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lous dimensions 

L

(g) of purely gluonic operators TrFL where F is a component of the

self-dual field strength. We propose compact closed expressions depending parametri-

cally on L that reproduce the prediction of Bethe Ansatz equations up to five loop order,

including transcendental dressing corrections. The size dependence follows a simple pat-

tern as the perturbative order is increased and suggests hidden relations for these special

operators.
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1. Introduction

Integrable structures emerge as a deep property of four dimensional Yang-Mills theories

in the ’t Hooft planar limit. In the simplest context, integrability underlies and governs

the scale evolution of renormalized composite operators belonging to specific subsectors

of the theory [1].

Historically, this intriguing phenomenon was discovered in the study of planar QCD,

definitely a non-trivial quantum theory [2]. At one-loop, suitable maximal helicity Wilson

operators admit a peculiar renormalization mixing matrix, the dilatation operator. It can

be identified with the Hamiltonian of integrableXXX spin chains with sl(2;R) symmetry.

This is a light-cone subalgebra of the full four dimensional conformal algebra so(4; 2).

¿From a modern perspective, conformal symmetry, unbroken in QCD at one-loop,

does not appear to be a necessary condition for integrability, as discussed in [3, 4, 5, 6].

Nevertheless, it plays an important role by imposing selection rules and multiplet struc-

tures and is helpful to clarify the origin and details of integrability. The same reasoning

applies to supersymmetric extensions of QCD with N = 1; 2; 4 supercharges. In particu-

lar, multiplets of composite operators are greatly simplified in the maximal superconfor-

malN = 4 theory [7]. Also, intermediate level integrability is achieved in various orbifold

reductions of N = 4 SYM reducing the number of supercharges [8].
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As is well known, in the maximal N = 4 case another conceptual tool is available

to deepen the investigation, namely Maldacena AdS/CFT duality [9] 1. It relates N =

4 SYM and AdS

5

� S

5 superstring which is classically integrable [12]. Currently, a lot

is known about the duality between the integrability properties of the two sides of the

correspondence with a continuous very stimulating back and forth feeding. In particular,

AdS/CFT duality has been a crucial ingredient to arrive at the higher loop proposal for

the S-matrix of N = 4 SYM [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Forgetting for a while the string side, we can ask what kind of understanding can

be gained from integrability in the gauge theory. This is a natural issue if we are ulti-

mately interested in low-energy physical applications to hadronic phenomenology. As a

first step, we can honestly postpone the important problem of taming conformal and su-

persymmetry breaking and the precise link with QCD [25]. Working within the N = 4

SYM theory, we can examine the outcomes and limitations of integrability as far as it is

currently understood.

¿From this point of view, integrability can be regarded as a tool for multi-loop com-

putations, although this attitude could be admittedly narrow-minded. The typical object

that is computed are higher order corrections to the anomalous dimension of specific com-

posite operators. In all cases, these operators are single traces of the general form

O = Tr

 

L

Y

i=1

D

n

i

X

i

!

+ permutations; (1.1)

where X
i

are elementary fields in certain subsectors of the full N = 4 SYM and covariant

derivatives generically appear to close the renormalization mixing.

In the most favorable cases, we are able to write down Bethe Ansatz equations pro-

viding the anomalous dimension of O as a perturbative series in the ’t Hooft coupling g




O

(g) =

X

n�0




n

(O) g

2n

: (1.2)

Such formidable results face a first and major limitation, namely the well-known wrapping

problem (see [26, 27] for recent developments). The coefficients 

n

are reliable up to a max-

imum order n
max

that typically depends linearly on L. This means that 

O

(g) is actually

calculable up to, say, O(g

2L

) terms - a stumbling wall to any extrapolation to the genuine

strong coupling regime. A notable exception occurs in the L!1 thermodynamical limit.

Then, wrapping is absent and resummations of Eq. (1.2) can be attempted to match string

duality predictions [24, 28].

A more subtle limitation appears when we try to investigate the dependence onL and

fn

i

g at fixed perturbative order. Apart from very special cases, the Bethe equations do not

provide the expansion coefficients as functions of L and fn
i

g, but just provide sequences

of numerical (sometimes rational) values for each given operator. This is an unwanted

situation as can be appreciated in the sector of the so-called twist operators [29]. These

are operators with a certain phenomenological origin in the QCD case. The length L is

1For those aspects of the duality that most concern our analysis, we refer the reader to [10, 11].
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fixed and one would like to know the analytic dependence of 
(g; S) on the spin quantum

number S =

P

i

n

i

. For instance, this is a standard procedure to analyze BFKL physics of

pomeron exchange [30].

Very recently, intense work on twist-2 and 3 operators has led to higher order conjec-

tures for the functions 

n

(S) appearing in the expansion 
(g; S) =

P

n




n

(S) g

2 n [26, 31].

Proofs are however missing, at least beyond one-loop. It seems that new tools are needed

to derive them rigorously from the Bethe Ansatz equations.

