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Abstract. An approach to Quantitative Interdependency Analysis, in the con-
text of Large Complex Critical Infrastructures, is presented in this paper. A 
Discrete state–space, Continuous–time, Stochastic Process models the operation 
of critical infrastructure, taking interdependencies into account. Of primary in-
terest are the implications of both model detail (that is, level of model abstrac-
tion) and model parameterisation for the study of dependencies. Both of these 
factors are observed to affect the distribution of cascade–sizes within and across 
infrastructure.  
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1 Introduction 

Dependencies within and between Critical Infrastructures (CI) have been recognised 
as important for achieving (or undermining) acceptable system safety, security and 
dependability [1, 2]. There is a growing body of research into the quantitative model-
ling of Complex systems, their dependencies and the implications, thereof, for the oc-
currence and sizes of cascades [1, 3-6]. The need to understand (inter)dependencies is 
evidenced by the occurrence of spectacular, catastrophic cascades1 as a direct result 
of dependencies. One such example is the North American Blackout that occurred on 
the 16th of August, 2003 which affected an estimated 10 million people [7]. Yet an-
other example is the explosion that occurred on 11 December, 2005 at Buncefield Oil 

                                                           
1 A cascade may be defined as a causally related sequence of undesirable events. However, 

later in this paper, we will use a definition of cascade that does not require the events to be 
causally related. 



Storage Depot, Hertfordshire, in the United Kingdom. The explosion affected part of 
the local Information Infrastructure and, ultimately, led to patient records for hospi-
tals in the wider area being affected [8]. There are 2 points to note from these events. 
Firstly, the extent of the damage caused in each of the incidents was difficult to pre-
dict at the time. Certainly, had the cascades’ occurrence and evolution been better 
predicted (or detected earlier), preventative and mitigation measures might have lim-
ited the consequences of the cascade. Such uncertainty is characteristic of many cas-
cade events in CIs and suggests that CI dependencies, and there implications, are not 
yet well understood. Secondly, in both examples there were dependencies present that 
exacerbated the cascades. Indeed, investigations undertaken after the cascades oc-
curred exposed the role of a number of dependencies in facilitating the cascades. Via 
these dependencies (e.g. the geographic proximity of IT database systems to the fuel 
depot in the Buncefield incidence) the state of some CI component (e.g. explosion at 
Oil depot) was related to the state of some other component (e.g. database storing 
healthcare records), possibly in another CI. Therefore, a change in the number, or na-
ture, of the dependencies in a CI may affect the occurrence, and size, of cascades. 

In this paper we present an approach to modelling CIs, taking dependencies into 
account. Using the models we follow 2 lines of inquiry. Firstly, we study how the 
strength of dependencies affects the occurrence and size of cascades in the CIs. Upon 
varying the strength of dependencies we estimate, via Monte–Carlo simulation, the 
distributions of cascade sizes for the various CIs. A comparison of these distributions 
indicates which CI are affected by a change in the strength of the dependence. Sec-
ondly, we explore the question of what the consequences of a less detailed model are 
for modelling the occurrence and size of cascades. Certainly, due to the size and com-
plexity of CIs, it is unreasonable to model “everything” in the real systems. Therefore, 
given some level of abstraction for the model how much benefit, if any, is gained by 
using a more detailed level of abstraction?  

To illustrate the analysis approach we model interconnected CIs in the Rome area. 
The data and parameter values for the model are based on: 

• a model of CIs in the Rome area developed within the IRRIIS2 project [9] and in-
spired by a Telecommunications blackout that occurred in Rome [10-12];  

• a Preliminary Interdependency Analysis (PIA) carried out to define and limit the 
scope of the model and to identify dependencies [10-12]. The model scope in-
cludes a specification of what the model’s level of abstraction should be, which en-
tities should be modelled explicitly, and what the state–spaces for the modelled en-
tities are. The identified dependencies are used to define, in part, how modelled 
components are correlated. Such data is necessary for a mechanism we use to take 
dependencies into account in the stochastic models of CI; 

