

City, University of London Institutional Repository

Citation: Adamsky, F., Khayam, S. A., Jager, R. & Rajarajan, M. (2012). Security analysis

of the micro transport protocol with a misbehaving receiver. Paper presented at the 2012
International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discover, 10 - 12 October 2012, Sanya, China. doi: 10.1109/CyberC.2012.31

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1967/

Link to published version: https://doi.org/10.1109/CyberC.2012.31

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Security Analysis of the Micro Transport Protocol with a Misbehaving Receiver

Florian Adamsky∗, Syed Ali Khayam†, Rudolf Jäger‡, Muttukrishnan Rajarajan∗

∗City University London, United Kingdom
Email: {Florian.Adamsky.1, R.Muttukrishnan}@city.ac.uk

†National University of Sciences and Technology, Pakistan
Email: Ali.Khayam@seecs.nust.edu.pk

‡Technische Hochschule Mittelhessen University of Applied Sciences, Germany
Email: Rudolf.Jaeger@iem.th-mittelhessen.de

Abstract—BitTorrent is the most widely used Peer-
to-Peer (P2P) protocol and it comprises the largest
share of traffic in Europe. To make BitTorrent more
Internet Service Provider (ISP) friendly, BitTorrent Inc.
invented the Micro Transport Protocol (uTP). It is based
on UDP with a novel congestion control called Low
Extra Delay Background Transport (LEDBAT). This
protocol assumes that the receiver always gives correct
feedback, since otherwise this deteriorates throughput or
yields to corrupted data. We show through experimental
investigation that a misbehaving uTP receiver, which
is not interested in data integrity, can increase the
bandwidth of the sender by up to five times. This can
cause a congestion collapse and steal large share of a
victim’s bandwidth. We present three attacks, which
increase the bandwidth usage significantly. We have
tested these attacks in a real world environment and
show its severity both in terms of number of packets and
total traffic generated. We also present a countermeasure
for protecting against the attacks and evaluate the
performance of that defence strategy.

I. INTRODUCTION

With the widespread use of handheld devices the
Internet traffic is increasing at an enormous rate. This
traffic can be classified in two categories: background
and foreground traffic. Background traffic is e.g. oper-
ating system (OS) updates, P2P application or backup
transfer and does always have a lower priority then
foreground traffic. In contrast, foreground traffic is e.g.
Email, Voice over IP (VoIP) or web browsing and an
extra delay is not acceptable. To separate these traffic
categories it is necessary to define static firewall rules.

This approach is inflexible and often leaves big head
room which is unused. A better approach is to use
a separate transport protocol for background traffic
like TCP-LP [1] or TCP-Nice [2]. These protocols can
detect foreground traffic and automatically reduce their
sending rate. With uTP using LEDBAT there is a new
kid on the block.

In December 2008, BitTorrent announced in the
developer forum that µTorrent will switch the data
transfer from TCP to UDP [3]. Shortly after that
announcement, panic started spreading all over the
media. The media named it “The Next Internet Melt-
down” [4], because of the missing congestion avoid-
ance algorithms in UDP. However, they all got it
wrong. BitTorrent clarifies that the new uTP will have
a novel congestion avoidance algorithm [5]. After
that statement the technology information website Ars
Technica published an article with the title “µTorrent
switch to UDP and why the sky isn’t falling” [6].

To the best of our knowledge, this research work is
the first security analysis of the uTP using the LEDBAT
congestion control. Since October 2009 the congestion
control LEDBAT has a IETF draft [7]. The security
considerations from this draft only describes a network,
where a malicious node in between, delays packets
unnecessarily to lower traffic throughput.

II. BACKGROUND

This section provides an overview of how uTP
works. To better understand why BitTorrent switched
to UDP, let us recall what the problems were with TCP.
BitTorrent is usually background traffic. But due to the

fact that it uses multiple TCP connections at once, it
gets an unfair advantage over other applications. This
can be explained by the fact that TCP distributes the
available bandwidth evenly across all connections. A
BitTorrent user has to restrict the bandwidth by setting
a down- and upload limit in his client, to prevent the
client to consume all the available bandwidth. This
requires knowledge about its own Internet connection
and often leaves big head room which is unused. When
there is a need for interactive traffic like VoIP or brows-
ing the web, it is necessary to adjust the down- and
upload limits or pause the complete BitTorrent client.
These are the reasons why BitTorrent invented the new
uTP, which detects unused head room automatically
and adjust its limits.

