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Abstract. An approach to Quantitative Interdependency Ansjyis the con-
text of Large Complex Critical Infrastructures, geesented in this paper. A
Discrete state—space, Continuous—time, StochagimeBs models the operation
of critical infrastructure, taking interdependescieto account. Of primary in-
terest are the implications of both model det#ia(tis, level of model abstrac-
tion) and model parameterisation for the study effe@hdencies. Both of these
factors are observed to affect the distributiogadcade—sizes within and across
infrastructure.

Keywords: Interdependency Analysis, Critical Infrastructu@ascade—size
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1 Introduction

Dependencies within and betwe€nitical Infrastructures(CIl) have been recognised
as important for achieving (or undermining) accbf@easystem safety, security and
dependability [1, 2]. There is a growing body ofearch into the quantitative model-
ling of Complex systems, their dependencies andntipdications, thereof, for the oc-
currence and sizes of cascades [1, 3-6]. The meadderstand (inter)dependencies is
evidenced by the occurrence of spectacular, cafgstrcascadesas a direct result
of dependencies. One such example is the North isareBlackout that occurred on
the 16" of August, 2003 which affected an estimated 1Gianilpeople [7]. Yet an-
other example is the explosion that occurred obédember, 2005 at Buncefield Oil

1 A cascade may be defined as a causally relategeseq of undesirable events. However,
later in this paper, we will use a definition oscade that does not require the events to be
causally related.



Storage Depot, Hertfordshire, in the United Kingddrhe explosion affected part of
the locallnformation Infrastructureand, ultimately, led to patient records for hospi-
tals in the wider area being affected [8]. Therm Zipoints to note from these events.
Firstly, the extent of the damage caused in eachefncidents was difficult to pre-
dict at the time. Certainly, had the cascades’ metwe and evolution been better
predicted (or detected earlier), preventative aitijation measures might have lim-
ited the consequences of the cascade. Such umtgrigicharacteristic of many cas-
cade events in Cls and suggests that Cl dependeracid there implications, are not
yet well understood. Secondly, in both examplesetigere dependencies present that
exacerbated the cascades. Indeed, investigatiotsrtaken after the cascades oc-
curred exposed the role of a number of dependentitegilitating the cascades. Via
these dependencies (e.g. the geographic proxirhity database systems to the fuel
depot in the Buncefield incidence) the state of s@@h component (e.g. explosion at
Oil depot) was related to the state of some otloenponent (e.g. database storing
healthcare records), possibly in another ClI. Tloeegfa change in the number, or na-
ture, of the dependencies in a Cl may affect tliwence, and size, of cascades.

In this paper we present an approach to modellitgy @king dependencies into
account. Using the models we follow 2 lines of imguFirstly, we study how the
strength of dependencies affects the occurrencesiaadf cascades in the Cls. Upon
varying the strength of dependencies we estimaséeMonte—Carlo simulation, the
distributions of cascade sizes for the various 8lsomparison of these distributions
indicates which CI are affected by a change indtinength of the dependence. Sec-
ondly, we explore the question of what the conseqee of a less detailed model are
for modelling the occurrence and size of cascadegainly, due to the size and com-
plexity of Cls, it is unreasonable to model “evérgy” in the real systems. Therefore,
given some level of abstraction for the model houcmbenefit, if any, is gained by
using a more detailed level of abstraction?

