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ABSTRACT  

Vortex-Induced Vibration (VIV) is one of the significant physics that encounter in 

the engineering practice. The good understanding of the structure response and 

technologies to suppress the significant vibration and undesirable forces induced by 

VIV is of vital importance for the entire design/planning procedure. However, for both 

the single-phase and multiphase flow, the main challenge is how to significantly 

improve the simulation efficiency and meanwhile maintain the accuracy. 

This research aims to develop a hybrid model which can simulate VIV significantly 

more efficiently. A novel framework for a hybrid model which is based on the functional 

decomposition is proposed. The theoretical hypothesis of the hybrid model is that the 

viscous effect is only significant near the offshore structures or breaking waves, and 

may be ignored in other areas. In this model, all physical variables are split into two 

parts. One part is solved by a quasi-turbulent model in whole domain and the other part 

solved by using a residual turbulent model in a smaller domain. The two models are 

implemented simultaneously based on their respective meshes and time steps. Due to 

this feature, the techniques such as the sub-cycle strategy are employed for the 

improvement of the efficiency without the deterioration of the accuracy.  

In this work, the equations and boundary conditions of the hybrid model for single 

phase and multiphase flow are derived. Corresponding algorithms and codes are 

developed using the open-source platform of OpenFOAM. The method is validated by 

simulating representative cases of flows past stationary and oscillating circular cylinder 

under various combinations of (Re, A/D, Fr) for single phase and of flows past stationary 

circular cylinder underneath an air-water interface for multiphase. It is demonstrated 

that the results of the hybrid model agree well with experimental data and with those 

obtained by using the original OpenFOAM. The investigation is also carried out on the 

efficiency of the hybrid model and indicate that the computational time of the hybrid 

model is significantly less than that of original OpenFOAM to obtain the similar results 

for the same cases. The investigation also indicates that the higher the Reynolds number, 

the larger the oscillation amplitude, the more computational time can be saved by using 
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the new hybrid model. In some case, the hybrid model can save 80% of the 

computational time than using the original OpenFOAM solver.  
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1  
INTRODUCTION 

 

1.1 Background  

Vortex-Induced Vibration (VIV) is a motion induced on the bodies interacting with 

the external fluid flow and is closely related to the vortex shedding from the surface of 

the bodies. It is one of the significant physics that encounter in the engineering practice, 

in particular for cylindrical structures, such as transmission lines, aircraft control 

surfaces, buoyancy and spar hulls, risers and mooring lines, sub-sea pipelines, chimneys, 

bridges and so on.   These structures are widely used in ocean engineering practices, e.g. 

oil/gas ( Figure 1.1.1 is the illustration of FPSO Aoka Mizu, including its moorings and 

sub-sea flexible pipelines) and oceanic renewables industries. For instance, there were 

totally 3,858 oil and gas platforms extant in the Gulf of Mexico in 2006 and the 

operation water depth in the Brazil and Gulf of Mexico has exceeded 3000m (NOAA, 

2013). The proportion of production wells at depths deeper than 300m was 95% by 2015 

and more than 20% of Gulf wells were deeper than 2,000m in 2016 (CW Composites 

World, 2016). A great number of pipelines, risers and electric transmission lines have 

been and will be implemented. All these structures are subjected to the effects of VIV, 

which may lead to severe fatigue damage and threats to these structures. To avoid the 
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damage, the issues associated with VIV must be carefully addressed during the entire 

design/planning procedure, such as towing, installation, operation and demolishment. 

For this purpose, understanding of the structure response and technologies to suppress 

the significant vibration and undesirable forces induced by VIV become highly 

demanded.  

Physical experiments and numerical investigations have been and are carried out in 

order to achieve a good understanding of the hydrodynamics associated with the VIV. 

In the aspect of numerical work, a Navier-Stokes (NS) solver with appropriate 

turbulence modelling is essential to resolve the vortex shedding and associated turbulent 

flow features. It is generally accepted that the optimal numerical computation strategy 

depends on the level of the complexity of the flow and the degree of accuracy needed 

for the flow of interest (Girimaji & Abdol-Hamid 2005). Conventionally, the most 

prevalent Reynolds-averaged Navier–Stokes (RANS) model is used to predict the mean 

statistical flow properties. In order to reflect the turbulent behaviour of the flow 

associated with VIV, an appropriate turbulence model (either one-equation or two-

equation), such as Spalart–Allmaras(S–A) (Spalart & Allmaras, 1992) and k-ω models 

(Menter 1994; Menter 1993), are used to provide closure to the equation systems. 

Obviously, solving additional equations for the turbulent model leads to extra CPU time. 

Alternatively, the Large Eddy Simulations (LES) is well capable of handling a wider 

range of turbulence physics based on either explicitly or implicitly a length scale related 

to the numerical grid. However, the simulation conducted by LES is typically 10 ~ 100 

times more expensive than RANS computations (Rodi 1997), partially because a much 

finer mesh resolution is required to realise the small-scale eddies, especially for the case 

with the wall-bounded flow. For example, for resolving the near-wall flow field, the 

computational cost of LES is scaled as Re1.8, where Re is the Reynolds number, 

compared to that by the RANS modelling (Xiao & Jenny 2012). Nevertheless, the LES 

modelling typically spends less CPU time compared to the Direct Numerical Simulation 

(DNS), which is another and the most accurate way to resolve turbulence. For the latter, 

the corresponding scale factor is Re2.25 (Xiao & Jenny 2012).   

 
 
 
 

https://en.wikipedia.org/wiki/Spalart%E2%80%93Allmaras_turbulence_model
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Figure 1.1.1 Offshore pipeline near the free surface (Bluewater, 2017) 

 

No matter which way is applied, the computational cost for the VIV modelling is 

often high. In order to achieve reasonable results in an allowable CPU time, most of the 

numerical simulation of this kind is limited to a small computational domain 

surrounding the structures (~100D, where D is the characteristic dimension of the 

structure) and/or in two-dimension. It has also been demonstrated by Pope (2001) that, 

to capture the evolution of small eddies and to maintain the numerical stability, there 

are decreases of the spatial scales and temporal scales with the relationship of 

 𝑅𝑒−
3
4 and   𝑅𝑒−

1
2  respectively with the increase of the Reynolds number. The 

computational cost may be dramatically increases if a free surface flow is involved. In 

fact, for most of the offshore structures, which are often exposed to water waves, the 

free surface effect may need to be taken into account, especially, for the pipe segments 

near the water surface, as illustrated in Figure 1.1.1, and transmission pipelines during 

loading/offloading operation. Within the NS solver, one need to track or identify the 

free surface to correctly model the free surface flow and water waves. Classic models 

include multi-phase NS with volume of fluid technology (short as VOF and proposed 

by Hirt & Nichols (1981)), single-phase/multi-phase level set methods, multi-phase NS 

with marker-and-cell approach and single-phase/multi-phase meshless methods (e.g. 

Smoothed Particle Hydrodynamics (SPH), Moving Particle Semi-implicit method 

(MPS) and the Meshless Local Petrov Galerkin methods (MLPG)). Not only the extra 

cares on effectively resolving the free surface and accurately modelling the water wave 

FPSO  

Riser system  
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propagating, another constraint induced by the free surface flow is the size of the 

computational domain. It may be essential to cover the dimension in the depth direction 

from the water surface to the seabed, i.e. thousands meters for deep water application; 

at least 5~10 wave lengths (Wang 2016) in the horizontal plane at a scale of hundreds 

to thousands meter. Unfortunately, all the above-mentioned methods are too time-

consuming for practical applications for such a large computational domain. Thus, 

simplified and empirical numerical models are widely used in the industrial design 

practices, with aid of experimental investigation. “Is there any way to accelerate the 

computing without loss of accuracy?” may be one of the most frequently questions in 

the numerical practices for VIV, high-Re problems and other problems with significant 

turbulent effects.  

 

Figure 1.1.2 Illustration of vorticity distribution around a cylinder 

 

One direct way for accelerating the numerical simulation is to conduct highly parallel 

computing using high-performance computing (HPC). On the other hand, efforts have 

been devoted to developing more robust modelling strategy or methodologies. The 

developments in these two directions do not conflict with each other and shall be 

combined to maximise the computational efficiency. In this work, the latter is focused.  

One typical development for VIV of risers or mooring lines is the strip method (see 

Schulz & Meling (2004); Holmes et al. (2006); Bao et al. (2016) ), which converts the 

three-dimensional problems to strips of 2D problems. In the strip method, the fluid stress 

on strips of the structure is modelled by 2D fluid-structure interaction (FSI) model 

where the structure motion and deformations are modelled by using 3D solid mechanics. 

This method simplifies the problem and dramatically improve the computational 

robustness. However, it is assumed that the fluid flow at different strip does not interact 

with each other. Furthermore, in the 2D FSI model of the strip method, the turbulence 
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modelling takes effects in the entire computational domain. In fact, the turbulent effects 

and vortex shedding may only be significant near the structure and in the wake area, as 

demonstrated by Figure 1.1.2, which shows the vorticity distribution around a fixed 

cylinder subjected to constraint inflow. Far away from these regions, the flow may be 

dominated by inertia force, e.g. gravity-driven flow, and the viscous effects may be 

ignored. In many cases, the potential flow may be sufficient to describe the flow feature 

in these regions, e.g. the propagation of the waves from far-field towards near field.  

This fact initiates the development of hybrid approaches, which combining different 

numerical methods and physical models. 

Existing hybrid models for the problems considered in this study adopts two 

strategies, i.e. domain splitting (also called domain decomposition) and functional 

decomposition (also referred to as the velocity decomposition). For the domain splitting 

approach, the entire computational domain is split into two or more sub-domains, and 

different models are applied in different sub-domains (e.g. Quéméré et al., 2001; 

Quéméré & Sagaut (2002)). Taking the classic wave-structure interaction problems as 

an example (Figure 1.1.3(a)), RANS approach may be applied in the sub-domain near 

the structure (viscous domain) and the potential theory is applied in other sub-domains 

(inviscid domain, see, for example, Sriram et al. (2014); Yan & Ma (2017)). The success 

of models adopting this strategy usually relies on (1) a smooth transition between 

different sub-domains, e.g. the viscous effects, velocity-pressure relation; and (2) 

consistent solutions by different models at the interface between two sub-domains. For 

the former, a translational zone (or interface zone) is applied instead of a single interface; 

for the latter, an iteration may be necessary to ensure the boundary conditions of two 

models on the interfaces are satisfied simultaneously. The functional decomposition 

approach adopts a different domain configuration as shown in Figure 1.1.3(b), where a 

simpler model, e.g. the potential theory or Euler’s equation is solved in the entire 

computational zone; only near the structure (dashed region in Figure 1.1.3(b), a 

complementary equation is solved and, consequently, the summation of the solutions to 

the simplified model and those to the complementary equation satisfies the RANS with 

or without turbulence models (e.g. Monroy & Ducrozet (2009); Luquet et al. (2007) and 

Ferrant et al. (2007)).   
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(a) The computational domain for the domain-splitting model 

(b) The computational domain for the function-splitting model 

Figure 1.1.3 Examples of different hybrid numerical models  

By using these strategies, a few hybrid models have been developed. The majority 

couple (1) potential model and other higher-order potential model (e.g. Wang et al., 

2016); (2) potential theory (or other equivalent simplified model, e.g. nonlinear 

Schrödinger’s equation and Euler’s equation) and NS solver, e.g. RANS with or without 

turbulent modelling (e.g. Sriram et al., 2014); (3) incompressible NS solver with 

compressible NS solver (e.g. Martínez Ferrer et al., 2016); and (4) RANS approach with 

turbulent model and LES (Fan et al.,2017; Wei et al., 2016; Sajjadi et al., 2017; Kocutar 

et al., 2015; Gopalan et al., 2013). Considering the fact that the turbulence modelling is 

essential near the structure for the problems concerned here, i.e. VIV problems, 

available hybrid models may only couple the turbulent NS solver with either a potential 

theory (2) or another turbulent NS solver (4). Option (4) couples two turbulent NS 

solvers and, therefore, its computational efficiency may be impractical low; whereas 

Option (2) may suffer from a sudden change of the fluid properties from an 

inviscid/irrotational flow (no viscosity) to a turbulent flow (constant physical viscosity 

and unsteady turbulent/eddy viscosity), especially for high-Re problems, and 

consequently may be either numerically unstable or computationally costly (e.g. 

RANS 

Viscous domain 

Potential 

Inviscid domain 

Interface 

Structure 

Potential 

Inviscid domain 

Complementary RANS 

Viscous domain 

Structure 
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requires large transitional zone for a smooth transition of viscous effects, large domain 

for solving turbulent models small time step size and so on).  

 

 

Figure 1.1.4 Proposed multi-model hybrid approach 

 

This issue can be addressed by replacing the turbulent NS solver in Option (2) by a 

hybrid model coupling simplified RANS solver (e.g. the RANS without turbulent 

models) and turbulent NS solver (e.g. the RANS with turbulent model). Overall, one 

example of the new approach can be illustrated in Figure 1.1.4. The induction of the 

laminar NS solver (constant physical viscosity) between the inviscid/irrotational flow 

solver (no viscosity) and the turbulent flow solver (constant physical viscosity and 

unsteady turbulent/eddy viscosity) makes the viscous effects changes step by step, 

increasing the numerical instability. For the viscous domain, the solution of the 

turbulent modelling may only require in a small region near the structure, saving the 

CPU time on resolving the turbulent/eddy viscosity. To the best of my knowledge, no 

attempts have been found in the public domain to couple a simplified RANS solver with 

a turbulent solver. 

 

1.2 Aim and objectives 

 

This research aims to develop a hybrid model coupling a simplified RANS solver 

with a turbulent RANS solver for effectively modelling VIV. The functional 

decomposition (velocity decomposition) strategy is adopted. The objectives comprise: 

1. Understanding the spatial-temporal distribution of the turbulent/eddy viscosity 

associated with flow around submerged structures with or without free surface 

effects, which is the foundation to develope the hybrid model; 

RANS 

Viscous domain 

No turbulent viscosity 

Potential 

Inviscid domain 

Interface 

 Structure 

Complementary RANS 
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2. Developing the hybrid model to couple the simplified RANS and turbulent 

RANS solvers; 

3. Numerically investigating the performance of the developed hybrid model, e.g. 

the computational efficiency, accuracy and convergence; 

4. Investigating the feasibility of coupling the developed hybrid model with a fully 

nonlinear potential model in a domain-splitting way, as sketched in Figure 1.1.4.  

It is noted that only two-dimensional development and investigation will be 

considered in this thesis. One may apply the developed model to many scenarios, e.g. a 

long-span horizontal pipeline subjected to a unidirectional wave/current; a strip of the 

2D fluid-structure interaction model in the above-mentioned strip method. One may also 

consider this research as a conceptional study, which proves the superiority of the hybrid 

model over the conventional model in terms of computational robustness, for the 

development of 3D hybrid model in the future.  

 

1.3 Outline of the thesis  

The introduction above only gives a brief discussion of the existing literature. The 

details can be found in Chapter 2. Following which, the methodology of the fundamental 

equations and the spatial-temporal distribution of the turbulent viscosity for both single- 

and multi-phase flow simulation are presented in Chapter 3. In Chapter 4, the 

methodology of the hybrid method is derived for both single- and multi-phase flow 

separately. Its implementation details will be given in Chapter 5 with various features 

of the hybrid model being discussed. Chapter 6 focuses on the validation of the present 

model by comparing its prediction with experimental and other numerical results 

available in the public domain; whereas Chapter 7 demonstrates the efficiency of the 

hybrid model. The thesis is concluded by Chapter 8, together with the discussion on the 

feasibility of coupling the developed hybrid model with a potential solver and 

recommendation on future work.    
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2  
LITERATURE REVIEW 

This section of the literature review starts with the classical VIV problem studied by 

both experimental and numerical approaches regarding both the single- and multi-phase 

flow. Due to the complexity of the VIV study, the movement of the cylinder is usually 

classified into two types: the free vibration and the forced vibration. Hence, review of 

the free and forced vibration will be given separately. After that, the numerical 

simulation models, both the traditional single models and the hybrid models belonged 

to different categories are compared and reviewed. At last, discussions are given about 

the existing problems, and the objective of this study is described.  

2.1 Experimental researches 

2.1.1 Free and forced vibration studies  

 

One important way to predict VIV is to generate a complete experimental database 

by testing cylinders undergoing free or controlled sinusoidal oscillations in a free stream. 

Firstly, regarding the free vibration, several investigators including Griffin & Ramberg 

(1982), Williamson & Roshko (1988), Brika & Laneville (1993, 1995), Khalak & 

Williamson (1997), Lin & Rockwell (1996), Noca, et al. (1999), Govardhan & 

Williamson (2000) have conducted a series of experimental researches. Among them, 
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Brika & Laneville (1993, 1995), were the first to show evidence of the 2P (P is short 

for vortex pairs) vortex wake mode from free vibration and confirmed the earlier 

explanation by Williamson & Roshko (1988) for the hysteresis loop in terms of a change 

in wake vortex patterns. Brika & Laneville (1993,  1995) found a clear correspondence 

of the 2S mode with the initial branch of response, and the 2P mode with the lower 

branch. However, Khalak & Williamson (1997) observed that the phenomena at low 

mass ratios and low mass damping are distinct from those mentioned above. A direct 

comparison is made between the response in water by Khalak & Williamson (1997) 

with the largest-response plot of Feng (1968). The lighter body has a value of mass 

ratios yielded a much higher peak amplitude. Khalak & Williamson (1997) also 

observed the existence of three distinct branches, in which the low mass ratio type of 

response is characterised by not only the initial branch and the lower branch, but also 

by the new appearance between the other two branches of a much higher upper response 

branch. Regarding the phenomenon of ‘‘lock-in’’ or synchronization, however, for the 

low mass ratio in water in the experiment of Khalak & Williamson (1997), the body 

oscillates at a distinctly higher frequency, is different to the traditional concept in the 

studies of Blevins (1990) and Sumer & Fredsoe (2006). 

Secondly, the forced vibration experiments researches have been carried out by 

Bishop & Hassan (1964), Sarpkaya (1978), Staubli (1983), Gopalkrishnan (1993), 

Hover, et al. (1997, 1998), Sheridan, et al. (1998), Blackburn & Williamson (2001), 

Carberry et al. (2001, 2003, 2004, 2005), Parnaudeau, et al.(2008) and Morse & 

Williamson (2009) etc. They have measured the forces on bodies in harmonic, the 

multifrequency motion and the wake patterns. Williamson & Roshko (1988), studied 

the vortex wake patterns for a cylinder that forced to translate in a sinusoidal trajectory. 

They defined a whole set of different regimes for the vortex wake modes. Each periodic 

vortex wake pattern comprises single vortices (S) and vortex pairs (P), giving patterns 

such as the 2S, 2P and P+S modes, which are the principal modes near the fundamental 

lock-in region. The 2P and P+S modes have been found in controlled vibration studies 

in-line with the flow by Griffin & Ramberg (1974), and Ongoren & Rockwell (1988) as 

well as transverse to the flow ( Zdero et al., 1995). The P+S mode was also found in 

Griffin & Ramberg’s (1974) well-known smoke visualizations. The significance of 
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these modes from controlled vibration is that they provide a map of regimes, within 

which we observe certain branches of free vibration. One deduction from the 

Williamson & Roshko’s (1988) study was that the jump in the phase of the transverse 

force in Bishop & Hassan’s (1964) classical forced vibration study, and also the jump 

in phase measured in Feng’s (1968) free vibration experiments, were caused by the 

changeover of mode from the 2S to the 2P mode. This has since been confirmed in a 

number of free-vibration studies like Brika & Laneville (1993), etc. Cheng & Moretti 

(1991) conducted a series of experiments with a circular cylinder subjected to forced 

transverse vibration in a uniform cross-flow at Reynolds numbers of 1500 and 1650.  

Blevlns & Burton (1976) have provided extensive data for the amplitude ratio versus 

the lift coefficient for a variety of conditions. Hover et al. (1997); Hover et al. (1998) 

and Hover et al. (2001), Gopalkrishnan et al. (1994), developed a novel virtual cable 

testing apparatus and conducted a series of tests using this faculty. A further significant 

result has been presented by Bearman et al. (2001), who have presented an excellent 

agreement between in-line response measurements at Re=104 and Re=105. There was 

also good agreement for the limited transverse VIV response data at these Reynolds 

numbers. Sheridan et al. (1998) and Carberry et al.(2001, 2003, 2004, 2005) made 

extensive measurements of force from controlled vibrations of cylinders, providing a 

number of interesting results and data can be used for numerical validation.  

 

2.1.2 VIV subject to the free surface  

 

Comparing to the deep water VIV problem, the experimental researches of VIV 

considering the effect of the free surface is much less. Firstly, in terms of the submerged 

depth/gap ratio effect, a series of researches have been conducted. Miyata et al. (1990) 

found that vortex shedding is suppressed when the submerged depth (h/D) is very small, 

where h is the distance from the cylinder to the free surface, D is the diameter of the 

circular cylinder. Sheridan et al. (1997) experimentally observed that the near-wake 

structure for small h/D falls under a number of modes which are very different from 

those of deep water. Carberry (2002) observed three different wake states (Modes I, II, 

and III) as h/D decreases, agreeing with the wake structures previously reported by 

Sheridan, et al. (1997) and Reichl, et al. (2005). Mode I wake is essentially a modified 
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Kármán wake with the amplitude of the fluctuating lift force larger than that for deep 

water case. The periodic vortex shedding appears to be suppressed and the lift varies 

little with time in both Modes II and III. The flow over the top of the cylinder remains 

attached to and separates from the free surface for Modes II and III, respectively. In 

Mode III, the separated flow forms a jet which can either remain attached to the cylinder 

or flow downwards obliquely. Saelim (1999) investigated the one-degree-of-freedom 

(one-DOF) transverse VIV of an elastically mounted rigid horizontal circular cylinder 

beneath a free surface. The results showed that, for small h/D, very large regions of 

hysteresis occur in the variation of vibration amplitude as a function of reduced velocity. 

For large values of h/D, the vibration frequency is higher than natural structure 

frequency and lower than the vortex shedding frequency in the lock-in zone; for very 

small h/D, the vibration frequency takes on values close to the vortex shedding 

frequency, hence much higher than natural structure frequency. Rockwell et al. (2003) 

later presented some typical vortex shedding regimes for h/D = 0. Cetiner & Rockwell 

(2001) experimentally investigated the stream wise oscillations under several 

combinations of amplitude ratio and frequency ratio. They found that the transverse 

force is phase-locked to the cylinder motion when h/D≈0 and such locked-in states are 

destabilised because of an instantaneous jet-like flow mentioned above when h/D is 

finite. Sheridan et al. (1997) conducted experiments using the PIV technique and found 

that close to a free surface the near-wake structure falls under a number of modes which 

are very different from those of the deeply submerged cylinder wake. Carberry (2002) 

observed three different wake states as gap ratios decreases which also found by other 

experimental (Sheridan et al., 1997) and numerical (Reichl et al., 2005) studies. 

Secondly, for the wave and current combing situations, Moreau & Huang (2010) 

demonstrated that cross-flow VIV in combined wave and current flow is significantly 

different from that in current or wave alone. Furthermore, the response is very much 

dependent upon the velocity ratio between the current and wave particle velocity. In 

their experiment, the cross-flow vibration of a cylinder in co-linear steady and 

oscillatory flows is investigated for the inline Keulegan Carpenter number varying from 

5 to 27 and for the reduced velocity ranging from 3 to 19. For the collinear steady and 

oscillatory flow, Low et al. (1989) measured the pressure distribution around the 
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cylinder circumference and integrated it to yield the in-line force. The results were given 

in terms of drag and inertia coefficients as functions of the KC number and the reduced 

velocity. Yokoi & Kamemoto (1994a) examined the vortex shedding frequency and 

pattern of an in-line oscillating circular cylinder in uniform flow at rather small KC 

numbers and found that the vortex shedding frequency was synchronised with multiples 

of the oscillation frequency. The summary of the experimental studies carried out for 

both free and forced/controlled vibration situation with or without the presence of the 

free surface are given in Table 2.1.1.   

 

Table 2.1.1 A summary of the experimental studies for VIV problems 

                            VIV without free surface VIV considering free surface  

Free vibration Forced vibration  

Griffin & Ramberg, (1982). 

Williamson & Roshko 

(1988), Brika & Laneville 

(1993, 1995), Khalak & 

Williamson (1997), Lin & 

Rockwell, (1996); Noca et al. 

(1999), Govardhan & 

Williamson (2000) and Brika 

& Laneville (1993,  1995) 

Bishop & Hassan (1964), 

Sarpkaya (1978), Staubli 

(1983) , Gopalkrishnan 

(1993), Hover et al. (1997, 

1998), Sheridan, et al. 

(1998), Blackburn and 

Williamson (2001), Carberry 

et al. (2001, 2003, 2004, 

2005), Parnaudeau et 

al.(2008) and  Morse & 

Williamson (2009) 

Miyata et al. (1990), 

Sheridan et al. (1997), 

Carberry (2002), 

Saelim (1999), Reichl et 

al. (2005), 

Rockwell et al. (2003), 

Moreau & Huang(2010), 

Yokoi & Kamemoto 

(1994a) and Low et al. 

(1989) 

 

2.2 Numerical simulations 

2.2.1 Single models  

Regarding the numerical simulation, Navier-Stokes equations give us the possibility 

to resolve all the flow physics. Nevertheless, applying the equations to a turbulent flow 

is a challenging topic that requires extremely fine meshes and time steps and leads to 

high computational costs. Furthermore, in the real practice, engineers are usually 

interested in some averaged values and some special physics. Hence, there is no need to 
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resolve all details. In RANS model,  the turbulent flow behaviour is approximated 

modelled by using the Reynolds-Averaging concept to simplify Navier-Stokes 

equations.  This model provides results for mean quantities with engineering accuracy 

at moderate cost for a wide range of turbulent flow problems. Therefore, RANS is the 

most widely used turbulent in the VIV simulations. Guilmineau & Queutey (2004) 

conducted a simulation adopting the incompressible two-dimensional RANS equations 

together with a SST k-ω model for a low mass-damping case, where the Reynolds 

number is in the range 900–15000. The simulations predicted correctly the maximum 

amplitude. However, fail to match the upper branch found experimentally. Ünal, et al. 

