured using a gray-level single-mask photo-sculpture in photoresist 

technique (Navarro et al., 2000) was used. This aberration pattern was 

obtained as the negative of a human eye pattern measured using LRT1. 

The phase plate was placed in front of the artificial eye described in 

Section 2.3.3.-(b). The coefficients corresponding to the measurement with 

LRT1 (dashed blue line) and LRT2 (continuous pink line) are shown on the 

top graph in Figure 2.15. The corresponding wave aberration maps (left 

and middle), and difference map (right) are shown on the bottom row. 

The tendency is very similar when comparing both sets of coefficients and 

corresponding aberration maps, although the coefficients of LRT2 set are 

in general larger in absolute value. According to the difference map, 

differences are concentrated rather in the periphery, near the edges, than 

in the centre. Although all maps shown in Figure 2.15 have the same 

diameter, the one corresponding to LRT1 had to be trimmed from 6.5 

down to 6 mm. For these reason, some edge effects causing higher 

aberration values in the edges of the pupil in LRT2 could have been 

removed from the map corresponding to LRT1. A reliability test was 

applied to verify the equivalence between the measurements obtained 

with both systems. For the reliability analysis Cronbach’s Alpha model 

was used, a model of internal consistency usually applied to test scales. 

The sets of coefficients obtained with the two devices are regarded as 
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scales measuring the same item, and the output of the test, Cronbach’s α, 

indicates the correlation between both scales (1 indicates identity). A value 

for α as high as 0.94 was obtained, indicating a great correlation. In 

addition, a significant correlation was found between both measurements 

(r=0.94, p<0.0001), and no find significant differences were found between 

the means corresponding to the coefficients obtained with both devices 

when a Student T-test was applied (p=0.70). 

Figure 2.15. Aberrations of the phase plate measured with LRT1 and LRT2. The top graph 
shows the coefficients obtained with both devices. The wave aberration maps on the bottom row 
correspond to measurements with LRT1 (left), with LRT2 (middle) and to the difference 
between the previous two maps (right). Thicker contour lines indicate positive values of the 
wave aberration. 
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(b) Human Eyes 

  To confirm that the system measured higher order aberrations 

properly in human eyes the measurements obtained for two human eyes 

from different subjects using both, LRT1 and LRT2 devices were 

compared. It should be noted that due to the time difference between 

measurements (51 and 41 months respectively), and the fact that in human 

eyes the aberration pattern changes with time  (Zhu et al., 2004, Mclellan 

et al., 2001), some differences are expected when comparing aberration 

patterns. Same as Figure 2.15, Figure 2.16 and Figure 2.17 show average 

Zernike coefficients (3rd to 7th order) across 4 to 5 runs using LRT1 and 

LRT2, for eyes #1 and #2 respectively on the top row. Error bars indicate 

corresponding standard deviation. The similarities between 

measurements are evident visually when comparing the corresponding 

wave aberration maps for measurements with LRT1 (left) and LRT2 

(middle), and the RMS values (below each map) for both eyes. Also, RMS 

values corresponding to the difference maps (right) are in the range of the 

variability of the measurement (0.11±0.04 μm, mean±std RMS of the 

difference maps from repeated measurements of the eyes studied in  

Chapter 5, section 5.4.2.2). The reliability test (Cronbach’s α model) was 

applied to the means and standard deviations corresponding to the 

repeated measurements each device (LRT1 and LRT2), corresponding to 

each eye. Obtained α values were nearly 1 for the means (0.91 for eye #1 

and 0.96 for eye #2), indicating that both devices are measuring practically 

the same, and slightly lower values for the standard deviations (0.81 for 

eye #1 and 0.69 for eye #2). When the reliability test was applied to the 

coefficients corresponding to the repeated measurements obtained with 

both devices, α was 0.98 for both eyes.  A paired Student t-test was 

applied to verify the correlation between the means and standard 

deviations of the sets corresponding to each eye, and whether the 

differences were significant. The measurements with different devices 

were highly correlated with each other in means (r=0.84, p<0.001 and r= 
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0.92, p<0.001, for eyes #1 and #2, respectively) and in standard deviations 

(r=0.71, p<0.001 and r=0. 69, p<0.001 for eyes #1 and #2, respectively) of 

the sets. No significant differences were found between the mean set of 

coefficients corresponding to LRT1 and LRT2 (p=0.449 and p=0.775 for 

eyes #1 and #2, respectively) for both eyes, and the standard deviations 

corresponding to the sets of eye #1 (p=0.137), although the standard 

deviations corresponding to LRT1 and LRT2 were found to be different for 

eye #2 (p<0.001). 

Figure 2.16. Aberrations of Eye #1 measured with LRT1 and LRT2. The top graph shows the 
average coefficients obtained from 4 to 5 runs with each device. Error bars stand for standard 
deviation. The wave aberration maps on the bottom row correspond to measurements with LRT1 
(left) and LRT2 (middle), and to the difference between these two maps (right). Contour lines are 
plotted every 0.5 microns. Thicker contour lines indicate positive values of the wave aberration. 
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A further validation between LRT1 and LRT2 involving human eyes was 

carried out in the work presented in Chapter 6, where half the eyes were 

measured with each system. In this validation it was confirmed that the 

device used to measure ocular aberrations did not have any influence on 

the results. 

 

Figure 2.17. Aberrations of Eye #2 measured with LRT1 and LRT2. The top graph shows the 
average coefficients obtained from four to five runs with both devices. Error bars stand for 
standard deviation. The wave aberration maps on the bottom row correspond to measurements 
with LRT1 (left), with LRT2 (middle) and to the difference between the previous two maps 
(right). Contour lines are plotted every 0.5 microns. Thicker contour lines indicate positive 
values of the wave aberration. 
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2.4.- PROTOCOL FOR MEASUREMENTS IN SUBJECTS 

Except when specified differently, the protocol used in the 

measurements with LRT is that described next. The procedures were 

reviewed and approved by institutional bioethics committees and met the 

tenets of the Declaration of Helsinki. All patients were fully informed and 

understood and signed an informed consent before enrolment in the 

study.  

Pupils were dilated with one drop of tropicamide 1% prior to 

measurement, and the subjects were stabilised by means of a dental 

impression (LRT1 and LRT2), and a forehead rest. Spherical refractive 

errors were corrected with spherical lenses (LRT1) or with the Badal 

system (LRT2) when necessary. As previously mentioned, best focus was 

assessed by the subject while viewing the fixation stimulus, which was 

aligned with respect to the optical axis of the system and focused at 

infinity to keep the subject’s accommodation stable during the 

measurement. 

All measurements were done foveally, with a fixation stimulus 

consisting either on a laser spot corresponding to a 633 nm wavelength 

He-Ne laser (LRT1) (see Figure 3.1 and Figure 4.1 in chapters 3 and 4, 

respectively for a diagram of the setup) or a green circle with black radial 

lines thickening towards the periphery (see fixation test in Figure 2.2 A) 

(LRT2) and using the centre of the pupil as the reference axis. For proper 

alignment and continuous monitoring, the pupil was illuminated with IR 

light and viewed on a CCD centred on the optical axis of the instrument. 

For LRT2, the pupil was monitored (and recorded) during each run using 

back-illumination (see section 2.2.1.-), which allowed us to detect issues 

that would affect the measurements such as tear film break up, blinking or 

large eye movements. When any of these was detected during a run, the 

subject was asked to blink a few times until feeling comfortable again, rest 
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or fixate more accurately, respectively, and the measurement was 

repeated. This was particularly important when sampling patterns with a 

large number of samples were used (Chapter 5), extending the 

measurement time. 

Each measurement consisted on five runs for each condition to be 

tested. The pupil sampling pattern used, unless differently specified 

(Chapter 5), was a hexagonal arrangement of 37 samples which scanned a 

6 (LRT2) or 6.5-mm pupil (LRT1). Left and right eyes were analyzed 

independently for each subject. 
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Chapter 3  

 

INFLUENCE OF POLARISATION ON OCULAR 

ABERRATIONS  

This chapter is based on the article by Marcos, S. et al.,” Ocular 

aberrations with ray tracing and Shack–Hartmann wave-front sensors: 

Does polarisation play a role?”, Journal of the Optical Society of America 

19, 1063-1072 (2002b). The coauthors of the study are: Luis Diaz-Santana, 

Lourdes Llorente and Chris Dainty. The contribution of the author of this 

thesis to the study was the participation in the data collection and 

processing at Instituto de Óptica (LRT), as well as data and statistical 

analysis (HS and LRT).  

3.1.- ABSTRACT 

PURPOSE: To investigate whether polarisation may have an effect on 

reflectometric measurements of wave aberrations. 

METHODS: Ocular aberrations were measured in 71 eyes by using 

two reflectometric aberrometers: LRT (60 eyes) and HS (11 eyes). The 

effect of different polarisation configurations in the aberration 

measurements, including linearly polarised light and circularly polarised 

light in the illuminating channel and sampling light in the crossed or 
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parallel orientations was studied. In addition, completely depolarised 

light in the imaging channel from retinal lipofuscin autofluorescence was 

studied for the HS measurements. 

RESULTS: The intensity distribution of the retinal spots as a function 

of entry (for LRT) or exit pupil (for HS) depends on the polarisation 

configuration. These intensity patterns show bright corners and a dark 

area at the pupil centre for crossed polarisation, an approximately 

Gaussian distribution for parallel polarisation and a homogeneous 

distribution for the autofluorescence case. However, the measured 

aberrations are independent of the polarisation states. 

CONCLUSIONS: These results indicate that the differences in 

retardation across the pupil imposed by corneal birefringence do not 

produce significant phase delays compared with those produced by 

aberrations, at least within the accuracy of these techniques. In addition, 

differences in the recorded aerial images due to changes in polarisation do 

not affect the aberration measurements in these reflectometric 

aberrometers. 

3.2.- INTRODUCTION 

Since polarised light interacts with the ocular optical components 

and the retina, the polarisation of the incident (and returning light in the 

imaging systems) might affect aberration measurements. Birefringence of 

the optical components of the eye, cornea (Van Blokland and Verhelst, 

1987) and crystalline lens (Bueno and Campbell, 2001), produce a 

retardation of linearly polarised light (Van Blokland, 1986) (see Chapter 1, 

section 1.2.5.1). However, a published study (Prieto et al., 2001) using a 

psychophysical technique (SRR) showed no difference in the wave 

aberration measured with different states of polarisation of the 

illuminating channel suggesting that this retardation was negligible in 

terms of wavefront error. On the other hand, the use of polarisers in the 
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illumination and detection channels affects the intensity of the raw data 

(aerial retinal images captured on a CCD camera). Bueno and Artal (Bueno 

and Artal, 1999) used an ellipsometry approach to study the influence of 

polarization in double-pass estimates of the image quality of the eye. They 

found that the double-pass aerial image, autocorrelation of the ocular PSF 

(Artal et al., 1995), was influenced by the relative orientation of the 

polarizer and the analyzer (placed in the illumination channel and the 

imaging channel, respectively). These differences caused significant 

variations in the resulting modulation transfer function and therefore in 

the estimated image quality. Relative differences in intensity in the core 

and tails of the retinal image, or differences in shape could result in 

changes in the estimation of the centroid and have an impact on the wave 

aberration estimate. 

In the work reported in this chapter the effect of polarisation on the 

intensity of the aerial images and on the wave aberration estimated from 

reflectometric measurements was studied. Data from a HS system 

(Chapter 1, section 1.2.3) implemented at the Imperial College, London, 

UK were analysed in combination to data obtained from the LRT 

described in the methods section (Chapter 2, section 2.1). The aim of this 

work was not to fully characterise the wave aberration with respect to 

state of polarisation, but rather to test whether some typical combinations 

of polarisation in the incident and detection channels may influence wave 

aberration measurements. These different combinations together with 

retardation across the pupil produce differences in the relative intensity of 

the aerial images captured.  Additionally, a non-polarised condition was 

studied with the HS wavefront sensor. Our experiments show that these 

polarisation states do not influence reflectometric aberration 

measurements in the eye, at least within the error of the measurements. 
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3.3.- METHODS 

3.3.1.- LASER RAY TRACING 

3.3.1.1.- Setup and procedures 

The device used in this study was LRT1 (see Chapter 2, section 2.2). 

A schematic diagram of the configuration of the device used in this work 

is shown in Figure  3.1. In order to induce the different polarisation 

conditions to study, a linear polarizer (LP) and a polarising cubic beam 

splitter (PCBS) were introduced in the setup, as well as a quarter wave 

plate (QWP) when required (see section 1.3.1.2). 

3.3.1.2.- Experiments 

Figure  3.1. Schematic diagram of the configuration of LRT1 used in this study: LP is a 
linear polariser; L indicates lens; BS1 and BS2 are pellicle beam splitters; CBS is a cube 
beam splitter and M is a mirror. The polarising beam splitter (PCBS) and the quarter wave 
plate (QWP) contribute to obtain the different polarisation conditions. 



 125 

Two different experiments were performed: 1) In the first one, the 

eye was illuminated with linearly polarised light and light was collected 

linearly polarised in the crossed direction. This was achieved by using a 

polarising beam splitter, which reflects linearly polarised light, and 

transmits linearly polarised light rotated 90º (see Figure  3.2 A). 2) In the 

second one, a quarter-wave plate was introduced between the polarising 

beam splitter and the eye. Light in the illumination channel was then 

circularly polarised, and light with the same state of polarisation was fully 

transmitted into the imaging channel (see Figure  3.2 B).  

Figure  3.2. Configurations of the set-ups to obtain the different polarising conditions.  (A) 
Linear crossed polarisation: linearly polarised light enters the eye, and light from the eye 
polarised in the perpendicular orientation is transmitted by the polarising beam splitter (PCBS) 
(crossed analyser), so that little light preserving the original polarisation orientation reaches the 
detector (see thinner arrows). (B) Circular parallel polarisation: light circularly polarised by a 
quarter wave plate (QWP) enters the eye, and light from the eye is linearly polarised in the 
orientation transmitted by PBS (parallel analyser). (C) Depolarised condition: partially polarised 
light enters the eye and stimulates lipofuscin molecules, which emit depolarised light that is 
transmitted by the dichroic filted (DF). 
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3.3.1.3.- Subjects 

Twenty-eight subjects participated in the experiment. Ages ranged 

from 18 to 46 years and refractive errors ranged from –10.47 to 0.68 D. A 

total of 60 measurements (E#1-E#60). Both normal and atypically highly 

aberrated eyes were included, since the group under test includes 22 eyes 

after (at least one month) LASIK surgery, which typically increases the 

amount of higher order aberrations (Moreno-Barriuso et al., 2001b). Eleven 

eyes were tested both before and after LASIK, and were considered as 

independent measurements. The experimental protocol used was that 

described in section 2.4 of Chapter 2, for each polarisation condition. 

3.3.2.- HARTMANN-SHACK 

3.3.2.1.- Setup and procederes 

The implementation of the HS wavefront sensor at Imperial College, 

London (Diaz-Santana and Dainty 1999, Diaz-Santana Haro, 2000), as well 

as the technique itself (Chapter 1, section 1.2.3) have been described in 

detail elsewhere. A schematic diagram of the HS sensor configuration 

used in this work is shown in Figure  3.3. The emerging beam was 

sampled by a rectangular lenslet array placed in a plane conjugate to the 

pupil. Each lenslet was 0.8 mm x 0.8 mm over the eye pupil and 35-mm 

focal length. The number of sampling lenslets (32 to 48 lenslets) was 

defined by the subject's pupil size (ranging from 5 mm to 6.5 mm). A CCD 

camera, placed on the focal plane of the lenslet array and conjugated with 

the retina recorded the HS spot pattern. Deviations from the ideal spot 

pattern are proportional to the local slopes of the wave aberration. The 

slopes were fitted to a 6th order Zernike polynomial (27 terms) and the 

wave aberration was computed using a least-squares procedure. Same as 

for LRT, a LP and a PCBS were introduced in the setup, as well as a QWP 

or when required (see next section of this chapter), in order to induce the 

different polarisation conditions to study. 
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3.3.2.2.- Experiments 

The author did not participate in the experimental sessions, which 

took place at Imperial College (London), or in the data processing, but 

performed the analysis of the data from the different conditions. Three 

different experiments were performed, using different configurations for 

the state of polarisation in the illuminating channel, and state of 

polarisation of the light sampled in the imaging channel: 1) In the first 

experiment, the eye was illuminated with linearly polarised light  (635 

nm) and collected the light linearly polarised in the crossed direction. This 

was achieved by using a PCBS, which reflects linearly polarised light, and 

transmits linearly polarised light rotated 90º (see Figure  3.2 A). 2) In the 

second experiment, the illumination channel was circularly polarised, and 

light with the same state of polarisation was maximally sampled in the 

imaging channel. This was achieved by placing a QWP between the PCBS 

and the eye (see Figure  3.2 B). 3) In the third experiment the eye was 

Figure  3.3. Schematic diagram showing the configuration of the HS sensor used in this 
study: LP is a linear polariser; SF is a spatial filter; L indicates lens; BS1 and BS2 are 
pellicle beam splitters; M is a mirror; EP is an entry pupil aperture (diameter=1.5 mm), 
and FA is a field aperture; PBS is a polarizing cube beam splitter, DF a dichroic filter, and 
QWP is a quarter wave plate which are combined in the setup to obtained the different 
polarising conditions. 



 128 

illuminated using partially polarised light (from a He-Ne laser at 543nm), 

and completely depolarised light was sampled by the imaging channel. To 

achieve a depolarised state, a fluorescence technique was used (Delori et 

al., 1995, Diaz-Santana and Dainty 1999). Fluorescent light was collected 

by replacing the PCBS by a DF, reflecting the sampling light (543 nm) and 

transmitting wavelengths other than the excitation wavelength (see Figure  

3.2 C). Fluorescence is known to originate in the lipofuscin molecules at 

the retinal pigment epithelium (see section 1.1.6 of Chapter 1). A 

fluorescent source is equivalent to a perfectly incoherent source. Light is 

completely unpolarised and speckle is not present. The peak of the 

fluorescent spectrum is close to 635 nm. All experiments were done 

foveally, and using the pupil centre as a reference. Subjects were stabilised 

with the help of a dental impression. Alignment was achieved by 

measuring the displacement required for the subject to stop seeing the 

beam coming into his/her eye on the left, right, top and bottom, and 

finally computing the pupillary centre. For each condition, at least ten 

measurements were obtained consecutively. The alignment procedure was 

repeated every ten measurements. 

3.3.2.3.- Subjects 

Eleven normal subjects participated in these experiments. Only left 

eyes were used (E#61-E#71). Ages ranged between 26 and 52 years. 

Spherical refractive errors ranged between -3.25 D and 2.25D. Seven 

subjects participated in comparative measurements of experiments 1 and 

3; two subjects in comparative measurements of experiments 2 and 3; and 

two subjects in experiments 1 and 2. All eyes were dilated and cyclopleged 

with one drop of tropicamide 1% and one drop of phenylephrin 2.5% .  

3.3.3.- COMPARISON OF HS AND LRT SET UPS 

Previous studies have shown that measurements on the same normal 

subjects using HS and LRT techniques provide identical results, within the 
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accuracy of the methods (Moreno-Barriuso and Navarro, 2000, Moreno-

Barriuso et al., 2001a). To test the equivalence of the two systems used in 

this study measurements were conducted on two control subjects who 

travelled between London and Madrid. These subjects did not participate 

in the full measurements reported in this study, and were tested with the 

standard conditions in each lab (543 nm illumination and linear  

polarisation with an arbitrary orientation for LRT, and 543 nm 

illumination and crossed polarisation for HS). Figure  3.4 shows wave 

aberration contour plots for the right eyes of both control subjects, for 3rd 

order and higher aberrations, for LRT (left panels) and HS (right panels). 

Pupil size was 6.5 mm in the LRT experiment and 6 mm in the HS 

experiment. Both systems captured similar wave aberration maps. The 

larger differences found for control eye #2 are likely due to slight 

differences in the alignment. RMS wavefront error for 3rd order 

aberrations and higher (computed for 6 mm pupils in both systems) was 

0.46 μm and 0.43 μm for LRT and HS respectively, for control eye #1, and 

0.48 μm and 0.57 μm, respectively for control eye #2. For both eyes, the SA 

4th order term was the major contributor to wavefront error: 0.30 μm and 

0.33 μm for LRT and HS  (control eye #1), and 0.28 μm and 0.35 μm for 

control-eye #1
LRT HS

control-eye #2
LRT HS

control-eye #1
LRT HS

control-eye #1
LRT HS

control-eye #2
LRT HS

control-eye #2
LRT HS

Figure  3.4. Wave aberration contour for control eyes measured in both the LRT setup in 
Madrid and the HS system in London. First- and second-order aberrations have been 
canceled. Pupil diameter was 6.5 mm for LRT and 6 mm for the HS. Contour spacing was 
0.3 mm. 
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LRT and HS  (control eye #2).  

3.3.4.- STATISTICAL ANALYSIS 

Despite discrete and limited sampling of the wave aberration (Wang 

and Silva, 1980), the Zernike polynomials can be considered practically 

orthogonal.  A univariate statistical analysis (Student t-test) was therefore 

performed on each Zernike coefficient to assess possible differences across 

conditions, rather than performing a multivariate analysis (Hotelling t-

squared test) on Zernike sets (Sokal and Rohlf, 1995). This allows us to 

assess whether some particular coefficients are more likely to show 

differences. 

 

3.4.- RESULTS 

3.4.1.- RAW DATA 

LRT captures a set of retinal aerial images of a distant point source as 

a function of entry pupil position. An example of such a series of retinal 

images for a single run on Eye #23 for circularly parallel (A) and linearly 

crossed (B) polarisation conditions is shown in Figure  3.5 A and B, 

respectively. The images have been placed at their corresponding entry 

pupil position. The shape of aerial images (slightly defocused for this 

subject) remains approximately constant across the pupil for each 

condition. The relative intensity of the aerial images across the pupil is 

different in each condition: brighter in the centre in A, and brighter in the 

corners in B. Figure  3.5 C shows the corresponding retinal spot diagram 

of the sets of images in A (circles) and B (crosses), for this subject. Data 

across five consecutive runs have been averaged. The error bars indicate 

the standard deviation of the angular locations. For most positions, the 

difference between the two polarisation conditions is within the error. 

Figure  3.5 D and E shows HS images for circularly parallel (A) and 
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linearly crossed (B) polarisation conditions, for Eye #63. Figure  3.5 F 

shows the HS centroids corresponding to D (circles) and E (crosses). 

Despite the difference in brightness between both HS images, the centroid 

locations are very similar. 

Figure  3.5. Raw data as captured by LRT (panels A–C) and HS (panels D-F) for different 
polarisation configurations. In LRT a series of retinal images is captured sequentially as a 
function of entry pupil position. Examples are shown for eye #23 for circular parallel 
polarization (A) and linear crossed polarization (B). Each image is placed at the 
corresponding entry location (as looking at the subject’s pupil). Panel C shows the 
corresponding spot diagram of the images shown in A and B. Circles stand for circular 
parallel polarization and crosses for linear crossed polarization. Panels D and E show HS 
images for eye #63 for circular parallel polarization (D) and linear crossed polarization (E). 
Panel F plots the corresponding centroids of the HS images; symbol notation is the same as 
for the spot diagrams in C. 
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3.4.2.- INTENSITY PATTERNS  

Figure  3.7 shows pupillary intensity patterns (intensity modulation 

of the raw images as a function of pupil position) corresponding to 

experiments 1 and 2 using a LRT, for 5 individual eyes (#24, #48, #23, 

#10).  Each square represents the total intensity (average of 5 runs) of the 

aerial image of the corresponding pupil position. Pupil positions range 

from -3 to +3 mm both horizontally and vertically. Positive horizontal 

positions indicate nasal positions in right eyes and temporal positions in 

left eyes, and positive vertical positions indicate superior pupil. For each 

subject, data corresponding to the two polarisation combinations, crossed 

linearly polarised (experiment 1) and parallel circularly polarised 

(experiment 2), collected consecutively while keeping the rest of 

experimental conditions identical are shown. Each image is normalized to 

the maximum intensity value of the series. The intensity distribution 

changes completely depending on the polarisation combination. The 

parallel circularly polarised patterns (Figure  3.7, upper row) show a 

bright area in the central part of the pupil, with the location of the 

maximum depending on the subject, and the relative intensity decreasing 

towards the margins of the pupil. The crossed polarisation patterns 

(Figure  3.7, lower row) show a dark area in the central pupil, and bright 

areas at the corners of the pupil. It resembles the corneal cross, vignetted 

by the edges of the pupil, or the hyperbolic shape associated with corneal 

birrefringence, and observed when the cornea is imaged through two 

crossed polarisers (Van Blokland and Verhelst, 1987, Stanworth and 

Naylor, 1950, Cope et al., 1978) (Figure 1.12 B in Chapter 1). As found in 

previous studies (Van Blokland and Verhelst, 1987) these intensity 

patterns show bilateral mirror symmetry (Figure  3.6, for right and left eye 

of the same subject). 
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Figure  3.7. Pupillary intensity maps computed from the intensity of the LRT aerial images for 
eyes #24 (OS); #48 (OD); #23 (OS) and #10 (OD). Each square represents the total intensity 
(average of five runs) of the aerial image of the corresponding pupil position. Upper row, circular 
polarization in the illumination channel, analyzer in the same orientation. Lower row, linear 
polarization in the illumination channel, analyzer in the crossed orientation. Pupil positions 
range from 23 to 13 mm. Right horizontal positions indicate nasal positions in right eyes and 
temporal positions in left eyes, and superior vertical positions indicate superior pupil. 

Figure  3.6. Pupillary intensity maps (computed from LRT aerial images, as in Figure  
3.5) for right (E#7) and left (E#15) eyes of the same subject, using linear 
crossedpolarisation. The maps show a dark central area and bright nasal-superior corners, 
and they are bilaterally symmetric. 
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Figure  3.8 shows the HS spot patterns, for 3 different eyes (all left 

eyes). Upper and lower rows represent data corresponding to different 

conditions of state of polarisation. Left panels show cross-polarised (top) 

and autofluorescence (bottom) patterns for eye #67; middle panels show 

parallel circular polarisation (top) and autofluorescence (bottom) for eye 

#71; and right panels show parallel circular (top) and crossed (bottom) 

polarisations for eye #63.  Intensity patterns in the crossed polarised and 

parallel circular contributions are similar to those described for Figure  3.7. 

