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1. Introduction

The four loop universal anomalous dimension of N = 4 SYM twist � = 2 operators with

general spin has been conjectured in [1, 2]. In perturbation theory, the spin N dependent

anomalous dimension 
(N) is the sum of two pieces, called the asymptotic and wrapping

contributions. The asymptotic term can be computed rigorously for each N by means of

the all loop asymptotic Bethe Ansatz ofN = 4 SYM [3]. The wrapping correction starts at

loop order �+2 and is currently believed to be correctly predicted by generalized Lüscher

formulas [4].

At three loops, the sequence of values f
(N)g

N=1;2;:::

can be expressed as a closed

function of the spin N [5, 6, 7] as a linear combination of nested harmonic sums. This

exact result is in agreement with the QCD-inspired maximum transcendentality princi-

ple [8] which is usually accepted to hold at any loop order. This leads to the four loop

conjecture of [1, 2] which, as a check, reproduces the correct cusp anomaly as well as the

pole structure predicted by the next-to-leading order BFKL equations [9].
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Another property, known to be valid at three loops, emerges as a higher order gen-

eralization of the one-loop Gribov-Lipatov reciprocity [10, 11, 12]. The crossed QCD pro-

cesses of deep inelastic scattering and e

+

e

� annihilation can be treated symmetrically in

an approach based on modified DGLAP evolution equations for parton distributions with

kernel P (N) obeying perturbatively


(N) = P

�

N +

1

2


(N)

�

: (1.1)

The reciprocity condition is a constraint on the large spin N behavior of 
(N) [11] which

can be written as the following asymptotic condition on P (N)

P (N) =

X

`�0

a

`

(log J

2

)

J

2 `

; J

2

= N (N + 1); (1.2)

where a

`

are suitable coupling-dependent polynomials. J

2 is the Casimir of the collinear

subgroup SL(2;R) � SO(2; 4) of the conformal group [13] and the above constraint is

simply parity invariance under (large) J ! �J . A generic expansion around N =1 can

involve odd powers of 1=J . These are forbidden in Eq. (1.2).

We remark that reciprocity is not a rigorous prediction. Instead, it is a property which

is based on sound physical arguments and deserve to be tested at higher loop order. Its

persistent validity is an intriguing empirical observation which deserves a deeper un-

derstanding. Indeed it has been observed in several QCD and N = 4 SYM multi-loop

calculations [14]. In particular, three-loop tests of reciprocity for QCD and for the univer-

sal twist 2 supermultiplet in N = 4 SYM were discussed in [11, 12], a four-loop test for

the twist 3 anomalous dimension was performed in [15] in the scalar sector, and in [16] in

the ”gluon” sector. All these examples did not require the wrapping correction.

Here, we show that the twist-2 four loop result is again reciprocity respecting, includ-

ing wrapping, although certain additional simplicity features of the three loop result will

be shown to be broken. Finally, we refer the reader to the five loop, twist three results of

Ref. [17], which show strict analogies with the present case for the presence of a wrapping

contribution, the reciprocity analysis and the asymptotic features.

2. Proof of reciprocity

The twist-2 anomalous dimension is written perturbatively as


(N) = g

2




1

(N) + g

4




2

(N) + g

6




3

(N) + g

8

�




ABA

4

(N) + 


wrapping

4

(N)

�

+O(g

10

); (2.1)

where g2 =
g

2

YM

N

16�

2

. For 

1

(N); 


2

(N); 


3

(N), explicit formulas in terms of linear combina-

tions of harmonic sums can be found in Refs. [5, 6, 7]. 
ABA
4

(N) is the asymptotic Bethe

Ansatz result reported in Table 1 of [1], while the wrapping contribution 


wrapping

4

(N) can

be found in [2].

The P -kernel defined via (1.1) can be derived from the anomalous dimension by sim-

ply inverting (1.1). Expanding perturbatively P as

P (N) = g

2

P

1

(N) + g

4

P

2

(N) + g

6

P

3

(N) + g

8

P

4

(N) +O(g

10

); (2.2)
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one finds the four loop contribution to be

P

4

= P

ABA

4

+ P

wrapping

4

; (2.3)

P

ABA

4

= 


ABA

4

�

1

48




(3)

1




3

1

�

3

16




0

1




00

1




2

1

+

1

8




00

2




2

1

�

1

8

�




0

1

�

3




1

+

1

2




0

1




0

2




1

�

1

2




0

3




1

+

+

1

4




2




00

1




1

+

1

4




2

�




0

1

�

2

�

1

2




3




0

1

�

1

2




2




0

2

; (2.4)

P

wrapping

4

= 


wrapping

4

: (2.5)

The above expression is an explicit linear combination of products of harmonic sums,

that for the purpose of proving reciprocity it is useful to rewrite in a canonical basis, i.e.

as linear combinations of single sums. This can be done by repeatedly using the shuffle

algebra relation (A.2).