If we give up exact results and turn to approximation, systematic methods can be

applied to extract the large L, n
i

corrections. Indeed, this is a thermodynamical limit of

the underlying spin chain where both the length and the number of magnons grows to

infinity. Various techniques are available and have been successfully applied to rank-1

su(2) and sl(2) subsectors [32, 33, 34, 35, 36]. For higher rank sectors (see also [37, 38, 21]

for an analysis in the rank-2 su(3) sector) the techniques developed in [39] could be useful.

Indeed, in the recent [40] an integral equation describing finite size corrections to the full

nested Bethe ansatz was derived.

On the string side of the AdS/CFT correspondence, there is an analogously intense

ongoing discussion on how finite size effects of the string world-sheet could modify the

solvability of the string sigma-model in AdS
5

� S

5 by means of a Bethe ansatz [41, 13,

14, 42, 16, 43]. The currently known Bethe equations for quantum strings in AdS
5

�S
5

are

asymptotic and describe the string spectrum with an exponential accuracy as long as the

string length is sufficiently large [44]. The breakdown of the asymptotic approximation

via exponential terms, firstly described from a field theory point of view in [45], has been

determined for the spectrum of spinning strings in the su(2) and sl(2) sector [46, 44] and

for the giant magnon [47] dispersion relation in [48, 49]. In particular, the exponential term

in the finite size correction to the giant magnon dispersion relation has been recently and

nicely rederived in [27] via a generalization of known results in relativistic quantum field

theory, and there is a general and deep interest in obtaining exact results which should

be valid for any value of the string lenght, which is in turn proportional to the lenght

(R-charge) of the corresponding gauge operator.

In this paper, we contribute to the above general discussion and consider, in the gauge

field theory context, a special class of operators where finite size corrections can be given

in closed form. In other words, we provide the coefficients 

n

in Eq. (1.2) as exact functions

of the operator length L. This is a seemingly unique result which, although peculiar, is

very interesting and puzzling and certainly deserves some attention.

The considered operators have a complicated mixing pattern and reduce at one loop

to the purely gluonic higher dimensional condensates of the form

O

L

= TrFL

; (1.3)

where F is one component of the self-dual Yang-Mills field strength. The operators O
L

are exact eigenstates of the one-loop dilatation operator and can be mapped to the fer-

romagnetic states of an integrable spin S = 1 chain [50, 51]. As such, their one-loop

dependence on the length L is trivial and (including the classical dimension), it is known
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that [50, 51, 52, 28]




O

L

= L (2 + 3 g

2

+ � � � ); (1.4)

Beyond one-loop, the analysis of [28] provide efficient computational tools to derive the

sequence f

n

(L)g for any given L, although not parametrically. It turns out immediately

that 

n

(L) is not linear in L as far as n � 2. So, starting at two-loops, non-trivial finite size

corrections appear.

In this paper, we analyze the sequences f

n

(L)g at fixed n as L is varied up to large

values. By a careful investigation of the (infinite precision) numerics, we conjecture and

provide closed expressions for 

n

(L) valid up to 5 loops, including the transcendental

terms coming from the S-matrix dressing phase [17]. To give an example, the two-loop

anomalous dimension takes the remarkably simple form




L

(g) = 2L+ 3Lg

2

+

�

�

51

8

+

9

8

1

(�1)

L

2

L�1

+ 1

�

Lg

4

+ � � � ; (1.5)

with exponentially suppressed corrections to the trivial linear scaling with L. We have

been able to extend the above equation up to five loops. The detailed results will be

illustrated in the main text. Here, we just anticipate the large L limit which reads




L

(g)

L

= f

0

(g) + g

4

h(g L) e

�L log 2

+O(e

�2L log 2

); (1.6)

where f

0

(g) has been computed in [28]. The function h(z) is regular around z = 0 and

does not receive contributions from the dressing phase, at least up to five loops. The size

corrections to the thermodynamical limit are thus characterized by a finite specific corre-

lation length � = 1= log 2. In the final Section of the paper, we shall try to argue why this

correlation length abruptly appears at two-loops breaking the trivial linear dependence

on L.

2. One-loop ferromagnetic multi-gluon operators in the chiral sector

In this Section, we introduce the special class of N = 4 multi-gluon operators that we are

going to analyze. For completeness, we also review their one-loop integrability properties

and, in particular, the reduction of the mixing matrix to the Hamiltonian of an integrable

XXX

1

chain.

In the planar limit, the most general purely gluonic local gauge invariant operators

are easily identified. They are single trace operators built with covariant derivatives of

the field strength

Tr (Dn

1

F

�

1

�

1

� � �D

n

L

F

�

L

�

L

) : (2.1)

The anomalous dimension matrix � and the would-be spin chain Hamiltonian H are re-

lated by

� = �

�

��

log Z � g

2

H; g

2

=

g

2

YM

N




8�

2

; (2.2)

where Z is the renormalization matrix and g is the scaled ’t Hooft coupling kept fixed in

the planar limit N



!1.
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The one-loop operatorH takes the form of a nearest neighbor Hamiltonian conserving

the length L in Eq. (2.1). It can be written

H =

L

X

n=1

H

n;n+1

; (2.3)

where the link Hamiltonian H

n;n+1

acts on the fields at positions n and n + 1 and is

independent on n. For the completeN = 4 SYM theory, the elementary fields are included

in the singleton multiplet V [10] and the link Hamiltonian reads [53]

H

N=4

= 2

1

X

j=0

h(j)P

N=4

j

; h(j) =

j

X

n=1

1

n

; (2.4)

where P

N=4

j

is a projector onto the irreducible superconformal multiplets appearing in

the decomposition of the two-site states V 
 V .