• failure and repair rate field–data for Power and Telecommunication network com-
ponents and equipment. The data was provided by SIEMENS and Telecom Italia 
[12]; 

                                                           
2 Integrated Risk Reduction of Information–based Infrastructure Systems (IRRIIS) is an EU 

project concerned with developing both a platform for simulating CI and technologies for 
mitigating against the negative consequences of CI interdependencies.  
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• realistic parameter values for power network components including voltage levels, 
thermal limit capacities, and line impedances. This data was provided by 
SIEMENS; 

• a compilation of real–life data on thousands of cascades from all over the world. 
This cascade data was compiled over several years by TNO (Netherlands Organi-
zation for Applied Scientific Research) [12]. 

The outline of the paper is as follows. In Section 2 we discuss our approach to 
modelling CI. Section 3 outlines the implementation of simulations based on our 
models. Section 4 discusses the results of simulation-based studies we conducted 
while Section 5 summarizes conclusions and details directions of further work. 

2 Stochastic Modelling of Critical Infrastructures 

The stochastic models of CI we build are Stochastic/Random processes that are, 
themselves, made up of dependent Stochastic/Random processes. The examples given 
in Section 1 hint at uncertainty associated with predicting the occurrence and size of 
cascades. In our model such uncertainty in cascades results from uncertainty in what 
the next state of each component is, given the current state of the model. Each com-
ponent in each CI is modelled as a Random process. These Random processes, as a 
consequence of identified dependencies (correlations) within and between the CIs, are 
probabilistically dependent. So, the interconnected CIs are, themselves, modelled as 
dependent Random processes. Also, there are factors external to the CIs, such as 
weather or terrorist attacks, which are modelled as Random processes that interact 
with the other Random processes. These external, environmental entities can put a 
strain on the CI, significantly affecting CI operation. So, the dynamical behaviour of 
the CIs is modelled as a Random process consisting of all of these aforementioned in-
teracting, dependent, Random processes. 

To define each Random process we define both a state–space and probabilities that 
govern the transitions of the component from state to state. In particular, for every 
distinct pair of states, i  andj , we define conditional, instantaneous transition rates. 
These rates parameterize probability distributions used in a competing risks model to 
determine what the potential next state for a component is. They also determine the 
potential sojourn time for the component; that is, how long before the component en-
ters into its potential next state. For example, in the present work the components 
have the states {OK,Failed}. As a consequence of the components’ state–spaces there 
are 2 instantaneous transition rates associated with each component; a failure and re-
pair rate.  

The existence of dependencies between components justifies correlation between 
the components. CI components can be said to be dependent if correlation exists be-
tween their states and/or state transitions. While there are other definitions of depend-
ence in use this definition allows us to model a wide class of phenomena. All the de-
pendencies that we have come across in the literature [13, 14] imply correlations. We 
implement this notion in our models as follows. Given that a component changes state 
the dependencies specify which other components will have their state–transition be-
haviour affected. So, there is a notion of parent (a component whose state changes af-



fect the stochastic behaviour of some other components) and child (a component 
whose stochastic behaviour is affected by state changes in some other node) compo-
nents. Each component has 2 related sets; the set of all of its parents and the set of all 
of its children. Parents can be children and children can be parents. In addition, the 
parent child relationship can be cyclical so parents can be children of their children 
(or children can be parents of their parents). By specifying all such parent–child rela-
tionships in the model we define a Directed–Graph representing all of the pairs of 
correlated components. We refer to this graph as “the graph of stochastic associations 
for the model”. Whenever a parent component undergoes a state change the failure 
and repair rates of its child components take on values that are conditional on the 
current states of all the components parents. This mechanism is the primary way in 
which we model dependence. The occurrence and effects of various dependence in-
ducing phenomena may be modelled this way, including the consequences of human 
operator actions, natural disasters, geographic proximity terrorism and weather, on CI 
operation. 