The uTP [8] is on top of UDP. Since UDP has
no congestion control, uTP can implement its own
one. Like TCP, uTP controls the flow with a sliding
window, verifies data integrity with sequence numbers
and initiates a connection with a handshake. Unlike
TCP, sequence numbers refer to packets instead of
bytes and uTP initiates a connection with a two-way
handshake, instead of a three-way. uTP also supports
Selective Acknowledgment (SACK) via an extension,
which is enabled per default. In contrast to TCP, uTP
SACK uses a bitmask where each bit represents a
packet in the send window, instead of defining ranges.
The relation between a bit and the packet is the
acknowledgment number. The first bit in the bitmask
represents the ack_nr + 2, since the ack_nr + 1
packet is assumed to be lost. If a bit is set, this means
we got that packet and vice versa. A set bit for a packet
which has not been send yet, will be ignored by the
sender. The major difference between uTP and TCP is
novel congestion control LEDBAT.

A. Low Extra Delay Background Transport (LEDBAT)

uTP presents a novel congestion avoidance algo-
rithm: LEDBAT. uTP together with LEDBAT tries to
solve the above mentioned problems from TCP by
using a modem queue size as a controller. If the queue
size of the send buffer is too large, then the sender
throttles back. To archive that, LEDBAT [7] uses
one way delay measurement as the main congestion
algorithm, which we will describe in more detail in
Section III-B1. Additional to that value, LEDBAT also
uses packet loss and the number of acknowledgments
during one window. These measurements make it pos-

sible to detect foreground traffic (e.g. VoIP, HTTP, . . .).
If these measurements differ to much from previous
values, the sender adjusts its sending rate accordingly.
This automatic adjustment gives foreground traffic a
higher priority than BitTorrent with uTP and makes
manual adjustments unnecessary. However, this only
works if both, the sender and the receiver, cooperates
with each other.

III. ATTACK ANALYSIS

Protocols assumes that the receiver always gives
correct feedback. Normally this is correct, since oth-
erwise this deteriorates the throughput or yields to
corrupted data [9]. An attacker who is not interested
in data integrity can give incorrect feedback, to induce
the sender to send more and more packets into the
network. The next section will describe possible attack
scenarios.

A. Attack Scenarios

Regarding of uTP a misbehaving receiver can create
the following attack scenarios:

1) Congestion Collapse: If a high bandwidth victim
has a node in between which does not have the
same bandwidth capacity, then there is a possibility
of congestion. The effects of congestions are: packet
loss, queuing delay and block of new connection.
Normally the congestion control from the transport
protocol takes care of that. However, if a malicious
peer can trick the congestion control, then it is possible
to create congestion on that path. The consequence of
congestion is, that other clients have problems to reach
the high bandwidth victim which yields to a denial-of-
service (DoS) attack. However, it is not only necessary
to have a node in between with lower bandwidth
capabilities, a Digitial Subscriber Line (DSL) and cable
modem is sometimes enough. Normally DSL and cable
modems have a send buffer which is disproportional to
their maximum send rate [8]. If a misbehaving receiver
induce the sender to fill the buffer of its DSL or cable
modem with packets, the sender cannot deliver packets
to other peers. If there is no DSL/cable modem or
a slow node in between, it is still possible to steal
bandwidth from that peer.

2) Steal Bandwidth: Since bandwidth is a limited
resource it is important to share that resource fairly.
If a malicious peer trick the congestion control to
get more bandwidth, other peers will suffer. We have

shown this suffering in our previous research work,
where a malicious peer exploit the choking mechanism
to get more bandwidth [10]. This attack destabilizes
BitTorrent’s clustering behavior [11], which attacks the
high bandwidth leechers in a swarm. In the next section
we will discuss attacks which can trick the congestion
control of uTP.

B. Details about the Attacks

For this evaluation we used the open-source library
libUTP 1. This library is written by the developer of
BitTorrent and it is used by the following BitTorrent
clients: µTorrent, Vuze, Mainline and Transmission.
According to the latest client statistics from the P2P
research team at the Delft University of Technol-
ogy, these clients are comprising a market share of
90.47 % [12]. LibUTP comes with test program for re-
ceiving (utp_recv) and sending files (utp_send).
While writing this paper, this is the latest version 2 of
libUTP.