The proof that P
4

is reciprocity respecting is based on rewriting Eq.(2.3) in terms of

special linear combinations of harmonic sums with definite properties under the (large-)J

parity J ! �J . We introduce them in the following section.

2.1 Definite-parity linear combinations of harmonic sums

Let us consider the space � of R-linear combinations of harmonic sums Sa with generic

multi-indices

a = (a

1

; : : : ; a

`

); a

i

2 Znf0g; (2.6)

where ` is not fixed. At any perturbative order, P 2 �.

For any a 2 Znf0g, we define the linear map !

a

: � ! � by assigning its action on

single harmonic sums as follows

!

a

(S

b;c) = S

a;b;c �

1

2

S

a^b;c; (2.7)

where, for n;m 2 Znf0g, the wedge-product is

n ^m = sign(n) sign(m) (jnj + jmj): (2.8)

Besides basic harmonic sums, it is convenient to work with the complementary sums Sa

defined in Appendix A. On the space � of their R-linear combinations a linear map !

a

can be defined in total analogy with (2.7).

In the spirit of [12, 15], we introduce the combinations of (complementary) harmonic sums




a

= S

a

;




a;b = !

a

(
b);




a

= S

a

= S

a

;




a;b = !

a

(
b):

(2.9)

for which the following two theorems, proved in App. B, hold.

Theorem 1: 1 The subtracted complementary combination b


a, a = (a

1

; : : : ; a

d

) has definite

parity Pa under the (large-)J transformation J ! �J and

Pa = (�1)

ja

1

j+���+ja

d

j

(�1)

d

d

Y

i=1

"

a

i

: (2.10)

1A special case of Theorem 1 appeared in [12]. A general proof of Theorem 1 in the restricted case a =

(a

1

; : : : ; a

`

) with positive a

i

> 0 and rightmost indices a

`

6= 1 can be found in [15]. Appendix B contains the

proof of the general case.
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Theorem 2: The combination 
a, a = (a

1

; : : : ; a

d

) with odd positive a
i

and even negative a
i

has

positive parity P = 1.

Theorem 2 follows from Theorem 1 (see Appendix B). In this paper we shall use the

second theorem only, but we quote the first as a separate result since it can be relevant in

more involved situations [17].

2.2 The four loop P -kernel

The strategy to prove reciprocity for the kernel P is the following. For each loop order `,

one considers in P
`

(written in the canonical basis) the sums with maximum depth, each of

them, say Sa, appearing uniquely as the maximum depth term in 
a. One then subtracts

all the 
’s required to cancel these terms, keeps track of this subtraction and repeats the

procedure with depth decreased by one. At the end, if the remainder is zero and if the

full subtraction is composed of 
’s with the right parities, as prescribed by Theorem 2, we

have proved that P is reciprocity respecting. This reduction algorithm can be successfully

applied up to three loops, here we report the four loop case.

The expression for PABA

4

in the canonical basis is very long, and we do not show it.

Applying the reduction algorithm one find the following form of the asymptotic contri-