To restrict the analysis to purely gluonic operators it is convenient to adopt the confor-

mal analysis exploited in the QCD reduction described in [50, 51] (see also [54]). We first

split into irreducible components the field strength F

��

transforming as (1; 0) � (0; 1) un-

der the so(3; 1) = su(2)� su(2) Lorentz algebra. This is achieved by means of the ’t Hooft

symbols [55] projecting F

��

onto the self-dual (1; 0) and anti-self-dual (0; 1) components

F

��

= �

A

��

f

A

+ �

A

��

f

A

; A = 1; 2; 3: (2.5)

The purely chiral gluon operators are the subset of Eq. (2.1) built using only the self-dual

part of F
��

Tr
n

D

n

1

f

A

1

� � �D

n

L

f

A

L

o

: (2.6)

At one loop, they close under renormalization mixing. The relevant link Hamiltonian can

be obtained by restriction of HN=4. To this aim, it is convenient to organize the various

covariant derivatives of fA in a N = 0 conformal infinite dimensional multiplet

V

f

= fD

n

fg

n�0

: (2.7)

Two-site states decompose in irreducible multiplets labeled by the conformal spin j ac-

cording to

V

f


 V

f

=

1

M

j=�2

V

ff

j

: (2.8)

Also, the conformal splitting of the fullN = 4 projectorPN=4

j

turns out to involve the con-

formal projector P
ff

j�2

only. This leads to the following purely gluonic link Hamiltonian in

the chiral sector

H = 2

1

X

j=�2

h(j + 2)P

ff

j

: (2.9)

Finally, if we further restrict to operators without derivatives, one can prove that the only

modules appearing in the r.h.s. of Eq. (2.8) are those with j = �2;�1; 0 [51]. To make
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contact with the spin chain interpretation, we introduce spin S = 1 su(2) operators fSig

acting on the three components fA as

(S

i

f)

A

= i "

iAB

f

B

: (2.10)

Then, the modules P
ff

j

with j = �2;�1; 0 can be shown to be associated with the su(2)

representations with S = 0; 1; 2 respectively, appearing in the decomposition 1 
 1 =

2 � 1 � 0. The link Hamiltonian H

n;n+1

in Eq. (2.9) can be written as a polynomial in

S
n

� S
n+1

with the result

H = 3L+

1

2

X

n

h

S
n

� S
n+1

� (S
n

� S
n+1

)

2

i

: (2.11)

This is an anti-ferromagnetic integrable spin-chain that can be diagonalized by Bethe

Ansatz [56]. The ground state is highly non-trivial, but the maximally excited states are a

trivial ferromagnetic multiplet. A convenient representative is the operator

O

L

= Tr(FL

); (2.12)

where F = f

+ is the maximal eigenstate of Sz . The anomalous dimension of this state

(including the classical dimension) is simply




L

(g) = 2L+ 3Lg

2

+O(g

2

): (2.13)

The linear dependence on L follows from the uniform structure of the ferromagnetic state.

In this paper, we shall be working on the conformal/field-theory side of the AdS/CFT

correspondence. However, it must be mentioned that the natural candidate for a semi-

classical string state dual to O
L

has been proposed in [57, 58]. It describes a rigid circular

string rotating simultaneously in two orthogonal spatial planes of AdS
5

with equal spins

S � L. At large S, the weak-coupling extrapolation for the energy is given by

E = p(�)S + q(�) + : : : ;

p

��1

= p

0

+

p

1

p

�

+ : : : ; q

��1

=

p

�q

0

+ q

1

+ : : : : (2.14)

The results for the three-level and 1-loop coefficients of the solution have been calculated

in [58] within a stability region 0:4 . S

p

�

& 1:17, corresponding to a fixed value (m = 1) of

the winding number. It should be noticed that, since in the semiclassical approximation �

is large on the string side, the interval of stability for the solution does include large values

of S, allowing the comparison to large S, large � asymptotics of the exact anomalous

dimension. The linear dependence on S exhibited by the solution (2.14) supports the

identification of the gauge theory operator O
L

with this particular rigid spinning string

solution.

3. Higher loop extension of the scaling field O
L

At more than one-loop, the operator O
L

ceases to be an eigenstate of the dilatation oper-

ator because the purely gluonic chiral sector does not close under mixing anymore. The
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higher order scaling operator receives corrections and contributions from the other sectors

of the full psu(2; 2j4) theory and is uniquely defined by the boundary condition of being

O

L

at one-loop. In the following, we shall not be pedantic about this distinction and keep

naming O
L

the multi-loop extension of TrFL.

A great deal of information about O
L

has been obtained in [28] in the framework

of the long-range Bethe Ansatz equations. In this Section, we quickly summarize these

results with some additional investigation of the finite but large L Bethe roots. This will

fix the setup for the computation of 

L

(g).