For the evaluation we used a real world client-
server environment. One computer was the sender
which had an unmodified version of libUTP. The other
computer was the receiver and had a modified version
of libUTP. Both computers were running GNU/Linux
and were connected via a 100 Mbit/s switch. We
introduced 25 ms delay with 10 ms variance which is
distributed normally with NetEm [13] on the sender
side. We choose these values to loosely simulate a
connection where two peers with high speed Internet
access (Asymmetric Digitial Subscriber Line (ADSL),
ADSL2+) are communicating with each other. For
all the tests we used utp_recv and utp_send to
initiate a simple file transfer with a 100 MiB file. This
test environment was used for the rest of the results
presented in this paper

1) Attack 1: Lying about the Delay: According to
the Internet-Draft from the IETF the one way delay
measurement is only possible with the help of the
receiver: “LEDBAT requires that each data segment
carries a “timestamp” from the sender, based on which
the receiver computes the one-way delay from the
sender, and sends this computed value back to the
sender” [7]. This one way delay, which we denote as
∆t, is calculated on the receiver side by subtracting the

1https://github.com/bittorrent/libutp
2Commit ID: 2c678a26e5

timestamp tsnd from the current time of the receiver
trcv. The receiver sends ∆t back to the sender, as
shown in Figure 2(a).

Sender Receiver
tsnd [Data]

∆t = trcv − tsnd
∆t [ACK]

(a) Normal

Sender Attacker A
tsnd [Data]

∆t = 1 ms
∆t [ACK]

(b) Delay Attack

Figure 1. One way delay measurement with a normal receiver
and an attacker

The value of ∆t is only meaningful as a relative
value compared to previous values, because the clocks
of the peers are not synchronized. The sender saves
all ∆t values in a vector ~our_hist from the last two
minutes. Before these values will be included into

~our_hist, ∆t will be normalized with delay_base,
which is the lowest value from ~our_hist. Normal-
ization is done to get a measurement of the current
buffering delay on the socket [8]. LEDBAT uses equa-
tion 1 to decide whether to increase or decrease the
send window. LEDBAT increases the send window,
when the lowest value in vector ~our_hist is smaller
then 100 ms. Otherwise the send window will remain
constant or gets decreased.

off_target =


+ if min(~our_hist) < 100 ms

= if min(~our_hist) = 100 ms

− if min(~our_hist) > 100 ms

(1)

As an attacker it is possible to lie about the de-
lay measurement. Figure 2(b) shows that an attacker
pretends that the one way delay is always 1 ms. It
is not necessary to run this attack with ∆t = 1 ms,
because ∆t is not interpreted as an absolute value. It
is only essential that ∆t is constant and under 100 ms.
This yields to the following situation: Shortly after the

attack started, delay_base will be 1 ms, since this is the
lowest value during the last two minutes. All following
∆t values will be normalized with delay_base. There-
fore we can fill the vector ~our_hist all with zeros. The
delay_factor makes use of the vector ~our_hist,
which is partly responsible for the adjustment of the
maximal window. Equation 2 shows how the variable
delay_factor gets calculated.

delay_factor =
100 ms−min(~our_hist)

100 ms
(2)

Since all values in ~our_hist are zero, this means
that delay_factor is always one, which is the
highest value. A positive delay_factor always
increases the window from the sender. The sender
receives ∆t and increases or decreases its window
size max_window according to the pseudo code in
Listing 1.

Listing 1. Maximal window calculation according to [8]
scaled_gain =

MAX_CWND_INCREASE_PACKETS_PER_RTT

* delay_factor * window_factor;

max_window += scaled_gain;

Figure 3 shows packets per second depending on
time in seconds. All curves show the bandwidth
usage of a file transfer over time. A file transfer
with an unmodified receiver has an average value of
632.503 packets/sec. A modified receiver which lies
about the one way delay measurement has an average
value of 916.507 packets/sec. This shows that the
described attack can increase the bandwidth up to
around 300 packets/sec. This attack is limited, since its
increase in bandwidth yields to an increase in packet
loss. The average number of packets that a sender
with a normal behaving receiver assumes to be lost
is up to 16761.9. A sender who communicates with
a misbehaving receiver the average number of packet
loss is up to 19031.3. This is an increase of 13.54 %.
Every packet loss decreases the send window of the
sender. This leads to the next possible attack.