(2010) investigated four turbulent models: Spalart–Allmaras (S–A), Realizable k-ε 

(RKE), Wilcox k-ω (WKO) and Shear-Stress-Transport k-ω (SST), and found that both 

WKO and SST models exhibited successful performance producing highly correlated 

predictions of the main flow characteristics with the experimental data. In order to 

provide a reliable and useful assessment tool for the engineering design work, Ong et 

al. (2009) conducted a simulation covering the supercritical to upper-transition flow 

regimes around a 2D smooth circular cylinder.  

The model of LES is based on a filtering concept (Leonard, 1975). If a spatial filter 

𝐺 = 𝐺𝛥𝑓 is applied to a variable 𝜙, this yields a smoothed counterpart �̅� with scales 

smaller than the filter width Δ𝑓 being removed. Numerical simulations of VIV using 

LES are extensive. For instance, Al-Jamal & Dalton (2004) have performed a 2D LES 

study of the VIV response of a circular cylinder at a Reynolds number of 8000 with a 

range of damping ratios and natural frequencies. Kim (2014) examined the transition 

process between two different wake states in the frame of LES for the high Reynolds 

number flows range from 5500 to 41300. Other simulations include Selvam (1997), 

Wang & Catalano (2001), Catalano, et al.( 2003) and Breuer (2000). 

Both RANS and LES have its advantages and drawbacks. The LES eddy stress based 

on a relation between the length scale to a numerical grid and explicitly involves the 

step size of the computational grid. RANS models, in contrast, only depend on the 

physical quantities, including geometric features like the wall distance. In the wall 

regions, it is fair to describe most of the current LES work as Quasi-Direct Numerical 

Simulation (QDNS) (Spalart et al. 1997). The magnitude of the SGS stresses is of the 
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same order as the viscous stresses, since the typical eddy-viscosity levels are very close 

to the molecular viscosity. The cost of LES in the entire boundary layer exceeds the 

computing power by orders of magnitude. As a result, RANS is the only choice for most 

of the boundary layer. RANS and LES show their advantage in the boundary layer and 

separation regions, separately. However, regarding the three-dimensional separation, it 

is beyond the capability of RANS and the LES model is often employed. 

 DNS is model-free numerical simulations of turbulence. DNS differs from the 

RANS in that the turbulence is explicitly resolved, rather than modelled by a closure 

model. It also differs from LES in scales, even the very smallest ones are captured and 

no need for a subgrid-scale model. Its advantage is the ability to provide complete 

knowledge, unaffected by approximations within the simulation period (Coleman & 

Sandberg 2010). This ability, however, comes at a high price and severe limitation on 

the maximum Reynolds number and complex geometry that can be considered, which 

prevents DNS from being used as a general-purpose design tool. DNS as a powerful 

model has been adopted in the VIV simulations as well. Dong & Karniadakis (2005)  

conducted a DNS simulation for turbulent flows past a stationary circular cylinder and 

a rigid cylinder undergoing forced harmonic oscillations at Re =10000. Comparisons 

with the available experimental data show that the simulation has captured the flow 

physical quantities and the statistics of the cylinder wake correctly. Dong et al. (2006) 

investigated the effects of Reynolds number (at Re=3900, 4000 and 10000) by 

combining PIV measurements and DNS simulations. The statistical characteristics of 

the cylinder wake and on the shear-layer instability in the transitional range are observed 

altered with the variation of Reynolds number. 

Comparing the three models, there are not only differences but similarities. As for 

RANS modelling, the nonlinear convection term in the transport equation introduces an 

unclosed term, describing the impact of the sub-filter scales on the resolved motion, it 

is replaced by a model term 𝜏𝑖𝑗
𝐿𝐸𝑆 in LES. For the efficiency reason, the ratio of the filter 

width Δ𝑓 to the step size of the grid Δ𝑔 is usually set equal to one or a small integer. 

𝜏𝑖𝑗
𝐿𝐸𝑆 is usually called sub-grid scale (SGS) model. However, that in most LES, filtering 

is rather a concept behind the development of the method than an explicitly applied 

procedure to specify the resolved motion (Fröhlich & Rodi 2002). Hence, in the ultimate 
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limit  Δ𝑔 → 0, the SGS model vanishes so that the simulation turns into a DNS without 

turbulence model. This structural similarity is also the foundation of the RANS/LES/DNS 

hybrid method. The comparisons of RANS, LES and DNS models are given in Table 2.2.1. 

 

Table 2.2.1 Comparisons of RANS, LES and DNS models in VIV simulation 

 RANS LES DNS 

Advantage  (1) Engineering accuracy 

at moderate cost for a wide 

range of flows. 

(2) Most affordable 

solution provided for the 

boundary layer  

(1) Wider range of 

eddy structure are 

captured   

(2) in the separation 

area.  

Most accurate and 

approach comparing to 

the experimental results  

Drawbacks (1) Can better handle the 

standard eddies but eddy 

structures are highly 

geometry-specific. 

(2) Ineffective for flows 

with significant nonlocal 

(in space and time) effect. 

Very expensive in 

the wall regions 

A high price and severe 

limitation on the 

maximum Reynolds 

number and complex 

geometry 

Connection 

and 

similarities 

For the LES model, if the filter size  Δ𝑔 → 0, then the model becomes to DNS.  

If the calculation of the eddy viscosity term using a RANS turbulent model, 

then the LES model turns into a RANS model.  

 

Recent years have seen the boot of the HPC. With the fast development of the HPC, 

for one thing, we expect the current turbulent flow simulations can benefit from it, for 

another the advance in HPC hardware has led to additional challenges for the turbulent 

model algorithms, such as the need to parallelise numerical schemes efficiently by using 

a large number of processors (Coleman & Sandberg 2010). These developments will 

undoubtedly pose new challenges for the maintenance of current codes and the 

development of new efficient numerical methods.  
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2.2.2 Single models considering the free surface 

Regarding the flow past a circular cylinder, the most studied case is the stationary 

circular cylinder subject to the inline steady flow. However, fewer considering the 

influence of the free surface. According to the previous studies, it is generally agreed 

that the pressure distribution and the near wake structure of the circular cylinder near 

the free surface are very different to that deeply submerged cylinder situations.  

Considering the effect of the submerged depth, Chung (2015) numerically compared 

the cases of gap ratio= 0.4, 0.8 to deep water situation. The jump of the amplitude and 

phase of lift was also reported, however not accompanied by considerable changes in 

vortex shedding timing. The magnitude of the negative time-averaged lift increases with 

decreasing h/D. The cylinder approaching a free surface suppresses occurrence of 

beating in the temporal variation of lift. Sheridan (1997) investigated the weak 

behaviours of 2D flow past a cylinder close to a free surface at a Re =180. The Froude 

numbers ranging from 0.03 to 0.7 and gap ratios between 0.1 and 5.0 is examined. His 

simulations reveal that this problem shares many features in common with flow past a 

cylinder close to a no-slip wall, and the flow is largely governed by geometrical 

constraints in the low Froude number. The study of Bozkaya et al. (2011) also reported 

the effects of gap ratio and frequency ratio on the mode, period, and geometry of vortex 

shedding as well as the lock-in phenomena.  

For an oscillatory flow with a fixed cylinder, a great deal of work has been done on 

the inline hydrodynamic force, in the context of Morison equation, to investigate the 

drag and added-mass coefficients. However, much less work was done on the cross-

flow force, among them, one can find the works by Verley (1982), Bearman et al. (1984). 

The key conclusion is that the lift force has many frequency peaks typically at multiples 

of the oscillatory flow frequency. Al-Mdallal et al. (2007) carried out a numerical 

investigation on the vortex shedding modes for very low Reynolds number and KC 

numbers.  

For the oscillating circular cylinder, the numerical study of Chung (2016a) aimed to 

understand thoroughly the two-DOF VIV of a low-mass zero-damping circular cylinder 

near a free surface in the low Reynolds number regime (Re=100). For a transversely 

oscillating circular cylinder, the most important finding by Carberry et al. (2004) is the 
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lift-phase jump at frequency ratio around 0.82 for various gap ratio considered. The 

vortex shedding appears to be inhibited but not eliminated when the gap ratio decreases. 

Table 2.2.2 demonstrates the state-of-the-art regarding the multiphase flow past a 

circular cylinder.   

 
Table 2.2.2 Numerical simulation of  flow past circular cylinder considering the free surface  

Flow 

conditions 

Steady flow with the free 

surface  

Oscillatory flow Collinear steady and 

oscillatory flow 

Previous 

studies  

Chung (2015), 

Sheridan (1997), 

Bozkaya et al. (2011), 

Verley (1982), 

Bearman et al. (1984) 

Al-Mdallal et al. (2007), 

Yokoi & Kamemoto 

(1994a),  Low et al. (1989) 

 

2.2.3 Hybrid models 

Besides the traditional single models, continuous efforts have been carried out to 

couple different models to make the best use of their advantages. The numerical 

approach that adopts such strategy is usually referred to as a hybrid model. The 

theoretical hypothesis of the hybrid models is that the viscous/turbulent effects are only 

significant in a limited area (Li et al., 2015; Edmund et al., 2013), suggesting that the 

turbulent viscosity is only confined to a small region such as near the offshore structures 

or breaking waves, and may be ignored in other areas. In term of the role that played by 

the viscous effects in the hydrodynamic problems, researchers have investigated the 

interactions between inviscid and viscous flows since Prandtl’s boundary layer theory 

in the early 1900s. Prandtl (1904) assumed viscous effects are confined to a thin layer 

and derived the boundary layer theory. After that, the attempt of improving the potential 

velocity solution is to include the influence of the viscous boundary layer. For example, 

Lighthill (1958) proposed four alternative treatments of the displacement thickness for 

two-and three-dimensional flows. Other viscous–inviscid interactions studies intended 

to use a potential solver separately either by using potential solutions as initial 

conditions or by matching potential solutions to the viscous solutions in separate regions, 

e.g., Stern, et al. (1988), Chen, et al.(1996) and Chen, et al. (1999). However, the 
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displacement thickness is sensitive to small velocity changes in the outer parts of the 

viscous layer and does not has the capability to deal with the flow separation.     

The terminologies for the developed hybrid methods varied in different publications. 

In this thesis, based on the nature of the various hybrid models, they can be classified 

into two broad categories: (1) the first one is the coupling of RANS model with more 

computationally efficient and therefore simplified solver, e.g., Euler or potential model. 

This method is aimed to handle the multi-properties flow, like propagation of wave and 

the fluid-structure interaction issues, in a less computationally expensive way. This 

method is referred as simplified /RANS hybrid method in this thesis. (2) The second 

category is the coupling of RANS with higher fidelity models like LES and DNS models. 

This method mainly focuses on the turbulent flow only and requires at least a RANS 

solver. In this thesis, the methods belong to this category are referred as 

RANS/LES/DNS hybrid method. 

2.2.3.1  Simplified /RANS hybrid models 

Within the regime of the simplified/RANS hybrid method, it can be further divided 

into two categories: (1) the velocity/function decomposition approach that splits either 

the velocity or the model/function and (2) the domain/zonal decomposition approach, 

which conducted in the spatial point of view.   

For the functional decomposition method, a simplified model covers the entire 

computational domain, and a complementary RANS model is solved in a subdomain 

with significant viscous effects to correct the solution of the simplified models. Inside 

this subdomain, the desired solutions are obtained by summing up the solution of the 

simplified model and that of the complementary RANS model. Ferrant et al. (2003) and 

Luquet et al. (2007) presented a Spectral Wave Explicit Navier-Stokes Equations 

(SWENSE) approach. They used a potential flow theory to calculate the incident wave 

field while RANS model is employed to solve the diffracted flow allowing the inclusion 

of viscous effects. They had successfully employed this method to model waves 

interacting with a tension-leg platform and ship body in regular or irregular waves by 

coupling the Fully Nonlinear Potential Theory (FNPT) based on the Higher-Order 

Spectrum (HOS) method and RANS solver based on the VOF method. The way of 
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dividing the total velocity is not unique, Hafez et al. (2006)  proposed a Helmholtz-type 

velocity decomposition technique to simulate the two-dimensional steady laminar 

incompressible flows. The potential function is used to represent the near and far 

velocity fields and the pressure is computed using the Bernoulli’s law. The rotational 

velocity components within the viscous flow regions are calculated by the integration 

of the momentum equations. Hafez et al. (2009), extended their approaches to the 

unsteady laminar flow cases where the gradient of the potential is augmented with a 

correction accounting for the vorticity effects in the modified viscous layers. Helmholtz 

decomposition is also applied by Kim et al. (2005). A complementary set of RANS was 

developed for the steady incompressible turbulent flow, in which the hybrid solver in 

the coarse grid shows a solution as good as or even better than that corresponding to the 

original solver in the medium grid with a CPU time that is more than ten times less. 

Edmund (2012), Kim (2004) and Rosemurgy et al. (2012) apply a similar approach as 

Kim, but they did not solve the decomposed equations. An improvement was made by 

including the viscous effects in the potential flow with the viscous potential velocity 

acting as the inlet and far-field boundary conditions for the total fluid velocity. This 

allows the computational domain to be reduced to just beyond the vortical region. In the 

steady flow research done by Edmund (2012) and Edmund et al. (2013), the accuracy 

is retained and the computation time was reduced between 3% and 68%. 

The main idea of the domain decomposition within the regime of Simplified /RANS 

hybrid method is that divides the computational domain by either a prior interface or an 

automatic interface. The local physics, such as wave breaking and vorticity are located 

within the subdomain governed by RANS model. The solution of the potential model 

provides the boundary condition for the NS model. Lynett & Coastal (2010) developed 

a Potential-NS model coupling the higher order Boussinesq equation with RANS 

equation, for simulating wave propagating from deep water to shoreline, involving the 

breaking waves. Narayanaswamy et al. (2010) also suggested a Potential-NS model 

coupling the higher order Boussinesq equation with the SPH method to study the coastal 

waves that could take accounts of the breaking effects. Clauss et al.(2016) studied the 

wave-structure interaction through coupling the Fully Nonlinear Potential Theory (short 

as FNPT) solver based on Finite Element Method (FEM) and NS solver based on VOF 
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method. Sriram et al. (2014) have developed a novel algorithm to couple the FNPT 

solver based on the Quasi-Arbitrary-Lagrangian-Eulerian Finite Element Method 

(QALE-FEM) and NS solver based on the improved Meshless Local Petrov Galerkin 

method with Rankine source solution (IMLPG_R) to study the breaking waves.  

2.2.3.2 RANS/LES/DNS hybrid models 

RANS/LES/DNS hybrid method is designed to deal with the turbulent problems only 

in the way of intermediate cost and degree of accuracy with respect to the traditional 

single models (Girimaji & Abdol-Hamid 2005). Most of the modification and trials are 

focused on RANS and LES combination since the shared structural similarity with 

respect to the transport equations and turbulent models. Researches regarding 

RANS/LES/DNS hybrid method including two different attempts: (1) the first one is 

the decomposition method that divides either the model or function and (2) the second 

one is related to the domain/zonal decomposition with an interface.    

The approach Partially Filtered Navier-Stokes (PANS) developed by Girimaji & 

Abdol-Hamid (2005) belongs to the first type. It contains a term defining the ratio 

between resolved and modelled fluctuations (Menter et al., 2003) and is prescribed prior 

to a given simulation. The resolution of the flow is controlled by suitably specifying the 

unresolved kinetic energy parameter. Various modelled-to-resolved scale ratios ranging 

from RANS to DNS can be conducted by this method.  

Most of the studies fall into the second type that adopts the domain decomposition 

approach. The comparison of two decomposition approaches is described in Table 2.2.3. 

The strategy is to employ the LES model and RANS model in different zones so that a 

boundary between different zones can be specified at each instant in time. Quéméré et 

al. (2001) and Quéméré & Sagaut (2002) proposed a multi-domain/multi-resolution 

decomposition approach. The proposed treatment is based on the definition of an 

interface variable, which is extrapolated from the LES subdomain or extracted from an 

auxiliary computation, depending on the type of interface. In the study of Quéméré et 

al. (2001), the memory requirement is reduced, and the CPU cost is about 37% and 46% 

for mesh ratio at the interface equal to two and four respectively when using coarser 

grids in the core of the channel. There is five times less CPU time demanded and good 
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agreement between mono-domain and multi-domain results. An investigation of a 

unified RANS–LES model regarding computational development, accuracy and cost are 

conducted by Gopalan et al. (2013). The Linear Unified Model (LUM) is compared to 

LES, the advantage of the LUM is a cost reduction of high-Reynolds number 

simulations by a factor of 0.07Re0.46. 

It is important to note that there are models different to the zonal model like the 

segregated models, the transition of variables between different subdomains without 

discontinuity since only a source term in the auxiliary equation changes smoothly, e.g., 

Spalart, et al. (1997) and Spalart (2000) developed the model of Detached Eddy 

Simulation (DES) which offers RANS in the boundary layers and LES after massive 

separation. Eddies internal to the boundary layer are treated as attached eddies. 

Combining of the DES with different turbulence models are discussed separately with 

and in S-A (DES-SA) (Spalart et al. 1997) and SST model (DES-SST) (Menter 1994). 

Besides the above unified mesh strategy, a dual-mesh framework is applied by Xiao & 

Jenny (2012), in which both of the two meshes covering the whole domain. The 

consistency between the LES and RANS solutions is enforced via drift terms in the 

corresponding equations. 

Table 2.2.3 Comparison of two decomposition approaches 

 Domain decomposition  Functional/velocity/model decomposition  

Advantage Straightforward methodology  Easy implementation for the two solvers 

sharing the same structure of the governing 

equation  

Drawbacks/ 

limitation 

Either artificial transition zone 

need or additional iterations 

procedure required to make the 

consistent of coupled solvers 

Special treatment of the coupling 

boundary needed 

 

 

2.3 Discussions 

Comparing the two types of movement of the cylinder, we can see, in the forced 

oscillations, the imposed amplitude and frequency drive the oscillation, while the free 
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oscillations are driven by the past and the prevailing state of the motion and the forces 

arising from it. The prediction of the structure responding to free vibration is very 

challenging. The shedding depends on a significant number of independent parameters. 

The relationship between these parameters (e.g., virtual mass, forces and body 

acceleration) is non-linear and not yet fully understood (Vecchi 2009). While in the 

forced vibration, the amplitude and the frequency of motion can be varied independently. 

Therefore, a useful approach to understand and eventually predict such complex 

problem is represented by forced vibrations simulations. Despite these differences, if 

the sinusoidal forced oscillation accurately represents the vortex-induced motion of the 

cylinder then the wakes for the two cases should be the same (Carberry et al. 2005). 

According to the above review, the study of the forced vibration can provide more 

insights into the interactions between the vortex mode and the cylinder movement (Kim 

2014). Furthermore, forced oscillation experiments represent an idealisation of most 

features of VIV problems. The forced oscillation conducted so far show encouraging 

agreement with data from free cases (Sarpkaya 2003). Furthermore, the study presented 

in this thesis is mainly focused on the hydrodynamic characteristic of VIV which can 

be revealed by the forced oscillation of the structure. Thus, the forced vibration is 

applied in this research.  

Based on above literature review of the previous research work, it is understandable 

that: (1) lots of achievement have been obtained by the experimental researches, which 

is a very important tool for the study of VIV problem. However, it has the drawback of 

high cost, low flexibility, facilities and cases dependent, etc. (2) Regarding the 

numerical studies, the researches focus on wave-current cylinder interaction are not 

sufficient. Further investigation should be carried out considering the effect of the free 

surface on the cylinder trajectories, hydrodynamic force coefficients, and vortex 

structures. (3) Furthermore, the current models are generally low efficient because of 

the high requirement of mesh, large computational domain and solving the additional 

turbulent model equations. 
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2.4 Existing problems, objectives and main contribution 

It should be noted that VIV simulation is one of the applications of the hybrid model 

proposed in this thesis. This hybrid solver is capable of dealing with other turbulent 

related problems. Furthermore, it should be able to extend to a multiphase solver aimed 

at the free surface related issues. Comparing to the second broad category 

(RANS/LES/DNS hybrid method) in the above review which is characterised by 

computationally expensive and aimed at the turbulent flow only, the first type 

(simplified /RANS hybrid method) is more suitable to be employed in this study. Based 

on the literature review, despite their success, there are still problems related to the 

existing methods. To be more specific, there are three aspects need to be improved. 

(1) The developed model should not be limited to the steady turbulent flow (Edmund 

et al., 2013; Ferrant et al., 2007) and laminar flow (Monroy & Ducrozet 2009). The 

hybrid method proposed is intended to deal with the unsteady turbulent flow, especially 

for the complex moving wall-bounded cases. Besides, in contrast to the DES-SA model 

(Spalart et al., 1997) or DES-SST model (Menter et al., 2003), it should not be limited 

by to a specific turbulent model but could work with variant turbulent models. 

(2) Unlike the one-way coupling strategy, i.e., the viscous flow does not influence 

the potential flow in the previous research such as SWENSE method (Ducrozet et al., 

2011; Monroy & Ducrozet 2009; Luquet et al., 2007), a two-way transformation 

technique is developed. This technique is used to bridge the gap of turbulent viscosity 

between the two coupled solvers. The viscous effect is involved in the simplified solver 

during the transformation of the variables, which can ensure the smooth transition 

between the two solvers and robustness of the model. Another benefit from the 

transformation technique is that a truncated domain can be applied, which can 

eventually lead to the computational time-saving. The size of the subdomain with 

remarkable viscous/turbulent effects is critical to obtain reliable results and is generally 

determined by comparing the results using different sizes with the experimental data for 

specific problems. One may agree that the size of the subdomain shall be closely related 

to the spatial variation of the turbulent viscosity or the vorticity. Nevertheless, a 

systematic investigation of the features of spatial variation of turbulent viscosity is 



 

45 

 

rarely found in the public domain. In this thesis, the studies of the subdomain size based 

on the investigation of the turbulent viscosity properties will be given. 

(3) Although all the existing hybrid models are claimed to be efficient, only a few 

researches (Edmund et al., 2013, Kim, et al., 2005) have reported the details of the 

efficiency increase such as CPU time-saving. In this hybrid method, a sub-cycle strategy 

aimed at efficiency improvement is proposed. The sub-cycle technique is based on the 

difference between the mesh scale and time step for the simplified solver and the 

complex turbulent solver. The efficiency of the hybrid method can be boosted by both 

the spatial domain truncation and temporal sub-cycle. The comparison of the hybrid 

method and original solver efficiency will be demonstrated in various working 

conditions in this thesis. 

In summary, the hybrid method of this thesis is intended for complex flows that many 

single models are likely to be invalid. The main purpose of this hybrid method is to 

improve the performance of the current single model while overcoming some 

drawbacks of the existing hybrid models. The theoretical hypothesis of the hybrid 

method is following the assumption that the turbulent viscosity effects are only confined 

to a limited region. This hypothesis is based on the investigation of the turbulent 

viscosity that given in Chapter 3. In response to (1), a hybrid numerical method aimed 

to deal with the unsteady turbulent flow is developed. In this work, RANS model is 

selected to coupling with the simplified solver under the consideration of numerically 

affordable. The algorithm allows the hybrid method to work with different turbulent 

models for the specific flow problems. Due to this study is confined to flow past a 

circular cylinder, investigations are carried out for which turbulent model is better by 

comparing the solutions from the different turbulent models(k-ε or k-ω SST model) with 

the experimental data and other numerical results (see Chapter 3.4). To resolve (2) and 

(3), as a distinguished feature, a two-way transformation strategy and sub-cycle 

technique are proposed. By doing so, the efficiency of the simulation using the hybrid 

method is substantially increased.  

 In this study, the computational fluid dynamics package OpenFOAM (Greenshields 

2017) is used to implement this hybrid methodology. As an open source solver, 

OpenFOAM is gaining popularity in CFD research community. It is a powerful field 
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manipulation tool offering the access to versatile libraries and utilities, as well as the 

user-friendly customizable solvers (Weller & Tabor 1998). Furthermore, the object-

oriented techniques of C++ allow the codes to closely resemble its mathematical 

counterpart and makes the top-level syntax amenable to development and modification 

(Greenshields 2015). All these features of OpenFOAM make it a suitable platform for 

the implementation of the techniques involved in the hybrid method.  
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3  
CONVENTIONAL MODELS 

AND PRELIMINARY 

INVESTIGATIONS 

 

This chapter summarises the conventional model for studying unsteady flow around 

a structure, including the governing equation and relevant model to deal with the 

turbulent flow. The classic RANS model, which is derived by the ensemble averaging 

method in the spatial-temporal domain, is selected. The fluctuating of the velocity, 

which is the nature of the turbulent flow, is reflected by the Reynolds stresses in the 

momentum equation based on the Boussinesq turbulent-viscosity hypotheses. The main 

focus of this chapter is the preliminary investigation on the spatial-temporal distribution 

of the turbulent viscosity, to which the Reynolds stress is proportional. This 

investigation leads to the hypothesis of the present research and forms the basis of the 

functional decomposition (velocity decomposition) hybrid model development. As 

indicated in Chapter 1, only 2D problem is considered in this research.  
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3.1 Fundamental equations of conventional model  

The fundamental basis of the fluid dynamics are the Navier-Stokes equations and the 

continuity equation. Considering an incompressible Newtonian fluid, the momentum 

and continuity equations are described, respectively, as  

 
𝜕𝑢𝑖
𝜕𝑡

+ 𝑢�̅�
𝜕𝑢𝑖
𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈

𝜕𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

 (𝑖 = 1,2) (3.1.1) 

and  
𝜕𝑢𝑗

𝜕𝑥𝑗
= 0 (3.1.2) 

where 𝑥 is the Cartesian coordinate, u is the velocity, 𝑡 is the time, 𝑝 is the pressure, ρ 

is the density, 𝜈 is the dynamic viscosity. Subscripts i and j are summation indexes, 

which represent relevant Cartesian components. They equal to 1 and 2 for 2D problems 

(1, 2 and 3 for 3D problems). Here and throughout this thesis, whenever the same index 

appears twice in any term, a summation over the range of that index is implied. 

In the RANS model, the ensemble averaging method is generally used for the 

unsteady turbulent flow. The concept of this method is to imagine a set of flows in which 

all variables that can be controlled are identical, but the initial conditions are generated 

randomly. All unsteadiness in the flow is ensemble averaged out and regarded as part 

of the turbulence. The flow variables, in this example one component of the velocity, 

are represented as the sum of two terms: 

 
𝑢𝑖(𝑥𝑖, 𝑡) = 𝑢�̅�(𝑥𝑖) + 𝑢𝑖

′(𝑥𝑖, 𝑡) (𝑖 = 1,2) (3.1.3) 

 
where the symbols (‘ − ’) and the (‘ ′ ’)  represent the average and the fluctuating values, 

respectively.   

