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ABSTRACT

An investigation was carried out to determine the transient response
of finite beams with discontinuities of eross section subjected to eccen-
tric longitudinal impact. Experiments were performed on several steoved
beams with increased and reduced cross section and with various end conditions.

The analysis was based on the Timoshenko beam theory which takes into
account the effects of shear deformation and rotatory inertia. The gover-
ning equations were solved as a svstem of two second order hyperbolic
partial differential equations .

The numerical solution was obtained by the method of characteristics
and theoretical predictions were in excellent apreement with experimental
observations at several monitoring positions along the various test beams,

The agreement between theoretical and experimental results verified
the adequacy of the Timoshenko theory and its numerical solution for
describing the flexural wave propagation in beams with discontinuities of
cross section .

The effect of the discontinuity of beam cross section on the bending
moment time distribution showed the importance of reflections in estimating
the level of stresses and strains in structural elements when subjected
to transient dynamic loading .

The computer program developed in this work can be used to obtain
numerical solutions for a wide range of flexural wave propagation problems
in beams with discontinuities of cross section with various end conditions
and loading configurations .
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" CHAPTER 1

INTRODUCTION

The behaviour of structural elements under impact loading
is a subject of great interest in dynamical structural analysis,
When forces are épplied to an elastic body over a very short
period, the response should be considered in terms of wave
propagation theory.

Although beams are among the simplest engineering structures,
the propagation of waves can be quite complicated especially if
boundaries such as end surfaces and abrupt changes which cause
reflections are present.

The study of transient waves has important implications
and find many applications for structures used in land, sea, air
and space when they are subjected to impact,

A revival of interest in the field of elastic wave propagation
during the last three decades was made possible through the rapid
development of computing facilities and the advance of experimental
equipment.

The problems of flexural wave propagation in beams are not
so extensively treated as, for example, are the problems of
longitudinal wave propagation. This was due to complexities
jnvolved in the propagation of flexural waves and their dispersive
character.

To the author's knowledge, there has been no previous solution
to the problem of flexural waves in beams with discontinuity of
cross—section subjected to eccentric impact, the problem investigated
in this thesis,

The Euler-Bernoulli theory is found to be inadequate for

the study of transient bending waves since it led .to the physically

—1_



impossible conclusion that disturbances are propagated instantaneously
and neglected the effects of shear deformation and rotatory inertia.

The exact theory based on the equations of the theory of
elasticity goes back to Pochhammer and Chree who investigated the
case of infinitely long beams of circular cross-section, Their
equations cannot be applied to semi-infinite and finite bars with
arbitrarily prescribed end conditions and the solutions involve
such mathematical complications wﬁiéﬁ makes them, from the
engineering point of view, ;! liﬁited practicél use,

The Timosﬁenko tﬁeory provides the only approximate theory
that contains the essential features of the exact theory in
simplified fofm. With tﬁis theory a greater accuracy than the
Euler-Bernoulli theory is achieved by including the effect of
shear deformation and rotatory inertia in the governing equations,

The Timoshenko theory provides for only two modes of
transmission and consequently two branches of the dispersion
curve, while the exact tﬁeory provides an infinite number of
modes and an infinite number of higher branches of the dispersion
 curve.

The Timoshenko equation gives excellent agreement with the
exact theory so far as the lowest branch of the dispersion curve
is concerned., The agreement of both theories in the next highest
branch of fhe dispersion curve is not very good,

An extensive literature survey of previous theoretical and
experimental research will demonstrate the importance of the
Timoshenko beam theory in the field of flexural waves and
boundaries.

Although the Timoshenko beam equations were formulated as



long ago as 1921,‘nu§é;ica1 solutions and applications appeared
only in the last 25 years, when computer facilities became
available,

After careful consideration of several solution methods,
the method of characteristics is chosen for the numerical
solution presented in this work and the method is shown to
be inherently stable and convergent,

Several cases of flexural wave propagation problems are
treated with the developed TMOTCU computer programs numerically,
and solutions are obtained for semi-infinite, finite beams and
finite beams with discontinuity of cross-section,

The experimental work is concentrated on the monitoring of
antisymmetric strain components in finite stepped beams of
circular and rectangular cross-section subjected to eccentric
impact at low velocity.

Comparison of numerical predictions and experimental
observations are presented with particular emphasis on the
bending moment and bending strain-time distribution as opposed
to the normal mode frequency analysis usually used for steady
state vibration, The input bending moment is assumed in a
trapezoidal shape with a finite rise time,

The experimental and theoretical results demonstrate the
effect of abrupt change of cross—-section on the reflected and
transmitted bending waves where reflections have to be taken
into consiﬁeration wﬁen estimating the level of antisymmetrical
stresses and strains in finite beams with discontinuity of

cross—section,



CHAPTER II

REVIEW OF THEORETICAL STUDIES

2.1. Historical background of elastic wave propagasion in bars

The theory of transverse waves in elastic solids had its
beginning in the works of Leonard Euler (1744) and Daniel Bernoulli
(1751) who derived the partial differential equation governing the
flexural'vibration of a bar by the variation of strain-energy function
by which they had previously expressed the.work done in bending:

The concept of transverse vibration transmitted through a medium
was originally ﬂased on the developments of Fresmel's theory, 1816,
which used the concept of transverse waves to explain the propagation
of light, which was thought to be a disturbance propagating in an
elastic aether.

Navier (1821) was the first to investigate the theory of trans-
verse body waves and he formulated the general equations of equilibr{um
and vibration of elastic bodies. In his derivation, he considered forces
acting between the individual molecules of a deformed elastic body.

In 1822, Cauchy discoveredmost aspects of the theory of elasticity
including'the'dynamié equations of motion. He was the first tovihtrd-
duce the concept of strain and stress which simplified greatly the
derivation - of the equations: Cauchy obtained stress-strain relations
for isotropic materials and used the following assumptions: (1) linear
stress-strain relationship (2) the principal planes of stress are normal
to the principal axis of strain.

Cauchy (1826) treated the problem of longitudinal impact of two
rods of the same material and cross-section. He concluded, that the
impulse terminates whenever the two bars havé different velocities of
impact, which is not true.

In 1829, Poisson discussed the three equations of equilibrium and

_4_



-the three conditions at the boundary and proved that these equations

were not only necessary but also sufficient to ensure the equilibrium

of any portion of the body. He SUcéeedévﬁn.integrating the equations

of motion and showed that if a disturbance was produced in a small
portion of a body, it resulted in two kinds of waves, the dilatational
wave which was associated with the motion of the particle normal to

the wave front and accompanied by a volume change, and a disto;tiongi
wave, associated with the particle motion tangential to the wave front,
where there was distortion without volume change. The first faster
wave is also called the irrotational'wave, and the other wave is also
called the equivoluminal or transverse wave.

By that time, it was realised that the problem of wave propagation
in an elastic solid needed to be investigated in a different manner than

- those concerned with the normal modes of vibration. Poisson (1831)
and Oétrogradsky (1831) used a synthesis method of the simple harmonic
solutions of the initial distribution of displacement .and velocity to
determine the displacement at any point and at any time;

In 1833, Poisson attempted to solve the same problem of.longitudinal
impact of two bars, previously treated by Cauchy, by a method of integrating
trigonometrical series, by which it was extremely difficult to find
a general solution. By an error in the analysis, Poisson arrived at the
conclusion, that when the bars are of the same material and cross-
section, they never separate unless they are equal in length.

Seebec£ (1849) preseﬁted an equation for the transverse displace-
ment of an elastic bar and showed that the difference between E values
obtained by statical and vibrational methods was extremely small., He
omitted in’his solution the effect of angular rotation of the cross-

¢t gection of the rod, as was pointed out by Todhunter and Pearson (1893).

Bared de Saint-Venant made wide ranging contributions to the theory

of longitudinal and transverse impact. In 1853, he considered the

...5,_‘



“problem of a central impact on a simply supported beam of uniform cross-
section and based his solution on different modes of vibration. He
calculated the deflection at the middle and his results coincided with
those given by H. Cox f€ﬂ849), when only the first, most important term
of the series representing the maximum déflection was considered,
However, Saint Venant$ solution for the problem of transverse impact

was not complete, since the local deformation at the point where the
impinging ball strikes the beam, was not considered. In addition, the
assumption that the ball remained in contact with the beam until maxi-
mum deflection was reached, is not realistic., Furthermore, this
solution was not applicable when the bar was very long and the strik-
ing ball had a small weight with a very great impact velocity.

Saint-Venant made important discoveries in the theory of elasticity.

In 1856, he was the first to examine, the assumptions of the elementary
Euler-Bernoulli theory of bending, namely that cross-section of a beam
remains plane during deformation and that the longitudinal fibers of a
beam are in a state of simple tension or compression. Saint-Venant
showed that these two assumptions are only fullffiled-‘in uniform
vbending when the beam is subjected to two equal and opposite couples
applied at‘the end and is not applicable to the case of transverse bend-
ing, where shearing stfésses cause warping of the cross-sectiogn, which
will not remain plane during bending. Saint-Venant was the first to
point out the incorrectness of the Euler-Bernoulli theory for flex-

ural vibration and suggested important corrections. He was interested
not only in statical stress-analysis, but studied the dynamical action
of loads moving along the beam ana various types of impact problems
producing lateral” and longitudinal vibrations.

Saint-Venant (1856) formulated the principle vwhich carries now
his name. According to this principle, the effects produced by

deviation from the assigned laws of loading are unimportant except

_6_



- near the ends of the bent beam; and near the ends, they préduce merely
"localiperturbation". The condition for the validity of the results
in practice is that the length of the beam should be many times
greater than the largest cross-sectional dimension.

M. Bresse (1859) discussed the problem of longitudinal and
lateral vibration of rods and considered. moment of inertia and shear
distribution over the cross section, in connection with his works
on arched structures. He was the first to suggest correction terms
for both rotatory inertia and transverse shear., However, the equation
presented byﬁBresse for transverse vibration of unijorm simply suppdrted
beams, included a term which took into account the effect of rotatory
inertia,‘hhtfnot the shear correction.

- A Saint-Venant memoir, published in 1867, treated the collision
of two rods of the same material and of equél cross-section, by means:
of the equat{on-of Qibration.in term of arbigééry functions, for
various impact velocities 0f bars with various length.

In this connection, Saint-Venant derived the most important
relation for the duration of impact as 21/c, where 1 is the length of
the shorter bar and c is the so called velocity of sound (/EJp).

A second problem discussed in the same paper was the problem of
longitudinal impact of beams in the form of truncated cones. Solutions
were obtainéd, as befére, by trigonbmetrical series which were lengthy.
Solutions for both problems were presented graphically for the
values of velocity and displacement., These diag{ams' may be considered. as

‘the first x~-t diagrams, constructed fér-impact problems.

Saint-Venant (1868) had given trigonometiical solutions for the

problem of a prismaFical bar fixed aﬁ one end and subjected to the

influence of transient compressional wave due’ to a longitudinal impact

at the other end. His solution was again based on the assumption that

the striker becomes rigidly attached to the end. Summing the first few
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"terms of the trigonometric series, Saint-Venant was able to find

the motion of the bar end. But in calculating stresses, the series
did not converg#rapidly enougﬁ to allow the computation of .an accurate
result. He pointed out the need to use some close?éorm expression for
the solution instead of infinite series.

Solutions in term of finite discontinuous functions were obtained
by Boussinesa (1882) and independently by Sébert and Hugoniot (1882)
and Saint-Venant (1883) presented these solutions in his famous
annotated translation of Clebscl book and used them for graphical
representation of the successive stages of the longitudinal impact
of_;he'Bar fof the ‘whole duration of impact and for various ratio's
of the mass of the bar to that of tﬁe striking méss.

Saint-Venant was the first to investigate the problem of wave
propagation in bars and based his researches in part on the assumption
that they_madg simultaﬁeouS’céntac£ over the éntire area of the end, a
condition whicﬁ is-extremely'difficult to achieve. A modification
of this theory @aé_sugggéted by Hérté.(lé82),-bn'the Bésis of an
electrostatic analogy - for thé contact of two elastic ﬁodies with curved
'coﬁtact surfaces under the action ofa'static compressive force as an
approximation for the actual dynamic loading. ‘ .
The Saint-Venant theory reflected with sufficient approximation

the state of strains and stressés at positions of considerable
distance from the point of loading and support.

The impact forces in the immediate vicinity of the impact point
‘could be dtermined more successfully by the Hertéian theory. -

Saint-Venant (1883) presented a detailed theory of the transverse
impact - of bars, which included the analytical and numerical solution
of various problems of bars vibrating transversly with 'a load attached
to it.

Boussinesq suggested in 1895 the general wave solution of the
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-equation of motion for longitudinal impact, in the form of forward
and backward travelling waves.
Boussinesqg (1835)'investigated also the problem of .transverse
vibration of a uniform bar for various types of loading, in the form
of discontinuous functions. The important contribution of Bresse was
not mentioned in the investigations of transverse vibration problems
by Saint-Venant and Boussinesq.
Lord Rayleigh (1885) discovered a third type of wave propagating
parallel to the surface with a velécity slightly smaller than the
velocity of %ﬁistortional wave. This wave, called Rayleigh surface wave,
decays exponentially towards the interior of the body.
L. Pochhammer (1876) investigated, oﬁ the basis of the general
theory of elasticity, the problem of longitudinal, torsional and flexural
'vibrations'in an infinitely long beam of uniform circular cross-section,
The displacements in the general trancendental frequency equations

were given in terms of infinite harmonic wave train, as a product of
sinusoidal and Bessel functions. For the lowest branch of the frequency
equations, Pbchhammer obtained first and second approximations for
extensional (longitudinal) waves and a first approximation for flexural
waves. Although it is extremely difficult to use these complex
equations to study transient flexural wave propagation problems

they have been guides in the use of approximate wave theories. The

same equations were given by Chree (1889).

Wave‘propagation involving dispersion is important for investi-
gations related toflexural wave problems.

Cauchy (1836) and Green (1839) discussed the propagation of plane
waves fhrough a crystalline medium and ohtained equations for the
velocity of propagation. ,

Hamilton (1839) investigated the velocity of propagation of a

finite train of waves in a dispersive medium, in his work on the
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“theory of light. Kelvin's group method of approximating integral
representations of dispersive waveswas included in his work on
‘water waves in 1887.

Ldrd“Rayleighi(1894) discussed the problem of lateral vibration
of rods and included in the derived equation of motion, a correction
for the rotatory inertia. This correction is usually atributed to him,
although it was originally given by Bresse, as early as 1859.

Lamb (1917) was concerned with the investigation of flexural
waves in plates and he pointed out the inadequacy of the Euler-Bernoulli
theory which predicts that the effect of a localised disturbance begin
instantanously at all distances.

Timoshenko (1921, 1922) corrected the Euler-Bernoulli equation
for flexural waves by including the effect of the shear deformation
in addition the correction term for rotatory inertia.Although the shear
correction term was'originally suggested by Bresse, Timosbeﬁko was the
first to include it in the approximate theory dealing with flexural.
wave propagation in a rod. This theory forms the basis of the present
investigation.

The brief history, presented in this section, of the work of the
classical elastician, written during the 19th century and mostly in
French, was based on books which include comprehensive survey of
the history of the theory of elasticity, ' such as: Todhunter and

Pearson (1886); Love (1892); and Timoshenko .(1953).
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2.2. The Timoshenko beam theory

2.2.1. Flexuralvibration of beams

The simplest theory governing the flexural vibration of beams is
the Euler-Bernoulli theory, which assumes that the bar element
deformation is in the form of transverse displacement only. This
theory agsumes, in addition to the assumptions of uniform homogeneous
and constant cross :section, that the deflection is small and that
plane cross—sections remains plane and perpendicular to the neutral °
axis after deformation,which means neglecting shearing deformations.
The Euler-Bernoulli equafion for bending vibration neglects also the
rotatory-inertia effect. However, at low frequencies, the theory
gives satisfactorily the frequency spectrum and mode shape of beams
in steady-state harmonic vibration.

The Pochhammer-Chree theory includes a set of equations for
flexural vibrations and is only applicable to an infinite bar in
which continuous sinusoidal waves are progagated in either direction.
This three—diﬁensional theory of elasticity cannot be used to construct
solutions for finite aﬁd semi-infinite bars. In addition, the comp-
lexity of thefrequency equations makes it very difficult to use them
for practical solutions. |

When the Timoshenko beam theory is applied to the case of an
infinite bar of circular cross-section although it is approximate
and one-dimensional, it gives remarkable agreement with the exact
theory of elasticity, especially in the first branch of the dispersion
curve, which is the primary  flexural mode, as was shown by Davies
(1948) .

The Timoshenko theory is more accurate than the Euler-Bernoulli
theory in governing transverse and flexural free and forced vibrationg

of ‘a beam where frequency equations, displacement curves and mode

shapes are determined.
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The Euler-Bernoulli equation can be obtained directly form the
Timoshenko beam equations, when the terms that take jnto account the
effects of rotatory inertia and shear deformation are omitted.

Although Bresse was the first to discuss, in 1859, the effect
of non-uniform shear distribution over the cross-section and to
jnclude a term for the effect of rotatory inertia in his equation of
motion for lateral vibration, it is justified to attribute the theory
which takes these effects in to account to Timoshenko since he was
the. first to include both terms in the equation for flexural vibration
of beams.

Timoshenko (1921) derived the equation for flexural vibration‘
and obtained the frequenc§ equation for a simply supported prismatic
bar of length 1. He showed the importance of the correction for shear
"which is for some cases several times greater than the correction for
rotatory inertia. In a second paper in 1922, Timoshenko obtained the
solution for the case of a beam of rectangular section and approximate
tsc;lutions were found for the cases of plane strain and of plane stress.
The case of a bar of circular cross section was also investigated and
values of shear correction factor for both cross-sections were suggested.
His solﬁtion was not applicable to other boundary condition. Goens (1931)
used the Timoshenko equations and obtained complex exact expressions
for the case of a free-free beam. The roots of these expressions
yield the frequencies of vibration by an approximate numerical evalu-
ation for . bars of circular cross-section and various. lengths.

He used his results for the determination of Young's modulus.

Davies (1937) investigated the transverse vibration of a fixed-
free bar under the effects of a shear force and bending moment. He
used the Timoshenko beam equation and obtained a solution for the
frequency equations which satisfied the boundary conditions. The

solutions were approximations of the series expansions where terms of
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- ~higher orders were neglected. The fundamental modes were determined
for several bars of different materials and dimensions. The importance
of the effects of rotatory inertia and shear were emphasised.

Krus;ewski (1949) gave general solutions for the Timoshenko beam
equations and solved them for uniform cantilever and free-free beams.
The freqpencies of the first three modes were presented graphically.

His results showed that the effect of shear increased in the higher
modes and. caused a significant decrease in the frequency value.

Suthérland and Goodman (1951) have found that shear distortion
is particularly important at the higher.frecuencies. Thev gave a general
solution for the lateral free vibration of a pin-ended beam and natural
frequencies were obtained for a simply supported and for a cantilever
beams.

Traill-Nash and Collar (1953) pointed out that a complete new -
spectrum of naturai frequencies appeared when both shear flexibility
and rotatory inertia were taken into account. The importance of
higher frequencies in bending vibration were shown in connectioﬁ with
aircraft components, such as wings, fuselages and propellers. Various
types of end conditions were investigated and the first five natural
frequencies were calculated usinga matrixiteration process and the
effect of shear flexibility was found to be considerable.

Anderson (1953) compared various solution methods for flexural
vibrations, treated by the Timoshenko beam theory and pointed out certain
advantages of power series expansions, according to the principles of
superposition, over Laplace transformation solutions. The series solu—
tion presented in this paper was exactly the same as the one published
previously by Sutherland and Goodman- (1951) for the case of a simply
supported beam. The slight numerical difference in the values of the
graphs was due to a - somewhat higher value used for the shear correction

" factor.
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Dolph (1954) pointed out the existance of two sinusoidal modes
of different frequencies corresponding to the same spatial factor in
the solutions based on Timoshenko theory. He considered the separation
of variables and the orthogonality relations as in a typical eigen-
value problem and presented a normal mode solution for a uniform hinged-
hinged beam.

Howe and Howe (1255) demonstrated the usefulness of electronic
differential analyser in determining solutions for the lateral vibra-
tion of beams according to the Timoshenko beam theory. They based their
solution on a system of four simultaneous first order differential
equations, previously given by Dolph and paid particular attention to
the mode shapes. Half a dozen trials were necessary to find a satis-

* factory solution according to the normal mode method, applied to the
case of a free-free beam.

Huang ( 1958, 1961) investigated in two papers the effects of
rotator§ inertia and shear on the flexural vibration of beams. A
solution was obtained for tﬁe Timoshenko beam equation by the energy
method of Ritz when applied to a simply supported beam. In his second
paper, he presented frequency equations for a combination of various
tyﬁes of énd conditionsiusing normal mode solutions.

Since the middle of the sixties and through the seventies the
vfinite element method has been applied to the bending vibration of
beams treated by.the Timoshenko theory. Several Timoshenko beam
elements have been developed and only a brief account of the research
papers published in this area will be given here.

