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Abstract

In this short review (to appear as a contribution to an edited volume) we

discuss perturbative and non-perturbative approaches to the quantization of the

Green-Schwarz string in AdS backgrounds with RR-fluxes, where the guiding

thread is the use of genuine field theory methods, the search for a good regu-

larization scheme associated to them and the generality of the analysis carried

out. We touch upon various computational setups, both analytical and numeri-

cal, and on the role of their outcomes in understanding the detailed structure of

the AdS/CFT correspondence.
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1 Introduction

Over the previous decade there has been beautiful progress in obtaining exact results in

the framework of the duality between superconformal gauge theories and string theory

in AdS backgrounds with Ramond-Ramond (RR) fluxes, or AdS/CFT correspondence.
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Several examples of physical observables exist by now, whose functional behavior with

the coupling is known – explicitly or implicitly – not only in the regimes which are

naturally under control perturbatively (both from a gauge theory and sigma-model

perspective) but also at finite coupling. Essentially two methods are decisive here,

the first relying on the integrability of the underlying system [1] and the second on

supersymmetric localization [2, 3].

However, not only integrability is in the finite coupling region an assumption, and

supersymmetric localization is only accessible in a limited set of cases (for those ob-

servables protected by supersymmetry 1). Importantly, from the point of view of the

string worldsheet theory – which is ours in this note – integrability is a solid fact only

classically, and supersymmetric localization is not even formulated. The Green-Schwarz

superstring on AdS backgrounds with RR fluxes remains, beyond its supergravity ap-

proximation, a complicated interacting two-dimensional field theory which presents

subtleties also at perturbative level. Its action, when explicitly expanded in terms

of independent fermionic degrees of freedom, is highly non-linear and usually quan-

tized in a semiclassical approach [5,6], expanding around a classical solution in powers

of the (effective) string tension [7]. Here difficulties may arise due to the fact that

fermionic string coordinates, which are spacetime spinors, appear in the Lagrangian

always through their two-dimensional projection involving derivatives of the classical

background (which, in order to define fermion propagators and perform perturbation

theory, must be non-trivial). Such derivatives introduce a dimensional scale and appear

nonlinearly in the quartic fermionic terms, leading to non-renormalizable interactions

and higher-power divergences beyond one-loop 2. Verifying the cancellation of the UV

divergences with suitable regularization schemes – crucial for a well-defined expansion

– may be then non-trivial. The search of regularization which is “good”, i.e. equiv-

alent to the one (implicitly) assumed by the calculations performed via integrability

or localization, characterizes the work reviewed in the first part of this note. Quan-

tizing the theory in a semi-classical approximation implies, beyond the leading order

which defines minimal string surfaces (to be suitably regularized at the AdS boundary),

solving the spectral problem of highly non-trivial differential operators of Laplace and

Dirac type, namely evaluating the zeta-function determinant in the context of elliptic

boundary value problems, a procedure which below we illustrate on two relevant exam-

ples. We also sketch the evaluation of next-to-leading corrections, or two loop order,

and comment on an efficient alternative to Feynman diagrammatics, based on unitarity

cuts, which may be used in the case of on-shell objects such as worldsheet scattering

amplitudes.

At a non-perturbative level, a natural way to regularize a theory and perform ab

1See however [4] for a relevant extension of this set.
2This is already true for the flat space case [8]. See also discussion in [9].
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initio calculations within it is to define it on a discretized spacetime or lattice. Lattice

field theory methods have been recently become a subject of study also in the framework

of worldsheet string models [10–12]. This approach bypasses the subtleties of realizing

supersymmetry on the lattice - which characterise the lattice approach to the duality

from the gauge theory side [13] - in that the Green-Schwarz superstring formulation

that we use displays supersymmetry only in the target space. In the two-dimensional

string world-sheet model under analysis supersymmetry appears as a flavour symmetry.

Importantly, local symmetries (diffeomorphism and fermionic kappa-symmetry) are all

fixed, and only scalar fields (some of which anti-commuting) appear, assigned to sites.

This rather simplified setting - useful to have at most quartic fermionic interactions -

still retains the sophisticated dynamics of relevant observables in this framework.

Below we will be mostly dealing with the AdS5×S5 superstring; with few exceptions,

the majority of the observations generalizes to other AdS/CFT relevant backgrounds.

2 Sigma-model and perturbation theory

When evaluating the AdS5 × S5 string partition function in a semiclassical quantiza-

tion, it is possible and useful to remain extremely general at least in writing down the

fluctuation spectrum about such solution, applying elementary concepts of intrinsic and

extrinsic geometry to the properties of string worldsheet embedded in a D-dimensional

curved space-time. Taking full advantage of the equations of Gauss, Codazzi, and Ricci

for surfaces embedded in a general background one obtains simple and general expres-

sions for perturbations over them 3. For example, writing down the complete mass

matrixM in the bosonic fluctuation sector only requires as an input generic properties

of the classical configuration, basic information about the space-time background and

the inclusion of a suitable choice of orthonormal vectors which are orthogonal to the

surface spanned by the string solution

Mij =−m2
AdS5

(N̂i · N̂j)−m2
S5 (N̄i · N̄j) +KiαβK

αβ
j ,

m2
AdS5
≡γρσ(t̂ρ · t̂σ) and m2

S5
≡ −γρσ(t̄ρ · t̄σ).

(2.1)

Above, γαβ , α, β = 1, 2 is the induced metric (pullback of the AdS5 × S5 target space

metric), hats and bars refer to the projections onto AdS5 and S5 of vectors tangent (t)

and orthogonal (N) to the worldsheet, Ki
αβ ≡ KA

αβN
i
A is the extrinsic curvature of the

embedding, i, j . . . , 8 are transverse space-time indices.