2) Attack 2: Lazy Optimistic Acknowledgment: Like
TCP, uTP also uses packet loss as a sign of congestion
and decreases its sending rate. In TCP, when a packet
is lost, the sending rate will be multiplied by a factor
of 0.5. Since this is a much less likely event in uTP, it

0 50 100 150

0

2,000

4,000

6,000

Time (s)

Pa
ck

et
s

pe
r

Se
co

nd

Without Attack
Delay Attack

Lazy Opt-Ack Attack
Opt-Ack Attack

Figure 2. File transfer of a 100 MiB file via uTP under
the following network conditions: Bandwidth: 100 Mbit/s, Delay:
25 ms, Variance: 10 ms and Distribution: normal

will only be multiplied by a factor of 0.78 [8]. Again,
the sender needs the help of the receiver to realized that
a packet is lost. Normally the receiver sends an SACK
with the bitmask of which packets are lost or sends a
packet with a duplicated Acknowledgment (ACK), to
notify the sender.

The receiver sorts all packets by its sequence num-
ber, to keep the data integrity. However, a malicious
peer can save all packets it receives sequentially. This
will prevent a gap in the input buffer which is an
indicator of a packet loss.

A SACK packet only will be sent, when there
is something wrong with the input buffer. Since the
input buffer of the modified receiver is always fine,
there is no need to send a SACK packet. To inform
the sender about the successful acknowledgment of
packets, we always send him a SACK message with
the information that we received all packets. The
sender never decreases the sending rate, since the
receiver is misinforming the sender. This significantly
increases the sending rate of the sender. Figure 3 shows
that the normal file transfer took about 187 seconds.
With this attack the file transfer is complete in about
60 seconds. We also increased the average value up to
3414.365 packets/sec. This corresponds to an increase
up to a factor of three. The lazy optimistic ack attack
provides the foundation for the next attack.

3) Attack 3: Optimistic Acknowledgment: The idea
behind the optimistic acknowledgment (opt-ack) attack

is to acknowledge in-flight packets. When the sender
receives an ACK which fits into the window, it will
decrease the cur_window by the size of the payload
from the packet which gets acknowledged. The lower
the value of cur_window is, the more packets the
sender is able to send. To acknowledge as much as
possible, we initiated the bitmask of a SACK packet
with UINT_MAX instead of 0. All bits are set to one,
which means we pretend that we received all packets.
Even packets that the sender has not sent yet. However,
until the acknowledgment arrives at the sender, the
sender sends new packets which will automatically
acknowledged.

The effect is illustrated in Figure 3. The curve of
the opt-ack attack takes an average value of 37.6 s.
This is one-fifth compared with a file transfer of a nor-
mal receiver. The opt-ack attack produces an average
value of 5073.7 packets per second. Consequently this
means that the opt-ack attack increased the bandwidth
consumption up to five times. The next section will
discuss the impact of the presented attacks.

C. Impact of these Attacks

As mentioned in Section III-A, there are two scenar-
ios: Steal Bandwidth or Congestion Collapse. Which
of the described attacks can create what damage? To
respond to this question we started a file transfer of
a 300 MiB file via uTP without any delay in our
100 Mbit/s network. Shortly after that, we started a
constant UDP stream of 50 Mbit/s with iPerf 3 for
50 seconds. At first we used the unmodified receiver
followed by the modified receiver from the attacks.

Figure 5 shows packets per second depending on
the time. Figure 5(a) depicts that, when the UDP
stream starts, the uTP stream immediately reduces
its sending rate to prevent congestion and to give
the foreground traffic a higher priority. Because the
delay attack only works when there is a delay and
the additional bandwidth consumption is not so high,
the Figure would look the same as in Figure 5(a).
The Figure 5(b) shows the same experiment with the
lazy opt-ack attack. The sender does not recognize
the packet loss and this yields to a short congestion
between 45–55 s. This corresponds to a packet loss
from the constant UDP stream of 7 %. Figure 5(c)

3http://sourceforge.net/projects/iperf/

shows the results from the experiment with the opt-
ack attack. Between the 12th second and 37th second
there is no data from both streams. This corresponds to
a packet loss from the UDP stream of 42 %. Only when
there is a connection timeout from uTP, the constant
UDP stream can send data packets to its destination
again. The experiment shows that the delay attack can
steal additional bandwidth from the sender. With the
lazy opt-ack and the opt-ack attack hence it is possible
to create congestion. This leads us to the question; what
are the limitations of these attacks?