Considering a series of measurement with the number of 𝑁𝑡 identical experiments, 

the mathematical form can be written as 

𝑢�̅�(𝑥𝑖, 𝑡) =
1

𝑁𝑡
∑𝑢𝑛𝑖(𝑥𝑖, 𝑡) 

𝑁𝑡

𝑛=1

 (𝑖 = 1,2) (3.1.4) 

 
where 𝑁𝑡 is the total number of independent samples, 𝑢𝑛𝑖(𝑥𝑖, 𝑡) is 𝑢(𝑥𝑖, 𝑡) measured at 

the nth series. The term Reynolds averaging refers to any of the processes above. 

Applying it to the incompressible continuity equation gives 
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𝜕𝑢�̅�

𝜕𝑥𝑗
= 0 (𝑖 = 1,2) (3.1.5) 

Substituting Equation (3.1.3) to the incompressible momentum equation, it results in 

the RANS equation  

𝜕𝑢�̅�
𝜕𝑡

+ 𝑢�̅�
𝜕𝑢�̅�
𝜕𝑥𝑗

= −
1

𝜌

𝜕�̅�

𝜕𝑥𝑖
+ 𝜈

𝜕𝑢�̅�
𝜕𝑥𝑗𝜕𝑥𝑗

−
𝜕𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
 (𝑖 = 1,2)(3.1.6) 

 
which can be rearranged as  
 

(
𝜕𝑢�̅�
𝜕𝑡

+ 𝑢�̅�
𝜕𝑢�̅�
𝜕𝑥𝑗

) =
𝜕

𝜕𝑥𝑗
[−
1

𝜌
�̅�𝛿𝑖𝑗 + 𝑣 (

𝜕𝑢�̅�
𝜕𝑥𝑗

+
𝜕𝑢�̅�

𝜕𝑥𝑖
) − 𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ] (𝑖 = 1,2)(3.1.7) 

 

In the right-hand side, there are three stress terms: −
1

𝜌
�̅�𝛿𝑖𝑗is the mean pressure field, 

𝛿𝑖𝑗  is the Kronecker delta (𝛿𝑖𝑗 = 1 if i=j and 𝛿𝑖𝑗 = 0  if i ≠ j), 𝑣 (
𝜕𝑢𝑖̅̅ ̅

𝜕𝑥𝑗
+
𝜕𝑢𝑗̅̅ ̅

𝜕𝑥𝑖
) is the 

viscous stress from the momentum transfer at molecular level, 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  is the Reynolds 

stresses arising from the fluctuating velocity field. 

Because of the symmetry of the Reynolds stress tensor  𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ , there are six 

independent elements of the tensor and therefore six more unknowns for 3D problems 

(three for 2D problems). Therefore, the system consisting of the continuity and 

momentum equations is not closed (under-determined). To close the system, i.e. get the 

same number of equations as the unknowns, one must provide extra equations to model 

the Reynolds stresses in some way. In the Newton’s law of viscosity, the viscous stress 

is taken to be proportional to the velocity gradient. For the incompressible fluid, this 

gives 

𝜏𝑖𝑗 = 𝜇𝑠𝑖𝑗 = 𝜇 (
𝜕𝑢�̅�
𝜕𝑥𝑗

+
𝜕𝑢�̅�

𝜕𝑥𝑖
) (𝑖 = 1,2)(3.1.8) 

 
where 𝜇 = 𝑣𝜌 is the dynamic viscosity of the flow. In this stress tensor matrix, the 

diagonal components are the normal stresses, and the off-diagonal components are the 

shear stresses. The turbulent kinetic energy, k is the half trace of the Reynolds stress 

tensor.  

𝑘 =
1

2
𝜌𝑢𝑖

′𝑢𝑖
′̅̅ ̅̅ ̅̅  (𝑖 = 1,2)(3.1.9) 

 

The isotropic stress is defined as 
3

2
𝑘𝛿𝑖𝑗. Then the deviatoric part is  
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 𝑎𝑖𝑗 = 𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅ −

3

2
𝑘𝛿𝑖𝑗 (𝑖 = 1,2)(3.1.10) 

 
It is observed that the turbulent stresses increase as the mean rate of deformation 

increase. Analogy to the stress-strain relation for a Newtonian fluid, i.e. Equation (3.1.8), 

Boussinesy introduced the turbulent-viscosity hypotheses in 1877. According to the 

hypotheses, the turbulent stress can be found by  

 

𝜏𝑖𝑗 = −𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅ = 𝜈𝑇(

𝜕𝑢�̅�
𝜕𝑥𝑗

+
𝜕𝑢�̅�

𝜕𝑥𝑖
) −

3

2
𝑘𝛿𝑖𝑗 (𝑖 = 1,2)(3.1.11) 

 
where the scalar field 𝜈𝑇 = 𝜈𝑇(𝑥𝑖, 𝑡) is called the turbulent or eddy viscosity. This 

hypothesis introduces the macroscopic representations of the micro-scale fluctuating 

flow. It gives the possibility to model the overall effects of small vortexes by 

correlations and, therefore, resolve the larger eddies in the numerical simulation. This 

dramatically reduce the CPU time, compared to the DNS, where the fluctuating flow 

and the small eddies are modelled directly.  

Submitting Equation (3.1.11) into Equation (3.1.7), it leads to 

 
𝜕𝑢�̅�
𝜕𝑡

+ 𝑢�̅�
𝜕𝑢�̅�
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗
[𝜈𝑒𝑓𝑓 (

𝜕𝑢�̅�
𝜕𝑥𝑗

+
𝜕𝑢�̅�

𝜕𝑥𝑖
)] −

1

𝜌

𝜕

𝜕𝑥𝑗
(�̅� +

2

3
𝜌𝑘) (𝑖 = 1,2)(3.1.12) 

 
in which the effective viscosity  𝜈𝑒𝑓𝑓(𝑥𝑖, 𝑡) consists of two components, including a 

constant molecular viscosity ν and a spatial-temporal dependent turbulent/eddy 

viscosity  𝜈𝑇(𝑥𝑖, 𝑡) , i.e. 

𝜈𝑒𝑓𝑓(𝑥𝑖, 𝑡) = 𝜈 + 𝜈𝑇(𝑥𝑖, 𝑡) (𝑖 = 1,2) (3.1.13) 

 
Further details of the treatment of viscous stress tensor can be found in Appendix A.  

 

3.2 RANS in Arbitrary Lagrangian-Eulerian form 

The above equations are usually solved using fixed Eulerian grid/mesh. Nevertheless, 

if a moving structure is involved, the computational mesh may need to move to conform 

to the motion of the structure, unless additional treatment is introduced, e.g. considering 

the structure as an additional phase in the modelling system and applying so-called 

immersed boundary method. In this study, the structure is not included in the 

computational domain and the FSI is realised by a partitioned way, in which the fluid 
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domain and the computational mesh are updated following the motion of the structure 

and non-slip boundary condition is applied on the structure surface boundary; the 

motion of the structure is then modelled by Newton’s 2nd law in which the force due to 

the fluid on the structure is obtained by the pressure/stress on the structure surface 

boundary modelled by above equations; these two models are coupled in an iterative 

manner. This means that the above equation needs to be solved by using a computational 

grid/mesh which is neither fixed (Eulerian view) or following the fluid velocity. For this 

reason, one needs to write the above equations to an Arbitrary Lagrangian–Eulerian 

(ALE) form, i.e.  

𝜕𝑢𝑇𝑗

𝜕𝑥𝑗
= 0 (3.2.1) 

𝜕𝑢𝑇𝑖
𝜕𝑡

+ (𝑢𝑇𝑗 − 𝑢𝑏𝑗)
𝜕𝑢𝑇𝑖
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗
[𝑣𝑒𝑓𝑓 (

𝜕𝑢𝑇𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑇𝑗

𝜕𝑥𝑖
)] −

1

𝜌

𝜕𝑝𝑇
𝜕𝑥𝑖

    (𝑖 = 1,2) (3.2.2) 

                                             𝜈𝑒𝑓𝑓(𝑥𝑖, 𝑡) = 𝜈 + 𝜈𝑇(𝑥𝑖, 𝑡)                   (𝑖 = 1,2) (3.2.3) 

 
where 𝑢𝑇 and  𝑝𝑇 are the ensemble averaged flow velocity and pressure. For clarity, the 

over-bar (‘ − ’) representing the ensemble averaged value is omitted here and the rest 

of the thesis.  

Considering the movement of the mesh when the flow subjected to the motion of the 

structure, an additional term, related to the nodal velocity, 𝑢𝑏𝑗 , is introduced in the 

convective term to accommodate the movement of meshes. If the computational 

grid/mesh is fixed, i.e. 𝑢𝑏 = 0, Equation (3.2.2) become the corresponding Eulerian 

form, i.e. Equation (3.1.12); whereas if the nodal velocity equals to the fluid velocity, 

i.e. 𝑢𝑏𝑗 = 𝑢𝑇𝑗, Equation (3.2.2) is identical to the corresponding Lagrangian form. More 

details of the dynamic mesh can be found in Appendix B.  

3.3 Validation of the original solver in OpenFOAM 

Before conducting further investigation, the reliability and the accuracy of the 

numerical prediction from the solvers in OpenFOAM should be investigated at prior. 

These are carried out by using the cases with a circular cylinder being subjected to 

uniform current using the OpenFOAM solvers. The drag coefficient and Strouhal 

number predicted by the OpenFOAM solver are compared with experimental data, 
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including those by Wieselsberger (1923) for 40<Re<5×105 and Schewe (1983) for 

Re>105, and corresponding numerical results by Stringer et al. (2014).  

It shall be pointed out that, in order to numerically simulate the turbulent flow 

problems by using two sets of governing equations, an appropriate turbulent model for 

evaluating the turbulent viscosity is required. However, it has been revealed by many 

researchers that different turbulent models give a considerably different prediction of 

the hydrodynamic parameters, e.g. the drag/lift forces and vortex shedding frequencies 

(reflected by the Strouhal number). Thus, two classic turbulent models, i.e. k-ε and k-ω 

SST turbulent models, are employed to assess the suitability of the turbulent model for 

the problems concerned in this work.  

3.3.1 Convergence tests 

It is well-known that all CFD work is highly dependent on the mesh resolution. 

Therefore, the convergence test against mesh resolution is performed at prior. The 

computational mesh is generated by using the OpenFOAM internal utility. A 

rectangular computational domain is used in the numerical simulation. The length and 

the width of the computational domain are 60D (𝐷𝑖𝑛 + 𝐷𝑜𝑢𝑡) and 40D (𝐷𝑐) respectively, 

where D is the diameter of the cylinder. The circular cylinder is located in the central 

longitudinal axis. The distance between its centre and the upstream boundary of the 

computational domain (𝐷𝑖𝑛) is 20D (see Figure 3.3.1). This domain configuration is the 

same as that used by Stringer et al. (2014). The boundary conditions applied at the left 

end (upstream) and right end (downstream) are the velocity inlet and the pressure outlet, 

respectively. On the top and bottom boundaries, the slip condition is applied.  

 

Figure 3.3.1 Sketch of the domain size and mesh block configuration 

  

𝑫𝒊𝒏 
𝑫𝒐𝒖𝒕 

𝑫𝑪 
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In the turbulent flow simulation, one of the biggest challenges is to deal with the wall 

treatment. There are generally two ways, i.e., the low-Reynolds-number (LR) models 

and high-Reynolds-number (HR) models. The Reynolds number here is for the local 

Reynolds rather than the global one, e.g., because of the low turbulent Reynolds number 

in the sublayer, models that resolve the sublayer are called low-Reynolds-number (LR) 

models. Regarding the LR models, the alternative to wall functions is to use a fine-grid 

analysis in which computations are extended through the viscosity-affected sublayer 

close enough to the wall to allow laminar flow boundary conditions to be applied. The 

LR approach is to capture through all the viscous effects region. Numerically, the LR 

approach is stiff but time-consuming. In order to reach the viscous sublayer, the first 

cell centre to body surface normalized distance (𝑦+)  is supposed to be around 1, 

where  𝑦+ = (𝑢∗𝑦𝑤/𝑣𝑒𝑓𝑓). After that, the distance from the centre of the first cell to the 

wall (𝑦𝑤) can be determined, where 𝑢∗ is the friction velocity in the first cell connected 

to the wall and 𝑣𝑒𝑓𝑓 is the local kinematic viscosity of the fluid. The proper 𝑦+ can be 

obtained and improved through several trials. However, the HR models use the log law 

to estimate gradient in the cell, which exhibits high convergence and numerical stability 

with a much larger 𝑦+ around 30. It should be noted that none of the current approaches 

can deal with buffer layer where both viscous and Reynolds stresses are significant. As 

a result, the first computational cell should be either in viscous sublayer or log-layer but 

not in-between (Utyuzhnikov, 2005). Based on the tests using both of the two 

approaches, the Low-Reynolds-number (LR) treatment provides more stable and 

reliable results for the studies cases. In the preliminary study, the convergence tests are 

carried out for all the studied cases. However, only the case of flow past oscillating 

circular cylinder with Re=1000 is presented here for demonstration. More details of 

different wall treatments can be found in Appendix C. 

Table 3.3.1 Meshes and Courant number tested 

Re=1000 Cell number     Co 

M1 197400 0.1/0.5 

M2 355840 0.1/0.2 

M3 442288 0.1/0.2 

http://www.cfd-online.com/Wiki/Friction_velocity
http://www.cfd-online.com/Wiki/Kinematic_viscosity
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Different sets of meshes are examined to figure out the most suitable mesh under the 

specific Reynolds number. The results are presented for three successively coarsened 

meshes, and they are referred to as M1, M2 and M3 with M3 being the finest one. A 

multi-block grid system is adopted in this study, in which the mesh is clustered in the 

boundary layer, wake region. The sketch of mesh can be seen in Figure 3.3.1.The time 

step size ∆𝑡 is automatically determined by using the Courant number Co (Co=(u∆𝑥)/∆𝑡, 

where ∆𝑥 is the mesh size). Two successively time discretization Co1=0.1 and Co2 

=0.2 are examined for M1, M2 and M3, although these values may be too conservative.  

 

Figure 3.3.2 Lift coefficient variation with three meshes 

 

 
Figure 3.3.3 Drag coefficient variation with three meshes 
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Figure 3.3.4 Converged M2 with different Courant numbers 

The main parameters compared are the drag (𝐶𝐷) and lift coefficients (𝐶𝐿), which are 

defined below,   

𝐶𝐷 =
1

2

𝐹𝐷
𝜌𝑢2𝐴′

 (3.3.1) 

𝐶𝐿 =
1

2

𝐹𝐿
𝜌𝑢2𝐴′

 (3.3.2) 

 
where 𝐹𝐷 and 𝐹𝐿 are the drag force and the lift force respectively, 𝐹𝐷 is the force 

component in the direction of the flow velocity, 𝐹𝐿  is the force component in the 

cross-flow direction, 𝜌 is the density of the fluid, 𝑢 is the flow velocity, 𝐴′ is the cross-

sectional area. 

Results for this case are shown in Figure 3.3.2 to Figure 3.3.4. It is found that the 

results obtained by using M1 and M2 are different, but M2 and M3 result in similar 

results for both 𝐶𝐷 and 𝐶𝐿. This does not only demonstrate a good convergent property 

of the OpenFOAM solver but also demonstrates that M2 is sufficient for obtaining the 

convergent solution. Thus then comparison for different Co with M2 is carried out. As 

observed, Co = 0.1 and Co = 0.2 give almost identical results. Consequently, M2 with 

Co=0.2 are applied for this specific working condition. In the further simulation, same 

convergence tests are conducted for different working conditions. 
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3.3.2 Validation analysis 

 
After the convergence tests, in this section, it is the validation of the solver within 

the framework of OpenFOAM. It is well understood that for low Re (e.g. 40), the flow 

is laminar and can be numerically simulated using a steady model. The vorticity in such 

case is symmetrical about the central longitudinal axis of the cylinder as demonstrated 

by Stringer et al. (2014). When Re>40, the wake becomes unstable, which eventually 

leads to a vortex shedding alternately occurring on either side of the cylinder at a certain 

frequency, resulting in the oscillation of the drag coefficient and 

unsymmetrical/oscillating distribution of the turbulent viscosity as results are shown in 

Figure 3.3.5 for demonstration. In such case, the key parameters are the mean drag 

coefficient 𝐶𝐷 and the Strouhal number 𝑆𝑡 = 𝑓𝑠𝑈/𝐷. 

(a) k-ε model                                          (b) k-ω SST 

Figure 3.3.5 Distribution of the turbulent viscosity around the cylinder using (a) k-ε model 

and (b) k-ω SST with Re = 103  
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Figure 3.3.6 Comparison of mean drag coefficient as the function of Re 

Figure 3.3.7 Comparison of Strouhal number as the function of Re 

The comparisons of 𝐶𝐷  and St are displayed in Figure 3.3.6 and Figure 3.3.7, 

respectively. From Figure 3.3.6, it is found that 𝐶𝐷 predicted by the present method with 

k-ω SST turbulent model generally agrees well with the experimental data, the 

maximum relative difference is around 13% at Re>5×105. It should be pointed out that 

Stringer et al. (2014) used the OpenFOAM with k-ω SST turbulent model to predict 𝐶𝐷 
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for Re within the same range but gave substantially different results as shown in Figure 

3.3.6. Especially at Re = 105 where the vortex shedding is not observed in Stringer et al. 

(2014) but is found in the present study with k-ω SST turbulent model. One may also 

observe from that the Strouhal number predicted using the present method with k-ω SST 

turbulent model fairly agree with the experimental data in a large range of Re (see Figure 

3.3.7). This implies that the present method with k-ω SST turbulent model can produce 

satisfactory results for analysing the feature of the turbulent viscosity and vorticity. 

From Figure 3.3.6, one may also notice that the present method with k-ε model seems 

to considerable underestimate CD when Re<=2000. As indicated in the introduction, the 

success of RANS on modelling the turbulent flow largely relying on the reliability of 

the turbulent model on estimating the turbulent viscosity. For the presence of adverse 

pressure gradient, the performance of the k-ω SST is better than that of k-ε model. The 

turbulent viscosities demonstrated in in Figure 3.3.5 are those at the same time instant 

when the vortex is fully developed. It shall be noted that, for the same velocity field, the 

difference in the turbulent viscosity predicted by using the k-ε model and k-ω SST 

model may be insignificant; but such small difference may be accumulated in time 

during the development of the vortex.    

The investigation shown above may conclude that the OpenFOAM solver using 

conventional RANS approach with, k-ω SST can produce satisfactory predictions, 

which is fairly close to the experimental data within a large range of Re. One may agree 

that the turbulent/eddy viscosity obtained using k-ω SST can satisfactorily reflect the 

macroscopic representation of the turbulent/flocculating flow field. This will be used in 

the following sections. As demonstrated in Figure 3.3.5, the turbulent viscosity is only 

significant in the local area near the cylinder. This means that one can use the RANS 

without considering the turbulent viscosity (thus without the need of applying the 

turbulent model to predict the turbulent viscosity) in the area far away from the 

structures; only in a region near the structure, the turbulent model is necessary. This 

justifies the hypothesis of the present work on developing the hybrid model, which will 

be presented in Chapter 4. Systematic investigations will be carried out to analyse the 

spatial variation of the turbulent viscosity in the cases with single- and two-phase flow, 



 

59 

 

and, more importantly, to determine a critical zone in which the turbulent viscosity plays 

an important role.   

3.4 Feature of the turbulent viscosity in single phase flow 

3.4.1 Turbulent viscosity with a stationary circular cylinder 

For the stationary circular, the contour lines of vorticity and turbulent viscosity for 

the cases with Re=200 and Re=106 are given from Figure 3.4.1 to Figure 3.4.4, in 

addition to the results with Re=1000 (see above Figure 3.3.5(b)). Regarding regimes of 

flow around circular cylinder, for very small values of Re no separation occurs. The 

separation first appears when Re becomes 5 and the boundary layer over the cylinder 

surface will separate due to the adverse pressure gradient imposed by the divergent 

geometry of the flow environment at the rear side of the cylinder. As a result, a shear 

layer is formed. As seen from Figures 3.4.1 to Figure 3.4.4, the boundary layer formed 

along the cylinder contains a significant amount of vorticity. This vorticity is fed into 

the shear layer formed downstream of the separation point and causes the shear layer to 

roll up into a vortex with a sign identical to that of the incoming vorticity. The vortex 

becomes strong enough to draw the opposing vortex across the wake. The former vortex 

is in the clockwise direction, while that in the later vortex is in the anti-clockwise 

direction. The approach of vorticity of the opposite sign will then cut off further supply 

of vorticity to the former vortex from its boundary layer. This is the instant where the 

former vortex is shed. Being a free vortex, the former vortex is then convected 

downstream by the flow. With a further increase in Re, however, transition to turbulence 

occurs in the wake region. The region of transition to turbulence moves towards the 

cylinder, as Re is increased in the range 200<Re<300 (see Figure 3.4.1 and Figure 3.4.2). 

For Re> 300, the wake is completely turbulent. The boundary layer over the cylinder 

surface remains laminar, however, for increasing Re over a very wide range of Re, 

namely 300<Re<3 ×105 (see Figure 3.3.5(b)). This regime is known as the subcritical 

flow regime. With a further increase in Re, transition to turbulence occurs in the 

boundary layer itself. The transition first takes place at the point where the boundary 

layer separates, and then the region of transition to turbulence moves upstream over the 
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cylinder surface towards the stagnation point as Re is increased. Figure 3.4.3 and Figure 

3.4.4 depict the regime is the so-called supercritical flow regime, where 3.5 ×105<Re< 

1.5×106. In this regime, the boundary layer separation is turbulent on both sides of the 

cylinder. One may observe that for the relatively high Re, i.e. Re = 103 (see Figure 3.3.5) 

and Re = 106 (see Figure 3.4.3), a late separation of the vortex shedding from the surface 

of the circular cylinder is observed. However, a much early separation in the case with 

low Re, e.g. Re =200 (see Figure 3.4.1) is found. The delay is a consequence of the 

increase of the pressure gradient which is the difference between the minimum pressure 

and that at the cylinder rear. As the flow accelerates on this side of the cylinder, the 

process leading to the transition is triggered by the perturbations in the boundary layer.  

Figure 3.4.1 Spatial distribution of vorticity and turbulent viscosity around the cylinder at 

Re = 200  

 

Figure 3.4.2 Spatial distribution of turbulent viscosity and vorticity around the cylinder at 

Re = 200  

Turbulent viscosity(nut)  

vorticity 
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Figure 3.4.3 Spatial distribution of turbulent viscosity and vorticity around the cylinder at 

Re =106  

 

Figure 3.4.4 Spatial distribution of vorticity and turbulent viscosity around the cylinder at 

Re = 106  

Furthermore, to quantify the size of the region where the turbulent viscosity plays an 

important role, the profiles of the turbulent viscosity distributions are plotted both along 

the transverse (e.g., x=3D, x=5D and x=8D) and in-line direction (e.g., y=3D, y=5D 

and y=8D) at different positions (see Figure 3.4.5). For the stationary cases, the 

turbulent viscosities profiles are plotted for Re=103 and 104 in Figure 3.4.6 to Figure 

3.4.9. One may find that the turbulent viscosity and vorticity are substantial in a 

confined area around the vortex shedding. This confined area is referred to as the critical 

area in this thesis.   
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Figure 3.4.5 Sketch shows the positions where the profiles are plotted along the transverse 

and in-line direction 

Firstly, the turbulent viscosity along the transverse direction is plotted in Figure 3.4.6 

and Figure 3.4.7, in which the x-axis is the normalised x coordinate with the circular 

cylinder located at y/D=0, and y-axis is eddy viscosity ratio (𝑣′′ = 𝑣𝑇 𝑣⁄ ), where 𝑣𝑇 is 

the turbulent viscosity caused by the turbulent effect, 𝑣 is the molecular viscosity. A 

critical width can be observed, within which the viscosity experiences significant 

irregular oscillation. Nevertheless, beyond this critical boundary, the turbulent viscosity 

is linear and demonstrate a smooth transfer to the far-field boundary. Furthermore, for 

the viscosity distribution beyond the critical area at different times the vorticity and the 

turbulent viscosity is insignificant. Comparing profiles of different times (t1 =25s and t2 

= 30s both after the convergence of the solution) in Figure 3.4.6, almost same critical 

width is determined, which is around 5D. To reflect the unsteady behaviour of the vortex 

shedding, the critical width, Wc, in this study is defined as the maximum width of the 

critical area within one shedding period. The distance from the critical width boundary 

to the centre of the cylinder is denoted as D*. It is assumed that the shedding vortex is 

symmetric to each other and therefore Wc =2D*. Furthermore, both Figure 3.4.6 and 

Figure 3.4.7 reveal that a similar D* is observed which is approximately 5D. 

 

 

 

 

 

x=2D  

y=2D  

x=6D  

x=4D  

x=6D  

y=4D  
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Figure 3.4.6 Turbulent viscosity at Re=1000 along the transverse direction  

 

 

Figure 3.4.7 Turbulent viscosity at Re=10000 along the transverse direction  
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In Figure 3.4.8 and Figure 3.4.9, which the x-axis is the normalised y coordinate with 

the circular cylinder located at x/D=0, and the y-axis is the eddy viscosity ratio. The 

turbulent viscosity profile along the in-line direction is plotted for Re=1000 and 

Re=10000. At the front (upstream) side of the circular cylinder, an insignificant but 

linearly varying turbulent viscosity is observed. However, significant variation of the 

viscosity is triggered at the rear (downstream) of the circular cylinder. Comparing the 

profiles in Figure 3.4.8 and Figure 3.4.9, it can be observed that only beyond y=7D 

(D*=7D), the oscillation of the turbulent viscosity may be ignored and a linear 

distribution of the turbulent viscosity is suggested.  

 
Figure 3.4.8 Turbulent viscosity at Re=1000 along the in-line direction  

 

 
Figure 3.4.9 Turbulent viscosity at Re=10000 along the in-line direction  
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Figure 3.4.10 Longitudinal distribution of vorticity in the cases of Re=200 and 104  

 

Figure 3.4.10 demonstrates the vorticity along longitudinal direction at y = Wc/2 for the 

stationary cylinder. The two y-axises are the vorticity ratios which the vorticity 

normalised by their own maximum vorticity around the circular cylinder. The red line 

is the case of Re=200, and the black line is Re=1000. It can be found that the vorticity 

all below the threshold, i.e. 1% of the maximum vorticity on the cylinder for the 

Reynolds number tested.  