To proceed in the one-loop analysis, one is to explicitly compute the functional de-

terminants associated to the fluctuations operators. This is in general difficult, except

in the case of rational rigid string solutions, so-called “homogeneous” [16–20], for which

the Lagrangian has coefficients constant in the worldsheet coordinates and the one-loop

3This follows and enlarges earlier investigations [14,15].
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partition function results in a sum over characteristic frequencies which are relatively

simple to calculate. For the non-homogenuous case, one is to restrict to problems which

are effectively one-dimensional. This step, which may involve regularization subtleties

and other issues – as the appropriate definition of integration measure, kappa-symmetry

ghosts, Jacobians due to change of fluctuation basis – is often feasible with standard

techniques, such as the Gelfand-Yaglom method for the evaluation of functional deter-

minants (stated originally in [21] and later improved in [22–27]) 4. This algorithm has

the advantage of computing ratios of determinants bypassing the computation of the

full set of eigenvalues and is based on the solution of an auxiliary initial value problem.

Considering the pair of n-order ordinary differential operators in one variable

O = P0(σ)
dn

dσn
+

n−1∑
k=0

Pn−k(σ)
dk

dσk
, Ô = P0(σ)

dn

dσn
+

n−1∑
k=0

P̂n−k(σ)
dk

dσk
(2.2)

with coefficients being r × r complex matrices, continuous functions of σ on the finite

interval I = [a, b]. The principal symbol (proportional to the coefficient P0(σ) of the

highest-order derivative) is assumed to be the same for both operators, and invertible

(detP0(σ) 6= 0) on the whole interval 5. The operators act on the space of square-

integrable r-component functions f̄ ≡ (f1, f2, ..., fr)
T ∈ L2 (I), and nr × nr constant

matrices M,N implement the linear boundary conditions at the extrema of I

M


f̄ (a)
d
dσ
f̄ (a)
...

dn−1

dσn−1 f̄ (a)

+N


f̄ (b)
d
dσ
f̄ (b)
...

dn−1

dσn−1 f̄ (b)

 =


0

0
...

0

 . (2.3)

The particular significance of the Gel’fand-Yaglom theorem is that it drastically reduces

the complexity of finding the spectrum of the operators of interests

Of̄λ(σ) = λf̄λ(σ) , Ô ˆ̄fλ̂(σ) = λ̂ ˆ̄fλ̂(σ), (2.4)

encoding it into the elegant formula for (e.g. even-order) differential operators

DetωO
DetωÔ

=
exp

{
1
2

∫ b
a

tr
[
P1(σ)P−1

0 (σ)
]
dσ
}

det [M +NYO (b)]

exp
{

1
2

∫ b
a

tr
[
P̂1(σ)P−1

0 (σ)
]
dσ
}

det [M +NYÔ (b)]
. (2.5)

4See for example [26,28], or the concise review in Appendix B of [29].
5This assumption ensures that the leading behaviour of the eigenvalues is comparable, thus the ratio

is well-defined despite the fact each determinant is formally the product of infinitely-many eigenvalues

of increasing magnitude.
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This result agrees with the one obtained via ζ−function regularization for elliptic dif-

ferential operators. Above, the nr × nr matrix

YO(σ) =


f̄(I)(σ) f̄(II)(σ) . . . f̄(nr)(σ)
d
dσ
f̄(I)(σ) d

dσ
f̄(II)(σ) . . . d

dσ
f̄(nr)(σ)

...
...

. . .
...

dn−1

dn−1σ
f̄(I)(σ) dn−1

dn−1σ
f̄(II)(σ) . . . dn−1

dn−1σ
f̄(nr)(σ)

 (2.6)

uses all the independent homogeneous solutions of

Of̄(i)(σ) = 0 i = I, II, ..., 2r (2.7)

chosen such that YO (a) = Inr. In a number of relevant cases this method has been strik-

ingly efficient in combination with the underlying classical integrable structure of the

Green-Schwarz superstring on AdS5×S5, revealed by the presence of a class of integrable

differential operators – tipically of Lamé type [30,31] – for which solutions are known in

the literature. In some other problems highly non-trivial second-order matrix 2d differ-

ential operators appear, whose coefficients have a complicated coordinate-dependence,

for example in the (effectively bosonic) mixed-modes case of a folded string spinning

in S5 with two large angular momenta (J1, J2), solution of the Landau-Lifshitz (LL)

effective action of [32]. In this case one has to build the ingredients of the Gelf’and

Yaglom method, studying ex novo fourth order differential equations with doubly pe-

riodic coefficients [31]. Among other findings, this study allows the analytic proof of

equivalence between the full exact one-loop string partition function (for the one-spin

folded string) in conformal and static gauge – a non-trivial statement which finds its

counterpart only in flat space [33].

