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In this talk we present a family of Wilson loop operators whéeontinuously interpolates between the 1/2
BPS line and the antiparallel lines, and can be thought ofakzulating a generalization of the quark—

antiquark potential for the gauge theory S x R. We evaluate the first two orders of these loops per-
turbatively both in the gauge and string theory. We obtamlydital expressions in a systematic expansion
around the 1/2 BPS configuration, and comment on possibleadl patterns for these Wilson loops.
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1 Overview

One of the most fundamental observables in a quantum fietdythi® the potential between charged parti-
cles, which in a gauge theory is captured by a long rectang\ilaon loop, or a pair of antiparallel lines
representing the trajectories of infinitely heavy quarkactSquark-antiquark potential can be also con-
sidered in the maximally supersymmeth€ = 4 SYM theory, where “quarks” are modeled by infinitely
massive W-bosons arising from a Higgs mechanism [1].

The expectation value of this observable was calculatedaamty after the introduction of th&d S/ICFT
correspondence by the effective action of a string endingathe curve on the four-dimension&t.S
boundary, and is in fact a seminal example of the dualityfitda this context of a conformal field the-
ory the potential is fixed to be Coulomb-like and the whole atyical content is in the corresponding
coefficient, for which the weak and strong coupling ('t Hoadupling\) previously obtained results read

__1 _ %[1—%(1n2—"—w+1)+(9(x2)}, A<l
B e jﬁé(—%ﬁ‘i‘%-:@(ﬁ)} A> 1.

Above, L is the distance between the lin&sis the complete elliptic integral of the first kind and the Wea
coupling expansion is the field-theoretical calculatioriZyf3,[4]. On the string theory (strong coupling)
side, the question of evaluating the first quantum stringemion a; to the classical result of [1] is

a hard mathematical problem. The absence of parameters iprttblem (the only onel,, being fixed
by conformal invariance) precludes considering specialisg limits in which nice results im-model
perturbation theory have been obtained for some relevangstolutions (see, for examplé,l [6, 7] and
reference therein). The coefficiant was presented formally in][B] 9], evaluated numericallyifi][to be
ap = 1.33459 and simplified further in[11] to an analytic one—dimensiangegral representation.
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1 Thisis actually theddSs x S° counterpart of the so-called “Liischer term”, which in flaase is a coulombic term proportional
to the number of transverse dimensidns [5].
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It is hard to guess how to connect the two regimegbf (1). Ieispting to think about the chance of
exploiting the integrability of the underlying AdS/CFT $gm and describe correctly the interpolation of
c()\) between the two regimes ¢l (1), as in the by now most famouspbeaof smooth interpolation for a
non-protected quantity - the cusp anomaly\6f= 4 SYM [12].

Our proposal([13] for addressing the problem relies on thidéuction ofextra parametersn the
initial setup. They do not make the perturbative or supeityraalculation any harder and allow, in fact, to
interpolate between protected, much simpler, operatatstamdesired observable. The first deformation
parameter (indicated below with) allows for the two lines to couple to two different scalatd& and was
already introduced in]1]. In the general expression of trddcena-Wilson loop

W= % Tr P exp []{(z‘Auo‘c" +®0[i|)ds| @)

we allow two different values o of relative angle on the two long edges of the rectangle. Pot 0
the two lines couple to the same scalar field, §ay When6 = 7/2 the two lines couple t@; £+ o,
which are orthogonal to each-other. Thenfloe = they couple to the field,, but with opposite signs,
which means that the lines are effectively parallel, rathan antiparallel. In that case the two lines share
eight supercharges and the correlator is trivial. The odleéormation parameter (indicated below with
is geometric, and a way to illustrate it is to replace the them R* with the theory ors? x R (related
by the exponential map). We consider a pair of antipardhels separated by an angte- ¢ onS3. For
¢ = 0 the two lines are antipodal and mutually BPS, while gor- 7 the lines get very close together.
“Zooming in” to the vicinity of the lines by a conformal trafiesmation we get a situation very similar to
the original antiparallel lines in flat space. An equivalpitture is that of a cusp in the planeltt. For
¢ = 0 the cusp disappears and the system is that of a single indinétight line.