To illustrate the analysis approach we model ienected Cls in the Rome area.
The data and parameter values for the model ardlas

» a model of Cls in the Rome area developed withinIRRIIS project [9] and in-
spired by a Telecommunications blackout that oezliin Rome [10-12];

» aPreliminary Interdependency AnalyqiBIA) carried out to define and limit the
scope of the model and to identify dependencies1P]0 The model scope in-
cludes a specification of what the model’s leveab$traction should be, which en-
tities should be modelled explicitly, and what ttate—spaces for the modelled en-
tities are. The identified dependencies are usedefime, in part, how modelled
components are correlated. Such data is necessaagymechanism we use to take
dependencies into account in the stochastic mad&ls;

« failure and repair rate field—data for Power ante@emmunication network com-
ponents and equipment. The data was provided biMBNES and Telecom ltalia
[12];

2 Integrated Risk Reduction of Information—baseddsifructure Systems (IRRIIS) is an EU
project concerned with developing both a platfoon dimulating Cl and technologies for
mitigating against the negative consequences @it€idependencies.
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« realistic parameter values for power network congmis including voltage levels,
thermal limit capacities, and line impedances. THmta was provided by
SIEMENS;

» a compilation of real-life data on thousands ofcedss from all over the world.
This cascade data was compiled over several ygafND (Netherlands Organi-
zation for Applied Scientific Reseajdh?].

The outline of the paper is as follows. In Sectibmve discuss our approach to
modelling Cl. Section 3 outlines the implementatiohsimulations based on our
models. Section 4 discusses the results of sinomldtased studies we conducted
while Section 5 summarizes conclusions and dadaiéxtions of further work.

2 Stochastic Modelling of Critical Infrastructures

The stochastic models of Cl we build aochastic/Random processémt are,
themselves, made up of dependstdchastic/Random process&be examples given
in Section 1 hint at uncertainty associated withdisting the occurrence and size of
cascades. In our model such uncertainty in casaasedts from uncertainty in what
the next state of each component is, given theentistate of the model. Each com-
ponent in each Cl is modelled afkandom processThese Random processes, as a
consequence of identified dependencies (correksitinithin and between the Cls, are
probabilistically dependent. So, the interconnedidsl are, themselves, modelled as
dependent Random processes. Also, there are faextesnal to the Cls, such as
weather or terrorist attacks, which are modelledRasdom processes that interact
with the other Random processes. These externgifoemental entities can put a
strain on the ClI, significantly affecting Cl opeeat. So, the dynamical behaviour of
the Cls is modelled as a Random process consistiaty of these aforementioned in-
teracting, dependent, Random processes.

To define each Random process we define both e-stadice and probabilities that
govern the transitions of the component from statstate. In particular, for every
distinct pair of statesi andj, we define conditionainstantaneous transition rates
These rates parameterize probability distributiosed in ecompeting risk model to
determine what the potential next state for a campbis. They also determine the
potentialsojourn timefor the component; that is, how long before thenponent en-
ters into its potential next state. For examplethe present work the components
have the statesJK,Failed,. As a consequence of the components’ state—sphees
are 2 instantaneous transition rates associatédeasith componeng failure and re-
pair rate.

The existence of dependencies between componesitfieisl correlation between
the components. Cl components can be said to bendept if correlation exists be-
tween their states and/or state transitions. Wthidee are other definitions of depend-
ence in use this definition allows us to model dentlass of phenomena. All the de-
pendencies that we have come across in the literft@, 14] imply correlations. We
implement this notion in our models as follows. &ivthat a component changes state
the dependencies specify which other componentshaile their state—transition be-
haviour affected. So, there is a notiorpafent(a component whose state changes af-



fect the stochastic behaviour of some other compisheandchild (a component
whose stochastic behaviour is affected by stategdsin some other node) compo-
nents. Each component has 2 related sets; thd abtod its parents and the set of all
of its children. Parents can be children and childcan be parents. In addition, the
parent child relationship can be cyclical so paa@n be children of their children
(or children can be parents of their parents). Bsctfying all such parent—child rela-
tionships in the model we definelirected—Graphrepresenting all of the pairs of
correlated components. We refer to this grapttles graph of stochastic associations
for the modél Whenever a parent component undergoes a stategehthefailure
and repair ratesof its child components take on values that amditmnal on the
current states of all the components parents. fi@shanism ighe primary way in
which we model dependencehe occurrence and effects of various dependance
ducing phenomena may be modelled this way, incudlire consequences of human
operator actions, natural disasters, geographiimity terrorism and weather, on ClI
operation.

