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Abstract

In this contribution it is shown how closed formulas for

anomalous dimensions of two classes of operators in N = 4

SYM can be derived, either by investigating the numerics or

on the basis of QCD-inspired assumptions. We discuss the

case of twist three “gauge” operators in which a complete

proof of reciprocity can be carried out.

1 Introduction and conclusions

Maximally supersymmetric theory N = 4 SYM is dual to type IIB superstring on AdS5 × S5

and plays a central role in the AdS/CFT correspondence [1]. Recent developments in the study

of the duality between the planar, large N limit of the gauge theory and the free string theory

are based on the development of analytic tools that exploit the integrability of the string side [2]

as well as an internal integrability of the superconformal theory [3]. In the latter case, the

scale dependence of renormalized composite operators is governed, even at higher loops, by a

local, integrable, super spin chain Hamiltonian whose interaction range increases with the loop

order [4, 5]. This fact has set the long range asymptotic Bethe equations of Ref. [5] as a natural

tool for calculating anomalous dimensions of single traces operators of the general form

O = Tr

(
L∏

i=1

Dni Xi

)
+ permutations, (1)

where Xi are elementary fields in certain subsectors of the full N = 4 SYM and Dn are covariant

derivatives. The Bethe equations provide the anomalous dimensions of O as a perturbative series

in the ’t Hooft coupling g

γO(g) =
∑

n≥0

cn(O) g2n (2)

1

http://arxiv.org/abs/0810.0101v1


and stand as a formidable tool for multi-loop calculations otherwise drastically hard to face.

However, their asymptotic nature leads to the major limitation of “wrapping”, for which γO
is actually calculable up to O(g2L) terms (being L the length of the operator). While in the

thermodynamical limit, in which the L or the Lorentz spin N =
∑

i{ni} are sent to infinity,

the wrapping problem can be overtaken, a more subtle limitation appears when one tries to

investigate the dependence on the parameters above at fixed perturbative order. In general, the

Bethe equations do not provide the expansion coefficients cn in (2) as functions of L and {ni},

but furnish just sequences of numerical (sometimes rational) values for each given operator. In

order to find closed formulas for the anomalous dimensions of interest thus opening the way to

a deep investigation of their properties, one has to resort either to conjectures that need further

numerical confirmation or, as in the case of γ(N), to some general (typically QCD-inspired)

assumption.

A first example is the study of Ref. [6], in which operators of the type OL = TrFL, built

of L components of the self-dual Yang-Mills field strength, have been considered 1. Beyond

one-loop, the analysis of Ref. [9] provide efficient computational tools to derive the sequence

{cn(L)} for any given L, although not parametrically. It turns out immediately that cn(L) is

not linear in L as far as n ≥ 2. So, starting at two-loops, non-trivial finite size corrections

appear and the ratio γ(L)/L is not expected to be a simple expression at finite L. However,

some unexpected structure exists. A careful investigation of the (infinite precision) numerics for

the sequences {cn(L)} at fixed n and L varying has been crucial for conjecturing and providing

closed expressions, up to 5 loops, for cn(L) in (2). Such a closed formula for the multi-loop

size dependence have no counterpart in existing calculations for other operators in the various

subsectors of N = 4 SYM. To give an example, the two-loop anomalous dimension takes the

remarkably simple form

γL(g) = 2L+ 3Lg2 +

(
−
51

8
+

9

8

1

(−1)L 2L−1 + 1

)
Lg4 + · · · , (3)

with exponentially suppressed corrections to the trivial linear scaling with L. Remarkably, its

large L limit
γL(g)

L
= f0(g) + g4 h(g L) e−L log 2 +O(e−2L log 2) (4)

shows that the size corrections to the thermodynamical limit are characterized by a finite g-

independent correlation length ξ = 1/ log 2 and the combination g L as a natural scaling vari-

able for the prefactor. Such O(2−L) corrections have nothing to do with much smaller O(λL)

wrapping effects, and it would be interesting to understand them from the point of view of the

spin-chain interpretation of the dilatation operator H 2.