IntheS? xR picture the expectation value of the Wilson loop calcul#tesffective potentidl’ (¢, 0, \)
between a generalized quark-antiquark pair. In the caseo$pinR* the loop suffers from logarithmic
divergences [14]. The expectation values of the loop inwleegtictures are respectively

(W) ~ exp [-TV (4,6, A)} , (Weusp) ~ exp [_ log(R/¢) V (6,6, A)} . 3)

The logarithmic divergence is exactly the same as the litisar divergence, and the cutoffs of the two
calculations are related Byg(R/e) ~ T.

The effective potential’ (¢, 6, ) depends on the 't Hooft coupling= ¢g>N (we do not consider non-
planar corrections) and it can be expanded at weak couptidgaastrong coupling in the two relevant
asymptotic expansions

D onet (1612)71 ‘l/(n)w’ 0), Akl
[ele] T l
LY (%) Vils(6.0), A>1.

Below, we will present the evaluation of the first two term®oth regimes, adopting the picture of a cusp
in R* at weak coupling and th&® x R picture at strong coupling. In particular, at strong conglthe
coefficients in the perturbative expansions are complithtections of the angles andé which are given
only implicitly (at the classical level) or in integral for(@ne—loop). We consider therefore the expansion
of these functions aroungl = # = 0. This is an expansion around th¢2 BPS line (related to the circle
via conformal transformation), one of the most simple obaigles in the theory. As a consequence, we
obtain hereanalytic resultsat both weak and strong coupling.

Focussing on the first coefficients of this expansion, weealmplow how they should receive contribu-
tions only from a subset of graphs in perturbation theorye-rtiost connected graphs. At variance with
the case of the circular Wilson loop, where in the Feynmarmygaunly ladder diagrams contribute and all
interacting graphs combine to vanish([3] 15, 16], we find l@rebservable which gets contributions only
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from the most interacting graphs. To our surprise, from tt@ieit calculation of the 2—loop graphs, we
find that the result of these internally—connected graplsaipler than the internally—disconnected one
and does not involve polylogarithms. Since summing up laddaphs is rather eaﬂy it would be very
interesting to explore the 3—loop graphs and see whethenitasipattern persists and perhaps learn how
to calculate the most connected graphs to all orders.

In the rest of the talk we present a summary of our results akvaed strong coupling (Section 2), the
explicit analytic expressions of the expansion around tA& Bonfiguration and a short discussion on how
the relevant coefficients can be evaluated via insertiorisaafl operators into the loop (Section 3). The
results obtained are suggestive of the framework in whickféicient description of the weak-to-strong
coupling interpolation for these Wilson loops might takaqa. Certainly, they represent a set of analytic
data to be of reference if an all-loop calculation will everexge.

2 Resultsat weak and at strong coupling

At weak couplingwe work with the cusp iiR* [18] and allow for an extra anglein N' = 4 SYM. For
the potential/ (¢, 6) up to two-loops we found

cos ) — cos ¢

V(g,0) = -2 ¢;

v (6,0) =3 (6,0) + Vi (6,0),
<0 — cnc . 5
(cosf — cosg)” f:;b D [Liy (e29) - ¢(3) — ig <L12 (e24) + %2> + %éﬂ 9
S111
cosf — cos ¢

sin ¢

Vi) (¢,0) = —4

4
Vit (6,0) = <

(m =) (7 + )¢,

sin ¢

whereV ? is written as a sum of the contribution of ladfemd interacting graphs.

The analytic expressiongl(5) undergo various checks. IrB®® case[[21], whereé = 40, then
v = V@ =0 as expected. At large imaginary angle, the prefactor ofitieal term matches indeed a
quarter of the perturbative expansion of the cusp anomalimisnsion[[22]. Formula§]5) also reproduce
(and generalize) the antiparallel lines result[df [2]. Takthe¢ — = limit and specializing to the case
6 = 0, the resulting expression matches the onglin [2] with thiaogment. — 7 — ¢. Itis interesting to
notice that the complicated interacting graphs result ioraribution much simpler than the one due to the
2—loop ladder graph and without ponIogarithmicfunctintndeed it is proportional to the 1-loop result
with a ratio which is just is a polynomial ig.