.'Hurty_ and Rubenstein (1964) used an energy approéch to de&elop
generalized mass matrix and stiffness matrix including the effect of
rotatory inertia and shear. fﬁese effects were illustrated in deter-
mining natural frequencies and corresponding mode shapes for-a uniform

simply supported beams.
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Archer (1965) presented a consistent mass-matrix and a stiffness-
matrix for the vibration analysis of a Timoshenko beam.

Kapur (1966) derived a finite element for theTimoshenko beam
in which a cubic plynomial function was assumed for both bending and
shear deformation, where no coupling between these two displacements
was permitted and hence, the problem was overspecified.

Egle (1969) presented an approximate Timoshenko beam theory designed
to eliminate coupling between shear deformation and rotatory inertia.

Nickel and Secor (1972) derived stiffness and mass matrices for
what they called TIM 7, a matrix of order 7, ;hich was reduced to
TIM 4 using the constraint given by Egle.

Davis ét.al (1972) used an element model similar to TIM 4 which
had the limitation that natural bouhdary conditions at the free end-
or hinged end could not be applied.

Thomas et.al (1973) pointed out that some errors in the matrices
of one of the elements given by Archer (1965) caused some confusion
and led, when applied, to some una?ceptable results. They proposed
an element with three degrees of freedom at each of the two modes.

This element was used to calculate the natural frequencies of a cantilever

beam and the results were compared with the use of other elements.

Dong ana Wolf (1973) used duédratic interpolations for the
displacemenf variables of a finite element for the Timoshenko beam.
Hamilton's principle was used to derive the equations of motion in
discrete co-ordinates. Frequencies were obtained by the present element
for a simply supported beam, two-bay frame and a hinged arch.

Ramamurti andMahrenholtz . (1974) used simultaneous iteration method

to detérmine eigeﬁjfrequendies for the flexural vibration problem. The
authors concluded, from the relatively high difference between theoretical
and experimental frequency values, that the actual structure had to be

modified to reduce the number of modal points to meet the available
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" “storage of the computer.

J. Thomas and Abbas (1975) suggested a four nodal degrees of
freedom for a two noded Timoshenko beam finite element which
incorporated natural boundary conditons. The mass and stiffness matrices
are based on cubic polynomial expansions for total deflection and bend-
ing slope are derived fram energy expressions. In a discussion by
D.L. Thomas (1976) it was noted that it is not possible to claim that
any one element.is the "best" model vibration analysis of Timoshenko
beams. The choice of elemeﬁt must depend dn.the required accuracy, '
the nature of the structure, the rélativé.importance of shear

and rotatory inertia, and the number of degrees of freedom -

-

available. = .
Downs (1976) detected an additional mode due to shear oscillation

when he re—examined the equations of Dolph, Huang and Howe, et.al

This mode was identified in the frequency discretized analysis of an

eight segment simply supported, uniform Timoshenko beam, as well as

a finite element solution using consistent mass theory. i
Rao et.al (1976) suggested a finite element model for vibration

of non-uniform beams. Bishop and Price (1976) usea the Timoshenko

theory in the dynamical structural anglysis of ship hulls as a non-

conservative system,

2.2.2. Transient flexural wave propagation in beams

The Euler-Bernoulli tﬁeory is inadequate for the treatment of
transient bending wave propagation problems, since it assumes that
disturbances with infinitely short wave lenghts, which are associated
with high frequency branches, will propogate with an infinite velocity.
The transient input gives rise to higher frequencies, when the duration
of impact is much smaller than the fundamental’period of the vibration
of the structure. Hence, according to the Euler-Bernoulli theory

transient disturbances should be felt immediately at the far end of the
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“beam and tﬁis is physically impossible and contrary to the results of

the Pochhammer-Chree theory which predicts finite values for the velocity
of propagation of  stress waves, Furthermore, the Euler-Bernoulli theory
assumes that the displacement of the bar consists solely of translation.

As regarding the exact theory, the complexity of the displacement
and frequency equations makes it impossible to use for practical probleﬁS‘
of flexural wave propagation and, in addition, it cannot satisfy the
end conditions, together witﬁzero stresses at the lateral surfaces. How-
ever, the Pochhammer-Chree theory has been used to determine phase
volocities and group velocities of sinusoidal waves in narrow beams and
" beams of circular cross-section.,

Dispersion relations play an important role in the propagation of
flexural waves in elastic boﬁnded solids. A pulse can be seen as the
Fourier integral of a number of sinusoidal components of different
frequencies, which will travel with different velocities and dispersion
is the cause for'the distortion of the wave. It is necessary for dis-
persion analysis to determine the variation of the phase §e10city p
i.e. the velocity of propagation of surfaces of constant phase, with
the wave length, as well as the group velécity cg"i.e. the velocity
of propagation of a wave packet of almost the same wave I%ngth. For
flexural waves, the group velocity is more important since it is the
velocity of the rate of transmission of energy.

The Timoshenko beam equation, which takes into account the effects
of rotatory inertia and shear on the displacement of the beam, gives
a high degree of accuracnéver a wide range of wave lengths for flexural
waves in bars. From the engineering point of view, the‘Timoshenko theory
is the best known theory to deal with transient flexural wave propagation.
The Timoshenko beam theory provides the dynamic equations of motion for
tr;nsient waves in finite, semi-infinite and finite beams.The Timoshenko

beam equations are applicable to flexural waves due to transverse impact
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as well as flexural waves due to eccentric longitudinal impact.

Some research works compared the results obtained by theoretical
models with experiments, This will be mentioned in this chapter
briefly and.dealtwith more extensively in chapter 6 which presents -

a review of experimental works.

Timoshenko (1913) investigated the transverse impact of a simply
supported beam of square cross-section and used the theory of lateral
vibration in connection with Hertz theory, to evaluate numerically
the deflection of a short beam 15.35 cm long, 1x1 cm cross section,
struck in the middle by a steel sphere of 1 cm radius. He used energy
consideration, considering the transformation of the kinetic energy
of the striking mass into potential energy of bending in the beam, with
some estimate of energy loss due to impact. The integral equaticns
were solved numerically by dividing the time into small increments
duriné which the contact force between the striking mass and the beam
could be considered constant. -

The same problem of a central impact of a simply supported beam
was investigated by Arnold (1937) who compared experimental results
with theoretical calculations based on the previously mentioned
Timoshenko analysis. A more detailed theoretical study of ‘the same
problem was given by Christopherson (1951) .

Lennertz. (1937) calculated the fundamental period and the maximum
deflection for the two simply supported beam§originally discussed by
Timoshenko (1913) and obtained comparable results. He considered the
impact as a whole rather than as a succession of steps. Lennertz assumed
that the duration of impact was small compared with the period of the
fundamental ﬁode of vibration, which was justified 1f .only the
fundamental mode was stiﬁulated, which meant neplecting the effect of
higher modes and therefore was not justified.

Lee (1940) used an improvement of the method used byLennertz with

- 18 -



a modified Hertéian “expression and obtained a solution for central
impact of a uniform simply supported beam. His calculations coﬁpared
well witﬁ tﬁe experiments of Arnold.

Bancroft (1941) was the first to solve the Pochhammer-Chree
equations for the propagation of longitudinal waves and formulated the
propagation~velocity in term of two variables: the Poisson's ratio
and the ratio of the diameter of the bar to the wave length. He dié-
cussed qualitatively the flexural mode an?&ointed out the complexity
of the flexural modes. He obtained only the lowest root of the
equation.

Prescott.. (1942) gave the frequency equation in deternﬁnantall
form for the case of flexural vibration, but he did not evaluate the
determinant derived from the éia?;‘thedry of elasticity. He also..
derived'thé‘Timoshenko:béam\gQuations‘by“enérgy considerations and
found that the elementary tﬁeory of transverse vibration was inadequate
for transient loadings. Tﬁe velocity of flexural waves depends on
their wave'length and approaches tﬁat of Rayleigh surface waves when
the wave length becomes small compared with tﬁe lateral dimensions of
the bar. Prescott obtained numerical results for the velocity of °
flexural waves in a bar of circular cross=-section. _

Flﬁggé (1942) observed the prediction of the Timoshenko theory
that discontinuities are propagated at definite finite velocities,
cq (=VE/p) and c2'(=/EI§75)- He pointed out that discontinuities of
bending moment and angular velocity are propagated with.ci, vhereas
discontinuities of shear force or transverse velocity are propagated

. with Cpe

Hudson (1943) solved the determinant of the frequency equation,

given by Préscoﬁt, for flexural vibration and dispersion curves were

presented for various values of Poissqp's ratio, Hudson overlooked

the higher modes of the flexural waves and assumed wrongly that they
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“did not exist.

Cremer (1943) disé@ssed the two distinct velocities appearing in
the Timoshenko equation and pointed out tﬁat better agreement with the
exact theory can be reached if the value of the shear correction factor
is so adjusted as to produce a value for the shear velocity c, which

corresponds’ to the asymptotic value of the lowest mode of the exact
theory. .

Davidson and Meier (1946) used the Timoshenko beam theory to
étudy thepropagation of transverse waves in prismatical bars in connection
with slender tools used in the percussion drilling of rock. Eccentric
longitddinél impact was studied experimentally.

Pfeiffer (1947) was the fitst to use the method of characteristics for
the general solution of the Timoshenko beam equation as a system of
two second order partial differential equations. He discussed the
propagétion of discontinuities along the characteristic lines and
described in detail all the steps needed to carry out the numerical
calculation. However, Pfeiffer did not.present a particular numerical
example.‘ The method of characteristics will be discussed in chapter
three (section 3.2.4.).

Cooper (1947) discussed the dispersive nature of the longitudial
and flexural waves on the basis of the exact theory.and pointed out that
it was difficult to get information other than that tke maximum velocity
propagation for any disturBénce is the velocity of dilatational waves CD.

Davies (1948) was the first to verify the Pochhammer-Chree. theory
experimentallf and pointed out tﬁe differences between the elementary
theory and this "exact" theory. For flexural waves, Davies constructed
dispersion curves for phase velocity and group velocity for the first
bending mode§for a Poisson ratio y = 0.29. The values for the flexural
curve of the exact theory were intefﬁolated from'Hudsbn'é data. The

dispersion curves dervied from the Timoshenko theory were shown to agree
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well over a wide range of a a/A ﬁifh the values derived from the

exact theory. Davies concluded that the Timoshenko tﬁeory prediction
for the velocity of pr&pagation of the leading edge of a flexural

pulse, i.e. c2=i£267;, suffers only a small precentage of difference for
almost any form of cross-section. However, one could expect flexural
pulses to be progagated with ﬁigher velocities, 1f highgr branches of
the dispersion curves are considered. Davies paper included an
extensive experimental part based on tﬁe modification of the Hopkinson
pressure bar, wﬁich justified the assumption of the uniform distribution
of the stresses over tﬁe cross—section and ﬁence with the use of the
one-dimensiénal theory.

Uflyand (1948) used the Timoshenko beam equation to solve the
problem of an infinite beam subjected to a concentrated load of a
step—function time history. He employed Laplace transformation method
to obtain displacement solétions. He was the firgt to show that con-
tour integration would give exact travelling wave solutions for the
theory. He approached the problem by cutting the infinite beam at
a stafion just to one side of the load and treated the unloaded, semi-
infinite portion of the beam. His interpretation'of the assumed
boundary conditions was incorrect.

DeJuhasz ~(1949) presented a graphical analysis of several
longitudinal impact problems as a way to avoid difficulties involved
jn mathematical analysis.l Tridimensional diagrams, so called '"Stereo-
grams" were constucted on the basis of x-t diagrams and v-p diagrams.
Thegraphical analysis was based on two assumptions, namely that of
constant velocity of propagation and that of linear relationship

between the change of striking velocity v and the change of stress.

Although no dispersion relations were involved, the stereograms were

too complicated even for basic problems of longitudinal impact' of bars.
The method was based on the original graphical analysis, given by
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Saint-Venant and on several previous works of the author, as well as
the contributions of Bergeron, originally devised for water-hamer
calculations.

Duwez;j(1950) studied tﬁe deformation of an infinitely long beam
subjected ‘to a concentrated transverse load of constant velocity. He
investigated the influence of impact velocity and duration of impact
on the deflection characteristics of the beam by a tﬁeory originally
developed by Boussinesq. TFor steel, the plastic deformation was
assumed to be localised at the point of impact. However, for soft
materials such as annealed copper, plastic deformation ﬂad to be
considered. The discrepencies between theoretical and experimental
results were attributed to tﬁe effects of end supports and the dis-
persion characteristic of the transverse waves.

Approximate theories for transverse waves in plates and two
dimensional compressional waves in bars werestimulated by the Timoshenko

beam theory. Directly from the three-dimensional equations of motion,

'Mindlin.(1951) deduced a two-dinensional theory for flexural motions of

plates which takes into account the effects of rotatory inertia and
shear, in the same manner as Timoshenko's tﬁeory. Min;iliré theory was
similar to tﬁe one given by Uflyand‘(1948) and by Reissner (1945). -
Mindlin and Herman (1951) derived from the general theory of elasticity
a one—diminsionél theory of compressional waves in elastic rods, The
obtained equations for radial and longitudinal motions of a bar were
similar to tﬁe Timoshenko's equations for rétationai'and transverse
motions of a beam and could be treated in a similar manner.

Dengler.  and Goland (1951) pointed out that the boundary conditions
of Uflyand were incorrect and solved the same problem, avoiding thediffi-
culties of boundary conditons by‘working with the original 4th order
nonhomogeneous Timoshenko equation and a lateral impulsive load applied

to the beam mid span in the form of a two Dirac function product in
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"terms of t and x. The results appeared in closed form solutions, .
which required the evaluation of complicated integrals. Another
difficulty was that of defining proper boundary conditions in the

"total deflection approach'. Tﬁe'contour analysis included an error

in connection with singularity problems, wﬁicﬁ was corrected in a

later pﬁblicétionvof the autﬁors, in 1955.

Schirmer - (1952) discussed the problem of flexural waves in Timoshenko
beam and compared solutions based on a system of two second order partial
differential equations in terms of transverse displacement y and angular
rotation Y and their derivatives. He used Laplace transformation for
the dispersion analysis and used the method of characteristics for
obtaining bending moment distribution along the beam at certain times
after a bending moment input at on eﬁd.

Miklowitz.(1953) pointed out the difficulties involved in the
solution methods suggested by Uflyand and Dengler et.aland modified the
Uflyand method and gave correct interpretation to his boundary con-
dition's. He treated tﬁeléteral deflectioncomponents due to rotary
jnertia and shear separately in essentially the same way as used by
‘Séhirmer. This approaﬁﬁ provided insight into the physical nature
of the travelling wave character and possessed definite advantages in
reducing the mathematical difficulties in establishing the boundary
conditions and obtaining the transformation for the case of an infinite
beam under the action of a concentrated transverse load, treated
previously in the works of Uflyand andDengler et.al. It is not always
easy to obtain transform solutions for various end conditions and it
is more difficult to evaluate them numerically. In 1960, Miklowitz
applied the same method to yield travelling wave solution for flexural
waves in plates.

lLeonard and Budiansky (1953) used the method of characteristics

to obtain numerical travelling wave solutions for Timoshenko beams of
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- ~various end conditions subjected to .step velocity, step bending -
moment and ramp-platform bending moments. However, for mathemetical
simplicity, the solutions were based on the equality of the two pro-
pagation velocities, wﬁicﬁvis physically unrealistic. The characteristic
equation, derived by tﬁe authors, was based on the Timoshenko beam theory
as a system of four first order partial differential equations. For
some cases, tﬁe solutions were compared with closed form solutions and
with modal solution.

Eringen (1953) applied tﬂe generalized-Galerkin method and collo-
cation method to obtain the contact force and the displacement by the
u;e of the ¥ertz's law, for transverse impact of beams and plates with
various end conditions. Deflection curves were obtained by using
Dirac §-function, having tﬁe same impulse as the contact force F(t).

Newman (1955) obtained a solution of the Timoshenko equation for
a half-period sine excitation applied at the root of a cantilever
beam and the appropriate initial and end conditions were specified by
nea#s of tﬁe use of avariational principle. The relation between
maximum dynamic strain and relative impact duration was plotted and
Newman found tﬁat a tﬁin slender bar (L/x=300) was subjected to 25.5%
higher strain than a tﬁick sﬁort bar (L/r=30) at the clamped end in
short duration impact. Newman used Laplace transformation for his
frequency based analysis.

Boley and Cﬁao (1955) presented Laplace transformation solution
of the Timosﬁenko beam equations for transverse impact of semi-infinite
elastic beams. Laplace transformations were used for various types
of sudden loadings and the obtained curves for bending moment and shear
force for several positions were compared with elementary beam theory
results.

In a second paper in 1955, Boley described the behaviour of beams

under lateral impact by means of an approximate "travelling-wave"
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-approach, based on energy considerations. Numerical results were
obtained for a very short portion of the beam near the point of impact
of the order of tﬁe cross-secti&n dimension, and for very short times.
However, in a later paper of Boley and Cﬁao (1958), these short-comings
were removéd from this metﬁpd and solutions were obtained for semi-
-infinité beams under step—inputs of velocity and bending moment.
Defléction curves for finite simply-supported beams were constructed
by superpésition . of semi-infinite beam results according to the method
of images, as given by Leonard and Budiansk.y (1953).

Jones (1955) obtained a solution for flexural stresses in an
'infinite beam loaded by a'transverse point load. His solution was
based on Timosﬁenko's tﬁeory of transverse vibration, solved by the
use of Fourier transforms, from which asymptotic approximations were
found by the metﬁod of stationary pﬁase. The numerical evaluation for
the variation of amplitude of bending moment and of wave length were
presented. .

Barnhart énd Goldsmith (1957) developed a theory for the transverse
impact of sphe;es on elastic beams which incorporated a dynamic plastic
force-identation law and permitted the evaiuation of the effect of an
afbitrarily large number of beam bending modes. The theoretical stress-
time hiétories based on fﬁis theory which took account of the higher
modes were in a better agreement up to tﬁe peak value with the observed
data than curves based oanértzi law wﬁose shape during the initial
loading increase did not agree too well with the experimental results.
However, the peak value obtained by both tbeoretical methods was in
fair agreement with the experiment at the point of impact.

Abramson (1957) pointed out the wrong statement of Hudson
who.,calculéted the first root of the frequency equation, and assumed

therefore, that flexural waves are propagated in one mode only,
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“Abramson computated the three lowest modes of the determinant of
flexural wave tranémission, based on the Pochhammer—Chree theory.
Dispersion curves were presented for v=0.29 and used to study the
rate of energy transmission in terms of group velocity. Hence, the
author was able to obtain some additional insight into the physical
phenomena involed in the flexural response of beams to impulsive
loads. *

In a second paper by Ripperger and Abramson (1957), the authors
compared the predictions of the Pochhammer-Chree theory concerning the
arrival time of flexural waves with experimental results and found
that initial distrurbances were propagated at the dilatational wave
velocity and the bending wave pulse was propagated by a continuous
series of arrivals; The a;thors were able to establish the adequacy
of the Timoshenko beam theory in predicting quite accurately the

;rrival times for all but the very sharpest impact. Furthermore the
amplitude response is predicted very well by the Timoshenko theory.
So, it was concluded that{lfor all practical purposes, the Timoshenko
theory provided an adequate representation of the propagational
characteristics of bending waves.

Plass (1958) extended.the use of the method of characteristics

to the general case of different propagation velocities. He studied various
typés of end conditions for Timoshenko beams under half-sine form of

end impacts of ﬁoment, shear, angular velocity and transverse velocity.
For comparison purposes, the case of a simply supported semi-infinite

beam under the action of a sinusoidal end moment, was solved by Laplace
_transforms in addition to its solution by the method of characteristics.
Comparison with experimental data, due to Ripperger (1955) showed good
agreement, except where the, pulses were extremely short.

Flugge and Zajac (1959) investigated several solution methods

other than the method of characteristics, none of which could yield
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-a complete solution at all points of the beam. However, a combination
of ' - them could give an almost complete solution for a semi-infinite,

simply supported beam under the action of a step-function end bending

moment. The numerical results in the neighborhood of the end were
obtained using the Laplace transformation together with term-by-term
jnversion. TFor long times the integral, obtained from tﬁe contour
integration near the point of impact, was evaluated to obtain asymptotic
solutions using the stationary phase method of Kelvin. The method

was a complicated combination-of several not so easily obtainable functions
such as Bessel function, Laplace transforms and Fourier transforms.

Kuo presented in two papers, in 1959 and 1961, the results of a
theoretical and experimental study of bending waves in a semifinfinite
Timoshenko free-free beam subjected to a dinamiéally applied end
moment. He used the method of characteristics, in the same manner as

" Leonard and Budiansky ;, and in order to simplify the numerical analysis,
k2G/E is taken equal to unity which is the same as two equal characteristic
velocities, which is physically incorrect. The effects of slenderness
ratio and the cﬁange of rise-time were studied and the results wer;
compared with a secohd theoretical treatment, based on Euler-Bernoulli
theory by the normal mode method. The comparison of the Timoshenko beam
theory results and observed data was limited to the initial stress build
up and the discrépancy was most marked in the phase shifting.