3.1 Dynkin diagrams and Bethe roots

As is well known, several choices are available for the Dynkin diagram of a Lie superal-

gebra. In the case of psu(2; 2j4), the one loop analysis of the operatorsO
L

is almost trivial

with the Kac distinguished form. Indeed, O
L

is the vacuum state and no calculation is

needed.

On the other hand, the all-loop Bethe equations are known for a limited set of (differ-

ent) choices of the Dynkin diagram [16]. In particular, we shall work with the following

one

♥�❅ ♥ ♥�❅ ♥
+1

♥�❅ ♥ ♥�❅ (3.1)

With respect to this Dynkin diagram, the vacuum is the BPS state TrZL andO
L

is a highly

excited state with many excitations, whose momenta have to be diagonalized by solving

the Bethe Ansatz equations in order to reproduce the correct energy. The excitation pattern

of Bethe roots for O
L

is

(K

1

;K

2

;K

3

;K

4

;K

5

;K

6

;K

7

) = (0; 0; 2L � 3; 2L � 2; L� 1; L� 2; L � 3) (3.2)

where K
i

is the excitation number of the i-th node of the Dynkin diagram

♥�❅ ♥ ♥�❅
2L� 3

♥
+1

2L� 2

♥�❅
L� 1

♥

L� 2

♥�❅
L� 3

(3.3)

All but the first two nodes are highly excited.

All the one-loop Bethe equations can be exhibited as roots of explicit polynomial by

means of the dualization procedure illustrated in [59] to which we defer the reader for

more details. It is instructive to describe the procedure in graphical terms. Dualizing first

at nodes 3 and 7, we obtain

♥�❅ ♥�❅ ♥�❅ ♥�❅

+1

2L� 2

♥�❅
L� 1

♥�❅
L� 2

♥�❅ (3.4)
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Dualizing at nodes 4 and 6, we obtain

♥�❅ ♥�❅ ♥ ♥�❅

�1

♥�❅

+2

L� 1

♥�❅ ♥ (3.5)

The Bethe equations are thus reduced to the simple equation
 

u

5;k

+ i

u

5;k

� i

!

L

= 1; k = 1; : : : ; L� 1; (3.6)

which is solved by

u

5;k

= 
ot

� k

L

: (3.7)

The dualization process can be inverted step by step providing exact polynomials whose

roots are the Bethe roots at any finite L. In particular, one finds for the roots at node 4 and

6 the explicit result [28]

Q

4

(u) =

�

u+

i

2

�

L

"

�

u+

3 i

2

�

L

�

�

u�

i

2

�

L

#

+

�

u�

i

2

�

L

"

�

u�

3 i

2

�

L

�

�

u+

i

2

�

L

#

:

Q

6

(u) =

�

u+

3 i

2

�

L

+

�

u�

3 i

2

�

L

�

�

u+

i

2

�

L

�

�

u�

i

2

�

L

: (3.8)

Of course, from the knowledge ofQ
4

(u) one can prove again the one-loop result Eq. (2.13).

Going over to higher orders, we have to work with the long range Bethe equations

which are a deformation of the one-loop ones. They involve the standard quantities

x(u) =

u

2

0

�

1 +

s

1�

2 g

2

u

2

1

A

; x

�

= x

�

u�

i

2

�

; (3.9)

and read

1 =

2L�2

Y

j=1

x

3;k

� x

+

4;j

x

3;k

� x

�

4;j

;

 

x

+

4;k

x

�

4;k

!

L

=

2L�2

Y

j=1

j 6=k

x

+

4;k

� x

�

4;j

x

�

4;k

� x

+

4;j

1� g

2

=2x

+

4;k

x

�

4;j

1� g

2

=2x

�

4;k

x

+

4;j

�

2

(u

4;k

; u

4;j

)

�

2L�3

Y

j=1

x

�

4;k

� x

3;j

x

+

4;k

� x

3;j

L�1

Y

j=1

x

�

4;k

� x

5;j

x

+

4;k

� x

5;j

L�3

Y

j=1

1� g

2

=2x

�

4;k

x

7;j

1� g

2

=2x

+

4;k

x

7;j

;

1 =

L�2

Y

j=1

u

5;k

� u

6;j

+

i

2

u

5;k

� u

6;j

�

i

2

2L�2

Y

j=1

x

5;k

� x

+

4;j

x

5;k

� x

�

4;j

; (3.10)

1 =

L�2

Y

j=1

j 6=k

u

6;k

� u

6;j

� i

u

6;k

� u

6;j

+ i

L�1

Y

j=1

u

6;k

� u

5;j

+

i

2

u

6;k

� u

5;j

�

i

2

L�3

Y

j=1

u

6;k

� u

7;j

+

i

2

u

6;k

� u

7;j

�

i

2

;

1 =

L�2

Y

j=1

u

7;k

� u

6;j

+

i

2

u

7;k

� u

6;j

�

i

2

2L�2

Y

j=1

1� g

2

=2x

7;k

x

+

4;j

1� g

2

=2x

7;k

x

�

4;j

;
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where �2(u
k

; u

j

) is the dressing phase to be discussed later.