At strong couplingWilson loops are described by macroscopic string5s [IL, ZBE classical solutions
are found in global LorentziaddsSs i starting from a time-independent ansatz, the boundaryitiond
being lines separated by— ¢ on the boundary of AdS antlon S°. The relevant solutions (written down
in the case ofl = 0 in [19] and forf # 0 in Appendix C.2 of[[24]) can be found for arbitrary valuesqof
and@ as the solutions of transcendental equations. The regutiéggeneralized potential is then found in

2n [17], an integral equation was written whose solutionegithe contribution of ladder graphs to all orders in peeticn
theory.

3 The calculation of/(1) at one—loop order was done [n[19]. The= 0 case is in[17] (see alsp [20]), where expressions were
written in integral form. Here we have extended the expoesstod # 0 and computed the integrals in closed form.

4 After subtracting the exponentiation of tog \) term.

5 Note the uniform transcendentality three (whé&ff is considered rational) of both interacting and ladder kysaqt this order.

6 This is the appropriate strong coupling dual of the gaugerthenS3 x R.
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terms of elliptic integral& andE[l

\/—2\/b4+p (b*+1)p

2 [C ke w0 ©)

where the elliptic moduluk and the parametérare functions op, ¢, which are in turn related to, 6 via
transcendental equations.

Quadratic fluctuations around the classical solution cacamsidered, based on the Nambu-Goto type
action in the static gauge. The mass matrix in the resultimadeptic fluctuation Lagrangian, depend-
ing in general on the two parameters of the problem, beconag®dal in the two limiting case$ = 0
(equivalentlyg = 0) and¢ = 0 (the limit p x ¢ — o0). In particular, for these values all the quadratic
fluctuation operators, which have a trivial time dependeoae be written in the form of one-dimensional
single-gag.amé differential operatorB The latter point is crucial. It makes it possible to tradeéhplicit
evaluation of the eigenvalue spectrum for the relevantatpes with the resolution of the associated dif-
ferential equation (an approach known as Gelfand-Yaglonhatk see also the analysis in[13]). Relying
on the knowledge of the solutions to the Lamé spectral grabhll fluctuations determinants can be then
computed analytically. The resulting (regularized) efifecactionl’yeq, Which is the ratio of determinants
including the contribution of the trivial time directioh= [ dr, is then expressed as a single mtelralhd
defines the one-loop correction to the generalized quatiknzark potential as follows (e.g. in tie= 0
case)

T'reg T . T dw 202 det® 0%

— = ——lim — .
T 2T e0 J_ o 27 det5 O det® O5 det O
The explicit expressions for the 1d determinants can beddau{iL3], here we report as representative the

bosonic contribution

Vi (6,0) =

(7)

det OF & sinh(2K(k3) Z(a2)) sn(aslk2) = N (8)
g 2wyt + (2 - 4k)w? + 1’ ? b ’

where 7 is the Jacobi Zeta functionn is the Jacobi elliptic sineks is a rational function ok andws

a rational function o andw. Above, ¢ is the standard infrared regulator curing the linear digeag
expected at the boundary, the determinant is taken at lgaxlder in ac ~ 0 expansion and an explicit
subtraction of the remaining divergences (a regularinaitifact) is made.

It is possible to see that both the classical and the onedtrmmg coupling results[}(6) and (T)}-(8),
reproduce the known expressions for the antiparallel Jineg1, [23] and [10/ 1] respectively, in the
¢ — m, 6 =0 Ilimit M@ This happens, as in the weak coupling case, once the reptaxteof the pole
m — ¢ — L is performed.

It is straightforward to evaluate the integii@ (7) numehctor arbitrary values ofp, as well as in the
analog case ap = 0 and arbitraryd, while, in general, we do not know how to calculate it anatylll'yEI
To gain more analytic control over the form Uﬁz)s we will proceed in a systematic expansion around
0 = 0 and¢ = 0, to which the next section is devoted.

3 Near straight-line expansion

In the  — 0 limit the cusp disappears and we are left with an infiniteightline in R*, or a pair of
antipodal lines ors? x R. In this case the analysis indeed simplifies, and allows fptieit analytic
expressions at weak and at strong coupling.