The autofluorescence spot patterns show the most homogenous intensity 

distribution. 

3.4.3.- WAVE ABERRATION PATTERNS 

Figure  3.9 A shows contour plots of the wave aberration 

corresponding to the four typical eyes and the two experimental 

conditions shown in Figure  3.5, measured using LRT. Each map is the 

Figure  3.8. Hartmann-Shack spot image for eyes #67 (OS), #71 (OS), #63 (OS). 

The left panels compare linear polarization in the illumination channel and analyzer in the 
crossed orientation (top) with autofluorescence (totally depolarized) sampled light (bottom). 
The middle panels compare circular polarization in the illumination channel and analyzer in 
the parallel orientation (top) with autofluorescence (bottom). The right panels compare 
circular parallel (top) with linear crossed polarizations (bottom). Right horizontal positions 
indicate temporal pupil positions, and superior vertical positions indicate superior pupil. See 
(Marcos et al., 2002) 
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average of at least three experimental runs. Tilt and defocus were set to 

zero. Eyes #24 (OS) and #48 (OD) are eyes following LASIK refractive 

surgery; Eyes #23 (OS) and #10 (OD) are normal eyes. Figure  3.9 B shows 

contour plots of the wavefront aberration corresponding to 3 eyes 

measured with HS (#67, #71 and #70) and combinations of experimental 

conditions shown in Figure  3.8. Wave aberration patterns of the same 

eyes are quite similar for the different conditions. 

Figure  3.9. Wave aberration contour maps for some of the eyes measured with LRT (A) and 
HS (B). 

 (A) For eyes #24, #48, #23, and #10, measured with LRT, lines are plotted every 1 μm. 
Upper and lower panels as in Figure  3.7. Defocus has been removed. Pupil diameter was 6.5 
mm for all eyes. (B) For eyes #67, #71, and #70, measured with the HS lines are plotted every 
0.2 μm. Polarization combinations as explained in Figure  3.8. Tilt and defocus have been 
removed. Pupil diameter was 6.5 mm for #67 and #71 and 6 mm for #70. 
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3.4.4.- ZERNIKE COEFFICIENTS 

Figure  3.10 shows examples of comparisons of Zernike coefficients 

measured with different pairs of polarisation states, for one of the eyes 

shown in Figure  3.9 A and the three eyes of Figure  3.9 B:  (A) E#23, OD, 

measured with linear crossed polarisation (crosses) and circular parallel 

polarisation (circles), using LRT; (B) E#71, OS, measured with circular 

polarisation (circles) and fluorescence mode (triangles), using HS; (C) 

E#67, OS, measured with crossed linear polarisation (crosses) and 

fluorescence mode (triangles), using HS; and (D) E#70, OS, measured with 

crossed linear polarisation (crosses) and circular polarisation (circles), 

using HS. Error bars indicate the mean standard deviation. The Zernike 

coefficient patterns vary substantially across individuals, but 

measurements on the same subject differing only by the polarisation states 

are very similar. The discrepancy in defocus term at Figure 3.10B is due to 

autofluorescence light coming from a deeper retinal layer. 

Figure  3.10. Zernike coefficients for eye #23 from Figure  3.9 A (A) and the three eyes (#71, 
#67, #70) from Figure  3.9 B (B)– (D), comparing different combinations of polarization 
conditions. Each symbol is the average of several measurements in the same conditions. Error 
bars stand for the mean std. 
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Figure  3.11 shows examples of individual coefficients 0
2Z  (A), 2

2
−Z  (B), 1

3Z  

(C), and 0
4Z  (D), for the 60 eyes and the two experimental conditions of the 

LRT measurements (left panels) and the 11 eyes and three experimental 

conditions of the HS measurements (right panels). Eyes are ranked by 

decreasing defocus coefficient (from higher to lower myopes).  

Figure  3.11. Zernike coefficients 0
2Z  (A), 2

2
−Z  (B), 1

3Z  (C), and 0
4Z  (D), for all eyes of this 

study (E#1–60 measured with LRT and E#61–71 with the HS), comparing at least two different 
polarization states (represented by different symbols). Error bars stand for the mean std. 
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 For the 60 eyes measured with the LRT, only 44 coefficients out of 1980 

(60 x 33 terms), i.e. 2.2%, showed statistically significant differences (t-test 

p<0.001) between the linear crossed and circular parallel polarisation. The 

defocus term ( 0
2Z ) was significantly different in 7 eyes. This term along 

with 3
3
−Z  was the one showing differences in more eyes (8.5%). A least 

square difference multiple comparison test showed only significant 

differences (p=0.0002) on the defocus term. The mean standard deviation 

of the Zernike coefficients (averaged across subjects and Zernike terms) 

was 0.065 μm, averaging the standard deviations obtained for each 

polarisation state. When pooling together data from all polarisation states, 

the mean standard deviation of the Zernike coefficients was 0.077 μm, 

only slightly higher than within the same polarisation state.  For the 11 

eyes measured with HS, 37% of the coefficients showed statistically 

significant differences (t-test, p<0.001) between linear crossed and 

autofluorescence, 37% between circular parallel and linear crossed 

polarisation and 46% between circular parallel and autofluorescence. 

Comparing sets of measurements under similar polarisation conditions, 

but repositioning the subject between sets of 10 consecutive runs provided 

similar percentages of significantly different (t-test, p<0.001) coefficients: 

40% comparing linear crossed polarisation sets of measurements, 52% for 

circular parallel, and 60% for autofluorescence. The mean std of the 

Zernike coefficients (across all polarisation conditions) was 0.126 μm, 

within a single polarisation state was 0.102 μm on average, and across 

identical consecutive runs was 0.039 μm. 

3.5.- DISCUSSION 

It has been shown that when using different states of polarisation in 

the illumination and detection channels, the intensity of the retinal images 

captured by imaging aberrometers depended on the position over the 

pupil of the entry (or exit) ray. This modulation depended on both the 
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pupil relative luminous efficiency, in case of light interacting with cone 

photoreceptors (Burns et al., 1995) and the interaction of the state of 

polarisation with birefringence properties, particularly those of the cornea 

(Van Blokland and Verhelst, 1987, Stanworth and Naylor, 1950, Cope et 

al., 1978). Retinal polarisation effects were probably irrelevant, since the 

foveal area sampled (a few minutes of arc) was much smaller than the 

retina brushlike patterns (4-5º) observed in retinal photographs between 

polarisers, which are attributed mainly to the retinal fibre layer.  In 

addition, retardation by photoreceptors as suggested by Hocheimer & 

Kues (Hocheimer and Kues, 1982) has been proved small (Van Blokland, 

1986). Whereas the crossed polarisation patterns (polarisation cross) seems 

related to corneal birefringence, the Gaussian distribution observed in 

parallel circularly polarised patterns is very likely associated with 

directionality properties of the cone photoreceptors  (Burns et al., 1995, 

Marcos and Burns, 1999, Marcos et al., 2000).The autofluorescence spot 

patterns show the most homogenous intensity distribution, consistent 

with the fact that cones do not recapture light scattered by lipofuscin 

(Burns et al., 1997).  

However, in spite of the effect of polarisation on the intensity 

distribution of the images, this had little effect on the aberrations 

measured, within the accuracy and sampling density of the technology 

used. The larger statistical differences found across Zernike coefficients 

obtained with different polarisation states for HS measurements are very 

likely due to differences in alignment between measurements, and not 

differences intrinsic to the polarisation state. The larger variability of the 

autofluorescence data is likely due to the lower signal to noise associated 

to this type of measurements (Diaz-Santana and Dainty 1999). 

The fact that ocular aberrations measured using imaging methods, 

such as the LRT or HS, are insensitive to polarisation has important 

practical implications. For example, when building such an instrument, 
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one can choose the polarisation states for illumination and detection that 

result in the best light efficient configuration, or that which avoids 

reflections or artefacts. This differs from conventional double-pass 

measurements, where differences in polarisation produced variations in 

the PSF and MTF (Bueno and Artal, 1999, Gorrand et al., 1984, Gorrand, 

1979). 

Published data obtained using the SRR also show that ocular 

aberrations do not depend on the state of polarisation (Prieto et al., 2001). 

This is a psychophysical technique, and the subjects did not perceive 

differences as a linear polariser in the test channel was moved, for any of 

the pupil locations under test. These results, along with those shown in the 

present study, suggest that the differences in retardation across the pupil 

imposed by corneal birefringence, produce non-significant phase delays 

compared to those produced by aberrations, at least within the accuracy of 

the measurements. Interestingly, these results also hold for patients 

following LASIK surgery. Along with a change in corneal shape, 

producing a significant increase of aberrations (see Chapter 7), these 

patients may have suffered a change in corneal birrefringence due to re-

organization of stromal collagen fibrils induced by surgery  (Farrell et al., 

1999, Meek and Newton, 1999, Brinkmann et al., 2000). Even if only a 

fraction of stromal fibres undergo reorganization, the stromal bed is 

substantially reduced in the higher myopic patients. However, the 

intensity distribution patterns obtained by LRT did not change with 

surgery (neither for crossed linear or parallel circular polarisations). This 

is in agreement with Bueno et al. (2006), who measured four normal and 

four post-LASIK young eyes using an aberropolariscope. However, 

although they found no differences in aberration measurements for 

different polarisation states in both groups, they did find changes in the 

polarisation characteristics. Post-LASIK eyes showed larger levels of 

depolarisation and more irregular patterns of retardation and corneal slow 

axis. 
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Chapter 4  

 

ABERRATIONS OF THE HUMAN EYE IN VISIBLE AND 

NEAR INFRARED ILLUMINATION. 

This chapter is based on the article by Llorente, L. et al.,”Aberrations 

of the human eye in visible and near infrared illumination”, Optometry 

and Vision Science 80, 26-35 (2003). The coauthors of the study are: Luis 

Díaz-Santana, David Lara Saucedo and Susana Marcos. The contribution 

of the author of this thesis to the study was the participation in the data 

collection and processing at Instituto de Óptica (LRT), as well as data and 

statistical analysis (HS and LRT).  

4.1.- ABSTRACT 

PURPOSE: To compare optical aberration measurements using IR 

(787 nm) and visible light (543 nm) in a heterogeneous group of subjects in 

order to assess whether aberrations are similar in both wavelengths and to 

estimate experimentally the ocular chromatic focus shift.  

METHODS: Ocular aberrations were measured in near IR and visible 

light using LRT and HS wavefront sensor. Measurements were conducted 

on 36 eyes in total (25 and 11 eyes respectively), within a wide range of 

ages (20 to 71), refractive errors (-6.00 to +16.50 D) and optical quality 
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(RMS, excluding defocus, from 0.40 to 9.89 μm). The Zernike coefficients 

and the RMS corresponding to different terms between IR and green 

illumination were compared.  

RESULTS: A Student t-test performed on the Zernike coefficients 

indicates that defocus was significantly different in all of the subjects but 

one. Average focus shift found between 787 nm and 543 nm was 0.72 D.  A 

very small percentage of the remaining coefficients was found to be 

significantly different: 4.7% of the 825 coefficients (25 eyes × 33 terms) for 

LRT and 18.2% of the 275 coefficients (11 eyes × 25 terms) for HS. 

Astigmatism was statistically different in 8.3% of the eyes, RMS for 3rd 

order aberrations in 16.6%, and SA ( 0
4Z ) in 11.1%. 

CONCLUSIONS: Aerial images captured using IR and green light 

showed noticeable differences.  Apart from defocus, this did not affect 

centroid computations since, within the variability of the techniques, 

estimates of aberrations with IR were equivalent to those measured in 

green. In normal eyes, the LCA of the Indiana Chromatic Eye Model can 

predict the defocus term changes measured experimentally, although the 

intersubject variability could not be neglected.  The largest deviations 

from the prediction were found on an aphakic eye and on the oldest 

subject. 

4.2.- INTRODUCTION 

Most of the currently available wavefront sensing techniques use IR 

illumination, due to the advantages that it presents over visible light 

(Chapter 1, section 1.2.5.2). However, for direct comparison between 

optical measurements (estimated from the wave aberration) and visual 

performance the equivalence between results obtained using IR and 

visible light has to be assured. Particularly, knowledge of the defocus shift 

between IR and visible wavelengths is essential if the results are to be used 
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to predict refraction. It is therefore essential to confirm that aberrations 

measured with IR and green light are equivalent, and to verify whether 

the focus difference between IR and green predictable by the LCA, and 

therefore reasonably predictable across subjects. 

Previous measurements of aberrations at different visible 

wavelengths (450 through 650 nm) using a psychophysical technique 

(SRR) showed slight differences in some aberration terms as a function of 

wavelength (Marcos et al., 1999). The chromatic difference of focus they 

found agreed with previous psychophysical results from the literature. 

Previous studies  (Lopez-Gil and Artal., 1997, Lopez-Gil and Howland, 

1999) using reflectometric techniques to compare measured optical quality 

in visible (545 and 633 nm, respectively) and near IR (780 nm) did not find 

differences in HOA. Double-pass measurements  (Santamaría et al., 1987) 

of MTFs in IR and green light appear to be similar, although subtraction of 

background halos (noticeably different between IR and green) was critical  

(Lopez-Gil and Artal., 1997). Another study using an objective crossed-

cylinder aberroscope to measure aberrations reported that aberrations are 

virtually identical in near IR and green light (Lopez-Gil and Howland, 

1999). However, the data analysis was mainly qualitative and limited to 

three eyes. Recent studies have expanded the wavelength range 

experimentally studied either towards the ultraviolet (Manzanera et al., 

2008) or the IR boundaries  (Fernandez and Artal, 2008, Fernandez et al., 

2005). They confirm that monochromatic aberrations hardly change with 

wavelength, except for defocus, as found in the study reported in this 

chapter. They also studied how accurately their data fit the predictions of 

the LCA from theoretical equations, although only a few subjects were 

measured. 

In this chapter ocular aberrations between near IR (786 nm for LRT 

and 788 nm for HS) and visible illumination (543 nm) are compared. 

Aberrations were measured with two objective experimental setups, LRT 
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and HS (see sections 2.2 in Chapter 2 and 3.3.2.1 in Chapter 3, 

respectively), although the conclusions drawn here can be extrapolated to 

unrelated commercially available instruments, based on similar principles. 

Measurements were performed on 36 subjects, with a wide range of ages, 

refractions, and ocular conditions (including old and surgical eyes), thus 

covering a wide range of aberrations, and potentially ocular and retinal 

structural differences. In addition, the intensity distribution of the aerial 

images obtained with both wavelengths were compared. 

4.3.- METHODS 

4.3.1.- LASER RAY TRACING 

4.3.1.1.- Setup and procedures.  

For this study, the device LRT1 (Moreno-Barriuso et al., 2001) (see 

Chapter 2, section 2.1) was used to measure ocular aberrations. Figure  4.1 

shows the particular implementation for this study, which included a 543 

nm He-Ne laser beam (Melles Griot, Alburquerque, USA; 5mW), and 785 

nm diode IR laser beam co-aligned (Schäfter + Kirchhoff, Hamburg, 

Germany; 15mW).  

4.3.1.2.- Setting and control experiment 

Measurements were conducted following the protocol described in 

section 1.4, Chapter 1. Previous to the measurements, the system was 

calibrated to verify that it did not introduce chromatic aberration (see 

section 2.3.7 (b), Chapter 2).   
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4.3.1.3.- Subjects. 

Twenty-five eyes (#1-#25) from 16 subjects were measured. Nineteen 

eyes were normal, one eye was aphakic (#8), and 5 eyes had undergone 

LASIK refractive surgery (#5, #6, #10, #12, #13). Ages ranged from 20 to 

71 years (mean±std, 33±11 years), spherical error ranged from -6.00 to 

+16.50 D (-1.62±4.42 D), and astigmatism ranged from 3.78 to 0.07 D 

(1.07±0.98D).  

Figure  4.1. Schematic diagram of LRT1, used in this study . 

A  He-Ne (543 nm) laser or a diode laser (786 nm) samples the pupil plane and, simultaneously, 
light reflected off the retina is captured by a CCD camera. A red He-Ne laser (633 nm) acts as a 
fixation point. A video camera monitors pupil centration. BS1 and BS2 are pellicle beam 
splitters, BS3 is a glass beam splitter, CBS is a cube beam splitter, M is a mirror and L indicates 
lens. 
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4.3.1.4.- Measurements 

Measurements were performed under the same protocol specified in 

Chapter 2, section 2.4 for the two different conditions tested: green (543 

nm) and near IR illumination (786 nm). 

4.3.2.- HARTMANN-SHACK 

4.3.2.1.- Setup and procedures. 

A detailed description of a similar system can be found in Chapter 3 

without the minor modifications introduced for this study. Figure  4.2 

shows a schematic diagram of the HS wavefront sensor used in this study, 

including this modifications. For this study, light from an IR (788 nm) 

super-luminiscent diode (Anritsu, 10 μw) was introduced by means of a 

pellicle beam splitter and co-aligned to the green (543 nm) He Ne laser 

beam (Melles Griot, 1 mw) used in previous measurements. The He-Ne 

laser was spatially filtered and expanded prior to collimation, bringing the 

maximum power reaching the eye to less than 5 μw over an 8 mm 

diameter pupil. Further power reduction was achieved by reducing the 

beam diameter to 1.5 to 2 mm and by the use of neutral density filters 

before spatial filtering. The SLD power was largely reduced after fibre 

coupling (to about 10% of its maximum nominal power), further power 

reduction was electronically controlled with its driver. In all cases the 

maximum power reaching the eye was at least one order of magnitude 

below the safety limits (ANSI, 2000). The principle of the HS system as 

well as the particular characteristics of the HS sensor have been described 

in Chapter 1, Section 1.2.3 and Chapter 3, section 3.3.2.1, respectively,  of 

this thesis. The pupil size was 6 mm.  

 

4.3.2.2.- Setting and control experiment 
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Measurements were conducted at Imperial College of Science 

Technology and Medicine, London, United Kingdom. The system was 

calibrated to ensure that it did not introduce chromatic aberration. Two 

reference HS images using green and IR light were compared. The green 

reference was used to calculate the aberrations of the IR reference. The 

order of magnitude of every Zernike coefficient was always smaller than 

or equal to the stds of any series of ten measurements of ocular aberrations 

using only one wavelength. This procedure proves that no significant 

amount of chromatic aberration was introduced by the optics of the 

system.  

4.3.2.3.- Subjects. 

Eleven 11 normal eyes (#26-#36)  from 6 subjects were measured. 

Ages ranged from 22 to 26 years (23±1.47 years), spherical error ranged 

from –6.00 to +0.75 D (2.51±3.24 D) and astigmatism ranged from 0.07 to 

 Figure  4.2. Schematic diagram of the HS wavefront sensor. Light coming from an expanded 
He-Ne (543 nm) laser or from a super luminescent diode (SLD) forms a point on the retina. SF 
is a spatial filter, and L1 and L2 are collimating lenses. L3, L4 and L5, L6 are relay systems in 
the illumination and imaging channels, respectively. EP is an entry pupil aperture (pupil 
diameter = 1.5 mm), and FA is a field aperture. Light reflected off the retina is imaged by a HS 
sensor (HS Sensor) on a cooled CCD camera. Images of the pupil are projected onto a CCD 
camera by objective lens L7 and monitors pupil centration. BS1 and BS2 are pellicle beam 
splitters, and PCBS is a polarizing cube beam splitter. M is a mirror that serves in reference 
image capture. 
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4.00 D (1.30±1.57 D). The institutional research and ethical committee 

approved the use of the wavefront sensor and the experimental design. 

Written consent was obtained from all subjects participating in the study, 

according to the tenets of the Declaration of Helsinki. Pupils were dilated 

using Tropicamide 1% and Phenylephrine 2.5% 30 minutes prior to the 

beginning of the measurements. 

4.3.2.4.- Measurements 

Subjects were stabilized with the help of a dental impression and the 

pupil of the eye was aligned to the optical axis of the instrument, while it 

was continuously monitored with a CCD camera. The illumination source 

was used as the fixation point. Sphero-cylindrical refractive errors were 

compensated when necessary. At least six series of 10 HS images were 

collected, three using green illumination (543 nm) and the rest using IR 

illumination (788 nm). Images with the same wavelength were collected 

consecutively. 

4.4.- RESULTS 

4.4.1.- RAW DATA 

Figure 4.3 A and Figure 4.3 B show a set of aerial images obtained 

with LRT for eye #5, for green and IR light respectively. Each image has 

been placed at the corresponding entry pupil position. The intensity 

patterns differ significantly across wavelengths. Figure 4.3 C shows the 

spot diagram corresponding to the average data of 3 consecutive runs 

with green light (crosses) and 4 consecutive runs with IR light (circles) for 

eye #5. The error bars indicate the std of the positions of the centroid 

between runs. Chromatic defocus was responsible for the consistent shift 

in the centroid locations between wavelengths, which increases with entry 

pupil eccentricity. Figure 4.3 D and Figure 4.3 E show HS images for green 

and IR light respectively, for eye #29. The presence of a halo surrounding 
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the centroid was more evident for the image with IR illumination than for 

that with green illumination. The spots at the upper right and the lower 

left corners of the image appear dimmer (particularly for green 

illumination) due to the use of crossed polarisation between illumination 

and recording (See Chapter 3, Section 3.4.2). Figure 4.3 F shows the HS 

centroids corresponding to D (crosses) and E (circles). As in LRT, the shift 

between the green and IR spots increases towards the periphery of the 

image. 

 

Figure 4.3. Raw data as obtained from LRT (panels A, B, and C) and HS wavefront sensor 
(panels D, E, and F). 

In LRT, a series of retinal images is captured sequentially as a function of the entry pupil 
position. Aerial images obtained for eye #5 using green and IR light are shown in panels 
A and B, respectively. Panel C shows the corresponding spot diagram. Crosses represent 
green illumination, and circles represent IR illumination. Panels D and E show HS 
images for eye #29 for green and IR light, respectively. Panel F plots the corresponding 
centroids of the HS images. Symbol notation is the same as for panel C. 
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4.4.2.- WAVE ABERRATION MAPS 

Figure 4.4 A shows wave aberration maps from LRT measurements 

for both wavelengths, for HOA. Eyes #9 and #22 were normal eyes, while 

#13 had undergone LASIK surgery. Each map is the average of at least 

three experimental runs. Contour lines are plotted every 0.2 μm. Figure 4.4 

B shows wave aberration maps for three normal eyes (#29, #30 and #31) 

measured with HS for both wavelengths, excluding tilt and defocus. 

Contour lines are plotted every 0.5 μm. For both systems, the wave 

aberration patterns corresponding to green and IR wavelengths for the 

same subject are very similar. 

Figure  4.4. Wave aberration maps from LRT (A) and HS (B) for green and IR light.  

A First- and second-order terms have been excluded. Eyes #9 and #22 were normal eyes, and 
#13 had undergone LASIK. Contour lines are plotted every 0.2 μm, and pupil size was 6.5 mm. 
B Tilts and defocus have been excluded. All three eyes were normal. Contour lines are plotted 
every 0.5 μm, and pupil size was 6 mm. 
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4.4.3.- ZERNIKE COEFFICIENTS AND RMS 

Figure  4.5 shows plots of sets of Zernike coefficients for green 

(crosses) and IR (circles) light for the same eyes as in Figure 4.4. First and 

second order terms have been excluded to allow a higher resolution view 

of higher order terms. Error bars represent the std of the measurement. 

Mean variability (std), averaged across Zernike coefficients and subjects, 

was 0.10±0.06 (mean±std) for green light and 0.07±0.04 for IR light, for the 

measurements performed with LRT, and 0.019±0.009 (mean±std) for green 

light and 0.015±0.009 for IR light, for the measurements performed with 

HS. The differences between the Zernike coefficients measured with green 

and IR light, shown in Figure  4.5, are within the inherent variability of the 

techniques.  

A univariate statistical analysis (Student t-test) on each Zernike 

coefficient for each eye was performed to detect which subjects and 

particular terms showed significant differences (p<0.01) when measured 

in green and IR light. For the 25 eyes measured with LRT 39 terms 

(excluding defocus) out of 825 (25 eyes x 33 terms), i.e. 4.7 %, were 

statistically different. The defocus term ( 0
2Z ) was statistically different in 

24 of the 25 eyes (96% of the subjects).  All the other statistically different 

terms were randomly distributed. For the 11 eyes measured with HS 61 

terms out of 275 (11 eyes x 25 terms), i.e., 22% of the coefficients were 

statistically different. The defocus term was statistically different in all of 

the eyes. Among terms other than defocus, 50 out of 275 (18%) were found 

to be significantly different.  
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Figure  4.5. Plots of sets of the Zernike coefficients for green (crosses) and IR 
(circles) light for the same eyes as in Figure 4.4. First- and second-order terms 
have been cancelled. Error bars represent the std of the measurement. 
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Defocus for IR wavelength versus defocus for green wavelength in 

dioptres for all subjects is shown in Figure  4.6. There is a good linear 

correlation (R2=0.98), and the slope of the linear fit is close to one (0.96). 

The focus shift between IR and green, given by the fitting equation is 0.72 

D. The experimental focus shift was 0.78±0.29 D. 

 

 

Figure  4.6. Defocus for IR vs. green wavelength in dioptres for all subjects. 

The solid line represents the best linear fit to the data (R2 = 0.976). The focus shift between 
infrared and green given by the fitting equation is 0.72 D. The slope of the linear fit is close 
to one (0.9615). The dashed line corresponds to a fitting line with slope equal to one and falls 
within the data variability 
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Bar diagrams in Figure  4.7 compare individual terms (astigmatism and 

SA) and the RMS including different terms, obtained with green (black 

bars) and IR (grey bars) for all subjects. Eyes #1 to #25 were measured 

with LRT, and #26 to #36 with HS. Asterisks indicate those eyes showing 

statistically significant differences (p<0.01). Astigmatism (Figure  4.7A) 

was statistically different in 3 of the 36 subjects (8.3 %). RMS for 3rd order 

aberrations (Figure  4.7 B) was statistically different in 6 of the 36 subjects 

(16.6 %). RMS for HOA (Figure  4.7 C) was statistically different in 5 of the 

36 subjects (13.5 %). Spherical aberration (Z40) (Figure  4.7 D) was 

statistically different in 4 of the 36 subjects (11.1%). Only one normal eye 

(#35) came out significantly different for all the terms or orders reported 

above (RMS for HOA, 3rd order aberrations, SA and astigmatism). 