Jones (1964) used the exact two-dimensional theory of plane-strain

transverse waves in a beam by the application of a transverse force having
a step function time variation. The bar width was great in comparision
with its depth i.e. the bar was in the form of a plate. The solutien
was used for'the assessment of the validity of Timoshenko's theory and
its advantage overgiementary theory. s

Chou and}kntimer (1966) pointed out the advantages of the method

of characteristics, when compared with the mode super-position method
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and the Laplace transform method, in solving transient response problems.
They treated several elastic wave propagation problems including the
Timoshenko beam equation as a system of second-order-ﬁyperﬁplic partial
differential equations, using the mothod of characteristics , The
governiﬁg equations for tﬁe propagation of discontinuities along the
characteristic lines were obtained. Various types of input loadings
were used for integration along thé characteristic lines to evaluate
time-histories of stresses. Tﬁe method presented an improvement on

the nuﬁerical method given by Chou and Konig in 1965, regarding the
propagation of discontinuities.

Chou and Koenig (1966) compared their results for tﬁe method of
characteristics, with the results of other methods, where such solutions
existed and found excellent agreement.

David and Koenig (1967) used a so-called "direct finite element
analysis" to solve dynamic flexural travelling wave problem in infinte
beams and plates. They obtained numerical results for a very short
cantilever beam with a step velocity input applied at the free end,
according to the Timoshenko beam theory. The effect of reflection on
the evaluated bending moment and shear force was included.

Bejda (1967) investigated the problem of the propagation and
reflection of stress waves in elastic-visco plastic beams, uéing the
method of characterisfics for both regions. Numerical results were
obtained for a cantilever beam under suddenly applied bending moment
and shear force to the free end.

Edge (1970) investigated the response of aircraft arresting hook
wits to impact WithObstaFlés in connection with aircraft landing,

using two numerical wave propagation methods, namely the method of

_characteristics and the direct finite element analysis. He obtained

a solution based on the Timoshenko beam theory for naval and land-based

aircraft hook units and pointed out the advantage of the method of
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- characteristics for obtaining bounce dimensions in land based cases.

Garrelick (196%)' considered the ‘response of a link spring supported
beam subjected to a uniform velocity input by the Timoshenko theory
represented as a conservative second order hyperbolic system and solved
by means of a dual eigqé function expansion, where the system consisted
of real and positive eigen values and orthogonal eigen functions. The
results for the moment at midspan and the shear at the support were
compared with the results of the Euler-Bernoulli theory and the dis-
crepancies were mostly pronounced in the vicinity of higher oscillations
repr;senting reflected wave fronts. The results may be applicable to'
sonic boom problems and other problems such as packaéing.

Ranganath (1971) employed the Timoshenko theory to solve the
problem of transverse impact of an infinite elastic beam by a semi~
infinite elastic rod. Tﬁe system of the hyperbplic equatiqh were solved
by Laplace transformation and compared with experimental data, as well

as with a second theoretical solution obtained by a.finité difference

technique. Both theoretical results correlated closely with observed
data,with the: finite difference method showing improved agreement. Dis-
crepancies at the initial times and at stations close to the point of
impact were reflected in oscillations at early times which was not
supportéd by experimeqtal observations of the strain waves.

Lee and Kolsky (1972) based their investigation of flexural waves,
generated at the junction of two non-collinear rods, on tﬁe Timoshenko,
theory. The transmitted and reflected flexural wave were considered
and the shape of the initial pulse was assumed as the integral of the
difference between two error functions separated by the pulse length,
expressed in an inQerted Fourier cosine transform. The shapes of the
four waves generated at the junction, two longitudinal pulses and two
flexural pulses where both types reflected back along the first rod

and also transmitted into the second rod inclined at various angles
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to each others, were determined and compared with experiments.

Sagartz and Forrestal (1972) compared the Timoshenko solution
with the Euler - Bernoulli solution and with experiments for the flexural
waves, propagating from the clamped end of an impulsively loaded semi-
infinite cantilever beam. The transform method was used to find a solution
for the hyperbolic Timoshenko beam equations and to compare the results
with observed data, where the input pulse was assumed in the form of a
sine-squared uniform lateral pressure pulse. The effects of shear
deformation and rotatory inertia were shown to be especially important
at the initial time.

Philips and Crowley (1972) treated pulse propagation in a curved
beam by the Timoshenko theory and used the method of characteristics
for the numerical solution, where the input pulse was in the form of
a half-sine pulse, as in the case of Plass (1958). Similarities to
the problem investigated by Lee and Kolsky (1972) were also pointed
out. It was concludedthat aflexural pulse in a curved beam of moderate
curvature was insensitive to the actual beam curvature, as far as the
bending moment and shear were concerned . These results are in aéreement
with .the conclusions of Morley (1361)-who showed that there was no sig-
nificant intéraction between extension and flexure for small curvature.

Forrestal et.al  (1975) checked the accuracy of a two-dimensional
elastic-plastic wave propagation computer code TOODY, by comparing
its results with those based on Timéshenko beam calculations for an
impulsively loaded simply supported beam, where the transient pulse
was a sine-squared pressure pulse of very short duration. General
agreement between the two theoretical predictions was good except for
higher frequency oscillations predicted by TOODY,

Colton and Herrmann (1975)used the Timoshenko beam theory to
calculate the beam response, before, during and after fracture. The

method of characteristics was employed to obtain strain histories
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“{nder localized impulsive loading of a beam of rectangular cross-section,
where three models of the fracture were'postulated. Comparison of
calculated and measured strains showed'tﬁat a two-stage fracture model
approximated the structural response. A similar investigation by Colton
(1977) showed that all fractures were initiated by bending stress.

Parker and Neubert (1975) obtained the transient lateral response
of a cylindrical rod with free ends to a short duration half-sine pulse
of either moment or shear applied to one end. They applied the mode
shapes and frequency equations{ as given bydHuang (1955), as well as
the c1assical~separation of variables to obtain modal.series solutions
involving many modes for the Timoshenko beam theory with time-~dependent
boundary conditions. The theoretical solutions predicted higher peak
values when compared with exper{mentally observed data reported by
Ripperger 1955.

Sun and Huang. (1975) developed a higher order beam finite element
by increasing the nodal degrees of freedom to three andtested its
efficiency when applied to impact problems concerning the response of
of a simply supported beam.subjected to a sine pulse and the impact
of astéél”?sphere on a cantilever beam, where displacement curves
and contact force histories were presented and were found to be in good
agreement with existing solutions.

Tanaka and Motoyama (1976) investigafed'an infinite circular bar
subjected to impulsive bendiné load, using the three-dimensional theory
of elasticity and comparison of dispersion relations with those obtained
from several approximate theories,showed that the results of the Timoshenko
beam theory conformed to those of the exact theory over the whole region
for the first mode and over a small region of the second mode. Laplace
transform and Fourier transform techniques were used in the analysis.

In a second paper of Tanaka and Iwahashi (1977), a similar analysis

was presented for a bar of rectangular cross-section. The solution
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was obtained by an approximate crosswise superposition of two series
solutions. Dispersion curves for the frequency specturm of the bending
mode showed a very good agreement for the fundamental branch between
the results of the Timoshenko theory and those obtained by the present
method.

A controversial brief note by Nicholson and Simmonds (1977) suggested
that for an elastic isotropic beam of narrow rectangular cross-—section
clamped at one end, the Timoshenko beam theory was not more accurate
than elementary beam theory. This provoked no less than seven discussion
contributions, which were published in the Journal of Applied Mechanics
(1977) as a one time exception, since it does not publish discussions
on brief notes. In all discussions the importance of the Timoshenko
theory as a valuable engineering tool was emphasised and the unusual
nature of the chosen example was criticised. Van der Heijden pointed
out that the Timoshenko beam theory yields quite accurate numerical
results, although it is not a consistent theory from the poiht of view
of asymptotic theories. Koiter. agreed with the author's caution in
the sense thaf enginéering theories should never be applied indiscri~’
ninétely, but saw no reason for singling out the Timoshenko theory .
as a particularly vulnerable case. Reissner pointed out that the
problem constructed by the authors was of such a highly unusual nature
that the transverse shear strain distribution was assumed uniform across
the depth of tﬁe beam, in place of a "reasonable" parabolic or near
'parabolic distrubutions. This ment that #ranverse shear deformation
effect canceled -out altogether, up to terms of order ¢2. Christensen
noted thét beam theory was just a one-dimensional specialization of
plate theory. Mathematically, the Euler-Bernoulli tﬁeory and the
Timoshenko beam tﬁeory are both of the same order, but with different
degrees of generality or completeness. The more complete theory should

in general be preferable, even though counter examples may exist.
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"Schmidt - demonstrated that in view of the presence of large longitudinal
distributed shearing loads, applied to the upper and lower edges ef

the bar, the author's loads cannot be regarded as '"reasonable" for a
beam, as no longitudinal forces on long edges are permitted in the

beam theory. Levinson stated that the validity of the Timoshenko theory,
with its own valid mathematical structure, rested on how well it com-
pared with experience and not on its mathematical integrity alone.

The problems of elastic wave propagation in rods and beams have
been surveyed in many articles such as by Davies, (1956) who discussed
in detail dispersion relations together with phase Qelocities and
group velocities. A survey by Abramson (1958) gave extensive inform~
ation on various types of waves propagated in rods and beams. Two
surveyS'published in 1960 by Miklowitz and by Curtis contained the
discussion of the transient wave propagation problem in beams and rods.
In 1963 two surveys by Kolsky and Geldsmith reviewed experimental and
theoretical advances in the propagatiqn of waves in elastic solids.
More recently Scott (1978) presented an annbtatedﬁbibliogréphy which

ipcluded a few recent references on flexural wave propagation in rods.

For a more detailed treatment of the theory of wave propagation
in elastic solids, one should refer to many valuable books ‘. Kolcky's
bdek“(1953fg can be considered as the standard book of the modern
history of elastic waves. A recent revival of interest in the subject
led to the publication of many books in the seventies which included
comprehensive treatments of wave propagation problems and a large
number of bibliographies. These are the books by Johnson (1972),
craff (1975) and Miklowitz (1978). They presented the continuing and
growing interest during the last three decades due to a number of
reasons such as the rapid development of computing facilities, the
advance of experimental equipment available for producing and detecting

stress waves, and the need for information on the behaviour of structures
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* " subjected to impulsive loading.

. There is also an overwhelming increase in the literature related

to the field of geophysics, acoustic and electromagnetic waves.

2.3. Wave propagation in beams with discontinuities of cross section

Structural units used in many applications are of non-uniform
cross sectional areas. The non-uniformity can be either a continuous
variation of cross—-ection such as tapered bars and truncated cones.
or a discontinuous abrupt change in cross-section, such as stepped'bar;.
In addition, nonhomogenities in the modulus of elasticity and material
density do exist. Although the problem of elastic wave propagation in
a rod with non-uniform cross~section has been a subject of interest
and investigation for decades, the problem ﬁas received relatively
1ittle attention in the literature.

Most of the dynamic investigations of non-uniform rods are
related to tﬁe analysis of longitudinal and flexural vibration and
are based on the one dimensional elementary theory of longitudinal
motion and the Euler-Bernoulli theory of lateral motion. However,
many structures used in land, sea, air and space vehicles are subjected
to impact and transient loading. Many structural units are in the type
of beams with constant cross—section over a certain length wﬁich_changes
abruptly to another constant section. These are called stepped beams
or beams with discontiﬁuities of cross-section and are of main concern
in the present investigation.

Investigations of transient loads in stepped beams are limited to
longitudinal wave propagation and torsijonal waves since they are the
simpler form for theoretical treatment. There are some studies related
to flexqral waves in tapered structures which are based mostly on the
Euler-Bernoulli theory and there are some solutions related to flexural
vibration in tapered beams based on the Timoshenko theory. However,

there is no known research published on the analysis of flexural waves
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in a beam with discontinuity of cross-section according to the
Timoshenko beam theory, which is the subject of this thesis.,

Donnell (193Q) investigated the effect of a sudden change in cross-
section or material of a bar on a propagated longitudinal wave, wﬁich
when it arriveé at the junction initiates two new waves, a transmitted
wave aqd a reflected wave. When the sudden change was one of area only,
Donnell found that for an incident wave striking a reduction in area,
the reflected wave was of opposite sign to the original, whereas for
a wave striking an enlargement, the reflected wave was of the same
sign as the incident wave. The transmitted wave was always of the
same sign as the incident wave. Donnell also studied the problem of
a gradual change and formulafed the differential equation of motion
for longitudinal waves in a form which takes this effect into account.
Compression force and longitudinal velocity of particles for the ba;i
were presented graphically, and diagrams were constructed for waves
produced by variable forces, based on energy consideration:

Angus (1943) derived force-velocity relationships for the elastic
impact of a bar composed of several parts of different cross-sections,
from analogy with hydraulic equations for water hammer. He presented
an example of a bar composed of two cylinders of different diameters
moving horizontally at a constant velocity and stopped because of .
striking a rigid body. It was shown that the stresses could be cal-
culated by the known relation g= p_:cv-.. .

Langer (1943)'used the genefal equation of motion for longitudinal
vibration to obtain the frequency equation for an o0il well pump rod
consisting of a string of rods with abrupt‘chédges in cross-section.
The resulting natural frequencies were compared with records obtained
froﬁ magnetic strain gauges located in the string of rods.

Le Van Griffis (1944) discussed the propagation of longitudinal

waves in a bar with decreased or increased area which underlay the
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con&itions of equilibrium of forces and particle velocities. He

explained reflections at free and fixed ends, as equivalent to a
decrease in section to zero and infini?e increase in section respectively.

Van Griffis constructed x-t diagrams ;ith tﬁe help of a charactéristic
propagation velocity'c=¢E7;-which determined complete time-space stress
function for any case of'longitudinal impact and compared the results
with measurements uéiﬁg.ﬁire.resistance;étrain gauges.

Robinson (1950) discussed the "dynamic effects" in an aircraft
under landing conditions and traced the propagation of various‘}ind&
of stresses in the structure. He described the use of the method of
characteristics for the solution of the equation of motion as a ﬁyperbolic
system of partial differential equations Robinson gave aAgeneral solution
for shock reflection at discontinuities in comnection with abrupt changes

at the junction of aeroplane wings, sucﬁ as in the wing root and in the

vicinity of the power plant installation, where there was an aﬁrupt
change of characteristics relevant to wave propagation, i.e. stiffness
and density.

Fischer (19545 investigated the transmission and reflection of
an elastic longitudinal rectangular pulse in a bar with a cylindrical
neck or swell of varying lengtﬁ. The transmission and refléction of
the pulse iﬁ a bar with discontinuity of cross-section was followed
.up by a modified form of "graphodynmics method" which was applied
before by De Juhasz (1942) and Bergeron (1935). . In this graphical
method force-velocity and space-time diagrams were used to obtain
stress—-time and displacement-time diagrams. A more extensive study
and comparison with experiment was presented in a second paper by
Fischer (1959).

Mugiono (1955) used the Euler-Bernoulli equation for the
investigation of flexural waves in beams with one and two discontinuities

of cross—section and used a travelling wave solution to obtain a
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. -so=called reduction factoras afunction of slenderness ratio for
the propagation of bending wave in relation to . sound transmission
through walls in building structures. Calculations and experiments
showed a reasonably good agreement for ﬁarmonically sinﬁﬁéidalz excit-
ations.
Cranch and Adler (1956) used the simple beam theory to solve

the problem of bending vibration of beams having rectangular cross
section with any power-width variation where the depth variation was
linear, quadratic or cubic. Bessel function solutions were obtained
for a truncated pyramid cantilever, a cantilever with parabolic width
variation and compound beams of similar halveé joined together.

Ripperg;;;-‘and Abramson (1957b)ifepéate&"lhé.fheotetical solution
of the bending waée problem in a bar witﬁ discontinuities of cross-
section, treated before by Mugiono and added a comparison with the
reflection and transmission of longitudinal wave pulses. It was
attempted to determine reflection and transmission coefficient of a
stress pulse based oﬁ steady-state wave propagation. This analysis
was successful for longitudinal propagation where the dispersion did
not seriously alter tﬁe pulse shape, but not for bending waves pulses
which are alwaysidistorted by dispersion regardless of the pulse length.
1t was concluded therefore that any comparison of amplitude in bending
waves was not a precise method. In order to compare with experimental
results, reflection and transmission coefficients originally derived
for velocity were related to the corresponding quantities of moments.
The discrepancy was too large and it was concluded that a more accurate
theoretical analysis was needed, especially when pulses were of short
duration. A better agreement between theory and experiment was obtained
by Hékberstdaﬂ and Hoge (1971). The prcblem of reflection and trans-
missidn of a longitudinal wave across a sudden change in cross—secfional'

area was discussed by Burton (1958) where equilibrium conditions for
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) 'iértféie velocities and forces were formulated.

The idea of reflection and transmission coefficient is similar
to the idea of stress concentration factor used in the static leading
éhafts subjected to torsion and bending. Allison (1961) obtained the
elastic stress conceﬁtration factors vs. diameter ratio in shouldered
5h§f£é“§ﬁbjeCtEd't0~Pare Béﬁding“as the quotient of the peak stress in
the shouldered shaft to the maximum axial stress in a uniform shaft
of smaller diameter, subjected to the same moment,

Taleb and Suppiger (1961) appliedfhe-Cauchv function method from
the theory of integral equations to obtainthe‘éppfoximate fundamental
frequency and modal configuration in a simply supported stepped beam.
The solution was based on the elementary Euler-Bernoulli theory of
lateral vibrations. Tﬁe fundamental frequency computed after two
iterations for tﬁe beam with a jump discontinuity was compared with the
exact solution and was found to be only about three per cent above the
exact value.

| Reed (1962) reported a method for the computation of the amplitudes
of the succession of pulses which were produced from the incidence of
single longitudinal stress pulse on a zone of many abrupt discontinuities
not:simply related in their properties. An identifier was assigned
to each pulse and described its propagational history. It was used
together with a pulse designator to calculate amplitude and arrival
timesof reflected and transmitted pulses, The numerical method was used
to calculdte the relative amplitudes of the members of resultant pulse
trains for rods with three and six step transitions, for rods with
stepped-cone terminations of two to ten discontinuities, and for a
continuous linearly tapered cone.
+ Cone (1963)ohtained atheoretical solution for the longitudinal
wave propagation across an abrupt change in the bar's cross-section

and predicted the ratio  between the incident, reflected, and
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transmitted waves. The investigation was based on the elementary theory
and results were compared with experimental data obtained by strain
gauge measurements.

Conway and Dubil (1965) investigated transverse vibrational
resonance frequencies of truncated cone and wedge beams for nine
possible combinations of the simply supported, clamped, and free end
conditons. The Euler-Bernoulli equations were used to obtain solutions

in theform of Bessel functions of second order which were approximated
by their polynomials and numerical results were tabulated for five
modes and for four values of length ratios.

Davids and Kesti (1965) compared the determination of maximum loads
under impact using vibration analysis and stress-wave propagation method
for the design of long bars and stepped shafts. It was found that for
a ramp-type pulse with a rise time to; whenever the rise time of the
impact pulse exceeded the time required to propagate the length of the
bar and back about three times, an almost exact sinusoidal oscillation
occured. However, for a step pulse, the peak stress obtained by the stress
wave method was almost 50.per cent higher than that from the vibration
method. The longitudinal waves in an actuater and pilot shaft combi-
nation, designed for impact service, were investigated . An abrupt change
of section was shown to be more sucessful in reducing the level of stress
than a gradually changing cross-section .

Beddoe (1965) obtained a transient solution of the problem of
longitudinal stress waves in a cylindrical rod with several step changes
in cross-sectional area, by means of the Laplace transform method. The
theory was applied to a rod with a simple neck, formed by two inverse
changes in cross—section, where damping and wave dispersion effects
were not considered. Results, obtained by strain gauge measurement
showed good agreement with the theory.

Kawata and Hashimoto (1965) derived an approximate theory of
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- dynamic-stress concentration factors by considering notches and
shoulders as discontinuities of cross-—sectional area in struts,
Experimental resultsfor notched specimens of .- polyurethane rubber,
using high-speed photoelasticity, were shown to coincide with theoretical”
results using one-dimensional theory of longitudinal wave propagation
in an elastic b;r .

Lindholm and Doshi (1965) were concerned with the propagation of
a stress pulse in a continuously nonhomogeneous elastic bar of finite
length where the elastic modulus was a function of ghe position in
the bar. The one dimensional analysis for the propagation of longi-
tudinalwaves was synthesized from the eigen functions for the non
homogeneous bar by utilizing the principle of virtual work. Numerical
results were presented for a finite free-free bar subjected to a
pressure pulse and for one complete reflection in tﬁe bar. It was shown
that the eigen functions satisfied the orthogonality conditions and
series expansions were evaluated for the first 30 terms. Based on Laplace
transforms,an éppréximate solution of the same problem was given by
Whittier (1965).

Rosefeld and Miklowitz (1965) formulated a general solution for
the response of an elastic rod of arbitrary, cross-secfion to mixed
end condition loading, where the.ortﬁogonali;y condition of the eigen
functions for the displacements with different eigen values for the
frequency were employed. Laplace and Fourier transforms were introduced
in order to obtain solutions in term of ﬁarmonic waves for long-wave
effects which governed the long-time,"-large distance behaviour. It
was pointed out that the nature of tﬁe results for low frequencies
did not depend directly on the boundary sﬁape, but the higher modes
had a more complicated structure., |

Yang (1966) derived a general differential equation governing

discontinuous wave propagation in non uniform Timoshenko beams. A
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closed form solution was obtained for a nonuniform beam with a linear
variation in cross-section. The method of characteristics was used
to formulate expressions for jumps in moment, sﬁear, angular velocity
and transverse velocity.