D. Comparison of the proposed Attacks

Figure 6 shows all attacks based on the bandwidth
in Mbit/s. All values are average values from ten iter-
ations. The first attack increases the bandwidth up to
1 Mbit/s. This attack can steal additional bandwidth.
The lazy opt-ack attack yields a three fold increase in
bandwidth. Without a notification of the packet loss,
the sender cannot reduce the window size. The opt-
ack attack is even more successful and yields a fivefold
increase in bandwidth. Both the lazy opt-ack and the
opt-ack attack can create congestion.

The limitation of these attacks depend on the send
buffer of the sender. For the test program utp_send
this limit is set to 30.000 Bytes. This is the maximum
window size of bytes in flight. The average window
size of a normal file transfer is up to 17315.7 Bytes.

IV. COUNTERMEASURES

All presented attacks in this paper are hard to
detect. This is due to the fact that all attacks differ
slightly from a normal behaving receiver. Therefore it
is important to have a countermeasure which is efficient
and robust to defeat those attacks. In this section we
present a countermeasure against the proposed lazy
opt-ack and opt-ack attack. We have evaluated the
countermeasures and show its severity in terms of
performance.

A. Randomly skipped packets

The solution is firstly mentioned by
Sherwood et al. [14]. The sender randomly skips
packets and remembers which packets he skipped. A
normal receiver recognizes a gap in his input buffer
and will notify the sender about a missing packet. The
receiver does that by not acknowledging that packet
or in form of a SACK packet. The sender will then

0 10 20 30 40 50 60 70
0

2,000

4,000

6,000

Time (s)

Pa
ck

et
s

pe
r

Se
co

nd Constant UDP Stream
Normal uTP Transfer

(a) Without Attack

0 10 20 30 40 50 60
0

2,000

4,000

6,000

Time (s)

Pa
ck

et
s

pe
r

Se
co

nd Constant UDP Stream
Lazy Opt-ACK Attack

(b) With the Lazy Opt-ACK Attack

0 10 20 30 40 50 60
0

2,000

4,000

6,000

Time (s)

Pa
ck

et
s

pe
r

Se
co

nd Constant UDP Stream
Opt-ACK Attack

(c) With the Opt-ACK Attack

Figure 3. File Transfer of a 300 MiB File via uTP and parallel
to that, a constant UDP Stream of 50 Mbit/s under the following
network conditions: Bandwidth: 100 Mbit/s half duplex and Delay:
0 ms

retransmit this packet. An attacker who makes use
of the lazy opt-ack or opt-ack attack does not have
that gap. This means an attacker will acknowledge
the randomly skipped packet nevertheless. An attacker
betrays itself through that acknowledgment. The
sender check if he receives a ACK which he has not
sent out yet. Our implementation of this patch used
a random value beginning with 500–700 ms. These
random time were experimentally determined. After

5

10

15

20

25

5.43 6.2

15.39

23.84

A
ve

ra
ge

B
an

dw
id

th
U

sa
ge

in
M

bi
t/s

wo Attack Delay Lazy Opt-ACK Opt-ACK

Figure 4. Comparison of all attacks based on the produced
bandwidth. All values are average values from 10 iterations.

the sender recognized an attack he will immediately
reset the connections. The next section will show the
performance of this countermeasure.

1) Performance Evaluation: To evaluate the perfor-
mance lost of the countermeasure where the sender
randomly skips packet, we setup the following exper-
iment: We wrote a Perl script which automatise the
file transfer of a 100 MiB file over uTP. The script
increases the delay for every iteration by one with a
variance of 10 ms and a normal distribution. Every
delay value will be tested ten times and the average
value will be taken. We repeated the experiment with
a normal sender and with a sender which includes the
countermeasures.