4.5.- DISCUSSION 

This study shows that while the intensity distribution of LRT aerial 

images or HS images is notably different between green and IR 

illumination, both wavelengths provide aberration estimates within the 

experimental error (except for defocus). Our sample includes eyes with 

large differences in optical quality (from normal eyes to surgical eyes) and 

ages (20 through 71), suggesting that this conclusion holds for most of the 

population. 
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Figure  4.7. Bar diagrams comparing individual terms (astigmatism, A, and SA, D) and the 
root mean square wavefront error (RMS) for different orders (third order aberrations, B, and 
HOA, D), obtained with green (black bars) and IR (grey bars) for all subjects. Asterisks 
indicate the statistically different coefficients. Astigmatism was compensated during the 
measurement only for those eyes measured with HS. 



 156 

4.5.1.- DIFFERENCES IN IMAGE INTENSITY PROFILES 

Figure 4.3 shows relevant intensity differences between the aerial 

images obtained with IR and those obtained with green illumination. IR 

images are typically more spread and are surrounded by a broad halo. It 

has been suggested that most of the light contributing to the core of 

double-pass aerial images is probably due to the light captured and 

guided back from the photoreceptors (Lopez-Gil and Artal., 1997, 

Williams et al., 1994). The halo is probably produced by effects other than 

aberrations, such as retinal stray light scattered at the choroid 

(Westheimer and Campbell, 1962, Westheimer and Liang, 1995). Retinal 

scattering increases for longer wavelengths due to their deeper 

penetration within the retina and the choroid (Elsner et al., 1992, Gorrand 

et al., 1984). 

Some previous comparisons of optical quality in IR and green light 

were based on estimates from double-pass aerial images. A computer 

simulation was performed to evaluate the contribution to the aerial image 

spread caused by degradation other than the ocular aberrations, and the 

influence of wavelength on this additional contribution. LRT double-pass 

aerial images were simulated from the estimated wave aberration 

function. LRT aerial images are the cross-correlation of the entry (1st pass) 

and exit (2nd pass) PSF.  The entry pupil is a narrow incoming Gaussian 

beam (variance=0.10 mm and = 0.13 mm respectively, for green and IR 

illumination) and the exit pupil is a 3-mm circular pupil. The entry and 

exit pupil sizes correspond to the experimental values in the LRT setup. 

Insets in Figure  4.8 show real images and simulated images, 

corresponding to an entry pupil centered at coordinates (+1.5, -2.6 mm). 

Figure  4.8 A and Figure  4.8 B show experimental and simulated results 

for green and IR light respectively, for eye #22. The plots represent the 

normalized radial intensity profile of the corresponding real (solid) and 

simulated (dashed) aerial images. The distance from the peak position to 
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the zero position represents the centroid deviation from the chief ray 

(which is practically the same for the simulated and real images). The 

width of the simulated images accounts for the spread caused exclusively 

by the measured aberrations, while the real images are further enlarged by 

scattering and non-measured higher-order aberrations. 

 

The HS images in Figure 4.3 C also suggest a larger contribution of 

scattered light in IR. A crossed polarization configuration was used, which 

explains the "polarization cross" pattern observed in green light 

illumination (see Chapter 3, section 3.4.2) (Marcos et al., 2002b). Green 

illumination maximizes the light reflected by the photoreceptor outer 

segments (Elsner et al., 1992) which are thought to partly retain 

polarization (Gorrand et al., 1984) Light multiply scattered by deeper 

layers (probably a significant component of the IR images (Elsner et al., 

1996)) does not retain polarization, and therefore the HS spots will show 

Figure  4.8. Experimental and simulated aerial images for green (A) and infrared (B) light, 
respectively, for eye #22 and entry pupil at coordinates (+1.5, -2.6 mm). The image on the 
upper left corner of the plot is the aerial image obtained experimentally, and the image below is 
the aerial image simulated from measured aberrations as the autocorrelation of first- and 
second- pass PSFs. The plots represent the normalized radial intensity profile of the 
corresponding real (dashed) and simulated (solid) aerial images. The distance to zero position 
represents the centroid deviation from the chief ray. The width of the simulated images 
accounts for the spread caused exclusively by the measured aberrations, whereas that of the 
real images also includes other effects, such as scattering and non measured higher-order 
aberrations, together with the measured aberrations. 
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little polarization-related intensity differences across the image (See 

Chapter 3). 

The effects mentioned above affect the shape and intensity 

distribution of the aerial image and are critical in double-pass 

measurements of the optical quality of the eye. In this technique, MTF 

estimates are directly obtained from double-pass aerial images. An 

appropriate halo subtraction is critical to obtain MTFs in IR consistent to 

those measured in green light (Lopez-Gil and Artal., 1997). However, 

reflectometric techniques for wave aberration measurements only rely on 

centroid deviation computations, which as shown, are not significantly 

affected by wavelength.   

4.5.2.- CHROMATIC DIFFERENCE OF FOCUS 

The defocus term was significantly different across wavelengths in 

all but one subject. The mean focus difference between green and IR across 

subjects was 0.78±0.29 D, close to the shift estimated by the linear fitting 

shown in Figure  4.6 (0.72 D). This value agrees well, within the inherent 

variability, with the chromatic focus shift predicted by the Indiana 

chromatic reduced eye model  (Thibos et al., 1992) (see equation (4.1)). 

 

(4.1) 

 

where λG=543 nm and λIR=787 nm (mean between IR wavelength 

used for LRT, 786 nm, and HS, 788 nm). 

Thibos et al.  (Thibos et al., 1992) obtained the parameters of their eye 

model by fitting experimental data for a range of wavelengths between 

400 nm and 700 nm, and using Cornu's expression for the dependence of 

the index of refraction with wavelength. Equation (4.1) agrees well with 

experimental data in the literature for wavelengths up to 760 nm (close to 
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the wavelength used in this study), with variations close to the 

intersubject variability in our sample (Thibos et al., 1992).  Fernandez et al.  

(Fernandez et al., 2005) measured the ocular aberrations with wavelengths 

ranging from 700 to 900 nm for four eyes, and found a good agreement 

with the values predicted by equation (4.1), even though the wavelength 

values they used extended even further in the IR. They reported a value 

for the chromatic difference in defocus between their wavelengths of 0.4 

D. A recent study  (Fernandez and Artal, 2008) extended the range of 

wavelengths for measured aberrations even further in the IR (632.8-1070), 

finding a defocus difference of 1 D. They compared their defocus values 

for each of the five wavelengths measured with those given by the Cauchy 

equation, proposed by Atchison and Smith  (Atchison and Smith, 2005), 

for the same wavelengths and found that values corresponding to 1030, 

1050 and 1070 nm were located away from the theoretical curve. They 

thought this difference, supposing that Cauchy equation is still valid in IR, 

might be due to the deeper penetration and consequent backscattering at 

this longer wavelengths. 

It has been frequently argued that differences in the retinal layer 

where light is reflected may cause differences between manifest refraction 

and retinoscopy (Millodot and Sivak, 1979, Millodot, 1980). Charman and 

Jennings  (1976) and Williams et al. (1994) for red light, and later López-

Gil and Artal (1997) for near IR light showed that the differences between 

subjective and reflectometric focus were negligible, and concluded that 

reflection contributing to the central core of the PSF occurred within the 

photoreceptor layer. Our results, based on the Zernike defocus term of 

wave aberration reflectometric estimates, also support this conclusion. The 

focus shift found is slightly lower than the chromatic shift prediction (by 

0.10 D), consistent with a reflection plane behind the photoreceptor layer. 

However, this shift is of the order of the measurement error (0.12 D for 

green light and 0.08 D for IR light on average), and lower than the 

intersubject variability (0.29 D). No particular trend was found for the 
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focus shift in normal, young subjects as a function of refractive error 

(coefficient of correlation, r=0.17, p=0.44). In addition, no particular 

difference was found for the focus shift in eyes with abnormal corneas by 

LASIK surgery.  However, the focus shift found was much higher than the 

average for the oldest and the aphakic eyes (1.5 D and 1.7 D; eyes #4 and 

8, respectively). Although our population did not sample different age 

groups homogeneously, a slight increase of focus shift with age (r=0.45, 

p=0.02) was found when including all our subjects. However, the majority 

of subjects were young or middle-aged (20-43 years old) and no aged-

related trend (r=0.26, p=0.20) was found within this age range. 

4.5.3.- CONCLUSION 

The equivalence of high order aberrations measured in visible or 

near IR illumination with LRT and HS within the accuracy of the 

techniques has been shown. The shift found in the defocus term was 

consistent with the shift predicted by chromatic aberration  

These results are relevant because typical commercial wavefront 

sensing devices and ocular examination devices use IR illumination. It has 

been shown that despite the longer tails of the aerial images at this 

wavelength, IR can be successfully used in all the tested conditions, 

including old and surgical eyes. An experimental value for the focus shift 

between near IR (786-788 nm) and green (543 nm) illumination in two 

reflectometric aberrometers (LRT and HS) has also been provided. One of 

the most promising applications of wavefront sensing devices is their use 

as sophisticated autorefractometers. They are now being applied for use in 

refractive surgery to guide ablation with the aim of compensating both 

low (2nd order aberrations) and HOA aberrations. An accurate 

transformation of the IR estimates of spherical error into visible 

wavelengths is crucial to determine the actual correction that should be 

applied.  It has been shown that Thibos’s chromatic reduced eye model 

equation is a valid expression to predict focus shift for our wavelength. 
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However, for longer wavelengths there is no evidence of the validity of 

this equation, and new expressions for the refractive index and chromatic 

difference of refraction may need to be developed. In addition, it has been  

found that discrepancies can occur in aphakic eyes, and that there might 

be age-dependent corrections to equation (4.1). 

 Several reports in the literature found differences in the LCAs of 

aphakic eyes (Millodot, 1976) and pseudoaphakic eyes (Negishi et al., 

2001) with respect to normal eyes. Possible age-related changes of LCA 

have been a matter of controversy (Howarth et al., 1988, Mordi and 

Adrian, 1985, Morrell et al., 1991, Calver et al., 1999). Although much of 

these refractive discrepancies are small, their magnitude can be 

comparable to that of HOA, and therefore accurate predictions of 

spherical errors for visible light from IR measurements are important.  
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Chapter 5  

 

EFFECT OF SAMPLING ON REAL OCULAR 

ABERRATION MEASUREMENTS. 

This chapter is based on the article by Llorente, L. et al.,”The effect of 

sampling on real ocular aberration measurements”, Journal of the Optical 

Society of America A 24, 2783- 2796 (2007). The co-authors of the study 

are: Susana Marcos, Carlos Dorronsoro and Steve Burns. A preliminary 

version of this work was presented as an oral paper (Llorente et al., 2004b) 

at the II EOS Topical Meeting on Physiological Optics in Granada. The 

contribution of the author to the study was the performance of the 

experimental measurements, and data processing and analysis, as well as 

statistical analysis of the experimental data and of the data from 

simulations performed by Steve Burns.  

5.1.- ABSTRACT 

PURPOSE: To assess the performance of different sampling patterns 

in the measurement of ocular aberrations and to find out whether there 

was an optimum pattern to measure human ocular aberrations. 

METHODS: Repeated measurements of ocular aberrations were 

performed in 12 healthy non surgical human eyes, and 3 artificial eyes, 
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with a LRT using different sampling patterns (Hexagonal, Circular and 

Rectangular with 19 to 177 samples, and three radial patterns with 49 

samples coordinates corresponding to zeroes of the Albrecht, Jacobi, and 

Legendre functions). Two different metrics based on the RMS of difference 

maps (RMS_Diff) and the proportional change in the wave aberration 

(W%) were used to compare wave aberration estimates as well as to 

summarize results across eyes. Some statistical tests were also applied: 

hierarchical cluster analysis (HCA) and Student’s t-test. Computer 

simulations were also used to extend the results to “abnormal eyes” 

(Keratoconic, post-LASIK and post-RK eyes). 

RESULTS: In general, for both artificial and human eyes, the “worst” 

patterns were those undersampled. Slight differences were found for the 

artificial eye with different aberrations pattern, compared to the other 

artificial eyes. Usually those patterns with greater number of samples gave 

better results, although the spatial distribution of the samples also seemed 

to play a role, for our measured, as well as our simulated “abnormal” 

eyes. There was agreement between the results obtained from our metrics 

and from the statistical tests.  

CONCLUSIONS: Our metrics proved to be adequate to compare 

aberration estimates across sampling patterns. There may be an interaction 

between the aberration pattern of an eye and the ability of a sampling 

pattern to reliably measure the aberrations. This implied that just 

increasing the number of samples was not as effective as choosing a better 

sampling pattern. In this fashion, moderate density sampling patterns 

based on the zeroes of Albrecht cubature or hexagonal sampling 

performed relatively well, being a good compromise between accuracy 

and density. These conclusions were also applicable in human eyes, in 

spite of the variability in the measurements masking the sampling effects 

except for undersampling patterns. Finally, the numerical simulations 
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proved to be useful to assess a priori the performance of different sampling 

patterns when measuring specific aberration patterns. 

5.2.- INTRODUCTION 

As previously described in Chapter 1, aberrometry techniques 

currently used for human eyes consist on measuring ray aberrations at a 

discrete number of sampling points, and then estimate the wave 

aberration using modal, zonal or combined reconstruction methods 

(Chapter 1, section 1.2.2). It is, therefore, crucial for these techniques to 

find out which is the minimum number of samples necessary to fully 

characterize the aberration pattern of the eye. This is a question under 

debate in the clinical as well as the scientific community. The optimal 

number of sampling points represents a trade-off between choosing a 

number of samples large enough to accurately estimate the wave 

aberration (see Chapter 1, section 1.2.5.3), and reducing the measuring and 

processing time. In addition, the distribution of the samples throughout 

the pupil of the eye may also play a role. In this chapter, the influence of 

the number and distribution of samples used in the aberrations 

measurement on the resulting estimated wave aberration will be studied. 

To our knowledge, there has not been a systematic experimental 

study investigating whether increasing the sampling density over a certain 

number of samples provides significantly better accuracy in ocular 

aberration measurements, or whether alternative sampling configurations 

would be more efficient. There have been theoretical investigations of 

sampling configuration from both analytical and numerical approaches 

which are described below. However, the applicability to human eyes 

should be ultimately tested experimentally.  

Cubalchini (Cubalchini, 1979) was the first to study the modal 

estimation of the wave aberration from derivative measurements using a 

least squares method, concluding that the geometry and number of 
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samples affected the wavefront estimations and that the variance of higher 

order Zernike terms could be minimised by sampling as far from the 

centre of the aperture as possible and minimising the number of samples 

used to estimate a fixed number of terms and to take the measurements.  

In 1997, Rios et al. (1997) found analytically for Hartmann sensing 

that the spatial distribution of the nodes of the Albrecht cubatures (Bará et 

al., 1996) made them excellent candidates for modal wavefront 

reconstruction in optical systems with a centrally obscured pupil. This 

sampling scheme could also be a good candidate for ocular aberrations, 

due to the circular geometry of the cubature scheme. In addition, as the 

Zernike order increases (i.e., higher order aberrations), the area of the 

pupil more affected by aberrations tends to be more peripheral (McLellan 

et al., 2006, Applegate et al., 2002, Cubalchini, 1979), and therefore ocular 

wavefront estimates would potentially benefit by a denser sampling of the 

peripheral pupil. 

He et al. (1998) used numerical simulations to test the robustness of 

the fitting technique they used for their SRR (least-square fit to Zernike 

coefficients) to the cross-coupling or modal aliasing (interaction between 

orders) as well as the error due to the finite sampling aperture. They 

found that the error could be minimized by extracting the coefficients 

corresponding to the maximum complete order possible (considering the 

number of samples), in agreement with Cubalchini (Cubalchini, 1979), and 

by using a relatively large sampling aperture, which practically covered 

the measured extent of the pupil. Although this large sampling aperture 

introduced some error due to the use of the value of the derivatives at the 

centre of the sampling apertures to perform the fitting, and the rectangular 

pattern they used did not provide an adequate sampling for radial basis 

functions, simulations confirmed that the overall effect was relatively 

small. 
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In 2003, Burns et al. (2003)  computationally studied the effect of 

different sampling patterns on measurements of wavefront aberrations of 

the eye, by implementing a complete model of the wavefront processing 

used with a “typical” HS sensor and modal reconstruction.  They also 

analyzed the effect of using a point estimator for the derivative at the 

centre of the aperture, versus using the average slope across the 

subaperture, and found that the second decreased modal aliasing 

somewhat, but made little practical difference for the eye models. Given 

that the higher order aberrations tended to be small, the modal aliasing 

they found  was subsequently small. Finally, they found that non-regular 

sampling schemes, such as cubatures, were more efficient than grid 

sampling, when sampling noise was high.  

Díaz-Santana et al (Diaz-Santana et al., 2005), and Soloviev and 

Vdovin (2005) developed analytical models to test different sampling 

patterns applied to ocular aberrometry and HS sensing in astronomy, 

respectively. Díaz-Santana et al. (2005) developed an evaluation model 

based on matrices that included as input parameters the number of 

samples and their distribution (square, hexagonal, polar lattice), shape of 

the subpupil, size and irradiance across the pupil (uniform irradiance vs. 

Gaussian apodisation), regarding the sampling. The other input 

parameters were the statistics of the aberrations in the population, the 

sensor noise, and the estimator used to retrieve the aberrations from the 

aberrometer raw data. According to their findings,  no universal optimal 

pattern exists, but the optimal pattern will depend, among others on the 

specific aberrations pattern to be measured. Soloviev et al.’s model 

(Soloviev and Vdovin, 2005) used a linear operator to describe the HS 

sensing, including the effects of the lenslets array geometry and the 

demodulation algorithm (modal wavefront reconstruction). When 

applying this to different sampling configurations, using the Kolmogorov 

statistics as a model of the incoming wavefront, they found that their 

pattern with 61 randomly spatially distributed samples gave better results 
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than the regular hexagonal pattern with 91 samples of the same sub-

aperture size (radius=1/11 times the exit pupil diameter), which covered 

completely the extent of the pupil in the case of the 91-sample pattern. In 

these theoretical models, an appropriate statistical input was crucial so 

that their predictions can be generalized in the population. McLellan et al. 

found (McLellan et al., 2006) that high order aberration terms show 

particular relationships (i.e. positive interactions that increase the MTF 

over other potential combinations), suggesting that general statistical 

models should include these relationships in order to describe real 

aberrations. 

In this study, LRT2 was used to measure wave aberrations in human 

eyes, with different sampling patterns and densities. Hexagonal and 

Rectangular configurations were chosen because they are the most 

commonly used. Different radially symmetric geometries were also used 

to test whether these patterns were better suited to measuring ocular 

aberrations. These geometries included uniform polar sampling, arranged 

in a circular pattern, and three patterns corresponding to the zeroes of the 

cubatures of Albrecht, Jacobi and Legendre equations. Additionally, 

different densities were tested for each pattern in order to evaluate the 

trade-off between accuracy and sampling density. To separate variability 

due to biological factors from instrumental issues arising from the 

measurement and processing, measurements on artificial eyes were also 

performed. Noise estimates in human eyes as well as realistic wave 

aberrations were used in computer simulations to extend the conclusions 

to eyes other than normal eyes (meaning healthy eyes with no 

pathological condition and that have not undergone any ocular surgery). 

For all these three cases (human, artificial and simulated eyes), two 

metrics (defined below, in section 5.3.4.2.-) to assess the differences across 

the aberration maps obtained with the different sampling patterns were 

tested, and the estimated Zernike terms which changed depending on the 

sampling pattern used were identified. 
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5.3.- METHODS 

5.3.1.- LASER RAY TRACING 

Optical aberrations of the eyes were measured using the device LRT2 

which allowed the selection of distribution and density of the sampling 

pattern by software (see Chapter 2, section 2.2.2.1). For this study the 

following sampling patterns were used: Hexagonal (H), evenly-

distributed Circular (C), Rectangular (R) and three radial patterns with 49 

samples coordinates corresponding to zeroes of Albrecht (A49), Jacobi 

(J49) and Legendre (L49) functions (see Figure  5.1). Different densities for 

the Hexagonal, and Circular patterns were also used to sample the pupil: 

19, 37 and 91 samples over a 6 mm pupil. In addition, for the artificial 

eyes, Rectangular patterns with 21, 37, 98 and 177 samples were also used.  

The coordinates of the samples of Jacobi, Legendre and Albrecht patterns 

can be found in the appendix of this thesis. In order to simplify the 

reading, an abbreviated notation throughout the text was used: the letter 

indicates the pattern configuration and the number indicates the number 

Figure  5.1. Pupil sampling patterns used in this work. A Spatial distributions include equally 
spaced hexagonal (H), rectangular (R) and polar distributions (C), and radial distributions with 49 
coordinates corresponding to zeroes of Albretch, Jacobi and Legendre functions (A49, J49, and L49, 
respectively). B Sampling densities include patterns with 19, 37, 91, and 177 samples over a 6 mm 
pupil. Asterisks indicate those patterns only used for artificial eyes. 
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of sampling apertures, i.e., for example H91 stands for a hexagonal pattern 

with 91 samples.  

5.3.2.- EYES 

The three polymetylmethacrylate artificial eyes used in this work, 

A1, A2 and A3, were designed and extensively described by Campbell 

(Campbell, 2005). Nominally, A2 shows only defocus and SA. A1 and A3 

show nominally, in addition to defocus and SA,      different amounts of 5th 

(term 1
5
−Z , secondary vertical coma) and 6th (term 2

6Z , tertiary astigmatism) 

Zernike order aberrations.  

Twelve healthy non surgical eyes (eyes R1 to R12, where even 

numbers indicate left eyes, odd numbers right eyes) of six young subjects 

(age = 28±2 years) were also measured.  Spherical error ranged from –2.25 

to +0.25 D (1.08 ± 1.17 D), and 3rd and higher order RMS from 0.17 to 0.62 

μm (0.37±0.15 μm).  

5.3.3.- EXPERIMENTAL PROCEDURE 

5.3.3.1.- Artificial Eyes 

A specially designed holder with a mirror was attached to the LRT 

apparatus for the measurements on the artificial eyes. This holder allowed 

the eye to be placed with its optical axis in the vertical perpendicular to 

the LRT optical axis. In this way, the variability due to mechanical 

instability or the effect of gravity was minimised. The pupil of the artificial 

eye was aligned to the optical axis, and optically conjugated to the pupil of 

the setup. Defocus correction was achieved in real time by minimizing the 

size of the aerial image for the central ray. 

The pattern sequence was almost identical in the three artificial eyes: 

H37, H19, H91, C19, C37, H37_2, C91, R21, R37, R98, H37_3, R177, A49, 

J49, L49, H37_4. However, for L2 the pattern A49 was the last pattern 

measured in the sequence. As a control, identical H37 patterns were 
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repeated throughout the session (indicated by H37, H37_2, H37_3 and 

H37_4). A measurement session lasted around 40 minutes in these 

artificial eyes. 

5.3.3.2.- Human Eyes 

The protocols used during the measurements in human eyes were 

those described in Chapter 2, section 2.4 of this thesis, considering each 

different sampling pattern as a condition to test. Custom passive eye-

tracking routines (see Chapter 2, section 2.2.2.3) were used to analyse the 

pupil images, captured simultaneously to retinal images, and to determine 

the effective entry pupil locations as well as to estimate the effects of pupil 

shift variability in the measurements. Scan times for these eyes ranged 

from 1 to 6 seconds, depending on the number of samples of the pattern. 

In the measurements of these eyes fewer patterns (H37, H19, H91, C19, 

C37, C91, A49, J49, L49, H37) were used to keep measurement sessions 

within a reasonable length of time. To assess variability, each pattern was 

repeated 5 times within a session. In addition, the H37 pattern was 

repeated at the end of the session (H37_2) to evaluate whether there was 

long term drift due to fatigue or movement. An entire measurement 

session lasted around 120 minutes for both eyes. 

5.3.4.- DATA PROCESSING 

5.3.4.1.- Wave aberration estimates 

LRT measurements were processed as described in Chapter 2. Local 

derivatives of the wave aberrations were fitted to a 7th order Zernike 

polynomial, when the number of samples of the sampling pattern allowed 

(36 or more samples), or to the highest order possible. From each set of 

Zernike coefficients the corresponding third and higher order (i.e., 

excluding tilts, defocus and astigmatism) wave aberration map and the 

corresponding RMS were computed. All processing routines were written 

in Matlab (Mathworks, Nathick, MA). Processing parameters were chosen 
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(as were filters during the measurement, to obtain equivalent intensities at 

the CCD camera) so that in both, human and artificial eyes, the 

computation of the centroid was similar and not influenced by differences 

in reflectance of the eye “fundus”. 

The wave aberration estimated using the H91 sampling pattern was 

used as a reference when computing the metrics, as there was no “gold 

standard” measurement for the eyes. This fact can limit the conclusions 

based on the metrics, which use a reference for comparison. The influence 

of this choice in the results was tested by checking the effect of using the 

other pattern with the highest number of samples (C91) as a reference.  

Similar results were obtained. 

5.3.4.2.- Wave aberration variability metrics 

Two metrics were defined to evaluate differences between sampling 

patterns: 

 RMS_Diff:  A difference pupil map (Diff. Map) was obtained by 

subtracting the wave aberration for the reference pattern from the wave 

aberration corresponding to the pattern to be evaluated.  RMS_Diff was 

computed as the RMS of the difference pupil map computed. Larger 

RMS_Diff values corresponded to less accurate sampling pattern. For each 

eye, a threshold criterion was established to estimate the differences due 

to factors other than the sampling patterns. This threshold was obtained 

by computing the value of the metric for maps obtained using the same 

pattern (H37) at different times within a session. Differences lower than 

the threshold were considered within the measurement variability. For 

artificial eyes, the map obtained from one of the measurements was 

subtracted from the map obtained for each of the other three 

measurements and the threshold was computed as the average RMS_Diff 

value corresponding to each map. For human eyes, the threshold was 

determined based on two sets of five consecutive measurements each, 

obtained at the beginning and at the end of the session using the H37 
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pattern (H37 and H37_2, respectively). Each of the five wave aberration 

maps of the H37_2 set was subtracted from each of the corresponding 

wave aberration map of the H37 set to obtain the corresponding five 

difference maps. The threshold was computed as the RMS corresponding 

to the average map of the five difference maps. 