1These operators are exact eigenstates of the one-loop dilatation operator and can be mapped to the ferromag-

netic states of an integrable spin S = 1 chain [7, 8]. At two loop and beyond, they mix with the other psu(2, 2|4)

fields.
2In particular, a natural explanation for the exponential corrections could take into account length-changing

processes, as suggested in Ref. [9], and an explicit two-loop calculation of H would be important to clarify these

issues.
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In the following, we will focus on a second particularly interesting class of operators, the

so-called quasipartonic twist operators [10]. These are single trace operators of the type (1)

constructed with an arbitrary number of derivatives (in this case projected on the light-cone)

distributed among (collinear) twist 1 fundamental fields X (scalars, gauginos or gauge fields),

in such a way that the length L of the operator coincides with the twist of the operator. Quasi-

partonic twist operators are interesting because of the similarities with twist operators in QCD.

Indeed, while N = 4 SYM and QCD are in many details different, a compared analysis of their

properties has been crucial for a deeper understanding of both of them. Integrability itself, as a

basis for the evolution of composite operators, has been first discovered in the study of planar

QCD [14]. About conformal symmetry, unbroken in QCD at one loop, it does not appear to

be a necessary condition for integrability, as discussed in Ref. [15, 16, 17, 18], but it certainly

plays an important role by imposing selection rules and multiplet structures. Moreover, it is a

(somewhat hidden) consequence of conformal symmetry that can explain the structure of the

large spin expansion of the twist operators anomalous dimensions (see footnote h). It is also

believed that QCD would benefit a lot from an ultimate all-loop solution of its superconformal

version, since this would provide a representation for the “dominant” part of the perturbative

gluon dynamics (see, for example, Ref. [20]) 3.

The maximum transcendentality principle is a first interesting example of such an interplay

between the theories. Inspired by the structure of the two loop anomalous dimension of N = 4

twist two operators in the sl(2) sector, Kotikov, Lipatov, Onishchenko and Velizhanin [21]

have proposed that the three-loop answer could be extracted by simply picking up the “most

transcendental terms” from the three-loop non-singlet QCD anomalous dimension derived f in

Ref. [22]. The conjectured three loop formula has been then independently confirmed in the

framework of the Bethe ansatz equations [23] as well as within a space-time approach [24].

The principle, according to which γ(n)(N) at n loops is a linear combination of Euler-Zagier

harmonic sums of transcendentality τ = 2n − 1, has been the key via which closed multi-loop

N -dependent expressions for the anomalous dimension of special twist operators have been then

derived [23, 25, 26, 27, 28, 29]. A systematic derivation of the functions γ(N) beyond the

one-loop level can be done exploiting the Baxter approach 4. Recent analytical attempts are

discussed in Refs. [30, 31].

Closed expressions of twist anomalous dimensions are crucial to investigate their physical

content, that can be extracted by exploiting known facts valid for the QCD twist (two) operators

arising in the analysis of deep inelastic scattering [32, 33]. In that context, the total spin N

is dual, in Mellin space, to the Bjorken variable x and two opposite regimes naturally emerge,

small x → 0 and x → 1. The first is captured by the BFKL equation [34], and can be analyzed

by considering the Regge poles of γ(N) analytically continued to negative (unphysical) values of

the spin. The BFKL equation has been the crucial testing device for detecting wrapping effects

3Other notable common issues between N = 4 SYM and QCD , such as their infrared structure, are reviewed

in Ref. [19].
4Talk given by S. Zieme at AEI, Potsdam, based on a work in progress by A. V. Kotikov, A. Rej and S. Zieme.
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when Bethe equations are used to calculate anomalous dimensions of short operators [25] 5.

The properties of the second (quasi-elastic) regime, which in Mellin space is equivalent to the

large N limit, are the ones of interest here. They can be inferred from the large N behavior of

known three loop twist-2 QCD results (as well as from general results valid at higher twist [36])

and can be summed up in two main points:

1. The leading large N behavior of anomalous dimensions for twist operators is logarithmic

γ(N) = 2Γ(αs) log N +O(N0), N → ∞, (5)

and governed by the the so called “cusp anomaly” Γ(αs), a universal function of the cou-

pling related to soft gluon emission [37, 36, 38] and appearing as a cusp anomalous dimen-

sion governing the renormalization of a light-cone Wilson loop. Integrability techniques

have drastically improved this knowledge providing an integral equation that furnishes the

all-order weak coupling expansion 6 of Γ(αs) [11, 12].