bution

P

ABA

4

= �8192


1;1;1;�2;1;1

+ 6144


�2;�2;1;1;1

+ 6144


�2;1;�2;1;1

+ 4096


�2;1;1;�2;1

+

+6144


1;�2;�2;1;1

6144


1;�2;1;�2;1

+ 2048


1;�2;1;1;�2

+ 6144


1;1;�2;�2;1

+

+4096


1;1;�2;1;�2

+ 6144


1;1;1;�2;�2

� 1024


�2;�2;�2;1

� 1536


�2;�2;1;�2

+

�2048


�2;1;�2;�2

+ 1024


1;�4;1;1

� 1536


1;�2;�2;�2

+ 3072


1;1;�4;1

+

+1024


1;1;�2;3

+ 2048


1;1;1;�4

+ 2048


1;3;�2;1

+ 1024


3;�2;1;1

+ 2048


3;1;�2;1

+

�2048


�4;�2;1

� 1280


�4;1;�2

� 2048


�2;�4;1

� 768


�2;�2;3

� 1536


�2;1;�4

+

�256


�2;3;�2

� 2304


1;�4;�2

� 1792


1;�2;�4

� 2048


1;1;5

� 1536


1;5;1

+

�1280


3;�2;�2

� 1536


5;1;1

� 768


�6;1

� 128


�4;3

+ 384


�2;5

� 1408


1;�6

+

�896


3;�4

� 256


5;�2

+ 640


7

+

2048

3

�

2




1;1;�2;1

+ 1024�

2




1;1;1;�2

+

�

512

3

�

2




�2;�2;1

�

512

3

�

2




�2;1;�2

�

512

3

�

2




1;�2;�2

�

256

3

�

2




�4;1

+

�256�

2




1;�4

�

512

3

�

2




3;�2

+ 1536�

3




�2;1;1

+ 1280


1;�2;1

�

3

+ 1024


1;1;�2

�

3

+640�

3




1;3

+ 640


3;1

�

3

� 320


�4

�

3

+

1088

15

�

4




1;1;1

�

64

3

�

4




1;�2

�

752

45

�

4




3

+

+


1;1

�

�

256

3

�

2

�

3

+ 2560�

5

�

�

256

45

�

6




1

� �

3

(2


�2;1

+


3

); (2.11)

while the wrapping contribution reads

P

wrapping

4

= �128


2

1

(5 �

5

+ 4 �

3




�2

+ 8


�2;�2;1

+ 4


3;�2

): (2.12)

This proves reciprocity at four loops, since in the expressions above only allowed 
’s

appear. Notice that the asymptotic and wrapping contributions are separately reciprocity
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respecting, an interesting feature which happens to be present also in the twist three five-

loop analysis of [17].

3. Expansions at large N and inheritance violation

The general structure of soft gluon emission governing the very large N behaviour of


(N) predicts the leading contribution 
(N) � f(�) log N where the coupling depen-

dent scaling function f(�) (cusp anomaly) is expected to be universal in both twist and

flavour [18, 19] . This is precisely what is observed in the various exact multiloop expres-

sions discussed in Appendix F of [20].

This leading logarithmic behaviour is also the leading term in the function P (N).

Concerning the subleading terms, as remarked in [11, 12], the function P (N) obeys at

three loops a powerful additional simplicity constraint, in that it does not contain logarith-

mically enhanced terms � log

n

(N)=N

m with n � m. This immediately implies that the

leading logarithmic functional relation


(N) = f(�) log

�

N +

1

2

f(�) logN+:::

�

+ ::: (3.1)

predicts correctly the maximal logarithmic terms logmN=N

m


(N) � f logN +

f

2

2

logN

N

�

f

3

8

ln

2

N

N

2

+ ::: (3.2)

whose coefficients are simply proportional to f

m+1 [15, 21, 20].

Notice that the fact that the cusp anomaly is known at all orders in the coupling via

the results of [22, 23] naturally implies (under the “simplicity” assumption for P ) a proper

prediction for such maximal logarithmic terms at all orders in the coupling constant, and

in particular for those appearing in the large spin expansion of the energies of certain

semiclassical string configurations (dual to the operators of interest). Such prediction has

been checked in [20] up to one loop in the sigma model semiclassical expansion, as well

as in [24] at the classical level. An independent strong coupling confirmation of (3.2) up

to order 1=M has recently been given for twist-two operators in [25].

However, the asymptotic part of the four loop anomalous dimension for twist-2 oper-

ators reveals an exception to this ”rule”, being the term log

2

N=N

2 not given only in terms

of the cusp anomaly. Interestingly enough, the large spin expansion of the wrapping con-

tribution of [2], which correctly does not change the leading asymptotic behavior (cusp

anomaly), first contributes at the same order log2N=N2. Thus, while on the basis of (3.2)

one would expect in the large spin expansion of the four loop anomalous dimension a

term of the type (we denote by (� � � )

4

the 4-th loop contribution)




log

2

N

N

2

with (
)

4

=

�

�

f

3

8

�

4

= 64�

2 (3.3)

expanding 


4

according to App. (A.3), one finds instead (see Appendix C, formulas (C.1)

and (C.2))