In addition to the primary mechanism for modelling dependence there are certain 
parent components whose state changes deterministically affect the states of some of 
its children. For example, the failure of a power component could result in the over-
loading of power lines in the power network. In some of our models which power 
lines are overloaded is determined by using a “Linearized, DC, load flow approxima-
tion” [6] to calculate real power flow across the power network. A static load profile 
(i.e. the consumption and supply of power remains unchanged) is used, as a first step, 
in our modelling. Another example of modelled deterministic consequences can be 
found in the Telecommunications network. Each Telecommunications node has a 
primary power source (power from a local Power distribution company) and a secon-
dary power source (generators or batteries). Given that both the primary and secon-
dary power sources are in failed states the Telecommunications nodes will, with cer-
tainty be in an inoperable state. 

Component failures may result in failure cascades. Failure cascades can have dif-
ferent causes, may occur over different time–scales, might involve different compo-
nents and could have different consequences, depending on which network the cas-
cade occurs in. For instance, a sudden surge of power may result in a cascade of 
power line trips due to power line overloading.  The effects of this sort of cascade can 
be seen almost immediately; some parts of the power network may lose power. Com-
pare this with the aforementioned Buncefield explosion (see Section 1) which caused 
hospital records to be affected, long after the explosion occurred. Arguably, this cas-
cade is quite different from the previous cascade. However, note two characteristics 
common to both cascade examples. Firstly, there is an interval of time within which at 
least one component is in a failed state. Secondly, within this interval of time there is 
some time point, t, at which there is a maximum number of simultaneously failed 
components. This suggests the following definition for cascade. Any maximal3, unin-
terrupted time interval continuously throughout which at least one component of the 
relevant sub-network (e.g. Telco Network, Power distribution Network, etc.) is in a 

                                                           
3 In the sense that both the start point and the end point of that interval is either a start or end-

point of the simulation, or is an endpoint outside which the number of failed components is 
zero. 
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failed state defines a cascade of that network. Over any such time interval the maxi-
mal number of simultaneously failed components is the cascade–size. So, by defini-
tion, the size of any cascade is an integer ≥1.4 Certainly, this definition of cascade–
size is not unique and may not be the preferred definition of cascade for all situations. 
For instance, it may be more interesting to “weight” nodes in terms of functional im-
portance, location in the network or economic impact of disruption. Our models allow 
for the cascade–size to be defined in terms of such alternative approaches, using the 
“ rewards” functionality provided by the tool, Möbius [15, 16].     

3 Simulating Critical Infrastructure 

The CI models were used to estimate cascade–size distributions. This is achieved us-
ing the Möbius tool [15-17]. In particular, the model is created in Möbius using the 
Stochastic Activity Networks formalism5. This allows us to simulate Continuous–time, 
Discrete state–space, Random processes using event–driven, Monte–Carlo simulation. 
Three interacting CIs in Rome were modelled. However, we discuss the results for 
only the Telecommunications network and the Power distribution network. The Power 
Transmission network is the 3rd modelled network. We also discuss the results for the 
aggregated system comprising of all 3 CIs. We refer to this as the “Rome Power–
Telco System” or “the entire model”. Two studies were conducted using Möbius-
based simulations of the Rome Power-Telco System. One study looks into the effect 
of the “strength of dependence” on the distribution of cascade-sizes, while the other 
study compares modes at different “levels of abstraction”. Each study consists of a 
comparison between 2 experiments; a “base-level” experiment and a “comparison” 
experiment. The “base-level” experiment is the experiment that has been calibrated 
using all the data sources at our disposal. Consequently, it is the starting point for any 
comparison experiments as these are only “slight” modifications of the base–level ex-
periment. For the “strength of dependence” study the comparison experiment will 
have parameter values almost identical to the base experiment except that the strength 
of some dependence is set at a noticeably different level. For the “levels of abstrac-
tion” study the comparison experiment uses an alternative, less sophisticated algo-
rithm for determining line trips in the power network. So, 3 experiments in total were 