The computation of the disc partition function for the AdS5×S5 superstring appears

to be subtle, beyond the supergravity approximation, in the cases of classical solutions

corresponding to supersymmetric Wilson loops. For euclidean minimal surfaces ending

at the boundary on circular loops – the maximal 1/2 BPS [15,34,35], the 1/4 BPS fam-

ily of “latitudes” [29, 36–40], the k-wound case in the fundamental representation [41],

as well as loops in k-symmetric and k-antisymmetric representations [35] – the first

correction to the partition function gives a result which disagrees with the gauge theory

result, conjectured in [42–45] and proven in [2,46] via supersymmetric localization. To

eliminate ambiguities due to the absolute normalization of the string partition function,

and under the assumption that the latter is independent on the geometry of the clas-

sical worldsheet, one should consider the ratio between the partition functions for two

supersymmetric Wilson loops with the same topology. This was done in [29] 6, where

the one-loop determinants for fluctuations about the classical solutions corresponding

6See also [40].
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to a generic “latitude” - the 1/4 BPS Wilson loops of [36–38] - and the maximal 1/2-

BPS circle were evaluated with the Gel’fand-Yaglom method, where a disagreement

with the exact gauge theory result was confirmed. Recent developments suggest that

to reconcile sigma-model perturbation theory and localization one may consider such

ratio and use heat kernel techniques in a perturbative approach about the case of the

maximal circle [47]7. The relevant string worldsheet for the maximal circle is AdS2,

where heat kernel explicit expressions for the spectra of Laplace and Dirac operators

are available [49–52], and in this case one explicitly evaluates their corrections due to

the near-AdS2 geometry induced by the generic latitude in S2 ⊂ S5 parametrized by a

small angle θ0. Then one considers the perturbative expansion

gij = ḡij + θ2
0 g̃ij +O

(
θ4

0

)
O = Ō + θ2

0 Õ +O
(
θ4

0

)
,

KO(x, x
′
; t) = K̄O(x, x

′
; t) + θ2

0 K̃O(x, x
′
; t) +O

(
θ4

0

) (2.8)

in the heat equation

(∂t +Ox)KO(x, x
′
; t) = 0 KO(x, x

′
; 0) =

1√
g
δ(d)

(
x− x′

)
I , (2.9)

and finds for the correction K̃O to the functional trace KO (t) = K̄O (t) + θ2
0 K̃O (t) +

O (θ4
0)

K̃O (t) = −t
∫
x

√
ḡ tr

[
Õx K̄O

(
x, x

′
; t
)]

x=x′
. (2.10)

This translates in the perturbative evaluation of each determinant in the partition

function as [47]

log(detO) = −ζ̄ ′O (0)− θ2
0 ζ̃
′

O (0) +O(θ4
0) , (2.11)

ζ̄O (s) =
1

Γ (s)

∫ ∞
0

dt ts−1 K̄O (t) , ζ̃O (s) =
1

Γ (s)

∫ ∞
0

dt ts−1K̃O (t) .

This approach turns our to be successful: the gauge theory exact result is indeed

reproduced, at one loop and at orderO(θ2
0), by the analysis in sigma-model perturbation

theory. Despite being both based on zeta-function regularization, the two procedures

illustrated here for the evaluation of functional determinants differ substantially on

few aspects. In this context, where the spectral problem is effectively (after Fourier-

transforming in, say, τ) one-dimensional, the Gelfand-Yaglom uses a zeta-function-like

regularization in σ – whose outcome is equivalent to the solution (2.5) above – and a

7A recent study has clarified how the agreement is reached also accounting for an IR anomaly

associated with the divergence in the conformal factor, carefully defining an invariant cutoff and pro-

ceeding in the evaluation of functional determinants directly evaluting phaseshifts for all the fluctuation

modes [48].
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cutoff- regularization in the sum over the Fourier τ -modes, and is therefore not a diffeo-

invariant regularization scheme. It also requires considering ratios of determinants for

differential operators with the same principal symbol, which in turns implies a functional

rescaling by the conformal factor, and the introduction of a fictitious boundary – a cut at

the origin of the disk – introduced in [29,34,40] to allow the calculation of determinants

on the finite interval (see also [18, 53]). Such regulator does not appear in the heat

kernel approach, which a fully two-dimensional method 8.

2.1 Higher orders

Beyond one-loop, one has to further restrict the class of feasible problems to homogenous

configurations, and trade the standard conformal gauge with the so-called AdS lightcone

gauge, where the light-cone is entirely in AdS [54]. This setup – where propagators are

in general simple, and (in the bosonic case) diagonal, a fact that drastically reduces the

number of Feynman diagrams to be evaluated. – was efficiently used in [55] to evaluate

the strong coupling corrections to the N = 4 SYM cusp anomaly up to two-loop order.

In [56] a very similar calculation was done in the considerably more involved case of

the AdS lightcone gauge-fixed action derived via double dimensional reduction from

a D = 11 membrane action based on the supercoset OSp(8|4)/(SO(7) × SO(1, 3)).

As the relevant classical solution is homogeneous, the one-loop partition function is a

sum of simple frequencies. At two loops, the possible topologies of connected vacuum

diagrams (sunset, double bubble, double tadpole) occurring when studying the effective

string action at two loops in this setup are in Fig. 1. When combining vertices and

Figure 1: Sunset, double bubble and double tadpole appearing in the two-loop contri-

bution to the string partition function for the cusped light-like solution [55,56].

propagators in the sunset diagrams various non-covariant integrals are originated, but

standard reduction techniques allow to rewrite every integral as a linear combination

of the two following scalar ones

I
(
m2
)
≡
∫

d2p

(2π)2

1

p2 +m2
(2.12)

I
(
m2

1,m
2
2,m

2
3

)
≡
∫
d2p d2q d2r

(2π)4

δ(2)(p+ q + r)

(p2 +m2
1)(q2 +m2

2)(r2 +m2
3)

. (2.13)

8We refer to the very recent [48] for the explicit account of the role played by conformal rescalings

and invariant cutoff regulators in solving the disagreement with the gauge theory result.
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In this process it is standard [9, 55–57] to set to zero power UV divergent massless

tadpoles, as in dimensional regularization∫
d2p

(2π)2

(
p2
)n

= 0 , n ≥ 0 , (2.14)

so that all manipulations in the numerators are performed in d = 2, which has the

advantage of simpler tensor integral reductions. While UV finiteness is not obvious,

as each diagram in (2.12) is separately divergent (the last one in the IR, the former in

both UV and IR), all logarithmically divergent integrals – remaining after the power-

like are set to zero via (2.14) – happen to cancel out in the computation and there is no

need to pick up an explicit regularization scheme to compute them. Such non-trivial

result, together with establishing the quantum consistency of the string action proposed

in [58,59], has been the first non-trivial check at strong coupling of the conjectured [60]

all-order expression of the interpolating function h(λ) appearing in terms of which all

calculations based on the integrability of the AdS4/CFT3 system are based.