(


ABA

)

4

= 64�

2

� 128 �

3

and (


wrapping

)

4

= �

64

3

�

2

� 128 �

3

(3.4)
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which summed up do not reproduce (3.3). This indicates that, in the case of the twist-2 op-

erators and starting at four loops, the P -function ceases to be ”simple” in the meaning of

[12]. This is confirmed by explicitely looking at the the structure of its asymptotic expan-

sion (formula C.3 below), and prevents the tower of subleading logarithmic singularities

log

m

N=N

m to be simply inherited from the cusp anomaly. In order to clarify how the

observed difference in the simplicity of the P at weak and strong coupling works, further

orders in the semiclassical sigma model expansion would be needed.

4. Conclusions

The present analysis together with the related work in [10, 11, 12, 15, 26, 27, 28, 16, 20]

leads to the following conclusions.

At weak coupling, reciprocity has been tested at higher loop order in N = 4 SYM at

weak coupling for the minimal dimension of operators of twist � = 2 and � = 3 for all

possible flavors. The present paper shows for the first time that this holds true even at

wrapping order (see also [17]).

At strong coupling, reciprocity can be investigated by employing AdS/CFT corre-

spondence, which indicates the folded string as the configuration dual to twist-2 opera-

tors [29]. This analysis, initiated in [11] for the folded string at the classical level, has been

recently extended in [20] at one loop in string perturbation theory. Remarkably, the large

spin expansion of the string energy does respect reciprocity, providing a strong indica-

tion that these relations hold not only in weak coupling (gauge theory) but also in strong

coupling (string theory) perturbative expansions.

All this suggests reciprocity to be an underlying property of N = 4 SYM. While it

would be significative to derive it from first principles (it is expected that the AdS/CFT

correspondence might help in this), a reasonable attitude can be to just assume it as a

heuristic guiding principle useful to formulate conjectures on closed formulae 2. The use

of both the maximum transcendentality principle and reciprocity drastically reduces the

number of terms that have to be calculated via Bethe Ansatz and generalised Lüscher

techniques. A recent example which illustrates this approach is the five-loop anomalous

dimension of twist-3 operators described in [17].
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A. Harmonic sums

A.1 Basic definitions

The basic definition of nested harmonic sums S
a

1

;:::;a

`

is recursive

S

a

(N) =

N

X

n=1

"

n

a

n

jaj

; S

a;b(N) =

N

X

n=1

"

n

a

n

jaj

Sb(n); (A.1)

where "

a

= +1(�1) if a � 0 (a < 0). The depth of a given sum Sa = S

a

1

;:::;a

`

is defined

by the integer `, while its transcendentality is the sum jaj = ja

1

j + � � � + ja

n

j. Product of S

sums can be reduced to linear combinations of single sums by using iteratively the shuffle

algebra [31] defined as follows

S

a

1

;:::;a

`

(N)S

b

1

;:::;b

k

(N) =

N

X

p=1

"

p

a

1

p

ja

1

j

S

a

2

;:::;a

`

(p)S

b

1

;:::;b

k

(p) + (A.2)

+

N

X

p=1

"

p

b

1

p

jb

1

j

S

a

1

;:::;a

`

(p)S

b

2

;:::;b

k

(p)�

N

X

p=1

"

p

a

1

"

p

b

1

p

ja

1

j+jb

1

j

S

a

2

;:::;a

`

(p)S

b

2

;:::;b

k

(p):

A.2 Complementary and subtracted sums

Let a = (a

1

; : : : ; a

`

) be a multi-index. For a
1

6= 1, it is convenient to adopt the concise

notation

Sa(1) � S

�

a: (A.3)

Complementary harmonic sums are defined recursively by S

a

= S

a

and

Sa = Sa �

`�1

X

k=1

S

a

1

;:::;a

k

S

�

a

k+1

;:::;a

`

: (A.4)

The definition is ill when a has some rightmost 1 indices. In this case, we treat S�
1

as a

formal object in the above definition and set it to zero in the end. Since Sa
�

< 1 in all

remeining cases, it is meaningful to define subtracted complementary sums as

b

Sa = Sa � S

�

a: (A.5)

Explicitely,

b

Sa(N) = (�1)

`

1

X

n

1

=N+1

"

n

1

a

1

n

ja

1

j

1

1

X

n

2

=n

1

+1

"

n

2

a

2

n

ja

2

j

2

: : :

1

X

n

`

=n

`�1

+1

"

n

`

a

`

n

ja

`

j

`

: (A.6)

A.3 Asymptotic expansions of harmonic sums

We briefly illustrate how to derive the large N expansion of a nested harmonic sums, con-

sidering here for simplicity the case of positive indices (generalization is straightforward).