 W%: This is the percentage of the area of the pupil in which the 

wave aberration for the test pattern differs from the wave aberration 

measured using the reference pattern. Wave aberrations were calculated 

on a 128x128 grid, for each of the five repeated measurements for each 

sampling pattern and for the reference. Then, at each of the 128x128 

points, the probability that the differences found between both groups of 

measurements (for the sampling and for the reference) arose by chance 

was computed. Binary maps were generated by setting to one the areas 

with probability values below 0.05, and setting to zero those areas with 

probability values above 0.05. W% was then computed as the number of 

pixels with value one divided by the total number of pixels in the pupil, 

all multiplied by 100. The larger W% the less accurate the corresponding 

sampling pattern was. This metric was applied only for human eyes, 

where, as opposed to artificial eyes, variability was not negligible, and 

repeated measurements were performed.  

Ranking: To summarize the results obtained for all measured eyes, a 

procedure that was named Ranking was performed. It consisted of 1) 

sorting the patterns, according to their corresponding metric values, for 

each eye; 2) scoring them in ascending order, from the most to the least 

similar to the reference, i.e., from the smallest to the greatest value 

obtained for the metric (from 0, for the reference, to the maximum number 

of different patterns: 9 for the human eyes and 15 for the artificial eyes); 3) 

add up the scores for each pattern across eyes. Since this procedure was 

based on the metrics, and therefore used the reference, the conclusions 

obtained were relative to the reference. 
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5.3.4.3.- Statistical analysis 

A statistical analysis was also performed. It involved the application 

of 1) a HCA represented by a dendrogram  plot (tree diagram shown to 

illustrate the clustering) using average linkage (between groups), and 2) 

an ANOVA (General Linear Model for repeated measurements, with the 

sampling patterns as the only factor) to the Zernike coefficients obtained 

for each pattern, followed by a pair-wise comparison (Student t-test) to 

determine, in those cases where ANOVA indicated significant differences 

(p<0.05), which patterns were different. The statistical tests were 

performed using SPSS (SPSS, Inc., Chicago, Illinois).  

The aim of the HCA was to group those patterns producing similar 

Zernike sets, in order to confirm tendencies found in the metrics (i.e., 

patterns with large metrics values can be considered as “bad”, whereas 

those with small metrics values can be considered as “good”). Each 

significant cluster indicated by the dendrogram was framed in order to 

group patterns yielding the same results. The colour and contour of the 

frame indicates whether the group was considered as “good” (green solid 

line), “medium” (amber dashed line) or “bad” (red dotted line) according 

to the metrics. The algorithm for this test starts considering each case as a 

separate cluster and then combined these clusters until there was only one 

left. In each step the two clusters with minimum Euclidean distance 

between their variables (Zernike coefficients values) were merged.  The 

analysis was performed eye by eye, and also by pooling the data from all 

eyes (global) to summarize the results.  

The ANOVA was computed coefficient by coefficient, with 

Bonferroni correction (the observed significance level is adjusted to 

account for the multiple comparisons made), by pooling the data from all 

the eyes. When probability values were below a threshold of 0.05, i.e., 

significant differences existed, the pair-wise comparison allowed us to 

identify those particular sets significantly different, and therefore which 
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sampling patterns produced significantly different results. Given that the 

number of artificial eyes measured was smaller than the number of 

sampling patterns, using an ANOVA on these eyes was not possible. 

Instead, a Student t-test for paired samples was performed on the three 

eyes, Zernike coefficient by Zernike coefficient, with Bonferroni correction. 

In the human eyes, the number of Zernike coefficients significantly 

different according to the Student t-test relative to total number of possible 

Zernike coefficients (33 coefficients x 9 alternative patterns) was 

computed. In addition, those coefficients which were repetitively 

statistically different across pairs of patterns (statistically different across 

the greatest number of patterns) were identified. In the case of statistical 

analysis no references were used, and therefore the results are not relative 

to any particular sampling pattern.  

5.3.4.4.- Numerical Simulations 

Some numerical simulations were performed to extend further the 

conclusions obtained from experimental data. Simulations were 

performed as follows. First, a “true” aberration pattern for a simulated 

eye, which was basically represented by a set of Zernike coefficients 

(either 37 or 45 terms) was assumed. From these coefficients, a wave 

aberration function was computed (“true” wave aberration). The 

simulation then involved sampling the wave aberration.  The sampling 

was performed by computing a sampling pattern (sample location and 

aperture size) and computing the wave aberration slopes across the 

sampling aperture.  Noise was then introduced into the slope estimates.  

For this simulation, the noise values estimated from the actual wave 

aberration measurements described above were used. While the 

simulation software can include light intensity and centroiding accuracy, 

for the current simulations it was deemed most important to set the 

variability of the centroid determinations to experimentally determined 

values.  Once a new set of centroids was computed, for each sample, a 
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wave aberration was estimated using the standard least-squares 

estimation procedure used for the actual data, fitting up to either 17 (for 

the Hex19 and Circ19) or 37 terms. Twenty-five simulated wave 

aberrations for each simulated condition were calculated, although only 

the five first sets of Zernike coefficients were used to compute the metrics, 

in order to reproduce the same conditions as in the measurements.  

First, it was verified that the results obtained from the simulations 

were realistic by using the Zernike coefficients of the real eyes (obtained 

with the H91 pattern). The aberrations obtained with the sampling 

patterns used in the measurements of our human eyes as well as with 

R177 (previously used in the artificial eyes) were sampled, and the 

corresponding coefficients computed. Finally, the different metrics and 

ranking were applied to these simulated coefficients, sorting the patterns 

for each metric across all eyes. The HCA was also applied to these 

simulated data eye by eye.  

Once the simulations were validated in normal (healthy, non 

surgical) human eyes, they were applied to three different sets of Zernike 

coefficients corresponding to: 1) A keratoconus eye measured using LRT 

with H37 as sampling pattern (Barbero et al., 2002b). The main optical 

feature of these eyes is a larger magnitude of 3rd order terms (mainly 

coma) than in normal eyes. RMS for HOA was 2.362 μm for the original 

coefficients used to perform the simulation; 2) A post LASIK eye 

measured using LRT with H37 as sampling pattern (Marcos et al., 2001). 

These eyes show an increase of SA towards positive values, and a larger 

amount of coma, after the surgery. RMS for HOA was 2.671 μm for the 

original coefficients used to perform the simulation; 3) an eye with 

aberrations higher than 7th order. In this case the coefficients up to 7th 

order corresponding to the previous post LASIK eye were used, with 

additional 0.1 microns on the coefficient 8
8Z , simulating a post-Radial 
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Keratotomy (RK) eye. RMS for HOA was 2.67 μm for the original 

coefficients used to perform the simulation. 

5.4.- RESULTS 

5.4.1.- ARTIFICIAL EYES 

5.4.1.1.- Wave Aberrations 

Figure  5.2 shows the wave aberration (W.A. map), and the 

difference (Diff. map) maps (subtraction of the reference map from the 

corresponding aberration map) for third and higher order corresponding 

to the sixteen patterns used to measure the artificial eye A3. The wave 

aberration map at the top right corner is that obtained using the pattern 

H91, used as the reference. On the left of this map, the corresponding RMS 

is indicated. The contour lines are plotted every 0.5 μm for the wave 

aberration maps, and 0.1 μm for the difference maps. Positive and 

negative values in the map indicate that the wavefront is advanced or 

delayed, respectively, with respect to the reference. The value below each 

map is the corresponding RMS.  

Qualitatively, the wave aberration maps are similar among patterns, 

except for those corresponding to the patterns with the fewest samples 

(H19, C19 and R21). Spherical aberration was predominant in these 

undersampled patterns, which fail to capture higher order defects. These 

differences among patterns are more noticeable in the difference maps, 

which reveal the highest values for the patterns with the fewest samples, 

followed by L49, J49 and C37. The RMS_Diff values for these six patterns 

were larger than for the other patterns. 
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5.4.1.2.- Difference Metrics 

RMS_Diff ranged from 0.06 to 0.46 μm (0.15±0.05 μm) across eyes 

and patterns. The values obtained for the threshold, averaged across 

measurements were 0.07±0.01μm, 0.09±0.08 μm, and 0.05±0.01μm for eyes 

A1, A2 and A3, respectively (0.07±0.03 μm averaged across the three eyes). 

Figure  5.3 A, B and C show the values for the metric RMS_Diff 

obtained for each pattern, for artificial eyes A1, A2 and A3, respectively. 

Within each eye, patterns are sorted by RMS_Diff value in ascending order 

(from most to least similarity to the reference). The thick horizontal line in 

each graph represents the threshold for the corresponding eye, indicating 

that differences below this threshold can be attributed to variability in the 

measurement. The results of eyes A1 and A3 for RMS_Diff are similar: the 

Figure  5.2. Wave aberration maps for 3rd and higher Zernike order, and corresponding difference 
maps (after subtracting the reference) obtained using the different sampling patterns for the 
artificial eye A3. Contour lines are plotted every 0.5 microns and 0.1 microns, respectively. Maps 
are sorted in the order used during the measurement. Thicker contour lines indicate positive values. 
Corresponding RMSs are indicated below each map. The number after H37_ indicates four 
different repetitions throughout the measurement. The wave aberration map corresponding to the 
reference (H91) is plot on the top right corner, with its corresponding RMS on the left of the map. 
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values for all the patterns are above the corresponding threshold, and the 

worst patterns (largest value of the metric) are those with the smallest 

number of samples (H19, C19 and R21), as expected. H37 patterns, R177, 

A49 and C91 were the best patterns for these eyes. In the case of A2, the 

values of some of the patterns (H37, H37_2, C37, and H19) were below the 

threshold, indicating that the differences were negligible. The ordering of 

the patterns for this eye was also different, with H19 and C19 obtaining 

better results (4th and 6th positions out of 15, respectively) than for the 

other eyes.  

When comparing the outcomes for all three eyes, the following 

consistent trends were found: C91 gave better results than R98, and A49 

was better than L49, and J49. For patterns with 37 samples, H patterns 

were found to give better results than the R patterns. 

5.4.1.3.- Statistical Tests 

A HCA was performed for A1, A2 and A3, and plotted the resulting 

dendrogram in Figure  5.3 D, E and F, respectively, below the RMS_Diff 

plot corresponding to each eye. The groups of patterns obtained in the 

dendrogram for each eye was consistent with the RMS_Diff plot. C37, R37 

and R21 differ for A1 and A3. For A2 (with only defocus and SA), H19 and 

C19 provide similar results to a denser pattern, as found with RMS_Diff. 

For the t-test, significant differences were found only for coefficient 5
5Z , 

between the patterns R177 and H37. 

Summarizing, for these eyes, the worst patterns, according to 

RMS_Diff metric, were H19, C19 and R21 (least samples), and H37, R177, 

A49 and C91 were the best. For A2, with only defocus and SA, R21, J49 

and L49 were the worst patterns, although the differences with the other 

patterns were small. The grouping obtained from the metrics was in 

agreement with the groups formed by the HCA, which does not depend 

on the reference. Results from a metric that compares individual Zernike 
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terms (Student t-test with Bonferroni correction) showed very few 

significant differences. 

 

Figure  5.3. RMS_Diff values corresponding to each pattern for the artificial eyes A1 (A), A2 (B) 
and A3 (C). Greater values indicate more differences with the reference. The horizontal line 
represents the threshold for to each eye. Values below this threshold indicate that the differences 
are due to variability in the measurement and not differences between patterns.Wave aberration 
maps corresponding to each eye,obtained with pattern H91, are shown in the upper left corner 
with the corresponding RMS value. D, E and F are dendrograms from the HCA for the same 
eyes. The less distance (Dist) between patterns, the more similar they are. 
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5.4.2.- HUMAN EYES 

5.4.2.1.- Wave Aberrations 

Figure  5.4 shows in the first row HOA maps (W.A.map), and 

corresponding RMS, for each sampling pattern, for human eye R12. The 

contour lines are plotted every 0.3 μm. The map on the top right corner is 

that corresponding to the reference pattern, H91. Each map is obtained 

from an average of four (H19) to five measurements. Qualitatively, the 

aberration maps are quite similar across patterns, although those with 

fewer samples (H19 and C19) appear less detailed than the others, as 

expected.  

Figure  5.4. Results obtained for the human eye R12, using the different sampling patterns. 
First row: wave aberration maps for HOA. Second row: corresponding difference maps (after 
subtracting the reference). Contour lines are plotted every 0.3 microns, and 0.15 microns for 
the wave aberration maps and the difference maps, respectively. Maps are sorted in the order 
used during the measurement. Thicker contour lines indicate positive values. RMSs for wave 
aberration and difference maps are indicated below each map. Third row: Probability maps, 
representing the probability values obtained, point by point, when comparing the wave 
aberration height values obtained using the reference pattern, and those corresponding to the 
assessed pattern. Fourth row: Regions of the pupil where the significance values were above 
0.05 (significantly different areas). The number below each map indicates the corresponding 
value of the metric W%, i.e., the percentage of the pupil significantly different between the 
pattern and the reference. The reference wave aberration map and its corresponding RMS are 
located on the top right corner. 
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5.4.2.2.- Difference Metrics 

Difference maps (Diff.map), obtained by subtracting the reference 

map from the map corresponding to each pattern, are plotted in the 

second row of Figure  5.4 , with the corresponding RMS (RMS_Diff) 

indicated below each map. RMS_Diff ranged from 0.04 to 0.38 μm 

(0.13±0.06μm) across eyes and patterns. The value of the threshold for the 

eye in Figure  5.4 (R12) was 0.15 μm. Therefore, in principle, only J49, H19, 

and C19, with values over the threshold, are considered different from the 

reference. The most similar patterns were H91, A49 and H37_2. The mean 

threshold value obtained for all our human eyes (mean RMS_Diff for 

measurements obtained with H37) was 0.11±0.04 μm, an order of 

magnitude larger than the std of the RMS for the two sets of five repeated 

measurements using H37, which was 0.05±0.03 μm. This indicates that std 

(RMS) is less sensitive to differences between wave aberrations than 

RMS_Diff.  

The third row shows maps (Prob.map) representing the value of 

significance obtained point by point when computing W% metric. The 

darker areas indicate a higher probability of a difference. The maps on the 

fourth row (Sign.map) indicate those points for which the significance 

value is below the threshold (<0.05), i.e., those points that are significantly 

different from the reference. The number below each map indicates the 

corresponding value of the W% metric. W% ranged from 0.7 to 80% 

(29±13%) across eyes and patterns. A threshold was also computed for this 

metric, using the two sets of measurements with H37 obtained in each 

session. For the eye of the example (R12), a value for the threshold of 

20.6% was obtained. This implies that differences in patterns other than 

L49, J49, C37, H19, and C19 (with values for W% above the threshold) can 

be attributed to the variability of the experiment. The patterns that differ 

most from the reference, according to this metric are C19, H19, C37 and 
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J49. Although H37_2, C91 and A49 are the most similar patterns to the 

reference, the differences are not significant, according to the threshold.  

Figure  5.5 A and B show the results obtained for the metrics 

RMS_Diff and W%, respectively, after Ranking across all the human eyes. 

The scale for the y axis indicates the value that each pattern was assigned 

in the Ranking. This means that the “best” possible score for the ordinate 

(y) would be 12 (for a pattern that was the most similar to the reference for 

each of the twelve eyes). Similarly, for a pattern being the least similar to 

the reference for each of the twelve eyes, the ordinate value would be 120 

(12 eyes*10 patterns). In both graphs, patterns are sorted from smallest to 

greatest value of the metric, i.e., from most to least similarity with the 

reference. The resulting order of the patterns is very similar for both 

metrics, showing that the worst results are obtained for the 19-sample 

patterns. The best results are obtained for H91, A49, L49 and H37. The H 

patterns were found to provide in general better results than C patterns 

(for thirty seven and nineteen samples), in the Ranking for both metrics. 

Among the forty nine samples patterns, J49 produced the worst results. 
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Figure  5.5. Ranking values for RMS_Diff (A and D) and W% (B and E) corresponding to 
each sampling pattern across the measured and simulated human eyes, respectively, and. 
dendrograms from the HCA for the measured (C) and simulated (F) human eyes. Solid green, 
dashed amber and red dotted lines indicate “good”, “medium” and “bad “ clusters, according 
to the classification obtained from the metrics. “Dist.” stands for “Distance”. 
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5.4.2.3.- Statistical Tests 

The HCA was applied to the human eye data. While the test was 

performed eye by eye (i.e., one dendrogram per eye was obtained), a 

summary dendrogram obtained by pooling the data of all the eyes in the 

analysis (global) is shown in Figure  5.5 C is. This plot is representative of 

the plots corresponding to the individual eyes. The sampling patterns are 

distributed in three clusters: C91-A49-H91, J49-L49-C37 and H19-C19, 

which can be considered as “good”, “medium” and “bad”, respectively. 

Although this is the trend across eyes, some individual eyes yielded 

different results, as shown in Figure  5.6.  H37 and H37_2 did not form a 

specific cluster in the global dendrogram, and did not follow a specific 

trend across the eyes, so they were not included in the table. The most 

different eyes were #6, 7 and 8 (#7 and 8 belong to the same subject), for 

which the cluster H19-C19 gets separated out. The least reproducible 

cluster across eyes was C91-A49-H91. 

Figure  5.6. Comparison of the classification yielded by the global HCA on the 12 human eyes  
with the classifications yielded by eye by eye HCA for these eyes. The tick mark indicates that. 
the pattern obtained for the corresponding eye belongs to the same cluster indicated by the global 
analysis), whereas the cross mark means there is no matching between the results of both HCA 
for that eye. The circle indicates that A49 was grouped with J49 and L49. 
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 The patterns showing more differences according to the t-test were 

C19 (4.7%) and H19 (6.4%), and those showing less differences were H37, 

H91, C37 and C91 (1.01% each). Differences were found only for the 

following coefficients: Z-37 (2.20%), Z-17 (3.30%), Z-15 (4.40%), Z04 (5.50%), 

Z02 (12.09%), and Z06 (13.19%). 

To summarize, similar results were obtained using both metrics 

comparing the shape of the wave aberrations (which depends on our 

reference) in consistency with the cluster analysis (which does not depend 

on the reference): C91, A49 and H37 were the best patterns and C19, L49 

and H37_2 the worst. However, the differences were of the order of the 

variability in most cases. When computing the percentage of differing 

patterns, those showing most differences were C19 and H19, whereas H37, 

H91, C37 and C91 showed the least differences. Regarding Zernike 

coefficients, only a few coefficients were significantly different: 3
7
−Z , 1

7
−Z , 

1
5
−Z , 0

4Z , 0
2Z , and 0

6Z . 

5.4.3.- NUMERICAL SIMULATIONS 

Figure  5.5 D and E show the Ranking plot for RMS_Diff and for W%, 

respectively, and Figure  5.5 F shows the dendrogram corresponding to 

the global HCA (i.e. including all the eyes) for the simulated human eyes. 

The results of the global HCA are presented, similar to the experimental 

data, as a summary of the results for each of the twelve simulated eyes. 

Similar trends to the measured human eyes are seen, with the main 

clusters repeating, although individual pairings changed. As with the 

measured human eyes, shown in Figure  5.5 C, H91, C91 and A49 are in 

the “good” group, J49 and L49 belong to the “medium” group, and H37, 

H19 and C19, although not clearly within any group, appear in borderline 

positions. The pattern R177 was included in the “good” group.  

Figure  5.7 shows the results obtained for the three simulated 

pathological/surgical eyes, for RMS_Diff (A, B and C), for W% (D, E and 
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F), and for the HCA (G, H, and I). The results were repetitive across the 

three eyes, with R177, H37 and A49 resulting as the best patterns, and C19 

as the worst, for both RMS_Diff and W%. The values for RMS_Diff for the 

keratoconic eye were smaller (the three first patterns were not above the 

threshold for RMS_Diff) compared to the other two eyes, i.e., differences 

with the reference pattern were smaller. The fact that most of the metric 

values are above the threshold indicates that in these eyes differences are 

not attributable to variability. The HCA results are similar across the three 

eyes, with the exception of H19, which for the surgical eyes is close to the 

“good” patterns group.  

Figure  5.7. Results obtained for the keratoconic (first row: A, B, C), post-LASIK (second row: 
D, E, F), and post RK (third row: G, H, I) eyes.  

The first (A, D, G) and second columns (B, E, H) show the results for the metrics RMS_Diff 
and W%, respectively, corresponding to each pattern. The thicker horizontal line represents 
the threshold corresponding to each eye for the corresponding metric. Values of the metric 
below this threshold indicate that the differences are due to variability in the measurement and 
not differences between patterns. The third column (C, F, I) shows the dendrograms 
corresponding to the hierarchical cluster analysis (HCA) for  the keratoconic, post-LASIK and 
post-RK eyes. “Dist.” stands for “Distance”. The less distance between patterns, the more 
similarity exists. Solid, dashed and dotted lines indicate “good”, “medium” and “bad “ 
clusters, according to the classification obtained from the metrics. 
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5.5.- DISCUSSION 

5.5.1.- ARTIFICIAL AND HUMAN EYES 

Artificial eyes are a good starting point to study experimentally 

differences in the sampling patterns for wavefront sensing because they 

have fewer sources of variability (only those attributable to the 

measurement system, such as thermal noise in the CCD, photon noise, 

etc.) than real human eyes (including also variability due to the subject 

such as eye movements or microfluctuations of accommodation). The 

centroiding noise was estimated by computing the std of the coordinates 

of the centroids for each sample across different repetitions for pattern 

H37. The mean error averaged between x and y coordinates was 0.09 mrad 

for artificial eyes (37 samples and three eyes) and 0.34 mrad for human 

eyes (37 samples and twelve eyes). RMS_Diff seems to be a good metric 

for artificial eyes, since it provides quantitative differences between the 

patterns. However, it would be desirable to rely on an objective 

independent reference for the computation of this metric, such as an 

interferogram. The differences in the ordering observed with eye A2 (with 

no higher terms than SA), where patterns with less samples gave slightly 

better results than for the other eyes, supports the idea that the wave 

aberrations present in each particular eye affect the optimum pattern, as 

would be expected from sampling theory.  This finding was fundamental 

in previous theoretical work (Diaz-Santana et al., 2005, Soloviev and 

Vdovin, 2005), where the statistics of the aberrations to be measured is an 

input of the analytical models. The different sorting orders for repeated 

measures of the same pattern (H37, H37_2, H37_3, and H37_4) indicate 

that the differences of this magnitude are not significant. However, the 

sorting of the different patterns is consistent across metrics and statistics 

for each eye. To evaluate if sample density affects variability, the std of 
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RMS_Diff across eyes was computed for each pattern, and then the 

patterns were sorted in descending order, according to their 

corresponding variability. The worst patterns (C37, H19, C19, R21) also 

showed a larger variability, indicating that they were less accurate when 

sampling the aberrations pattern, in agreement with Diaz-Santana et al. 

(2005). 

Conclusions based on the artificial eyes have the advantage of 

avoiding biological variability, but are restricted because they have very 

different aberration structures than human eyes. In our human eyes, the 

RMS_Diff metric allowed us to sort the patterns systematically, and the 

values of the metric obtained for human and artificial eyes were of the 

same order. The W% metric was consistent with RMS_Diff, and more 

sensitive. The Ranking procedure was successful at summarizing 

information obtained from the metrics, since the metric values are not as 

important as sorting the patterns within each eye. However, the main 

drawbacks of this procedure are that it does not provide information on 

statistical significance (although the results for the same pattern, H37, 

obtained for different measurements help to establish significant 

differences), and that the conclusions are relative to our reference, 

obtained in the same conditions as the assessed patterns, and therefore 

these rankings might be dependant on the chosen reference. These 

drawbacks are overcome by the HCA which classifies the patterns into 

different groups according to the values of the corresponding vectors of 

Zernike coefficients and therefore distinguishes between patterns yielding 

different results. It also helps to place the results obtained from the metrics 

in a more general context. Same as with the artificial eyes, the grouping of 

the sampling patterns is consistent across metrics. The spatial distribution 

of the samples is important, given that some patterns with the same 

number of samples (49) fall into the same group or can even be worse than 

patterns with a lower number of samples.  Similarly, a “good” sampling 

pattern (A49) is grouped with patterns with a larger number of samples. 
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However, for the real eyes, the conclusions are weaker than for artificial 

eyes (only differences in patterns with 19 samples are significant), 

presumably because biological variability plays a major role, and because 

they have a discrete number of modes compared to human eyes, where 

the magnitude of the modes keeps decreasing as the orders increase (see 

Chapter 1, section 1.2.4.1). Overall, the undersampling patterns C19 and 

H19 were consistently amongst the most variable patterns, and this was 

confirmed by the ANOVA for Zernike coefficients. Long term drift was 

not problematic in these eyes, since final H37 measurements were not 

more variable than the standard measurements.   

Measurement errors in human eyes prevented from finding 

statistically significant differences between most sampling patterns. 

However, stds of repeated measurements of this study were less or equal 

to other studies. The mean variability across patterns and eyes for our 

human eyes was 0.02 μm (average std across runs of the Zernike 

coefficient, excluding tilts and piston) for Zernike coefficients. This value 

is smaller than those obtained by Moreno-Barriuso et al. (2001a) on one 

subject measured with a previous version of the LRT system (0.06 μm), 

with a HS sensor (0.07 μm) and a Spatially Resolved Refractometer (0.08 

μm), and than those obtained by Marcos et al. (2002b), using the same LRT 

device (0.07 μm for 60 eyes), and a different HS sensor (0.04 μm for 11 

eyes). A similar value (0.02 μm) is obtained when computing the average 

of the std of the Zernike coefficients (excluding piston and tilts) 

corresponding to the eye reported by Davies et al. (2003) using HS. The 

negligible contribution of random pupil shifts during the measurements 

on the wave aberration measurement and sampling pattern analysis was 

further studied by examining the effective entry pupils obtained from 

passive eye-tracking analysis. The most variable set of series (according to 

std of RMS, and std of Zernike coefficients across series), which 

corresponded to Eyes #1 (H19) and 2 (H37_2), respectively, was selected. 