conducted. Each experiment simulates 510  hours of operation (just over 11 years and 
4 months) in each of at least 15,000 simulation replications from which sample-mean, 
cascade–size occurrence rates were obtained. Experiment 1 is the base-level experi-
ment, against which the other experiments will be compared. Experiment 2 changes 
the strength of certain dependencies while keeping the mean number of cascades in 
the power distribution network approximately the same as Experiment 1. Experiment 
3 substitutes the “Linearized, DC, load – flow approximation”, used in Experiment 1, 
for a simple algorithm that governs line trips in the power distribution network. The 

                                                           
4 While this definition implies that a cascade may be “trivial” (the failure of a single node 

would be defined as a cascade) this is simply a classification choice we have made largely 
for ease of presentation. 

5 Stochastic Activity Networks are a generalisation of Stochastic Petri–nets.  



mean number of cascades in the whole model is kept approximately the same as that 
for experiment 1. 

There are 3 model parameters relevant for the studies. The Conditional Power-
substation Failure rate coefficient is the amount by which the failure rates of Medium 
and High voltage substations are scaled when the substations have lost communica-
tion with the Supervisory Control and Data-Acquisition (SCADA) system. So, this 
parameter is used to alter the strength of Power components dependence on Telco 
components for communication. Similarly, the Conditional Telco-component failure 
rate coefficient is the amount by which the failure rate of Telco nodes that have lost 
their primary source of power supply, but still have a secondary power source, is 
scaled. So, this parameter is used to model the strength of Telco components’ depend-
ence on power sources for their operation. Finally, the Conditional probability of 
power-line overloading is the conditional probability of a given power-line overload-
ing, given the failure of some other power component in the Power Network. This pa-
rameter is used in experiments that do not use the Linearized, DC, load flow approxi-
mation to determine power–line overloading. 

4 Discussion of Simulation Results 

For the base–level experiment the Conditional Power-substation Failure rate coeffi-

cient has a value of  310  and the Conditional Telco-component failure rate coefficient 

has a value of 510 . Notice, from Fig. 1, that about 10 cascades of size greater than 4 
occur in the combined Telco–Power system. However, the Power distribution net-
work has about 8.87×10-3 of its cascades having a size greater than 4. So, the Power 
distribution network appears to contribute relatively little to the cascade size for the 
larger cascades. In contrast, there are about 2.53 cascades of size greater than 4 that 
occur in the Telco network; two orders of magnitude more than the related number for 
the Power distribution network. While this does not fully account for the number of 
cascades greater than 4 in the combined model it suggests that a significant number of 
relatively large cascades occur in other parts of the Rome model not depicted, i.e. the 
Power transmission network. 

The “Strength of dependence” experiment explores the dependence of Power com-
ponents on Telco components and vice–versa. The value for the Conditional Power-
substation Failure rate coefficient is set to 4800, which is higher than the correspond-
ing value of 1000 in the base–level experiment. So, each power sub–station’s depend-
ence on Telco–services in this experiment is almost 5 times stronger than in the base–
level experiment. Contrastingly, the Conditional Telco-component failure rate coeffi-

cient parameter is set to 1.0 for this experiment, where it had a value of 510  in the 
previous experiment. So, each Telco component experiences a dependence on Power 
services that is 5 orders of magnitude weaker than it was in the previous experiment. 
The DC approximation to AC power flow is still used. The resulting Cascade–size 
distribution is given in Fig. 2. The parameter values were chosen so that the mean 
number of cascades in the entire model, 286, is comparable with the respective value 
in the base–level experiment, 285. 
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Fig. 1. For the base–level experiment this graph depicts the sample–mean number of cascades 
of size strictly greater than the indicated size (on the horizontal axis) that occur in each sub-
network. For instance, the mean number of cascades that occurred in each of the sub–networks 
is given by the respective value of each graph corresponding to the cascade–size value of 0. So, 
the mean number of cascade events in the Power distribution network is 28.72, the mean num-
ber of cascade events in the entire model is 285.12 and the mean number of cascade events in 
the Telco network is 83.18. 