Brunér' and Muster (1967) reported the attenuation characterigtiés
of a typical dri}l-string model as a long bar with spaced discontinuities
in cross-section area éubjected to plane longitudinal acoustic waves.
The analysis was based on mechanical-electrical analogy, used before
for single area discontimuities in infinitely long bars by Miles (1946)
who showed tﬁatlthe discontiniuty could be represented by a shunt
capacitance and by Karal (1953) who represented the discontiniuty by
a series inductance, both as functions of area ratio. Bruner and
Muster found that attenuation peaks decreased with increasing area
ratio and that attenuation occured at frequencies governed by the bar
length at the last segment of the system.

Tsui (1968) solved the problem of a projectile impinging upon
target as one of longitudinal‘wave propagation in a finite length #ar
with power variation in the cross-section. A solution was obtained
for a free—-free bar subjected to an arbit?ﬁry - pulse applying the
method of separation of variables and the princ?ple of virtual work,
as used before by Lindholm and Doshi (1965) for the non-homogeneous
bar. The same problem was solved by Handelman and Rubenfeld (1972)
using Laplace transform method. The calculations, although standard,
were somewhat tedious. |

Kenner and Goldsmith (1969) investigated the effect of a thin glue
section, joining two adjacent cylindrical bars, on the longitudinal
wave propagation. The joint was treated as a short discontiniuty by
the one dimensional theory and the éffect of eccentric " alignments on
the wave transmission was also investigated. It was found that a thin

insert placed between cylindrical sections disturbed the wave transmission
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in varying amounts depending ﬁn both the dispa{?ty in mechanical
impedance PCo with the exterior bars and the thickness of the section,
The eccentricity distorted the transmitted longitudinal wave veryllittle,
but decreased the peak strain up to 10%. The theorectical predictions
were tested by experiments performed on aluminium bars glued together
using two different adhesives.

Habberstad (1971) formulated a two-dimensional theory for
axisymmetric. elastic wave propagation by approximations of the Pochhammer-
Chree equations governing axisymmetric wave propagation in cylindrical
bargJéing afirst order finite difference scheme. The numerical analysis
was based on a displacement formulation used by Bertholf (1967) to study
the same type of waves in uniform cylindrical rod. However, Habberstad
used this numerical technique for a bar containing a discontinuity in
cross-section and for a Sar composed of two materials fused together.
Ramamurti and Ramanamurti (1977) solved the same problem by the finite
element method.

Mabie and Rogers (1972) obtained the differential equation of motion
for a vibrating double-tapered cantilever beam from the Euler-Bernoulli
theory of transverse vibration. The frequencies of five modes were
tabulated for various taper ratios. The results were obtained by .
numerical integration.

Mortimer et.al (1972) used three theories to analyse the problem
of reflection and transmission of transient longitudinal pulses in
shells with discontinuous cross-sectional areas. The three theories
used were the bending theory which included the transverse shear, radial
inertia, and rotary inertia effects 'a modified membrane theory which
included bending and rotary inertia, and a uniaxial theory, which included
only axial motions. Solutions were obtained by solving each of the
three syétems of governing equations by the method of characteristics.

The longitudinal and circumferential incident, transmitted and reflected

- 42 -



strain pulses as predicted by the bending and membrance theories were
gL@wn to be in good agreement with experimental results, whereas the
uniaxiél theory strain predictions did not agree well with the experi-
ment. In a second paper by Rose et.al (1973) the method of characteristics
was used to obtain a numerical solution according to the bending theory
for the longitudinal impact of a joint cylinder-truncated cone-cylinder.
Good agreement was obtained with experiments carried out for a model
consisting of a 1/100 - scale replica of a portion of the Apollo/Saturm
V vehicle. | )

Yang and Hassett (1972) utilized the method of characteristics
in the theoretical analysis of the problem of transient stress in

. i

axisymmetric bodies of varying areas, such as cones and structures with
'large step changes in cross-sectional area and with changing impedances.

Rader and Mao (1972) were concerned with the amplification of
longitudinal pulses which propagated along fapered elastic bars, which
was regarded as a wave guide with continuously varying impedance. A
general travelling wave solution representing waveforms propagating
in both directions was used where the incident wave generated an
jnfinite sequence of reflected and refracted waves. Experimental
results showed that only for very short and very long pulses, did fhe
amplification approach  the limiting values given by the theoretical
prediction.

Reismann and Tsai (1972) developed an improved theory which
accounted for longitudinal as well as radiéi motions. The theory
was applied to two bonded, semi-infinite rods composed of different
materials and to a rod of finite length bounded at each end to two
semi-infinite rods composed of different materials. The results were
compared with the predictions of the elementary rod theory as character-
ized by the wave equation. For a harmonic excitation, phase velocity

vs. frequency plots was presented and it was shown that the improved

-~
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Eﬁéor} indicated the existence of two modes.

Koenig and Berry (1973) applied the direct finite analysis,
originally developed by Davids and Koenig (1967) to obtain the transient
flexural response of a cantilever tapered beam and a composite beam
of‘two different materials, subjected to a step moment input and a step
velocity input. The time-histories of bending moment and shear forces
were presented graphically.

Lee and Wang (1973) presented a one~dimensional theory which
accounted for longitudinal as well as radial and g#ial shear deform-
ation and their inertias for elastic circular rod~with nonuniform
cross—section. The theory was an extension of the Mindlin-McNiven -
theory (1960). The numerical results were obtained by the method of
characteristics for several non-uniform semi-infinite and finite rods
subjected to either a step or a pulse loading. The geometrical effect
of variation of section on the stresses and the effect of the elastic
support on the reflection and propagation of the stress were deduced.
Predicted and measgred results were compared.

Klein (1974) investigated the transverse free vibration of elastic
beams with non-uniform characteristics using variational analysis,
either as a Rayleigh-Ritz type vethod or as a finite element type method.
The basic asSump;ions of the analysis were based on the Euler-Bernoulli
theory. The case of a Simply supported stepped beam was studied as a
model for a non-uniform rotor blade. Comparison with experiments
indicated that the theory adequately predicted natural frequencieé
for the first three modes and the mode shapes.

Lee and Sechler (1975) used the one-dimensional theory to examine
the longitudinal wave propagation in wedges due to impact at their
large end. Closed from solutions were obtained in term of Laplace
transforms and Bessel functions.

Corman (1975) investigated the lateral free vibration of beams
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with step changes in the properties of their cross-section and gave
extensive tables to obtain tﬁe frequencies for 4 modes and various end
conditions. The solutions were based on the Euler-Bernoulli tﬁeory.

Ramamurti and Ramanamurti (1975)used afinite difference formulation
to soive the problem of longitudinal wave propagation in very short
bar with discontinuity of cross-section. Due to the symmetry in loading -
the problem was treated as a two~dimensional one.

Levinson (1976) studied the natural frequencies of a stepped

simply supported beam using the Euler-Bernoulli theory. He obtained

 the frequency equation which was quite complicated to be solved exactly,

even for a stepped beam consisting of only two distinct parts. It was

conclﬁded that an approximate numerical solution netﬁod should be used.
Goel (1976) investigated the transverse vibration of linearly

tapereﬁ beams and the results for the first three eigen-frequencies

for different values of stiffness ratio's and taper ratios were tabulated.

The analysis was based on the Euler-Bernoulli equation of motion,

Johnson (1977) studied phe problem of longitudinal waves in a bar
with step change in cross-sectional area and material and expressions
relating the transmitted and reflected wave to the incident wave, uging
the one-dimensional theory were presented.

Filippov (1977) formulated general solutions for composité rods
consisting of finite rods of constant but different thickness and
of composite rods with continuously varying thickness. The solutions
were based on the one-dimensional theory of longitudinal wave propaga-
tion using Heaviside function and Dirac delta function for the applied
Laplace'tfénsfdrﬁatiop,i

vVasudeva and Bhaskara (1978) discussed the problem of a pressure
éulse in an elastic bar of finité’length Qhoge YOUngisodulus, material =
density and cross-sectional area varied along the length in a general

power form. Tﬁe solution used the elementary theory and Laplace
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transformations gave the general expressions for stress. The numerical
values were computed by iteration for a ﬁalf—sine wave pulse and the
results agreed fairly well with those of Lee (1974).

Gupta and Nilsson (1978) studied the problem of longitudianl impact
between a truncated finite conical rod and a long cylindrical rod, where
contact was maintained from the time of impact and the piston-rod system
was considered as one structural unit. Two theoretical solutions were
obtained, a closed from solution based on one-dimensional wave theory
and a numerical finite element solution based on three dimensional
axisymmet:ic_ model. Finite element results were in good agreement
with experimental results, apért from spurious oscillations shown in
 the finite element solution of impact for pistons with various apex angles.

Nagaya (1979) formulated an approximate numerical method for the
dynamic analysis ;f a tapered Timoshenko beam with moving loads. Hamilton's
principle was applied to obtain the equation of motion from the Lagrangian
of the Timoghenko beam and using the orthogonality of the eigenfunctions,
of first and second kind. 1In tﬂe numerical computation the effect of
the inertia force  ‘on;. sheér motion was neglected and the approximate
solution was found to be - larger .t han . with the exact Timoshenko
beam with increased velocity of the load.

Hashemi (1979) obtained the frequency equation and point impedance
of a stepped beam using the elementary Euler-Bernoulli theory of transvérse
vibration. The roots of the frequency equations were obtained for the
fifst five modes and various length to width ratios. The numerical

results were compared with experimental results.
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e CHAPTER IIL

ANALYSIS OF TRANSIENT BEAM RESPONSE

3.1, Derivation of the Equatfon of motion

The Pochhammer-Chree theory can not be used to find solutions
for flexural wave propagation in finite or even semi-infinite beam with
arbitrary prescribed displacement or stress distribution on the end
cross-section. The Euler-Bernoulli theory is %nadequate because it .
neglects the effects of "rotatory inertia" and "shear deformation" when
dealigg with the transverse vibration of prismatic bars.

The theory which takes these effects into account is attributed
to Tiﬁoshenko (1921, 1922, 1928), in the so called Timoshenko beam
theory which is widely used for solving problems of flexural vibration
of béams and more recenfly for solving fransient flexural wave pro-
pagation in beams.

Thé Timoshenko beam theory includes, in addition to the transverse
displacement due to bending whicﬁ.is the only term included in the
Euler-Bernoulli theory? the effect of rotatory inertia, originally
introduced by Bresse iﬁ 1859 and usually attributed to Rayleigh 1894,
as wéll as a second term which takes into account the effect of the
non-uniform shear distribution over the cross-section.

| The Timoshenko beam equations were originally formulated by -
Timoshenko nsing D'Alemberts principle. The same equations, however,
can be derived, by using a more general approach from the three-
dimemsional.tﬁeory of elasticity on the basis of . Hamilton's principle.

The Timoshenko beam theory is aone-dimensional approximate theory
which used two displacement co-ordinates to represent the transverse
motion of the beam axis (y), and to account for the rotation of the
cross—-section (¥) as shown by the beam element in figure 3,1 of a beam

under the effects of bending moment M and shear force Q.

When the beam element is deformed and, for small displacements, the
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cross-section of the beam rotates through an angle y, while the necutral
axis of the beam rotates through a small angle 3v/3x, and it is no
longer perpendicular to the Béam crossisection. These two rotations
differ by the angle of the snear, i.e;.&e%i— Y., 1If uy and ug ere defined as
u; (%03, zmt) = = ydlx, t)
uy (x. y,fz--t)‘= v (x,” t)

The non-zero strains are then

e _8uy _ _ oy
xx axl V3% ox
fxy. = v—c e R

The shear force 1s dlstrlbuted non-un1form1y over the cross—secction
"and there is.not a single’ angle {er the cross-section. But in order
to retain a one-dimensional model; a rhear correction .factor K2 Ye
introduced to give an "equivalent" uniform shear, a form of averaging
over the cross-section.

The linear constitutive relations for a differential beam element
lead to the 1ntegrals for the kinetic energy, strain energy and "the
potential energy of a Timoshenko beam of’ length L. The k1net1c energy

T consists of two parts due to translation and rotation

| pA v 5 pIl 3w
= 6[ { ‘*2 ( )z}dx ¥ ;

The strain energy for the Timoshenko beam is also made of two parts

and can be found from Fh‘e following relation

ffz e [ Gk e

The shear force—shear strain relation is found using the value of k2

SUCh that . c 2 ' kZG
Af'j',_‘e-. f(”"“v)dA

: 2
= '»———-—‘k GA 2V )
2 (Bx 2

The strain energy is then formulated as

2
3 . k“GA
U=;'[{*-( "’)2 5T g "’))dx

z,
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From here on the general displacement variable y will be used
instead of v, since y is usually used for the location of the beam :
axis.

Tﬁe pagrgpgiaﬁjzis usually used for tﬁe difference between the
kinetic energy T and the strain energy U

Li=1-v
When the Timosﬁenko beam is subjected to external forces such
as shear force Q and bending moment M, tﬁe work done by these forces w;
illustrated in fig. 3.1, can be expressed as
w=M, (0','#) v (0,t) +Q, (0,£) 'y (0,6) + ”é' (Mst) ¥ (L) + oz(L,t)?_ (L,t)
The Hamilton's princi?le implies that allivariations vanishes at.

the arbitrary time limits t, and t, and can be aprlied to the Timoshenko

§ EEZ - W de=0

The expression forl;and W are inserted in the above equation after

beam éystem to give

| the varlatlonal calculus is -performed

Gdet = j f*{ A—lcl+ 912%6 2 } dtdx

After 1ntegrat10n by part and using the fact that the variations
ﬁ§ and §$'must both vanish at x=o and x=L, one gets the variation of

the klnetlc energy as

2
Gf Tdt = = J j(pI—— Y4 pA’é“y‘Z 6y) dxdt

S1m11ar1y the variations of U and V are found as

t, L
: 3 d
82 vat = —j f (e ¥ a2t anZon (L -y & (X--p) 3 axat

t) Y ‘

t2 2 , 2 ,
tf f {(LI—J-( - ¥) k GA- EI%}%) &Y +(‘?‘CA(:§“§ _.'é‘f_) +

1

+ k2AC (%i— -P) ) Sy} dxdt

8 ZWdt =- ZI(F{HWI *Mz8Y2 + Q{8 yy + Q8 y,)de
Applying Hamilton's principle and grouping the terms in the above

equations:
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t o t,. L
6 f(T-U-W) dt= 'Ejlf‘([{(u g —-pI ——43—-— EI + (—L q»)k?cA)w
t
.
¢ alor (-0 28 424 & -w» 8y dndes

2
f{“l (0,£) 8y My (L,6)&, +Q) (0,£)8y14Qp (L,t)8y,}de=0
3]

Rearranging the equation;

jlgvf f {( cA(a—;‘f- JZ)—;>1@—~)’r) Sy+(ET a_%_ ol at2 +

t,

k250 (—Y—.,p) YSPldxdt + f(-EI aw - 8y- k2GA(~X— V) 8 } X .,z

t
+j (Ml(O, t) G‘ll_l"*Mz(Ls t) 6¢2+Q1(00 t)GY]. +Q2 (L,'t) GYZ).dt':o
1 g

Since the variations of the two functions 8y(x,t)-and &y(x,t)

are arbitrary, the necessary conditions for them to vanish are

the pair of coupled partlal d1fferent1a1 equations for 0< x <Lg

x2cA (——Z— ) —pA——X—-

.. a2 N 32
oA ($X-¥) +EI—§’—— pL-ah = 0
These are the governing equatlons for a Timoshenko beam and

the boundary conditions at x=0: (EI-—wa = —Ml

-2 9 )
k“GA (5%- \P)l =-Q1

: =1 Yy
and at x ='Ls (FI Bx)2 M2

kea GL-y),= 0,

The Timoshenko beam equation is sometimes also written as a
fourth order partial differential equation by eliminatfng one of the
variablés y or y from the two partial secosd order differential
equation. Uncoupled and written in ferm of the transverse displace-
ment y ” ‘

EI 24 -4+ pA%ﬁ‘-‘ p1(1£§»§ —gg’ﬁﬁy ————— Z- -0-

AG ot
Hamilton's principle was applied for the derivation of

the Timoshenko equations by the variational metﬁod, by several
authors, e.g., Carnes (1964) y Crandall et.al .(1968)5 Dym and Shames
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7(1973) and Harrison (1977).

In Hamilton's principle tﬁg~geometric constraints are embodied
in the admissibility conditions, and the dynamic force requirements
are embodied in the variational criterion.

3.2. Methods of solution

3,2.1. Transform methods

The problem of tranéverse wave propagation in an elastic beam
can be solved by using Laplace transforms and to a lesser extent Fourier
transforms. Solutions have been ﬁasically obtained for transverse
impact of semi-infinite beams of circular and rectangular cross-section,
as was described in section 2.2.2,

Uflyand (1948) was the first to derive solutions employing Laplace
transform and contour—integration inversion methods. Results were
obtained through convolution for the response to a step input function
and inputs having<hﬁAimpulsivevtime.charactér,in the form of a delta
function.

The main difficulty is in conpection with the treatment of end
conditions. Miklowitéf(1953;)»obtained‘%ﬁé'haplaee transform for
certain types of end conditions and pointed out at the same time that
it was much more difficult to obtain the transform for other types of
end condition.

The use of transform methods is almost restricted to the study
of transverse waves in uniform semi-infinite bars where no discontinuities
and wave reflections are involved. However, the problem of eccentric
impact of beams is more difficult to handle with Laplace transforms
and no solution is available by this method even for the simplest
case of a uniform beam .

Transform techniqués generally ‘require numerical inversions 'and
numerical integration schemes become morécomﬁiicated when boundary

conditions are incorporated. Closed form solutions providelijttle
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“insight into the response of structures and leave much to desired
fegarding convergence near the wave fronts. Carnes (1964) showed
that complex inversion integrals should be evaluated when Lapiace
transforms are used to obtain solutions for the semi-infinite beam,
This is a réther'tedious procedure. Transform formulae usually
involve‘infinite integrals and difficult integrations which mugt be
approximated in practical computation. Weinberger (1965) pointed
out that transform solutions have the appearance of being exact,
whereas in practice they require limiting processes which cannot
usually be carried out,

The integral, obtained after lengthy inversions, usually con-
tains different combinations of Bessel functions. When a solution is
obtained for a certain type of input,lthe‘inversions cannot be used
for other types of inputs, In the Laplace transforh; for a differant
input function, another lengthy transfrom and inversion process musg
be carried out and the resulting integral must be evaluated separately
by numerical means. |

Closed from solutions by transform methods are usually restricted
to some special cases of transverse wave propagation and in most other
cases, one has to resort to a numerical approximation method which will
be presented in the next sections. However, Laplace transform methods
are useful in producing "exact" solutions for certain problems which
can be used for comparison in obtaining the accuracy of other approxi-
mate methods. It is known that the Laplace transform method vields
solutions in closed form only when thé special distribution of variable
parameters is restricted to certain power law or exponential formats.

Foran arbitrary parameter distribution asymptotic methods could be used
but are usually valid only for short times and diverge

at inter-

' mediatée or long times. (Moodie and Barclay, 1976 and Gordon, 1977).
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- °3,2.2, Finite element methods

Finite element methods have been used widely for frequency
analysis of flexural vibration of Timoshenko beams and for predicting
mode shapes and natural frequencies, as described in section 2.2.1.

Several solutions have been obtained by several authors for
axisymmetric longitudinal transient wave propagation problems.

Costantino (1967) used the finite element method to solve wave
propagation problems of one-dimensional plane strain and two-dimensional
half-space problems. The results were satisfactory for displacement
time-historieé, but stress—time histories were not as accurate and
depended on the spatial variation of stresses as compared to the element
size and the traversal .. time of the stress pulse across the?élement.
Costantino used a system of equations based on the "point mass" system,
in contrast to the alternative approach "consistant mass matrix" which
is used in structural vibration analysis.

Shipley et.al. (1967) also used finite element formulations for
solving axisymmetric wave propagation problems and he fougd that the
analysis modélled g%é displacement field much more accuratly than the
stress field. The stress—time histories showed a predominance of high
frequency oscillations in trailing portions of the disturb§nce and the
data were compared with exact solutionms.

One of the disadvantages of the finite element model is that
computed stresses show severe oscillations- a consequence of a so-
called "numerical dispersion”. This makes the finite element method
less attractive for flexural wave propagation problems, since it becomes
difficult to decide whether the oscillation are due to the dispersive
nature of the propagated wave or the dispersion is due to numerical
inaccuracies. Another problem is the difficulty encountered in
representing discontinuities and transient wave fronts, Finite element

models also behave like low pass filters having definite passing bands
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" and cut-off frequencies which depend upon the wave types being

‘'propagated, longitudinal or transverse and tﬁey depend on the finite

element mesh as well.