2. About subleading terms, it is known that they obey (three loops) hidden relations, the

Moch-Vermaseren-Vogt (MVV) constraints [22]. In the twist-2 QCD context such relations

can be related with space-time reciprocity of deep inelastic scattering and its crossed

version of e+e− annihilation into hadrons. Technically, reciprocity in the twist-2 case holds

for the Dokshitzer-Marchesini-Salam (DMS) evolution kernel governing simultaneously the

distribution and fragmentation functions [42] 7. In Ref. [44], the MVV relations have been

extended to an infinite set of higher orders relations in the 1/N expansion, and their origin

has been indicated to follow from the invariance under the sl(2,R) subgroup 8.

More specifically, a suitable generalization of the analysis of Refs. [42, 44] to the case of

N = 4 SYM assumes that γ(N) obeys at all orders the non-linear equation

γ(N) = P

(
N +

1

2
γ(N)

)
, (6)

where the function P has a large N expansion in integer powers of J2 of the form

P(N) =
∑

n

an(log J)

J2n
, (7)

Above, J is the Casimir of the collinear conformal subgroup SL(2,R) ⊂ SO(4, 2), that is J2 =

(N + Ls − 1) (N + Ls), where the s = 1/2, 1, 3/2 distinguishes between the scalar, spinor or

5In the BFKL picture an interesting interpretation of the spin chain magnon has been recently given in Ref. [35].
6The calculation has been extended at strong-coupling in the explicit case of the sl(2) sector [39] (see also

Ref. [40]) and is amenable to wide generalizations [13, 41].
7The DSM evolution kernel has recently received a nice confirmation in Ref. [43].
8Quasipartonic operators can be classified according to representations of the collinear sl(2,R) subgroup of

the SO(2, 4) conformal group which are labeled by the so-called conformal spin j = 1

2
(N +∆) [10], where ∆ is

the scaling dimension of the operator. From this one may argue that the anomalous dimension γ = ∆ −N − L

should be a function of the Lorentz spin N only through its dependence on the conformal spin j. Since ∆ is

∆ = N +L+ γ(N,L) that then leads to a relation of the type (6), where the function P depends on the twist L.
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vector case [10]. If the expansion (7) holds, one says that P is a reciprocity respecting 9 (RR)

kernel. Beyond one loop, a test of reciprocity requires the knowledge of the multi-loop anomalous

dimensions as closed functions of N . These are currently available in the cases of twist-2 and 3.

Three-loop tests of reciprocity for QCD and for the universal twist 2 supermultiplet in N = 4

SYM were discussed in Refs. [44, 42]. A four-loop test for the twist 3 anomalous dimension in

the sl(2) sector was performed in Ref. [28]. In Ref. [45] it was proved that even the wrapping-

affected four loop result for the twist two operators [25] is reciprocity respecting in the sense of

(7). This certainly suggests some important structure built in the Bethe Ansatz and deserving

a deeper understanding. Indeed, while for (6) a relation to the underlying conformal symmetry

has been suggested in Ref. [44], there is no obvious explanation for the property (7).

Below, we illustrate the example of a four-loop anomalous dimension obtained in closed

formula by exploiting a (generalized) maximum transcendentality principle and successively

analyzed in its structure to verify the RR relations. The example of twist three gluonic operators

is interesting for various reasons. First, at variance with the quasipartonic operators built with

scalars and gauginos which belong to close sectors and thus scale autonomously at all loops 10,

the description as a gluonic operator is only correct at one-loop [47] with mixing effects at

higher orders (see the discussion in Ref. [29]). Second, in the twist three case operators built

with scalars, gauginos or gauge fields are not related by supersymmetry, at variance with the

twist-2 case where all channels are in a single supermultiplet 11. This richer multiplet structure

has as a consequence the existence of various universality classes of anomalous dimensions, as

well as the presence of a generalized form of the maximum transcendentality principle.