 

3.4.2 Turbulent viscosity of an oscillating circular cylinder 

For the cases with an oscillating circular cylinder, the cylinder motion effects on the 

vortex shedding should be considered. To do so, the cylinder subjected to a forced 

vibration along the transversal direction with its displacement is given as (Carberry et 

al., 2005): 

𝑦(𝑡) =
𝐴

𝐷
𝑠𝑖𝑛(2𝜋𝑓𝑜𝑡) 

(3.4.1) 

where 𝐴 is the amplitude of the oscillation, 𝑓𝑜 is the oscillation frequency. Two non-

dimensional parameters are introduced: (1) the frequency ratio (Fr) is the oscillation 

frequency (𝑓𝑜) normalized by the natural shedding frequency of the weak (𝑓𝑠) from a 

stationary cylinder. Fr ranges from 0.8 to 1.1 in this study. (2) the amplitude ratio (A/D) 



 

66 

 

is the ratio between oscillation amplitude (𝐴) and the diameter of the cylinder (D), which 

ranges from 0.2D to 0.5D. It is observed that, due to the effect of the exciting frequency, 

the shedding vortex does not follow the law of Strouhal and shows a non-regular pattern 

as demonstrated in Figure 3.4.11and Figure 3.4.12 with Fr=0.8 and 1.2, respectively.  

 

 
Figure 3.4.11 Vorticity distribution near moving cylinder at Re=185 for Fr=0.8 

 

 
Figure 3.4.12 Vorticity distribution near moving cylinder at Re=185 for Fr=1.1 

     

Regarding the vorticity distribution along the transverse direction, from the Figure 

3.4.13 to Figure 3.4.15, it can be observed that the characteristics of viscosity are similar 

to that of the stationary circular cylinder. A dramatic decrease in the value of the 

turbulent viscosity is observed. Beyond the critical boundary, the regular and smooth 

turbulent viscosity is exhibited while within this region, a considerable vibration of the 

turbulent viscosity is found. In addition, there is no major difference between different 

Reynolds numbers (e.g., Re=185 and Re=2300). However, the size of the critical region 

is different from that in the stationary situations. For the cases with oscillating cylinders, 

the maximum width increases to the 6.5D (in Figure 3.4.15), which is larger than that 

in the stationary cylinders.   
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Figure 3.4.13 Eddy viscosity ratio of (Re, A/D, Fr) = (185, 0.2, 0.9) along the transverse 

direction 

 

 
Figure 3.4.14 Eddy viscosity ratio of (Re, A/D, Fr) = (2300, 0.2, 1.1) along the transverse 

direction  
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Figure 3.4.15 Eddy viscosity ratio of (Re, A/D, Fr) = (2300, 0.5, 0.6) along the transverse 

direction  

 

Regarding the distribution of the in-line direction from Figure 3.4.16 to Figure 3.4.18, 

in which x-axis is the normalised y coordinate with the circular cylinder located at x/D=0, 

and the y-axis is the eddy viscosity ratio. A similar feature of the turbulent viscosity is 

suggested (see Figure 3.4.8 and Figure 3.4.9). For the case of (Re, A/D, Fr) = (2300, 0.2, 

1.1) and (2300, 0.5, 0.6), D*=7D are observed while for (Re, A/D, Fr) = (185, 0.2, 0.9), 

a smaller critical width is found which is 6D.  

Figure 3.4.16 Eddy viscosity ratio of (Re, A/D, Fr) = (185, 0.2, 0.9) along the in-line direction  
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Figure 3.4.17 Turbulent viscosity of (Re, A/D, Fr) = (2300, 0.2, 1.1) along the in-line 

direction  

 
Figure 3.4.18 Turbulent viscosity of (Re, A/D, Fr) = (2300, 0.5, 0.6) along the in-line direction  

3.4.3 Size of the overlapping domain 

According to the investigation of the turbulent viscosity spatial distribution, we 

understand that: (1) the turbulent viscosity is significant only in a confined area around 

the vortex shedding (critical area); (2) the motion of the cylinder may affect the spatial 

distribution of the turbulent viscosity, enlarging the critical area; (3) Figure 3.4.19 

illustrates that the width of the critical area varies with the different working conditions, 

but the variation is between 10-16D in the cases examined. 

Based on the understanding of the spatial distribution of the turbulent viscosity, we 

can draw the conclusion that there exists one critical width, beyond which the turbulent 

viscosity is regular and linear. Not like the viscosity within the critical region, which 
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requires a turbulent model, the far field viscosity can be modelled by a linear function. 

Finally, in order to make sure the critical region is covered by the residual turbulent 

model, the critical width adopted in this thesis is fixed to 16D.  

 
Figure 3.4.19 Range of D* under different working conditions 

 

3.5 Vortex shedding behaviour in multiphase flow 

 

The feature of turbulent viscosity associated with vortex shedding without the free 

surface has been studied in the above section. Nevertheless, there are great differences 

in terms of the spatial variation of the turbulent viscosity between the situation with and 

without the free surface. Therefore, the question is how the presence of the free surface 

effect the vortex shedding behaviour, hydrodynamic force coefficient, shedding 

frequency and flow pattern. There are two main parameters related to the flow past a 

circular cylinder with the presence of the free surface: (1) Fr′ = 𝑈/√𝑔𝐷 ,where g is the 

acceleration due to gravity; U is the upstream velocity, D is the cylinder diameter; (2) 

and the gap ratio h/D, with h is the distance between the centre of the cylinder and the 
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water surface (see Figure 3.5.1). In order to answer the above posed questions, the 

investigations of the circular cylinder near the free surface is carried out. The main 

purpose of this study is to assess the impact of the submergence depth (h/D), Froude 

number (Fr′) to the vortex shedding behaviour. 

The sketch of the problems considered in this study is illustrated in Figure 3.5.1, 

showing a fixed circular cylinder beneath a free surface, in which 𝜈𝑎  and 𝜈𝑤 is the 

molecular viscosity of air and water, respectively; 𝜌𝑎 and 𝜌𝑤 is the density of air and 

water, respectively. The working conditions can be summarised as (1) The Froude 

number ranges from 0.25 to 0.4, which covers the critical Fr′ value according to the 

existing research in the public domain; (2) The submergence depth ranges from 0.2D to 

3D; (3) Only considering low-Re cases, i.e. Re=100 and 200 according to previous test 

without free surface which shows that the Re does not significantly affect the size of the 

critical zone. Such working conditions are illustrated as a matrix in Figure 3.5.2. The 

discussions of the Froude number, gap ratio and Reynolds number to the lift force, flow 

properties, shedding frequency and vortex mode are demonstrated below.  

 

 

 

Figure 3.5.1 Sketch of the studied multiphase flow problem  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

h 
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Figure 3.5.2 Working condition matrix for the influential parameters of Froude number and 

gap ratio 

In the present work, a multiphase flow solver in OpenFOAM is used. A domain size 

of 40D×60D is adopted in which 𝐷𝑖𝑛 = 20 and 𝐷𝑜𝑢𝑡 = 40 (see Figure 3.3.1). The size 

of 𝐷𝑜𝑢𝑡  is relying on the consideration of the fully development of the shedding. A 

multi-block grid system is adopted this study, in which the mesh is clustered in the 

boundary layer, weak region and free surface. The mesh configuration is similar to the 

illustration of the computational mesh shown in Figure 3.3.1. It is also noted that the 

interfacial region between the air and the water phases is typically smeared over a few 

grid cells and is therefore highly sensitive to grid resolution. For this reason, a further 

mesh refinement near the free surface is required. The gird resolution has been carefully 

and properly chosen for each considered case. The time step is automatically adjusted 

according to the selected courant number which is around 0.4 in this study. Although 

the Courant number used in this test is much larger than that used in the cases without 

free surface, the value has justified in the preliminary convergent study, which also 

includes the effects of the mesh resolutions on achieving convergent results.  The 

corresponding tests are not presented in this section to save the space.  
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3.5.1 Effect of Froude number  

Not all the cases tested in the working conditions matrix in Figure 3.5.2 will be 

demonstrated, only the cases with the typical physics are discussed here. Regarding the 

effect of the Froude number, through the test of the working conditions in the matrix, it 

is observed that with the Froude number excess the value around 0.3, the surface 

distortion becomes substantial. Figure 3.5.3 shows the free surface and the vortex street 

at the wake under different Froude numbers at fixed gap ratio h/D=2. Figure 3.5.3(a) is 

the results with a small Fr′, i.e. 0.25 while Figure 3.5.3(b) with a relatively larger Fr′, 

i.e. 0.36. Comparing the two conditions, it is clearly shown that the water surface 

sharpening at higher Froude number which also leads to the vortex shedding frequency 

variation in the wake and even the breaking of the water surface (see Figure 3.5.3 (b)). 

Furthermore, the water surface sharpening is also associated to the increase of the 

vorticity at the free surface. 

 
Figure 3.5.3 Vortex shedding and free surface for different Froude numbers (a) Fr′=0.25 

(b) Fr′=0.36 at same gap ratio h/D=2. 

 

Figure 3.5.4 demonstrates the time history of the lift coefficient for different Froude 

number with the fixed gap ratio h/D=1. The frequency of the lift coefficient that 

associated with the Strouhal number also indicates the variation of the shedding 

(a) 

(b) 
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frequency. The results with Fr′=0.36 in the dashed line show a 12% increase of the 

Strouhal number compared to the results with lower Froude number. In addition, almost 

the same amplitude of the lift coefficient is observed in the cases with the two Froude 

numbers.  

 

 
Figure 3.5.4 Time history of CL for the h/D=1 with Fr′=0.25 and Fr′=0.36  

 

3.5.2 Effect of gap ratio 

A very similar trend is observed base on the investigation of the gap ratio, which 

deceases from 3 to 0.2. With the decrease of the gap ratio under specific Froude number, 

the larger deformation of the free surface is observed. The big surface curvature also 

leads to the strong interaction between the free surface and the vortex street in the wake 

of the circular cylinder (see Figure 3.5.5). Additionally, an asymmetric staggered array 

of vortices at the downstream appears with the decrease of the gap ratio. The attached 

free surface and vortex street greatly alter the development of the vortex, formation 

length and shedding frequency, see (b), (c) and (d).   

 

 

 

 



 

75 

 

 

 

 

 

Figure 3.5.5 Vortex shedding and free surface for Fr′=0.25 for a gap ratio of (a) h/D =3; 

(b) h/D=2; (c) h/D=1; (d) h/D= 0.5 for the Re =100. 

Similarly, in the Figure 3.5.6, the variation of the Strouhal number is also observed 

with different gap ratios (h/D=2.5 and h/D=1 with fixed Fr′=0.36). Furthermore, the 

asymmetric lift coefficient appears in for both tested gap ratio. However, unlike the 

effect of the Froude number, the amplitude of the lift coefficient shows an 

approximately 10% reduction comparing the gap ratio h/D=0.25 to that of h/D=1. 

 

 

 

 

(a) 

(b) 

(c) 

(d) 
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Figure 3.5.6 Time history of CL for the Re=100, Fr′=0.36 with h/D=2.5 and h/D=1  

 

Figure 3.5.7 gives the time history of lift coefficient for the Re=200 subject to 

Fr′=0.25 and Fr′=0.36 with fixed gap ratio, respectively. Similar to laminar flow case, 

the Froude number mainly influence the lift frequency which associated with the 

shedding frequency rather than the amplitude of lift coefficient.  

  
Figure 3.5.7 Time history of CL for the Re =200 with Fr′=0.25 and Fr′=0.36  
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3.5.3 Conclusions of the investigation  

In this study, the lift force on the cylinder and shedding frequency of the structure of 

the near wake is numerically investigated using a two-phase solver. At both laminar and 

turbulent Reynolds number, a series of simulations covering various Fr′ and h/D are 

conducted. 

The main conclusions of the presented study are as follows: (1) when Froude number 

exceeds 0.3, the free surface distortion becomes substantial. Lift coefficient keeps the 

same, but vortex shedding frequency varies. As suggested by Figure 3.5.4, a difference 

of 12% regarding the frequency of the lift coefficient is observed between Fr′=0.36 and 

the results with lower Froude number. The similar trend is observed in other Froude 

number effect test cases as well. (2) The decrease of the gap ratio results in the changes 

with respect to the development of the vortex, formation length and shedding frequency 

for both laminar and turbulent flows. An asymmetric array of vortices (see Figure 3.5.5) 

and different lift coefficient amplitudes (see Figure 3.5.6) are observed in the cases with 

different gap ratio. (3) The critical boundary is recognized between Zone 1 and Zone 2 

in Figure 3.5.8, according to the comparison between cases under the effect of free 

surface to that of deep water working conditions with respect to the force act on the 

circular cylinder and shedding frequency.  

 
Figure 3.5.8 Zone 1 and Zone 2 for the tested working conditions  
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Through this investigation, more understandings of this physics and insights into the 

coupling method with the presence of the free surface is achieved. The recognition of 

the critical boundary is of great importance for the development of the multiphases 

hybrid method. (1) For the cases in the Zone 2 (e.g. woking conditions with Fr'=0.35, 

h/D<1), due to the significance of the vorticity at the free surface, the behaviour of the 

wake is considerably influenced by the interaction between the free surface and the 

vortex shedding in Zone 2. Hence, then the free surface cannot be treated as inviscid 

and applying the simplified solver to obtain the proper solutions. Consequently, 

different coupling strategy should be applied to deal with the vorticity at the free surface, 

that is to say, a viscous or turbulent solver is required to capture the turbulent viscosity. 

(2) For the case belongs to Zone 1 (e.g., cases of Fr'=0.35, h/D>1), the vorticity change 

caused by the existence of the free surface can be ignored. Therefore, an inviscid solver 

is accurate enough to achieve the satisfactory solutions. 
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4  
METHODOLOGY AND 

MATHEMATICAL 

FORMULATIONS  

 

The preliminary investigations shown in Chapter 3 using the conventional RANS 

solver with k-ω SST reflects the fact that the turbulent viscosity is only important in the 

critical region near the cylinder and can be ignored in other area far away from the 

structures. It also systematically investigates the size of the critical zone under different 

working conditions. These form the basis of the hybrid model development, i.e. one can 

use one model without considering the turbulent viscosity outside the critical region and 

another one with turbulent modelling in the critical zone through fulfilling its theoretical 

hypothesis. As discussed in Chapter 1 and 2, the two typical approaches i.e. (1) the 

spatially hierarchical approach (domain splitting or domain decomposition, e.g. (Hafez 

et al., 2006), in which the computational domain is decomposed into two subdomains, 

the critical regions and the remaining, respectively: in the critical region, RANS with k-

ω SST is adopted; in the other, RANS with zero turbulent viscosity is applied; (2) the 

function splitting (or model/velocity decomposition, e.g. Luquet et al., 2007; Kim et al., 

2005; Edmund 2012), in which a simplified model (i.e. RANS with zero turbulent 
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viscosity) covers the entire computational domain and a complementary NS model is 

solved in the critical zone to correct the solution of the simplified models so that within 

this subdomain, the flow is governed by the RANS with k-ω SST by summing the 

solution of the simplified model and that of the complementary NS model. This strategy 

improves the computational efficiency by limiting the computational domain governed 

by the more time-consuming solver to a considerably smaller area. In this work, the 

functional splitting approach is applied.  



4.1 Methodology of hybrid method for single-phase flow  

4.1.1 Functional decomposition approach 

In this approach, the velocity and pressure are split into two parts as follows: 

 𝑢𝑇𝑖(𝑥, 𝑡) =  𝑢𝑠𝑖(𝑥, 𝑡) + 𝑢𝑖
∗(𝑥, 𝑡) (4.1.1) 

 𝑝𝑇(𝑥, 𝑡) = 𝑝𝑠(𝑥, 𝑡) + 𝑝
∗(𝑥, 𝑡) (4.1.2) 

 
In which,  𝑢𝑠𝑖(𝑥, 𝑡) and 𝑝𝑠(𝑥, 𝑡) are the velocity and pressure solutions to a relatively 

simpler solver. 𝑢𝑖
∗(𝑥, 𝑡)  and 𝑝∗(𝑥, 𝑡) are the residual values between the solutions to the 

simpler solver and those to the relatively more accurate solution generally obtained by 

a more complicated and time-consuming solver (Luquet et al., 2007). Thus, the desired 

complete fields   𝑢𝑇𝑖(𝑥, 𝑡)  and  𝑝𝑇(𝑥, 𝑡) can be obtained by summing up the two 

individual parts together. 

It is particularly important to note that for a given total velocity, the decomposition 

is not unique and therefore, different hybrid models could be developed (Kim et al., 

2005; Edmund 2012). It is understood that the proper decomposition could result in both 

a faster convergence of the residual field and a better overall accuracy of the total 

solution. In this hybrid method, the total velocity and pressure are constructed as 

 
             𝑢𝑇𝑖(𝑥, 𝑡) =  𝑢𝑓𝑖(𝑥, 𝑡) + 𝑢𝑖

∗(𝑥, 𝑡)         (𝑖 = 1, 2) (4.1.3) 

 𝑝𝑇 = 𝑝𝑓(𝑥, 𝑡) + 𝑝
∗(𝑥, 𝑡) (4.1.4) 

 
where the fields with the subscript f  are the solutions of a quasi-turbulent model, which 

will be described below, while these with superscript * are the residual solutions, which 
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are the differences between the solutions of the quasi-turbulent model and the total 

solutions. The configuration of the hybrid models is illustrated in Figure 4.1.1.  

 

Figure 4.1.1 Sketch of the hybrid method computational domain 

𝑇 in the above figure is the entire computational domain, in which the quasi-turbulent 

solutions are found. This is also called the quasi-turbulent domain hereafter for the 

convenience. This domain is composed of two parts: 𝑇 = 𝑇1 +  𝑇2 as shown. R is 

a zone near the structure, in which the corresponding residual solutions are sought. The 

boundary (c) of R is denoted by the dashed line. Obviously, R is overlapping with 

𝑇  , which size is identical to 𝑇1 but with different solver applied. 

4.1.2 Quasi-turbulent model  

In the presented hybrid model, 𝑢𝑓(𝑥, 𝑡)and 𝑝𝑓(𝑥, 𝑡) solved by the quasi-turbulent 

model satisfy the following incompressible continuity and Navier-Stokes equations for 

single-phase applications,  

∂𝑢𝑓𝑗

∂𝑥𝑗
= 0 (4.1.5) 

𝜕𝑢𝑓𝑖

𝜕𝑡
+ (𝑢𝑓𝑗 − 𝑢𝑏𝑗)

𝜕𝑢𝑓𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑝𝑓

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝑣′ (

𝜕𝑢𝑓𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑓𝑗

𝜕𝑥𝑖
)]     (𝑖 = 1,2) 

(4.1.6) 

 
where 𝜈′(𝑥, 𝑦, 𝑡) is the effective viscosity field. The treatment of this effective viscosity 

field 𝜈′(𝑥, 𝑦, 𝑡) is of vital importance to ensure the robustness and the stability of the 

hybrid method. As observed, the model seems to be identical to the ALE forms of the 

conventional RANS model for turbulent flow. However, a considerable difference lies 
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on the treatment of the 𝜈′(𝑥, 𝑦, 𝑡), which will be discussed in the section of 4.1.5. For 

convenience and reflecting such difference, the model is referred to as the quasi-

turbulent model. The corresponding boundary conditions include: 

1) Right end of the domain, i.e. the outlet boundary, where the velocity satisfies the 

Neumann zero-gradient boundary condition, given by 

𝜕𝑢𝑓𝑖

𝜕𝑥
= 0, (𝑖 = 1) (4.1.7) 

2) Top and bottom boundaries (bw), where the slip boundary condition is 

implemented, 
𝑢𝑓𝑛 = 0 (4.1.8) 

𝜕𝑢𝑓𝜏

𝜕𝜏
= 0 (4.1.9) 

3) Structure surface (𝑐𝑠), non-slip condition is applied, 

                                                       𝑢𝑓𝑖 = 𝑢𝑐𝑠𝑖               On 𝑐𝑠   (i = 1, 2) (4.1.10) 

where 𝑢𝑐𝑠 is the velocity of structure surface, which is zero in the cases with stationary 

structure.  

 

4.1.3 Residual turbulent model   

 

In R, it is expected that the completed velocity and pressure satisfies the RANS with 

k-ω SST model for evaluating the effective viscosity. By substituting the decomposition 

Equation (4.1.3) and Equation (4.1.4) to the Equation (3.2.2),  it is not difficult to obtain 

the continuity and momentum equations for the residual fields as follows: 

 
𝜕𝑢𝑗

∗

𝜕𝑥𝑗
= 0 (4.1.11) 

𝜕𝑢𝑖
∗

𝜕𝑡
+ (𝑢𝑓𝑗 + 𝑢𝑗

∗ − 𝑢𝑏𝑗)
𝜕𝑢𝑖

∗

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[ 𝑣𝑒𝑓𝑓 (

𝜕𝑢𝑖
∗

𝜕𝑥𝑗
+
𝜕𝑢𝑗

∗

𝜕𝑥𝑖
)] −

1

𝜌

𝜕𝑝∗

𝜕𝑥𝑖
− 𝑆𝑓𝑖 

   (𝑖 = 1, 2) 

 (4.1.12) 

where 

𝑆𝑓𝑖 =
𝜕𝑢𝑓𝑖

𝜕𝑡
+(𝑢𝑓𝑗 + 𝑢𝑗

∗ − 𝑢𝑏𝑗)
𝜕𝑢𝑓𝑖

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
[ 𝑣𝑒𝑓𝑓 (

𝜕𝑢𝑓𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑓𝑗

𝜕𝑥𝑖
)] +

1

𝜌

𝜕𝑝𝑓

𝜕𝑥𝑖
             (𝑖 = 1, 2) 

 (4.1.13) 

The above equations are referred to as the residual turbulent model in this work. 

Clearly, the continuity equation in the residual turbulent model exhibits the same form 
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as that in the quasi-turbulent model. Nevertheless, there is an extra term 𝑆𝑓𝑖introduced 

in the Equation (4.1.12) comparing to that of the RANS momentum equation. 𝑆𝑓 may 

be treated as an explicit term, if the solution to the quasi-turbulent model is sought at 

prior at each time step. The values of u* and 𝑣𝑒𝑓𝑓 in Equation (4.1.13) are explicitly 

guessed by using that in the previous time step. The details of the numerical 

implementation will be discussed below.  

(1) Similarly, the boundary conditions for the residual turbulent model can be 

derived. On the structure surface (see Figure 4.1.1), the boundary condition for 

the residual field reads, 

𝑢𝑖
∗ = 𝑢𝑇𝑖 − 𝑢𝑓𝑖 = 0       𝑜𝑛 𝑐𝑠, (𝑖 = 1, 2) (4.1.14) 

 
(2) The corresponding boundary condition for the outlet satisfies:  

 
𝜕𝑢𝑖

∗

𝜕𝑥
=
𝜕𝑢𝑇𝑖
𝜕𝑥

−
𝜕𝑢𝑓𝑖

𝜕𝑥
= 0    (𝑖 = 1, 2) (4.1.15) 

 
(3) On the boundary of the residual turbulent model (𝑐 ), it is assumed that 

𝑣′ =  𝑣𝑒𝑓𝑓 . Under such assumption, the solutions to the quasi-turbulent model 

are identical to the conventional RANS model. This means that the residual 

values should be zero,  

 
 𝑢𝑖
∗ = 0           𝑜𝑛 𝑡ℎ𝑒 𝑐 ,   (𝑖 = 1, 2) (4.1.16) 

 
It should be noted that in the PISO algorithm applied in this presented hybrid method, 

the corrector updating the velocity within each loop is using the pressure gradient rather 

than the pressure value. It means the pressure gradient boundary condition is 

numerically more efficient.  Additional, the simulations using both the zero-gradient 

pressure boundary (type 1) and zero pressure (type 2) are conducted which keep the rest 

of the setting the same.  The field profile comparisons between the two types of the 

boundary conditions are demonstrated in Fig. 4.1.2, in which the x-axis is the normalised 

x coordinate with the circular cylinder located at y/D=0, and y-axis is residual velocity 

and pressure. From Fig. 4.1.2, it can be observed that same result of the residual velocity 

and pressure field are yielded. Besides, the residual velocity and pressure fields are 

gradually approaching the coupling boundary (𝑐 ) to zero which also indicates the 

pressure distribution satisfies the zero-gradient boundary condition.   
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Therefore, the boundary condition for 𝑝∗ , can be achieved through Equation (4.1.13) 

and (4.1.16), adopted in this model is given as follows:  

 
𝜕𝑝∗

𝜕𝑛
= 0             𝑂𝑛 𝑡ℎ𝑒 𝑐 

(4.1.17) 

 

Fig 4.1.2 The field profile comparison between the two types of the boundary conditions 

 

4.1.4 Techniques of turbulent viscosity treatment  

It shall be noted that the assumption imposed on 𝑐 is only valid if the size of R, is 

sufficiently large, consequently, 𝑐  falls in the location where the turbulent viscosity is 

physically insignificant. One may select a large size of R, e.g. the same size as  𝑇 , for 

guarantee. Nevertheless, as the increase of R, the computational efficiency of the 

hybrid model is expected to decrease. This makes the determination of the size of R, 

(or the location of 𝑐) becomes critically important. An optimal configuration of R, 

largely relies on a good understanding of the spatial distribution of the turbulent 

viscosity, as discussed in the previous chapter. Such knowledge lead to the 

determination of the critical region, in which the turbulent viscosity and the vorticity of 

the fluid are significant. More details will be given here. 
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In addition to the above-mentioned constraint on assigning 𝜈′(𝑥, 𝑦, 𝑡 ), i.e. 𝜈′ =  𝑣𝑒𝑓𝑓 

at 𝑐, there is additional constraint in terms of numerical stability and the continuity of 

the solutions in the entire computational domain. As shown, after the summation of the 

solutions to the quasi-turbulent and the residual turbulent model in R, the eventual 

governing equation in such region is the RANS, where the effective viscosity  𝑣𝑒𝑓𝑓 is 

evaluated by using the k-ω SST model. Nevertheless, in other region, i.e.  𝑇2, the 

quasi-turbulent model governs the fluid flow. Comparing the RANS and the quasi-

turbulent model, the only difference exhibits in the value of the effective viscosity, i.e, 

𝜈′(𝑥, 𝑦, 𝑡 ) and  𝑣𝑒𝑓𝑓(𝑥, 𝑦, 𝑡 ) in  𝑇2 and R, respectively. In the numerical practices, 

one needs to ensure a continuity of 𝜈′(𝑥, 𝑦, 𝑡 ) at 𝑐  in numerical practices. Otherwise, 

numerical instability may occur near the boundary 𝑐. 