Belyfschko-,et.al. (1978) sﬁowed that the numerical solution
oscillated about the analytical-GOIUtioﬁoforéa éieﬁffunctioh.jnput,due
to attenuation of all frequencies beyond'tﬁe cut off frequency in a
discrete mesh.

Several authors treated examples of one-dimensional and two-
dimensional axisymmetric wave propagation problems by various triangular
and rectangular finite eiement models., In most works, the mass of each
element was lumped at its modal points 'point mass system". This made
the mass matrix diagonal and hence, the associated inversions were
made simple. However, this procedure led to poor approximations. Some
of the works dealing with axisymmetric longitudinal wave propagations
are those of Fu (1970), Buturla et. al. (1914). Holmes et.al. (1976).

The main advantage of finite element methods are their ability
to treat geometrically complex structures. A wide range of elliptic
and parabolic governing equations have been successfully solved using
finite element methods (Zienckiewicz, 1971). However, finite element
methods'have not yet proven their suitability for the solution of .
transient-flexural wave propagation problems which are governed by
hyperbolic partial differential equation systeﬁs, in connection with
mixed initial and boundary conditons.

3.2.3. Finite difference methods

Finite difference methods are well established and are successfully
used in solving wave propagation problems. The solution method has
been first discussed in a paper by Coufanﬁ et.al, (1928). However,
jts usefulness was'ﬂélped as by other numerical schemes, by the recent
development in large digital computers in both.speed and core size.

There exist several forms of finite difference approximation
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and common approximatg techniques are used in finite difference
methods. Tﬁey'are‘éxtenSively treated in several books (Sauer,_1954,
Lax, 1958, Richtmyer and Morton 1967; Forsythe and Wasow, 1960).

The essence of tﬁe finite differénce technique is to replace the
differential equations and boundary conditions by simple finite
difference épproximations, such as Taylor series expansions with trun-
cation at some point to optimize both error and computation requirements.
The resulting equations are then numerically integrated to obtain the
solution of the problem.

Finite difference methods are easy to programme and capable of
solving transient problems which can give information at many frequencies
from one computer run, in contrast to steady state solutions. The
method is most useful in near fieid‘region of sources. Finite difference
and finite element methods differ in that the former discretizes the
governing partial differential equations or energy functions, whereas
the latter discretizes the structure itseif.

Cushman (1979) compared the use of finite difference and finite
element methods and concluded that for irregular domains, finite element- .
analysis is often easier to use; while for regular domains finite
difference methods'areimore easily programﬁed. He illustrated for the
case of one—dimensional lbngitudinal wave-propagation, the possibility
to generate the standard finité difference scheme as a special case of

finite element scheme, simply by applying the finite element disc¢reti-

s

zationhprocess?fﬁitimé'aé well as to space. However, there was little
to be gained with this technique and it involved increased storage and
compptational requirements. Tﬁis'tecﬁnique is, therefore, rarely used.

. The main disadvantage of the finite difference techniques is its
inefficiency in han@ling discontiniuties in geometry wﬁicﬁ suggested
the inttoduction of doubtful assumptions - of compatibilityat the

discontinuities and fictitious surfaces at the boundary. This technique
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made ‘the results dependent upon the chosen assumption for the dis-
placement values at the junction points. Furtﬁermore, difficulties
were experienced in treating material interfaces or indeed any type
of discontinuous stresses, wﬁich must be averaged. Tﬁe introduction
6f artificial viscosity terms into the equations, have the effect of
smoothing out the input function over a short distance, but can intro-
duce significeint errors into ;tﬁe analysis. The method has been
mostly developed for two-space variable problems,

Karnes and Bertholf’ (1970) solved the problem of axisymmetric
elastic-plastic wave propagation by a two-dimensionalifinite difference
scheme which employed tﬁe Von Neuman and Richtmyer method for smoothing
shock fronts by an artificial viscosity. The study was an extension
of the solution obtained by Bertholf (1967) for the elastic wave pro-
papation problem. The accuracy of the numerical results depended on
the number of finite difference increments, or meshes used.

Chiu’ - (1970) used the finite difference scheme to investigate the
transmission and reflection of longitudinal stresses in:aﬁ elastic bar
with discontinuities, as a one-dimensional wave propagation problem.

Habberstad (1971) approximated the exact equations of motion -
governing elastic, axisymmetric wave propagation in cylindrical rod by
a first order finite-difference scheme, which was used to study
longitudinal wave propagation in a bar composed of two materials (steel
and aluminum), and in bars containing a discontinuity in cross-section.

Ramamurgi et.al (1975) used the finite difference analysis to
solve the problem of axially symmetric impact in very short uniform
and stepped beams. The solution was based on a finite difference scheme,
as proposed by Alterman and Kéral (1970):for wave propagation in semi-
infinite bars. The results showed high oscillations and were not
compared witﬁ any other numerical results or with any experimental

results.
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. - - .Forrestal and Bertholf (1975) used a two—dimensional wave
proﬁagation finite difference scheme to obtain strain-time histories
for the transverse impact of a beam of rectangular cross-section. The
results showed higher frequency oscillations.

Several authors have developed special finite difference schemes
for applications in Séismologj'(Alterman and towenthal,'1972;'Boore,
1972;3Bond, 1978). .Ilan et.al. (1979) used finite difference methods
to study elastic waves scattered by irregularities (slots) in a
stress free surface, a problem particularly important for ultrasonic
non destructive testing.

The finite diffe;ence methods are mostly used to solve problems
in which the response is mostly dominated by axisymmetric motion.

However, its application to study flexural wave propagation problems

is less feasible. Therefore finite difference methods are used for

solving longitudinal axisymmtric wave propagation problems where they
are efficient (Swartz and Wendroff,(1974)

3.2.4., The method of Characteristics (MOC)

Wave propagation problems are mathematically classified as mixed
initial boundary value problems and their governing equations are
mostly partial differential equations of hyperbolic type. For hyper-
bolic systems involving two independent variables, the method of
characteristics (MOC) is undoubtedly the most convenient, most effective
and most accurate method of solution. Other numerical methods such as
finite difference and finite element methods are basically more suit--
able for hyperbolic equations in higﬁer dimensions where the MOC might
be less satisfactory. (Mitchell, 1969).

In the MOC the system of the governing equations is replacéd by
a system expressed in characteristic co~ordinates,tﬁe so called .
canonical equations. One of the main advantages of characteristics,

and a disadvantage of finite differences, 1s that discontinuities in
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the -initial values may propagate along the characteristics. This
situation is difficult to handle by otﬁer tﬁan tﬁe characteristic net.
(Ames, 1977).

The earliest applications of the MOC to linear wave propagation
problems are those by Riemann (1860) in gas dynamics = by Massau <1889)
in hydraulics and Soil mechanics and by Prandtl (1920) in mechanics
of plastic metals. The theory of MOC is best described in the works
of_Couéant et.al. (1928)5 Courant and Friedrichs (1937). Abbott (1966)
gave various application examples and Cristescu (1967) and waacki
(1978). gave detailed description of application examples.in the theory
éf plastic flow undef quasi-static and dynamic conditions. In a
number of works, Chou and his co-workers used the MOC in a unified
manner to solve elastic wave propagation problems with a variety of
initial and boundary conditions in beams, plates and shells.,

The MOC have been used widely in solving the Timoshenkg beam
equations as a system of hyperbolic partial differential equations
(PDE) governing transverse and bending wave propagagion problems due
to transverse and eccentric impact, as was described in section 2.2.2.

| The principle of domain of dependence in the MOC ensures a unique
solution in the region between the characteristic liqes with the
smallest slope. Furthermore the MOC has the advantage that it follows
the physical wave fronts as they are propagated along the beam. The
MOC is particularly useful in solving wave propagation problems in
finite structures, since reflections from boundaries are automatically
atsorbed into the solution by the presence of the backward-running
characteristic curve at each grid point.

The detailed investigation given by Courant et.al. (1928) for
the solution of hyperbolic PDE by the MOC, in which tbéy specified the
condition for the stability of the numerical scheme, the so called

Courant-Friedrichs-Lewy (C-F-L) stability condition, is particularly
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{mportant in obtaining numerical results using finite difference
approximatioﬁs along the characteristic lines in the domain of dependence.

Pfeiffer (1947) was ‘the first to obtain a general solution for
the Timoshenko beam equations as a system of first order PDE, using
the method of characteristics. Schirmer (1952) used the technique
suggested by Pfeiffer to apply the MOC to the Timoshenko beam theory
to study bending waves in beams. Leonard and Budi#nsﬁyf'(1953) utilized
the MOC to analyse travelling waves in beams subjected to lateral
loading, governed by the Timoshenko beam theory, but for the rather
physically non—realistic assumption of é; = é2~which simplified the
numerical work involved.

Kuo (1958) solved the problem of bending waves in rods subjected
to eccentric impact by MOC in the same way as by Leonard and Rudiansky. -
Plass (1958) used the MOC for Timoshenko beam problems subjected to
various type of short half-sine pulse loading and applied more realistic
distinct bending wave (cl) and shear wave (c2) velocities.

The Timoshenko beam equations ﬁave been treated as a system of
second order PDE by the MOC in a series of bépers, in a unified approach
capable of dealing with discontinuities along the characteristics in
semi-infinite structures, where no reflections were involved and.the
emﬁhasis was set on the refinement of the numerical scheme. (Chou and
Mortimer, 1965; Chou, 1965; Chou and Koenig, 1966).

| Aprahamian et.al. (1971) used the MOC to solve the Timoshenko
beam equations for a doubly infinite beam subjected to an impulsive
transverse load, whiéh gave excellent agreement with experimental
results obtained by holographicin;erférometry .

Stepanenko (1976) showed how the so called "numerical dispersion”
can ﬁe miﬁimized, although not completely éliﬁinated in the case of the
Timoshenko beam, when explicit finite difference formulations were

used for the jntegration along a characteristic network constructed
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-"hith-varying steps, peculiar to each type of waves.

The method of characteristics has been used to treat flexural
waves in curved bars in a Timoshenko-like tﬁeory (Crowley et. al. 1974)
and to predict fractures in brittle materials according to the
Timoshenko theory (Colton, 1973) as well as for determining the rate
of healing of a partially cracked bone with the aid of a combination
of longitudinal and Timoshenko-type waves (Pﬁilips et. al., 1978).

| Axisymmetric elastic wave propagation in beams, plates and
shells have been treated by the MOC in a unified manner which could he
applied to various plane cylindrical and spherical waves with one-,
two- and three displacement variables. (Chou, 1965; Chou and)kﬁgiﬁét
1967; Rose and Chou, 1973). ' .

Mengi and McNiven (1971) obtained the response of a semi-infiﬁite
transversly isotropic rod to a time-dependent input using the MOC,
which gave an accurate prediction to the response except perhaps for
the very front of tﬁe wave, wﬁich is influenced by the higher branches.

Several problems of axiallj symmetric wave propagation in non-
uni form stchtufes were tréated by the method of characteristics (MOC)
as was described in section 2.3.

The method of characteristics has also been successfully applied
for the prediction of transient responses in multilayered rods and
shells. (Chou and Flis, 1975; Zii, 1975; Mukunoki and Ting, 1980).

In the theory of visco-elastic and plastic wave propagation,
the method of characteristics led to the solutionAof various types of
transient response problems.

Lee (1953) obtained the permanent plastic distribution in the
corresponding regions 6f‘{-§tructuré by MOC and the difficulties arising
in boundary value problems of the theory of plasticity, were pointed

out.

Plass (1955) investigated bending waves in a rod where plastic
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- gtresses were present by the Timoshenko beam theory and relations

" about plastic flow in a solid exhibiting a strain rate effect.

Numerical results were obtained by the MOC.

Bejda (1967) solved wave propagation problems in elastic visco-
plastic beams by the MOC and Clifton (1967) used the same method and
the one-dimensional theory of rate-independent plastic wave propagation
to study longitudinaYLlastic-plastic waves in long bars.

McNiven used the MOC to obtain the response of an infinite visco-
elastic body with an infinitely long cylindrical hole, where the
lateral surface was subjected to a uniform pressure.

The problem of one-dimensional wave propagation through a bilineér
elastic-plastic specimen in Kolsky's split Hopkinson pressure bar, was
investigated by Jahsman (1971) using the MOC.

In his‘thesis;: Panganath:(1971) solved the problem of the transverse
impact of an infinite elastic-plastic beam by a semi-infinite elastic
rod using the MOC, based on the Timosﬁenko beam theory. A.strain rate
independent model was used to describe the material behaviour and a
strain hardening criterion was used for the pure bending, based on the
quasi-static moment-curvaFure relation.

' The use of the method of characteristics is widespread in fluid
mechanice and gas dynamics to predict flow velocity at pipe outlets
(Iseman, 1967) and multi-dimensional unsteady flows (Sauverwein, 1967).
Sedney (1969) gave a survey of the use of the ﬁOC for non—equilibruim.
internal flows. Another application field for the method of character-
istics is soil mechanics. Streeter et.al. (1974) investigated the
wave propagation corresponding to earthquake intensities in a model
of unsaturated and saturated soils.

Wylie and Streeter (1976) found the MOC suitable to investigate
the transmission of shear waves in soil layers. It has been attempted

to extend the application of the method of characteristics to two-
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) "“dimeﬁsional.spatial problems i.e. cases of tﬁree independent
variables. (Thornhill, 1952).

Clifton (1967) investigated plane stress dynamic deformation of
an isotropic-linear elastic solid by a second order explicit method,
as proposed by Butler (1960) for integration along the bicharacteristic.
zZiv (1969) also studied tWo-dimensionai spatial elastic wave propa-
gation by the MOC. Chang (1972) investigated two-dimensional motion
of a cylindrical bar subjected to axisymmetric impact by the MOC.

Haddow and Mioduchowski (1979) used a near characteristic scheme
proposéd by Sauer (1964)° for two-spatial variables and time to obtain
numerical results fér waves in a plate due to a suddenly punched hole
as a uniaxial tension field.;-.

Good agreement with experimental results and with transforms
increased the confidence in the results of the method of characteristics.
Therefore its results were used to check the accuracy and validity of
the results of other numerical methods such as finite difference and‘
finite element methods.

Fu(1970) compared finite element résults with MOC results for a
circular finite length rod subjected to a suddenly applied uniform
pressure. Raney and Howlett (1971) presented a comparison of numerical
solutions obtained by finite element, finite difference and the method
of characteristics for the axisymmetric response of a cylindrical
shell subjected to an initial axisymmetric velocity at its centre.

The importance of higher frequency modes was emphasised.

Forrestal and Bertholf (1975);compared the results of finite
difference method with the MOC for the transverse impact of a beam of
rectangular cross—section.

Belyschko (1978) also compared the results of the three numerical
results and pointed out the advantage of the method of characteristics,

particularly for solving hyperbolic partial differential equations.
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. .-~ -In flexural wave propagation problems, where time and space play
similar roles and where characteristics are important, since the motion
is governed by a PDE, the finite difference approximation along the

characteristics has a powerful potential advantage (Morton, 1976).

3.2.5. Conclusions

In the solution of transient wave propagation problem, closed -
form solutiors arerestrictive and in most cases impossible to obtain.

Therefore one has to employ numerical techniques., There are basically

two méih approaches in numerical solution of elastic wave propagation
problem;;

(a) The method of characteristics, in whicﬁ the partial differential
equations are reformulated along directions of possible discontinuities
and then integrated in these directionms.

(b) Discretization methods such as finite difference and finite element
methods where the partial differential equations are éirst discretized
in space and then integrated along parallel lines in the time domain.

Discretization introduces dispersion and because of the finite
cut-off frequency, high frequency input results in spurious oscillation,
which could be reduced By introducing an artificial viscosity term.
However, this has two undesirable effeéfs in that the dispersions in
the final solution will be increased and rapid changes in the wave
fronts will be smoothed. Therefore these methods are unable to predict
precisely a very gharp wave front.
After careful considerations, the method of characteristics (MOC)
is éhosen for the numerical solution of transient flexural wave propa-
gation in beams with discontinuities of cross-section. The method has
many advan;ages and desirable properties;.particularly for one-dimensional
problems with two independent variables which are governed by hyperbolic

partial differential equations.,

i) Characteristics are the only lines along which discontinuities in
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the Qave front may propagate. The characteristic lines represent
natural co-ordinates for wave propagation and the progress of the waves
or traces of the progress may be followed along these line.

ii) Discontinuities in geometry and material may be incorporated
easily in the numerical scheme when the MOC is used.
iii) The MOC is capable of handling arbitrary initial and boundary
conditions especially sharp inputs, so long as dependence on only two
inﬁependent variables is maintained.

iv) Numgrical,.integration by the MOC is stable and conformg
the Courant—Fiedrich-Lewy stability criterian. This will be discussed
in more detail in section 3.3.3.

v) Thé method is also known to be accurate since adherence to the
stability criterion ensures convergence to the true solution as .Ax
and At approach zero.

vi) Good agreement with some available solutions by transform methods
and very good»agreéﬁédt with-experimental-regults has enéouraged the

use of the MOC to obtain solutiongfor complicated'bééblems’wberé-no

:pther- numerical solution can deliver satisfactory results, .

vii) The MOC is particularly advantageous in the investigation of
finite structures where Vé§e reflections are involved.

Although the MOC is most suitable for one-dimensional spar ial
p;oblems, finite difference and finite element methods are much more
efficient in solving two dimensional spatial problems. The most
satisfactory approximation in one case is not necessarily the most
a?propriate in another case. Furthermore, the choice of the method
mﬁst depend on the required accuracy, the nature of the structure and
its complexities, the importance of shear and rotatory inertia.and the
type of analysis required, i.e. in time domain or frequency dom;in.

The method of characteristics was found to be most suitable for the

problem under consideration,
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3,3. Solution to the Timoshenko equations by the Characteristics

method

3.3.1. General theory

The method of characteristics (MOC) is used for the numerical

solution of first order and second order partial differential

" equations (PDE) of hyperbolic type.

Consider a quasi linear second order PDE in the form

2 2,
92u 97 u 9 -
a5%2 Poxat’ ?f_ : ' (3.1)

Where a,b,c,f are functions of x,t,u, u, and u;; the suffices x and t

being used to represent partial derivatives with respect to x and t.

This equation is said to be hyperbolic, paraboiic or elliptic according
as b? - Lac is positive, zero or negative.

For the hyperbolic PDE, there exists two distinct families of
real characteristic curves at each point (x,t). For the parabolic
case, the two characteristics coincide and they are of no significant
value in understanding the behaviour of the solution, whereas the-
elliptic form of the PDE ﬁas no'real‘characteristicsc

Knowledge of the characteristics concept is most important for
the hyperbolic PDE and the understanding of MOC is a powerful tool in
developing numerical solut{on. The MOC is the natural ﬁumerical method
for hyperbolic systems in two independent variables. The existence of
characteristics gives considerable insigﬁt into the expected behaviour
of a problem's solution, even before the solution is obtained.

The real characteristics of tﬁe PDE are curves in the real domain
of the problem and discontinuities propagate along the characteristics.
A step—by-steé process is usually used in building-up simultaneously the
characteristic-grid-and solving  the hyperbolic PDE at the grid points.

For regions in the physical plane where the first derivative of u
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exist and are continuous, one may write

du = udx+ udel - . ( 3.2)

d(u) = u dx + u_dt (3.3)

d(ut;\) = uxtdx + uttdt o ( 3.4)

writing equations (3.1) as §<= au  + buxt + cu . ( 3.5)

Equations (3.3) to (3.5) constitute a set of three simultaneous

1 three unk i
equations for the th nowns U X’ uxt and utt in terms of the

known functions u, u_ and u_. They can be written in the matrix form

X t
a b c u f
dx .dt o U . = d(ux)
) ©dx dt U, d(ut)

The second partial derivatives U g Uy and u . are uniquely
determined by this system of equations unless the determinant of the
coefficient ~ matrix vanishes. Upon equating this determinant to zero,
one find the characteristic equation

a b c
dx dt o | =o0
o dx dt

This yields the characteristic equation

a(dn)? - bdD) (@) + e (@)% =0 (3.6 )

The two roots of equation (3.6) define the characteristics and
they are real when equation (3.5) is hyperbolic-%i—-—%;—(bt«éi:zzzy (3.7)
When this holds, there is no solution at all unless the other deter-
minants of the system also vanish. This is based on the propefty that
adding a multiple of any row (or colum) of a determinant to a different,

parallel row (or colum) does not change the determinant value. One

can write for instance one of the three other determinants as

a f . ¢
dx d(ux) 0O|=0 )
0 d(ut) dt
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Qr ad(ux)dt - fdxdt + cd(ut)dx = 0 (3.8)

Equation (3.7) gives the slope of the characteristics, i.e. the
transformation of the PDE into canonical form and (3.8) defines the
conditions to be sqtisfied.

If the characteristics are real and the initial values are pre-
scribed along a non-characteristic curve, the initial-boundary value
problem can be solved. Furthermore, it follows that because disconti-
nuities are propagated along the characteristics in the(x,t) plane,
finite step input functions may occur and can be handled as will be
described later.