2.2 Unitarity methods in d = 2 dimensions

As extremely efficient alternative to Feynman diagrammatics – however only well-

stablished for on-shell objects – unitarity-cut techniques are a powerful tool in non-

abelian gauge theories for the evaluation of space-time scattering amplitudes (see e.g. [61]).

In [62, 63] their use was initiated for the one-loop, perturbative study of the S-matrix

for massive two-dimensional field theories, describing the scattering of the Lagrangian

excitations. Here the method boils down to a reverse application of Cutkowsky rules,

allowing the extraction of the discontinuity of a Feynman diagram across its branch

cut. In applying the standard unitarity rules (derived from the optical theorem) [64]

to the example of a one-loop four point amplitude, one considers two-particle cuts, ob-

tained by putting two intermediate lines on-shell. The contributions that follow to the

imaginary part of the amplitude are therefore given by the sum of s- t- and u- channel

cuts illustrated in Fig. 2, explicitly

A(1)PQ
MN(p1, p2, p3, p4)|s−cut =

∫
d2l1

(2π)2

∫
d2l2

(2π)2
iπδ+(l1

2 − 1) iπδ+(l22 − 1)

×A(0)RS
MN(p1, p2, l1, l2)A(0)PQ

SR (l2, l1, p3, p4)

A(1)PQ
MN(p1, p2, p3, p4)|t−cut =

∫
d2l1

(2π)2

∫
d2l2

(2π)2
iπδ+(l1

2 − 1) iπδ+(l2
2 − 1)

×A(0)SP
MR(p1, l1, l2, p3)A(0)RQ

SN(l2, p2, l1, p4)

A(1)PQ
MN(p1, p2, p3, p4)|u−cut =

∫
d2l1

(2π)2

∫
d2l2

(2π)2
iπδ+(l1

2 − 1) iπδ+(l2
2 − 1)

×A(0)SQ
MR(p1, l1, l2, p4)A(0)RP

SN(l2, p2, l1, p3)

8



where A(0) are tree-level amplitudes and a sum over the complete set of intermediate

states R, S (all allowed particles for the cut lines) is understood.

Figure 2: Diagrams representing s-, t- and u-channel cuts contributing to the four-point

one-loop amplitude.

Notice that tadpole graphs, having no physical two-particle cuts, are by definition

ignored in this procedure. To proceed, in each case one uses the momentum conservation

at the vertex involving the momentum p1 to integrate over l2, e.g. for the s-channel

Ã(1)PQ
MN(p1, p2, p3, p4)|s−cut =

∫
d2l1

(2π)2
iπδ+(l1

2 − 1) iπδ+((l1 − p1 − p2)2 − 1)

× Ã(0)RS
MN(p1, p2, l1,−l1 + p1 + p2) Ã(0)PQ

SR (−l1 + p1 + p2, l1, p3, p4) .

The simplicity of the two-dimensional kinematics and of being at one loop plays now

its role, since in each of the integrals the set of zeroes of the δ-functions is a discrete

set, and the cut loop-momenta are frozen to specific values 9. This allows us to pull

out the tree-level amplitudes with the loop-momenta evaluated at those zeroes 10. In

what remains, following standard unitarity computations [64], we apply the replacement

9 At two loops, to constrain completely the four components of the two momenta circulating in the

loops one needs four cuts, each one giving an on-shell δ-function. Two-particle cuts at two loops would

result in a manifold of conditions for the loop momenta.
10This is like using f(x)δ(x− x0) = f(x0)δ(x− x0), where f(x) are the tree-level amplitudes in the

integrals.
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iπδ+(l2−1) −→ 1
l2−1

(i.e. the Cutkowsky rule in reverse order) which sets loop momenta

back off-shell, thus reconstructing scalar bubbles. This allows to rebuild, from its

imaginary part, the cut-constructible piece of the amplitude and of the S-matrix, via [62]

SPQMN(p1, p2) ≡ J(p1, p2)

4ε1ε2
ÃPQMN(p1, p2, p1, p2) . (2.15)

where the Jacobian J(p1, p2) = 1/(∂εp1/∂p1 − ∂εp2/∂p2) depends on the dispersion

relation εp, on-shell energy associated to p (the spatial momentum) for the theory at

hand. The expression for the one-loop S-matrix elements is given by the following

simple sum of products of two tree-level amplitudes 11

S(1)PQ
MN(p1, p2) =

1

4(ε2 p1 − ε1 p2)

[
S̃(0)RS

MN(p1, p2)S̃(0)PQ
RS (p1, p2) Ip1+p2 (2.16)

+S̃(0)SP
MR(p1, p1)S̃(0)RQ

SN(p1, p2) I0 + S̃(0)SQ
MR(p1, p2)S̃(0)PR

SN(p1, p2) Ip1−p2

]
where the coefficients are given in terms of the bubble integral

Ip =

∫
d2q

(2π)2

1

(q2 − 1 + iε)((q − p)2 − 1 + iε)
(2.17)

and read explicitly 12

Ip1+p2 =
iπ − arsinh(ε2 p1 − ε1 p2)

4πi (ε2 p1 − ε1 p2)
, I0 =

1

4πi
, Ip1−p2 =

arsinh(ε2 p1 − ε1 p2)

4πi (ε2 p1 − ε1 p2)
.