As a final comment, we remark that it is natural to employ the AdS/CFT correspondence to

investigate the presence of MVV-like relations at strong coupling. Since the planar perturbation

theory should be convergent, such an organized structure of subleading terms in the large spin

expansion should be visible also in the energies of the semiclassical string states corresponding to

twist operators. This analysis, initiated in Ref. [44] for the folded string at the classical level, has

been recently extended in Ref. [48] to configurations (spiky strings) that should correspond to

twist operators with higher dimension and at one loop in string perturbation theory. Remarkably,

the large spin expansion of the classical string energy happens to have exactly the same structure

as that of γ(N) in the perturbative gauge theory, and does respect MVV-like relation at one-

loop. This provides a strong indication that these relations hold not only in weak coupling (gauge

theory) but also in strong coupling (string theory) perturbative expansions, and confirms the

need of a solid explanation of their origin.

9The name reciprocity comes from the formulation of this property for the Mellin transform: P̃ (x) =

−x P̃ (1/x), where P(N) =
R

1

0
dxxS−1 P̃ (x).

10Operators built of scalars belong to the N = 4 sl(2) subsector which is closed at all orders. About operators

built of gauginos, they appear in the closed sl(2|1) subsector where there is mixing between scalars and fermions,

but not for the maximally fermionic component [46], which is the one of interest for the class of quasipartonic

operators.
11Remarkably, such twist two universality class is inherited in the gaugino sector [27].
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2 Analysis and results

a) Closed formulas for the anomalous dimension

At one-loop, the gluonic sector is described by the XXX−3/2 closed spin chain, and the

anomalous dimension is known as an exact solution of the Baxter equation. At higher

orders, we solve perturbatively the long range Bethe equations whose compact form is
(
uj +

i
2Vkj

uj −
i
2Vkj

)L

=

K∏

ℓ=1
ℓ 6=j

uj − uℓ +
i
2Mkj ,kℓ

uj − uℓ −
i
2Mkj ,kℓ

. (8)

where Mkℓ is the Cartan matrix of the algebra and Vk are the Dynkin labels of the spin

representation carried by each site of the chain 12. The excitation numbers Ki of the

Bethe roots ui can be computed [4] from the quantum numbers of the superconformal

state associated with the twist-3 gluonic operator of interest here. In order to identify the

correct superconformal primary describing this sector, one can exploit the superconformal

properties of the (maximally symmetric) tensorial product of three singletons [49]. This

has been done in Ref. [29], where the Dynkin diagram associated to the Cartan matrix in

(8) for the case of interest here has been found to be

♥�❅ ♥ ♥�❅
N + 3

♥
+1

N + 4

♥�❅
N + 2

♥

1

♥�❅ (9)

The number on top of the diagram indicates the spin representation, the numbers below are

the root excitation numbers of the superconformal primary. Using the one-loop solution

as an input 13, one can expand the Bethe equations in the coupling constant g order

by order in perturbation theory. The equations for the quantum corrections to the one-

loop roots are linear, and thus numerically solvable with high precision. The resulting

anomalous dimension has rational coefficients in its loop expansions, that can be easily

and unambiguously identified according to the methods discussed in Refs. [26, 25]. In

order to find a suitable closed analytical formula for the first loops, one can assume for

the anomalous dimension a generalized form of the maximum transcendentality principle.

Inspired by the one-loop result [49], in which not all the terms present a constant degree

of transcendentality 14 and by similar QCD calculations [50], the following Ansatz can be

made which generalizes the one-loop result

γn =

2n−1∑

τ=0

γ(τ)n , γ(τ)n =
∑

k+ℓ=τ

Hτ,ℓ(n)

(n+ 1)k
, n =

N

2
+ 1,

12Together with the equations (8), one has to consider the additional costraint given from the cyclicity of the

spin chain.
13See Ref. [29] for an explanation of the necessary (backtraced) dualization of the Bethe roots.
14An alternative point of view is to adopt the maximum transcendentality principle in a related, non-canonical,

basis of harmonic sums.

6



where Hτ,ℓ(n) is a combination of harmonic sums with homogeneous fixed transcenden-

tality ℓ. The terms with k = 0 have maximum transcendentality, all the others have sub-

leading transcendentality. The three loop result has been found in Ref. [29]. In Ref. [45],

we have computed a long list of values for the four-loop anomalous dimension γ4(n) as

exact rational numbers obtained from the perturbative expansion of the long-range Bethe

equations. We have matched them against the general Ansatz (10). A very large number

of possible terms appear with unknown coefficients. To reduce them, we have imposed

some structural properties emerged from the analysis of the three loop result (see details

in Ref. [45]). Deferring the reader to Ref. [45] for the complete result, we report here,