To consider the above two constraints, two techniques are employed to bridge the 

inconsistency of the effective viscosity between the residual and quasi-turbulent solvers. 

First, the turbulent viscosity and thus the effective viscosity evaluated by the turbulence 

model in R, will be mapped to the same region in the quasi-turbulent domain, i.e.  𝑇1, 

using an appropriate numerical interpolation. Secondly, the smooth transition of the 

effective viscosity is taken into account from  𝑐 extending to other regions in  𝑇2. 

Eventually, the effective viscosity in the quasi-turbulent region is specified by Equation. 

(4.1.18).  

  

𝜈′(𝑥, 𝑦, 𝑡) =

{
 
 
 
 

 
 
 
 
𝜈𝑒𝑓𝑓(𝑥, 𝑦, 𝑡)                                                                                𝑇1    

 𝜈𝑒𝑓𝑓(𝑥𝑐 , 𝑦, 𝑡) −
 𝜈𝑒𝑓𝑓(𝑥𝑐 , 𝑦, 𝑡) − 𝜈 

𝑥𝑏 − 𝑥𝑐
(𝑥 − 𝑥𝑐)               𝑇2𝑥  

 𝜈𝑒𝑓𝑓(𝑥, 𝑦𝑐+, 𝑡) −
 𝜈𝑒𝑓𝑓(𝑥, 𝑦𝑐+, 𝑡) − 𝜈 

𝑦𝑏+ − 𝑦𝑐+
(𝑦 − 𝑦𝑐+)         𝑇2𝑦+ 

 𝜈𝑒𝑓𝑓(𝑥, 𝑦𝑐−, 𝑡) −
 𝜈𝑒𝑓𝑓(𝑥, 𝑦𝑐−, 𝑡) − 𝜈 

𝑦𝑏− − 𝑦𝑐−
(𝑦 − 𝑦𝑐−)         𝑇2𝑦−  

 (4.1.18) 

 

where 𝑣′(𝑥, 𝑦, 𝑡) in 𝑇1 is assigned to be the effective viscosity by the residual solver 

using the chosen turbulent model, i.e. 𝜈𝑒𝑓𝑓(x, y, t); the domain 𝑇2 are split into three 

subregion, i.e. 𝑇2𝑥,𝑇2𝑦+ and 𝑇2𝑦−, as illustrated in Figure 4.1.2; 𝑥𝑏 and 𝑥𝑐 are the 
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x-coordinate of the inlet boundary of the quasi-turbulent domain and the left boundary 

of 𝑇1; 𝑦𝑏+ and 𝑦𝑐+ are the y-coordinates of the upper boundaries of  𝑇 and  𝑇1, 

respectively; 𝑦𝑏− and 𝑦𝑐− are the y-coordinates of the lower boundaries of  𝑇  and 

 𝑇1, respectively.  

 

Figure 4.1.2 Variables transfer between the domain of T and R 

 
 

 
Figure 4.1.3 Sketch of the viscosity fields mapping order 

 

 

By using this equation, the effective viscosity 𝜈′(𝑥, 𝑦, 𝑡) at 𝑐  equal to the effective 

viscosity at the same location evaluated by the turbulence model in R, i.e. 

 𝜈𝑒𝑓𝑓(𝑥, 𝑦, 𝑡)𝑐 ; it also changes gradually in x- and y-direction from the effective 

viscosity  𝜈𝑒𝑓𝑓(𝑥, 𝑦, 𝑡)𝑐  at the boundary 𝑐   to the molecular viscosity at the outer 

boundaries of the quasi-turbulent domain , ensuring a continuity of 𝜈′(𝑥, 𝑦, 𝑡) at 𝑐  . 

yb+ 

𝑥𝑏 

(𝑖𝑖𝑖)𝑻𝟐𝒚+ 

(ii)𝑻𝟐𝒙⬚
 

(𝑖𝑖𝑖)𝑻𝟐𝒚− 

(i)𝑻𝟏   

yb- 

𝒚𝒄−
 

𝒙𝒄 

𝒚𝒄+
 

R 

 

𝑢𝑓𝑖 
T 

  𝜈𝑒𝑓𝑓  𝑢𝑓𝑖 , 𝑝𝑓𝑖 T1 
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One may worry about the artificial assignment of 𝜈′(𝑥, 𝑦, 𝑡) in the quasi-turbulent model. 

In fact, such linear variation of the effective viscosity has been numerically observed in 

the region outside of the critical region, as evidenced by the preliminary investigation, 

presented in the previous chapter. Such equation stands if the domain R and 𝑇1 are 

assigned to be consistent with the critical region. Furthermore, what is concerned in this 

problem is the overall solution in the area near the structure, i.e. R, where the correction 

of the solution is sought by using the residual turbulent model. The error caused by the 

minor incorrection of the effective viscosity in the quasi turbulent model can be 

corrected by the residual turbulent solver in the area one concerned.  

Due to the fact that the computational mesh used in the quasi-turbulent domain is 

often different from that in the R. Specifically, in the overlapping region R and 𝑇1, 

the nodes in the mesh used by the quasi-turbulent model are not consistent with those 

used by the residual turbulent model as shown in Figure 4.1.2. A mapping of the 

effective viscosity is required by using the interpolation. The assignment of  𝑣′(𝑥, 𝑦, 𝑡) 

is conducted by three steps in sequence:  

(i) mapping 𝜈𝑒𝑓𝑓  obtained by the turbulence model in the residual turbulent domain to 

that the nodal positions in 𝑇1;  

(ii) interpolation using 𝜈𝑒𝑓𝑓(𝑥𝑐, 𝑦, 𝑡) −
 𝜈𝑒𝑓𝑓(𝑥𝑐,y,t)−𝜈 

𝑥𝑏−𝑥𝑐
(𝑥 − 𝑥𝑐) in  𝑇2𝑥 ; 

(iii)interpolation using 𝜈𝑒𝑓𝑓(x, 𝑦𝑐+, t) −
 𝜈𝑒𝑓𝑓(x,𝑦𝑐+,t)−𝜈 

𝑦𝑏+−𝑦𝑐+
(𝑦 − 𝑦𝑐+)  and 

 𝜈𝑒𝑓𝑓(𝑥, 𝑦𝑐−, t) −
 𝜈𝑒𝑓𝑓(x,𝑦𝑐−,t)−𝜈 

𝑦𝑏−−𝑦𝑐−
(𝑦 − 𝑦𝑐−) in 𝑇2𝑦+  and 𝑇2𝑦− , respectively. One 

may find that in sub region of 𝑇2𝑦+ above 𝑇2𝑥,  𝜈𝑒𝑓𝑓(x, 𝑦𝑐+, t) cannot be directly 

mapped from the solution in R. Similar issue is found in the sub region of 𝑇2𝑦− below 

𝑇2𝑥. In these regions,  𝜈𝑒𝑓𝑓(𝑥, 𝑦𝑐+, 𝑡) and  𝜈𝑒𝑓𝑓(𝑥, 𝑦𝑐−, 𝑡) in Equation (4.1.18) are 

replaced by the corresponding values of 𝜈′(𝑥, 𝑦, 𝑡) obtained in step (ii), i.e. 𝜈′(𝑥, 𝑦𝑐+, 𝑡) 

and 𝜈′(𝑥, 𝑦𝑐−, 𝑡), respectively. 
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4.1.5 Updating computational mesh  

In addition, the computational mesh needs to be adjusted at each time step to conform 

to the motion of the structure (ensuring the boundary of the structure surface 𝒄𝒔 to be 

consistent with the surface of the moving structure). For this purpose, the nodes on 𝒄𝒔 

move together with the motion of the structure, i.e., their velocities are equal to the 

velocity of the moving boundary at the same points. After applying such condition, the 

velocities of other nodes are determined by the following diffusion equation.  

 
𝛻 ·  (𝛾𝛻𝑢𝑏𝑖) = 0                 ( 𝑖 = 1, 2) (4.1.19) 

 
where γ is the diffusion coefficient that is reflecting the resistance of the grid to be 

deformed. A quadratic distance-based diffusion parameter γ is applied here in order to 

maintain the mesh quality near the structure (Jasak & Tuković 2006). After the 

velocities of nodes being determined, the position of every node, 𝑥𝑖, are updated by  

 
𝑥𝑖
𝑁+1 = 𝑥𝑖

𝑁 + 𝑢𝑏𝑖∆𝑇                 (𝑖 = 1, 2) (4.1.20) 

 
where the superscript ‘N ’ indicates nth time step, while ‘N+1’ refers to the next time 

step.  

 

4.2 Methodology of hybrid method for multiphase flow  

4.2.1 Volume fraction equation 

Attempts to successfully simulate various multiphase flow situations have resulted 

in a variety of numerical approaches (Prosperetti & Tryggvason 2015). Among them, 

implicit interface capturing methods VOF  proposed by Hirt & Nichols (1981) started a 

new trend in multiphase flow simulation. It relies on the definition of an indicator 

function, named volume fraction 𝛼. This function allows us to know whether the cell is 

occupied by the fluid or another, or a mix of both. The traditional way to track the free 

surface is accomplished by the solution of the volume fraction transport equation. It can 

be expressed as: 

𝜕𝛼

𝜕𝑡
+ 𝑢′𝑇𝑗

𝜕𝛼

𝜕𝑥𝑗
= 0 

(4.2.1) 
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where 𝑈𝑇
′  represents the total velocity field. The volume fraction 𝛼 take ranges from 0 

to 1 ( 𝛼 = 0 for gas and 𝛼 = 1 for liquid). 

A modification of the approach makes use of an artificial compression term, namely 

(∇⋅Ucα(1−α)) (Weller, 2002) to replace the traditional compressing differencing scheme. 

This approach is conservative and takes non-zero values only at the interface. This 

yields the final expression: 

𝜕𝛼

𝜕𝑡
+ 𝑢′𝑇𝑗

𝜕𝛼

𝜕𝑥𝑗
+ 𝑢′𝑇𝑐𝑗

𝜕𝛼(1 − 𝛼)

𝜕𝑥𝑗
= 0 

(4.2.2) 

in which 𝑢′𝑇𝑐 is the artificial compressive velocity and  

 
|𝑼𝑇𝐶| = 𝑚𝑖𝑛[𝑐𝛼|𝑼𝑇|,𝑚𝑎𝑥 (|𝑼𝑇|)] (4.2.3) 

 
Accordingly, the gradients of the volume fraction are encountered only in the 

interfacial region between two fluids, i.e. near the free surface of the water in this study. 

The compression of the interface is controlled by   𝑐α . This interface compression 

coefficient is constant at range [0, 2]. The boundedness of such equation is achieved by 

an especially designed solver called multi-dimensional universal limiter for explicit 

solution (MULES). A limiter factor is adopted on the fluxes of the discretised 

divergence term to ensure a final value between 0 and 1.  

Two immiscible fluids are considered as one effective fluid throughout the domain, 

the physical properties of which are calculated as weighted averages based on the 

distribution of the liquid volume fraction, thus being equal to the properties of each fluid 

in their corresponding occupied regions and varying only across the interface, which is 

constructed as:  

𝜌 = 𝜌𝑤𝛼 + 𝜌𝑎𝑖𝑟(1 − 𝛼) (4.2.4) 

𝜇 = 𝜇𝑤𝛼 + 𝜇𝑎𝑖𝑟(1 − 𝛼) (4.2.5) 

 
where 𝜇𝑤 and 𝜇𝑎𝑖𝑟  are densities and dynamic viscosity of water and air, respectively.  

4.2.1.1 Governing equation for multiphase flow 

Same to the governing equations for the one-phase flow problem, a finite-volume 

discretization is used with arbitrary Lagrangian-Eulerian (ALE) formulation to allow 

for moving and deforming grids. It is given by: 
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𝜕𝜌𝑢𝑇𝑗′

𝜕𝑥𝑗
= 0 

(4.2.6) 

𝜕𝜌𝑢𝑇𝑖′

𝜕𝑡
+ (𝑢𝑇𝑗′ − 𝑢𝑏𝑖′)

𝜕𝜌𝑢𝑇𝑖′

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[𝜇𝑒𝑓𝑓 (

𝜕𝑢𝑇𝑖′

𝜕𝑥𝑗
+
𝜕𝑢𝑇𝑗′

𝜕𝑥𝑖
)] −

𝜕𝑝𝑓𝑇′

𝜕𝑥𝑖
 + 𝜌𝑔 + 𝜎к𝛻𝛼 

(𝑖 = 1,2) (4.2.7) 

where 𝜌 is density, 𝜇𝑒𝑓𝑓(𝑥, 𝑦, 𝑡)  is the effective dynamic viscosity, which takes into 

account the dynamic molecular viscosity plus the turbulent effects: 𝜇𝑒𝑓𝑓 =  𝜇 +

𝜌𝜈𝑇(𝑥, 𝑦, 𝑡). In the VOF simulation, the body forces include gravity (𝜌𝑔) and surface 

tension effects (𝜎к∇α) at the interface. In which, σ is the surface tension coefficient, к 

is the local interfacial curvature is obtained by the volume fractions as follows: 

 

к = −∇ ∙ (
Δα

|Δα|
) 

(4.2.8) 

 
In the present VOF method, the normal component of the pressure gradient at a 

stationary wall, with a no-slip condition, must be different for each phase due to the 

hydrostatic component 𝜌𝑔  when the phases are separated by the wall. In order to 

simplify the definition of boundary conditions, it is common to introduce the pseudo-

dynamic pressure, 𝑝𝑑. The relationship between the pseudo-dynamic pressure and the 

pressure is as follows: 

𝑝𝑑 = 𝑝 − 𝜌𝑔 ∙ ℎ (4.2.9) 

∇𝑝𝑑 = ∇𝑝 − 𝜌𝑔 − 𝑔 ∙ ℎ∇𝜌 (4.2.10) 

 
The solution of the momentum equation is performed by constructing a predicted 

velocity field and then correcting it using the PISO (Issa 1986) implicit pressure 

correction procedure to time advance the pressure and velocity fields. The main 

procedure is the same as that of one phase solver, and the systematic derivation is 

outlined in Appendix D.  

The boundary conditions (see Figure 4.2.1) for the original two-phase flow 

simulation is described in Table 4.2.1. From this table, one may notice that the main 

difference of the boundary condition configuration appears on the atmosphere boundary 

(A).  
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Figure 4.2.1 Sketch of the boundary conditions for the typical two-phase flow past a 

circular cylinder 

 

Table 4.2.1 Boundary condition configuration 

Boundaries  Velocity  Pressure  Alpha (α) 

Inlet(I) Fixed specific value/wave 

theory  

Fixed pressure flux Zero gradient 

Outlet(O) Zero gradient Zero gradient Zero gradient 

Atmosphere (A) Zero gradient Given total pressure Fixed value 

Bottom(bw) Slip Zero gradient Zero gradient 

Cylinder (cs) Fixed value Zero gradient Zero gradient 

 

At the atmosphere boundary (A), for the incompressible flow, the static pressure 

stratifies,  

𝑃𝑃+
1

2
|𝑈𝑝|

2

=𝑃0 
(4.2.11) 

where 𝑃𝑃 is the pressure at each atmosphere boundary patch; 𝑈𝑃 is the velocity of the 

boundary patch; a zero-gradient velocity boundary condition is applied. For α, a fixed 

value zero is adopted.  

At the inlet boundary (I), a modified pressure boundary condition is used where 

body forces, such as gravity, and surface tension are present. This boundary condition 

adjusts the pressure gradient which satisfies the pressure-velocity relation, i.e. the 

momentum equation, through the specified Dirichlet velocity boundary condition.  

 Outlet O 

Slip bw 

Cylinder surface cs 

Inlet I  

x  

y 

Atmosphere Outlet boundary A 

UT 



 

92 

 

In this study, the structure is fully submerged in the fluid, i.e. air and water, the 

boundary condition on the structure surface is the same as that applied to the one-phase 

problems. Consequently, one can use the same numerical implementations for the 

structure surface boundary condition as that in the one-phase problems.  

 

4.2.2 Functional decomposition in the multiphase hybrid model 

Following the concept of the function splitting presented in Chapter 3, the quasi-

turbulent model and the residual turbulent model for two-phase hybrid solver can be 

derived separately. The total velocity in this proposed hybrid method is constructed as 

Equation (4.2.12) and Equation (4.2.13), 

 
            𝑢𝑇𝑖′(𝑥, 𝑡) =  𝑢𝑓𝑖′(𝑥, 𝑡) + 𝑢𝑖

∗′(𝑥, 𝑡), (𝑖 = 1, 2) (4.2.12) 

 𝑝𝑇′ = 𝑝𝑓′(𝑥, 𝑡) + 𝑝
∗′(𝑥, 𝑡) (4.2.13) 

 
where the fields with the subscript f are the solutions of the quasi-turbulent model while 

these with superscript * are the residual solutions. 

 

Figure 4.2.2 Sketch of the hybrid method computational domain with the presence of the 

free surface 

 

The computational domain is illustrated in Figure 4.2.2, where 𝑇′ is the entire 

domain in which the quasi-turbulent solutions are found. This domain is composed of 

two parts:  𝑇′ = 𝑇1′ +  𝑇2′  as shown. 𝑇1′ overlaps with the domain for the 

corresponding residual model, i.e.  𝑅′. Its boundary (c) is denoted by the dashed line. 

 𝑇′
 

  Outlet O 

c: Coupling 

boundary  

Slip bw 

Cylinder surface cs 

Inlet I

x 

y 

Atmosphere Outlet boundary A 

UT  𝑅′ 

𝑇1′ 

 𝑇2′ 

Free surface  
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The size of   𝑅′ is the same as that of 𝑇1′ . But they are discretised into different 

meshes. Similar to the one phase hybrid solver, after applying the specific functional 

decomposition approach, the final solution is composed of two parts, for which (1) the 

quasi-turbulent solver is used to deal with  𝑢𝑓′(𝑥, 𝑡)  and   𝑝𝑓′(𝑥, 𝑡) ; (2) the residual 

solver aimed to compute 𝑢∗′ (𝑥, 𝑡) and 𝑝∗′(𝑥, 𝑡).  

 

4.2.3 Multiphase quasi-turbulent model 

In the quasi-turbulent model,  𝑢𝑓′(𝑥, 𝑡) and 𝑝𝑓′(𝑥, 𝑡)  satisfy the following 

incompressible continuity and momentum equations, which are described as: 

∂𝜌𝑢𝑓𝑗′

∂𝑥𝑗
= 0 

(4.2.14) 

𝜕𝜌𝑢𝑓𝑖′

𝜕𝑡
+ (𝑢𝑓𝑗′ − 𝑢𝑏𝑖′)

𝜕𝜌𝑢𝑓𝑖′

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[𝜇𝑒𝑓𝑓
′ (

𝜕𝑢𝑓𝑖′

𝜕𝑥𝑗
+
𝜕𝑢𝑓𝑗′

𝜕𝑥𝑖
)] −

𝜕𝑝𝑓′

𝜕𝑥𝑖
 + ρg + 𝜎к∇α 

(𝑖 = 1, 2) (4.2.15) 

𝜇𝑒𝑓𝑓
′ = 𝜇′ + 𝜌𝜈′(𝑥, 𝑦, 𝑡) (4.2.16) 

 
Similar to the one-phase hybrid model, where 𝑢𝑓′ and 𝑝𝑓′ are the intimidate velocity 

and pressure fields; 𝜇𝑒𝑓𝑓
′ (𝑥, 𝑦, 𝑡) is the effective dynamic viscosity. Compared to the 

momentum equation in the single-phase quasi-turbulent model, the main difference is 

body force term 𝜌𝑔 + 𝜎к𝛻𝛼  introduced in the right-hand side of Equation (4.2.15), 

which is evaluated by  

𝜕𝛼

𝜕𝑡
+ 𝑢′𝑓𝑗

𝜕𝛼

𝜕𝑥𝑗
+ 𝑢′𝑓𝑐𝑗

𝜕𝛼(1 − 𝛼)

𝜕𝑥𝑗
= 0 

(4.2.17) 

in which  

|𝑼𝑓𝐶
′ | = 𝑚𝑖𝑛[𝑐𝛼|𝑼𝒇

′ |,𝑚𝑎𝑥 (|𝑼𝒇
′ |)] (4.2.18) 

 
where 𝑼𝑓𝐶

′  is the artificial compressive velocity of the quasi-turbulent domain.  

 

4.2.4 Multiphase residual turbulent model 

Substituting Equation (4.2.12) and Equation (4.2.13) into the multiphase continuity 

equation (4.2.6) and momentum equation (4.2.7) to achieve the two-phase residual 

turbulent model, which can be expressed as: 
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𝜕𝜌𝑢𝑗
∗′

𝜕𝑥𝑗
= 0 (4.2.19) 

𝜕𝜌𝑢𝑖
∗′

𝜕𝑡
+ (𝑢𝑓𝑖′ + 𝑢𝑖

∗′ − 𝑢𝑏𝑖′)
𝜕𝜌𝑢𝑖

∗′

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[ 𝜇𝑒𝑓𝑓 (

𝜕𝑢𝑖
∗′

𝜕𝑥𝑗
+
𝜕𝑢𝑖

∗′

𝜕𝑥𝑖
)] −

𝜕𝑝∗′

𝜕𝑥𝑖
− 𝑆𝑓

′  

(𝑖 = 1, 2) (4.2.20) 

in which 

𝑆𝑓
′ =

𝜕𝜌𝑢𝑓𝑖′

𝜕𝑡
+(𝑢𝑓𝑖′ + 𝑢𝑖

∗′ − 𝑢𝑏𝑖′)
𝜕𝜌𝑢𝑓𝑖′

𝜕𝑥𝑗
−
𝜕

𝜕𝑥𝑗
[𝜇𝑒𝑓𝑓 (

𝜕𝑢𝑓𝑖′

𝜕𝑥𝑗
+
𝜕𝑢𝑓𝑖′

𝜕𝑥𝑖
)] +

𝜕𝑝𝑓′

𝜕𝑥𝑖
+ 𝜌𝑔 + 𝜎к∇𝛼 

 (4.2.21) 

After solving the Equation (4.2.14) to Equation (4.2.15), the intermediate velocity 

and pressure fields 𝑢𝑓′ and 𝑝𝑓′ are known. Therefore, the right-hand side term 𝑆𝑓
′  can be 

treated as the explicit term providing an appropriate prediction of 𝑢𝑖
∗′. All other terms, 

such as the temporal term, convection and diffusion term and source term, are treated 

same as in the one phase hybrid solver. It shall be noted that in the hybrid multi-phase 

model, the volume fraction α is solved in the quasi-turbulent domain. One may also 

introduce a similar residual equation to correct the solutions of the transportation 

Equation (4.2.17) in  𝑅′. The numerical validation shown in the following chapter 

suggests that the present treatment can lead to satisfactory solution for the problem 

considered in this thesis, partially due to the fact that the non-breaking water wave, so 

does the volume fraction, is dominated by the gravity. However, if a breaking wave is 

involved in the future study, the turbulence may significantly affect the wave 

propagating, and thus a correct of the volume fraction shall be implemented.  

 

4.2.5 Turbulent viscosity treatment in multiphase model 

Similar to the single-phase turbulent viscosity transformation, the assignment 

of  𝜇′(𝑥, 𝑦, 𝑡) is conducted by three steps in sequence (see Figure 4.2.3): 

(i) transform 𝜇𝑒𝑓𝑓 obtained by the turbulence model in the residual turbulent domain to 

that the nodal positions in 𝑇1′;  

(ii) interpolation using 𝜇𝑒𝑓𝑓(𝑥𝑐, 𝑦, 𝑡) −
 𝜇𝑒𝑓𝑓(𝑥𝑐,y,t)−𝜇 

𝑥𝑏−𝑥𝑐
(𝑥 − 𝑥𝑐) in  𝑇2𝑥′;  
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(iii)interpolation using 𝜇𝑒𝑓𝑓(𝑥, 𝑦𝑐+, 𝑡) −
 𝜇𝑒𝑓𝑓(𝑥,𝑦𝑐+,𝑡)−𝜇 

𝑦𝑏+−𝑦𝑐+
(𝑦 − 𝑦𝑐+) and  

𝜇𝑒𝑓𝑓(𝑥, 𝑦𝑐−, 𝑡) −
𝜇𝑒𝑓𝑓(𝑥,𝑦𝑐−,𝑡)

𝑦𝑏−−𝑦𝑐−
(𝑦 − 𝑦𝑐−)  in 𝑇2𝑦+′  and 𝑇2𝑦−′ , respectively. (see 

Equation (4.2.22))   

 

𝜇′(𝑥, 𝑦, 𝑡) =

{
 
 
 
 

 
 
 
 
𝜇𝑒𝑓𝑓(𝑥, 𝑦, 𝑡)                                                                                   𝑇1    

 𝜇𝑒𝑓𝑓(𝑥𝑐, 𝑦, 𝑡) −
 𝜇𝑒𝑓𝑓(𝑥𝑐, 𝑦, 𝑡) − 𝜇 

𝑥𝑏 − 𝑥𝑐
(𝑥 − 𝑥𝑐)                  𝑇2𝑥  

 𝜇𝑒𝑓𝑓(𝑥, 𝑦𝑐+, 𝑡) −
 𝜇𝑒𝑓𝑓(𝑥, 𝑦𝑐+, 𝑡) − 𝜇 

𝑦
𝑏+
− 𝑦

𝑐+

(𝑦 − 𝑦
𝑐+
)          𝑇2𝑦+ 

 𝜇𝑒𝑓𝑓(𝑥, 𝑦𝑐−, 𝑡) −
 𝜇𝑒𝑓𝑓(𝑥, 𝑦𝑐−, 𝑡) − 𝜇 

𝑦
𝑏−
− 𝑦

𝑐−

(𝑦 − 𝑦
𝑐−
)          𝑇2𝑦−  

 (4.2.22) 

 

 
Figure 4.2.3 Sketch of the viscosity fields mapping order for the multiphase solver  

 

 

 

 

 

 

 

(iii)𝑻𝟐𝒚+′   

  

(ii)𝑻𝟐𝒙′   

  

(iii)𝑻𝟐𝒚−′ 
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𝝁air
 

𝒚𝒄+
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5  
NUMERICAL 

IMPLEMENTATION   

 

In the above chapters, the methodologies and important techniques, such as the 

domain decomposition/specification, boundary coupling and turbulent viscosity 

transformation, which required in the hybrid method, have been discussed. In this 

chapter, the details of how the hybrid solver methodology is implemented in the open 

source OpenFOAM is presented for both single-phase and multiphase flows. 