As it only involves the scalar bubble integral in two dimensions, the result (2.16) follow-

ing from our procedure is inherently finite. No additional regularization is required and

the result can be compared directly with the 2 → 2 particle S-matrix (following from

the finite or renormalized four-point amplitude) found using standard perturbation the-

ory. Of course, this need not be the case for the original bubble integrals before cutting

– due to factors of loop-momentum in the numerators. These divergences, along with

those coming from tadpole graphs, which are not considered in this procedure, should

be taken into account for the renormalization of the theory. We have not investigated

this issue, since all the theories considered in [62] 13 are either UV-finite or renormaliz-

able. The method, applied to various models, has shown enough evidence to postulate

that supersymmetric, integrable two-dimensional theories should be cut-constructible

11In (2.16), S̃(0)(p1, p2) = 4(ε2 p1 − ε1 p2)S(0)(p1, p2) and the denominator on the right-hand side

comes from the Jacobian J(p1, p2) assuming a standard relativistic dispersion relation (for the theories

we consider, at one-loop this is indeed the case).
12The t-channel cut requires a prescription [62].
13They include, among relativistic theories, a class of generalized sine-Gordon models, defined by a

gauged WZW model for a coset G/H plus a potential. Notable non-relativistic cases are the superstring

worldsheet models in AdS5 × S5 and AdS3 × S3 ×M4 [65].
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via standard unitarity methods. For bosonic theories with integrability, agreement was

found with perturbation theory up to a finite shift in the coupling. In the case of

the superstring worldsheet models in AdS5 × S5 [62] and AdS3 × S3 ×M4 [65], the

method allowed non-trivial confirmations of the integrability prediction together with

conjectures (then confirmed) on the one-loop phases.

3 AdS5 × S5 superstring on a lattice

The natural, genuinely field-theoretical way to investigate the finite-coupling region

and in general the non-perturbative realm of a quantum field theory is to discretize the

spacetime where the model lives, and proceed with numerical methods for the lattice

field theory so defined. A rich and interesting program of putting N = 4 SYM a space-

time lattice is being carried out for some years [66–70] 14. Alternatively, one could

discretize the worldsheet spanned by the Green-Schwarz string embedded in AdS5×S5.

If the aim is a test of the AdS/CFT correspondence and/or the integrability of the string

sigma model, it is is obviously computationally cheaper to use a two-dimensional grid,

rather than a four-dimensional one, where no gauge degrees of freedom are present and

all fields are assigned to sites - so that only scalar fields (some of which anticommuting)

appear in the relevant action. Also, although we are dealing with superstrings, there

is here no subtlety involved with putting supersymmetry on the lattice (see e.g. [13]),

both because of the Green-Schwarz formulation of the action (with supersymmetry

only manifest in the target space) and because κ-symmetry is gauge-fixed. In general,

one merit of this analysis is to explore another route via which lattice simulations 15

could become a potentially efficient tool in numerical holography. Following the earlier

proposal of [10], such a route has been taken in [11,12] to investigate relevant observables

in AdS/CFT, discretizing the dual two-dimensional string worldsheet. There, the focus

is on particularly important observables completely “solved” via integrability [79]: the

cusp anomalous dimension of N = 4 SYM – measured by the path integral of an open

string bounded by a null-cusped Wilson loop at the AdS boundary – and the spectrum

of excitations around the corresponding string minimal surface. The relevant string

worldsheet theory, an AdS-lightcone gauge-fixed action [54, 80], is a highly non-trivial

2d non-linear sigma-model with rich non-perturbative dynamics. On the lattice, several

subtleties appear (fermion doublers, complex phases) which require special treatment,

as we sketch below.

14See also the numerical, non-lattice formulation of N = 4 SYM on R × S3 as plane-wave (BMN)

matrix model [71–77].
15See for example [78] and reference therein on possible further uses of lattice techniques in

AdS/CFT.
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3.1 The observable in the continuum

The cusp anomaly of N = 4 SYM governs the renormalization of a cusped Wilson

loop, and according to AdS/CFT should be represented by the path integral of an open

string ending on the loop at the AdS boundary

〈W [Ccusp]〉 ≡ Zcusp =

∫
[DδX][DδΨ] e−Scusp[Xcl+δX,δΨ]

= e−Γeff ≡ e−
1
8
f(g)V2 .

(4.1)

Above, Xcl = Xcl(t, s) - with t, s the temporal and spatial coordinate spanning the string

worldsheet - is the relevant classical solution [55], Scusp[X + δX, δΨ] is the action for

field fluctuations over it – the fields being both bosonic and fermionic string coordinates

X(t, s), Ψ(t, s) – and is reported below in equation (4.3) in terms of the effective bosonic

and fermionic degrees of freedom remaining after gauge-fixing. Being an homogenous

solution, the worldsheet volume simply factorizes out 16 in front of the function of the

coupling f(g), as in the last equivalence above. Rather than partition functions, in a

lattice approach it is natural to study vacuum expectation values. In simulating the

vacuum expectation value of the “cusp” action

〈Scusp〉 =

∫
[DδX][DδΨ]Scusp e

−Scusp∫
[DδX][DδΨ] e−Scusp

= −g d lnZcusp

dg
≡ g

V2

8
f ′(g) , (4.2)

one therefore obtains information on the derivative of the scaling function. In the

continuum, the AdS5 × S5 superstring action Scusp describing quantum fluctuations

around the null-cusp background is [55] (after Wick-rotation)