Absolute random pupil shifts across the measurements were less than 0.17 
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mm for coordinate x and 0.11 mm for coordinate y. The mean shift of the 

pupil from the optical axis (i.e. centration errors, to which both sequential 

and non-sequential aberrometers can be equally subject) was in general 

larger than random variations. The estimates of the wave aberrations 

obtained using the nominal entry pupils were compated to those obtained 

using the actual pupil coordinates (obtained from passive eye tracking 

routines). When pupil shifts were accounted for by using actual 

coordinates, measurement variability remained practically constant both 

in terms of RMS std (changing from 0.09 when nominal coordinates were 

used to 0.07 μm when actual coordinates were used and from 0.14 to 0.13 

μm for eyes #1 and 2 respectively), and in terms of average Zernike 

coefficients std (changing from 0.06 when nominal coordinates were used 

to 0.05 μm when actual coordinates were used  and from 0.03 to 0.03 μm, 

for eyes #1 and 2, respectively). On the other hand, the differences 

between average RMS using nominal or actual entry locations (0.51 μm vs 

0.49 μm for eye #1 and 0.61 μm vs 0.59 μm for eye #2) are negligible. Also, 

RMS_Diff values (using the wave aberrations with nominal entry locations 

as a reference, and wave aberrations with the actual entry locations as a 

test), 0.02±0.01 μm for eye #1 (mean±std across repeated measurements for 

the same pattern), and 0.04±0.02 μm for eye #2, are below the threshold for 

these eyes.  

5.5.2.- NUMERICAL SIMULATIONS 

It has been shown with artificial eyes that sampling patterns with a 

small number of samples (19) are good at sampling aberration patterns 

with no higher order terms (eye A2), as expected from sampling theory. 

When analyzing our ranking results on normal human eyes, remarkable 

differences were found only in the patterns with a small number of 

samples. This is due to the presence of higher order aberrations and larger 

measurement variability in these eyes. 
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Due to the lack of a “gold standard” measurement, there are some 

issues that have not been addressed in the experimental part of this work, 

such as:  1) Does the magnitude of some particular aberrations determine 

a specific pattern as more suitable than others to sample that particular 

eye?; 2) Will eyes with aberration terms above the number of samples be 

properly characterised using the different patterns?; 3) Will measurements 

in eyes with aberration terms of larger magnitude than normal eyes yield 

different results?. From the results shown in section 5.3.4.4.- it can be 

concluded that the simulations provide a good estimate of the 

performance of the repeated measurements using different sampling 

schemes in real normal human eyes. Therefore, computer simulations 

were used as a tool to address these issues. 

From the results corresponding to the pathological/surgical eyes, it 

should be noted that: 1) The pattern H37 is consistently classified as the 

best pattern apparently because this is the pattern used to perform the 

original measurement of aberrations from which the wave aberration was 

computed for the simulations; 2) The variability values used in the 

simulations were obtained from normal eyes, and they may be smaller 

than those corresponding to pathological/surgical eyes; 3) The pattern 

H19 was close to the “good” patterns group for the surgical eyes only, 

what may be due to the predominance of SA, characteristic of these eyes..  

Although the values of the metrics are larger for these 

pathological/surgical eyes, the conclusions obtained from our real eyes 

seem applicable to eyes with greater amounts of aberrations: even though 

patterns with more samples tend to give better results, the spatial 

distribution of the samples is important. While a large number of samples 

helps (R177), the correct pattern at lower sampling was more efficient 

(A49, H91) for eyes dominated by some specific aberrations.  

It should be pointed out that the conclusions related to pathological 

eyes displayed in this section are obtained from simulations, and should 



 193 

be regarded as a preliminary approximation to the study of sampling 

pattern in pathological eyes, which should include experimental data.  

5.5.3.- COMPARISON TO PREVIOUS LITERATURE 

Díaz-Santana et al.’s analytical model (Diaz-Santana et al., 2005), 

previously described in the introduction of this chapter, allowed them to 

test theoretically different sampling patterns using as a metric the RMS 

introduced in wave aberration measurements by the different geometries. 

This model uses as an input the second order statistics of the population 

and hence it is bound to include the interactions reported by McLellan et 

al. (2006), as long as the population sample and number of Zernike terms 

are large enough to reflect all possible interactions. This fact also implies 

that the conclusions of their model are strongly dependent on the 

characteristics of the population. As an example, they applied their model 

to a population of 93 healthy non-surgical eyes, with aberration terms up 

to the 4th order, to compare square, hexagonal and polar geometries. They 

found that, for their population, the sampling density did not influence 

much RMS error for hexagonal and square grids, whereas lower sampling 

densities produced a smaller error for polar grids. When comparing grids 

with different geometries and similar densities they found, in agreement 

with our results, that the polar geometry was best (in terms of smaller 

error), followed by the hexagonal grid. Differences in performance 

between patterns decreased as density increased. 

Soloviev et al.’s analytic model (Soloviev and Vdovin, 2005) of 

Kolmogorov’s statistics, indicates that random sampling produces better 

results than regularly spaced ones. They also reported that aliasing error 

increases dramatically for regular samplings for fits reconstructing more 

modes, whereas the associated error of the HS sensor was smaller for 

irregular masks (with 61 subapertures of 1/11 of the pupil diameter of 

size), probably because an irregular geometry helps to avoid cross-

coupling. Our experimental study supports their conclusion that simply 
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increasing the number of samples does not necessarily decrease the error 

of measurement, and that sampling geometry is important.  

In the current study, the Zernike modal fitting was used to represent 

the wave aberration because it is the standard for describing ocular 

aberrations. Smolek and Klyce (Smolek and Klyce, 2003) questioned the 

suitability of Zernike modal fitting to represent aberrations in eyes with a 

high amount of aberrations (keratoconus and post-keratoplasty eyes), 

reporting that the fit error had influence in the subject’s best corrected 

spectacle visual acuity. Marsack et al. (2006) revisited this question 

recently concluding that only in cases of severe keratoconus (with a 

maximum corneal curvature over 60 D), Zernike modal fitting failed to 

represent visually important aberrations.  In the current study this 

question was not addressed, but our conditions were rather restricted to 

those more commonly encountered, and for which Zernike modal fitting is 

expected to be adequate. 

5.5.4.- CONCLUSIONS 

From this study we can conclude: 

 1) Comparison of optical aberrations of healthy non surgical human 

and artificial eyes measured using different sampling patterns allowed us 

to examine the adequacy of two spatial metrics, the RMS of difference 

maps and the wave aberration difference (W%) to compare estimates of 

aberrations across sampling schemes. 

2) For artificial eyes, there is an interaction of the aberrations present 

and the ability of a given spatial sampling pattern to reliably measure the 

aberrations. Simply increasing the number of samples was not always as 

effective as choosing a better sampling pattern.   

3) Moderate density sampling patterns based on the zeroes of 

Albrecht’s cubature (A49) or hexagonal sampling performed relatively 

well. 
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4) For normal human eyes individual variability in local slope 

measurements was larger than the sampling effects, except, as expected, 

for undersampling patterns (H19 and C19). However, in these eyes it has 

also been found that the spatial distribution of the sampling can be more 

important than the number of samples: A49 and H37 were a good 

compromise between accuracy and density. 

5) The numerical simulations are a useful tool to a priori assess the 

performance of different sampling patterns when measuring specific 

aberration patterns, since in general, the results are similar to those found 

for our measured normal human eyes. 

This study should be taken as a first experimental approach to the 

problem of finding optimal patterns. Future studies on a larger number of 

eyes and with very different aberration patterns should be carried out in 

order to find the different patterns more suitable for different groups of 

population (young eyes or myopic eyes for example) or specific conditions 

(keratoconic or postsurgical eyes). However, finding a generic pattern that 

performs relatively well for general population is also necessary for 

screening and quick characterisation of the aberration pattern. Also, a 

reference independent of any particular sampling pattern is desirable in 

order to have a gold standard to compare to, rather than assume the 

“goodness” of some patterns. 

Finally, the implementation of some of the patterns presented in this 

study in a HS, for example, would not be straight forward. Even if the 

manufacturers could produce lenslets distributed according to Jacobi, 

Legendre or Albrecht patterns, there are some issues such as the loss of 

resolution in those locations where the lenslets are too close (leakage of 

light from a lenslet into the pixels corresponding to the neighbour  lenslet) 

that should be solved. 
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Chapter 6  

 

OPTICAL ABERRATIONS IN MYOPIC AND 

HYPEROPIC EYES. 

This chapter is based on the article by Llorente, L. et al., ”Myopic 

versus hyperopic eyes: axial length, corneal shape and optical 

aberrations”, Journal of Vision, 4(4):5, 288-298 (2004), 

http://journalofvision.org/4/4/5/. The coauthors of the study are: 

Barbero, S., Cano, D., Dorronsoro, C., & Marcos, S. 

The contribution of the author of this thesis to the study includes the 

experimental measurements, data processing and analysis, and statistical 

analysis (the statistician Laura Barrios performed the ANOVAs). 

 

6.1.- ABSTRACT 

PURPOSE: To investigate differences in geometrical properties and 

optical aberrations between hyperopic and myopic eyes. 

METHODS: Measurements were performed in a group of myopic and 

a group of hyperopic eyes (age-matched 30.3±5.2 and 30.5±3.8 years old, 

respectively, and with similar absolute refractive error 3.0±2.0 and –

3.3±2.0, respectively). Axial length (AL) was measured by means of optical 
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biometry, and corneal apical radius of curvature (CR) and asphericity (Q) 

were measured by fitting corneal topography data to biconic surfaces. 

Corneal aberrations were estimated from corneal topography by means of 

virtual ray tracing, and ocular (total) aberrations were measured using 

Laser Ray Tracing (LRT). Internal aberrations were estimated by 

subtracting corneal from ocular aberrations.  

RESULTS: AL was significantly higher in myopes than in hyperopes 

and AL/CR was highly correlated with refractive error spherical 

equivalent (SE). Hyperopic eyes tended to have higher (less negative) Q 

and higher ocular and corneal spherical aberration (SA) than myopic eyes. 

RMS for third-order aberrations was also significantly higher for the 

hyperopic eyes. Internal aberrations were not significantly different 

between the myopic and hyperopic groups, although internal SA showed 

a significant age-related shift towards less negative values in the 

hyperopic group.  

CONCLUSIONS: For these age and refraction ranges, our cross-sectional 

results do not support evidence of cause-effect relationship between 

ocular aberrations and ametropia onset (regarded as a fail in the 

emmetropisation process). Our results may be indicative of presbyopic 

changes occurring earlier in hyperopes than in myopes. 

6.2.- INTRODUCTION 

There is a clear motivation for studying myopia due to its high 

prevalence in developed countries and the public health issue it represents 

because of its associated ocular pathologies. Research on myopia is mainly 

aimed at finding optimal alternatives for optical correction of this 

condition, as well as understanding the mechanisms of emmetropisation 

and the factors leading the eye to become myopic in order to prevent it. 

Hyperopia, however, has been less studied due to its lower prevalence in 
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developed countries, relative stability over time, and difficulties in 

measuring its magnitude accurately in young subjects (Strang et al., 1998).  

Most of the existing studies on ametropia have used a biometric 

approach. However their results are contradictory, probably due to 

different age groups, refractive error ranges, populations and ethnicities, 

differences in the statistical power of the studies, and differences across 

methods of measurement of the different parameters (Gilmartin, 2004). 

Ametropia can be considered a lack of coordination between the AL and 

the refractive power of the eye, so that the focused image yielded by the 

optical system of the eye does not lie on the retina. Therefore, studies on 

geometrical properties of the eye have mainly focused on AL and corneal 

parameters.  

Myopic eyes are larger than hyperopic eyes, not only in the 

anteroposterior axis (Strang et al., 1998, Carney et al., 1997, Mainstone et 

al., 1998, Grosvenor and Scott, 1994), but in all three dimensions (i.e., 

equatorial, anteroposterior, and vertical axes) (Cheng et al., 1992), with a 

prolate shape (Atchison et al., 2004). In terms of CR and Q, myopic eyes 

have steeper corneas (Grosvenor and Goss., 1998, Carney et al., 1997) than 

hyperopic eyes (Sheridan and Douthwaite, 1989).  

Whereas some studies have reported significant differences between 

refractive groups (Sheridan and Douthwaite, 1989), or significant 

correlation between CR and refractive error in myopes (Carney et al., 

1997) and hyperopes (Strang et al., 1998), other authors did not find 

significant correlation (Mainstone et al., 1998, Grosvenor and Goss, 1999). 

The axial length/corneal radius of curvature ratio (AL/CR) seems to be 

negatively correlated with refractive error more strongly than CR itself in 

both refractive groups (Strang et al., 1998, Grosvenor and Scott, 1994). 

Regarding Q,  cross-sectional (Carney et al., 1997) and longitudinal 

(Horner et al., 2000) studies report higher Q (less negative or even 

positive) with increasing myopia, although this tendency is reduced when 
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only low and moderate myopes are considered (Marcos et al., 2002a). For 

hyperopes, no correlation has been found between Q and refractive error 

(Mainstone et al., 1998, Sheridan and Douthwaite, 1989, Budak et al., 1999, 

Carkeet et al., 2002), although  Budak et al. (1999) reported more positive 

Q values for their moderately myopic eyes  than for their hyperopic eyes 

and for the high myopic eyes included in their study. 

In terms of ocular (total) aberrations, whereas some authors did not 

find a correlation between aberrations and refractive error (Porter et al., 

2001, Cheng et al., 2003) or differences in the amount of aberrations across 

refractive groups (Cheng et al., 2003), other authors reported higher 

amounts of aberrations in myopes when compared to emmetropes 

(Collins et al., 1995, He et al., 2002, Paquin et al., 2002, Marcos et al., 2002). 

For SA specifically, some authors found significant correlation between 

SA and myopia (Collins et al., 1995), consistent with higher corneal Q with 

increasing myopia. Some authors found significant differences in SA 

across high myopes with respect to low myopes, emetropes, or hyperopes 

(Carkeet et al., 2002), whereas others did not find a significant correlation 

between SA and a wide range of myopia (Marcos et al., 2002). Ocular 

aberrations have been reported to increase with age (Mclellan et al., 2001, 

Artal et al., 2002, Smith and al, 2001, Calver et al., 1999), probably due to a 

disruption (Artal et al., 2002) of the balance between corneal and internal 

optics found in young eyes (Artal and Guirao, 1998). In particular, the 

increase of SA with age has been attributed to a shift of the SA of the 

crystalline lens towards more positive  values (Glasser and Campbell, 

1998).  Although age-related effects would not be expected within the 

small range of ages of our subjects (≤40 years) (Mclellan et al., 2001, Artal 

et al., 2002, Smith et al., 2001, Calver et al., 1999), some studies found 

differences related to presbyopia (reading glasses demand, reduced 

amplitude of accommodation) between hyperopes and myopes within our 

ages range (Spierer and Shalev, 2003, Abraham, 2005). 
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In this study, a comparison of geometrical properties (AL, CR, and 

corneal Q) and optical aberrations (ocular, corneal, and internal) between 

two age- and absolute refraction-matched groups of myopic and 

hyperopic eyes is presented. The aim of this work is to understand the 

optical and geometrical properties of the ocular components associated 

with myopia and hyperopia, and to find out whether differences in these 

properties between myopic and hyperopic eyes may cause differences in 

the aberration pattern. Furthermore, this comparison will shed some light 

on the hypothetical cause-effect relation between myopia and aberrations: 

retinal image degradation has been reported to induce excessive eye 

elongation (Schaeffel and Diether, 1999, Rasooly and BenEzra, 1988, Gee 

and Tabbara, 1988), and since aberrations degrade retinal image, an 

increased amount of aberrations might be involved with myopia 

development. Finally, potential differences in the corneal/internal 

compensation of the SA between myopes and hyperopes were studied, 

and particularly whether age-related differences exist in the degree of 

compensation between both groups. Studies of these effects in different 

refractive groups, particularly if the time scale of those changes is different 

between these groups, may provide insights to the understanding of the 

mechanisms of presbyopia. 

6.3.- METHODS 

6.3.1.- SUBJECTS 

Twenty-four myopic and 22 hyperopic eyes with SE ranging from –

0.8 to –7.6 D (-3.3 ± 2.0 D) and from +0.5 to +7.4 D (3.0 ± 2.0D), 

respectively, were measured. Both groups were age-matched: mean ± std 

was 30.5 ± 3.8 years (range, 26-39 years) for the myopic and 30.3 ±5.2 years 

(range, 23-40 years) for the hyperopic group.  
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6.3.2.- AXIAL LENGTH AND CORNEAL SHAPE 

Axial length was obtained using an optical biometer based on optical 

coherence interferometry (IOL Master; Carl Zeiss, Germany). Each 

measurement consisted on the average of 3-5 scans. 

Corneal shape (CR and Q) were obtained by fitting the anterior 

cornea height data from the placido disk videokeratographer (Atlas 

Mastervue; Humphrey Instruments-Zeiss, San Leandro, CA) to a biconic 

surface (Schwiegerling and Snyder, 2000) using custom software written 

in Matlab (Matlab; Mathworks, Natik, MA)(Marcos et al., 2003). The 

average corneal apical radius of curvature and asphericities are reported 

for a 6.5-mm diameter. 

6.3.3.- OCULAR  ABERRATIONS 

Two different devices were used for the measurement of ocular 

aberrations in this study: 11 hyperopes and 12 myopes were measured 

using LRT1, and 11 hyperopes and 12 myopes were measured with LRT2. 

Both instruments were calibrated before this study and provided similar 

Zernike coefficients (within 6 mm diameter) on an artificial eye with a 

phase plate with known aberrations and two real eyes (see Chapter 2, 

section 2.3.8.1). In addition, the influence of the LRT device in the results 

was discarded (section 6.4.2.-). 

6.3.4.- CORNEAL TOPOGRAPHY: ESTIMATION OF CORNEAL AND 

INTERNAL ABERRATIONS. 

The procedure used to estimate the optical aberrations produced by 

the anterior surface of the cornea has been described in depth by Barbero 

et al. (2002b, 2002a, 2004): height data of the anterior surface of the cornea 

obtained from a placido disk videokeratographer (Atlas Mastervue; 

Humphrey Instruments-Zeiss, San Leandro, CA) were processed using 

custom routines in Matlab (Matlab; Mathworks, Natik, MA) and exported 
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to an optical design software (Zemax V.9; Focus software, Tucson, AZ), 

which computes the optical aberrations of the anterior surface of the 

cornea by virtual ray tracing. Corneal wave aberration was described in 

the same terms as ocular wavefront aberration (by a 7th Zernike 

polynomial expansion, using the same pupil diameter). The refractive 

indices used for the computations were those of the air and aqueous 

humour (1.3391) corresponding to the same wavelength used to measure 

ocular aberrations (785 nm). Custom routines in Matlab were used to 

change the reference of the corneal aberrations from the corneal reflex 

(keratometric axis) to the pupil centre (line of sight) to ensure alignment of 

ocular and corneal wave aberration patterns (Barbero et al., 2001, Marcos 

et al., 2001). For simplicity, the term “corneal aberrations” will be used 

reference to the aberrations of the anterior surface of the cornea. 

Internal aberrations were computed by subtracting, term by term, 

corneal aberrations from ocular aberrations (after realignment), both 

expressed in terms of Zernike polynomials. Internal aberrations included, 

apart from crystalline lens aberrations, the aberrations corresponding to 

the posterior corneal surface. However, due to the small difference 

between refractive indices of the aqueous humour and the cornea, these 

aberrations are negligible in normal eyes (Barbero et al., 2002a).  

A compensation factor was defined to quantify the compensation 

between corneal and internal SA. This factor was 1 when there was 

compensation and 0 when there was not compensation.  The 

compensation was considered to occur when the sign of the corresponding 

internal and corneal SA was different and their ratio (internal/corneal) 

was equal to or  greater than 0.5 (compensation of at least 50%).  

6.3.5.- REFRACTION 

Refraction measurements with the Autorefractometer HARK-597 

(Carl Zeiss) were performed in 40 of the 46 subjects included in this study. 
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In the hyperopic eyes, measurements were performed both prior and after 

instillation of the tropicamide. 

Defocus and astigmatism were also estimated from the 

corresponding Zernike terms ( 2
2

0
2 , −ZZ and 2

2Z ) of the ocular aberration 

measurement, expressed in dioptres (D). Because the aberration values 

were estimated from IR measurements, the defocus difference (-0.78 D) 

between visible (543 nm) and infrared light (786 nm) was added. This 

value was obtained experimentally (see Chapter 4) and is close to the 

reported value of longitudinal chromatic aberration between these 

wavelengths (-0.82 D) (Thibos et al., 1992).  When correction for spherical 

error was necessary during the measurement, the corresponding values in 

dioptres of the focusing block and trial lenses were considered in the 

estimation of the final defocus. 

The SE obtained from the autorefractor measurements was compared 

to that estimated from the aberrometry in the 40 eyes. A good agreement 

between both types of measurements (coefficient of linear correlation 

r=0.97, and a slope of 0.9997) was found. Autorefraction was shifted by -

0.28 D on average with respect to the aberrometry refraction corrected for 

visible (see Chapter 4). This offset could be due to the refractometer not 

being perfectly calibrated or a deeper penetration in the retina of the 

longer wavelengths used in the autorefractometer. 

6.3.6.- STATISTICAL ANALYSIS 

Student’s t-test was used to verify the significability of the 

differences between groups, and Pearson’s correlation test was used to 

analyse the correlations between two variables. A two-way ANOVA was 

applied to analyse , using the age as the dependent variable and the 

refractive group (myope or hyperope) and compensation factor as fixed 

factors. A three-way ANOVA of the internal SA with the age as the 

covariate (in order to control its influence), and compensation factor, 
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refractive group and the LRT device used to measure ocular aberrations as 

fixed factors was performed. 

6.4.- RESULTS 

6.4.1.- AXIAL LENGTH AND CORNEAL SHAPE 

The AL of the hyperopic eyes (22.62 ± 0.76 mm) was significantly 

lower (p<0.001) than the AL of the myopic eyes (25.16 ± 1.23 mm) (Figure 

6.1 A). Myopic eyes showed a statistically significant linear correlation of 

AL with absolute SE (p=0.001, r= 0.57, slope =0.38 mm/D, intercept at 0 

D=24.2 mm). Hyperopic eyes tended to be shorter as AL increased but the 

correlation was not statistically significant within the sampled SE (p=0.25, 

r=–0.26, slope=–0.10 mm/D, intercept at 0 D=22.9 mm). 

The CR (Figure 6.1 B) was, on average, steeper in the myopic eyes 

(7.86 ± 0.37 mm) than in the hyperopic eyes (7.97 ± 0.30 mm). However, 

this difference was not statistically significant. AL/CR was significantly 

(p<0.0001) higher in the myopic group (3.2 ± 0.2) than in the hyperopic 

group (2.8 ± 0.1). The correlation between AL/CR and SE was also highly 

significant (p<0.0001, r=-0.93, slope=–0.058D-1, intercept at 0 D=3.02) 

including both groups, as well as for myopes (p<0.0001, r=0.87, slope= -

0.07D-1) and hyperopes (p<0.0001, r=0.72, slope= -0.04D-1) alone. Q (Figure 

6.1 C) was less negative for the hyperopic (–0.10 ± 0.23) than for the 

myopic group (–0.20 ± 0.17), indicating a more spherical shape of the 

hyperopic corneas versus a more prolate shape of the myopic ones. This 

difference was marginally significant (p=0.054). 
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Figure 6.1. Axial length (A), corneal apical radius of curvature (B), corneal Q (C), total, 
corneal, and internal spherical aberration (D), third-order RMS (E), and third and higher 
order RMS (F), averaged across hyperopes (red) and myopes (blue). Error bars represent 
corresponding standard deviation. 
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6.4.2.- OPTICAL ABERRATIONS 

Figure 6.2 shows ocular, corneal, and internal wave aberration maps 

for myopic (#M2, #M8, and #M6) and three of the hyperopic eyes (#H10, 

#H17, and #H16). Only HOA are represented (i.e., piston, tilts, defocus, 

and astigmatism are excluded). A common characteristic shown in six of 

the eyes is that the corneal map is dominated by the positive SA pattern. 

Myopic eyes #M4, #M7, and #M5 are representative of the general 

behaviour in the group of myopes. Internal SA is negative, and partly 

balances the positive SA, resulting in a less positive ocular SA. 

Occasionally it may happen that the internal SA overcompensates for the 

corneal SA, resulting in a slightly negative ocular SA (eye #M4). The 

examples for hyperopic eyes show the case (eye #H10) of an internal map 

dominated by negative SA that partly compensates for the positive SA of 

the cornea, and the case (eyes #H17 and #H11) where ocular and corneal 

maps are quite similar, indicating a small role of the ocular internal 

aberrations (i.e., ocular aberration pattern dominated by the positive 

corneal SA).  

Figure 6.1 D shows the average ocular (0.22 ± 0.17 μm and 0.10 ± 0.13 

μm), corneal (0.34 ± 0.13 μm and 0.24 ±0.13 μm), and internal (-0.12 ± 0.14 

μm and -0.14 ± 0.09 μm) SA for the hyperopic and the myopic groups, 

respectively, included in this study. Ocular and corneal SAs were 

significantly higher in the hyperopic group than in the myopic one 

(p=0.005 and p=0.004, respectively). However, internal SA was not 

significantly different (p=0.62) between hyperopic and myopic eyes. 
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Figure 6.2 Total, corneal, and internal wave aberration maps for three of the hyperopic and 
three of the myopic eyes. Only HOA are represented. The pupil size was 6 mm. 
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Although only eyes ≤40 years were recruited for this study, and both 

groups were age-matched, age-related trends were found in the hyperopic 

group. Figure 6.3 shows the ocular (green), corneal (red), and internal 

(blue) SA for each eye sorted by age for the myopic (Figure 6.3 A) and the 

hyperopic (Figure 6.3 B) group. For the myopic group, there is no 

particular tendency with age: In most of the eyes, as previously shown, the 

internal SA is negative and compensates for the positive SA of the cornea. 

In the hyperopic group, however, this behaviour is followed only by 

younger eyes (<30 years, n=11), whereas the older eyes (≥30 years, n=11) 

showed an internal SA significantly (p=0.002) less negative than the 

internal SA in the younger eyes (–0.04 ± 0.07 μm versus –0.20 ± 0.14 μm). 

This results in a loss of compensation of corneal and internal aberration in 

older hyperopes. When the same comparison was carried out between 

young (<30 years, n=10) and old myopes (≥30, n=14), statistically 

significant differences were not found in the internal SA of these groups. 

When comparing similar age groups, significantly higher (more positive) 

internal (p=0.004) and ocular (p=0.002) SAs were found in the hyperopic 

than in the myopic older group. In the hyperopic young group, internal 

SA (-0.20±0.14 μm) tended to be more negative than in the myopic young 

group (-0.17±0.10 μm), although it did not reach significant levels (p=0.06).  