We first define

S

(p)

a

(N) =

N

X

n=1

log

p

n

n

a

: (A.7)
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In the case of one index, the following expansions hold (B
k

are Bernoulli’s numbers)

S

1

(N) = log N + 


E

+

1

2N

�

X

k�1

B

2 k

2 kN

2 k

; (A.8)

S

a

(N) = �

a

+

a� 2N � 1

2 (a � 1)N

a

�

1

(a� 1)!

X

k�1

(2 k + a� 2)!B

2 k

(2 k)!N

2 k+a�1

; a 2 N; a > 1: (A.9)

The multiple sums Sa can be treated as follows. Let a = (a

1

; a

2

; : : : ; a

k

). Suppose that the

expansion of S
a

2

;:::;a

k

(N) is known. Its general form will be of the type

S

a

2

;:::;a

k

=

X

p;q




p;q

log

p

N

N

q

; (A.10)

and thus

Sa =

N

X

n=1

1

n

a

1

S

a

2

;:::;a

k

(n) =

X

p;q




p;q

N

X

n=1

log

p

n

n

a

1

+q

: (A.11)

This determines the expansion of the sum apart from the constant term Sa(1), which can

be evaluated using the package in [32].

A.4 Mellin transforms

Let a = fa

1

; : : : ; a

`

g be a multi-index with no rightmost indices equal to 1, a
`

6= 1. Defining

recursively the functions G(x) via

G

a

1

;:::;a

`

(x) =

1

�(ja

1

j)

Z

1

x

dy

y � "

a

2

: : : "

a

`

ln

ja

1

j�1

y

x

G

a

2

;:::;a

`

(y) (A.12)

: : : : : :

G

a

`�1

;a

`

(v) =

1

�(ja

`�1

j)

Z

1

v

dw

w � "

a

`

ln

ja

`�1

j�1

w

v

G

a

`

(w)

G

a

`

(w) =

1

�(ja

`

j)

ln

ja

`

j�1

1

w

(A.13)

the Mellin transform of the subtracted sums of (A.6) is then defined via

b

Sa(N) = ("

a

1

: : : "

a

`

)

N

Z

1

0

dxx

N�1

x

x� "

a

1

: : : "

a

`

G

a

1

;:::;a

`

(x)

� ("

a

1

: : : "

a

`

)

N

M

�

x

x� "

a

1

: : : "

a

`

G

a

1

;:::;a

`

(x)

�

(A.14)

For example, for three indices it is

b

S

a;b;


(N) =

("

a

"

b

"




)

N

�(jaj)�(jbj)�(j
j)

M

�

x

x� "

a

"

b

"




Z

1

x

dy

y � "

b

"




ln

jaj�1

y

x

Z

1

y

dz

z � "




ln

jbj�1

z

y

ln

j
j�1

1

z

�

(A.15)
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For our purpose, it is important to notice that the function G in (A.14) satisfies the

property

G

a

1

;:::;a

`

�

1

x

�

= (�1)

P

`

i=1

(ja

i

j�1)

n

G

a

1

;:::;a

`

(x)�

P

`�1

k=1

G

a

1

;:::;a

k

^a

k+1

;:::;a

`

(x) (A.16)

+

h

`�1

X

k=1

G

a

1

;:::;a

k�1

^a

k

^a

k+1

;:::;a

`

(x) +

`�2

X

k=1

G

a

1

;:::;a

k�1

^a

k

;a

k+1

^a

k+2

;:::;a

`

(x)

i

�

h

`�1

X

k=1

G

a

1

;:::;a

k�2

^a

k�1

^a

k

^a

k+1

;a

k+2

;:::;a

`

(x) + : : :

i

+ � � �+ (�1)

`�1

G

a

1

^a

2

^���^a

`

(x)

o

Above, the sign of each contribution is determined by (�1)

n

w , with n

w

is the number of

the wedge-products in the G-functions appearing in that piece. For example, for three

indices it is

G

a;b;


�

1

x

�

= (�1)

jaj+jbj+j
j�1

[G

a;b;