Scusp = g

∫
dtds

{
|∂tx+ 1

2
x|2 + 1

z4 |∂sx− 1
2
x|2 − 1

z2 (ηiηi)
2

+ 1
z4

(
∂sz

M − 1
2
zM
)2

+
(
∂tz

M + 1
2
zM + i

z2 zNηi
(
ρMN

)i
j
ηj
)2

+ i (θi∂tθi + ηi∂tηi + θi∂tθ
i + ηi∂tη

i)

+2i
[

1
z3 z

Mηi
(
ρM
)
ij

(
∂sθ

j − 1
2
θj − i

z
ηj
(
∂sx− 1

2
x
))

+ 1
z3 z

Mηi(ρ
†
M)ij

(
∂sθj − 1

2
θj + i

z
ηj
(
∂sx− 1

2
x
)∗) ]}

(4.3)

Above, x, x∗ are the two bosonic AdS5 (coordinate) fields transverse to the AdS3 sub-

space of the classical solution, and zM (M = 1, · · · , 6) are the bosonic coordinates of

the AdS5 × S5 background in Poincaré parametrization, with z =
√
zMzM , remaining

after fixing the AdS light-cone gauge. The fields θi, ηi, i = 1, 2, 3, 4 are 4+4 complex

anticommuting variables for which θi = (θi)
†, ηi = (ηi)

†. They transform in the fun-

damental representation of the SU(4) R-symmetry and do not carry (Lorentz) spinor

indices. The matrices ρMij are the off-diagonal blocks of SO(6) Dirac matrices γM in the

chiral representation and (ρMN) ji = (ρ[Mρ†N ]) ji are the SO(6) generators. In (4.3) –

16The normalization of V2 with a 1/4 factor follows the convention of [55].
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where a massive parameter m ∼ P+, usually set to one, is restored – local bosonic (dif-

feomorphism) and fermionic (κ-) symmetries originally present have been fixed. With

this action one can directly proceed to the perturbative evaluation of the cusp anomaly

(K is the Catalan constant) and of the dispersion relation for the field excitations

f(g) = 4 g
(

1− 3 log 2

4π g
− K

16π2 g2
+O(g−3)

)
m2
x(g) =

m2

2

(
1− 1

8 g
+O(g−2)

)
.

(4.4)

While the bosonic part of (4.3) can be easily discretized and simulated, Graßmann-odd

fields are formally integrated out, letting their determinant to become part – via ex-

ponentiation in terms of pseudo-fermions, see (4.9) below – of the Boltzmann weight

of each configuration in the statistical ensemble. In the case of higher-order fermionic

interactions – as in (4.3), where they are at most quartic – this is possible via the intro-

duction of auxiliary fields realizing a linearization. The most natural linearization [10]

introduces 7 real auxiliary fields, one scalar φ and a SO(6) vector field φM , with a

Hubbard-Stratonovich transformation

e
−g

∫
dtds

[
− 1
z2 (ηiηi)

2
+
(

i
z2 zNηiρ

MNi
jη
j
)2]

(4.5)

∼
∫
DφDφM e−g

∫
dtds [

1
2
φ2 +

√
2
z
φ η2 + 1

2
(φM)2 − i

√
2

z2 φ
MzN

(
i ηiρ

MNi
jη
j
)
] .

Above, in the second line we have written the Lagrangian for φM so to emphasize that

it has an imaginary part, due to the fact that the bilinear form in round brackets is

hermitian(
i ηiρ

MNi
jη
j
)†

= −i(ηj)†(ρMNi
j)
∗(ηi)

† = −iηj ρMN
i
j ηi = iηj ρ

MNj
i η

i , (4.6)

as follows from the properties of the SO(6) generators. Since the auxiliary vector

field φM has real support, the Yukawa-term for it sets a priori a phase problem, the

only question being whether the latter is treatable via standard reweighing. After the

transformation (4.5), the corresponding Lagrangian reads

L = |∂tx+m
2
x|2 + 1

z4 |∂sx−m
2
x|2 +(∂tz

M + 1
2
zM)2 + 1

z4 (∂sz
M −m

2
zM)2

+
1

2
φ2 +

1

2
(φM)2 +ψTOFψ (4.7)

with ψ ≡ (θi, θi, η
i, ηi) and

OF =


0 i∂t −iρM

(
∂s + m

2

)
zM

z3 0

i∂t 0 0 −iρ†M
(
∂s + m

2

)
zM

z3

i z
M

z3 ρ
M
(
∂s − m

2

)
0 2 z

M

z4 ρ
M
(
∂sx−mx

2

)
i∂t − AT

0 i z
M

z3 ρ
†
M

(
∂s − m

2

)
i∂t + A −2 z

M

z4 ρ
†
M

(
∂sx

∗ −mx
2
∗)
 ,
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A =
1√
2z2

φMρ
MNzN −

1√
2z
φ + i

zN
z2
ρMN ∂tz

M . (4.8)

The quadratic fermionic contribution resulting from linearization gives then formally a

Pfaffian Pf OF , which - in order to enter the Boltzmann weight and thus be interpreted

as a probability - should be positive definite. For this reason, one proceeds as follows∫
DΨ e−

∫
dtdsΨTOFΨ = Pf OF ≡ (detOF O

†
F )

1
4 =

∫
DξDξ̄ e−

∫
dtds ξ̄(OFO

†
F )−

1
4 ξ , (4.9)

where the second equivalence obviously ignores potential phases or anomalies. The

values of the discretised (scalar) fields are assigned to each lattice site, with periodic

boundary conditions for all the fields except for antiperiodic temporal boundary condi-

tions in the case of fermions. The discrete approximation of continuum derivatives are

finite difference operators defined on the lattice. A Wilson-like lattice operator must

be introduced, such that fermion doublers are suppressed and the one-loop constant

−3 ln 2/π in (4.4) is recovered in lattice perturbation theory.