A necessary condition for-the co-ordinate given in equations (3.7)
to be non-singular is that the two real characteristics must be
different. Hence, one must take the plus sign in one case and the
minus sign in the other. For the hyperbolic case, where b2—4ac>0,
second order terms may be reduced to a standard form by one linear
transformation at any one particular point; one can write the character=-
jstic £ = const. and n = const. as roots of equation (3.6), which can
be reﬁritten in the form

a‘%&)z -bdH + =0 (3.9

which gives the slopes of the two families of characteristics

dt b - VEZ - 4ac

£= dx = 2a (3.10)
_dt b + /b2 - 4ac (3.11)
n = dx 2a -

Along the characteristics, u and u_ are connected by the respective

t

equatidns, obtained from equafion (3.8) as
fdt - a&ux - cu = o] (3.12)

fdt - anu_ - cu, = 4] (3.13)
These two equations, together with the identity relation expressed in

equation (3.2), are just sufficient to allow the step-by-step propa-

gation of the solution along the characteristic curves from a non-
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- characteristic initial curve.
In the present work, the method of cﬁaracteristics is used to
solve the Timoshenko equations as a system of two second order hyper-
bolic partial differential equations involving two independent variables
x and t and two dependent variables.

3.3.2. Numerical techniques

In the theory of elasticity, a beam is a three-dimensional
structure and its exact stress and displacement distribution are very
difficult to obtain. In a structure, it takes a finite, though small
time for any disturbance to be transmitted througﬁ it. E#citations
‘are propagated at either one of the two velocities, the dilatational
velocity or the equivoluminal velocity.

Because of the difficulties involved in the exact equations of
elasticity, one usually needs an approximate governing equation. How-
ever, for transient response study, tﬁe derived equations must be
total}y hyperboliec, otherwise their transient response is either
meaniﬁglesé or not obtainable.

fhe Timoshenko equations are the most suitable approximate

equations governing flexural transient response in beams. Although

'the Timoshenko equations are approximate, they do not alter the
hyperbolic nature of the exact elasticity equations and the Timoshenko
equations are practically essential for transient analysis.

The Timoshenko equations are totally hyperbolic and involve two
governing equations of second order or one fourth order equation.
Alternatively, it may be decomp&sed into foﬁr first order equations.
The system with two second order PDEShas certain advantages as compared
to the other two systems. The wave velocities associated with each
of the .variables appear explicitly in the second order equations and
the factors governing the propagation of discontinuities also appear

explicitly. A suddenly applied disturbance in §, or in the moment M,
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- propagates at the bar velocity Ci,-while the distufhance iny, or

in shear propagate.at the shear velqcity c,e
It is more convenient for the numerical solution to express

the second order governing Timosﬁenko equations in terms of displace-

ment, rather than the mixed stress-displacement formulation.

When the Timoshenko equations are written in this form, they are

- 2 -
oy 1 2% kae kPac 3y
B =T v -
x> ey 9t2  ET 0 EI ax
22y 1 3%y oy (3.14)
ax2 c22 at?  ax
where cl2 = E/P'; and C22. "1&5/?’ (3.15)

In order to use the same notation as in the computer programme
which will be utilized for the computation, the dependent variables «

and y are renamed as v and uy respectively and equations (3.14) are

rewritten as

32u, . 1 32u, . K?AG K2AG 3u
1 1 3 _ -
- = ul - = fl
9 x2 c12 at2 EI EI ox
82u, .1:2%u, Bu, _ (3.16)
3 . 3 1 _.
- = = f2

3 x2 c22 at2 9x

The boundary conditions are usually prescribed in some form of

generaiiied Stresses; they may be defined as

M= - EI.EB (3.17)
ox

9 3!.13 .

Q@ =k AG ~%“AG u, (3.18)
ox

To classify the Timoshenko equations according to equation (3.1),

one finds 2= 1, b 0 and ¢ = ——%—2 for the first of equationg(3.16)
1
and ¢ = --%—2 for the second of equations(3.16). Hence, the inequality
b2 - 4ac is equal to-—%—z and—g;i which is greater than zero 'for both
: 1 S 2
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\'équation of (3.16). Therefore the Timoshenko beam equations are
totally hyperbolic as stated before.
Using equations (3.10) and (3.11), the characteristics are

determined as

dt <1 dt 1
-t and =+
dx c1 dx roe2
or dx y ' dx
— =% ¢ and —=23 ¢
=51 G2 (3.19)
L de . dt

Hence, there exist four distinct real characteristics for the
hyperbolic second order systems &ith two independent variables x and
ﬁ and two dependent variables uj and uj.

Since the slopes of the characteristic are constant, the
characteristic curves are straight lines in the case of the Timoshenko
equations.

For regions in the physical plane, where the first derivatives

exist and are continuous, one. may write these derivatives using

equations (3.3) and (3.4) :

d(ui,x) = (ui,xx)dx * (ui,xt)dt
- * (3.20)
d(ui,t) (ui,xt) dx + (ui,tt) dt
where Z)uix . au’i
Ue. = » Ul t £ m———
X ax T st
2
3 u. 32u.
= ’ = —L
Yi,xx T 2 Uit N

Since only continuous u; are being considered, one can write according

to equation (3.20)

4

duy; = dx + uy dt

Yy x

dug = us’xdx + u3’tdt (3.21)
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Using equations (3.12) and (3.13), the characteristics equation

are written as

41
t+;

d(ul,t) cld(ui’ )

oy dx
< -clfldx = 0, along-az-- c1

I+

d(uy ) * cyd(uy ) = e fydx = 0, along 3¢ c, (3.22)
Equétions (3.21) together with equations (3.22) consist of a system

of six simultaneous equations which may be used to determine the six

varigbles gl, Qi;xgl,t’ ug, Uy

and u, _, if proper boundary and initial
» X 3,t

conditions are specified.

For the investigation of the propagation of discontinuities, equations

(3.16) are written in the following general form

2
Bzui"' 1 3y n . ' duy
— - — =+I (nijuj + Bi'j ) = R, (3.23)
0 X Ci ot J’gl 9X

Where u; = ui(x{t) but the ci’iaij’ Bij are continuous functions of x
. 2 2 . .
only. The solution for 3 u;/3x can be obtained from equations (3.23)
using equations (3.20), and is written as the characteristic equations
- . + =
dlug o) T cidlug ) = egRydx =0 SR (3.24)
along (dx/dt) =¥ c; respectively.

In the Timoshenko equations, the dependent variables u., s of

first and second order may suffer discontinuities which will be shown

and

to occur along the characteristic lines. Discontinuities in u,
! 9

u; . can occur when a finite step input (or jump input) is applied at a
’

particular x.

To investigate first order discontinuities, that is where

e . \ .“' .

[ui] =03, [ui,x] # 0; [ui,t] #0
Let A and B be two points on a cj or c{ characteristic on either sides
of a line which is not a characteristic, where

= u, "- u, +

Eﬁj u, (B) - u;(A) as B > A (3.25)

So finite jumps are represented by a square bracket, i.e. [hi]designates

tﬁe finite jump of the function (uj) across x = x (t).
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Using Hadamard's lemma which states that [ui] = 0 along
x = x(t) implies [u- t] + (dx/dt) [ui x-] = 0, one obtaines
’ ’
x

[, 6] = —ae o, (3.26)
Integrating equation (3.24) yields,

u: ,(B) - u, _(A) T £B c; d(u, ) = 7 ’pc.R.dx (3.27)

1,t i,t 1 i,x *‘& ii :
As B » A and dx approaches zero, the right hand side of -
equation (3.27) vanishes and the equation is reduced to

o5, T ey, l=0 (3.28)
substituting equatlon (3.26) into equation (3.28) yields '

~

. dx .
{ -—d—;ci}[ui J=0 (3.29)
t 14

since by definition [ui x] # O, one finds
. _ .

d
-7 - (3.30)
dt

as lines of the first order discontinuities.

Similarly for second order discontinuitics where
G = g, d= By, d =0
[ui,xx] # 03 [ui,tt] # 0 along x = x(t)

‘ﬁquatién (3.2:.35 can be written for both sides of x = ;((t)

and taking the difference, one obtains

1
[“i,xx] - ciz [ui,tt:] = 0 along x=x(t) . (3.31)

Using Padamard's lemma for the first derivatives

[vi,cd = (—qi—) [v; | (3.32)

Cdx
(1- 2( —dt‘ 12} [ui,xx] 0 (3.33)
I dx
But by definition [ui,xx] # 0, so dt - ¥ <; (3.34)
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' the equations for the families of lines along which second order
discontinuities occur.
Hence, the lines along which first order and second order

discontinuities occur, are the characteristic lines ici.
In order ‘to obtain tﬁe equations for the discontinuities, each
family of characteristics will be treated separately. Along dx/dt=c;
and using equations (3.23) and equation (3.24) with the choice of the
lower sign, one has the relation governing the magnitude of the jumps
d[:ul ,a+c d[u )J = c, 3 { a11[u ass [u:] dx (3.35)

In this equation, there is no summation on the i's, since [u] = 0
) i

Aloﬁg the characteristics, one has from equation (3.28)

Lo, ="_|-—“' ,;l ==y [y ©oT o (3.36)
Substituting (3.36) in (3.35), gives

d [“i,x] . d[“i,x__l

dej ..
-y J=8ii [y ] (D)
cjdx ’ ’

dx dx
d'- [ul x] 1 l aci_
=_(Blldx— ) N
[u, ):] 2 c; (3.38)

Thus may be integrated to give
. i

[ui,x] = K.c, J exp }/ @ ;;dx) along ci'" (3.39)
where K1 s . are constants to be determined from the boundary and
jnitial conditions.
From equation (3.39) and equation (3.36), the relationship for

the discontinuities of ui,t is obtained as

!

[og,e] = Kyoy exp A/Rypax | (3.40)

Along the characteristics dx/dt =-c;, the discontinuity equations
5

a . . . . .
of ui,x and u, i,t re obtained in a similar way, .‘Tt.ey are

[“i,x] - Kicz“i exp §f§f‘3iidx,
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[:ui,gj‘j.Kiczi exp }/f Biidx (3.41)

These relations are obtained in similar approaches by Chou (1965)
and Mengi and McNiven (1970). They were also previously discussed
by Leonard and Rudiansky (1953) and Jahsman (1958).

The numerical solution of tﬁe Timosﬁenko equations consists of

determining the values of the generalised'displacements u, and u

1 3

as well as their first derivatives at a position x and at time t. The
values of stresses and strains can then be calculated using the
raltionships given in equations (3.17) and (3.18). In order to carry
out the numerical caiculations, the pﬁysical x-t plane is divided into
'a network by characteristic lines, as shown in figure (32). On this
plane, the 1ine—%%—= c, divides the space-time domain into two parts,

a domain representing undisturbed particles and a second domain re-
presenting rod particles in motion. This second domain is of main .
jnterest for the numerical solution. The part of interest is subdivided
by means of a primary grid which is formed by means of two sets of
parallel lines ﬁaving equal but opposite slopes tel. Each grid element,
or so called mesﬁ.has diagonals measuring 2Ax and 2At, as shown in a
typical mesh in figure 3.2. Within eacﬁ.mesﬁ, a secondary grid is
constructed using characteristié lines witﬁ tﬁe slopes pa ¢y and drawn
from the point at which the unknowns are to be evaluated.

The whole characteristic network can be constructedAwithout the
prior knowledge of any of the generalized stresses since the slopes of
the characteristics depends oﬁly on the material and geometrical properties
of the beam. The typical mesh in figure 3.2 shows the primary grid
in fine solid lines and the secondary grid in dotted line. As the dotted
lines fall within tﬁe element, i.e. cl‘is always greater than Cys the
domain of dependence of a point is conserved.

The required properties at point 1 in figure 3.2 may be calculated
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"'if the corresponding values at neighboﬁring points 2,3, and 4 are known.
The characteristic lines of the secondary grid with slope z c, intersects
the primary grid at points 5 and 6 as shown in the typical mesh of figure
3.2; The values of the variables at point 5 and 6 are obtained from those
at points 2, 3 and 4 by linear interpolation. Ta order to perform
numerical calculation, tﬁe characteristic equations (3.22) are written
in finite difference form, where only central differences and averaging
operations are used.
Consider the typical mesh illustrated in gigure 3.1 along-%%—- ¢,
fuy () = oy (@) =y luy (1) = u @) = { x(1) - x(D))
along dx
—_— - C
: 1
-dt g
(1) -y (3)} + c. Iy (1) -u, (3D} =c. f.{ x(1) - x(3)}
1,x 171

dx _
along )

(1) - Uy (5)} - c {u x(l) = u, (5)} =-c, £, o {x(1) - x(5) }
élong—g%-= )

{ug (1) = ug (6)} +epliug (D =uy ()} = c,f){ x(1) - x (6))
(3.42)

: The values of the variables relating to points 5 and 6 are expressed
in terms of corresponding values at points 2,3 and 4 by linear inter-
polation, using the following relationships, derived from the geometry
of the typical mesh Ax = c At

Ax L c,t!

I'd

Ax 28e - Ath e Al

Ax At c,At
Thus A;‘l 2 ,
, Tae | 1e%2 - | (3.43)

. ‘\’,.
Hence ug (5) = u3 ((4) + {uy ((2) = uy (8] 21’
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. _ 2cy/e,
_F.us’t(4) + { u3’t(2) - 03’t(4)} .

(3.44)
1+ c2/c1 :

To obtain u, t(6) using equation (3.44), u, t(2) should be replaced
’ 4 .
by “3’t(6)- Similarly, u3,x(5)’ U3’x(6) are expressed in terms of
u3’x(2), u3’x(3) and u3,x(4).
Equations (3.44) are used to eliminate the values of the vari-
ables at points 5 and 6 from the second and third of equations (3.42).

The continuity equations are written according to equations

(3.21) for u; and u, along c;“and c¥in finite difference form as

u (1) - v @) =

i

u, (1) +u, (3)
1,x 1,x {x(1) - x(3)} +

2

(3)

“u (1) +u )
1,t { t()

¢ L 1,t

t(3)}

‘ ; o (1) + u (6)
uy(1) - ug(6) = % 2

{ xQ1) - x(6)} +
2

fu, (1) + u,  (6) |
3.t Bt () - e(6))
2 | (3.45)

The four cﬁaracferistic equations (3.42) and the two continuity
equations (3.45) constitute a set of six simultaneous equations which
are sufficie?t for the determination of Ups Uy o upgr U3 U3 and
u3’tin term éf previously calculated values at points 2,3 and 4,
However to start the numerical calculations, certain initial values
along the boundary x = O have fo be specified.

Along the boundary x = 0O, the two characteristics c1+ and c2+ are
absent and the numerical calculation is carried out in the half mesh
1,2,3 of the main network. If u, and u, are specified along x = 0,
the remaining four equations are sufficient for finding the remaining
four unknowns Uy ., Uy s Us o and U e However, in specifying
géneralised s;resses M and Q along X = 0, two new finite difference

equations must be obtained from equations (3.17) and(3.18) to replace

the missing characteristic equations along c t and c2+. Therefore, the
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system of six simultaneous equations necessary for the determination of
the six unknowns is again complete.

For the analysis of a finite bar, éddigional boundary conditions
at x = L. need to be specified. When tﬁe travelling wave reaches the
new boundary,'it is reflected and a second wave is created. This
situation is repeated at each subsequent reflection, In a bar con-
taining a discontinuity of cross section, this situation occurs\at an
earlier stage, when the wave reaches the position of discontinuity, a
part of it will be reflected and another part will be transmitted.
Flexhral wave are dispersive in nature and these reflections cause
additional dispersiomns which complicate tﬁe wave propagation consider-
ably. However, tﬁe method of cﬁaracteristics seemg to be the most

promising numerical procedure to deal with this complex situation.

3.3.3 Accuracy and Stability

The investigation of accuracy and stability is of great practical
interest in numerical solutions such as the method of characteristics
which employs finite difference approximation for the governing equations
along the characteristic lines.

Courant — Friedrich and Lewy (1928) were the first to propose an
explicit finite difference method for solving linear second order PDE,
They also discovered the conditional stability of certain finite
difference approximations and they proved the convergencé‘of the numerical
solution to the exact solution as Ax+ O when %%Ez.l, where Ax and At are
the space and time intervals respectively. This inequality condition
is widely known as C-F-L stability condition. They also introduced the
concept of the domain of dependence and pointed out that convergernce
required that the domain of dependence of the differential equation should
always stay within the domain of dependence of the difference equation.

In 1952, Courant et. al presented a difference metﬁod for the

solution of quasi-linear hyperbolic PDE of first order. They showed that
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. . -the error introduced by integration along characteristics wifh a fixed
mesh, in going from the exact solution at time t to the difference
solution at time t + At, was of type O (Atz) which is known generally
as first order accuracy method.’' They showed that the error becomes
zero as the mesh size At tends to zero.

Second order accurate finite difference formulations have been
also_suggested and tﬁeir stability and rate of coﬂvergence extensively
discussed. (Stetter, 1961:.Lax and Wendroff, 1964; Raganath and
Clifton, 1972). The statility investigation of mixed-initial toundary
value is not as developed .as-stability _and convergence considerations
of pure initial value protlems (Cauchy problem) fof which many
researches have been published. (Osher, 1969, 1972; Guéfafsson et, al,
1972; Ilan et. al, 1976). This is because initial boundary value
problems are much more complicated and oﬁly recently were subject to
increased interest (Kreisg3*1971;3Horton"19761and Gladwell et. al, .
1979). Most of these works areof 1@enera1 theoretical nature and the
practical aspects of the stability and convergence has been taken
up only recently.

Numerical results can be useful only when the numerical solution
converges to the solution of the continuous - problem. This convergence
condition was supplied by the Lax-Richtmyer(1956) equivalence theorem;
A"Given a properly posed initial-value problem and a finite difference
approximation to it that satisfies the consistency condition, stability
is a necessary and sufficient condition for convergence." There are
two excellent books which discuss error estimation and stability as
related to finite difference approximations to PDE. These are the books
of Forsythe and Wasow (1960) and Richtmyer and Morton (1967).

The method of characteristics }s exact in itself and when used to
the solution of hyperbolic PDE. However, the discretization of the

continuous structure by finite difference approximation which are needed
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for the numerical solution, must introduce certain inaccuracies. Let
. us consider the concept of stability and convergence in its relation
to error estimation (0'Brien, 1951; Haﬁﬁ;,lgss and ggdney, 1970) .

A difference schéme is called convergence if the solution of the
differnce (u?l) equatiqn tends to tﬁat of the differential equation
u(ilt) as At tends to zero. . -

. A difference scheme is called stable if solutions of the difference
equations are uniformly bounded functions of the initial data for all
sufficiently small At and all nAt in a given finite interval.

It is clear from the definitions that convergence implies stability.
Lax and Richtmyef (1956)- proved that tﬁe converse is aiso true, as was
described by their equivalence theory. |

Lét u(x,;) be the exact solution of the PDE

Let uéAbe the exact solution of the partial difference equation.

Let u? be the numerical solution of the partial difference equation
of the same problem at time t = nAt andposition x = ij, where At and Ax

are the mesh sizes used in the numerical calculation. Then the error e

is given as ‘ a n :
e = ulx,t) - uy = (u(x*t) - gg) + (Wg - uj) (3.46)

The error‘cénsists of two parts u -1z‘is called.the truncation or
discretization error and investigations of whether and how (u - ue)+0
as the grid size approaches zero is called the problem of stability and
Y.~ u? is called numerical error and its main source is round-off error.
The convergence and stability depend on the finite difference approxi-
mations and upon the initial énd boundary conditons.,

Forsythe and Wasow npticed that an-approximate method applied to a
PDE may converge in a sétisfactory way to a set of values that has
nothing to do with the correct solution of the problem. The mesh size

affects the truncation error and round-off error in opposite ways. The

first decreases as the mesh size decreases, while the second generally
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i increasgs- Therefore one cannot generally assert that decreasing the
mesh size always increases'tﬁe accuracy.

It is always necessary to observe a "stability criterion" to
prevent errors from amplifying so much as to make the calculations
meaningless. The "stability criterion” usually amounts to a restriction
on the permissible size of At in terms of the size of the spatial
increments. Otherwise the scheme can produce signs of instability.

In one space variable problem, the method of characteristics is
inherently stable because it always adﬁeres to the C-F-L stability
criterion, which requires-%%E 2 1 where ¢ is the largest of the wave
veiocities.' The MOC as an explicit method has an obvious advantage of
requiring relatively little computer storage as compared to the implicit
method.

Ideally, cﬁoosing a mesh size of infinitesimal size produces an
exact solution. However, tﬁere are several realistic restraints pro-
hibiting the selection of infipifesmally' small increments, since this
can cause the round-off error to become excessive and dominate the
solution, in addition to the inc;eased computer running time.

Finite difference approximations seldom acﬁieve more than a rather
modest accuracy. When stability criteria are observed, the rounding
off erfbrs are not amplified as time goes on, they merely accumulate .in -
proportion to the square.root"bfﬂthe number of steps in the calculation.
Nevertheless roundoff error and truncation error are propagated along
with the solution. Thus the fufgher the golution goes, the greater the
error becémes. Therefore, particular care must be taken in minimizing
the error at the beginning, although this disadvantage of error growth
is customary to all marching numerical schemes.

In writing the characteristic equations in finite difference form
for the mesh points, only central differencing and averaging operations

were used and the truncation error is of second order (sz) and the
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-approximation is called first order accurate.