5.1 Techniques of sub-cycle strategy 

A key motivation of the hybrid method development is to improve the simulation 

efficiency for turbulent flow. This target is accomplished by the application of the 

numerical strategy related to the time step. It is understood that the quasi-turbulent 

model does not require to solve the turbulent model to acquire the effective viscosity (a 

formula is suggested to directly estimate it using that predicted in the subdomain for the 

residual turbulent model) and, therefore, may use coarser mesh resolution compared to 

the residual turbulent model in the same area near the structure. If the same Co is used 

by both the quasi-turbulent model and the residual turbulent model, the time step 

requirements for two models are different. The former requires longer time step size (in 

some case, it is several times of that required by the latter. As indicated in the section 
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of introduction, compared with the RANS without turbulent model, achieving 

convergent solutions for the turbulent model, such as the k-ω SST, requires a reduction 

of the mesh size and time step size at a scale of  𝑅𝑒−
3
4 and  𝑅𝑒−

1
2, respectively. Greater 

the Reynolds number is, more significant the reduction is. Taking Re = 100 as example, 

solving RANS with turbulent model requires 10% of the time step size for the 

corresponding RANS without turbulent model. Analogically, one may see a similar 

difference of the spatial-temporal resolutions (mesh size and time step size) between the 

quasi-turbulent model, where the turbulent model is not required to be solved, and the 

residual model, in which k-ω SST model is used to resolve the turbulent viscosity. One 

may use the same time step, i.e. that required by the residual turbulent model, the overall 

computational efficiency might be relatively low. Before the flow chart of the algorithm 

and numerical procedure for the hybrid method are presented, the strategy for 

optimising the time step is introduced. This is referred to as the sub-cycle strategy.   

In the proposed sub-cycle strategy, the sub iterative is conducted for the residual 

solver. This means that within each step of the quasi-turbulent simulation, one needs to 

conduct N steps of the simulation of the residual solver in its domain. Considering the 

same Courant number (Co) being applied, the time steps required by the quasi-turbulent 

model and the residual model are (𝐶𝑜∆𝐿)/𝑈𝑚𝑎𝑥and (𝐶𝑜∆𝐿)/𝑈𝑚𝑎𝑥
∗  respectively, where 

∆𝐿 and ∆𝑙  are the minimum mesh sizes in the quasi-turbulent domain and the residual 

field domain, respectively; 𝑈𝑚𝑎𝑥  and 𝑈𝑚𝑎𝑥
∗  are the maximum velocity magnitude 

estimated by quasi-turbulent model and the residual model, respectively. Generally 

speaking, the maximum velocities estimated by two solvers is close. Therefore, the ratio 

of the time step size for the quasi-turbulent model against that for the residual model is 

(𝑈𝑚𝑎𝑥∆𝐿) (𝑈𝑚𝑎𝑥
∗ ∆𝑙)⁄ ≈ ∆𝐿/∆𝑙 . For this reason, it is suggested that the sub-cycle 

number 𝑁𝑠 can be selected by  

𝑁𝑠 = 𝐼𝑛𝑡 (∆𝐿 ∆𝑙⁄ )     (5.1.1) 

As the increase of the sub-cycle number 𝑁𝑠, it is expected to see a more significant 

improvement of the computational efficiency of the present hybrid model, compared to 

the conventional solver. It shall be noted that the minimum mesh size in the current 

simulation often occur near the structure surface. No matter the mesh is moving or 

stationary, the ratio ∆𝐿 ∆𝑙⁄  does not change considerably. Due to this, the sub-cycle 
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number 𝑁𝑠 may only be determined once in the beginning of the simulation after the 

meshes are generated. 

 

5.2 Numerical procedure for single-phase hybrid solver  

After the application of the sub-cycle strategy, the whole framework of the hybrid 

model is clear. The flow chart of the algorithm is shown in the following Figure 5.2.1. 
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Figure 5.2.1 Flow chart of the hybrid model algorithm 
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1. Initialize all the variables in the first step.  

2. Determine the sub-cycle number (𝑁𝑠).  

3. Move the mesh in the quasi-turbulent domain to conform to the motion of the 

structure using Equations (4.1.19) and (4.1.20). 

4. Calculate the nodal velocities for the mesh used by the residual turbulent model 

by interpolating the corresponding values in the quasi-turbulent domain, which 

has been achieved in Step 3. 

5. Update the boundary conditions, Equations (4.1.7) to (4.1.10), where the 

velocity of the structure is required for specifying the structure surface boundary 

condition; Solve the quasi-turbulent model, i.e. Equation (4.1.5) and (4.1.6), to 

obtain 𝑢𝑓𝑖 and  𝑝𝑓 . 

6. Feed the quasi-turbulent solutions, i.e. 𝑢𝑓𝑖 and  𝑝𝑓, to the centres of every cell in 

the computational mesh for the residual solver using numerical interpolation.  

7. Solve the residual turbulent model, i.e. Equations (4.1.11) and (4.1.12) with the 

corresponding boundary conditions, i.e. Equations (4.1.14) to (4.1.17).  

8. Sum the residual and quasi-turbulent field to obtain the overall flow fields 

𝑢𝑇𝑖 and 𝑝𝑇, in the residual domain using Equations (4.1.3) and (4.1.4).  

9. Calculate the turbulent viscosity in the residual domain using k-ω SST model 

and update the effective viscosity in the residual domain using Equation (3.2.3). 

10. Go to Step 7, until the number of the sub-cycle steps reaches prescribed number 

Ns. 

11. Map the effective viscosity from the residual turbulent domain to the overlap 

zone of the quasi-turbulent domain using numerical interpolation; Use Equation 

(4.1.18) to specify the effective viscosity for the quasi-turbulent model; 

12. Go to Step 2 for the next time step, until the simulation is terminated.  

 

Both the quasi-turbulent and the residual turbulent models are solved by using the 

finite volume method. In the finite volume discretization, all the physical quantities are 

cell centred. The Pressure Implicit with Splitting of Operators (PISO) algorithm (Issa 

1986; Ferziger & Peric 2012) is used to decouple the velocity pressure relation.  
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5.3 Numerical procedure for multiphase hybrid solver  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.1 Flow chart for the two-phase hybrid solver algorithm 
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The flow chart showing the numerical procedure of the multiphase hybrid model is 

illustrated in Figure 5.3.1. Compared with the corresponding procedure for the single-

phase flow, additional steps are introduced to treat the free surface. In the procedure, 

Steps 7 and 12 related to the transformation of the variable (𝜇𝑒𝑓𝑓, 𝑢′𝑓𝑖 and  𝑝𝑓𝑖′) between 

the two domains 𝑅
′  and  𝑇′. 

1. Initialize of all the variables in the first step.  

2. Determine the sub-cycle number (𝑁𝑠).  

3. If a moving structure is involved, the dynamic mesh technique shall be applied 

at prior using Equations (4.1.19) and (4.1.20) for moving the mesh in the quasi-

turbulent domain, and the nodal velocity is transferred to the residual domain to 

update the mesh in the residual domain. 

4. Calculate the nodal velocities for the mesh used by the residual turbulent model 

by interpolating the corresponding values in the quasi-turbulent domain, which 

has been achieved in Step 3. 

5. Solve the volume fraction transportation Equation (4.2.17) in the quasi-turbulent 

domain.  

6. Solve the quasi-turbulent model, Equations (4.2.14) and (4.2.15) to obtain 𝑢𝑓𝑖′ 

and  𝑝𝑓′ in which the effective viscosity is evaluated using Equation (4.2.22) at 

prior.   

7. Feed the quasi-turbulent solutions, i.e. obtain 𝑢𝑓𝑖′  and  𝑝𝑓′  , to the centres of 

every cell in the computational mesh for the residual solver using numerical 

interpolation.  

8. Solve the residual turbulent model, i.e. Equations (4.2.19) and (4.2.20) with the 

corresponding boundary conditions.  

9. Sum the residual and quasi-turbulent field to obtain the overall flow fields 

𝑢𝑇𝑖 and 𝑝𝑇, in the residual domain using Equations (4.2.12) and (4.2.13). 

10. Calculate the turbulent viscosity in the residual domain using k-ω SST model 

and update the effective viscosity in the residual domain using Equation (4.2.16).  

11. Go to Step 8, until the number of the sub-cycle steps reaches prescribed number 

𝑁𝑠. 
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12. Map the effective viscosity from the residual turbulent domain to the overlap 

zone of the quasi-turbulent domain using numerical interpolation; Use Equation 

(4.2.22) to specify the effective viscosity for the quasi-turbulent model; 

13. Return to Step 2 for the next time step. 

 

5.4 Finite volume method of governing equations 

Within the above numerical procedures, both the quasi-turbulent and residual 

turbulent model in either the Eulerian form or the ALE form of the governing equations 

are solved by using the finite volume method (FVM) in the OpenFOAM framework. 

Details can be found in the relevant user manual of OpenFOAM or relevant references. 

Only a summary is given below. For clarity, these equations are rewritten to be vector 

form, where U and U* are the velocity vectors used by the quasi-turbulent model and 

the residual turbulent model, respectively. Accordingly, 𝑝 and 𝑝∗ are used to replace the 

pressure in the quasi-turbulent model and the residual turbulent model, respectively. 

The governing equations are discretized using the finite-volume method for the 

temporal, convection and Laplacian term with corresponding discretisation schemes. 

For clarity, only the incompressible momentum equation, which is given in Equation 

(5.4.1) in a vector form, for the incompressible flow is given as an example.  

 
𝜕𝑈

𝜕𝑡
+ ∇ ∙ (𝑈⨂𝑈) = −∇𝑝 + [∇ ∙ (𝜈∇𝑈) + ∇𝑈 ∙ ∇𝜈]  

(5.4.1) 

in which the viscous term, 𝜈 is the kinematic viscosity,  

 
∇ ∙ (𝜈∇𝑈 + 𝑈𝑇) = ∇ ∙ (𝜈∇𝑈) + ∇𝑈 ∙ ∇𝜈  (5.4.2) 

 
Integration of each term in Equation (5.4.1) over the volume corresponding to a 

computational cell (𝛺𝑖). This yields the equation given by 

 

∫ [
𝜕𝑈

𝜕𝑡
+ ∇ ∙ (𝑈⨂𝑈) − ∇ ∙ (𝜈∇𝑈) − ∇𝑈 ∙ ∇𝜈]

𝛺𝑖

𝑑𝛺 = −∫ ∇𝑝
𝛺𝑖

𝑑𝛺  
(5.4.3) 

The integration of the left side of the equation can be rewritten to  
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∫ [
𝜕𝑈

𝜕𝑡
+ ∇ ∙ (𝑈⨂𝑈) − ∇ ∙ (𝜈∇𝑈) − ∇𝑈 ∙ ∇𝜈]

𝛺𝑖

𝑑𝛺

= ∫
𝜕𝑈

𝜕𝑡
 

𝛺𝑖

𝑑𝛺 +∫ (𝑈⨂𝑈) ∙ 𝑛 
𝜕𝛺𝑖

𝑑𝑆 − ∫ (𝜈∇𝑈) ∙ 𝑛 
𝜕𝛺𝑖

𝑑𝑆

− ∫ ∇𝑈 ∙ ∇𝜈 
𝛺𝑖

𝑑𝛺 

(5.4.4) 

The interested cell is identified by the subscript P, as shown in Figure 5.4.1. Its 

neighbour is N. f is the face between P and N is owned by N; length d is distance between 

the centre of the cell P and cell N, 𝑆𝑓 is the face area vector of the cell P, which is the 

product of the outward unit normal vector of the face f and the surface area of the face 

f. 

 

Figure 5.4.1 The face f whose owner is P and neighbour N  

where the Gauss theorem is used, and the volume integration is transferred to the surface 

integration over the surface of the cell 𝜕𝛺𝑖. According to the Rhie & Chow approach 

(Rhie, et al., 1982), the pressure term in the right hand side of Equation (5.4.3) is not 

integrated directly but is replaced by a guessed value, i.e.  

 

𝑈𝑃
𝑟 − 𝑈𝑃

𝑛

∆𝑡
Ω𝑃 + ∑ 𝜙𝑓

𝑛

𝑓∈𝜕𝛺𝑖

𝑈𝑓
𝑟′ − ∑ ν𝑓

𝑛+1

𝑓∈𝜕𝛺𝑖

(∇
1

𝑓
𝑈)

𝑟′

|𝑆𝑓| − ∇𝑈𝑃
𝑛 ∙ ∇ν𝑝

𝑛+1Ω𝑃 

 
in which the integration is conducted; superscripts n and n+1 represent the values at nth 

and (n+1)th time step, respectively. 𝑈𝑃
𝑟  and 𝑈𝑃

𝑛  are the intermediate velocity and the 

velocity at the nth time step for the cell P, 𝜙𝑓
𝑛 is the flux of surface f at the nth time step, 

𝑈𝑓
𝑟′ is the intermediate velocity on the face f of the cell P; ν𝑓

𝑛+1 is the kinematic viscosity 

on the face f of the cell P at (n+1)th time step, (∇
1

𝑓
𝑈)

𝑟′

is the surface gradient operator 

∇
1

𝑓
 act on U,  ν𝑝

𝑛+1 is the kinematic viscosity at the centre of the cell P at new time step 
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(𝑛 + 1), Ω𝑃  is the volume of the cell P. It is noted that the pressure value will be 

corrected after the velocity is sought here using the PISO approach. Eventually, one can 

rewrite Equation (5.4.3) as  

 

∫
𝜕𝑈

𝜕𝑡
 

𝛺𝑖

𝑑𝛺 +∫ (𝑈⨂𝑈) ∙ 𝑛 
𝜕𝛺𝑖

𝑑𝑆 − ∫ (𝜈∇𝑈) ∙ 𝑛 
𝜕𝛺𝑖

𝑑𝑆 −∫ 𝛻𝑈 ∙ 𝛻𝜈 
𝛺𝑖

𝑑𝛺 

=
𝑈𝑃
𝑟 −𝑈𝑃

𝑛

∆𝑡
Ω𝑃 + ∑ 𝜙𝑓

𝑛

𝑓∈𝜕𝛺𝑖

𝑈𝑓
𝑟′ − ∑ ν𝑓

𝑛+1

𝑓∈𝜕𝛺𝑖

(∇
1

𝑓
𝑈)

𝑟′

|𝑆𝑓| − ∇𝑈𝑃
𝑛 ∙ ∇ν𝑝

𝑛+1Ω𝑃 
(5.4.5) 

 

 
For simplification, a linear interpolation scheme is applied here. The intermediate 

velocity of the face  f  is linearized as 

𝑈𝑓
𝑟′ =

𝑈𝑃
𝑟

2
[1 + Θ(𝑓)] +

𝑈𝑁
𝑚

2
[1 − Θ(𝑓)] 

(5.4.6) 

where  

Θ(𝑓) = {
    1         for 𝑃 is the owner for face 𝑓 and 𝑁 is the neighbor
−1        for 𝑁 is the owner for face 𝑓 and 𝑃 is the neghbor

 

 
and m is the inner iteration number of the PISO procedure. For the diffusive term, the 

face gradient discretisation is implicit when the length vector d between the centre of 

the cell P and cell N is orthogonal to the face plane, e.g. 

 

(∇
1

𝑓
𝑈)

𝑟′

|𝑆𝒇| =  Θ(𝑓)
𝑈𝑁
𝑚 − 𝑈𝑃

𝑟

|𝑑|
|𝑆𝑓| 

(5.4.7) 

 
where |𝑑| is the distance between the centre of cell P and the centre of cell N (see Figure 

5.4.1). In the case of non-orthogonal meshes, an additional explicit term is applied but 

not presented here to save the space. 

Substituting Equations (5.4.6) and (5.4.7) to Equation (5.4.5), it yields  

𝐴𝑃𝑈𝑃
𝑟 = (∑𝐴𝑁𝑈𝑁

𝑚 + 𝐸𝑃
𝑛

∀𝑁

) = 𝐻(𝑈𝑚) 
(5.4.8) 

 
the parameters 𝐴𝑃, 𝐴𝑁 and 𝐸𝑃

𝑛 given as: 

 

𝐸𝑃
𝑛 =

𝑈𝑃
𝑛

∆𝑡
+ ∇𝑈𝑃

𝑛 ∙ ∇ν𝑝
𝑛+1 

(5.4.9) 

𝐴𝑃 = (
Ω𝑃
∆𝑡
+ ∑

1

2
𝜙𝑓
𝑛

𝑓∈𝜕𝛺𝑖

[1 + Θ(𝑓)] + ∑ ν𝑓
𝑛+1

𝑓∈𝜕𝛺𝑖

Θ(𝑓)
|𝑆𝒇|

|𝑑|
)
1

Ω𝑃
 

(5.4.10) 
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𝐴𝑁 = (−
1

2
𝜙𝑓
𝑛[1 − Θ(𝑓)]+ν𝑓

𝑛+1Θ(𝑓)
|𝑆𝒇|

|𝑑|
)
1

Ω𝑃
 

(5.4.11) 

 
Because the volume flux 𝜙𝑓

𝑛 = (𝑈𝑃
𝑟)𝑓 ∙ 𝑆𝑓 and thus,  

 

𝜙𝑓
𝑟 = (

𝐻(𝑈𝑚)

𝐴𝑃
)
𝑓

∙ 𝑆𝑓 
(5.4.12) 

 
Equation (5.4.12) completes the predictor step. However, the pressure contribution is 

not considered until now, after the discretisation the pressure can be treated as follows: 

 

(
−∇𝑝

𝐴𝑃
)
𝑓

∙ 𝑆𝑓 = −(
1

𝐴𝑃
)
𝑓

(∇
1

𝑓
𝑃𝑚+1) |𝑆𝑓| 

(5.4.13) 

 
The above equation can be rewritten as 

 

𝜙𝑓
𝑚+1 = 𝜙𝑓

𝑟 − (
1

𝐴𝑃
)
𝑓

(∇
1

𝑓
𝑃𝑚+1) |𝑆𝑓| 

(5.4.14) 

 
To solve the pressure field  𝑝𝑚+1, the law of mass conservation is imposed for the 

incompressible medium, which is given as 

 

∑ 𝜙𝑓
𝑚+1 = 0

𝑓∈𝜕𝛺𝑖

 
(5.4.15) 

 
Then, substituting (5.4.14) to (5.4.15), it leads to  

 

∑ (
1

𝐴𝑃
)
𝑓

(∇
1

𝑓
𝑃𝑚+1) |𝑆𝒇| = ∑ 𝜙𝑓

𝑟

𝑓∈𝜕𝛺𝑖𝑓∈𝜕𝛺𝑖

 
(5.4.16) 

 
Equation (5.4.16) results in a linear system for  𝑃𝑚+1, and can be solved using the 

preconditioned conjugate gradient (PCG) method. Besides PCG, OpenFOAM provides 

various other options such as preconditioned biconjugate gradient, generalized 

geometric–algebraic multi-grid and other smooth solvers, which uses a smoother for 

convergence (Greenshields 2017). After   𝑃𝑚+1 is updated using Equation (5.4.16), flux 

at (𝑚 + 1)th iteration step can be calculated at each face by using Equation (5.4.14). 

The cell centred velocity fields 𝑈𝑝
𝑚+1are obtained by reconstructing the face velocity 

flux using the following expression: 
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𝑈𝑝
𝑚+1 = 𝑈𝑃

𝑟 +
1

𝐴𝑃
( ∑

(𝑆𝒇⨂𝑆𝒇)

|𝑆𝒇|
𝑓∈𝜕𝛺𝑖

)

−1

∙

(

 ∑

(

 
𝜙𝑓
𝑚+1 − (𝑈𝑃

𝑟)𝑓 ∙ 𝑆𝒇

(
1
𝐴𝑃
)
𝑓 )

 

𝑓∈𝜕𝛺𝑖

𝑆𝒇

|𝑆𝒇|

)

  

(5.4.17) 

 
PISO iteration is performed by changing the superscript m to (𝑚 + 1)and updating 

𝐻(𝑈𝑚) in Equation (5.4.8) with the velocity obtained from Equation (5.4.17), and 

solving the equations through Equation (5.4.17), thereby updating P, 𝜙𝑓 and U. This 

procedure is repeated several times to ensure that the velocity and pressure field together 

satisfy both continuity and momentum equations. At the end of the iteration procedure, 

the values corresponding to the M th iteration are assigned to the corresponding values 

at the new time step (𝑛 + 1),  

 
𝜙𝑓
𝑛+1 = 𝜙𝑓

𝑀, 𝑈𝑛+1 = 𝑈𝑀 and 𝑃𝑛+1 = 𝑃𝑀 (5.4.18) 

 

5.5 Numerical implementation of the boundary conditions 

 

In conjunction with the governing equations, the boundary conditions are required to 

construct a well-posed mathematical model. This section gives the numerical 

implementations. Details of how two types of boundary conditions can be built into the 

algebraic equations are demonstrated. It is important to note that the following 

numerical implementations can be applied by both the Quasi-turbulent model and the 

residual turbulent model. Consider the discretisation of the convection and diffusion 

terms integrated over a control volume and linearized, results in 

∫ ∇ ∙ (𝑢𝜙)𝑑𝛺

𝛺

=∑𝐹𝑓 𝜙𝑓 

(5.5.1) 

∫ ∇ ∙
𝛺

(𝜈∇𝜙)𝑑𝛺 =∑𝜈 𝑆𝐴 ∙ (∇𝜙)𝑓 
(5.5.2) 

where the value of a property per unit mass is denoted by 𝜙, quantities evaluated at the 

faces are subscripted by f, the face flux 𝐹𝑓 assigned by  𝑆𝐴 ∙ 𝑢𝑓
𝑁−1.  

 



 

108 

 

5.5.1 Dirichlet boundary condition  

The Dirichlet boundary condition prescribes the value of 𝜙𝑓 at the boundary face f 

equal to 𝜙𝑏. With respect to the convection term, it can be specified by 

∫ 𝛻 ∙ (𝑢∗𝜙)𝑑𝛺

𝛺

= ∑ 𝐹𝑓𝜙𝑓 = ∑ 𝐹𝑛𝑏𝜙𝑛𝑏 +

𝑓∈𝜕𝛺𝑖

∑ 𝐹𝑏𝜙𝑏
𝑓∈𝜕𝛺𝑖𝑓∈𝜕𝛺𝑖

 

(5.5.3) 

 
where the subscript  𝑏  and 𝑛𝑏  denote the boundary faces and non-boundary faces, 

respectively. For the diffusion term, in which 𝑣 is the dynamic viscosity of the flow. 

The face gradient at the boundary face is calculated from the known values at the 

boundary and the centre of the cell using 

 

∫ 𝛻 ∙
𝛺

(𝜈𝛻𝜙)𝑑𝛺 = ∑ 𝑣 𝑆𝐴 ∙ (𝛻𝜙)𝑓
𝑓∈𝜕𝛺𝑖

= ∑ 𝑣|𝑆𝐴| ∙ (
𝜙𝑏 − 𝜙𝑃
|𝑑|

)

𝑓∈𝜕𝛺𝑖

 
(5.5.4) 

  

5.5.2 Neumann boundary condition 

For a Neumann boundary condition, the gradient with respect to the unit normal 

vector of the boundary face is prescribed and numerically implemented using 

 
𝜙𝑏 − 𝜙𝑃
|𝑑|

= 𝑔𝑏 
(5.5.5) 

 
For the convection term, 𝜙𝑏 can be updated by the value at the centre of the cell and the 

given gradient gb, i.e. 

∫ ∇ ∙ (𝑢∗𝜙)𝑑𝛺

𝛺

= ∑ 𝐹𝑛𝑏𝜙𝑛𝑏
𝑓∈𝜕𝛺𝑖

+ ∑ 𝐹𝑏(𝑔𝑏|𝑑| + 𝜙𝑃)

𝑓∈𝜕𝛺𝑖

 

(5.5.6) 

 
For the diffusion term, the dot product between the face area vector and (∇𝜙) is known. 

This results in 

∫ ∇ ∙
𝛺

(𝜈∇𝜙)𝑑 = ∑ 𝑣 𝑆𝐴 ∙ (∇𝜙)𝑓 =

𝑓∈𝜕𝛺𝑖

∑ 𝑣 𝑆𝐴 ∙ (∇𝜙)𝑛𝑏 +

𝑓∈𝜕𝛺𝑖

∑ 𝑣 𝑆𝐴 ∙ 𝑔𝑏  

𝑓∈𝜕𝛺𝑖

 
(5.5.7) 
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6  
VALIDATION OF THE 

HYBRID MODEL 

A thorough investigation of the hybrid solver proposed in this thesis is conducted, 

which includes (1) verification tests for the stationary circular cylinder exposed to the 

laminar and turbulent flows, (2) examinations of the oscillating circular cylinder 

undergoing various combinations of (Re, A/D, Fr) for the laminar and turbulent flows. 

With respect to (1) and (2), the simulation results of the hybrid model are compared to 

that of the original RANS solver, and other available experimental observations data. 

Such data are well documented, e.g., by both physical experiments (Zdravkovich, 1990; 

Norberg, 1998; 2003b; Norberg, 2003a;  Lin, et al., 1995) and numerical simulations 

(Park, et al., 1998; Bardina, et al., 1997; Rahman, et al., 2007; Ünal, et al., 2010; Menter, 

1994; Ong, et al., 2009; Stringer, et al., 2014; Selvam, 1997).  

 

6.1 Validation of the single-phase hybrid solver  

In this subsection, the performance of the single-phase hybrid solver is investigated. 

Two situations are considered, for flow passing either a stationary or an oscillating 

cylinder. In the numerical studies, the optimal domain size is generally the balance 
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between the accuracy and efficiency. The required minimum domain size depends on 

the factors like flow property, Reynolds number, domain shape and the boundary 

conditions. The position of the boundaries (see Figure 6.1.1) should be designed 

carefully, and attention should be paid to: (1) the distance from the inlet boundary to the 

cylinder axis (𝐷𝑖𝑛), (2) the distance from the cylinder axis to the outlet boundary (𝐷𝑜𝑢𝑡), 

and (3) the cross-flow direction distance (𝐷𝑇𝑟). Due to the nature of this proposed hybrid 

method, the computational domain size for the quasi-turbulent domain is same to that 

of the original RANS solver while the overlapping domain can be smaller. The position 

of truncation should be determined in such a way that the resulted computational domain 

of the residual solver is as small as possible.  