3.2 Simulations

The Monte Carlo evolution of the action (4.7) is generated by the standard Rational

Hybrid Monte Carlo (RHMC) algorithm, with a rational approximation (Remez algo-

rithm) for the inverse fractional power in the last equation of (4.9), as in [10]. In the

continuum model there are two parameters, the dimensionless coupling g =
√
λ

4π
and the

mass scale m. In taking the continuum limit, the dimensionless physical quantities that

it is natural to keep constant are the physical masses of the field excitations rescaled

by L, the spatial lattice extent. This is our line of constant physics. For the example

in (4.4), this means

L2m2
x = const , which leads to L2m2 ≡ (NM)2 = const , (4.10)

where we defined the dimensionless M = ma with the lattice spacing a. The second

equation in (4.10) relies first on the assumption that g is not renormalized, which is

suggested by lattice perturbation theory. Second, one should investigate whether the

second relation in (4.4), and the analogue ones for the other fields of the model, are

still true in the discretized model - i.e. the physical masses undergo only a finite

renormalization. In this case, at each fixed g fixing L2 m2 constant would be enough to

keep the rescaled physical masses constant, namely no tuning of the “bare” parameter

m would be necessary. In [12], we considered the example of bosonic x, x∗ correlators,

whose asymptotic exponential decay is governed by the physical mass mxLAT, as from

the partially Fourier transformed

Cx(t; 0)
t�1∼ e−tmxLAT , mxLAT = lim

T, t→∞
meff
x ≡ lim

T, t→∞,

1

a
log

Cx(t; 0)

Cx(t+ a; 0)
. (4.11)
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On the lattice mxLAT is usefully obtained as a limit of an effective mass, the discretized

logarithmich derivative above, that in Fig. 3 is measured as a function of the time t (in

units ofmxLAT) for different lattice sizes. No (1/a) divergence is found, and in the large g

region that we investigate the ratio considered approaches the expected continuum value

1/2. Having this as hint corroborating the choice of the line of constant physics, and

because with the proposed discretization we recover in perturbation theory the one-loop

cusp anomaly, we assume that in the discretized model no further scale but the lattice

spacing a is present. Any observable FLAT is therefore a function FLAT = FLAT(g,N,M)

of the input (dimensionless) parameters g =
√
λ

4π
, N = L

a
andM = am. At fixed coupling

g and fixed mL ≡ M N (large enough so to keep finite volume effects ∼ e−mL small),

FLAT is evaluated for different values of N . The continuum limit – which we do not

attempt here – is then obtained extrapolating to infinite N .

In measuring the action (4.2) on the lattice, we are supposed to recover the following

general behavior
〈SLAT〉
N2

=
c

2
+

1

8
M2 g f ′(g) , (4.12)

where we have reinserted the parameter m, used that V2 = a2N2 and added a constant

contribution in g which takes into account possible coupling-dependent Jacobians relat-

ing the (derivative of the) partition function on the lattice to the one in the continuum.

Measurements for the ratio 〈SLAT 〉−cN2/2
M2N2 g/2

= f ′(g)
4

are, at large g, in good agreement

with c
2

= 7.5(1), consistently with the with the counting of those degrees of freedom

which appear quadratically, and multiplying g, in the action – the number of bosons 17.

Having determined with good precision the coefficient of the divergence, one proceeds

first fixing it to be exactly c = 15 and subtracting it from the action. At large g, a

good agreement is found with the leading order prediction in (4.4) for which f ′(g) = 4.

For lower values of g one observes deviations that obstruct the continuum limit and

signal the presence of further quadratic (∼ N2) divergences. It seems natural to relate

these power-divergences to those arising in continuum perturbation theory and men-

tioned in the previous Section, where they are usually set to zero using dimensional

regularization. From the perspective of a hard cut-off regularization like the lattice

one, this is related to the emergence in the continuum limit of power divergences –

quadratic, in the present two-dimensional case – induced by mixing of the (scalar) La-

grangian with the identity operator under UV renormalization. One may proceed with

a non-perturbative subtraction of these divergences. A simple look at Fig. 4 shows

that, in the perturbative region, our analysis – and the related assumption for the fi-

nite rescaling of the coupling – is in good qualitative agreement with the integrability

prediction. About direct comparison with the perturbative series, the plot in Fig. 4

17In lattice codes, it is conventional to omit the coupling form the (pseudo)fermionic part of the

action, since this is quadratic in the fields and hence its contribution in g can be evaluated by a simple

scaling argument.
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Figure 3: Correlator Cx(t) =
∑

s1,s2
〈x(t, s1)x∗(0, s2)〉 of bosonic fields x, x∗ (left panel)

and corresponding effective mass meff
x = 1

a
ln Cx(t)

Cx(t+a)
normalized by m2 (right panel),

plotted as functions of the time t in units of mxLAT for different g and lattice sizes. The

flatness of the effective mass indicates that the ground state saturates the correlation

function, and allows for a reliable extraction of the mass of the x-excitation. Data

points are masked by large errorbars for time scales greater than unity because the

signal of the correlator degrades exponentially compared with the statistical noise.