Figure 9 shows that the difference between a normal
sender and patched sender is minimal. So we took
the difference of all values and calculated the average
value. The average performance lost of the randomly
skipped packets countermeasure is 0.448 Mbps. Appar-
ently the longer the delay is, the smaller the difference
between the performance of a normal sender and a
patched sender. The biggest difference is 2.002 Mbps
by 1 ms and the smallest difference is 0.015 Mbps by
24 ms delay.

B. Delay Attack

A countermeasure against the delay attack is more
difficult. An attacker can always lie about the one
way delay measurement to induce the sender to send

5 10 15 20 25

10

20

30

40

Time (s)

B
an

dw
id

th
in

M
bp

s

uTP without Countermeasure
uTP with Countermeasure

Figure 5. File Transfer of a 100 MiB File via uTP under
the following network conditions: Bandwidth: 100 Mbit/s, Delay:
25 ms, Variance: 10 ms and Distribution: normal

more packets into the network. That is because the
congestion control with the one way delay only works
with the help of the receiver and there is no guarantee
that the receiver tells us the truth. One idea to make
the window calculation less depending on the one way
delay is to include the Round-Trip Time (RTT) into the
calculation from Listing 1. This requires that the coun-
termeasure from Section IV-A is included, because the
opt-ack attack also reduces the RTT. Therefore a good
countermeasure against the delay attack yields to a
complete redesign of the LEDBAT congestion control.
That is why we don not propose a countermeasure
against this attack and point here to further research.

V. RELATED WORK

In this section we discuss the related work which
has influenced and inspired this paper. We have divided
the related work in a subsection which concerns about
the exploitation of congestion avoidance algorithm’s
and a subsection which concerns about performance
evaluations of LEDBAT.

A. Exploit Congestion Avoidance Control

Savage et al. [15] used a misbehaving TCP receiver
to get better end-to-end performance. They named one
of their techniques Optimistic ACKing: The receiver
sends ACKs which the sender has not yet been sent.
This increases the RTT of the sender and in turn this
increases the send rate. Savage et al. showed through

their research work that these techniques can increase
end-to-end performance. They mentioned that these
techniques can also be used to generate a DoS attack.

Sherwood et al. [14] were the first who investigated
these techniques from a DoS perspective. They showed
that the opt-ack attack can cause widespread damage
and destabilize the network. The main difference from
Sherwood’s opt-ack attack against TCP and the opt-
ack attack against uTP is, that uTP does not use the
RTT to adjust the send rate. However, every valid
ack increases the window size of the sender. As a
result of this increase the sender can send new data,
which increases the bandwidth. They also engineered a
defence strategy which does not need any modification
of the TCP/IP standard. Unfortunately this patch has
not found its way into the Linux kernel [16]. In
contrast, our work provide a performance evaluation
of their defence strategy to show the real performance
lost.

B. LEDBAT Performance

Rossi et al. [17], [18] were the first who evalu-
ated LEDBAT under scientific aspects. They tested
LEDBAT especially in the terms of fairness against
competing TCP flows and protocol efficiency. They
showed through experimental evidences that LEDBAT
reached some of its design goals e.g., protocol effi-
ciency, but they also found some problems regarding
the fairness of resources.

Abu and Gordon showed the impact of delay vari-
ability on LEDBAT performance caused by router
changes [19]. They come to the conclusion that delay
variability can cause a negative impact on the through-
put.

VI. CONCLUSION AND FUTURE WORK

This paper proposed the following three attacks for
the uTP: delay attack, lazy opt-ack attack and opt-ack
attack. We have shown a detail evaluation and shown
the severity of these attacks in terms of bandwidth con-
sumption and number of packets. We have also shown
that the delay attack can steal additional bandwidth and
the lazy opt-ack and opt-ack attack can cause serious
congestion. To better understand bandwidth attacks in
general and the proposed uTP in particular, we plan
to build a BitTorrent testbed system and repeat our
experiments to answer the following questions: How

does the uTP attacks behave in correlation with Bit-
Torrent’s choking algorithm? How will the BitTorrent
eco-system react on those attacks.

REFERENCES

[1] A. Kuzmanovic and E. Knightly, “TCP-LP: low-
priority service via end-point congestion control,”
IEEE/ACM Transactions on Networking, vol. 14, no. 4,
pp. 739–752, August 2006.