(x)� G

a^b;


(x)� G

a;b^


(x) + G

a^b^


(x)℄ (A.17)

To obtain (A.16), one uses recursively the result

1

�(ja

1

j)

Z

1

x

dy

y

ln

ja

1

j�1

y

x

G

a

2

;:::;a

`

(y) = G

a

1

^a

2

;a

3

;:::;a

`

(x) : (A.18)

B. Proofs of Theorems 1 and 2

To prove the Theorems presented in Section 2.1 we use of the x-space definition of reci-

procity equivalent to theN-space relation Eq. 1.2. This is formulated in terms of the Mellin

trasform ~

P (x) of P (N)

P (N) =

Z

1

0

dxx

N�1

~

P (x) = M

h

~

P (x)

i

(B.1)

and reads
e

P (x) = �x

e

P

�

1

x

�

: (B.2)

B.1 Proof of Theorem 1, no rightmost unit indices

It is possible to proceed iteratively starting from combinations b

a

(N) with one index. At

each step we only focus on b


 combinations with maximal number of indices, the iterative

procedure ensures in fact that for the remainder the theorem has been already proved.

The strategy is to write the b
 in terms of their Mellin transforms exploiting (A.14) and use

reciprocity in x-space via Eq. (B.2). For this purpose we use the notation of Appendix A

and introduce the functions �(x), whose relation with the 
(N) functions is exactly as the

one of the functions G(x) with the subtracted sums b

S(N). Our derivation mimicks the

analogous construction described in Sec. (2.2.1) of [15] generalizing it to the signed case.

For technical reasons, we first consider b
a in the case where the rightmost index in the

multi-index a is not 1. This is necessary since we want to use the Mellin transform de-

scribed in App. A.4 which are valid under this limitation. This is not a problem at depth

– 9 –



1 since it is well known that S
1

is parity-even. At depth larger than one, we shall discuss

at the end how this limitation can be overcome. So, let us assume for the moment that

a = (a

1

; : : : ; a

`

) with a

`

6= 1.

For one index,

b




a

(N) �

b

S

a

(N) = "

N

a

M

�

x

x� "

a

G

a

(x)

�

� "

N

a

M

�

x

x� "

a

�

a

(x)

�

(B.3)

The l.h.s. has parity P = �1 iff

�

a

(x) = P "

a

�

�

1

x

�

(B.4)

Using (A.16) it is easy to see that

"

a

�

a

�

1

x

�

= (�1)

jaj�1

"

a

�

a

(x) (B.5)

Thus,

P = (�1)

jaj�1

"

a

; (B.6)

in agreement with Theorem 1. The generalisation to ` indices is straightforward. Using

the notation "

i

� "

a

i

, it is

b




a

1

;:::;a

`

(N) = ("

a

1

: : : "

a

`

)

N

M

�

x

x� "

1

: : : "

`

�

a

1

;:::;a

`

(x)

�

(B.7)

where

�

a

1

;:::;a

`

(x) = G

a

1

;:::;a

`

(x)�

1

2

`

X

k=1

G

a

1

;:::;a

k

^a

k+1

(x)

+

�

�

1

2

�

2

h

`�1

X

k=1

G

a

1

;:::;a

k�1

^a

k

^a

k+1

;:::;a

`

(x) +

`�2

X

k=1

G

a

1

;:::;a

k�1

^a

k

;a

k+1

^a

k+2

;:::;a

`

(x)

i

+ � � �+

�

�

1

2

�

`�1

G

a

1

^���^a

`

(x) ; (B.8)

which is nothing but the general form of Eq. (2.17) in [15]. The l.h.s. has parity P iff

�

a

1

;:::;a

`

(x) = P "

1

: : : "

`

�

a

1

;:::;a

`

�

1

x

�

: (B.9)

Using the formula (A.16) for each of the G-functions evaluated in 1=x appearing in the

right-hand-side of (B.9), one can see that

P = (�1)

P

`

i=1

(ja

i

j�1)

"

1

: : : "

`

; (B.10)

again in agreement with Theorem 1 which is then proved for all a = (a

1

; : : : ; a

`

) with

a

`

6= 1.
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B.2 Proof of Theorem 1, extension to general a

Define the number ua of rightmost 1 indices as

ua = max

k

f1 � k � ` j a

`

= a

`�1

= � � � = a

`�k+1

= 1g: (B.11)