The size of computational domain (as shown in Figure 6.1.1) should be large enough 

so that the artificially-added boundaries, such as inlet and outlet, do not considerably 

affect computational results, but it should be kept as small as possible to save 

computational time. Many suggestions have been made on how to determine the size of 

computational domain. Sohankar, et al. (2003b) investigated the minimum 𝐷𝑖𝑛 for the 

flow around a square-section cylinder at Re =100 by using original RANS solver, and 

they found that 𝐷𝑖𝑛 should be at least ten times larger than the characteristic length of 

the cylinder (diameter D). With respect to 𝐷𝑇𝑟, Barkley and Henderson (1996) found 

that 𝐷𝑇𝑟 ≥44D was necessary at Re=190. Blackburn and Henderson (1999) also used a 

domain of 𝐷𝑇𝑟 =30D in the simulation for an oscillating cylinder at Re=500, meanwhile 

Stringer et al. (2014) used a rectangular domain of 𝐷𝑇𝑟 =40D for a large range of 

Reynolds number. In this study, pre-tests are performed by using a rectangular domain 

with 𝐷𝑇𝑟 range from 20D to 40D based on the original RANS solver, and it is found 

that the solution is not considerably affected only when 𝐷𝑇𝑟 ≥32D. When determining 

the downstream size 𝐷𝑜𝑢𝑡  one should ensure that the vortexes are fully developed 

(Stringer, et al., 2014). Considering the experience given in the reference and based on 

our own tests (the results are not presented here for saving the space), 𝐷𝑜𝑢𝑡 ≥ 40D is 

required. Taking all the factors into account, a domain size of 32D×60D is adopted in 

this study with 𝐷𝑇𝑟 =32D, 𝐷𝑖𝑛 = 20 and 𝐷𝑜𝑢𝑡 = 40.  
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Figure 6.1.1 Sketch of two overlapping meshes ( • denotes the cell centre of the truncated 

overlapping domain mesh; × denotes the cell centre of the quasi-turbulent domain with a 

coarse mesh) 

 

The results from the hybrid method will be compared with those from the original 

RANS method. For this purpose, the meshes for both methods are required. For the 

original method, the outmost circular grid line has a diameter of 3D~4D, depending on 

if the cylinder is stationary or moving. The thickness of first layer of grids near the 

cylinder surface is determined by ∆𝐿𝑚𝑖𝑛 = 2 ∗ (𝑣𝑒𝑓𝑓  𝑦
+/𝑢∗), where 𝑢∗ is the frictional 

velocity near the cylinder surface, 𝑣𝑒𝑓𝑓 is the local kinematic viscosity of the fluid and 

the value of 𝑦+ is chosen as 1.0 in this study. The thickness of the grid layers beyond 

the first layer is specified by 𝛿𝑙−1∆𝐿𝑚𝑖𝑛, where δ is an expanding factor and l refers the 

layer concerned, e.g., l=2 for the second layer from the cylinder surface. According to 

the numerical tests, δ = 1.1 ~1.2. If δ >1.2, the error is too large while the computation 

costs too much time if δ <1.1 on the other hand. During the generation of mesh, the 

aspect ratios of all elements are controlled to be less than 5, where the aspect ratio is 

defined as the ratio of the largest length to the shortest length of an element. 

 

http://www.cfd-online.com/Wiki/Friction_velocity
http://www.cfd-online.com/Wiki/Friction_velocity
http://www.cfd-online.com/Wiki/Kinematic_viscosity
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The mesh for the hybrid method include two parts. The first part covers the 

overlapping domain (ΩR) for finding the residual solutions. This part of the mesh is the 

same as that for the original RANS method in the same area (ΩT1). The second part is 

the mesh for the quasi-turbulent domain which has the same size as the domain for the 

original method. The mesh structure of this part is the same as that for the original 

RANS method but the mesh size is equal to 𝑁𝑠 multiplying the mesh size of the latter, 

so coarser than the former. Figure 6.1.2 shows the mesh for the hybrid method. 

 

Figure 6.1.2 Sketch of the block mesh configuration for both the quasi-turbulent and the 

overlapping domains 

 

6.1.1 Validation of flow past a stationary circular cylinder  

 

Firstly, the hybrid solver in this study is validated by simulating a stationary circular 

cylinder in the flow at Re=1000 and 10000. For the turbulent flow of Re=1000 and 

10000, to deal with the turbulent viscosity, the k-ω SST turbulence model is employed 

following the test result in Chapter 3 and studies by Rahman, et al. (2007), Ünal, et al. 

(2010), Stringer, et al. (2014) and Robert & Zang (2012). In addition, the same wall 

boundary treatment method is applied to both the original and hybrid solver. An 

example of the hybrid solver simulation procedure is given in Figure 6.1.3. Figure 6.1.3. 

(a) illustrates the velocity field simulated using the quasi-turbulent model in the entire 

computational domain(ΩT). The residual velocity field is captured by the residual 

turbulent model in a truncated domain(ΩR) in Figure 6.1.3 (b). At the same time, the 

two-way transformation of the eddy viscosity and quasi-turbulent velocity and pressure 

𝛀T1 

𝛀T

𝛀𝛀R 
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field conducted. The summing of the quasi-turbulent model solution and that of the 

residual turbulent model leads to the complete solution of the turbulent flow (see Figure 

6.1.3 (c)). 

The key parameters such as 𝐶𝐿 𝑟𝑚𝑠, 𝐶𝐷̅̅̅̅  and  𝑆𝑡 are examined in the validation, where 

𝐶𝐿 𝑟𝑚𝑠 means the root mean square of the lift coefficient, 𝐶𝐷̅̅̅̅  is the average value of the 

drag coefficient,  𝑆𝑡 is the strouhal number. The results are presented in Table 6.1.1 and 

Table 6.1.2. It is found that 𝐶𝐿 𝑟𝑚𝑠, 𝐶𝐷̅̅̅̅  and 𝑆𝑡 computed by the hybrid model agree well 

with that of the original RANS solver. For example, in the case of Re=1000 (see Table 

6.1.1), the disparity for 𝐶𝐿 𝑟𝑚𝑠,  𝐶𝐷̅̅̅̅  and St between the two solvers are 3.6%, 0.2% and 

0.5%, respectively. For the case Re=10000 (see Table 6.1.2), the relative error of 0.2%, 

1.8% and 1.5%, are found for 𝐶𝐿 𝑟𝑚𝑠, 𝐶𝐷̅̅̅̅  and 𝑆𝑡 , respectively. Therefore, it can be 

concluded that the hybrid solver can provide satisfactory results for the cases studies so 

far. It also indicates that even with a truncated computational domain for the turbulent 

solver, this hybrid solver can provide solutions with the enough accuracy.  
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Figure 6.1.3 Procedure of the vortex shedding simulation using the hybrid method 

Table 6.1.1 Disparity between the two solvers under Re=1000  

 (Mesh number, Co)  𝐶𝐿 𝑟𝑚𝑠 𝐶𝐷̅̅̅̅  St 

Original solver solution (197400, 0.3) 0.56 1.019 0.201 

Hybrid solver solution (196792, 0.3) 0.58 1.020 0.202 

Disparity (%)  3.6% 0.2% 0.5% 

 

Table 6.1.2 Disparity between the two solvers under Re=10000  

 (Mesh number, Co)  𝐶𝐿 𝑟𝑚𝑠 𝐶𝐷̅̅̅̅  St 

Original solver solution (1340496. 0.3) 0.639 1.11 0.203 

Hybrid solver solution (1338075. 0.3) 0.6402 1.09 0.206 

Disparity (%)  0.2% 1.8% 1.5% 

 

(a) 

(b) 

(c) 

Eddy Viscosity  

Quasi-turbulent 

Velocity, Pressure  

Coupling 

boundary  
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6.1.2 Validation of flow past an oscillating circular cylinder 

In this section, the validation of the hybrid model for simulating the controlled 

vibrating circular cylinder in flow are carried out, where the prescribed transverse 

oscillation of the cylinder is given as in Equation (3.4.1). Firstly, the case with Re=185 

is performed, Fr is ranging from 0.8 to 1.2 with A/D is 0.2 and 0.4, respectively. The 

lift and drag coefficients for case A/D=0.2 and Fr=0.9 are depicted in Figure 6.1.4, 

which shows a good agreement between the hybrid model and original RANS solver. 

Additionally, comparisons of  𝐶𝐷̅̅ ̅̅  and 𝐶𝐿 𝑟𝑚𝑠 between the hybrid model and the original 

RANS solver are given in Table 6.1.3, in which the satisfactory results are achieved 

with a maximum error of 4%. Comparison of another case with a larger amplitude ratio 

(Re, A/D, Fr) = (185, 0.4, 0.9) is also conducted, as shown in Table 6.1.4. Both  𝐶𝐷̅̅ ̅̅  and 

𝐶𝐿 𝑟𝑚𝑠 from the two solvers suggest a good agreement with the relative errors are 2.2% 

and 0.87%, respectively.  

 
Figure 6.1.4 Time histories of drag and lift coefficients at Re=185 with A/D =0.2 and 

Fr=0.9 
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Table 6.1.3 Comparison between the hybrid model and original RANS solver for the case 

(Re, A/D, Fr) = (185, 0.2, 1.2) 

 (Mesh number, Co)  𝐶𝐿 𝑟𝑚𝑠 𝐶𝐷̅̅̅̅  

Original solver solution  (124600, 0.4) 0.96 1.372 

Hybrid solver solution  (99236, 0.4) 0.92 1.35 

Disparity (%)  4% 1.6% 

 

Table 6.1.4 Comparison between the hybrid model and original RANS solver for the case 

(Re, A/D, Fr) = (185, 0.4, 0.9) 

 (Mesh number, Co)  𝐶𝐿 𝑟𝑚𝑠 𝐶𝐷̅̅̅̅  

Original solver solution  (189464, 0.4) 0.1546 1.695 

Hybrid solver solution  (181616, 0.4) 0.158 1.68 

Disparity (%)  2.2% 0.87% 

 
 
A further comparison of 𝐶𝐷̅̅̅̅  and 𝐶𝐿 𝑟𝑚𝑠 between the hybrid model and original RANS 

solver in Pham, et al. (2010) are presented. 𝐶𝐷̅̅̅̅  and 𝐶𝐿 𝑟𝑚𝑠 as a function of frequency 

ratio ranging from 0.8 to 1.2 are depicted in Figure 6.1.5 and Figure 6.1.6 with two 

oscillation amplitudes (𝐴/𝐷=0.2 and 𝐴/𝐷=0.4), respectively. It can be observed that 

for both low (𝐴/𝐷=0.2) and high (𝐴/𝐷=0.4) amplitudes, there are big variations of the 

force coefficients with the increase of the Fr. This trend indicates that the lift amplitude 

and phase is dominated by the frequency ratio while less related to the amplitude ratio. 

In addition, for both studied cases,   𝐶𝐷̅̅̅̅  is not that sensitive to transition frequency (𝐹𝑇) 

and have a wide peak around the transition frequency. However,  𝐶𝐿 𝑟𝑚𝑠 experience a 

dramatic jump around the transition frequency which is around 1.0 in this case. The 

maximum difference between the two data sets with respect to 𝐴/𝐷=0.2 are 8.1% and 

7.2% at Fr=1.1 for 𝐶𝐷̅̅̅̅  and 𝐶𝐿 𝑟𝑚𝑠 , respectively. While for the cases 𝐴/𝐷=0.4, the 

maximum disparities are 7% and 0.2% for 𝐶𝐷̅̅̅̅  and 𝐶𝐿 𝑟𝑚𝑠 at Fr=1.1, respectively.  
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Figure 6.1.5 Comparison of 𝐶𝐷̅̅̅̅  and 𝐶𝐿 𝑟𝑚𝑠 between the hybrid model and original RANS 

solver for 𝐴/𝐷=0.2 

 
         

Figure 6.1.6 Comparison of 𝐶𝐷̅̅̅̅  and 𝐶𝐿 𝑟𝑚𝑠 between the hybrid model and original RANS 

solver for 𝐴/𝐷=0.4 
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Secondly, the cases with higher Reynolds number of Re=1000 and Re=2300 are 

considered. Time histories of drag and lift coefficients are exhibited for (Re, A/D, Fr) = 

(1000, 0.2, 1.1) in Figure 6.1.7 and Figure 6.1.8, which demonstrates a good agreement 

between the two solvers.  

 Figure 6.1.7 Time histories of drag coefficients with Fr=1.1 and A/D=0.2 at Re=1000 

 

 

Figure 6.1.8 Time histories of lift coefficients with Fr=1.1 and A/D=0.2 at Re=1000 

 

The disparities between results of the two solvers are given in Table 6.1.5 and Table 

6.1.6, in which the maximum disparities are 1% and 3.4% for  𝐶𝐿 𝑟𝑚𝑠  and  

𝐶𝐷̅̅̅̅  at (Re, A/D, Fr) = (1000, 0.2, 1.1) and (2300, 0.2, 08), respectively. All these 
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comparisons suggest that the hybrid solver is accurate enough for simulating flow 

passing an oscillating cylinder. 

 

Table 6.1.5 Comparison between the hybrid model and original RANS solver for the case 

(Re, A/D, Fr) = (1000, 0.2, 1.1) 

 (1000, 0.2, 1.1) 

 (Mesh number, Co)  𝐶𝐿 𝑟𝑚𝑠 𝐶𝐷̅̅̅̅  

Original solver solution (442288,0.2) 1.398 1.579 

Hybrid solver solution  (419870,0.2) 1.412 1.593 

Absolute disparity (%)  1% 0.88% 

 

Table 6.1.6 Comparison between the hybrid model and original RANS solver for the case 

(Re, A/D, Fr) = (2300, 0.2, 08) 

 (2300, 0.2, 08) 

 (Mesh number, Co)  𝐶𝐿 𝑟𝑚𝑠                               𝐶𝐷̅̅̅̅  

Original solver solution (897866,0.2) 0.28 1.1 

Hybrid solver solution  (884410,0.2) 0.29 1.077 

Absolute disparity (%)  3.4% 2.1% 

 

Furthermore, the results obtained by using the hybrid model are compared to the 

experimental data from Carberry et al. (2005), as shown in Figure 6.1.9 and Figure 

6.1.10. The biggest difference between the results of the experiment and the present 

hybrid model appears at Fr=1.0 with a disparity of 13% for the lift coefficient, while 

11% for drag coefficient at Fr=0.9. The reason that the maximum difference arises 

around Fr=0.9~1.0 is that the frequency transition occurs and the unstable flow may 

affect both the accuracy of the numerical results and experimental measurements.  
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Figure 6.1.9 Comparison of 𝐶𝐷̅̅̅̅  as a function of Fr 

 

 

 

Figure 6.1.10 Comparison of  𝐶𝐿 𝑟𝑚𝑠 as a function of 𝐹𝑟  
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6.1.2.1 Validation in frequency domain  

To find the frequency of the vortex shedding, the power spectra of the time histories 

of 𝐶𝐿 at different A/D and Fr are displayed in Figure 6.1.11. In the cases of Fr = 0.8, 0.9 

and 1.0 (see Figure 6.1.11 (a), (b) and (c)), the frequency corresponding to the peak of 

the power spectra of 𝐶𝐿 in the figure (denoted by fs) is shown to be the same as that of 

the cylinder oscillating frequency. While after it exceeds the transition frequency, the 

spectra broaden and side bands emerged due to nonlinearities (see Figure 6.1.11(d) and 

(e)). Same spectra analysis results have been found by Pham, et al. (2010). This 

observation also validated the hybrid solver from the spectra domain point of view.   
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Figure 6.1.11 Power spectra of 𝐶𝐿 for: (a) Fr =0.8, (b) Fr =0.9, (c) Fr =1.0, (d) Fr =1.1, (e) Fr 

=1.2 
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6.1.2.2 Vortex street behaviour and weak instability 

The change of the wake mode is believed closely linked to the forces shift (Blackburn 

& Henderson, 1999; Williamson & Roshko, 1988; Carberry et al., 2004). Hence, an 

accurate representation of the crucial features of the wake mode is desired. This section 

highlights the comparison of the hybrid model result and the experimental data 

regarding the wake mode. The hybrid model is also capable of capturing the details of 

the development of the wake shedding during the oscillation period. The wake shedding 

mode is represented by plotting the instantaneous vorticity contours. The red colour 

denotes the positive vorticity while the negative vorticity is in blue.  

Figure 6.1.12 and Figure 6.1.13 show the instantaneous vorticity contours when the 

cylinder is at different positions (see (a)-(b)-(c)-(d)) during one oscillation period. In 

Figure 6.1.12, two vortices are generated per oscillation cycle which is represent the 

high-frequency stage, this 2S mode shed a positive vorticity structure to the near wake, 

and the attached vorticity wraps tightly around the base of the cylinder. In the 2P mode, 

two vortex pairs are formed per cycle with long attached shear layers (see Figure 6.1.13). 

This stage is corresponding to the low-frequency stage whose vortex shedding phase is 

different to that of 2S mode which shedding a negative shedding in the near wake. The 

changing of the wake mode is linked to the shift of the lift phase and amplitude. A 

dramatic increase of the lift coefficient can be observed when comparing Figure 6.1.12 

(e) and Figure 6.1.13 (e). The same wake feature is also captured by the DPIV data of 

Govardhan & Williamson (2000) and RANS model simulation by Pan et al. (2007).  
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Figure 6.1.12 Instantaneous vorticity contours in one period (from (a) to (d)) for cases at 

low-frequency stage with a 2S mode; (e) time history of lift and drag coefficient for the same 

case 

(a) (b) 

(d) (c) 

(e) 
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Figure 6.1.13 Instantaneous vorticity contours in one period (from (a) to (d)) for cases at low-

frequency stage with a 2P mode; (e) time history of lift and drag coefficient for the same case 

 

(a) (b) 

(c) (d) 

(e) 
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6.2 Validation of the multiphase hybrid solver 

The case studied in this section is the interaction between a horizontal submerged 

cylinder and regular surface waves. The validations of the multiphase hybrid solver are 

carried out by comparing its results with both experimental data (Conde et al., 2009) 

and numerical simulation solution (Teixeira 2009).  

In this studied case, the diameter of the cylinder is 0.05m, which is horizontally 

placed at 𝑥𝑐=0 with its axis placed at a depth of 0.015m. Under this condition, the 

submergence gap ratio between the water level and the cylinder surface is equal to 3D. 

In the numerical wave tank, the circular cylinder is located 2m away from inlet wave 

generation and 3.6m from the outlet boundary. The total length of the numerical tank is 

5.6m with the water depth is 0.425m. The locations of four gauges (x-𝑥𝑐)/𝜆 are equal to 

-0.503, 0.0692, 0.509 and 1.264. The wave parameters used in the investigation are 

given by table 6.2.1. 

Different configuration of the domain size, mesh number and absorption zone size 

are considered (see Table 6.2.2) in the convergence tests. The 2nd setup (30 cells per wave 

height and 80 cells per wave length with the absorption zone is  𝐿′ = 1.2𝜆) is adopted 

in the following simulation which is found to be less expensive while can maintain good 

accuracy. The courant number for both the volume fraction equation and the momentum 

equation are set as 0.25. For validation purpose, the size of the overlapping domain is 

the same with the quasi-turbulent domain to explore the accuracy, but will be reduced 

later to test the efficiency of the hybrid solver.  

 

 

 

 

 

 

 
Figure 6.2.1 Configuration of the numerical wave tank  

 

𝐿′ = 1.2𝜆 𝐿′ = 1.2𝜆 

d=0.425m 

D=0.05m 

𝜆 = 0.796𝑚 

H=0.0238m 

x 

y 

Wave gauge 1 Wave gauge 2 Wave gauge 3 Wave gauge 4 

𝐿′′ = 3.68𝜆 
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Table 6.2.1 Wave parameters 

Wave parameters Value  

Wave number, k 7.9064m 

Wave height, H=2a 0.0238m 

Wave length,  𝜆 0.796m 

Wave frequency, f  1.4s-1 

 

 
Table 6.2.2 Mesh generation configuration 

           Simulation No 

1 2 3 

Wave tank length, x-direction, L(m)  4 5.6 7.8 

Wave tank height, y-direction, d(m) 0.425 0.425 0.425 

Wave absorption zone length(m) 𝜆 1.2 𝜆 1.5 𝜆 

Cell per wavelength, cpw [cells/ 𝜆] 60 80 110 

Cell per wave height, cpw [cells/ 𝐻] 20 30 35 

 

The normalized free surface elevation is plotted in Figure 6.2.2, in which the result 

from the hybrid solver is compared to the experimental data and other numerical 

simulation. Figure 6.2.2 shows that the two numerical simulation results generally agree 

with each other. The largest gap between the experimental and numerical simulation 

occurs at (x-xc)/𝜆=2, where the experimental data captures a larger amplitude around 

1.2a. However, a smaller amplitude is predicted by both the hybrid solver and the 

numerical simulation of Teixeira (2009).  
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Figure 6.2.2 Comparison of the wave surface elevation profiles  

 

The free surface time histories at different gauges, i.e., (x-xc)/𝜆 = -0.4, 0.055, 0.4052 

and 1.006, are also compared, as shown from Figure 6.2.3 to Figure 6.2.6. Figure 6.2.3 

only presents the result obtained by numerical simulations since experimental data is 

not available at guage1. Good agreement is observed between the present hybrid model 

and that of Teixeira (2009) in literature, which implies that the hybrid solver can give 

an accurate prediction of the free surface in the tested case.  

 
Figure 6.2.3 Free surface time history at (x-xc)/𝜆 = -0.4 
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Figure 6.2.4 Free surface time history at (x-xc)/𝜆 =0.055 

 

 
Figure 6.2.5 Free surface time history at (x-xc)/λ =0.4052 

 
Figure 6.2.6 Free surface time history at (x-xc)/𝜆 =1.006 
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6.3 Discussion  

The validation cases of the hybrid model presented in this chapter illustrate that the 

hybrid model can give satisfactory results in terms of accuracy for both single- and 

multi-phase flow, in comparison with the original RANS solver, experimental data and 

other numerical solutions. It indicates that the present hybrid model provides a good 

alternative to be employed to simulate turbulent flow. In the next chapter, further 

numerical tests will be carried out to investigate its efficiency.  
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7  
CASE STUDY OF THE 

IMPROVEMENT ON 

EFFICIENCY 

 

7.1 Efficiency test of the single-phase hybrid model 

As the main purpose of the proposed hybrid model, the efficiency of the model, 

especially with the sub-cycle strategy is tested in this section. For this purpose, flows 

past both the stationary and vibrating circular cylinder are simulated with different sub-

cycle numbers (Ns). Then the comparison of the performance, i.e., CPU time, between 

the hybrid solver and the original RANS solver are presented. In addition, all the studied 

cases are tested on the workstation equipped with the Intel Xeon E5-2660 v3 (Intel 

Corporation, Santa Clara, CA, USA) of a 2.6GHz processor.  

7.1.1 Test on flow passing a stationary cylinder 

 

It should be noted that in the following simulations of the flow passing a stationary 

circular cylinder with different Ns, the minimum domain size and cell number are 
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adopted based on the conclusions from the convergence tests. The details of how to 

generate the mesh for both the original RANS solver and hybrid model are explained in 

Chapter 6.   

The CPU time for the simulations is demonstrated in Table.7.1.1, including the mesh 

number in both the quasi-turbulent domain (T) and the residual turbulent domain (R). 

It should be noted that in terms of the sub-cycle number (Ns), there exists a critical sub-

cycle number (𝑁𝐶) which is the maximum value of Ns to obtain the acceptable solution. 

The selection of 𝑁𝐶 subject to the concerns of stability and efficiency: (1) the bigger Ns 

generally means larger time step for the quasi-turbulent solver within each time step. 

Even though an implicit time scheme like backward Euler is applied in the simulation, 

too large time step may have the difficulty of converging reliably. (2) When a bigger Ns 

is applied, more iterations are taken to achieve the solution satisfies the residual 

requirement in each loop. Take the cases in Table 7.1.1 with NC= 5 and 10 for example, 

larger Ns beyond 𝑁𝐶  leads to a larger time step in the quasi-turbulent solver and it 

indicates that more iterations are taken in each loop to satisfy the prescribed residual 

requirement and therefore, time saving is not demonstrated. Another consequence is that 

the relative error between the two solvers are beyond the acceptable criteria. 