In addition to the primary mechanism for modellisbgpendence there are certain
parent components whose state chamfggsrministicallyaffect the states of some of
its children. For example, the failure of a powemponent could result in the over-
loading of power lines in the power network. In soof our models which power
lines are overloaded is determined by usingiaé¢arized, DC, load flow approxima-
tion” [6] to calculate real power flow across the powetwork. A static load profile
(i.e. the consumption and supply of power remaimshanged) is used, as a first step,
in our modelling. Another example of modelled detistic consequences can be
found in the Telecommunications network. Each Tedemunications node has a
primary power source (power from a local Powerritistion company) and a secon-
dary power source (generators or batteries). Gikiah both the primary and secon-
dary power sources are in failed states the Telemamtations nodes will, with cer-
tainty be in an inoperable state.

Component failures may result in failure cascaéf@dlure cascades can have dif-
ferent causes, may occur over different time—scaféght involve different compo-
nents and could have different consequences, depeod which network the cas-
cade occurs in. For instance, a sudden surge otmpavay result in a cascade of
power line trips due to power line overloading. eTdffects of this sort of cascade can
be seen almost immediately; some parts of the poewvork may lose power. Com-
pare this with the aforementioned Buncefield explogsee Section 1) which caused
hospital records to be affected, long after thelasipn occurred. Arguably, this cas-
cade is quite different from the previous casca&ttavever, note two characteristics
common to both cascade examples. Firstly, these isterval of time within which at
least one component is in a failed state. Secomdthjn this interval of time there is
some time point, t, at which there is a maximum bemof simultaneously failed
components. This suggests the following definifioncascade. Any maximalunin-
terrupted time interval continuously throughout e¥hiat least one component of the
relevant sub-network (e.g. Telco Network, Powetriligtion Network, etc.) is in a

3 In the sense that both the start point and thepenat of that interval is either a start or end-
point of the simulation, or is an endpoint outsid@ch the number of failed components is
zero.
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failed state defines a cascade of that networkr @uag such time interval the maxi-
mal number of simultaneously failed componentdhé ¢ascade—size. So, by defini-
tion, the size of any cascade is an integkt Certainly, this definition of cascade—
size is not unique and may not be the preferrenhitieh of cascade for all situations.
For instance, it may be more interesting to “weigtades in terms of functional im-
portance, location in the network or economic impdaisruption. Our models allow
for the cascade—size to be defined in terms of siltelnative approaches, using the
“rewards functionality provided by the tooM6bius[15, 16].

3 Simulating Critical Infrastructure

The Cl models were used to estimate cascade—sédtions. This is achieved us-
ing the Mébiustool [15-17]. In particular, the model is creaiedviébius using the
Stochastic Activity NetworkKermalisn®. This allows us to simulate Continuous—time,
Discrete state—space, Random processes using dvigeaty; Monte—Carlo simulation.
Three interacting Cls in Rome were modelled. Howewee discuss the results for
only theTelecommunications netwoakd thePower distribution networkrhe Power
Transmissiometwork is the § modelled network. We also discuss the resultsHer
aggregated system comprising of all 3 Cls. We rédethis as the “Rome Power—
Telco System” or “the entire model”. Two studiesraveonducted using Mdbius-
based simulations of the Rome Power-Telco Systeme. €dudy looks into the effect
of the “strength of dependericen the distribution of cascade-sizes, while thieeo
study compares modes at differetevels of abstractioh Each study consists of a
comparison between 2 experiments;base-leveél experiment and acomparisofi
experiment. The Base-levél experiment is the experiment that has been catior
using all the data sources at our disposal. Comsgty it is the starting point for any
comparison experiments as these are only “sligltiifications of the base—level ex-
periment. For the strength of dependeritstudy the comparison experiment will
have parameter values almost identical to the bageriment except that the strength
of some dependence is set at a noticeably diffdemat. For the fevels of abstrac-
tion” study the comparison experiment uses an altermatess sophisticated algo-
rithm for determining line trips in the power netkoSo, 3 experiments in total were