7 The standard linear divergence for two lines along the bagnaanceled as usual by a boundary term, is here removed.

8 See alsd[25].

9 The integration variables in (@) is the Fourier-transformed variabledr = —iw.

2
10 This limit translate in the conditions — 0, % = fixed, k2 = 1/2 on the parameters relevant at strong coupling.
11 See however the results 6T [11] in the limit of antiparallaek.
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At weak couplingthe first few orders in the expansion pf (5) around 6 = 0 read

VO(5,6) =67~ & — (67— 67)° + O((6,6)°),
2 9)
VO(5,0) = — (07— 67) + T (@67 — 6 + 6(6° — )(36° — 62)) + O((6,6)°).
All the terms are proportional t&* — ¢2, and indeed we expe&t(¢, 0, \) to vanish ford = +¢, which
are BPS configurations[24].
At strong couplingan expansion of the leading semiclassical result leads to

ViOS(6.6) = ~(0% — 67) — S 5(607 — 67) (67~ 56) + O((6.6)°). (10)

At one—loop order inr-model perturbation theory, the expansion translates imalls: expansion of all
the elliptic functions in the integrand dfl(7), and resuttsipower series of regular hyperbolic functions.
An integration over the logarithm of this series can theregissbe performed, and gives

o _34 (3 _ ¢! <223_E 15 > ¢° s
V(0.0 =3+ (2 -3 1o+ (B2 - 50 - 500)) s + 0. -
() __38 (5 o (1.3 15 6° s
Viis(0,0) = =5 + <8 —34(3)) et (8 +5¢03) - 5 <(5)> s H o).

Focus now on the expansion coefficients arognd 6 = 0, for example the first (quadratic) one

—)\ —)\2 + Ak
1 92 1 092 1672 38472 '
— = _V($,0,\ =~ _V($,0,\ - 12
2 002 (¢:9, )‘¢:9:o 2 02 (6,0, )Ls:e:o VA 3 (12)

The expansion around the 1/2 BPS straight line can be viewedieformationof the straight line itself,
and as such it can be written in terms of insertions of locarafors into the Wilson loop. One can write
the latter as a straighy(= 0) line in thez® direction with arbitrary

W:%ﬂp[exp(/

— 00

0 00
(1A + <I>1)ds) exp (/ (iA1 + @4 cos O + Py sin H)ds)} , (13)
0

such that it couples to the scalkg for all s < 0 and to the linear combinatiof; cos 6 + ®4 sin 0 for
s >0 Using thafd

0? 1 0? 1 0?

one finds for the coefficient if (1.5}
10* 1 1 [ o [ (A1 +®1)ds
E@V = — mﬁ/o d81/0 dsy <Tf73 [‘1’2(81)@2(82)6 D s

+ @% /OOO dsy <Tf73 [(I)l(sl)effom(ix“l-i-@ﬂds] >

12 \we fixed the parameterization such that = 1, so we can ignore the difference betweeh(s;) ands;.

13 The first identity is the definition oF. The second follows from& (W) = 0 and from(W |4—g—o) = 1.

14 The variation with respect t6 is somewhat simpler than the the variation with respedt, teince the latter modifies the path
of the loop and is captured by insertions of the field strerfgih as well as its derivatives into the loop, while the formeryonl
introduces local scalar field insertions.
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Examining the right-hand side is suggestive of a patterreetgal to hold for all values of the coupling.
One notices that graphs which involve propagators betwaei\ilson loop and itself, and not the inser-
tions, will vanish due to the BPS nature of the straight liAeone and two-loop order, only graphs with

at most one internally connected component contributehe@gxplicit expansion of/irgf) andVlE(j) in @)

easily confirms. The interesting observation is that thisiarent should apply also to higher order graphs.
Only graphs with one set of connected internal lines attddbehe Wilson loop contribute to this t
Regarding further expansion coefficients, the oné“ofvill involve for example graphs with at most two
disconnected internal components, and so on. Since bycéxgdiculation we found that the connected
(interacting) graphs at 2—loop order had a simpler (withgmlylogarithms) functional form than the dis-
connected (ladder) ones, it would be certainly interedtirgge if this structure persists at higher orders in
perturbation theory and whether it is possible to guessribwar for the most connected graphs at all loop
order, and reproduce the strong coupling results ih (12).
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