The relationship between age and compensation was statistically 

significant (p<0.001) whereas the relationship between age and the 

combination of compensation and refractive group did not reach the limit 

of significance (p=0.08) (two-way ANOVA, see section 6.3.6.-). The mean 

age for the hyperopic group with compensation equal or greater than 0.5 

was 26.00±1.41 years compared to 29.53±3.50 years for the myopic group. 

In the case of eyes with less compensation than 50%, the mean age for the 

hyperopes was 29.67±2.94years, compared to 32.00±3.56 years for the 

myopes. This confirmed that age had an influence on the compensation of 

SA, and that there seem to be a displacement in the age of disruption of 

the compensation of SA between our myopic and hyperopic eyes. The 
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compensation was significantly related to internal SA (p<0.0001), as it was 

the combination of compensation and refractive group (p<0.05) (three-way 

ANOVA, see section 6.3.6.-). The three-way ANOVA also discarded any 

influence of the LRT device used on the internal SA (and therefore ocular 

SA) obtained. 

Figure 6.1 E shows the average ocular (0.35±0.16 μm and 0.25±0.16 

μm), corneal (0.45±0.22 μm and 0.45±0.25 μm), and internal (0.36±0.17 μm 

and 0.37±0.25 μm) third-order RMS for the hyperopic and the myopic 

groups, respectively. Ocular third-order RMS was slightly higher in 

hyperopes than in myopes (p=0.02), due to the contribution of the comatic 

terms. The RMS of horizontal and vertical coma was also significantly 

higher in hyperopes (p=0.004), although when analyzed independently 
1
3Z and 1

3
−Z were not significantly different across both groups of eyes. 

Average third and higher order RMSs for our hyperopic and myopic 

groups are shown in Figure 6.1 F: ocular (0.47±0.22 μm and 0.35±0.18 μm), 

corneal (0.61±0.22 μm and 0.56±0.25 μm), and internal (0.48±0.19 μm and 

0.48±0.24 μm), respectively. Ocular third and higher order RMS was 

significantly higher (p=0.03) for the hyperopic group. Fifth and higher 

order RMS was not significantly different between both groups. 
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Figure 6.3. Corneal (red), total (green), and Internal (blue) spherical aberration for myopes (A) 
and hyperopes (B). Eyes are sorted by increasing age, ages ranging from 26 through 39 years in 
the myopic group and 23 through 40 years in the hyperopic group. 
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6.5.- DISCUSSION 

In this study, geometrical parameters as well as optical aberrations of 

a group of myopic and hyperopic eyes were measured. Our study showed 

that differences were not limited to the well-known fact that hyperopic 

eyes are shorter than myopic eyes. The differences in corneal shape 

between groups, which are in agreement with some previous studies, 

resulted in differences in corneal and ocular SA. In addition, Age-related 

changes were found in the hyperopic internal aberrations, even in the 

studied small range of ages. 

6.5.1.- CORNEAL SHAPE IN MYOPES AND HYPEROPES 

As in previous studies (Strang et al., 1998, Carney et al., 1997, 

Sheridan and Douthwaite, 1989), the hyperopic eyes measured tended to 

be flatter than myopic eyes, although the variability was large in both 

groups and no a statistically significant differences were found. A trend 

towards increased Q in hyperopic eyes, compared with myopic eyes of 

similar absolute SE, is consistent with the increased corneal SA found in 

hyperopic eyes of this study. To our knowledge, only three studies 

(Mainstone et al., 1998, Sheridan and Douthwaite, 1989, Budak et al., 1999) 

have reported Q  in hyperopic eyes, in comparison with myopic and 

emmetropic eyes. Sheridan and Douthwaite (Sheridan and Douthwaite, 

1989) (12 hyperopes and 23 emmetropes) and Mainstone et al. (1998) (25 

hyperopes and 10 emmetropes) did not find differences in Q across 

groups. Budak et al. (1999) did not find a correlation between Q and 

refractive error. In their group analysis, however, they found more 

positive Q-values in moderate myopia (-2 to –6 D) than in hyperopia, 

although this trend was not seen in high myopia or emmetropia. Previous 

studies (Horner et al., 2000, Carney et al., 1997), including ours (Marcos et 

al., 2002), found larger amounts of positive corneal SA and Q in high 

myopia. The present study shows larger amounts of SA in hyperopic than 
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in moderately myopic eyes. The reasons for the corneal geometrical 

properties (CR and Q) leading to significant differences in SAs across 

groups may be associated to ocular growth (moderate hyperopic eyes 

being smaller (Cheng et al., 1992) and more spherical, whereas moderate 

myopic eyes may flatten more in the periphery than in the central cornea). 

As a result of increased corneal SA in hyperopic eyes, ocular SA is 

significantly higher in our group of hyperopes than in a group of myopes 

with similar absolute refractive error and age. 

6.5.2.- AGE RELATED ABERRATION DIFFERENCES IN MYOPES AND 

HYPEROPES 

As opposed to ocular and corneal SA, no significant differences in 

the internal (i.e., primarily the crystalline lens) SA were found between 

our groups of myopes and hyperopes. However, despite the fact that 

inclusion criteria was to be younger than 40 years, age-related differences 

were found in the hyperopic group, which are not present in the myopic 

group, as shown in Figure 4B. It seems fairly established that the positive 

SA of the cornea is balanced by the negative SA of the crystalline (Artal 

and Guirao, 1998). Artal et al. (2002) showed that this balance is disrupted 

with age. Several groups have reported changes of ocular SA as a function 

of age. Figure 6.4 represents data from different cross-sectional studies 

(Mclellan et al., 2001, Artal et al., 2002, Smith et al., 2001, Calver et al., 

1999)  showing the increase of SA with age resulting from a shift of the 

internal SA of the crystalline lens towards positive or less negative values. 

The myopic (blue) and hyperopic (red) eyes of our study have been 

superimposed. Ocular SA in myopic eyes does not correlate with age in 

the small range of ages of our study (p=0.49). However, there is a 

marginally significant dependence of ocular SA with age in the hyperopic 

group (p=0.06), with a slope higher than the average data from literature. 
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Our group of myopes shows in general a good compensation of 

corneal by internal SA. Marcos et al. (2002) showed that the SA balance 

was in fact well preserved in young myopes across a wide refractive error 

range. Both younger and older myopic groups show good average corneal 

by internal compensations (76% and 48%, respectively). The young 

hyperopes in our study also show a good balance of corneal and internal 

SA (56% on average), but the average compensation decreases to 14% in 

older hyperopes. In fact, because corneal SA is higher in hyperopes than in 

myopes, a more negative internal SA is required to achieve similar 

proportions of balance. 

Figure 6.4. Spherical aberration of the hyperopic (red) and myopic (blue) eyes included in this 
study (6.5-mm pupil) as a function of age in comparison with  spherical aberration of eyes 
from aging studies [circles are data from Mclellan et al. (2001) for 7.32 mm pupil; triangles 
are estimates from Smith et al. (2001) for a 7.32-mm pupil; squares are averages across two 
different age groups from Calver et al. (1999) for a 6-mm pupil; and stars are data from Artal 
et al. (2002), for a 5.9-mm pupil]. Solid lines are the corresponding linear regression to the 
data. 
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The negative SA of the crystalline lens is likely due to the aspheric 

shapes of the crystalline lens surface, with contributions of the radii of 

curvature and the refractive index distribution. Lack of knowledge of the 

crystalline lens geometrical and optical properties in hyperopes and 

myopes prevents assessment of the reasons for the differences in the SA of 

the crystalline lens in myopes and hyperopes. Reports of changes of SA 

with accommodation have shown a shift towards less positive (or even 

negative) ocular SA with increasing accommodative effort (He et al., 2000). 

Changes in crystalline lens properties that accompany accommodation 

(increased power, but more likely changes in Q, and perhaps the 

distribution of refractive index) result in negative SA of the crystalline 

lens. It is well known that achieving a totally unaccommodated state can 

be problematic in the hyperopic young eye that tends to accommodate 

continuously to self-correct for distance vision. Our measurements were 

performed under tropicamide instillation, which may not be fully 

paralyzing accommodation or paralyzes it in a resting state that differs 

between myopes and hyperopes. Our data showed that autorefraction 

measurements after tropicamide instillation were more positive (0.66 D on 

average for eight of our hyperopic eyes) than under normal viewing, 

indicating that tropicamide relaxed accommodation at least partially. It is 

interesting however that, regardless of whether or not the slight increased 

negative internal SA is a result of latent accommodation in young 

hyperopes, the balance is well preserved in both young hyperopes and 

myopes. A potentially interesting future study would be to investigate 

internal SA under natural viewing conditions. If the eye has a feedback 

system that enables balancing of the corneal and internal aberrations, then 

this balancing would perhaps be most prominent in the accommodative 

state that the eye is most often in. 

Determining the reasons why the SA shifts significantly towards less 

negative values in hyperopes at an early age requires further 

investigation. It might indicate that some changes related to age just occur 
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earlier in hyperopes (as shown in Figure 6.3). Most previous studies on the 

changes of aberrations with age do not report the refractive state of the 

subjects (to our knowledge only Smith et al. 2001 did explicitly, and only 6 

of 27 eyes were hyperopes, all of them older than 58 years). Subjects in the 

McLellan et al. (2001) study were primarily myopes. Hyperopia has been 

identified to predispose to early development of presbyopia. Significantly 

lower amplitudes of accommodation have been found in hyperopes 

compared to emmetropes aged 20 years, the former requiring reading 

glasses at an earlier age (Spierer and Shalev, 2003). Hyperopes of an older 

group (35-39 years) were also found to have significant lower amplitude of 

accommodation when compared to myopes of the same age range 

(Abraham, 2005). A question remains whether the physical properties of 

the crystalline lens that lead to the development of presbyopia occur along 

with changes in the SA of the crystalline lens. In fact, the properties of the 

crystalline lens that produce the reported shift with age have never been 

fully explored. Several studies in vivo using Scheimpflug imaging (Koretz 

et al., 1997, Dubbelman and van der Heijde, 2001) showed that the 

posterior and anterior surface of the crystalline lens become steeper with 

age. Dubbelman and van der Heijde (2001) also reported changes of Q 

with age. Although those changes were not significant, computer 

simulations have shown that the combination of reported radii of 

curvature and asphericities predict the expected trend towards more 

positive SA with age, even without considering changes in the index of 

refraction (Marcos et al., 2004). Changes in the index of refraction are, 

however, expected to play a major role in the aging of the crystalline lens. 

They have been invoked to explain the so-called lens paradox (Koretz and 

Handelman, 1986): the apparent contradiction between age-related 

changes of the lens radii and the refractive error shift. It is likely that 

changes in the gradient index distribution with age contribute also to the 

reported changes in SA. 
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6.5.3.- ABERRATIONS AND DEVELOPMENT OF MYOPIA AND 

HYPEROPIA 

The increased interest in measuring aberrations as a function of 

refractive error is in part motivated by the study of potential factors 

involved in the development of refractive errors. It seems fairly 

established, particularly from experimental myopia studies, that 

emmetropisation is visually guided (Rabin et al., 1981) and that an active 

growth mechanism uses feedback from the blur of retina image to adjust 

the focal length of the eye to the power of the ocular components. When 

the retinal image is degraded by diffusers, the eye becomes myopic 

(Bartmann and Schaeffel, 1994) and the induced refractive error correlates 

to the decrease in contrast and deprivation of spatial frequencies of the 

retinal image. Because aberrations cause a degradation of the retinal 

image, it has been argued that increased aberrations may play a role in the 

development of myopia. Higher amounts of aberrations in high myopes 

(Collins et al., 1995, Paquin et al., 2002) are consistent with that argument. 

However, the relationship between aberrations and refractive error may 

be just a result of the geometrical properties of the ocular components of 

the ametropic eye, somehow related to the axial elongation, rather than 

the cause of the ametropia. In this fashion, Garcia de la Cera et al. studied 

longitudinally the change in optical aberrations and refractive error in 

chicks subject to form deprivation (de la Cera et al., 2006), and concluded 

that their experiment supported the hypothesis that the aberrations were a 

consequence of the geometrical structure of  the elongated myopic eye. 

In this sense, it is interesting to study the ocular aberrations in both 

myopic and hyperopic eyes. The defects in an active growth feedback 

mechanism may be responsible for myopia, but this active growth 

mechanism does not adequately explain hyperopic error. If similar or 

larger amounts of aberrations are found in hyperopic than in myopic eyes, 

then the associations of retinal blur imposed by aberrations and myopia 
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development are not evident. The present study shows that SA is higher in 

hyperopic eyes than in myopic eyes, and a previous study showed that 

ocular SA is close to zero even in high myopes (Marcos et al., 2002). Also, 

the present study shows that third-order aberrations are in fact slightly 

higher in hyperopes than in myopes of similar absolute refractive errors 

(up to 7.6 D). If increased HOA occur in myopic eyes, these seem to be 

more prominent in high myopia (Marcos et al., 2002). It is interesting that 

even if the emmetropisation mechanism is disrupted, the corneal and 

internal aberrations are well balanced in young myopes and hyperopes. 

Our study is limited to young adults, and data are cross-sectional. 

Certainly, a possible involvement of the aberrations in the development of 

refractive errors cannot be fully ruled out unless longitudinal 

measurements are made at an earlier age. Longitudinal studies would also 

be useful to assess the reported rapid changes around 30 years of age 

observed in the cross-sectional data in hyperopic eyes. 

6.5.4.- CONCLUSIONS 

Some differences of structure and optical properties in hyperopic and 

myopic eyes have been shown. Myopic eyes, as previously reported, show 

a significantly higher AL than hyperopic eyes. The AL/CR ratio is also 

higher in myopic eyes, although no significant difference in CR has been 

found between both groups. Q tends to be less negative in hyperopic eyes 

(i.e., more spherical corneal shape), and as a consequence, the corneal SA 

is also higher in hyperopic than in myopic eyes. Ocular SA is also 

significantly higher in hyperopic eyes, although internal SA is not 

significantly different between both groups. HOA were also slightly 

higher for the hyperopic group, due to the contribution of the comatic 

terms. A tendency of ocular SA to increase with age at a faster rate in 

hyperopic than in myopic eyes was also found. Therefore, hyperopic eyes 

may show an earlier loss of the compensation of the corneal SA by the 

internal SA. 
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Chapter 7  

 

CHANGE IN OPTICAL ABERRATIONS OF THE EYE 

WITH LASIK FOR MYOPIA AND LASIK FOR 

HYPEROPIA. 

This chapter is based on the articles “Optical response to LASIK 

surgery for myopia from total and corneal aberration measurements” by 

Marcos et al. (2001), and “Total and corneal optical aberrations induced by 

Laser in situ Keratomileusis for hyperopia” by Llorente et al. (2004c). The 

coauthors of these studies were Sergio Barbero, and Jesús Merayo-Lloves. 

The contribution of the author of this thesis to the study includes 

participation in data collection and processing of ocular aberrations in 

both, myopic and hyperopic LASIK. In the case of hyperopic LASIK study 

the author also contributed in data analysis, and writing of the 

corresponding article. 

7.1.- ABSTRACT 

PURPOSE: To evaluate the changes induced by myopic and 

hyperopic LASIK on ocular  (total) and (anterior)  corneal optical quality. 

METHODS: Ocular and corneal aberrations were measured before 

and after myopic and hyperopic LASIK surgery in a group of 14 
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(preoperative myopia ranging from -2.50 to -13.00 D; mean ± std, -6.8±2.9) 

and a group of 13 (pre-operative hyperopia ranging from +2.50 to +5.50D; 

mean ± std, +3.60±1.06 D) eyes, respectively. Ocular aberrations were 

measured using a LRT and corneal aberrations were estimated from a 

videokeratoscope. RMS for both ocular and corneal aberrations was used 

as a global optical quality metric. 

RESULTS: Ocular and corneal aberrations (HOA) showed a 

statistically significant increase after both, myopic and hyperopic LASIK. 

SA (SA) changed towards positive and negative values after myopic and 

hyperopic LASIK, respectively. However, the anterior corneal SA 

increased more than the ocular SA, suggesting also a change in the SA of 

the posterior corneal surface.  Changes in internal SA were of opposite 

sign to those induced on the corneal anterior surface. Hyperopic LASIK 

induced larger changes than myopic LASIK. Induced ocular SA was, in 

absolute value, 3.3 times larger, and induced corneal SA was 6 times larger 

after hyperopic LASIK, for a similar range of correction, and of opposite 

sign.  

CONCLUSIONS: Because LASIK surgery induces changes in the 

anterior corneal surface, most changes in the ocular aberration pattern can 

be attributed to changes in the anterior corneal aberrations. The largest 

increase occurred in SA, which showed a shift towards positive values in 

the case of myopic LASIK and towards negative values in the case of 

hyperopic LASIK, the increase being greater for hyperopic than for 

myopic LASIK. However, due to individual interactions of the aberrations 

in the ocular components, a combination of corneal and ocular aberration 

measurements is critical to understand individual outcomes, and by 

extension, to design custom ablation algorithms.  
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7.2.- INTRODUCTION 

Laser in situ keratomileusis (LASIK) (Pallikaris et al., 1990, Farah et 

al., 1998) is nowadays a popular surgical alternative for the correction of 

myopia. A description of this technique can be found in the Chapter 1, 

section 1.4.-  of this thesis. LASIK clinical outcomes have been widely 

studied in terms of predictability and accuracy of the achieved correction 

and visual performance (visual acuity or contrast sensitivity) (Knorz et al., 

1998, Lindstrom et al., 1999, Nakamura et al., 2001, Mutyala et al., 2000), or 

from a biological point of view (Vesaluoma et al., 2000). The 

implementation of techniques for ocular wave aberration measurement 

(Charman, 1991a, He et al., 1998, Liang et al., 1994, Navarro and Losada, 

1997, Liang and Williams, 1997, Mierdel et al., 1997, Howland and 

Howland, 1977, Webb et al., 1992, Seiler et al., 2000, Moreno-Barriuso et 

al., 2001a) and estimation of the wave aberration of the anterior corneal 

surface from corneal topography (Guirao and Artal, 2000, Barbero et al., 

2001, Schwiegerling and Greivenkamp, 1997) have allowed objective 

assessment of the effect of corneal refractive surgery on the optical quality 

of the eye (Seiler et al., 2000, Moreno-Barriuso et al., 2001b) and the 

anterior cornea (Oshika et al., 1999b, Applegate and al, 1998, Dausch et al., 

2000).  

Oliver et al. (1997) assessed the outcomes of PRK (a -6D attempted 

correction) before and 1 year after surgery for 50 myopic eyes using 

anterior corneal aberrations for 5 and 7 mm pupils. They reported a 

significant increase of corneal SA and coma-like aberrations, the former 

increasing less for the larger of the ablation zones they tested. This 

increase in aberrations affected the corneal MTF. Oshika et al. (1999a) 

studied the corneal aberrations for 3 and 7mm pupils before and up to 1 

year after LASIK and PRK surgery bilaterally on 22 subjects. Both surgical 

procedures significantly increased high order aberrations for both studied 

pupil sizes, and the effect remained even 12 months after the surgery. 
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Although no changes were found for 3 mm pupils when comparing both 

surgical procedures, aberrations after LASIK were significantly higher for 

7 mm pupils, specifically for spherical-like aberrations, which they 

attributed to the smaller transition zone in this procedure. Whereas for 3 

mm pupils the proportion of coma-like aberration increased after both 

procedures, for 7 mm pupils, SA became dominant. Schwiegerling and 

Snyder (2000) computed corneal SA induced by PRK on 16 eyes and found 

that the magnitude of induced SA was correlated with the attempted 

correction. Kohnen et al., (Kohnen et al., 2004) compared the change in 

corneal aberrations in 50 eyes after LASIK for myopia and 50 eyes after 

LASIK for hyperopia. In the myopic eyes they found an increase in HOA, 

SA, coma and 5th order aberrations.  

In terms of corneal Q, Holladay et al. (1999a) found that Q turned 

more positive (more oblate corneal shape- see Chapter 1, section 1.1.1.-) 

after myopic LASIK, reducing corneal optical quality, and some years 

later, Holladay and Janes (2002) found that Q increased more with 

increasing attempted correction. Hersh et al. (2003) confirmed the 

previous findings regarding an increase in Q after three different laser 

refractive surgical procedures (LASIK, LASEK and PRK), and they found 

that the corresponding change in SA was well predicted by a 

mathematical model that considered the ablation rate drop off in the 

periphery due to the change of the angle of incidence. 

In terms of ocular  aberrations, Seiler et al. (2000)  and Yamane et al. 

(2004) reported a  significant increase in HOA after (3 months and 1 

month, respectively) PRK and LASIK, respectively, particularly in coma-

like terms and spherical-like terms. SA changed towards positive values, 

as reported by previous studies for corneal aberrations. These optical 

changes were related with a decrease in the ocular visual performance. 

Previous studies of hyperopic correction with excimer laser also 

suggest an increase of optical aberrations with the procedure. Oliver et al. 
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(2001) studied anterior corneal aberrations induced by photorefractive 

keratectomy (PRK) for hyperopia in nine eyes. They reported a change in 

corneal SA, which was positive in all eyes prior to surgery, towards 

negative values for 5.5-mm and 7-mm pupil diameters. A significant 

increase in coma RMS was also reported. Comparing the results of this 

study with those obtained in a previous study on myopic PRK (Oliver et 

al., 1997) they found that the change of anterior corneal aberrations 

following PRK for hyperopia was greater than those after myopic PRK. In 

their study previously described, Kohnen et al. (2004) also measured 50 

hyperopic eyes (SE ranging from +0.25 to +5.00D) and found a significant 

increment of HOA and coma RMSs for a 6 mm pupil. Fifth order RMS also 

increased. When comparing these results with those for the myopic group 

in their study, they found, in agreement with Oliver et al. (2001), that 

hyperopic LASIK induced more 3rd and 5th order coma-like aberrations 

than the myopic procedure. Wang et al. (2003a) also studied the effect of 

hyperopic LASIK on corneal aberrations for a 6mm pupil in 40 eyes, 

finding the significant decrease in corneal SA previously reported, and 

that this decrease was significantly correlated with the attempted 

correction. They also found a significant increase in HOA after surgery 

when SA term was excluded.  

Chen et al. (2002) studied corneal Q in a corneal radius of 4.5mm for 

33 eyes before and after hyperopic LASIK. They found a significant 

change in corneal Q towards more negative values, which resulted in a 

shift of SA in the same direction. Ma et al. (2004) compared wave 

aberrations for a 6 mm pupil in 29 control eyes with 59 eyes after LASIK 

and lensectomy corrections (with intraocular lens implantation) for 

hyperopia. The LASIK group had the highest RMS aberration, and the 

most negative corneal and ocular SA. In addition, they found significant 

differences in the internal SA in the LASIK group.  
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In this chapter, corneal and ocular aberrations in the same eyes 

before and after LASIK for myopia and before and after LASIK for 

hyperopia are presented. It is shown that the combination of these two 

pieces of information is important for understanding individual surgical 

outcomes (which becomes critical in customizing ablation algorithms). It 

also provides insights into the biomechanical response of the cornea (both 

the anterior and posterior surfaces) to laser refractive surgery. In addition, 

a comparison of the outcomes of the myopic and hyperopic LASIK is 

presented. 

7.3.- METHODS 

7.3.1.- SUBJECTS 

The group of myopic eyes consisted of fourteen eyes of eight patients 

(six women and two men; mean age, 28.9± 5.4 years; age range 23 to 39 

years), which were measured before (28± 35 days) and after (59±23 days) 

myopic LASIK surgery. The preoperative spherical refractive error ranged 

from -2.50 to -13.00 D (mean, -6.79±2.90 D) in these eyes. The hyperopic 

group consisted on thirteen  eyes from seven patients (three women and 

four men; mean±std age, 37 ± 11 years; age range 24 to 54 years), which 

were measured before (15 ± 17 days) and after (68 ± 43 days) LASIK for 

hyperopia. The preoperative spherical refractive error ranged  from +2.50 

to +5.50 diopters (D) (mean±std +3.60 ± 1.06 D) in this group of eyes.  

Postoperative recovery was uneventful and none of the patients was 

retreated.  

7.3.2.- LASIK SURGERY 

The standard LASIK procedure was applied in all eyes by the same 

surgeon, using the same laser system (a narrow beam, flying spot excimer 

laser, Chiron Technolas 217-C, equipped with the PlanoScan software; 

Bausch & Lomb Surgical, Munich, Germany). The laser had an emission 
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wavelength of 193 nm, a fixed pulse repetition rate of 50 Hz, and a radiant 

exposure of 400 mJ. The flap diameter (created using a Hansatome 

microkeratome; Bausch & Lomb Surgical, Munich, Germany) was 8.5 mm 

with an intended depth of 180 μm for all myopic eyes, and 9.5 mm with an 

intended depth of 160 μm for all hyperopic eyes except three (H5, H12 and 

H13), in which the intended depth was 180 μm. The treatment zone 

diameter was 9 mm with an optical zone diameter of 6 mm for the myopic 

eyes. For the hyperopic eyes, the treatment and optical zones varied across 

eyes as shown in Table 7.1. The hinge was always superior, and the 

procedure was assisted by an eye-tracker. All the LASIK procedures were 

conducted at the Instituto de Oftalmobiología Aplicada (IOBA), 

Universidad de Valladolid, Spain, except for three hyperopic patients 

(eyes H5, H6, H7, H8 and H10) whose surgery took place at Centro 

Oftalmológico de Madrid (COM), Madrid, Spain, using identical 

equipment. 

 

Table 7.1 Refractive surgery data for hyperopic eyes. Asterisk (*) indicates that the treatment area 
for this eye was elliptical; numbers indicate the length in millimetres of the main axes of the 
elliptical treatment area. 



 226 

7.3.3.- MEASUREMENTS AND STATISTICAL ANALYSIS 

Ocular aberrations were measured using LRT1 (see Chapter 2). The 

illumination wavelength used was 543 nm for the myopic LASIK study 

and 786 nm for the hyperopic LASIK study. (See Chapter 4 for a 

verification of the results using both wavelengths). Corneal aberrations 

were estimated from corneal topography as previously discussed in 

Chapter 6, section 6.3.4.- of this thesis.  CR and Q were obtained by fitting 

the anterior corneal height data to a conicoid (see Chapter 1, section 1.1.1.-

) using custom software written in Matlab. 