conducted. Each experiment simulat€g hours of operation (just over 11 years and
4 months) in each of at least 15,000 simulation replicafimms which sample-mean,
cascade—size occurrence rates were obtained. Experiment 1 is theviehsagberi-
ment, against which the other experiments will be compareggerifwent 2 changes
the strength of certain dependencies while keeping the mean nofmtescades in
the power distribution network approximately the same gelxent 1. Experiment

3 substitutes thelinearized, DC, load — flow approximatigrused in Experiment 1,
for a simple algorithm that governs line trips in the powistribution network. The

4 While this definition implies that a cascade may “lrivial” (the failure of a single node
would be defined as a cascade) this is simply ssiflaation choice we have made largely
for ease of presentation.

5 Stochastic Activity Networks are a generalisatidiStochastic Petri-nets.



mean number of cascades in the whole model is kept approxirtaetame as that
for experiment 1.

There are 3 model parameters relevant for the studiesCohditional Power-
substation Failure rate coefficierg the amount by which the failure rates of Medium
and High voltage substations are scaled when the substaiweslost communica-
tion with the Supervisory Control and Data-Acquisitif@CADA) system. So, this
parameter is used to alter the strength of Power componentsddapenon Telco
components for communication. Similarly, tBenditional Telco-component failure
rate coefficientis the amount by which the failure rate of Telco nodes thee fost
their primary source of power supply, but still have a sdapnpower source, is
scaled. So, this parameter is used to model the streng#daaf components’ depend-
ence on power sources for their operation. Finally, Goaditional probability of
power-line overloadings the conditional probability of a given power-line ovade
ing, given the failure of some other power componenténRtbwer Network. This pa-
rameter is used in experiments that do not ustitiearized, DC, load flow approxi-
mationto determine power—line overloading.

4 Discussion of Simulation Results

For the base—level experiment t@enditional Power-substation Failure ratmeffi-
cient has a value 00> and theConditional Telco-component failure rateefficient

has a value o0 . Notice, from Fig. 1, that about 10 cascades of size gtbate#
occur in the combined Telco—Power system. However, the Pasteibdtion net-

work has about 8.87xT00of its cascades having a size greater than 4. So, the Power
distribution network appears to contribute relatively litdethe cascade size for the
larger cascades. In contrast, there are about 2.53 cascades of sizetlygaadethat
occur in the Telco network; two orders of magnitude more ti@amelated number for

the Power distribution network. While this does notyfalccount for the number of
cascades greater than 4 in the combined model it suggests itafieasit number of
relatively large cascades occur in other parts of the Rome modeéépicted, i.e. the
Power transmission network.

The “Strength of dependence” experiment explores the depencieRogver com-
ponents on Telco components and vice-versa. The value f@othditional Power-
substation Failure rate coefficieig set to 4800, which is higher than the correspond-
ing value of 1000 in the base—level experiment. So, eackmpswb—station’s depend-
ence on Telco—services in this experiment is almost 5 tim@syst than in the base—
level experiment. Contrastingly, ti@onditional Telco-component failure rate coeffi-

cient parameter is set to 1.0 for this experiment, where it hadue \@dl10° in the
previous experiment. So, each Telco component experiences a degeadgPower
services that i$ orders of magnitude weak#ran it was in the previous experiment.
The DC approximation to AC power flow is still used. THesulting Cascade—size
distribution is given in Fig. 2. The parameter values weseh so that the mean
number of cascades in the entire model, 286, is comparablé¢heitiespective value
in the base—level experiment, 285.
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Fig. 1. For the base—level experiment this graph depidstmple—-mean number of cascades
of size strictly greater than the indicated size {foe horizontal axis) that occur in each sub-
network. For instance, the mean number of casdidé®ccurred in each of the sub—networks
is given by the respective value of each graphespwnding to the cascade-size value of 0. So,
the mean number of cascade events in the Poweibdisin network is 28.72, the mean num-
ber of cascade events in the entire model is 28&ntRthe mean number of cascade events in
the Telco network is 83.18.