The Power distribution network still contributes relatively little to the large cas-
cades. There is no noticeable change, even though a change exists, in the contribution 
of Power distribution cascades to the total number of cascades in the model. The 
Telco network appears to exhibit a rapid drop from a frequency of 75.1 for single 

failures to a frequency of 31013.9 −×  for triple failures. So, there were hardly any 
cascades of size 3 among the cascades in the Telco network. However, this steep fall 
is followed by a steep rise so that there are an estimated 3.4 cascades of size 6 occur-
ring; a change in cascade–size rate of 2 orders of magnitude between cascade–size 2 
and cascade–size 6.  While in both experiments a significant number of cascades of 
size 6 occur in the Telco network it would seem that the effect of having weaker de-
pendence on Power–services in the current experiment is to reduce the number of cas-
cades of size 3. The cascade–size distributions for the entire model are virtually iden-
tical, up until cascades greater than size 5 (see Fig. 3). Only in the extreme right of the 
graph are the curves an order of magnitude apart. So, the Telco nodes’ having 5 or-
ders of magnitude less of a dependence on Power components has little effect, glob-
ally, on the distribution of cascades if compensated by a comparatively modest in-
crease in the dependence of Power nodes on Telco services. In Fig. 3 even though the 



graphs are arguably similar there is, nevertheless, a strict ordering between the graphs 
for “large” cascades (cascades with sizes greater than 6). “Large” cascades are strictly 
less likely to occur in the base–level experiment. Similar orderings are visible and 
more pronounced for the cascade–size distributions in both the Telco network and the 
Power distribution network. In particular, consider the Power distribution network 
(see Fig. 4), where the ordering is maintained and, additionally, the distributions ap-
pear to diverge. One of the distributions is fairly linear on a log-linear plot and the 
other has approximately 2 linear regimes (one between cascade sizes 1 and 3 and the 
other between 4 and 6). This suggests 3 exponential laws governing the cascade-size 
distributions, with one of the distributions having 2 distinct laws characterizing it. 
Statistical tests of significance and estimating the parameters for these laws is of im-
mediate interest. In summary, globally there appears to be little effect on cascade – 
size distributions from a weaker dependence of Telco components on Power services 
and stronger dependence of Power nodes on Telco services. Locally, however, there 
are differences between the distributions.  
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Fig. 2. Cascade–size distribution for each sub–network in the “Strength of dependence” ex-
periment 

In the “levels of abstraction” experiment we use a relatively naïve algorithm for 
power–line overloading on the cascade–size distributions, replacing the Linearized 
DC approximation to AC power flow. A Binomial probability distribution randomly 
trips power–lines, given the failure of a power component. For the occurrence of cas-
cades in each network will it matter that we are using an extremely simplistic algo-
rithm to model power–line trips? If it does, how significant is the change in model 
behaviour? The value of the parameter Conditional probability of power-line over-

loading, which we set as 3102.3 −× for this experiment, defines the Binomial distribu-
tion. All other parameters are the same as the base–level experiment. The mean num-
ber of cascade events in the Power distribution network is 4828⋅ , which is 
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comparable with 7228⋅  for the base–level experiment. The distributions for the 
Telco network are visibly almost identical (see Fig. 5). On the other hand, the power 
distribution network exhibits significant differences. A clear ordering exists, with the 
base–level experiment having an order of magnitude more occurrences of “large” cas-
cades. The shape of the distributions both appear to be approximately linear and par-
allel on a log-linear plot. Thus, again the data suggests an exponential relationship 
characterising the cascade size-distributions. 