 Furthermore, from Table 7.1.1, we can see, an improvement of 44% is achieved by 

𝑁𝐶=5 for Re=1000. The trend observed is that with the increase of the Reynolds number, 

the further improvement is achieved, e.g., for the case of Re=10000, a 69% saving of 

the CPU time is achieved with 𝑁𝐶=10 while the corresponding maximum relative error 

between the two solvers are 4.5% for 𝐶𝐷̅̅̅̅  and 1.97% for St, respectively.  
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Table 7.1.1 Comparison of efficiency between the two solvers with a stationary cylinder 

Test case Solver Sub-cycle 

number N 

 𝐶𝐿 𝑟𝑚𝑠 𝐶𝐷̅̅̅̅  St CPU time 

(hour) 

Mesh cell 

number 

Re=1000 

(Co=0.3) 

Original 

solver 

None sub-

cycle 

0.5611 1.019 0.201 49.63 197400 

Hybrid solver 

 

Ns=2 0.5616 1.021 0.202 33.82 R : 127400 

T : 71500 

𝑁𝐶=5 0.5626 1.025 0.202 28.27 R : 127400 

T : 58088 

Re=10000 

(Co=0.3) 

Original 

solver 

None sub-

cycle 

0.639 1.11 0.203 97.95 1340496 

Hybrid solver 

 

Ns=2 0.640 1.0 0.205 68.21 R : 897664 

T : 595253 

Ns=5 0.637 1.11 0.204 43.14 R : 897664 

T : 290535 

𝑁𝐶=10 0.71 1.06 0.207 29.90 R : 897664 

T : 102100 

 Max CPU 

time-saving 

    69%  

 

7.1.2 Test on flow passing an oscillating cylinder  

 

In this subsection, two cases of flow passing an oscillating cylinder are considered, 

(Re, A/D, Fr) = (1000, 0.2, 0.8) and (2300, 0.5, 0.8). The relative error between the 

original solver and hybrid solver for the two cases are analysed in Table 7.1.2. Apparent 

efficiency improvement is exhibited, particularly with the increase of the Reynolds 

number, sub-cycle number and the amplitude ratio. Comparing to the stationary cases, 

a further improvement of the efficiency is found with a maximum saving of 80% at (Re, 

A/D, Fr) = (2300, 0.5, 0.8) with 𝑁𝐶=15. The maximum differences between the two 

solvers are 4.8% for  𝐶𝐿 𝑟𝑚𝑠 and 2.3% for 𝐶𝐷̅̅̅̅ , respectively.  
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Table 7.1.2 Comparison between the two solvers with an oscillating cylinder  

Test case (Re, 

A/D, Fr) 

Solver Sub-cycle 

number N 

 𝐶𝐿 𝑟𝑚𝑠 𝐶𝐷̅̅̅̅  CPU time 

(hour) 

Mesh number 

(1000, 0.2,0.8) 

Co=0.2 

 

Original solver No sub-cycle 0.9000 1.3293 243.21 442288 

Hybrid solver Ns=2 0.9002 1.3290 205.68 R : 298911 

T : 203377 

Ns=8 0.9004 1.3293 120.05 R :298911 

T : 13965 

Ns=10 0.9006 1.3293 91.77 R : 298911 

T : 97656 

𝑁𝐶=15 0.9005 1.3293 69.64 R : 298911 

T : 84502 

(2300,0.5, 0.8) 

Co=0.2 

 

Original solver No sub-cycle 1.89 1.54 609.51 1109520 

Hybrid solver 

 

Ns=2 1.89 1.54 452.44 R : 557396 

T : 449621 

Ns=6 1.891 1.544 256.92 R : 557396 

T : 277644 

Ns=10 1.897 1.55 189.31 R : 557396 

T : 103298 

𝑁𝐶=15 1.98 1.575 120.1 R : 557396 

T : 95630 

 
Max CPU time-

saving 

   80%  
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Figure 7.1.1 CPU time saving against the Reynolds number for the studies cases 

 

The CPU time savings as the function of Reynolds number are plotted in the Figure 

7.1.1, for both the stationary and oscillating cases. From this figure, we can see, the 

CPU time-saving is proportional to the Reynolds number. In addition, more time saving 

is found comparing the low oscillation amplitude cases (A/D=0.2) cases with the high 

oscillation amplitude cases (A/D=0.5). The largest CPU time saving can be up to 80% 

for the cases studies so far. Through the above tests, it can be concluded that the main 

factors for the selection of proper maximum sub-cycle number (𝑁𝐶) are: (1) for flow 

passing the stationary circular cylinder, the Reynolds number is the main factor 

determining 𝑁𝐶; (2) regarding the flow with an oscillating circular cylinder, the higher 

Reynolds number and amplitude ratio are both leading to the increase of the CPU time-

saving.  

 

7.2 Efficiency test of the multiphase hybrid model  

 

The efficiency test is also conducted for the multiphase hybrid solver with the sub-

cycle strategy. The details of the tested wave parameters are given in Table 6.2.1. The 

size of the quasi-turbulent domain used is 5.6m×0.425m. However, the selection of the 

overlapping residual turbulent domain size in the multiphase hybrid model is different 
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to that in the single-phase model. In the multiphase model, there are two characteristic 

lengths related to the size of the residual turbulent domain: the wave length (𝜆) and the 

diameter of the circular cylinder (D). It should be addressed that it is different to the 

single-phase flow which only has one characteristic length D, e.g., an overlapping 

domain of 16D×50D is adopted in the above single-phase cases. Two figures below 

show the streamlines of the velocity distribution for a circular cylinder subject to either 

multiphase flow or single-phase flow. In Figure 7.2.1, the separation at downstream 

caused by the viscous effect cannot be observed, which is different to the velocity 

streamline in the single-phase flow (see Figure 7.2.2). It also can be observed that the 

flow acceleration near the cylinder because of the boundary layer effect and due to the 

oscillatory flow behaviour, there is no recirculation production. The differences 

between the two illustrated streamlines suggest that the roles played by the viscous 

effect are different. For the multiphase flow case in Figure 7.2.1, the viscous effect is 

weak. However, the viscous effect is dominant in the single-phase case in Figure 7.2.2. 

That is to say, the size of the overlapping zone which close related to the spatial 

distribution and degree of the viscosity for single phase case cannot be directly 

employed for the multi-phase case. Moreover, the wavelength should also be taken into 

consideration. Through the investigations using various domain length, here from 1𝜆 to 

4.6𝜆 , it is found that  3𝜆  is enough to obtain the satisfactory result. Therefore, the 

overlapping domain size finally adopt in this case is 3𝜆 × d = 2.4𝑚 × 0.425m, where 

d is the water depth.  
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Figure 7.2.1 Streamlines of velocity in the multiphase flow with the dashed line representing 

the free surface 

 

Figure 7.2.2 Streamlines of velocity in the single-phase flow with Re=1000 

 

Similar to the single-phase solver efficiency test, different sub-cycle numbers are 

examined for the multiphase flow using the hybrid model. The CPU time and mesh cell 

numbers for both the original RANS solver and the hybrid solver with different sub-

cycle numbers are demonstrated in Table 7.2.1. With the increase of sub-cycle number, 

the amount of cell in the overlapping domain does not change (69377) while the cell 

number in the quasi-turbulent domain decreases (e.g., from 74560 to 44731). The 

critical sub-cycle number 𝑁𝐶  for this case is 5, which means with 𝑁𝐶≥6 there is no 

further CPU time saving and meanwhile the relative error between the two solvers is 

beyond the acceptable criteria. Regarding the efficiency, a 64% CPU time saving is 

achieved comparing to that of the original RANS solver. 
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Table 7.2.1 Comparison of efficiency between two solvers 

Solver Sub-cycle number N CPU time (hour) Mesh cell number 

Original RANS solver None sub-cycle 39.64 153800 

Multiphase hybrid 

solver 

 

N=2 25.67 𝑅
′ : 69377 

𝑇
′ : 74560 

N=3 20.2 𝑅
′ : 69377 

𝑇
′ : 59848 

N=4 16.77 𝑅
′ : 69377 

𝑇
′ : 53192 

𝑁𝐶=5 14.25 𝑅
′ : 69377 

𝑇
′ : 44731 

CPU time saving  64%  

 

7.3 Conclusion of efficiency tests  

The test of efficiency for various working conditions using both the single-phase or 

the multiphase hybrid solver are performed in this chapter. With the help of a two-way 

variables transformation technique together with the domain truncation in the spatial 

point of view and the sub-cycle in the temporal point of review, the primary purpose of 

the proposed hybrid model is achieved, which is efficiency improvement for simulating 

the turbulent flow meanwhile maintain good accuracy. Furthermore, it is observed that 

(1) for the flow past a stationary cylinder, the main influential parameter on the 

efficiency is the Reynolds number. (2) For the oscillating cylinder, besides the Reynolds 

number, the amplitude ratio also affects the efficiency of the hybrid solver. The CPU 

time saving is proportional to both the amplitude ration and Reynolds number. (3) The 

maximum CPU time saving can be up to 80% compared to the original RANS solver.  
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8  
CONCLUSIONS AND 

RECOMMENDATIONS 

8.1 Conclusions 

In this thesis, a new hybrid model coupling the quasi-turbulent model and the residual 

turbulent model is proposed, which is capable of simulating both single phase and 

multiphase vortex shedding problem. A functional decomposition approach is adopted 

in the hybrid model. In the approach, the physical variables are split into two parts.  One 

part is solved by the quasi-turbulent model in the whole domain without solving the 

equations for turbulence while the second part is solved by using the residual turbulent 

model in a smaller domain. For this new formulation, the quasi-turbulent model can 

adopt a much coarser mesh and smaller time step than the residual turbulent model. 

Therefore, one can use the sub-cycle strategy, in which a number of time steps are 

marched in the residual turbulent model for one step of the quasi-turbulent model.  With 

the help of the techniques, the efficiency for simulating both single and multiphase 

turbulent flows associated with vortex shedding is dramatically accelerated.  

In addition, some more specific conclusions of this work are summarized as follows:  
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(1) First of all, both the single and the multiphase hybrid models proposed in this 

thesis are validated. Extensive tests of the hybrid solver simulation are conducted for 

single-phase flow around either stationary or vibration cylinder and multiphase flows 

past stationary circular cylinder near the free surface. The hybrid model solutions are 

compared to that of the original OpenFOAM and other experimental or numerical data. 

The agreement of the results from the hybrid model with other available solutions 

indicates that the accuracy of the proposed hybrid method is sufficient. 

 (2) In the hybrid method, a two-way variables transformation technique is developed 

in the coupling of the quasi-turbulent and residual turbulent model. Numerical tests have 

been demonstrated that this transformation technique can ensure the consistency of 

fields in the two coupled models and increase the stability of the numerical algorithm. 

In addition, techniques such as domain truncation in the spatial point of view and the 

sub-cycle in the temporal point of review are adopted to enhance the efficiency of the 

proposed hybrid method. The validation conducted in Chapter 6 indicates that the hybrid 

method using a truncated overlapping domain and the sub-cycle strategy can provide 

accurate and reliable solutions as the original OpenFOAM solver.   

 (3) The hybrid method can save significant computational time compared with 

original OpenFOAM to obtain the similar results for the same cases. It is observed that 

80% of the CPU time can be saved, e.g., in the case of an oscillating circular cylinder 

with (Re, Fr, A/D) = (2300, 0.5, 0.9).  

 

8.2 Recommendations 

Although a complete hybrid model is suggested in this thesis, there are still some 

issues that need to be considered in the future work.  

1) The RANS turbulent model used here may be replaced by others. Due to the fact 

that both the RANS and LES models give the turbulent viscosity  𝜈𝑇(𝑥, 𝑡) 

required in the momentum equations, the same idea behind this hybrid model 

could be applied to the LES turbulent model.  

𝜕𝑢𝑖
𝜕𝑡

+ (𝑢𝑗 − 𝑢𝑏𝑗)
𝜕𝑢𝑖
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗
[[𝜈 +  𝜈𝑇(𝑥, 𝑡)] (

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)] −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
 (𝑖 = 1,2) 
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   (8.2.1) 

 Smagorinsky SGS mode:  𝜈𝑇(𝑥, 𝑡) = (𝐶𝑆Δ𝑓)
2|𝑆̅| (8.2.2) 

 
in which, Δ𝑓 is the grid filter width; |𝑆̅| is the magnitude of the strain rate tensor; 𝐶𝑆 is 

the Smagorinsky coefficient.  

2) At this stage, only two-dimensional model is considered. The methodology 

employed here can be extended to three-dimensional cases. Furthermore, at this 

stage, only controlled vibration of the circular cylinder is considered. The free 

vibration case study should be carried out in the further study as well. Most 

importantly, a full understanding of the physics of wave-current structure 

interaction is desired. The hybrid method proposed in the thesis provides an 

efficient way to achieve more understandings of the interaction between them.  

3) Furthermore, the proposed hybrid model provides a principle for coupling with 

other models. The further attempts can be made to extend the current model to 

be coupled with the models like potential or viscous potential solver in the far 

field to deal with more complex issues, e.g., in the following figure. With such 

more advanced models, more complicated scenarios, like wave-current-structure 

interactions can be studied. In such cases, larger computational domain is 

required because the wave propagation simulation generally needs ten wave 

lengths at least. If the hybrid model is coupled with the potential model, it 

becomes possible to simulate the complex cases, which is very difficult to be 

done using the existing method (e.g. OpenFOAM) as they are very time-

consuming.  

 

Figure 8.2.1 Sketch of the hybrid model deals with different flow properties with different 

models 
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APPENDIX A 

The shear -rate/viscous stress tensor 𝝉 for Newtonian fluids is described as: 

 

𝝉 = 2𝑣𝑫− [
2

3
𝒗 + 𝜅](∇ ∙ 𝑼)𝑰 

(a. 1) 

In which D is the deformation rate/strain-rate tensor, it can be obtained by 

 

𝑫 =
1

2
[∇⨂�̅� + (∇⨂�̅�)𝑇] =

1

2
[
𝜕�̅�𝑖
𝜕𝑥𝑗

+
𝜕�̅�𝑗

𝜕𝑥𝑖
] 

(a. 2) 

 
where T stands for the transpose operation. Further simplifications conducted by using 

the continuity equation ∇ ∙ �̅� = 0 into Equation (a.1), the simplified shear-rate tensor 

can be obtained as 

𝝉 = 2𝑣𝑫 (a. 3) 

 
The deviatoric part of a matrix is calculated by  

𝑨𝒅𝒆𝒗 = 𝑨 − 𝑨𝒉𝒚𝒅 = 𝑨 −
1

3
tr(𝑨)𝑰 

    (a. 4) 

where 

𝑨 = [𝑔𝑟𝑎𝑑(�̅�)]𝑻 = (∇⨂�̅�)𝑻 (a. 5) 

 
The function in OpenFOAM (Holzmann 2016) used to deal with this term is similar to 

substitute the above into Equation (a.4), one has 

 

𝑑𝑒𝑣[∇⨂�̅�]𝑻 = [∇⨂�̅�]𝑻 −
1

3
tr((∇⨂�̅�)𝑻)𝑰 

(a. 6) 

 
Finally, put everything together, and it ends up with:  

 

−∇ ∙ 𝝉𝒆𝒇𝒇̅̅ ̅̅ ̅̅ = −∇ ∙ (𝑣𝑒𝑓𝑓(∇⨂�̅�)) − ∇ ∙ {𝑣𝑒𝑓𝑓[(∇⨂�̅�)
𝑻 −

1

3
tr((∇⨂�̅�)𝑻)𝑰]} 

(a. 7) 

 

Rearranging the equation yields 
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−∇ ∙ 𝝉𝒆𝒇𝒇̅̅ ̅̅ ̅̅ = −∇ ∙ {𝑣𝑒𝑓𝑓(∇⨂�̅�) + 𝑣𝑒𝑓𝑓[∇⨂�̅�]
𝑻 −

1

3
𝑡𝑟((∇⨂�̅�)𝑻)𝑰} 

(a. 8) 

 
Rewrite the last term by using the relation ∇ ∙ 𝑼 = 𝑡𝑟(𝑫), thus 

 

−∇ ∙ 𝝉𝒆𝒇𝒇̅̅ ̅̅ ̅̅ = −∇ ∙ {𝑣𝑒𝑓𝑓(∇⨂�̅�) + (𝑣𝑒𝑓𝑓(∇⨂�̅�)
𝑻 −

1

3
(𝑣𝑒𝑓𝑓(∇ ∙ �̅�)) 𝑰} 

(a. 9) 

 
The last term is zero due to the continuity of the flow. Therefore, the effective shear rate 

tensor 𝝉𝒆𝒇𝒇̅̅ ̅̅ ̅ for the incompressible fluids can be described as:  

 

−∇ ∙ 𝝉𝒆𝒇𝒇̅̅ ̅̅ ̅̅ = −∇ ∙ (𝑣𝑒𝑓𝑓(∇⨂�̅�)) + (𝑣𝑒𝑓𝑓(∇⨂�̅�)
𝑻) 

                      = −∇ ∙ (2𝑣𝑒𝑓𝑓 [
1

2
{(∇⨂�̅�) + (∇⨂�̅�)𝑻}]) 

= −∇ ∙ (2𝑣𝑒𝑓𝑓�̅�) 

(a. 10) 

 
Regarding the influence of turbulence models, as we saw in the section above, the 

equations for full resolved eddies, Reynolds-Averaged flow field are identical. The only 

difference is related to the viscosity. Hence, if the turbulence model is not employed, 

the contribution of the turbulent viscosity 𝑣𝑡 is zero, which follows as 

 
𝑣𝑒𝑓𝑓 = 𝑣 (a. 11) 

 
The most common hypothesis is the theory postulated by Boussinesq (1879) that 

simply relates the turbulence of a flow to a higher fluid viscosity. The thought behind is 

as follows: If we have a higher turbulence flow, the flow gets more chaotic and a lot of 

vortexes that can transport. Therefore, to achieve that one can increase the diffusion 

coefficient (the viscosity in the momentum equation) and keep the rest as it is. In other 

words, the molecular viscosity is increased by the so-called eddy or turbulent viscosity. 

This assumption provides the possibility to model the smallest vortexes by using 

correlations and approximations and only resolve the larger eddies. Boussinesq (1879) 

related the Reynold stresses −𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  to the mean values of the velocity and the kinetic 

energy of the turbulence k as  

 

−𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅ = 𝜈𝑇(

𝜕𝑢�̅�
𝜕𝑥𝑗

+
𝜕𝑢�̅�

𝜕𝑥𝑖
−
2

3
(∇ ∙ �̅�)𝛿𝑖𝑗) −

2

3
𝜅𝛿𝑖𝑗 

(a. 12) 
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There are a lot of confusion about the term −
2

3
𝑘𝛿𝑖𝑗, this term is put into a modified 

pressure. If compare the term 
2

3
𝑘𝛿𝑖𝑗 seems to behave like a pressure term. Within the 

OpenFOAM toolbox, the term of 
2

3
𝑘𝛿𝑖𝑗  is put into a modified pressure, which is 

introduced as 𝑝∗ = 𝑝 +
2

3
𝜅. 
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APPENDIX B 

With respect to the flow subject to the volume change, there is one additional rate of 

change term appears. This term is handled automatically for it is naturally satisfied. 

Mesh motion flux that accounts for the grid convective in all convective terms and needs 

to be accounted for algorithmically. The relationship between the volume change rate 

and the  grid velocity is governed by the space conservation law, i.e.  

𝜂
𝑑

𝑑𝑡
∫ 𝑑Ω

Ω𝑖

−∮ 𝑢𝑏 ∙ 𝑑𝑆 = 0
𝑆

 

  (c. 1) 

 

While Equation   (c. 1) is always satisfied in the integral form, it also needs to be 

preserved in the discrete form in Equation (c. 2)     

 
𝑉𝑝
𝑁+1 − 𝑉𝑃

𝑁

∆𝑡
−∑𝐹𝑠

𝑓

= 0 (c. 2) 

 
For this reason, the mesh motion flux 𝐹𝑠 is calculated as the volume swept by the 

face f in the motion during the current time step rather than from the grid velocity 𝑢𝑏, 

to be consistent with the cell volume calculation. 

 

 

 

 

 

 

 

 

 

 

 



 

159 

 

 

 

APPENDIX C 

It is well known that turbulence vanishes near a wall due to the no-slip boundary 

condition for the velocity as well as the blocking effect caused by the wall. In the vicinity 

of the wall, there is a thin sublayer with predominantly molecular diffusion. 

The total shear stress is the sum of the viscous stress and the Reynolds stress. Right 

at the wall, the no-slip boundary condition 𝑢𝑖= 0 implies that all Reynolds stresses are 

zero. Hence, all the wall shear stress is due to the viscous contribution. This contrasts 

with the free shear flows where the viscous stresses are everywhere negligible compared 

with the Reynolds stresses. Consequently, close to walls the viscosity and the wall shear 

stress are important parameters. The viscous scales are defined by appropriate velocity 

and length scales in the near wall region. These are the friction velocity 

 

𝑢𝜏=√
𝜏𝑤

𝜌
 (d. 1) 

 
In addition, the viscous length scale is given as 
 

𝛿𝜈 = 𝜈√
𝜌

𝜏𝑤
=
𝜈

𝑢𝜏
 

(d. 2) 

The distance from the wall measured in viscous lengths or wall units is defined as 
  

𝑦+ =
𝑦

𝛿𝜈
=
𝑢∗𝑦

𝜈
 (d. 3) 

 
where 𝑦+  is the non-dimensional wall distance for a wall-bounded flow; 𝑢∗  is 

the friction velocity at the nearest wall; y is the distance from the first cell to the wall; 𝜈 

is the kinematic viscosity of the flow. Different regions in the near wall flow are defined 

based on the magnitude of   𝑦+ . In the viscous wall region   𝑦+ < 50, the viscosity 

contributes to the shear stress. Outside this region, the effect of viscosity is negligible. 

In the viscous sublayer𝑦+ < 5, the Reynolds shear stress is negligible compared with 

the viscous stress. Various wall treatment based on different 𝑦+ are illustrated in Figure 8.2.1. 

https://www.cfd-online.com/Wiki/Friction_velocity
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Figure 8.2.1 Various wall treatment based on different 𝑦+ 
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APPENDIX D 

How the single-phase quasi-turbulent and residual turbulent model to be solved 

numerically using the finite volume method have been demonstrated in section 5.4. In 

this Appendix, the numerical implementation of the multiphase governing equation in 

OpenFOAM will be introduced.  

For clarity, these equations are rewritten to be vector form, where U and U* are the 

velocity vectors used by the multiphase quasi-turbulent model and the residual turbulent 

model, respectively. Accordingly, 𝑝  and 𝑝∗  are used to replace the pressure in the 

multiphase quasi-turbulent model and the residual turbulent model, respectively. The 

governing equations are discretized using the finite-volume method for the temporal, 

convection, Laplacian, surface tension and gravity force term with corresponding 

discretisation schemes.  

The discretization procedure is same to the single-phase momentum equation, and 

the equation obtained after the discretization is given by 

 

𝜌𝑃
𝑛+1𝑈𝑃

𝑟 − 𝜌𝑛𝑈𝑃
𝑛

∆𝑡
Ω𝑃 + ∑ 𝜌𝑓𝜙𝑓

𝑛

𝑓∈𝜕𝛺𝑖

𝑈𝑓
𝑟′ = ∑ 𝜇𝑓

𝑛+1

𝑓∈𝜕𝛺𝑖

(∇
1

𝑓
𝑈)

𝑟′

|𝑆𝑓| + ∇𝑈𝑃
𝑛 ∙ ∇𝜇𝑝

𝑛+1Ω𝑃 

     (e. 1) 

in which, 𝜌𝑓 is density on the face f; 𝜌𝑃 is the density at cell P; 𝜇𝑃 is the dynamic 

viscosity at cell P. In the multiphase flow, the density and dynamic viscosity are given 

by 

𝜌 = 𝜌𝑤𝛼 + 𝜌𝑎𝑖𝑟(1 − 𝛼)          (e. 2)  

𝜇 = 𝜇𝑤𝛼 + 𝜇𝑎𝑖𝑟(1 − 𝛼)      (e. 3) 

where 𝜇𝑤 and 𝜇𝑎𝑖𝑟  are densities of water and air, respectively. Because the update of  𝛼 

is before solving the momentum equation and therefore, the density and dynamic 

viscosity fields are known in advance. 
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 Same to the single-phase momentum equation, a matrix is finally obtained after the 

discretisation, i.e., 

𝐴𝑃𝑈𝑃
𝑟 = (∑𝐴𝑁𝑈𝑁

𝑚 + 𝐸𝑃
𝑛

∀𝑁

) = 𝐻(𝑈𝑚) 
(e.4) 

 
The quantities of 𝐴𝑃, 𝐴𝑁  and 𝐸𝑃  have the same form as these in the single-phase 

equation, but the difference is the multiphase equation includes the effect of surface 

tension and gravity forces, which given as 

 

𝜙𝑓
𝑟 = (

𝐻(𝑈𝑚)

𝐴𝑃
)
𝑓

∙ 𝑆𝑓 + ((
1

𝐴𝑃
)
𝑓

(𝜎𝜅)𝑓
𝑛+1 (∇

1

𝑓
𝛼)

𝑛+1

) |𝑆𝑓|

− ((
1

𝐴𝑃
)
𝑓

(𝑔 ∙ 𝑥)𝑓
𝑛+1 (∇

1

𝑓
𝜌)

𝑛+1

|𝑆𝑓|)  

                                                                                                                                                (e.5) 

where the surface gradient operator has been adopted, i.e.,  

 
(∇𝛼)𝑓

𝑛+1 ∙ 𝑆𝑓 = (∇
1

𝑓
𝛼)

𝑛+1

|𝑆𝑓| 

and 

𝜙𝑓
𝑚+1 = 𝜙𝑓

𝑟 − (
1

𝐴𝑃
)
𝑓

(∇
1

𝑓
𝑝𝑑
𝑚+1) |𝑆𝑓| 

     (e. 6) 

 

To solve the pressure field 𝑝𝑑
𝑚+1 , the law of mass conservation is used for the 

incompressible flow, which is given as 

 

∑ 𝜙𝑓
𝑚+1 = 0

𝑓∈𝜕𝛺𝑖

 
     (e. 7) 

 

 
Then, substituting      (e. 6) to     (e. 7), it leads to  

 

∑ (
1

𝐴𝑃
)
𝑓

(∇
1

𝑓
𝑝𝑑
𝑚+1) |𝑆𝒇| = ∑ 𝜙𝑓

𝑟

𝑓∈𝜕𝛺𝑖𝑓∈𝜕𝛺𝑖

 
  (e.8)  

 

Same to the single-phase solver, a linear system for 𝑝𝑑
𝑚+1 can be achieved and solved. 

Therefore, 𝜙𝑓
𝑚+1 can be updated then. Finally, 𝑈𝑝

𝑚+1 can be updated by the following 

equation which shares a same form with the single-phase solver.  
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𝑈𝑝
𝑚+1 = 𝑈𝑃

𝑟 +
1

𝐴𝑃
( ∑

(𝑆𝒇⨂𝑆𝒇)

|𝑆𝒇|
𝑓∈𝜕𝛺𝑖

)

−1

∙

(

 ∑

(

 
𝜙𝑓
𝑚+1 − (𝑈𝑃

𝑟)𝑓 ∙ 𝑆𝒇

(
1
𝐴𝑃
)
𝑓 )

 

𝑓∈𝜕𝛺𝑖

𝑆𝒇

|𝑆𝒇|

)

  

 (e.9) 

This procedure is repeated several times to ensure that the velocity and pressure field 

together satisfy both continuity and momentum equations. At the end of the iteration 

procedure, the values corresponding to the Mth iteration are assigned to the 

corresponding values at the new time step (𝑛 + 1), i.e., 

 
𝜙𝑓
𝑛+1 = 𝜙𝑓

𝑀, 𝑈𝑛+1 = 𝑈𝑀 and 𝑃𝑛+1 = 𝑃𝑀 (e.10) 
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APPENDIX E 

The predicted flux to be compensated by the pressure gradient is evaluated as  

(𝜙𝐻/𝐴 − 𝜙), both of which are searched from the database, as the pressure diffusivity 

used to calculate the gradient  

∇(𝑝) =
𝜙𝐻/𝐴 − 𝜙

|𝑆𝑓|𝐷𝑝
 

(f. 1) 

 
where 𝜙 is the flow flux, 𝐷𝑝 is the pressure diffusivity, 𝑆𝑓 is the patch face areas.  
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