It is possible to perform a partial dualization of these equations and obtain reduced

long-range equations involving roots at nodes 4, 5, 6 only. These are

 

x

+

4;k

x

�

4;k

!

L

=

2L�2

Y

j=1

j 6=k

x

�

4;k

� x

+

4;j

x

+

4;k

� x

�

4;j

1�

g

2

2x

+

4;k

x

�

4;j

1�

g

2

2x

�

4;k

x

+

4;j

�

2

(u

4;k

; u

4;j

)

2L�4

Y

j=1

x

+

4;k

�

e

x

5;j

x

�

4;k

�

e

x

5;j

;

1 =

L�2

Y

j=1

e

u

5;k

� u

6;j

+

i

2

e

u

5;k

� u

6;j

�

i

2

2L�2

Y

j=1

e

x

5;k

� x

+

4;j

e

x

5;k

� x

�

4;j

; (3.11)

1 =

L�2

Y

j=1

j 6=k

u

6;k

� u

6;j

+ i

u

6;k

� u

6;j

� i

2L�4

Y

j=1

u

6;k

�

e

u

5;j

�

i

2

u

6;k

�

e

u

5;j

+

i

2

:

Here, eu
5

are the 2L� 4 roots dual to u

5

. At one loop, they are the roots of the polynomial

Q

5

(u) = 3u

2L

+ (�i+ u)

L

(�2i+ u)

L

+ (2i+ u)

L

�

(i+ u)

L

+ (�2i+ u)

L

�

�u

L

�

(�i+ u)

L

+ (i+ u)

L

+ 2(�2i+ u)

L

+ 2(2i + u)

L

�

: (3.12)

The roots at nodes 4 and 6 are still given at one-loop by the previous polynomials. At

generic g, the anomalous dimension is obtained from the roots u
4;k

(g) alone and reads




L

(g) = 2L+ g

2

K

4

X

k=1

 

i

x

+

(u

4;k

)

�

i

x

�

(u

4;k

)

!

: (3.13)

Finally, let us consider the dressing phase. It enters the calculation starting from four

loops. Its general form is discussed in [24]. The terms relevant for a computation up to

five loops are simply

�

2

(u; u

0

) = e

i #(u;u

0

)

; (3.14)

where

#(u; u

0

) = (�

3

g

6

� 5 �

5

g

8

) (q

2

(u) q

3

(u

0

)� q

2

(u

0

) q

3

(u)) + � � � ; (3.15)

q

2

(u) = i

�

1

x

+

(u)

�

1

x

�

(u)

�

; q

3

(u) =

i

2

�

1

x

+

(u)

2

�

1

x

�

(u)

2

�

:

The coefficients �
n

are transcendental sums �
n

=

P

1

`=1

`

�n.

3.2 The one-loop Bethe roots: some numerics at large but finite L

The one-loop Bethe roots are the zeroes of the polynomials Q
4;5;6

(u). It is instructive to

study them at large L comparing with the results of [28] obtained in the L!1 limit. First

the (dual) roots u
5

. They are complex. We show them at L = 100; 200; 350; 500 in Fig. (1).

As predicted, most of them are distributed along two segments with Imu

5

= �

i

2

. Apart
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from these roots, other ones are scattered in the complex plane according to a nice regular

pattern. To understand these roots, we look for a Bethe root admitting the expansion

u = L

�

x

0

+

x

1

L

1=2

+

x

2

L

+ � � �

�

: (3.16)

A roots with leading behavior u � L is called extremal in [28]. Replacing this expansion in

Q

6

(u) , we obtain a well defined large L expansion for the ratio

R(x

0

; x

1

; : : : ;L) =

Q

6

(u)

u

2L

: (3.17)

The leading term is

R = 64 
os

2

1

2x

0

sin

4

1

2x

0

+O(L

�1=2

); (3.18)

leading to x

0

=

1

n�

for any integer n. Considering separately the cases n even/odd and

expanding at higher order in L

�1=2 one finds the solutions (in the first quadrant)

�

�;k

=

1

(2 k + 1)�

0

�

L�

s

L

2

1

A

+O

�

L

�1=2

�

; k = 0; 1; 2; : : : ; (3.19)

�

�;k

=

1

2 k �

�

L�

1

2

p

L

q

3� i

p

15�

i

p

15

�

+O

�

L

�1=2

�

; k = 1; 2; : : : : (3.20)

The other roots are related by reflection with respect to the coordinate axis. For large L,

the �-roots appear in real close pairs. These pairs are closer to the origin as k is increased.

In general, for a given L, only a finite number of such pairs is well approximated by the

above formula. The �-roots have an imaginary part and also appear in close pairs. In

Fig. (1) we draw crosses at the first � and � pairs.

The roots u
4;n

and u

6;n

are real. Their density is defined in the L ! 1 continuum

limit as �(u) = dn=du and the analytical prediction is

�

4

(u) =

1

2�

 

1

u

2

+

1

4

+

3

u

2

+

9

4

!