In conclusion, we note that while a significant change in strength of dependence 
noticeably affected the Cascade-size distributions for the sub-networks, the impact on 
the whole model was pronounced only for very large cascades. Also, the use of an ex-
tremely simplistic algorithm for power line trips had a significant impact in the power 
distribution network but was negligible in the Telco network. 
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Fig. 3. Comparison of the Inverse, Cumulative Cascade–size rates for the Rome model. 

5 Conclusion and future work 

This paper presents a quantitative approach to modelling interdependencies in CIs and 
results from applying the approach to a non-trivial case-study, the Rome Power-Telco 
system developed within the EU IP IRRIIS. 

We argue in favour of using probabilistic models of interdependencies and provide 
details of the model of ‘stochastic associations’ we developed. Such models not only 
allow the user to incorporate any knowledge that might exist about the likelihood and 



dependence between various adverse events (e.g. failures of the modelled component) 
and risks of environmental disruptions (e.g. natural disasters, extreme weather condi-
tions, etc.) but also to study the impact and challenge various assumptions about 
these. 
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Fig. 4. Comparison of the Inverse, Cumulative, Cascade–size rates for the Power distribution 
network. 
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Fig. 5. Comparison of Cascade – size distributions for the Telecommunications network. 

The results presented target primarily the impact of the level of abstraction on the 
modelling results, an important scalability issue with very large CIs. We report, that 
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in some cases the behaviour of ‘low fidelity’ models is close to the behaviour of more 
sophisticated models (i.e. low fidelity models can offer an acceptable accuracy). This 
result seems important, because it opens up a practical way of modelling very large 
CIs with a reasonable accuracy. 

In the light of these results we propose a future modelling approach in which a 
network of CIs is decomposed into manageable parts. Comparative studies (between 
high and low fidelity models, as described above) of these parts may then be applied 
so that the low-fidelity models can be tuned to model accurately the behaviour of the 
modelled sub-systems. Then, from the perspective of each CI, the network of CI may 
be modelled by combining acceptable low-fidelity models of some parts with high fi-
delity models of other parts. Although such an approach seems plausible further work 
is needed to validate that the thus composed model will still be accurate. We intend to 
attack this issue in our future work. 

In addition, the work demonstrates that a range of parameter values can give simi-
lar model behaviour, depending on what aspects of the model are of interest. Very dif-
ferent parameter values gave the same total number of cascades in the model. How-
ever, the tails of the cascade-size distributions for the whole model and the power 
distribution network exhibited divergence. This suggests that in parameterizing such 
models for use in practice care must be taken since the effect of different parameter 
values is to produce “regimes of agreement” between the models. In the case we ob-
served the models may diverge for large cascades but agree reasonably well for small 
cascades. The magnitude of this effect differed between networks. 

In the current work, as a first approximation, static load profiles were used in the 
study. Dynamic load profiles that capture daily, or seasonal, variations in load may 
have the effect of significantly changing the probability of large-scale cascades. We 
will experiment with, and study the effects of, dynamic load profiles as an extension 
of the current work. 

A related problem is addressing aspects of ‘observability’ of the state of the entire 
CI. The Rome system consists of networks, operated by organisations which may 
have detailed knowledge of their own network but very limited knowledge of the state 
of the networks operated by other operators. Approaches for dealing with such limited 
observability are of practical interest. We have scoped in [12] an approach to on-line 
risk estimation (RE) based on the probabilistic models described in this paper. Vali-
dating RE in terms of achievable accuracy of risk predictions (i.e. whether the periods 
with predicted high risk of disruption will indeed tend to be highly positively corre-
lated with actual disruptions) is a problem, which we are currently working on. 

In addition to the relative confidence intervals used for determining acceptable 
convergence of the estimated distribution data points further statistical tests of signifi-
cance will be carried out on the data to increase confidence in the results. Also, the 
data suggests a number of exponential relationships governing some of the cascade-
size distributions. The parameters for these laws will be estimated as part of future 
work. 
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