using the notation of (10), the term with maximal trancendentality 15

H7,7 =
S7

2
+ 7S1,6 + 15S2,5 − 5S3,4 − 29S4,3 − 21S5,2 − 5S6,1 − 40S1,1,5 +

−32S1,2,4 + 24S1,3,3 ++32S1,4,2 − 32S2,1,4 + 20S2,2,3 + 40S2,3,2 + 4S2,4,1

+24S3,1,3 + 44S3,2,2 + 24S3,3,1 + 36S4,1,2 + 36S4,2,1 + 24S5,1,1 + 80S1,1,1,4 +

−16S1,1,3,2 + 32S1,1,4,1 − 24S1,2,2,2 + 16S1,2,3,1 − 24S1,3,1,2 − 24S1,3,2,1 +

−24S1,4,1,1 − 24S2,1,2,2 + 16S2,1,3,1 − 24S2,2,1,2 − 24S2,2,2,1 − 24S2,3,1,1 +

−24S3,1,1,2 − 24S3,1,2,1 − 24S3,2,1,1 − 24S4,1,1,1 − 64S1,1,1,3,1 (10)

where Sa ≡ Sa(n) with n = N
2 + 1 are the nested harmonic sums defined by

Sa(N) =

N∑

n=1

1

na
, Sa,b(N) =

N∑

n=1

1

na
Sb(n). (11)

b) Reciprocity respecting formulas

Proving reciprocity for the gluonic operators amounts to first deriving the P function

via an inversion of the relation (6), which in terms of the perturbative expansions P =∑∞
k=1Pk g

2 k and γ =
∑∞

k=1 γk g
2 k reads eventually as follows

P1 = γ1, P2 = γ2 −
1

8
(γ21)

′, .... (12)

Secondly, one has to check the parity invariance (7) with respect of the quadratic Casimir

which in this case is

J2 = N2 + 8N +
63

4
= 4n(n + 2) +

15

4
. (13)

The constant above is irrelevant to the proof and one can define an effective Casimir

J2
eff = n (n+2). Remarkably, a complete proof of reciprocity at four loops can be given in

closed form. To this aim, the following observations (for their proofs see Ref. [45]) have

been useful

15A further transcendentality 7 term comes from the contribution of the so-called dressing factor in the Bethe

equations and consists of a combination of harmonic sums of transcendentality 4 multiplied by the characteristic

ζ3 contribution.

7



• Theorem 2.1. Let f(n) be reciprocal with respect to J2 = n(n + 1). Then, the

combination f̃(n) = f(n) + f(n+ 1) is reciprocal with respect to J2
eff .

Considering then the linear map defined on linear combinations of simple S sums by

Φa(Sb,c) = Sa,b,c −
1
2 Sa+b,c and defining

Ia = Sa, Ia1,a2,...,an = Φa1(Φa2(· · · Φan−1
(San) · · · ) one finds

• Theorem 2.2. The combinations Ia1,...,an with odd a1, . . . , an have a large N RR

expansion

Ia1,...,an =
∞∑

ℓ=0

Pℓ(log J2)

J2ℓ
, (14)

where J2 = N(N + 1) and Pℓ is a polynomial.

These observations can be exploited writing the function P in (12) in a manifestly RR

form. For example, at three loops

P3 =
Ĩ3

2(n+ 1)2
+

3 Ĩ5
2

− 4 Ĩ1,1,3 +
2

(n+ 1)4
− 4 Ĩ1,3 +

π2 Ĩ3
6

− 2 Ĩ3 + 4 Ĩ1,1ζ3 +

−
ζ3

(n+ 1)2
−

4

(n+ 1)2
+ 4ζ3 Ĩ1 +

4π4 Ĩ1
45

+ 4ζ3 +
8π4

45
+

4π2

3
+ 32. (15)

where Ĩa ≡ Ĩa(n) = Ĩa(n) + Ĩa(n + 1). As explained in details in Ref. [45], reciprocity

is evident because formula (15) is a combinations of invariants (as from Theorem 2.2)

Ĩa
16 and factors (n + 1)−p with even p 17. In this case, the expression is automatically

reciprocity respecting with respect to n(n+2). Analogous manifestly reciprocity invariant

expressions for P up to four loops are collected in Ref. [45].
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