One has the identity

S

1

b


a = 


1;a

1

;:::;a

d

+


a

1

;1;a

2

;:::;a

d

+ � � � +


a

1

;:::;a

d

;1

+ (B.12)

�

1

4




a

1

^a

2

^1;a

3

;:::;a

d

�

1

4




a

1

;a

2

^a

3

^1;a

4

;:::;a

d

+ � � � �

1

4




a

1

;:::;a

d�2

;a

d�1

^a

d

^1

:

This can be written as


a;1 = S

1

b


a +

X

b2B


b; (B.13)

where each multi-index b 2 B obeys

Pb = Pa; ub � ua: (B.14)

Thus, by induction over ua and using the above proof of Theorem 1 for the initial case

ua = 0, we get the proof of Theorem 1 in the general ua � 0 case.

B.3 Proof of Theorem 2

We start from the combinatorial identity




a

1

;:::;a

`

(N) =

`

X

k=1

b




a

1

;:::;a

k

(N)


a

k+1

;:::;a

`

(1) + 


a

1

;:::;a

`

(1): (B.15)

Suppose now that all even a

i

are negative and all odd a

i

are positive. Then (�1)

ja

i

j

=

�sign(a
i

) and it follows that for any sub-multi-index (a

1

; : : : ; a

k

) we have

(�1)

P

k

i=1

(ja

k

j�1)

k

Y

i=1

sign(a
i

) = (�1)

k

k

Y

i=1

(�1) = 1: (B.16)

Thus, from Theorem 1, all terms in the r.h.s. of Eq. (B.15) have P = +1 and Theorem 2 is

proved.

C. Asymptotic expansions of 
 and P

We report here the first few orders for the large N expansions of the twist-2 anomalous

dimension and of its kernel P at four loops. For the anomalous dimension, using the
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methods of App. (A.3), we find




ABA

4

= �16

�

73

630

�

6

+ 4�

2

3

�

log

�

N � 1400�

7

�

80

3

�

2

�

5

�

56

15

�

4

�

3

+

�

96

5

�

4

log

�

N + 640�

5

� 32�

2

3

+

160

3

�

2

�

3

�

292�

6

315

�

1

N

+

�

�

64�

2

� 128�

3

�

log

2

�

N +

�

448�

3

�

32

15

�

4

� 128�

2

�

log

�

N

� 320�

5

+

16�

2

3

3

�

32

3

�

2

�

3

� 384�

3

+

146�

6

945

+

136�

4

15

�

1

N

2

+

�

512

3

log

3

�

N +

�

128�

3

�

64

3

�

2

� 768

�

log

2

�

N

�

�

576�

3

+

64

15

�

4

�

512

3

�

2

� 512

�

log

�

N

+

320�

5

3

�

64

9

�

2

�

3

+ 800�

3

�

32�

4

15

�

224�

2

3

�

1

N

3

+O

�

1

N

4

�

(C.1)




wrapping

4

= �

�

64

3

�

2

+ 128�

3

�

log

2

�

N

N

2

+

�

64

3

�

2

+ 128�

3

��

log

2

�

N � log

�

N

�

1

N

3

+O

�

1

N

4

�

(C.2)

where �

N = N e




E . The asymptotic next-to-leading constant term is in agreement with [33],

see also [34]. Expanding (2.11) and (2.12) and summing them together one obtains the

large N expansion of the kernel P at four loops

P

4

= �16

�

73

630

�

6

+ 4�

2

3

�

log

�

N � 1400�

7

�

80

3

�

2

�

5

�

56

15

�

4

�

3

�

�

292�

6

315

+ 32�

2

3

�

1

N

+ (C.3)

�

�

�

256�

3

+

64

3

�

2

�

log

2

�

N �

�

64�

3

+

112

15

�

4

�

log

�

N +

8�

4

15

� 16�

2

�

3

�

16�

2

3

3

�

146�

6

945

�

1

N

2

+

+

�

�

256�

3

+

64

3

�

2

�

log

2

�

N �

�

320�

3

+

112

15

�

4

+

64

3

�

2

�

log

�

N � 16�

2

�

3

+ 32�

3

+

64�

4

15

�

1

N

3

+O

�

1

N

�

4

Notice that at order 1=N

2 a log

2

N appears, which shows the lack of ”simplicity” for P

and is responsible for the formula (3.4) discussed in Section 3.
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