The Power distribution network still contributes relativéttle to the large cas-
cades. There is no noticeable change, even though a changeirestigssontribution
of Power distribution cascades to the total number of cascadém imodel. The
Telco network appears to exhibit a rapid drop from a frequeficgs.1 for single

failures to a frequency 0913x107 for triple failures. So, there were hardly any
cascades of size 3 among the cascades in the Telco network. Hawsvsteep fall
is followed by a steep rise so that there are an estimated 8atleasf size 6 occur-
ring; a change in cascade—size rate of 2 orders of madalietween cascade-size 2
and cascade-size 6. While in both experiments a significanberuof cascades of
size 6 occur in the Telco network it would seem that the effelsaving weaker de-
pendence on Power—services in the current experiment is to théutember of cas-
cades of size 3. The cascade—size distributions for the entird aredvirtually iden-
tical, up until cascades greater than size 5 (see Fig. 3).iOthlg extreme right of the
graph are the curves an order of magnitude apart. So, the ietles’ having 5 or-
ders of magnitude less of a dependence on Power componentsldasféict, glob-
ally, on the distribution of cascades if compensated by a a@tipely modest in-
crease in the dependence of Power nodes on Telco services. Iref#n though the



graphs are arguably similar there is, nevertheless, a stratimgcetween the graphs
for “large” cascades (cascades with sizes greater than 6). “Large” cascastesthre
less likely to occur in the base-level experiment. Sindlalerings are visible and
more pronounced for the cascade—size distributions in betfidlco network and the
Power distribution network. In particular, consider the @odistribution network
(see Fig. 4), where the ordering is maintained and, addiyoniaé distributions ap-
pear to diverge. One of the distributions is fairly linearaolog-linear plot and the
other has approximately 2 linear regimes (one between cascade aim8 nd the
other between 4 and 6). This suggests 3 exponentialdavesrning the cascade-size
distributions, with one of the distributions havi@gdistinct laws characterizing it.
Statistical tests of significance and estimating the paramietetsese laws is of im-
mediate interest. In summary, globally there appears to ke dititct on cascade —
size distributions from a weaker dependence of Telco compornemewer services
and stronger dependence of Power nodes on Telco services. Lboalgyer, there
are differences between the distributions.
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Fig. 2. Cascade-size distribution for each sub—networkhén “Strength of dependence” ex-
periment

In the “levels of abstraction” experiment we use a relativeliven algorithm for
power—line overloading on the cascade—size distributions, reglake Linearized
DC approximation to AC power flowA Binomial probability distribution randomly
trips power—lines, given the failure of a power compon€ot.the occurrence of cas-
cades in each network will it matter that we are using an eatyesimplistic algo-
rithm to model power—line trips? If it does, how sigraht is the change in model
behaviour? The value of the parameBanditional probability of power-line over-

loading which we set a82 x103for this experiment, defines the Binomial distribu-

tion. All other parameters are the same as the base—-level egperirhe mean num-
ber of cascade events in the Power distribution networkk86 , wliich is
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comparable with28[ 72for the base—level experiment. The distributions far th
Telco network are visibly almost identical (see Fig. 5). Gndther hand, the power
distribution network exhibits significant differences.clear ordering exists, with the
base—level experiment having an order of magnitude more occesreh“large” cas-
cades. The shape of the distributions both appear to be appteli linear and par-
allel on a log-linear plot. Thus, again the data suggestxponential relationship
characterising the cascade size-distributions.