However, .second order accufacy difference methods have been
developed by several authors and they are - useful in certain cases,
particularly by finite difference methods. But this does not necessarily
mean improved accuracy. (Lax and Wendroff, 1964; Stetter, 1961;
Ranganath and Clifton,’1972).

R

The central differnce approximations as employed in the MOC are
found to be stable and maximum accuracy is obtained by taking Ax = clAt,
for c1:>c2; In practice, it is better to take At = (%;)Ag rather than

some smaller value, since a smaller At would require additional calculation
and round off error. Also‘for practical considerations, it is desirable
" to use the largest possible At for a fixed Ax. (Fox, 1960).

| One can determine the accuracy and the rate of convergence of a
numerical scﬁeme by evaluating exact error for two step sizes, one half

of each otﬁer and then determining tﬁe ratio of tﬁese errors.

A second method for determining the error requires the numerical eyg-
luation of an'exaét solution when available for certain cases (Hoffman,
1973). Seve;51~.authors compared tﬁe numerical ‘'solution by the method of
characteristics witﬁ closed form "exact" solutions and obtained excellent
agreement. This was outlined in-section 3.2.4. :

For problems involving one space variable, the numerical scheme

adopted is inherentiy stable. For two space variable transient problems,
numerical schemes are not always stable. The question of stability
must be eétablisﬁed for each problem separately and is usually very
difficult.

A second criterion for stability was obtained by Von Neuman and
Richtmyer (1950) from a study of error growth which in its necessary
aspects was equivalent to the condition given by Courant et. al.(1928).
The Von Neuman stability criterion is mostly used to study the accuracy

of afinite difference approximation when periodic excitations are applied
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gnd it uses the fact that an initialexpone;;ial' function remains

exponential,

Assuming an initial value in the form

ulx 0) = u_e'™™ ‘. (3.47)
Then the solution of (3.47) at t = At will be -
“(X)At) = gcgr elké?; elkfub
=G e P2ty u(x,0) C(3.48)
and at t = nAt it will beiﬁ4
' fkn At
u(x,t) = (% CP % )nAu(x,O) (3.49)

The matrix : P oIRTHAE 52 Ci118d the amplification matfix.

| Von Neuman's condition for stability states that the eigen-
value of the amplification matrix should not exceed one in absolute
value for any real value of k.At. Tﬁis condition is discussed in the
works pf (Héhé; 1958; Fox, 1960) and has been applied by many authors. .
(Chiu -and Neﬁgért; 1967; Uckan and Ang, 1971 and Krieg, 1973).

Once the material properties are established, the necessary
truncation error depends only on the frequeﬁcy of excitation. In the
case of éiﬁ;soidal excitation, the frequency is'known. However, if no
prodominant frequency exists, as in the case of transient response, ;he
maximum significant frequency should be used and for a larger frequency,
a smaller At must be used. (Wylies and Streeter, 1976).

Strictly speaking, the study.of the truncation errors is only valid
if the physical quantities are sufficiently smooth to insure the
existence of the Taylor series expansion containing continuous bounded
partial derivatives about the point xlt. Tﬁerefore, at the wave front
where discontinuities may occur, the truncation error estimates are not
expected to hold.

Chou and Greif (1968) showed that the combined characteristic
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. . difference method was adequate in representing discontinuous wave
fronts and the error was only 1.27.

Chou and Flis (1975) also presented the excellent convergence of
the method of characteristics as applied to composite material
response, whereas finite element methods with a ﬁigh number of modes
sﬁowéd poor convergence.

Sobel and Geers (1973) showed the unsatisfactory convergence
behaviour of conventional finite difference formulations for transient
wave type problems.

The rate of convergence depends primarly on the truncation error
and if it is known, an extrapolation tecﬁnique can be employed to
achieve a high degree of accuracy with a small amount.of calculation .
The extrapolation method of Richardson (1911) can be applied to the
calculated values at any point.

The error of the numerical calculation e is said to be of hz-

type if it can be expressed in the form

n W2 4 6 .
e=u—-uj=¢1h» +¢2b, + dah + L, (3.50)
where h is the mesh size. If two values u, and Gl.ate calculated at
a given point, with Uy corresponding to a mesh size h and ﬁi corres-—

ponding to Hl’ then one may write (3.50) twice in truncated form

2
Uy + ¢1 h

u
_ - 2
u=uy 4By
iéliminatio;'Of ¢1 gives the extrapolated value of u

2 2

u = (E u

2 -, =2
Ly Ty e/t -y

) (3.51)

. 2 .
This formula is called the h™-type two point extrapolation.

Similarily if calculations with three different mesh size hl’ hl,ﬁlare
, . 2 .
performed, a three point h"-type extrapolation formula can be obtained.
Although the finite difference equations involve errors of h2 - type

there 1s no proof that the error in the calculated values of uy itself 1is
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-also of the h2-type, since the round-off error might influence the error
type of the numerical solution. Therefore, the type of error should be
investigated in each case.

A detailed investigation of error estimation by extrapolation tech-
nique apélied to finite differencing technique-as used in the method
of characteristics with error estimation of h-type ana h2-type has been
presented by Roberts, 1959+ Chou et.al, (1967) presented error estimation
for blast waves; Hoffman (1973) for irrotational and rotational flows
and Lister (1960) for isentropic flows.

Ripperger (1967) suggested the use of changiﬁg mesh sizes where
the numerical procedure could be started by a very small mesh size and
then increased to a coarser mesh. This scheme was particularly useful.
in high rate strains in materialé".&v’ifhvyiém stréss gignificantly lower -
than the applied stress. The author checked the accuracy of the numerical
results by halving the final mesh and found the difference between the
two solutions to be in the fifth and sixth significant digits,

In the present numerical analysis of the transient flexural wave
propagation according to Timoshenko equations it is sufficient to use the
C—F—L'stability criterion and a small time increment is required to

'
maintain a value of 1 for Ax/clAt. The characteristic lines of the pri-
mary grid are dx/dt=ic1‘and the interval of dependence of any point is
bounded-by the lines through it at slopes of :cl. Consequently, the
points used in the finite difference scheme must, for convergence,
always remain in an interval as large as that bounded by Ax/AtZCI-

It is desired to select the largest mesh size with a minimal
acceptable error. This is accomplished by choosing a mesh size in
such a manner that any further reduction in this quantity will not
alter the solution significantly.

The choice of the correct mesh size has to be decided for each
individual problem, depending upon the type of loading and the rise time,

the end conditions and the size and positon.of discortinuity.
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. o CHAPTER 1Y

COMPUTER CODE FOR TRANSIENT FLEXURAL WAVE PROPAGATION

The computer programme employs the metﬁod of cﬁaracteristics
for the study of transient response in beams subjected to eccentric
impact with zero ini?ial conditions and time varying boundary conditons.

The present programme is based on a computer code,‘MCDlT-Zl,
written by Mo;timer and Hoburg (1969) and capable of handling semi-
infinite regions of various structures such as shells, Mindlin plates,
bars and Timoshenko beans.

The MCDlT—Zl, a general-purpose computer code designed to solvé
one dimensiopal elastic wave propégation problems governed by one, two
or three coupled second order hyperbolic péftial differeniial equations,
uses a system involving two independent variables, one space and the .
other time. The dependent variables are thé generalized displacements
and the coefficients of the displacements and their first spatial
derivatives are functions of tﬁe spatial variable. The general theory
is given in the work of Chou and Mortimer (1966) w}.xere a system of n

“equations is analyzed by the method of characteristics, yielding closed
form equations for the pﬁysical cﬁaracteristics, the characteristic
equations, and the relations gbverning the propagation of discontinuitie§.

The governing equations are one of the following forms

32u 1 azu du
1 _ ISPIREE S
) 5 1 21 (4.1)
3x c ot ox
1
or 2 \
32u1' 1 9 uy aul du
-, 0 h *hup r fg feuy
ax2 c,” ot ax : %
2 2 (4.2
P 113 1 3 u3 aul 3113 ) )
._._.——;— 5 = h1 + h2u1 + h5 + h6u3
axz C2 ot X oxX
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2 2
or 3wy 1w du; du, du,
) =B TR Ry By By g4 £y
3x2 C12 atz 9x ax Ix
2 - )
37y, 1 3 uz 4au1 | | ?uZ . 8u3
2 - -, ) =gl - + gzul +83 . +: gl.uz-’-gs-———. + g6u3 (4. 3)
ox ¢ ot 9x ax 3%
puy 1 dhuy. o u, .,
) - A = h1 + h2“1 + h3 +h4u2 + hs + h6“3
9x c, ot ox 3% ax

One can see that the Timoshenko beam equations as given in

equations (3.16) correspond to equations (4.2) and the coefficient fi

and h, are obtained by the equality of the two systems

£ _ o? f o= ack?
2 EI * s El
£, = £ =0

For zero initial conditions and a semi-infinite beam, three
boundary conditions are specified along the line x = O, in the

following form

du ’ u au3 u

Al————ax \. + A2u1 + A3 o A4u2 Son A6u3 + A7at~ bl(t)

duy du, du, du,

Bl-——-—+ Bzul + B3 + B4u2 + Bs—"—"' B6u3 + B7'——'= bz(t) (4.4)
9x Bx‘ i ax . ) a-t
aul Buz 3u3 8u3

_— + C +C.—m+ C - ;
01 P + Cyuy + C3 9% 42 5 5% 63 * c7—-—~at b3(t)

..

Where A, B.s and Ci are constants (i = 1....7) and bl(t)’ b,y(t) and
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" bg(t) are functions of time at x = 0,

?ér.tne Timoshenko beam u, is always equal to zero andbz(t) =0,

The second of equations (4.4) is determined as

B&“Z =0 , s0 B4 =1
where B, =B, = B3 =B, =B, =B, =0 and the three equations of (4.4)
reduce ‘to two and all terms in u, vanish.

For properly posed b,(t) and b,(t), the constants A, and C; can be
determined in non-dimensional form in accordance with the various types
of end conditions.

In the present work the MCD1T-21 tomputer code has been modified
and further developed to solve one dimensional transient flexural wave
propagation problems in finite beams and finite beams with discontinuities
of cross sections.

The present TMOTCU computer code consists of three programmes:

(a) the TMOTCU-1 programme for flexufhi wave propagation in semi-
snfinite beams. (b) TMOTCU-2 programme for flexural waves in finite
beams, and (c) TMOTCU-3 programmé for flexural waves in finite beams
with discontinuities of cross sectionms.

TMOTCU-1,2 programmes have been used for checking the accuracy of
the present programmes where present numetical results are compared with
results obtained by other authors for semi-infinite and finite beams.

However,‘for finite beams with discontinuities of cross sections,
there are no theoretical or expiremental results available and the
numerical results were compared with experimental results obtained
during the present investigation.

TMOTCU programmes are written in Fontran 1V and are run on CDC 7600
computer, which has approximately 29 significant figures."Thus, round-
off error was assumed to be negligible.

TMOTCU-1 consists of a main programme and 17 separate subroutines
?

employed for evaluation of the variables of each point in the
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-characteristic network.

For the TMOTCU-2, 4 additional subroutines are needed to include
the effect of the second boundary, and 4 further subroutines are
required to take the effect of the discontinuity into consideration.
Thus, TMOTCU-3 consists of the main programme and 25 subroutines. The
number of the input cards is also &ifferent for each individual problem.

The subroutines may be divided into two classes, as presented in
figure 4.1: the first-level and the second-level subroutines. Each of
the.first-level subroutines is used to evaluate a different point in
the physical plane. The second-level subroutines are general in nature.
Their purpose is to define quantities or perform tasks which are needed
for several types of ﬁoints. Some second-level subroutines reamin the
same regardless of the type of problem or boundary conditions and are
called invariant. Other second-level subroutines are used to define the
problem and boundary conditons and thus are completely dependent upon
.. the nature of the particular problem. These are called user-specified.
For each new point, the main programme decides the point type and

calls the corresponding first-level subroutine. Each first level-

. ..gubroutien, in turn calls those second-level subrountines necessary to

evaluate qualities at the new point, as illustrated in figure 4.1.

~

Second level subroutines

Boundary condition time functions subroutines

These three fo;traﬁ subroutines specify the three time-dependent
functions by, b, and b, which form the right-hand sides of the three
boundary condition.equations (4.4) for a semi-infinite beam at x = O,

A second similar set of three subroutines is needed to specify the
three time—dependent functions at sécond boundary of a finite beam, at
x = L.

Discontinuity values subroutines

These two subroutines are used to assign the wvalues of the dis-
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, o e . duy .Q3u, 9du du .
continuities 1“'521:.5E2,:§§3 and -§E3 which may occur along the cl+
+ [ [
and c, characteristics. These values are determined as described in

section (3.3.2).

Printout quantities subroutine

This subroutine'is written to obtain the desired output. Any of
the quéﬁfities calculated at the mesh points and for any functions of
those quantities, such as bending moment and shear force, may be printed
out, as specified in dimensional and/or non-dimensional form.

Governing equation coefficient definitions subroutines

These three Fortran subroutines are used to specify the coefficients
f100000f6, glut...g6 and hloooo-hG in the governing differential

equations.

Solution matrix subroutine

This subroutine calculates the coefficient of the solution matrix
for the quantities at all points other than the first point in terms of
known Quantities previously evaluated. During its execution, the
simultaneous solution subroutine is called to‘solve the system.

Simultaneous solution subroutine

This subroutine solves 'n'"' equations in "n" unknowns by a matrix

jnversion technique. No zeros may appear along the diagonal of the
determinant (or matrix) of the coefficients of the unknowns.

First level subroutines

First point subroutine -

This subroutine calculates the quantities at point 1 in figure 4.2.
Tﬁe subroutine is called only once, at the beginning of evaluation of
quantities in the physical plane.

The quantities at point 1 and 2 are to be evaluated simultaneously
and a total of 18 unknowns exist: u

, u and v, (i = 1,2,3) at point

3

1 and at point 2. The 18 needed equations are obtained as follows:

i i,x

2 compatibility equations along each of the lines: 1-2, 2-3. 2-6
? ’ .
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1" Compatibility equation along each of the line: 1-7, and 2-4.
3 Continuity equations along 1-5.

2 Continuity equations along 2-3.

1 Continuity equations along 2-4.

3 boundary conditons at point 1

The compatibility relations are defined as those differential
relations between the first derivatives of the dependent variables ug
that necessarily must be satisfied along the characteristic lines.
They are also called characteristic equations.

The 6 continuity equations are written using equations (3.21) and
are used to eliminate the 3 displacement variables ups U, and ug at
point 1 and at point 2, leaving a system of 12 equations in 12 unkowns,
where the compatibility equations are written according to equations
(3.22). After a solution for the 12 derivatives is obtained, the 6
continuity equations are used to calculate the displacement variables
at point 1 and 2. The first point subroutine calls the following second

level subroutines during its execution. (see Fig. 4.1)

(A) The boundary condition time function subroutine.
(B) The discontinuity values subroutine.
(F) . The governing equation coefficient definitions subroutines.

to specify the compatibility equations.
©) The simultaneous solution subroutine to solve the 12
equations in 12 unknowns.
(D) The printout quantities subroutine.
The description of all subroutines is given in the general form for
three displacement variables and their spatial and time derivatives,

although for the Timoshenko beam u,, uz’x‘and u, . are all set equal to

P

Zero.

Input point subroutine

The input point subroutine is called at the beginning of each new
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dX ____1 characteristic line. It is used to defi i
cldt o0 define and print out the
quantities specified at a point on the first discontinuity line.

Boundary point subroutine

This subroutine is called at the.end of ehéﬁ'1ine, It is used
to calculate quantities at the points on the boundary x = 0 which
satisfy the equations along left running characteristic directions and
. which satisfy thevﬁgﬁndgry—condition equations. ' The 9 equations used
to calculate the 9 unknowns at point 1 of figure 4.3, in a way similaf
to that used in the first point subroutine, are obtained as follows

2 compatibility equation's;along 1-3.

1 compatibility equation along 1-4

2 continuity equation'sggioﬁg.1~3

1 continuity cquation along 1-4

3 boundary conditions at point 1

Ordinary point subroutine

This subroutine is used for each-point after an input point and
pbefore a boundary point, except for points complicated by the crossing
of the second discontinuity lines. The 9 equations used to calculate
the 9 unknowns at point 1 of figure 4.4 are obtained from compatibility
and coctinuity conditions along the characteristic lines. The system
is reduced to 6 equations with 6 unknowns and is solved si@ultaneously
as in the previous subroutines.

Case I subroutine

The case I subroutine is used for points complicated by the

crossing of the second discontinuity line with both of the lines dx

. ‘ ' CldtB-I
in the manner shown in figure 4.5.- After solution for the quantities at
. . . e . du 9
point 1 (Fig. 4.5a), dicontinuities 1n—§;3 and—g%B are added to the

calculated values so that the calculation may proceed to the quantities
at point 1' (Fig. 4.5b). For each of the two points 1 and 1', a

system of 9 equations in 9 unknowns is solved, just as for an ordinary
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point. The printout subroutine is only called once at point 1°',

Case II subroutine

The Case II subroutine is used for a set of points complicated by
- the.crossing of c2+Aseé6na discontinuity line in the manner shown in
figure 4.6. The procedure for this case is similar to that used in
‘that used in the case I subroutine, with quantities at both points 1’
. being calculated in the same subroutiﬁe, as shown ;n fig. 4.6b and 4.6¢c.
The same second level subroutines are called during execution for each
of the two blocks.
Finite beam

For transient flexural wave propagation in a beam of finite length
2, the reflected wave from the other boundary at x = L must be considered.
In addition to the initial and boundary conditions at x = 0, a second
set of end and boundary conditions at x = L must be specified. In the
programme TMOTCU-2 developed for the finite beam, there are 21 separate
subroutines. - 17 of these subroutines are'tﬁe same as used for the semi-
jnfinite beam and are as described before. Additional modifications
are needed in the main prégramme to provide the requirements for calling
- the following subroutines at the end of the beam (x =yﬂ). Figure 4.7
shows the characteristic network for a finite beam,

Beam end point subroutine

The beam end point subroutine is used to calculate quatities at the
points on the boundary x = F'such as point 1 of the typical mesh
represented in figure 4,7. The 9 equations needed to claculate the
9 unknowns are similar to those of the boundary point subroutine, which
are the following

2 compatibility equation's along 9-1

1 compatibility equation along 6-1

2 continuity equation's along 9-1

1 continuity equation along 6-1
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.~ ~ 3 boundary conditions at point 1

The contition at the end of the subroutine are formulated in such
a w#y‘that the required subroutine, to calculate the variablés at the
next pdint backwards along the beam, is called.

Beam end boundary condition time function subroutine

" These three subroutines are used to specify the three functions
..el(t), ez(t) and e3(t),which form the right-hand sides of the three

boundary condition equations corresponding to x = £. J

aul _ , 8u2 “3u3 . aul .
Dl—-———‘ax + D2u1 + D3——3X + D4 2 + DS.—a—}—{-'O' D6u3 + D7W‘ el(t)

v

\'aui‘ éhﬁ‘ * dug “3u

+Ewu, + E——+Eu, + E.—+ E_u, + E - e (t
Ey o 2"1 3 ax 4Y2 5 ax 63 % F7 ot ez( )
(4.5)
uy juy e 3uy- £
P ——+ Pyup + Py——+ Pu, # P4 Puy 4 Py ey (1)

X 9x ax ot

-Where Dl"' 7, 1.7.E7-and Pl-...P7 are constants and they are deter-
m1ned together w1th e (t), e (t) and e (t) in just the same way as
described for the boundary conditions x = O.

Finite beam with discontinuity of cross-section

The computer code TMOTCU-2 is further developed to write TMOTCU-3
computer code for studying transient flexural wave propagation in
finite beam with discontinuity of cross section at any position along
the beam and with any area ratios of the cross section. Tn figure 4.8,
the characteristic network of a finite beam with discontinuity of cross
section are represented, together with a typical mesh at the arca

discontinuity, *where reflection and  transmicsion of
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- - - the incident wave occur. The basic subroutines are identical to those
of TMOTCU-2 and in addition, 4 subroutines are developed in order to
incorporate the matching conditions a£ the discontinuous cross sectional

. area. ' Thus TMOTCU-3 employed a total of 25 subroutines.

The continuity of velocity and angular velocity from region 1 to

region 2 are (see Fig. 4.8)‘

au Bu '
(———) - (———)
' 3¢ 1 ap 2
" du Bu
(;—391 - <g—-)2
t (4.6)
du au
2
(—) =(—-—)
e 1 a2

The equilibruim of bending moment and shear forces at the area

of discontinuity are written as

du_ - .‘ Ju

1 . 1,.
E L)y = Bl ()
X ox
3u
K% AG {( —3), - (g} = K, A8,L - 3, - )),}

Bu Ju .7)
D, = D, =0
X 9x

It is assumed that the beam was made of the same material
throughout its length and that the discontinuity is due to the change
in dimensions only.:- This assumption simplifies -the protlem in the way
¢{hat the characteristic 1ines_remain'straight and with the same
slope along the whole beam, since c1(1) = cl(2), andlcz(l) = c2(2){
However the extension of this programme for the case of discontinous
beam which is made of two different materials, should not represent

any additional difficulties, except that the computation would
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- require major alterations due to the different values of the propa-
gation velocities ¢, and c, in the two materials.
.The additional subroutines required for tﬂe TMOTCU-3 computer code
are the fbllowing

Discontinuity subroutine

This subroutine is used for the calculation of a typical point
at the area discontinuity, as shown in figure 4.8, It solved 18
equations in 18 unknowns. These are obtained as follows

2 compatibility equations along each of 9-1 and 3-1'

1 compatibility equation along each of 6-1 and 4-1'

3 continuity equations along each of 5-1 and 5'-1'

Six additional equations are obtained from the matching condition
as given in equations (4.6) and 4.7), which are used to eliminate the
variables at point 1'. The six continuity equations are applied at
point 1 and 1' to obtain the displacement variables u;, U, and Ugs
leaving the system of 6 equations which are solved simultaneously.