A paired Student t-test was applied when the comparisons were 

performed in the same refractive group, and an unpaired Student t-test 

was applied when the different refractive groups were compared. A 

Pearson’s correlation test was applied to find the strength of linear 

correlations, followed by a t-test to test its significability. 

7.4.- RESULTS 

7.4.1.- OCULAR AND CORNEAL WAVE ABERRATION PATTERNS 

Figure 7.1 and Figure 7.2 show ocular (left) and corneal (right) wave 

aberration maps for six significant myopic and six significant hyperopic  

eyes before (upper row) and after (lower row) LASIK surgery. Piston tilts, 

defocus, and astigmatism have been excluded in all cases, so that these 

maps represent simulated best refraction corrected optical quality. Pupil 

diameter is 6.5 mm for all eyes, and the same scale has been used for the 

four diagrams corresponding to each eye. Contour lines are plotted every 

1 μm for each eye, with thicker and thinner lines indicating positive and 

negative values of the wave aberration, respectively. The number below 

each map indicates the corresponding RMS for HOA.  

The pre-operative maps reflect the behaviours described in Chapter 

6, section 6.4.2.-: in most eyes the ocular map shows less positive SA than 
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the corneal map, indicating compensation by the internal optics 

(crystalline lens); in some of the eyes, however, no compensation exists, 

and ocular and corneal aberration maps show similar patterns of SA. Most 

of these eyes are hyperopic and belong to subjects over thirty years old 

(internal SA < ± 0.1 μm in 8 out of the 13 hyperopic eyes, or 62%, mean age 

41±9 years old), as described in Chapter 6, section 6.5.2.-. The pre-

operative mean (± std) HOA  RMS (i.e. excluding tilts, defocus and 

astigmatism)  was 0.72±0.40 μm for ocular and 0.60±0.29 μm for corneal 

aberrations for the myopic eyes, and 0.63 ± 0.22 μm for ocular and 0.68 ± 

0.13 μm for corneal aberrations across the hyperopic eyes included in this 

study.  

Regarding post-operative maps, ocular and corneal wave aberration 

patterns were very similar one to another in both, myopic and hyperopic 

eyes, showing the dominance of the corneal aberrations after the 

procedure. The mean (± std) post-operative HOA RMS was 1.33±0.76 μm 

for ocular and 1.60±0.79 μm for corneal aberrations in the myopic group, 

and 1.23±0.45 μm for ocular and 1.18±0.51 μm for corneal aberrations in 

the hyperopic group. There was a significant increase of aberrations after 

both types of surgery, indicated by the increase in the number of contour 

lines of both, corneal and ocular diagrams, and by the increase in the 

corresponding RMS wavefront error. In the case of myopic correction, 

LASIK induced a round central area (with various amounts of 

decentration, depending on the eye) of positive aberration, surrounded by 

an area of negative aberration. In the case of hyperopic LASIK, the pattern 

is the opposite, with a central area of negative aberration surrounded by 

an area of positive aberration. This indicates that positive and negative SA 

is induced by standard myopic and hyperopic LASIK procedures, 

respectively, as will be shown later. These changes in SA are consistent 

with a change in corneal Q towards more positive and negative values, 

respectively (see Chapter 1, section 1.1.1.-) 
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Figure 7.1. A.- Wave aberration maps for HOA, before and after LASIK surgery for myopic 
correction.  For each eye, the maps on the upper row show the wave aberrations before surgery, 
and the maps on the lower row show the aberrations after LASIK surgery. The maps on the 
right correspond to corneal (anterior surface) aberrations and on the left to ocular (whole eye) 
aberrations. All four maps corresponding to the same subject are plotted in the same scale. The 
number below each map indicates RMS values for HOA in microns. Contour lines are plotted 
every 1 μm. Pupil size is 6.5 mm. 

 



 229 

 

Figure 7.2. B.- Wave aberration maps for HOA, before and after LASIK surgery for 
hyperopic correction.  For each eye, the maps on the upper row show the wave 
aberrations before surgery, and the maps on the lower row show the aberrations after 
LASIK surgery. The maps on the right correspond to corneal (anterior surface) 
aberrations and on the left to ocular (whole eye) aberrations. All four maps 
corresponding to the same subject are plotted in the same scale. The number below each 
map indicates RMS values for HOA in microns. Contour lines are plotted every 1 μm. 
Pupil size is 6.5 mm. 
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7.4.2.- CHANGE IN OCULAR AND CORNEAL ABERRATIONS WITH  

MYOPIC LASIK 

Figure 7.3 A shows ocular (left panel) and corneal (right panel) RMS 

for HOA —that is, best corrected for defocus and astigmatism— before 

(lighter bars) and after (darker bars) LASIK for myopia. Eyes were sorted 

by increasing preoperative spherical refractive error. Before surgery, 

ocular aberrations tended to increase with absolute value of refractive 

error, although this tendency was not evident in corneal aberrations. Both 

ocular and corneal aberrations increased after LASIK, except for eye M6 

for ocular aberrations, and eye M4 for corneal aberrations. For both ocular 

and corneal aberrations the post-operative increase was much more 

pronounced in the most myopic eyes, i.e., in those eyes undergoing higher 

refractive corrections.  

Figure 7.3. Ocular (left) and Corneal (right) HOA RMS values (A) and SA (B) before (light 
bars ) and after (dark bars) LASIK surgery for myopia. Eyes are sorted by increasing 
preoperative spherical refraction. Pupil size=6.5 mm. 
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Ocular aberrations increased on average by a factor of 1.92±0.82 (range: 

0.90 to 3.64) and corneal aberrations by a factor of 3.72 ±2.34 (range: 0.85 to 

10.29) in this group. Ocular and corneal RMS differences (post- minus pre-

surgical values) ranged from -0.05 to 0.80 μm, and from -0.16 to 2.04 μm, 

respectively. Part of this increase is accounted for by an increase in third- 

(increasing by an average factor of 1.98 for ocular and 2.73 for corneal 

aberrations), and fourth-order aberrations (increasing by an average factor 

of 2.54 for ocular and 3.94 for corneal aberrations). Figure 7.4 represents 

the pre- and post-operative RMS values for different orders averaged 

across the eyes of the myopic with error bars indicating std values across 

the eyes. Significant differences (p<0.05) between pre- and post-surgical 

values exist for third, fourth and third and higher orders. 

Figure 7.4. Pre- (light bars) and post-operative (dark bars) RMS wavefront error, averaged 
across all myopic eyes,  for 3rd and higher order aberrations, 3rd order aberrations, 4th order 
aberrations and 5th and higher order aberrations, for a 6.5-mm pupil. Statistical significability 
of differences between pre and postoperative values is indicated by p. 
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Since the SA pattern was dominant in the wave aberration maps, the 

the trends followed by SA in this group were verified. Figure 7.3 B shows 

ocular (left) and corneal (right) fourth order SA ( 0
4Z ) before and after 

LASIK for myopia. The preoperative ocular SA coefficient was close to 

zero in most eyes, whereas preoperative corneal SA was positive in all 

eyes.  Ocular and corneal SA increased significantly after LASIK: from 

0.06±0.28 μm to 0.66±0.43 μm; p<0.00001, and from 0.28±0.17 μm to 

1.02±0.57 μm; p<0.00001). The most dramatic increase occurred in patients 

with the highest preoperative myopia, both for ocular and corneal 

aberrations. As expected from the changes found in SA, corneal Q 

(computed from our videokeratographic data) shifted significantly 

(p=0.001) towards more positive values (from -0.14 to 1.09) after myopic 

LASIK.  

Time after surgery ranged from about 1 month to three months in 

our group of subjects. Within this sample of eyes, no correlation between 

post-operative SA (p=0.66 for the cornea, p=0.82 for the ocular eye) and 

time after surgery was found.  

7.4.3.- CHANGE IN OCULAR AND CORNEAL ABERRATIONS WITH  

HYPEROPIC LASIK 

Figure 7.5 A shows ocular (left panel) and corneal (right panel) RMS 

for HOA, before (lighter bars) and after (darker bars) LASIK for 

hyperopia, with eyes sorted by increasing preoperative spherical 

refractive error. Both ocular and corneal aberrations increased after 

LASIK, except for eyes H1 and H13 for ocular aberrations, and eyes H1 

and H13 for corneal aberrations. For both ocular and corneal aberrations 

the post-operative increase was much more pronounced in those eyes 

undergoing higher refractive corrections.  

For this group, the average increase factor was 2.15±1.02 (range: 0.91 

to 4.03) for ocular aberrations and 1.77±0.75 (range: 0.76 to 3.03) for corneal 
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aberrations. Ocular and corneal RMS differences (post- minus pre-surgical 

values) ranged from -0.08 to 1.35 μm, and from -0.27 to 1.53 μm, 

respectively across the eyes in this group. Third- (2.16 μm for ocular and 

2.06 μm for corneal) and fourth-order (2.52 μm for ocular and 1.49 μm for 

corneal increase average factor) aberrations account for most of this 

increase.  

Figure 7.5. Ocular (left) and Corneal (right) HOA RMS wavefront error (A)  and SA (B) 
before (light bars ) and after (dark bars) LASIK surgery for hyperopia.  

Eyes are sorted by increasing preoperative spherical refraction. Pupil size=6.5 mm. 
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Figure 7.6 represents the pre- and post-operative average RMS values for 

different orders. Error bars indicate std values across the eyes. 

Significability (p) less than 0.05 indicates that differences are statistically 

significant. Significant differences between pre- and post-surgical values 

exist for third, fourth and third and higher orders, as happened after 

LASIK for myopia. However, for these eyes significant differences are also 

found for fifth and higher order aberrations. 

Figure 7.5 B shows ocular (left) and corneal (right) fourth order SA 

( 0
4Z ) before (light bars) and after (dark bars) hyperopic LASIK. 

Preoperative ocular and corneal SA coefficient was positive for all eyes 

(0.37±0.19 μm and 0.41±0.11 μm, respectively). SA changed significantly 

(p<0.00001 for both, ocular and corneal) towards more negative values (-

0.33±0.35 μm and -0.44± 0.43 μm, respectively) after surgery, turning into 

Figure 7.6. Pre- (light bars) and post-operative (dark bars) RMS wavefront error, averaged 
across all hyperopic eyes,  for HOA, 3rd order aberrations, 4th order aberrations and 5th and 
higher order aberrations, for a 6.5-mm pupil. Statistical significability of differences between 
pre and postoperative values is indicated by p. 
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negative in most cases (11 out of 13 eyes). Ocular SA decreased on average 

by -0.70 ± 0.30 μm, and corneal SA decreased on average by –0.85± 0.48 

μm. Consistently, corneal Q changed significantly (p<0.00001) towards 

more negative values (from -0.21 to -0.54) for these eyes. 

It should be noted that, although different optical zones were 

programmed for different eyes, aberrations in eyes with smaller optical 

zones (5 mm as opposed to 6 or 6.5 mm) did not increase more than in 

those with the largest optical zone. The aberrations of all subjects were 

calculated for a 5-mm pupil and similar increase factors were obtained: 2.1 

for 3rd order aberrations and higher, and 2.2 for 3rd order aberrations 

alone.  In addition, SA in eyes with smaller optical zones (5 mm) was not 

found to be greater than in eyes with larger optical zones (6 or 6.5 mm), 

for either the cornea (p=0.99) or the ocular eye (p=0.67).  Time after 

surgery ranged from about 1 month to five months in our group of 

subjects. Within this sample of eyes, no correlation between post-operative 

SA (p=0.54 for the cornea, p=0.58 for the ocular eye) and time after surgery 

was found.  

7.4.4.- COMPARISON BETWEEN THE CHANGES IN OPTICAL 

ABERRATIONS AFTER MYOPIC AND AFTER HYPEROPIC LASIK 

Figure 7.7 A and B show ocular and corneal SA, respectively, 

induced by myopic (black circles) and hyperopic (white circles) LASIK as 

a function of absolute attempted spherical correction. As previously 

described, ocular and corneal induced SAs were always positive in 

myopes and negative in hyperopes. Induced ocular SA (post minus pre-

operative values for 
0
4Z ) ranged from 0.22 to 1.64 μm (0.63±0.45μm, on 

average), and induced corneal SA ranged from -0.02 to 1.72 μm (0.74±0.57 

μm on average) for myopic eyes. For the hyperopic eyes, induced SA 

ranged from -0.39 to -1.13 µm (-0.76±0.26 µm) for the whole eye and from -

0.1 to -1.68 µm (-0.85±0.48 µm) for the cornea. The induced corneal and 
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ocular SA were correlated with attempted spherical correction for both 

myopic (r=-0.87, p<0.0001 and r=-0.81, p<0.0005, respectively) and 

hyperopic eyes (r=-0.81, p<0.0005 and r=-0.85, p<0.05, respectively). The 

rate of ocular SA increment per dioptre of attempted spherical correction 

tended to be higher for the myopic procedure (+0.13 µm/D of myopic 

error and -0.07 µm/D of hyperopic error). For the purpose of comparison 

between groups, a subgroup of myopic (n=4) and a subgroup of hyperopic 

(n=4) eyes of similar absolute attempted correction (1.5 to 3.00 D) were 

selected. For these subgroups, ocular and corneal HOA increased a factor 

of 1.62 and 1.58 in myopes, respectively, compared to 2.33 and 1.81 in 

hyperopes. The average induced ocular SA was, in absolute value, 3.3 

times higher for the hyperopic than for the myopic eyes (-0.66 ± 0.28 μm 

and 0.20 ± 0.06 μm, respectively). The average induced corneal SA for the 

previous subgroups was -0.78 ± 0.40 μm for hyperopes and 0.13 ± 0.14 μm 

for myopes (i.e., six times more for hyperopic than for myopic LASIK). 

The rate for the corneal spherical error increments was higher for the 

hyperopic procedure (-0.28 µm/D) than for the myopic procedure (0.17 

µm/D). The amount of absolute SA after surgery (both myopic and 

hyperopic) was lower in the ocular eye (-0.38 ± 0.36 μm and 0.40 ± 0.09 μm 

for the previous hyperopic and myopic subgroups, respectively) than on 

the cornea alone (-0.46 ± 0.34 μm and 0.43 ± 0.12 μm for the previous 

hyperopic and myopic subgroups, respectively). 
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Figure 7.7. Total (A), corneal (B) and internal (C) SA induced by myopic (black circles) 
and hyperopic (open circles) LASIK as a function of absolute spherical correction, for a 
6.5-mm pupil. Shaded areas indicate eyes included in the averages reported in the text 
comparing the results from both hyperopic and myopic techniques. 
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7.4.5.- CHANGE OF INTERNAL ABERRATIONS WITH LASIK 

Figure 7.7 C shows the internal SA ( 0
4Z ) induced by hyperopic (white 

circles) and myopic (black circles) LASIK as a function of absolute 

attempted spherical correction. As seen in Figure 7.7 A and B, induced 

ocular SA is generally smaller in absolute value than the induced corneal 

SA (average SA induced was 0.74 µm and -0.85 µm for the cornea versus 

0.61 µm and -0.76µm for the whole eye across myopic and hyperopic 

subjects, respectively; ocular slope was -0.13 and -0.11 versus -0.19 and -

0.30 for the whole eye, for myopic and hyperopic eyes, respectively). In 

the myopic group, induced internal SA tended to decrease towards 

negative values with spherical correction (r=0.57, p=0.04). In the hyperopic 

group the trend was for induced internal SA to increase towards positive 

values with spherical correction (r=0.52, p=0.06). This indicates that 

internal SA, of opposite sign than induced corneal SA is reducing the 

impact of the corneal changes and its magnitude increases with attempted 

correction as does the induced corneal SA. Since the LASIK surgery is a 

corneal procedure (i.e. no change is happening on the crystalline lens) 

changes in internal aberrations must account for changes on the posterior 

surface of the cornea in this case. No similar behaviour was found for 

induced third-order aberrations, indicating that third-order aberrations do 

not seem to be induced in the posterior corneal surface.  

Experiments in control subjects (who had not undergone a surgical 

procedure) performed in two different experimental sessions (separated 

by at least one month, as in the surgical eyes) did not reveal statistically 

significant changes in the internal aberrations across sessions. This 

indicates that possible changes across sessions in the accommodative state 

or decentrations of corneal topography data (which otherwise are 

compensated by the recentration algorithm) cannot account for the 

observed differences in the internal optics found between pre- and post-

LASIK results. Therefore these changes must be attributable to surgery.  
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7.5.- DISCUSSION 

Ocular and corneal aberrations increased after LASIK surgery for 

myopia and after LASIK surgery for hyperopia. The higher the 

preoperative ametropia (and therefore, the surgical correction to be 

applied), the higher the increase. In general, although the trends are 

similar when looking at ocular and corneal HOA, the induced SA in the 

anterior corneal surface was greater than that of the entire eye in absolute 

value, for both groups. In the following sections, several other factors that 

indicate that anterior corneal aberrations alone are not sufficient to explain 

surgical outcomes will be discussed. In addition, our findings will be 

related to those in current biomechanical models of corneal response to 

surgery and previous observations. Finally, the implications of these 

results in the evaluation of refractive surgery outcomes and aberration-

free ablation procedures will be discussed. 

7.5.1.- CHANGE IN ABERRATIONS WITH MYOPIC AND HYPEROPIC 

LASIK 

Corneal aberrations were expected to change with the procedure, 

and this change was expected to implie a change in ocular aberrations. 

However, the fact that the amount of absolute SA after surgery (both 

myopic and hyperopic) was lower in the ocular eye than on the cornea 

alone (-0.38 ± 0.36 μm and 0.40 ± 0.09 μm for ocular versus -0.46 ± 0.34 μm 

and 0.43 ± 0.12 μm for corneal SA for the previous hyperopic and myopic 

subgroups, respectively) suggests a compensation by internal aberrations 

(see section 7.4.5.-). Part of this compensation was due to aberration of the 

crystalline lens. The role of the preoperative internal SA (primarily 

aberrations of the crystalline lens) in hyperopes, compared to myopic 

eyes, will be discussed in the next section. The posterior surface of the 

cornea seems to play also a compensatory role, which will also be 

discussed.  
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As expected, major changes occurred on the anterior corneal surface 

for both myopic and hyperopic LASIK. The causes of a change in corneal 

Q leading to important changes in SA found clinically are not well 

understood (Gatinel et al., 2001, Anera et al., 2003). It has been shown 

analytically (Gatinel et al., 2001), computationally (Marcos et al., 2003) and 

experimentally (Dorronsoro et al., 2006) that those changes are not 

inherent to the Munnerlyn ablation algorithm, or at least to the exact 

application of it. Radial changes of laser efficiency across the cornea, due 

to angular changes of reflectivity and laser fluence, have been shown to be 

responsible for at least part of the discrepancies of postoperative 

asphericities with respect to predictions (Anera et al., 2003, Mrochen and 

Seiler, 2001). These effects are expected to be much more relevant in 

hyperopic LASIK than in myopic LASIK, since in the hyperopic procedure 

corneal tissue is removed primarily in the periphery where the effects of 

laser efficiency losses are more important (Berret et al., 2003).  

The biomechanical response, presumably responsible for some of the 

Q changes found with LASIK (Roberts and Dupps, 2001), is probably also 

higher in hyperopic LASIK. In the myopic LASIK profile, there is only one 

inflection zone per hemimeridian (located at the border between the 

treated and the untreated peripheral cornea) for purely spherical 

corrections, or at the steepest meridian for astigmatic myopic correction, 

as shown in Figure 7.8 A (see arrows), and two inflection zones in the 

flattest hemimeridian (located at the junctions between the ablation optical 

zone and the transition zone (1), and between the transition zone and the 

untreated peripheral cornea (2), respectively) for myopic astigmatic 

correction, as shown in Figure 7.8 B (MacRae, 1999). However, the 

hyperopic profile shows three inflection zones per hemimeridian, as 

represented in Figure 7.8 C: (1) located at the centre of the ablation (some 

high hyperopic treatment plans treat the central cornea optical zone); (2) at 

the deepest portion of the ablation, which is at the boundary border 

between the ablation optical zone and the transition zone; and (3) at the 
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boundary between the transition zone and the untreated peripheral 

cornea. The increased number of inflection zones may result in a larger 

biomechanical response than occurs for myopic LASIK, although the 

actual mechanisms still need to be worked out. This has also been 

considered to reduce the maximum amount of treated hyperopic 

refractive error to about one-third of the treated myopic error (MacRae, 

1999). In addition, ocular third order aberrations were found to increase 

slightly more in hyperopic than in myopic LASIK eyes (factor of 2.2 and 

1.7, respectively), in agreement with the report by Oliver et al. (2001) and 

Kohnen et al. (2004). However, no correlation was found between induced 

third order aberrations and attempted spherical correction. This result 

suggests that coma was primarily associated with decentration of the 

ablation pattern, and the amounts of decentration were rather variable 

Figure 7.8. Diagrams showing corneal transition points after ablation for correction of myopia 
or myopic astigmatism on the steepest meridian (A), myopic astigmatism on the flattest 
meridian (B), hyperopia or hyperopic astigmatism (C). Modified from (MacRae, 1999) 



 242 

across eyes, both myopic and hyperopic. 

7.5.2.- ROLE OF PREOPERATIVE INTERNAL OPTICS 

Ocular aberrations result from the combination of corneal and 

internal aberrations and their inter-relationships. According to the study 

described in Chapter 6 of this thesis, this combination may be different for 

myopic and hyperopic eyes. Therefore, different outcomes between both 

groups of eyes after surgery may be expected due to different 

combinations of ocular, corneal and internal aberrations, in addition to 

differences attributable to the LASIK procedures.   

In general, before myopic surgery, both components contributed to 

the whole aberration with comparable amounts of aberrations—in some 

cases even balancing each other. Figure 7.1  A and Figure 7.3 A (white 

bars) show that whereas before surgery the cornea dominated the ocular 

wave aberration pattern in some eyes (eye M1 or M7 for example), in some 

others there was little similarity between ocular and corneal patterns, 

indicating an important contribution of the internal optics. Although the 

relative contribution of the internal optics is expected to be much lower 

after refractive surgery, interactions between corneal and internal optics 

may still play some role in determining the surgical outcomes. A high 

degree of balance between corneal and internal aberrations in normal 

young eyes has been reported in previous studies (Artal et al., 2002, 

Marcos et al., 2002). A discussion on the percentage of balance for 

hyperopic and myopic eyes depending on the age group can be found in 

Chapter 6 , section 6.5.2.- of this thesis. Before surgery, a term-by-term 

balance of at least 50% of the aberration was found in 28% of the 14 

myopic eyes of this study. For SA, this balance increased to 57% of the 

eyes. In 78% of the eyes, the SA of the anterior corneal surface and the 

internal optics had a different sign, resulting in less positive ocular SA 

(Figure 7.3 B, white bars). Furthermore, it is not uncommon (35%) that the 

amount of negative internal SA - likely from the crystalline lens (Artal and 
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Guirao, 1998, Elhage and Berny, 1973) - exceeds the amount of positive SA 

of the anterior corneal surface.  

Figure 7.9 illustrates one of these cases (eye M6), with a corneal 

preoperative SA ( 0
4Z ) of 0.38 μm and internal preoperative aberration of -

0.48 μm. The upper row shows the pre-operative measured ocular and 

corneal and the computed internal aberration patterns. The negative 

internal aberration dominates the central area ocular aberration pattern. 

After LASIK (lower row), positive SA is induced on the anterior corneal 

surface, which cancels (actually overcompensates) the preoperative 

negative SA of the internal optics. For this reason, the post-LASIK ocular 

aberration pattern for this eye is much better than predicted from corneal 

aberrations alone. Unlike other subjects with similar preoperative myopia 

and similar corneal topography after LASIK, this subject did not show any 

loss of contrast sensitivity (actually improved at two spatial frequencies) 

(Marcos, 2001). An individual comparison of pre and post-surgical ocular 

and corneal aberration can be invoked to explain the surprisingly good 

surgical outcomes in this patient.  

In general, the possible balance between corneal and internal 

aberration gets disrupted with refractive surgery. In this group, 

compensation of more than 50% of the corneal SA by the preoperative 

internal aberrations decreased from eight eyes before surgery to four eyes 

after surgery and only happened in eyes with the lowest preoperative 

spherical errors (eyes M2, M3, M5, and M6). However, at least in these 

eyes, these interactions are relevant in determining the ocular wave 

aberration pattern. The counteracting effects of the crystalline lens may be 

accounted for by adding the induced corneal SA and internal preoperative 

SA (which accounts mainly for crystalline lens SA), and then dividing this 

number by the induced corneal aberration to provide a relative value. A 

value between 0 and 1 will be indicative of compensation by the 

crystalline lens, a value close to 1 indicative of no compensation, and a 
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value higher than 1 indicative of additional contribution of the crystalline 

lens to the degradation. In the myopes from our study, where attempted 

spherical error correction ranged up to -10.50 D, a counteracting value of 

0.375 was found. 

In our hyperopic group, a dominance of preoperative corneal 

aberrations (particularly SA) in the preoperative ocular aberration pattern 

in several of the eyes (see Figure 7.1 B and Figure 7.5) was found. When 

the eyes of this study were sorted by age, younger eyes (H6, H10 and H12; 

24 through 25 years old) showed negative internal SA, while older eyes, 

showed less negative SA (eyes H13, H5, H7, H8, H3, 25 through 43 years 

old), which turned into positive for the oldest eyes (H4, H1, H2, H9, H11, 

43 through 54 years old), disrupting the balance of the positive SA of the 

cornea by the crystalline lens. This balance between internal and corneal 

aberrations observed in our younger hyperopic eyes has been reported in 

previous studies in normal young eyes (Artal et al., 2002) and myopic eyes 

Figure 7.9. Ocular (left), corneal (middle) and internal (right) HOA maps before (top) and 
after (bottom) myopic LASIK for eye M6 (with a particularly good surgical outcome). Before 
surgery, the negative internal aberration dominates the total pattern. After surgery, the 
positive SA induced on the anterior corneal surface partially cancels the preoperative 
negative SA of the internal optics. Contour lines were plotted every 1 μm, and pupil 
diameter was 6.5 mm. 
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(Marcos et al., 2002), as well as the loss of this compensation with age 

(from 45 years) in normal eyes (Marcos et al., 2002). In the age and 

absolute refractive error matched comparison of hyperopic and myopic 

eyes reported in Chapter 6 of this thesis,  an early loss (at approximately 

30 years of age) of corneal to internal balance in hyperopic eyes was 

found. This loss was not present in the myopic group of the same study, 

which did not show a significant trend of balance at this age.  