In conclusion, we note that while a significant changetrength of dependence
noticeably affected the Cascade-size distributions for thenstvliorks, the impact on
the whole model was pronounced only for very large cascades.tAésuse of an ex-
tremely simplistic algorithm for power line trips hadignéficant impact in the power
distribution network but was negligible in the Telco nekwvor
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Fig. 3. Comparison of the Inverse, Cumulative Cascade-+ates for the Rome model.

5 Conclusion and futurework

This paper presents a quantitative approach to modellingl@gendencies in Cls and
results from applying the approach to a non-trivial casgystine Rome Power-Telco
system developed within the EU IP IRRIIS.

We argue in favour of using probabilistic models of inggehdencies and provide
details of the model of ‘stochastic associations’ we develdpech models not only
allow the user to incorporate any knowledge that might ekisut the likelihood and



dependence between various adverse events (e.g. failures ofdekechcomponent)
and risks of environmental disruptions (e.g. naturasiess, extreme weather condi-
tions, etc.) but also to study the impact and challenge uarssumptions about

these.
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Fig. 4. Comparison of the Inverse, Cumulative, Cascade—sites for the Power distribution

network.
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Fig. 5. Comparison of Cascade — size distributions foffilecommunications network.

The results presented target primarily the impact of the lefvabstraction on the
modelling results, an important scalability issue withydarge Cls. We report, that
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in some cases the behaviour of ‘low fidelity’ models iselto the behaviour of more
sophisticated models (i.e. low fidelity models can offer eaeptable accuracy). This
result seems important, because it opens up a practical wagdslling very large
Cls with a reasonable accuracy.

In the light of these results we propose a future modedpgroach in which a
network of Cls is decomposed into manageable parts. Comgasitigties (between
high and low fidelity models, as described above) of theds pay then be applied
so that the low-fidelity models can be tuned to model accurtitelipehaviour of the
modelled sub-systems. Then, from the perspective of eacheOhetwork of ClI may
be modelled by combining acceptable low-fidelity models afesparts with high fi-
delity models of other parts. Although such an approachsekusible further work
is needed to validate that the thus composed model wilbstiéiccurate. We intend to
attack this issue in our future work.

In addition, the work demonstrates that a range of parawetegs can give simi-
lar model behaviour, depending on what aspects of the madef anterest. Very dif-
ferent parameter values gave the same total number of cascadesrindbl. How-
ever, thetails of the cascade-size distributions for the whole model angadiner
distribution network exhibited divergence. This suggesat in parameterizing such
models for use in practice care must be taken since the effedfes€nli parameter
values is to produce “regimes of agreement” between the madele case we ob-
served the models may diverge for large cascades but agree reaseibfdy small
cascades. The magnitude of this effect differed between networks.

In the current work, as a first approximation, static loaafilps were used in the
study. Dynamic load profiles that capture daily, or seas®aaiations in load may
have the effect of significantly changing the probabilityarfie-scale cascades. We
will experiment with, and study the effects of, dynamoiad profiles as an extension
of the current work.

A related problem is addressing aspects of ‘observabilftthe state of the entire
Cl. The Rome system consists of networks, operated by isagi@ms which may
have detailed knowledge of their own network but very éohiknowledge of the state
of the networks operated by other operators. Approacheg#&ting with such limited
observability are of practical interest. We have scoped in [12pgroach to on-line
risk estimation (RE) based on the probabilistic modelsriestin this paper. Vali-
dating RE in terms of achievable accuracy of risk predictjoeswhether the periods
with predicted high risk of disruption will indeed teralkie highly positively corre-
lated with actual disruptions) is a problem, which we aresotlyr working on.

In addition to the relative confidence intervals used for deténg acceptable
convergence of the estimated distribution data points fustagistical tests of signifi-
cance will be carried out on the data to increase confidence iegshksr Also, the
data suggests a number of exponential relationships govesoing of the cascade-
size distributions. The parameters for these laws will dtignated as part of future
work.
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