; �

6

(u) =

1

2�

3

u

2

+

9

4

: (3.21)

In the discrete case at finite L, we can plot the points
�

u

n

+ u

n+1

2

;

4L

u

n+1

� u

n

�

: (3.22)

The result is shown in Figs. (2,3) for the Bethe roots at L = 200. The agreement is quite

good in the case of u
4

. For u
6

, we observe a deviation in the tails of the distribution at

large ju
6

j. It can be understood as in the above discussion of extremal u
5

roots.

4. Perturbative expansion of the long-range Bethe equations

Starting from the exact (i.e. known with arbitrarily high precision) one-loop Bethe roots

we can make a perturbative expansion in even powers of g

u

a;k

=

1

X

n=0

g

2n

u

(n)

a;k

; a = 4; 5; 6; k = 1; : : : ;K

a

; (4.1)
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where we relabel eu
5

� u

5

, eK
5

� K

5

. The explicit five loop expansion of the anomalous

dimension can be compared with the results of [28] up to L = 8. We have extended the

calculation up to L = 60. The results at five loops for L � 20 are shown in Appendix (A).

The expansion is a rational combination of 1, �
3

and �

5

. As we mentioned, the zero

and one loop results are proportional to L. In general, it is convenient to redefine




L

(g) = L

0

�

2 + 3 g

2

+

X

n�2




n

(L) g

2n

1

A

: (4.2)

We now show that it is possible to provide simple closed expressions for the non-trivial

functions 

n

(L). As a constraint, we must meet the exact expansion in the L ! 1 limit

obtained in [28] and reading at five loops




2

(1) = �

51

8

;




3

(1) =

393

16

; (4.3)




4

(1) = �

59487

512

�

27

4

�

3

;




5

(1) =

632661

1024

+

1665

32

�

3

+

135

4

�

5

:

As a general remark, it is instructive to plot the numerical values of 

n

(L) at the first values

of L. Indeed, it is immediately clear that factors (�1)

L can appear in the closed formula

for 

n

(L). Therefore, we shall analyze the odd and even L cases separately.

4.1 Two loops

For odd L = 5; 7; 9; : : : , we subtract the asymptotic value 

2

(1) and rescale to find

8

3

(


2

(L)� 


2

(1)) = �

1

5

;�

1

21

;�

1

85

;�

1

341

;�

1

1365

;�

1

5461

;�

1

21845

;�

1

87381

;�

1

349525

; : : :

(4.4)

A careful inspection reveals that the denominators are simply related to powers of 2 minus

one. The precise formula is easily found and reads




2

(L) = �

51

8

�

9

8

1

2

L�1

� 1

; L odd: (4.5)

We checked it for all the L that we have explored. Remarkably, it works also for the even

L case if the sign of the term � 2

L is changed. The final formula is thus




2

(L) = �

51

8

+

9

8

1

(�1)

L

2

L�1

+ 1

: (4.6)

This simple result is rather remarkable. It holds at finite L and predict exponentially

suppressed deviations from the trivial linear scaling of the anomalous dimension 
 � L,

valid up to the one-loop level. Is it possible to obtain a similar result for the next three

loop contribution ?
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4.2 Three loops

Following the strategy adopted in the two-loop case, we start again from oddL = 5; 7; 9; : : :

and evaluate




3

(L)� 


3

(1) = +

111

1600

;�

425

3136

;�

3628101

39304000

; (4.7)

�

9904623

230701504

;�

7874523

463736000

;�

63804855621

10423090379584

; : : : :

This sequence appears to be definitely non trivial and much more complicated than the

two-loop case. In particular, the signs are not definite and the denominators do not have

simple factorization properties. However, the sequence enjoys a remarkable property. If

we multiply it by (2

L�1

� 1)

3 and apply a constant scaling, we find

2

6

3

4

(2

L�1

� 1)

3

(


3

(L)� 


3

(1)) = 185;�26775;�1209367;�36316951;�921319191; (4.8)

�21268285207;�461958727447;�9613145655063;�193758643734295; : : : :

Indeed, the sequence is integer for all considered L. As a second feature, one can plot the

following function of L

(2

L�1

� 1) (


3

(L)� 


3

(1)); (4.9)

and it turns out to be curve quite close to a quadratic parabola. From these two features,

it is natural to look for a closed formula of the form




3

(L)� 


3

(1) =

1

(2

L

� 2)

3

2

X

p=0

2

pL

2

X

q=0




p;q

L

q

: (4.10)

Indeed, it turns out that all the three loop results at odd L are reproduced by




3

(L) =

393

16

+

�9 � 2

2L

�

9L

2

� 33L� 104

�

� 18 � 2

L

�

9L

2

+ 15L + 202

�

+ 3528

64 (�2 + 2

L

)

3

; L odd:

(4.11)

Looking back at Eq. (4.6), there is a striking similarity suggesting an all order structure. In

particular, the same formula works for even L, if we apply the modification rules

2

2 pL

! 2

2 pL

; 2

(2 p+1)L

! �(�1)

L

2

(2 p+1)L

: (4.12)

The general formula is then




3

(L) =

393

16

+

9 � 2

2L

�

9L

2

� 33L � 104

�

� 18 � (�1)

L

2

L

�

9L

2

+ 15L+ 202

�

� 3528

64 � 8 [(�1)