[2] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP
Nice: A mechanism for background transfers,” in 5th
Symposium on Operating Systems Design and Imple-
mentation (USENIX OSDI). USENIX, 2002, pp. 329–
343.

[3] G. Hazel, “Announcements: µTorrent 1.9 alpha 15380,”
uTorrent Forum, Nov 2008. [Online]. Available:
http://forum.utorrent.com/viewtopic.php?pid=377209

[4] R. Bennett, “Bittorrent declares War on VoIP,
Gamers - The Next Internet Meltdown,” 2008.
[Online]. Available: http://www.theregister.co.uk/2008/
12/01/richard_bennett_utorrent_udp/

[5] I. Lamont, “BitTorrent Calls UDP Report
“Utter Nonsense“,” 2008. [Online]. Avail-
able: http://tech.slashdot.org/story/08/12/01/2331257/
bittorrent-calls-udp-report-utter-nonsense

[6] I. van Beijnum, “µTorrent’s switch to UDP
and why the sky isn’t falling,” 2008. [Online].
Available: http://arstechnica.com/old/content/2008/12/
utorrents-switch-to-udp-and-why-the-sky-isnt-falling.
ars

[7] S. Shalunov and G. Hazel, “Internet-Draft: Low
Extra Delay Background Transport (LEDBAT),”
IETF, Tech. Rep., 2011. [Online]. Available: http:
//tools.ietf.org/html/draft-ietf-ledbat-congestion-09

[8] A. Norberg, “BEP 0029: uTorrent transport protocol,”
BitTorrent, Inc., Tech. Rep., 2010. [Online]. Available:
http://bittorrent.org/beps/bep_0029.html

[9] V. Jacobson, “Congestion Avoidance and Control,”
ACM SIGCOMM Computer Communication Review,
vol. 18, no. 4, pp. 314–329, August 1988.

[10] F. Adamsky, H. Khan, M. Rajarajan, and
S. A. Khayam, “POSTER: Destabilizing BitTorrent’s
Clusters to Attack High Bandwidth Leechers,” in ACM
Computer and Communications Security 2011, 2011.
[Online]. Available: http://florian.adamsky.it/research/
publications/2011/ccsp152a-adamsky.pdf

[11] A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clus-
tering and sharing incentives in BitTorrent systems,” in
Proceedings of the 2007 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of
Computer Systems. ACM, 2007, pp. 301–312.

[12] E. Van Der Sar, “uTorrent Keeps BitTorrent Lead,
BitComet Fades Away,” TorrentFreak, September
2011. [Online]. Available: http://torrentfreak.com/
utorrent-keeps-bittorrent-lead-bitcomet\-fades-away\
-110916/

[13] S. Hemminger, “Network emulation with NetEm,”
in Linux Conf Au. Citeseer, 2005. [On-
line]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.67.1687&rep=rep1&type=pdf

[14] R. Sherwood, B. Bhattacharjee, and R. Braud,
“Misbehaving TCP receivers can cause Internet-
wide congestion collapse,” in Proceedings of
the 12th ACM Conference on Computer and
Communications Security. ACM, 2005, pp. 383–
392. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1102120.1102170

[15] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson,
“TCP congestion control with a misbehaving receiver,”
ACM SIGCOMM Computer Communication Review,
vol. 29, no. 5, pp. 71–78, October 1999.

[16] S. Hemminger, “Re: fixing opt-ack DoS against
TCP-Stack,” Linux-Net Archive, Jan 2007. [Online].
Available: http://lkml.indiana.edu/hypermail/linux/net/
0701.1/0003.html/

[17] D. Rossi, C. Testa, S. Valenti, and L. Muscariello,
“LEDBAT: the new BitTorrent congestion control
protocol,” in Computer Communications and
Networks (ICCCN). IEEE, 2010, pp. 1–6. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=5560080

[18] D. Rossi, C. Testa, and S. Valenti, “Yes,
we LEDBAT: Playing with the new BitTorrent
congestion control algorithm,” in Passive and
Active Measurement. Springer, 2010, pp. 31–
40. [Online]. Available: http://www.springerlink.com/
index/M4V0200776L3P52H.pdf

[19] A. J. Abu and S. Gordon, “Impact of delay variability
on LEDBAT performance,” in Advanced Information
Networking and Applications. IEEE, 2011, pp.
708–715. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=5763498