does not catch the minimal upward trend of the first correction to the expected large

g behavior f ′(g)/4 ∼ 1 - we are considering the derivative of eq. (21) and the first

correction is (positive and) too small, about 2 percent, if compared to the statistical

error. Notice that, again under the assumption that such simple relation between the

couplings exists – something that within our error bars cannot be excluded – the non-

perturbative regime beginning with gc = 1 would start at g = 25, implying that our

simulations at g = 10, 5 would already test a fully non-perturbative regime of the string

sigma-model under investigation. In proximity to g ∼ 1, severe fluctuations appear in

the averaged complex phase of the Pfaffian – see Figure 5 – signaling the sign prob-

lem mentioned above. Interestingly, at least some steps in the direction of solving this

problem can be done analytically [81, 82]. A new auxiliary field representation of the

four-fermi term may be realized, following an algebraic manipulation from which an

hermitian Lagrangian linearized in fermions results, leads to a Pfaffian of the quadratic

fermionic operator OF which is real, (Pf OF )2 = detOF ≥ 0. Although a sign ambi-

guity remains, as the Pfaffian is still not positive definite, Pf OF = ± detOF , this is

an important advancement in the efficiency of the simulations, as it allows eliminating

systematic errors and identifying with precision the region of parameter space where

information on nonperturbative physics may be captured.

4 Discussion and outlook

We have reviewed and discussed perturbative and non-perturbative approaches to the

quantization of the Green-Schwarz string in AdS backgrounds with RR-fluxes, with

an emphasis on the use of direct quantum field theory methods and on the cross-
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Figure 4: Plot for f ′(g)/4 as a function of the (bare) continuum coupling gc under

the hypothesis that the latter is just a finite rescaling of the lattice bare coupling g

(gc = 0.04 g). The dashed line represents the first few terms in the perturbative series,

the continuous line is obtained from a numerical solution of the BES equation and

represents therefore the prediction from the integrability of the model. The simulations

at g = 30, mL = 6 (orange point) are used for a check of the finite volume effects, that

appear to be within statistical errors.

fertilization of theoretical tools well-established in gauge field theories to the string

worldsheet context.

In dealing with sigma-model perturbation theory, crucial subtleties appear in evalu-

ating regularised functional determinants for string fluctuations and the computational

technology for them has to be carefully adjusted to the problem at hand. It would be im-

portant to develop a diffeomorphism-preserving regularization scheme which retains the

efficiency of the Gelf’and-Yaglom method for one-dimensional cases, and extend such

techniques to regularised super-traces and super-determinants so to address a uniform

way of treating BPS and non-BPS observables 18. It would be extremely interesting

to elucidate the role of the measure (structure and normalization) in the string path

integral for supersymmetric configurations.

Going beyond perturbation theory, a new research line has been addressed, which

employs Montecarlo simulations to investigate observables defined on suitably dis-

cretized euclidean string worldsheets. At a fundamental level, this is the natural setup

for verifying with unequaled definiteness the holographic conjecture and the exact meth-

18See however the recent developments in [48].
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Figure 5: Histograms for the frequency of the real part of the reweighting phase factor

eiθ of the Pfaffian Pf OF = |(detOF )
1
2 | eiθ, based on the ensembles generated at g =

30, 10, 5, 1 (from left to right, top to down) for L/a = 8.

ods that “solve” various sectors of the AdS/CFT system. Lattice methods are also the

most suitable candidates for the study of several observables and backgrounds for which

alternative techniques to go beyond perturbation theory are not existing (string back-

grounds which are not classically integrable) or yet at a preliminary stage (correlators

of string vertex operators and dual gauge theory correlation functions).

It is important to emphasize that the analysis here carried out is far from being a

non-perturbative definition, à la Wilson lattice-QCD, of the Green-Schwarz worldsheet

string model. For this purpose one should work with a Lagrangian which is invariant

under the local symmetries - bosonic diffeomorphisms and κ-symmetry - of the model,

while as mentioned we make use of an action which fixes them all. There is however a

number of reasons which make this model interesting for lattice investigations, within

and hopefully beyond the community interested in holographic models.

As computational playground this is an interesting one on its own, allowing in

principle for explicit investigations/improvements of algorithms: a highly-nontrivial

two-dimensional model with four-fermion interactions, for which relevant observables

have not only, through AdS/CFT, an explicit analytic strong coupling expansion – the

perturbative series in the dual gauge theory – but also, through AdS/CFT and the

assumption of integrability, an explicit numerical prediction at all couplings.
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The results discussed here open the way to a variety of further explorations and

developements. A natural evolution consists in treating strings propagating in those

backgrounds (the ten-dimensional AdS4×CP 3, AdS3×S3×T 4, AdS3×S3×S3×S1 sup-

ported by RR fluxes) relevant for lower-dimensional formulations of the correspondence,

for which several predictions exist from integrability, and for which an independent their

AdS-light-cone gauge-fixed Lagrangians are expected to be considerably more involved

than in the prototypical case, but still with vertices at most quartic in fermions. In all

the novel cases of study the presence of massless fermionic modes is expected to require

an ad-hoc treatment, one possibility being to work in a finite-volume setting like the

Schrödinger functional scheme. It would be crucial a thorough study of the possible

sign problem - related to the absence of positive definiteness of the fermion Pfaffian

- that is likely to appear at large values of the string tension as in the prototypical

case. This may consists in carving out the region of parameter space where the sign

ambiguity is not severe and clarifying whether non-perturbative physics is obtainable.

One may then verify the possibility of track down this ambiguity to the behaviour of a

smaller set of degrees of freedom – such analysis may profit, at least pedagogically, from

recent progress on the analysis of the sign problem in (considerably simpler) models

with quartic fermionic interactions [83,84]. Also, it would be very interesting to explore

the discretization of the gauge-fixed string action of [85], whose relevance from the point

of view of the string/gauge gravity correspondence is far less clear, but that being only

quadratic in fermions may lead to considerable simplifications in the general analysis.
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