L

2

L�1

+ 1)℄

3

:

(4.13)

4.3 Four loops

At four loops, we attempt to repeat the game. The only new feature is the transcendental

contribution from the dressing phase. This is a piece of 

4

(L) proportional to �
3

. From the

numerics, it is independent on L and reads




4

(L) = 


(0)

4

(L) + 


(3)

4

(L) �

3

; 


(3)

4

(L) � �

27

4

: (4.14)
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The 

(0)

4

(L) is a rational contribution with properties quite analogous to those of 

3

(L). In

particular, for odd L

(i)

2

8

3

7

(2

L�1

� 1)

5

(


(0)

4

(L) � 


(0)

4

(1)) 2 N; (4.15)

(ii) (2

L�1

� 1) (


(0)

4

(L)� 


(0)

4

(1)) � L

4

; for L!1: (4.16)

Again, it is natural to postulate from (i) and (ii) the closed formula




(0)

4

(L)� 


(0)

4

(1) =

1

(2

L

� 2)

5

4

X

p=0

2

pL

4

X

q=0

d

p;q

L

q

: (4.17)

Replacing the explicit anomalous dimensions in this formula we find that indeed it is

satisfied by all considered (odd) L with coefficients d
p;q

giving




(0)

4

(L) = �

59487

512

+

2

4L

Q

4;4

+ 2

3L

Q

4;3

+ 2

2L

Q

4;2

+ 2

L

Q

4;1

� 1335168

2

15

(2

L�1

� 1)

5

; L odd; (4.18)

where the Q polynomials are

Q

4;1

= �72

�

27L

4

+ 90L

3

� 1485L

2

� 2004L � 38456

�

;

Q

4;2

= �108

�

99L

4

� 18L

3

+ 513L

2

+ 2958L + 19924

�

; (4.19)

Q

4;3

= �18

�

297L

4

� 1080L

3

+ 1647L

2

� 12060L � 41264

�

;

Q

4;4

= �9

�

27L

4

� 252L

3

� 1053L

2

+ 5190L + 10676

�

:

The case L even is obtained changing the sign of 2

L in the powers (2

L

)

p and correcting

with a shift in the boundary case L = 4. The final result is




(0)

4

(L) = �

5

64

Æ

L;4

�

59487

512

+

�

2

4L

Q

4;4

� (�1)

L

2

3L

Q

4;3

+ 2

2L

Q

4;2

� (�1)

L

2

L

Q

4;1

� 1335168

2

15

[(�1)

L

2

L�1

+ 1℄

5

: (4.20)

The above shift, as well as the corrections appearing in the five loop formula (4.26) be-

low, are possibly related to short wrapping effects - the lack of the asymptotic conditions

prevents in the boundary cases the validity of the Bethe equations.

4.4 Five loops

At five loops, we have a more complicated dressing contribution with two different tran-

scendentality terms




5

(L) = 


(0)

5

(L) + 


(3)

5

(L) �

3

+ 


(5)

5

(L) �

5

; 


(0;3;5)

5

(L) 2 Q: (4.21)

The maximum transcendentality 


(5)

5

is independent on L




(5)

5

(L) =

135

4

: (4.22)
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Repeating the above heuristic analysis for the other terms we find for the transcendental-

ity 3 term




(3)

5

(L) =

1665

32

�

3

8

Æ

L;4

+

81 � (�1)

L

2

L

(L� 4)� 648

2

7

[(�1)

L

2

L�1

+ 1℄

2

: (4.23)

The purely rational term has the representation




(0)

5

(L) � 


(0)

5

(1) =

1

(2

L

� 2)

7

6

X

p=0

2

pL

6

X

q=0

e

p;q

L

q

; (4.24)

with the explicit final result, holding for even or odd L




(0)

5

=

632661

1024

+

14987

12288

Æ

L;4

�

333

4096

Æ

L;5

+

G(L)

2

22

[(�1)

L

2

L�1

+ 1℄

7

; (4.25)

G(L) =

X

p=0;6

(�1)

p (L+1)

2

pL

Q

5;p

; (4.26)

where

Q

5;0

= �2

11

� 3

2

(432L + 56639); (4.27)

Q

5;1

= 2

5

� 3

4

�

9L

6

+ 45L

5

� 1581L

4

� 4113L

3

+ 39492L

2

+ 53316L + 1253696

�

;

Q

5;2

= 2

4

� 3

3

�

1539L

6

+ 1755L

5

� 37503L

4

+ 41409L

3

� 370980L

2

� 961116L � 9751792

�

;

Q

5;3

= 2

4

� 3

2

�

12231L

6

� 17172L

5

+ 68067L

4

+ 158976L

3

+ 358722L

2

+ 3589416L + 20219128

�

;

Q

5;4

= 2

3

� 3

5

�

453L

6

� 1956L

5

+ 3769L

4

� 15096L

3

+ 13278L

2

� 163616L � 582008

�

;

Q

5;5

= 2 � 3

3

�

1539L

6

� 13095L

5

� 10611L

4

+ 82683L

3

� 290952L

2

+ 1783716L + 4340656

�

;

Q

5;6

= 9

�

81L

6

� 1377L

5

� 6129L

4

+ 103653L

3

+ 195912L

2

� 1277388L � 2247232

�

:

The extension to higher loops seems to be a computational issue. One has to generate

a large enough number of terms in 


n

(L) and must check that an Ansatz similar to the

previous ones matches it.