These findings may be relevant to understanding the outcomes of 

hyperopic LASIK and to predicting possible changes in performance with 

age. Given that corneal SA shifts to negative values after a hyperopic 

procedure (Figure 7.5 B), the fact that the crystalline lens contributes with 

additional negative SA is disadvantageous in young hyperopic eyes, 

whereas for myopic eyes the negative SA of the crystalline lens subtracts 

from the induced positive corneal SA (Figure 7.9). However, since SA of 

the crystalline lens becomes more positive with age, patients who undergo 

hyperopic LASIK will experience an absolute decrease of SA with age (and 

potentially an increase in optical quality), whereas for myopic eyes, SA 

will increase with aging (Marcos, 2002). Aberrations of the crystalline lens 

therefore play a significant role in the evaluation of the individual surgical 

outcomes and in the prediction of long-term optical performance. In this 

group, compensation of more than 50% of the corneal SA by the 

preoperative internal aberrations was present in 3 of the 13 hyperopic 

eyes, which were the youngest eyes (H6, H10 and H12; 24, 24 and 25 years 

old). After the surgery, compensation of more than 50% was found in four 

eyes, which were the oldest eyes of the group (H1, H2, H9 and H11; 48, 48, 

54 and 54 years old). For this group a counteracting value of 1.04 was 

found.  

Possible effects of preoperative corneal aberrations on postoperative 

outcomes were also studied. For myopic eyes, no correlation between 

preoperative and postoperative SA was found. Although a slight 
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correlation for hyperopic eyes (r=-0.42) was found, this was not significant 

(p=0.16), and could be driven by the correlation between spherical error 

and corneal SA in preoperative hyperopic eyes (r=0.76, p=0.002), which 

was not found for preoperative myopic eyes (see Chapter 6). 

7.5.3.- CHANGES IN INTERNAL ABERRATIONS AND BIOMECHANICAL 

RESPONSE 

Absolute value of induced ocular SA (Figure 7.7 A) was generally 

smaller than induced corneal SA (Figure 7.7 B) in absolute value for both, 

myopic and hyperopic groups. This indicates that induced internal SA 

(Figure 7.7 C), of opposite sign to induced corneal SA, reduces the impact 

of corneal changes. The effect was larger as the preoperative spherical 

refractive error (and therefore attempted correction) increased and did not 

depend on the preoperative internal aberrations. There was a significant 

correlation between induced internal SA and spherical attempted 

correction (r=0.57, p=0.04) in the myopic group. In the hyperopic group 

the correlation (r=0.52) is on the limit of significability (p=0.06), probably 

due to higher variability and a limited refractive range. The effect is only 

present for SA, but not for other terms. 

Since LASIK surgery is not likely to induce changes in the crystalline 

lens, one might think that the changes occur in the posterior corneal 

surface. This hypothesis is consistent with some studies using scanning 

slit-lamp corneal topography in myopic subjects that reported a forward 

shift of the posterior corneal surface after PRK for myopia (Naroo and 

Charman, 2000) and LASIK (Seitz et al., 2001, Baek et al., 2001, Bruno et al., 

2001). They suggested that the thinner, ablated cornea may bulge forward 

slightly, steepening the posterior corneal curvature. This effect has been 

thought to account for the regression towards myopia that is sometimes 

found after treatment, particularly in the patients with highest 

preoperative myopia (Naroo and Charman, 2000).  
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Using a simple corneal model with aspherical surfaces developed by 

Sergio Barbero (Barbero, 2004), the observed mean changes of internal SA 

were found to be consistent with the changes in power (from -6.28 to -6.39 

D) and Q (from 0.98 to 1.14) of the posterior corneal surface reported by 

Seitz et al. for a group of eyes undergoing LASIK with preoperative 

spherical refractive error similar to those in our study (range: -1.00 to -

15.50 D, mean, -5.07±2.81 D) (Seitz et al., 2001). The induced SA of the 

posterior corneal surface computed using the model (-0.103 μm) was very 

similar to the change in internal SA measured experimentally in this study 

(-0.110 μm, on average).  

To our knowledge, equivalent changes in posterior corneal 

curvatures and asphericities after hyperopic LASIK have not been studied. 

Ma et al. (2004) compared internal aberrations after hyperopic LASIK eyes 

with a control group of eyes and found more positive internal SA in the 

operated eyes, consistent with a shift of the posterior corneal surface 

towards more positive values. In both myopic and hyperopic eyes, the 

shift of internal SA resulted in slight compensation of the aberration 

induced on the anterior surface of the cornea. On the other hand, recent 

studies using Scheimpflug imaging report that no changes are found in 

the topography of the posterior cornea after LASIK for myopia (Ciolino 

and Belin, 2006, Ciolino et al., 2007). Early studies reporting disagreement 

in pachymetry measured with slit-lamp corneal topography and 

ultrasound (Yaylali et al., 1996, Chakrabarti et al., 2001, Modis et al., 2001) 

have lead to the application of correction factors (acoustic factor) to slit-

lamp topography to minimise this discrepancy. Although with the 

correction factor this discrepancy decreased for measurements in normal 

corneas, slit-lamp topography has been reported to underestimate central 

corneal thickness for post-LASIK eyes (Prisant et al., 2001, Iskander et al., 

1999). Studies comparing Scheimpflug imaging and slit-lamp topography 

find differences between both techniques (Quisling et al., 2006), specially 

in post surgery eyes (Matsuda et al., 2008). Therefore, the question of the 
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changes on the posterior corneal surface induced by LASIK remains 

unclear. 

In summary, using a combination of aberrometry and anterior 

corneal topography, the change in the posterior corneal shape was found 

to produce a decrease of ocular SA in comparison with that predicted 

from anterior corneal aberrations alone, and the effect is rather variable 

across eyes. Our results confirm that this effect is correlated with the 

amount of preoperative refractive error (or, equivalently, with the depth 

of corneal ablation).  

7.5.4.- COMPARISON WITH OTHER STUDIES 

Direct comparison among studies is usually hampered by differences 

in surgical technique (type of surgery, optical and transition zone 

diameters, type of laser, use of an eye-tracker) and the characteristics of 

the study population (age range, preoperative correction, preoperative 

HOA, etc). In this section our results are compared with those in literature.  

The change of corneal aberrations with LASIK for myopia found in 

this study - increase of coma, SA and HOA (by a factor of 2.73, 3.94 and 

3.72, respectively) - agrees with results reported by Oshika (1999b) 

(increment factor of 2.48, 5.11 and 3.24, for coma, SA and HOA, 

respectively) and Oliver et al. (1997) (increment factor of 2.11 and 2.38, for 

coma and SA respectively). The correlation between induced corneal SA 

and attempted correction found in this study (r=-0.81, p<0.0005) agrees 

with the results reported by Schwiegerling and Snyder (2000) for PRK 

patients (r=-0.84). 

As expected from the results for corneal SA, and in agreement with 

published studies on LASIK for myopia (Hersh et al., 2003, Holladay et al., 

1999b), anterior corneal Q increased (more oblate corneas) with the 

surgery (from -0.14 to 1.09, compared to from -0.17 to 0.92 by Hersh et al. 

(2003), and from -0.16 to 0.47 by Holladay et al. (1999b)). Holladay et al.’s 
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post-surgical mean value was smaller than Hersh et al.’s and ours, maybe 

due to differences in the pre-surgical refraction, and therefore the 

attempted correction (-2.50D through -13D for this work,  -3.75D through -

10.75D for Hersh et al., -2.25D through -10.12D for Holladay et al.) used,  

or the specific laser platform. 

The significant increase in ocular aberrations found in this work after 

myopic LASIK agrees with those reported by other studies (Seiler et al., 

2000, Yamane et al., 2004). However, the values reported by Seiler et al. are 

greater than ours: RMSpost/RMSpre ratios (Moreno-Barriuso et al., 2001) for 

3rd order, 4th order, and HOA (3rd through 6th order) were 4.7, 4.11 and 4.20 

compared to our 1.98 µm, 2.54 µm and 1.92 µm). This could be attributed 

to the different surgical techniques (PRK vs LASIK, broad beam vs flying 

spot), and the slightly greater pupil they use (7 mm vs 6.5mm in 

diameter). The ratio values from Yamane et al. were slightly smaller than 

ours, probably because the pupil diameter they used was smaller (4 mm): 

1.46 for 3rd, 1.63 for 4th and 1.70 for 3rd through 5th RMSs. 

Recent studies report a decrease in the aberrations induced by LASIK 

procedures that use modified laser algorithms such as wavefront-guided 

or wavefront-optimised compared to standard algorithms.  For example, 

Kim et al. (2004) reported post surgery RMS values of 0.34 μm, 0.23 μm 

and 0.47 μm for 3rd order, 4th order and HOA RMSs (increase factors 1.93, 

2.00 and 2.16), respectively, for the standard procedure, compared to 0.29 

μm, 0.22 μm, and 0.38 μm (increase factors 1.65, 2.32 and 1.84),  

respectively for the wavefront-guided procedure for corrections ranging 

from -2.75 to -8D. However, differences were not statistically significant. 

Our findings on the increase of corneal aberrations with hyperopic 

surgery, and particularly the change in corneal SA towards negative 

values, are in general agreement with the findings previously reported 

(Oliver et al., 2001, Wang, 2003, Ma et al., 2004) Changes reported by 

Oliver et al. were greater (postoperative mean corneal SA of -0.44 ± 0.43 
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μm and third-order corneal RMS of 0.91 ± 0.39 μm) than those found in the 

present study in spite of using a slightly smaller pupil probably due to 

inclusion of higher hyperopes (+2.50 to +7.50 D) and differences between 

surgical procedures (PRK versus LASIK). They also found a statistically 

significant increase in coma RMS (from 0.64 ± 0.24 μm to 1.76 ± 1.39 μm 

after 12 weeks). Also, our values were greater than Wang et al.’s pre- and 

postoperative values for corneal SA (0.27 ± 0.08 μm and -0.058 ± 0.16 μm, 

respectively) and RMS for HOA (0.49 ± 0.09 μm and 0.56 ± 0.20 μm, 

respectively). 

Regarding corneal Q, the relative changes that found in this study 

were similar to those (-0.32 versus average of -0.39) in Chen et al.’s (2002) 

study, even though our pre (-0.21 ± 0.12) and postoperative (-0.54 ± 0.19) 

mean Q were less negative. In agreement with Chen et al, correlation 

between the postoperative Q and the attempted spherical correction was 

found, although it was not statistically significant (r=-0.47, p=0.1), as well 

as some correlation between pre and postoperative corneal Q (r=-0.40, 

which was statistically significant; r=-0.76, p=.005, without eye #H5). 

Unlike reported by Chen et al, a good correlation between the 

preoperative corneal radius of curvature and the postoperative Q (r=-0.68, 

p=.008) was found in the current study.  

Ocular aberration postoperative values reported by Ma et al. on 

LASIK for hyperopia were comparable to those found in this study (1.18 

μm and 0.86 μm for ocular and corneal HOA RMS for a 6-mm diameter 

pupil, as opposed to our 1.23 and 1.18 μm for a 6.5-mm-diameter pupil; 

and -0.41 and -0.24 μm for ocular and corneal SA for 6-mm, as opposed to 

our -0.44 μm and -0.33 μm for 6.5-mm), in spite of the differences between 

preoperative spherical error ranges in both studies (+0.75 to +7.25 D in Ma 

et al versus +2.50 to +5.50 D in our study). However, their study reported 

larger changes in internal SA, which they attributed partly to reshaping of 
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the posterior surface of the cornea and partly to possible errors in their 

techniques. 

7.5.5.- IMPLICATIONS 

Our results have important implications for the evaluation of the 

outcomes in standard LASIK surgery as well as for the design of 

wavefront-guided ablation procedures (designed to individual cancelling 

preoperative aberrations). It has been shown that the combination of 

corneal and ocular aberrations is necessary to understand individual 

surgical outcomes and their impact on visual performance. In general, 

both corneal and ocular aberrations increased with surgery, but the 

particular increment depended on the individual subject. This is 

particularly critical in any aberration-free procedure, which cannot rely on 

the mean population response, but must be adapted to the individual 

patient. Moreover, ocular wavefront aberration measurements 

complement corneal topography information to gain insight into the 

biomechanical corneal response. Although the ablation is applied on the 

anterior corneal surface, our analysis revealed changes in the shape of the 

posterior corneal surface, assessed by the modification of its SA. 

In the last years, the induction of aberrations with surgery, 

specifically SA, has driven the advance of corneal refractive surgery due to 

its impact on postsurgical visual quality. Different approaches have been 

followed to avoid the induction of aberrations (Kohnen, 2006, Mrochen, 

2006). Technological advances and experience in wavefront-guided 

procedures have resulted in an improvement of the outcomes of this 

surgery reported by more recent studies (Kim et al., 2004, Zhang et al., 

2008). Some studies report less aberrations induced during the wavefront-

guided procedure compared to standard procedures (Schallhorn et al., 

2008, Kim et al., 2004). However, the differences reported in terms of 

optical aberrations or impact on visual functions are not always 

statistically significant (Chisholm et al., 2004, Netto et al., 2006, Kim et al., 
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2004). Wavefront-optimised laser profiles aim at not altering pre-surgical 

ocular aberrations, and specifically at avoiding the induction of SA 

reported for the standard procedure (Mrochen et al., 2004), whereas 

aspheric ablation patterns have been designed to optimise the corneal Q 

(Schwiegerling and Snyder, 2000, Manns et al., 2002). Nevertheless, the 

results reported for these techniques are not better than those reported for 

wavefront-guided procedures (Padmanabhan et al., 2008, Koller et al., 

2006). Different studies (Jimenez, 2004b, Jimenez, 2004a, Dorronsoro et al., 

2006, Kwon et al., 2008, Arba-Mosquera and de Ortueta, 2008, Dupps and 

Wilson, 2006, Hersh et al., 2003) have been carried out with the purpose of 

identifying the different factors that contribute to the induction of the 

aberrations during the surgery. All these different works reflect the 

influence of the findings of the work presented in this chapter.  

7.5.6.- CONCLUSIONS 

1) High order aberrations (3rd through 7th order) increase with 

standard LASIK treatment, particularly SA, which changes towards 

positive values with myopic LASIK and towards negative values with 

hyperopic LASIK.  

2) However, the increase in the anterior corneal SA is slightly 

counteracted by the posterior corneal SA, resulting in an increase of the 

whole eye SA smaller than that of the anterior cornea. This indicates that 

corneal biomechanics play a role in the surgery outcomes.  

3) Preoperative aberrations play also an important role in the 

outcomes of the surgery, due to the disruption of the balance existing 

between the corneal and the lens aberrations resulting from aberrations 

induced by LASIK. The fact that aberrations change with time, should also 

be considered. 

4) The combined use of ocular and anterior corneal aberrations is 

essential to asses the outcomes of refractive surgery as well as to select the 
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individuals suitable for the surgery. In the first case, the combined use of 

both devices allowed us to gain insight into the biomechanical corneal 

response. In the second case, the study of the relationship between 

anterior corneal and internal aberrations before surgery may allow to 

predict the outcomes of the procedure. 

5) These results have important implications for wavefront-guided 

procedures. Ocular wavefront aberration measurements complement 

corneal topography information to gain insight into the biomechanical 

corneal response. Although the ablation is applied on the anterior corneal 

surface, our analysis revealed changes in the shape of the posterior corneal 

surface, assessed by the modification of its SA. 
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Chapter 8  

 

CONCLUSIONS 

This thesis contributes to both methodological advances in 

wavefront sensing (Laser Ray Tracing and Hartmann Shack techniques) 

and advance in the assessment of ocular aberration in ametropia, and the 

optical changes after corneal refractive surgery. 

The main conclusions regarding the aberrometry technology 

implemented in this thesis are: 

1.- High order aberrations (third and higher order terms) can be 

reliably measured in infrared, both with Laser Ray Tracing (LRT) and 

Hartmann Shack (HS) techniques. There are no statistically significant 

differences in high order aberrations measured with visible (543 nm) and 

near infrared (787 nm) light. 

2.- Differences in defocus from aberrometry using green (532 nm) 

and near infrared (787 nm) are consistent with longitudinal chromatic 

aberration, with an average chromatic difference of focus of 0.78 ± 0.29 D. 

3.- Despite large differences in the intensity distribution of retinal 

spot patterns (both with LRT and HS) as a function of the polarisation 

state of the illumination and recording channels, the estimated aberrations 

are independent of polarisation. 
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4.- The metrics refined to compare estimates of ocular aberrations 

using different sampling pattern configurations (RMS of the difference , 

RMS_diff, and percentage of differences between wave aberration maps, 

W%), the hierarchical cluster analysis and Student’s t-test have proved 

adequate to assess the performance of different sampling patterns.   

5.- The variability of the wave aberration is generally larger than the 

effects due to the sampling. In healthy human eyes the sampling pattern 

does not seem to play a major role on the accuracy of the aberrations 

estimated, as long as the number of samples is sufficient for the number of 

Zernike terms to estimate. The spatial distribution of the sampling can be 

more important than the number of samples. Moderate density sampling 

patterns based on the zeroes of Albrecht’s cubature (49 samples) or 

hexagonal sampling (37 samples) performed relatively well.  

The main conclusions on ocular aberrations of ametropic eyes and 

following LASIK correction are: 

1.- Hyperopic and myopic eyes (23-40 years and 26-39 years; +0.5-+7.4 D 

and –0.8 - –7.6 D, respectively) differ both geometrically and optically. 

Hyperopic eyes are statistically significantly shorter than myopic eyes and 

have less prolate corneas. Hyperopic eyes also show larger corneal 

spherical aberration and less negative internal spherical aberration than 

myopic eyes. 

2.- Hyperopic eyes show an earlier loss of the balance between 

corneal and internal spherical aberration, perhaps associated to an earlier 

onset of presbyopia. 

3.- Standard LASIK for myopia and hyperopia produce a change of 

ocular (total) and corneal spherical aberration towards positive and 

negative values, respectively. This change in spherical aberration is 

correlated with the attempted correction. 
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4.- Slightly higher changes in the anterior cornea compared to the 

total ocular changes suggest a slight counteracting effect from the 

posterior  cornea. 

5.- The fact that changes are relatively higher after LASIK for 

hyperopia than after LASIK for myopia are suggested of a larger influence 

of geometrically-related laser efficiency losses and of biomechanical effects 

in hyperopic LASIK. 

In brief, this thesis has contributed to the understanding and 

improvement of ocular wavefront sensors by indentifying optimal 

configuration parameters (wavelength, polarisation and sampling). This 

technology has been used to expand the knowledge and understanding of 

ametropic eyes, and to assess the optical changes induced by LASIK 

surgery for myopia and hyperopia. This research has implications in the 

identification of best candidates for surgery and interpretation of the 

surgical outcomes through the combination of total and corneal aberration 

measurements. These findings are important to understand the limitation 

of standard LASIK ablation algorithms, and the optimisation of the state-

of-the-art wavefront customised procedures. 

Trying to look into the future, it looks like aberrometry has arrived to 

stay. In the last years, aberrometry has earned a place in the clinical 

environment thanks to refractive surgery. However, it has also been 

proven valuable at identifying ocular conditions affecting the optics of the 

eye (keratocous, pellucid marginal corneal degeneration, dry eye, 

lenticonus, cataracts) and as an objective assessing tool for different 

correction methods (contact lenses, intraocular lenses, orthokeratology, 

apart from refractive surgery) (see review by Maeda, 2009). There is no 

reason to think that in the future aberrometry will be not applied to early 

identification of new ocular conditions, perhaps in combination with new 

imaging techniques which might also benefit of the correction of 

aberrations. Additionally, the power of aberrometry as an objective 
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evaluation tool will surely be useful to assess in vivo new correction 

methods and to understand better the psychophysical and psychometric 

outcomes of these corrections when combined with the optics of the eye. 

Additionally, aberrometry has helped to advance in the knowledge 

of the optical mechanisms of the eye, such as the balance between corneal 

and internal aberrations, or the change in aberrations with 

accommodation. There are still some questions to be clarified where 

aberrometry could contribute maybe in combination with biometric or 

imaging techniques. Specifically, some issues related to the crystalline lens 

are still unknown, given its inaccessibility in vivo, and the complications of 

reproducing the in vivo conditions ex vivo. These issues include the exact 

structure of the GRIN, the changes taking place in the lens, including 

GRIN distribution, during the process of accommodation or the structural 

changes taking place in the lens with age leading to presbyopia onset. For 

this last issue a comparison between different refractive groups around 

pre-presbyopia age range might help to identify early gradual changes on 

the aberration pattern that might give an insight in the optical changes 

involved. 

Regarding methodology, there are still issues to tackle, such as which 

is the adequate sampling pattern for general population, or for screening 

of particular conditions. Although it seems quite clear that the sampling 

pattern should be adapted to the aberrations to measure, this implies to 

predict in advance what is to be found. A future study in a wider 

population would be desirable, as well as having a gold standard such an 

interferometric aberration pattern for comparison across patterns. 

Population subgroups with similar optimum sampling might be then 

determined and therefore the characteristics making a sampling pattern 

more suitable for specific eyes could be identified. 

Finally, will ocular (and corneal, internal, etc) aberrations still be 

represented using Zernike polynomials?. Although for some particular 
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applications Zernike polynomials might not be accurate enough, they 

have been doing the job quite well all these years, becoming a standard. 

Aberrometry has brought together such different disciplines as physicists 

and physicians. Many physicians have made an effort to update and 

complement their training in order to be able to understand and apply 

aberrometry in their practice. This effort included understanding the 

Zernike expansion. If a more adequate mathematical tool is found, it 

should be used for those specific cases where Zernike polynomials fail. 

However, before changing the standard, it is important to make sure that 

the new tool is really bringing a general benefit, and to make available a 

way to convert to and from Zernike into the new base. 
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APPENDIX A 

JACOBI, LEGENDRE AND ALBRECHT SAMPLING 

COORDENATES. 

The position of the samples in the sampling patterns J49, L49 and 

A49 is given by the zeroes of Jacobi, Legendre and Albrecht functions, 

respectively.  The zeroes of Albrecht function have been obtained from the 

book Numerical quadrature and cubature (Engels, 1980), pages 44-46. The 

zeroes of Legendre and Jacobi functions have been obtained using Matlab. 

The programs that generate the sampling program were written in Matlab 

by Susana Marcos. The coordinates corresponding to each pattern is 

represented on table A.1. 

Albretch 49 Legendre49 Jacobi 49 Ray 
label  X Y X Y X Y 

1 0.180704 0.180704 0 0 0 0
2 0.000000 0.255554 0 0.255899 0 0.230056
3 -0.180704 0.180704 0 0.709138 0 0.659429
4 -0.255554 0.000000 0 1 0 1
5 -0.180704 -0.180704 0.097928 0.236420 0.088039 0.212544
6 0.000000 -0.255554 0.271375 0.655158 0.252353 0.609233
7 0.180704 -0.180704 0.382683 0.923880 0.382683 0.923880
8 0.255554 0.000000 0.180948 0.180948 0.162674 0.162674
9 0.391891 0.391891 0.501436 0.501436 0.466287 0.466287

10 0.000000 0.554218 0.707107 0.707107 0.707107 0.707107
11 -0.391891 0.391891 0.236420 0.097928 0.212544 0.088039
12 -0.554218 0.000000 0.655158 0.271375 0.609233 0.252353
13 -0.391891 -0.391891 0.923880 0.382683 0.923880 0.382683
14 0.000000 -0.554218 0.255899 0 0.230056 0
15 0.391891 -0.391891 0.709138 0 0.659429 0
16 0.554218 0.000000 1 0 1 0
17 0.606775 0.606775 0.236420 -0.097928 0.212544 -0.088039
18 0.000000 0.858110 0.655158 -0.271375 0.609233 -0.252353
19 -0.606775 0.606775 0.923880 -0.382683 0.923880 -0.382683
20 -0.858110 0.000000 0.180948 -0.180948 0.162674 -0.162674
21 -0.606775 -0.606775 0.501436 -0.501436 0.466287 -0.466287
22 0.000000 -0.858110 0.707107 -0.707107 0.707107 -0.707107
23 0.606775 -0.606775 0.097928 -0.236420 0.088039 -0.212544
24 0.858110 0.000000 0.271375 -0.655158 0.252353 -0.609233
25 0.693252 0.693252 0.382683 -0.923880 0.382683 -0.923880
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26 0.000000 0.980406 0 -0.255899 0 -0.230056 
27 -0.693252 0.693252 0 -0.709138 0 -0.659429 
28 -0.980406 0.000000 0 -1 0 -1 
29 -0.693252 -0.693252 -0.097928 -0.236420 -0.088039 -0.212544 
30 0.000000 -0.980406 -0.271375 -0.655158 -0.252353 -0.609233 
31 0.693252 -0.693252 -0.382683 -0.923880 -0.382683 -0.923880 
32 0.980406 0.000000 -0.180948 -0.180948 -0.162674 -0.162674 
33 0.707439 0.293031 -0.501436 -0.501436 -0.466287 -0.466287 
34 0.293031 0.707439 -0.707107 -0.707107 -0.707107 -0.707107 
35 -0.293031 0.707439 -0.236420 -0.097928 -0.212544 -0.088039 
36 -0.707439 0.293031 -0.655158 -0.271375 -0.609233 -0.252353 
37 -0.707439 -0.293031 -0.923880 -0.382683 -0.923880 -0.382683 
38 -0.293031 -0.707439 -0.255899 0 -0.230056 0 
39 0.293031 -0.707439 -0.709138 0 -0.659429 0 
40 0.707439 -0.293031 -1 0 -1 0 
41 0.883097 0.365791 -0.236420 0.097928 -0.212544 0.088039 
42 0.365791 0.883097 -0.655158 0.271375 -0.609233 0.252353 
43 -0.365791 0.883097 -0.923880 0.382683 -0.923880 0.382683 
44 -0.883097 0.365791 -0.180948 0.180948 -0.162674 0.162674 
45 -0.883097 -0.365791 -0.501436 0.501436 -0.466287 0.466287 
46 -0.365791 -0.883097 -0.707107 0.707107 -0.707107 0.707107 
47 0.365791 -0.883097 -0.097928 0.236420 -0.088039 0.212544 
48 0.883097 -0.365791 -0.271375 0.655158 -0.252353 0.609233 
49 0 0 -0.382683 0.923880 -0.382683 0.923880 

Table A.1. Coordinates of the 49 samples of the Albrecht, Jacobi and Legendre patterns. 
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