5. Large L expansion of 

L

(g)

The five-loop results described in the previous sections are valid at finite L. Nevertheless,

it is interesting to look at the dominant terms at large L. As remarked in the Introduc-

tion, the resulting expression can admit a thermodynamical interpretation. Collecting the

formulae for 

n

and expanding at large L, we find




L

(g)

L

= f

0

(g) + f

1

(g; L) e

�L log 2

+ f

2

(g; L) e

�2L log 2

+ f

3

(g; L) e

�3L log 2

+ � � � : (5.1)

The leading term agrees by construction with the result of [28]

f

0

(g) = 2+3 g

2

�

51

8

g

4

+

393

16

g

6

+

�

�

27�

3

4

�

59487

512

�

g

8

+

�

1665�

3

32

+

135�

5

4

+

632661

1024

�

g

10

+: : : :

(5.2)
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The first exponentially suppressed term has a prefactor

f

1

(g; L) = �

9

4

g

4

+

 

�

81L

2

64

+

297L

64

+

117

8

!

g

6

+

+

 

�

243L

4

1024

+

567L

3

256

+

9477L

2

1024

�

23355L

512

�

24021

256

!

g

8

+

+

 

�

729L

6

32768

+

12393L

5

32768

+

55161L

4

32768

�

932877L

3

32768

�

220401L

2

4096

+

+

�

2874123

8192

�

81�

3

32

�

L+

81�

3

8

+

316017

512

�

g

10

+ : : : : (5.3)

At orderO(g

2n

), the leading power of the length is L2n�4 and comes always in transcen-

dentality 0 terms unrelated to dressing. The large L limit of f
1

(g; L) can be compactly

written as

f

1

(g; L) = �

9

4

g

4

 

1 + z

2

+

z

4

3

+

z

6

18

+ � � �

!

; z =

3

4

Lg; (5.4)

and in particular, given the absence of transcendental contributions, do not depend on

the dressing phase. It seems reasonable that this structural properties could persist at all

orders.

6. Discussion and Conclusions

In this paper, we have considered the chiral operator TrFL in N = 4 SYM. At one-loop,

it scales with a definite anomalous dimension 


L

proportional to L. At two-loops and

beyond, it mixes with the other psu(2; 2j4) fields. The length L is no more a conserved

quantity and 


L

=L is not constant. In principle, this ratio is not expected to be expressed

by a simple expression at finite L. One would just resort to compute systematically its

corrections at large L.

Nevertheless, the main result of this paper shows that some unexpected structure ex-

ists at finite L. We have been able to provide a closed form for 

L

=L up to five-loops.

Radiative corrections follow a simple pattern order by order in perturbation theory, in-

cluding transcendental dressing effects. They are sensitive to the parity of L and are ex-

ponentially suppressed as L!1.

A closed formula for the multi-loop size dependence is a remarkable fact that has

no counterpart in existing calculations for other operators in the various subsectors of

N = 4 SYM. It can be due to the simplicity of the considered operator or could hint to

some hidden relation obeyed by the anomalous dimensions as a function of L. The closed

formulae are a mere conjecture, although with a strong empirical basis. It is clear that a

(dis)proof would be certainly enlightening.

In the large volume regime our results read




L

(g)

L

= f

0

(g) + g

4

h(g L) e

�L log 2

+ � � � : (6.1)
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Eq. (6.1) claims that starting at two-loops, exponentially suppressed corrections appear

with a g independent correlation length � = 1= log 2 and the combination g L as a nat-

ural scaling variable for the prefactor. It would be interesting to understand such fea-

tures from the point of view of the spin-chain interpretation of the dilatation operator H .

We emphasize that the O(2

�L

) corrections have nothing to do with much smaller O(�

L

)

wrapping effects. A natural explanation for the exponential corrections could take into

account length-changing processes as suggested in [28]. An explicit two-loop calculation

of H would be important to clarify these issues.

We conclude with a remark concerning the dressing phase #. Currently, this is a

well understood ingredient appearing in the S-matrix. However, it would be very nice to

classify the special kind of interactions that are associated with it in the dilatation operator.

A relevant step in this direction has been recently described in [60] where it is linked to

so-called maximal reshuffling interactions. In our investigation, the special feature of

dressing effects is that they are subleading at large L and up to five-loops. Transcendental

contributions drop out from the function f

1

(L; g) being characterized by subdominant

powers of the length L.
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A. Five loop anomalous dimensions for L � 20
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g
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Figure 1: Dual Bethe roots u
5

computed at one-loop with L = 100; 200; 350; 500. Crosses on the x

axis are pairs of �
�

extremal roots. Crosses with non zero imaginary part are �
�

roots.
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from the analytical prediction �
4

and from the numerical roots

at L = 200.
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Figure 3: Density of Bethe roots u
6

from the analytical prediction �
6

and from the numerical roots

at L = 200.
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