Discontinuity solution matrix subroutine

This subroutine is similar to the solution matrix subroutine
described before.- The discontinuity of the cross section is considered
in determining the coefficients of the solution matrix for the quantities
at points 1 and 1', in terms.of the known quantities at the neighbouring

points.

Case I discontinuity subroutine

This subroutine is similar to case I subroutine and is used for
points at the area discontinuity complicated by the crossing of the
+ . . . dx

c.¥ 1ine with both of the lines
2 cidt

continuity solution matrix subroutine is used to set up the system of

= -1 of the block. The dis-

simultaneous equations and the same second level subroutines are

called as in the case I subroutine.,
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- Case II discontinuity subroutine

This subroutine is used for a set of points complicated by the
crossing of the c2+ line inlthe same way as shown for case II sub-
routine in figure 4.6. In the first block at the area discontinuity,
the discoﬁtinuity solution matrix subroutine is used, whereas in the
second block whiéh is not at the area discontinuity, the solution
matrix subroutine is used.

At the end of the'beam, at x = L, the subroutines described before
for the case of finite beam are used. However, the change in the
geometry of the second region due to the discontinuity of cross
section, has to be considered.

TMOTCU-3 computer code for transient flexural wave propagation

_in beams with discontinuity of cross section is the most comprehensive

version of the three TMOTCU programmes and actually incorporate the
other two versions. TMOTCU-3 is listed in Appendix A.
The sequence of .the numerical calculation is as follows:

1. For each problém étudied, one set éf input cards is required and
the initialkconditons utilized by the programme are zero. From the
iﬁitial~conditibns;”bouudary;conditions.and equations governing the
propagation qf discontinuities, the valueé of the nine variables Usy
ui,t(i = 1,2,3) are known at points 1 and 2 of the characteristic
network repfesented iq figure 4.7. The values of the variables at

point 3 are then computed through a simultaneous solution of the

governing characteristic equations and boundary conditions.

2. The épmputation then proceeds to the = =1 characteristic line

x

cldt
through point 4. The values of the nine variables are then
computed at point 5.

3, The known var@ables at points 3 and 5 are used to compute the

variables at point 6 through a simultaneous solution of the

- governing characteristic equations and boundary conditions,
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5,

"The computation then proceeds to the dx

cldt- -1 characteristic

line through point 7. Knowing the values of the variables at

point 4,5 and 7, the values are then computéd at point 8,

'This process continues by solving sets of simultaneous equations

to obtain the values fo the variables at points 8, 9 and 10, in

that order. Again, the computation shifts to the next %531- -1
' 1

~‘esharacteristic line and solves for the values of the variables

at the-mesh points along this line (e.g., 12, 13, 14 and 15).

This procedure continues until the values along the :th- -1

- characteristic through the Moth*point are obtained.

The number of lines to be evaluated Mo can be increased for a

calcﬁlation of longer time history, or decreased due to computer

‘ memory space requirement limitations and computer run time.

This is achieved by changing Mo in the common statement.

The output of the programme includes a preliminary printout
1isting of all input data which was read into the main programme.
The printout of the quaptities at mesh points will then begin

as specified in the printout quantities subroutine which can be
altered to give the output at the reqﬁired points in time and

space. i
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Second wave line

b) Evaluation at point 1’

FIG45 A CASE I POINT
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CHAPTER V

NUMERICAL RESULTS FOR FLEXURAL WAVE PROPAGATION IN BEAMS

S.1. The shear coefficient k2

Timoshenko (1921) defined k2 as the ratio of average shear
strain across a section to the shegr strain at the centroid, a
coefficient which takes into account the shear stress distribution
over the cross section of the beam. Under static conditions and
assuming a parabolic distribution of the shear stress, the shear
coefficient which depends on the shape of the cross section, was
given by Ti@oshenko (1921) as 2/3 for rectangular cross section and
as 3/4 for circular cross section. This definition neglects the
effect of warping of the cross section on its rotatory inertia
and taking this effect into account, Géns (1931) derived an
approximate fromula for k2 by the principle originally suggested
by Foppl (1897) where the work done by the forces warping an
element must be equal to the potential energy due to shearing dis-
toffion. The shear stress distribution was again taken as parabolic
distribution. Gons obtained the values kz = 5/6 for rectangular
section and k2 = 9/10 for circular seition.

. The values of ﬁhe shear coefficient k2, which 1s based on the
static parabolic distribution, is suitable for very low frequencies
and slender beams, but in the higher modes, the shear stress dis-
tribution ié,largest near upper and lower surfaces and k2 must be
modified in order to obtain the best results which the Timoshenko
equations are capable of achieving.

In a second paper, Timoshenko (1922) used k2 = 8/9 for a fixed-
fixd beam of rectangular cross section in order to bring the prediction
of his frequency equation into close agrcement with the two-dimensional
theory of plane stress. Furthermore, Timoshenko suggested, although

not shown in the paper, that the value of k2 can be derived for a
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- beam of rectangular cross section by comparison of the two theories
just mentioned and the following expression can be derived where
v denotes Poisson's ratio

K2 =51+ v) / (6+5 ) (5.1)

A more accurate expression can be derived for a bar of circular
cross séction by equating the expressions of the frequency equations
from the Pochhammer-Chree and Timoshenko theory for flexural waves
in an infinite beam. The shear coefficient k2 is then determined as

K = 6(1 + v)2 ] (7 +12 v + 4 v2) (5.2)
where a series expansion for the Bessel functions appearing in the
exact frequency determinant should be employed. Therefore, in higher
modes the shéar coefficient k2 is not only dependent on the shape of
the cross section but also depends on the Poisson's ratio and the
frequency.

There have been since many attempts to obtain the value of the
shear coefficient by various theories -and there is no general agree-
ment in the litergture about the exacp‘effeétslof the cross section
~geome£ry-énd'of mode number on the evaluation of k2 value which tends
to vary between 9Q,€67:and 1.0 and numerous attempts have‘been made to
evaluate k2 theoretically and experimentally.

Sutherland and Goodman (1951) presented various methods of
obtaining the shear coefficient k2 for beams of rectangular cross
section. One method was based on.the prediction by the exact solution
of the general elasticity equation that the wave velocity in a thin
rectangular beam must approach that of Rayleigh surface waves for
small wave lengths and k2 was determined as 0.8696 for v = 1/3. A
second method described by the authors was based on thickness shear
mode of vibration with the circular frequency ﬂCs/r/TEQCS/EZVr,
thch gives K2 = n2/12 =0.8225. This value was also obtained by Mindlin

and Deresiewitz (1954) who suggested that if this value is used, the
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. Timoshenko equations give good results in agreement with experiment -
for both low and high frequencies.

The value of k2 was obtained experimentally in connection with
Young's modulus measurement from flexural vibrations and comparison
with theoretical defivation was made (Gons, 1931: Pickett, 1945;
Spinner et. al., 1960; Nederveen et. al., 1964 and Ritchie, 1973).

A new approach to the derivation of the shear coefficient was
adopted by Cowper (1966) who derived the Timoshenko equation by
integration of the equations of the three dimensional theory of
elasticity and obtained a general formula for k2 and various cross
section configuratioﬁs. Their expressions for a rectangular cross
section and for a circular cross section are respectively

k2 = 1001 + v) / (12 + 11 v) (5.3)
K= 6(1+v)/ (7+6WV) (5.4)

In a second paper in 1868a, Cowper -showed ‘the k?'valtes derived
by his expression for a thin beam were in close agreement with the
thickness shear mode theory. Cowper also pointed out that although
his results were derived from the lowest mode of vibration, they also
were applicable to higher bending modes.

Spence and Seldin (1970) pointed out that since oﬁly the product
of k2G can be determined from flexural resonances , the relative error
in G is as severe as the relative error in kz. They obtained experi-
mentally kz = 0.873 for a rectangular cross section and k2 = 0,923 for
a round bér, where v = 0,.287.

Carnegie and Thomas (1972) investigated the dynamic behaviour of
turbine blades, modelled as cantilver beams of rectangular cross section
and noted the marked effect of shear and rotatory inertia in the higher
modes.k2 was chosen as 0.834 which is close to the values of Cowper
and Mindlin.

Alami and Atzori (1974) matched the results of the Timoshenko
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- equations to the results based on a three dimensional form of
extended Rayleigh-Ritz energy method and concluded that the flexural
frequencies of a simply supported Timoshenko beam are better
expressed with two different values for the shear coefficient in the
two branches of the flexural modes.

Ghosh (1974) presented the effect of various values of k2 on
frequencies of vibration and mode shapes up to the 5th mode and concluded
that the frequency ratios of the higher modes were lower, the greater
the k% values. The effect of variation of k2 was most significant in
the higher modes.

Kaneko (1975) gave a comprehensive review of the history of the
Timoshenko shear coefficient and its estimation and based his calculation.
on the values suggested in general terms by Timoshenko (1922).

Hsu (1975) suggested a modification of Cowper's theory, which
led to k2 - values greater than unity, where k2 was defined as the
effective shear coefficient since it included the effect of pressure
gradient over the beam éross section. Hsu agreed with the opinion
expressed by one reviewer of his brief note that since his derivation
was based only on deflections, there is no guarantee that the stresses
resulting from the present approach agree with the Timoshenko theory.
Although this newly suggested value, which is greater than unity, may
include some effect not included in the Timoshenko theory, it is not
useful for the Timoshenko equationms.

Downs (1976) used Hsu's value to obtain agreement with the
additional shear oscillation frequency mode in a uniform simply sup-
ported Timoshenko beam. However, the value of k2 greater than unity
does not give any reasonable comparison with the basic modes of the
flexural motion of the beam.

Rosinger and Ritchie (1977) assessed experimentally the k2 values

derived by Kaneko and obtained excellent agreement between theory
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. and gxperiment for the first gix natural frequencies .

Stephen (1978) showed that the value of kz as obtained by
equating the Timoshenko phase velocity prediction to the exact phase
velocity as calculated by Hudson (1943) was only suitable for long
wave length propagation and should not be used for the approximate
discription of flexural wave motion according to the more important
first frequency spectrum. He also found that for higher frequencies
the k2 value differed little from the value given by Kaneko.

In a second paper in 1980, Stephen obtained the shear coefficient
employing the distribution in a beam performing flexural vibration
and subjected to uniform body force or gravity loading. The derived
expressions were compared with those of Cowper and Kaneko for several
cross sections.

Table I presents the various values used for the shear coefficient
for circular and rectangular cross sections. In most cases the
expressions for k2 were evaluated for the Poisson's ratio v = 0.29,
usually found in the literature for steel.

Ideally, one should use different values for the shéar coefficiént
k2 depending on the frequency range. However, in order to keep the
concept of single correction factor for each cross section and material
i.e. if k2 is to be taken as constant, and chooge atthe ;ame time a
suitable value for transient loading, the values used in this thesis
were based on the derivation of Cowper (1966) which were derived by
integration from the three dimensional theory of elasticity. The
Cowper k2 values are close to most k2 values except the ones based on
.the parabolic static shear distribution which are unsatisfactory for
impact loading with a wide range of high frequency spectrum.

The values used for the shear coefficient in this thesis are
unless otherwise stated, as defined by equations (5.3) and (5.4) and
are for v = 0.29:k2= 0.8856 and 0.8492 for circular and rectangular

cross section respectively.
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-5,2. Comparison of the transient response with results obtained

by other solution methods and with experiments

The computer codel. MOTCU-1 for a semi-infinite ,beam and TMOTCU-2
for a finite beams were both checked for accuracy by comparing their
numerical results with various experimental, numerical and exact
solutions available in published papers, reports and Ph.D. theses.

The cases considered were those of a semi—infinite beam subjected
to a ramp platform bending moment, a semi-infinite beam subjected to
a half-sine input bending moment and a cantilever beam subjected to
a ramp platform bending moment at the free end. The beams in all
these cases were of circular cross sections except the cantilever beam
which was éfirectangular cross-section,

. The developed computer code is applicable to problems of eccentric
4impact where a bendfng;ﬁoémnt is applied at one end of a free-free,
simply supﬁbrted, or cantilever beams. The boundary conditions can
be formulated in terms of bending moment, shear force, angular velocity
and transverse velocitf. .

The fMOTCU-l te 3 computer programmes are equally applicable t;
problems of lateral impact:of finite Timoshenko beams with various end
conditions. The case of léteral impact of a simply supported beam

i
of rectangular cross section is also investigated.

Computer processing time for the problems ju;t described on a
CDC-7600 computer was from 30 seconds to 110 seconds depending on the
mesh size and the time span for which the bending moment distribution
‘was evaluated. In most cases, the discussion is confined to bending
moment distribution due to its importance in engineering problems.
However, the time wise distribution of 0, w and V are all included in

the programme output.

- 111 -



“5.2.1.5emi ~infinite beam subjected to eccentric impact

The results of the present numerical solution by the method of
characteristics were compared with a solution by Kuo (1958) who
investigated the bending stresses in a bar subjected to eccentric
longitudinal impact, induced by a striking bar of the same dimensions
and'matériél. The -properties and:dimensions.are given in'Table 11, for
a‘low.carbon‘mi1d$steel.bér.with a 'slenderness ratio.L/r = 100 whére L

is thé -length of the beam and r its cross sectional radius of gyration.

Kuo based his theoretical solution by the method of characteristics

_on a physically unrealistic value of ¢y = ¢y and therefore the bending
moment time distributions of this case were plotted in non-dimensional
form at two beam stations x = 0.1 and 0.3 Qherg x = x/L.

Kuo also obtained a modal super position solution which was based
on the value c,/c; = sz/E = 0.3. The coefficients required for the
present numerical solution are listed in table III and boundary con-
ditions corresponding to a ramp platform bending moment at the end of
the free-free beam are according to table IV for a maximum unity input

bending moment

M(0,t) = 10 t for 0O¢ t< Eo
(0,%) = 1 for t>t,
Q(0,t) = O for all t
The non-dimensional mesh size Ax = Ax/L was chosen as 0,01

and corresponded to a time step of 1;22285 us. Figure 5.1 shows the
time distribution of the bending moment at beam stations x = 0,1 and
X = 0.3 in non-dimensional form for M vs. E, where M = ML/EI and
t = clt/L. The time history was limited as by Kuo to the initial
stress build up with t = 2.4 (i.e. t = 293,5ps).

The comparison between the present results and Kuo's solution,
as shown in figure 5.1, is good as both curves are reaching the same

peak value. However, there is a small shift at the initial portion
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“of the present curve which starts at € = 0.1 for x = 0.1 and .’
at €t = 0.3 for x = 0.3. These points represent the earliest possible
arrival of any bending wave. Therefore, the present curves can be
considered to give a better picture of the wave propagation than Kuo's
curve which start at a later position and Kuo mentioned this phase
shifting when he compared his theoretical results with experimentally
opsg:yed data. At the beam position X = 0.3, Kuo's theoretical
solution shows large oscillations stafting at t = 1.8 and there is no
logical expianation for their appearance in the case of a semi-infinite
beam, where no reflections are considered, unless they are caused by
numerical instability.

Kuo suggested that the-beam response was not partiéularly'sénsitive
to the change in k2G/E and that curves based on taking a higher value
kZG/E invariablylead ahead of those based on a lower value. The curves
obtained by TMOTCU-1 er sz/E = 0.3 and 1.0 were presented in figure
5.2 and showed that the effect of the change in kZG/E upon the bending
moﬁent distribution is significant and cannot be neglected.

The effect of varying the rise time of the ramp platform moment
are presented in figure 5.3 for the beam stations x = 0.1 and 0.3.
Three different rise times Eo = 0.025, 0.1 and 0.4, as well as a step
input moment, were considered. The step input moment required a
cmaller mesh size of Ax = 0.0025 for the numerical solution. It is
seen that there is a large difference between the initial portions
of the curves, and the amplitude increases as the rise time is
decreased and approaches the step input response curve as a limiting
value. The difference between the later portions of the curves is
much smaller and the amplitude becomes almost constant as time
progesses and approaches slowly the initial value of the input bending

moment.
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. 5.2.,2, Semi~infinite beam subjected to short bending wave pulse:

Figures 5.4 and 5.5 compare the theoretical results of the
present work with experimental results obtained by Ripperger (1955)
for the eccentric impact of a steel ball of }'in.diaon the end of a
cylindrical steel bar of 0.516 inch diameter. The pulse shape for
the applied bending moment was approximatgd for the numerical
solution by a half sine wave, obtained by the superposition of
solutions for the continued sine wave differing at the start by half
the period, as given in Table IV. The pulse duration was assumed
as tré14.28us and the sine input function was

M (0,t) = 27.14 sin (nt/14.28)
The material properties and the dimensions of the beam are given in
Table II and the required coefficient for the initial and boundary
~conditions are given in Table III.

The agreement between the numerical results obtained by TMOTCU-1
programme and the experimental data of Ripperger is good as shown
in figure 5.4 for beam stations x/d = 2 and 6; and in figure 5.5
for beam stations x/d = 10 and 22 where d is the bar diameter. The
results are presented in nondimensional form for the bending wave

- - - M.d = <t . .
m vs, T wherem = FI and T = 3 The range of the time for the

bendiﬁg moment pulse was much shorter than the time it takes the .
reflected pulse to reach the considered position and the response was
the same as for a semi-infinite free beam.

Various authors used Ripperger's experimental data to check their
theoretical solutions. Plass (1958) obtained good agreement for his
numerical solution by the method of charactéristics. Plass defined
C = élz/cﬁz = E/k2G and assumed C = 4 for Q =0,3 and k2 = 3/4, The
exact value of C is obviously 3.467. In Plass's work C was an important

parameter used for estgblishing the limits of the transform solution

and for evaluating the integrals for one case to compare with the
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- numerical results of the MOC., The value € = 4 gives c, = 2?2 and
was seemingly chosen for convenience in obtaining transform solutions,
but it does not correspond to the properties of the material.

Parker (1973) compared analytical results obtained by a modal
solution with aﬁémentéd series, with the experimentally observed data
of Ripperger. Parker was able to present good time-wise agreement,
but the amplitude of his analytical predictions were much higher, some
of them were more than twice the recorded response, Parker suggested
the following explanation: "The fact that the amplitude of the
experimentally recorded pulse drops off more rapidly than the analytical
predictions may be due to internal damping, strain rate effects, or
limitations of the experimental appratus with regard to frequency
response". This explanation can not be considered as convincing for
the very large deviations of the analytical solution from experimental
results. One is inclined to believe in the inadequacy of analytical
modal solutions for impact problems of short duration, particularly
eccentric impact where flexural dispersive waves are to be considered.

Even the use of a large number of modes, as by Parker who used
up to 800 modes did not seem to improve the usefulness of the method
for this kind of problem.

5.2.3. Cantilever beam

The accuracy of TMOTCU-2 computer programme was checked by
comparing its results with an example solved by Koenig and Davids (1968)
for a cantilever beam subjected to a ramp platform bending moment at
its free end, where the effect of reflected waves in a very short
cantilever beam of 1.5 inch length and 1 in x 1 in cross section. The
value of 1.0 1b.in end moment with.a rise time t = 5.174us was assumed.
The property data are listed in Table II and the required coefficients
for the numerical solution'are given in Table III,

The results of the present method are in a very good agrecement.
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“with those obtained by Koenig and Davids by a so called "Direct
analysis'" which was based on a finite difference scheme.

Figures 5.6 and 5.7 show the bending moment and shear force
distribut&ons at position x = 0.5 inch of the cantilever beam in
comparison with the results obtained by Koenig and Davids. Both
results are in very good agreement:ana x is measured from the built-in end.

The reflected bending wave from the built-in end of the canti-
lever beam arrives at the station x = 0.5 in. at t = 13 pys after which
oscillations with a large amplitude are noticed. The peak at t = 23 psg
is considerably larger than the peak at t = 15 us and both peaks are
larger than the unity input bending moment.

Figure 5.7 shows the effect of reflected waves on shear force
distribution which causes the shear force to take on values other than
zero as time increases, whereas in a semi infinite beam, the value
of shear force would approch zero with increased time.

In order to compare the wave propagation in cantilever beamsg with
other end conditions a numerical solution was obtained by the use of
TMOTCU-2 for a second much longer cantilever beam and its bending

“moment time history are compared with free-free and simply supported
end conditions, és presented in figures 5.13-ahd 5.14 for various
beam stations and discussed in section 5.3.3.

5.2.4., Lateral impact of simply supported beam

Dengler et.-al k1952)~§tudied}ﬁ1alyticallv and experimentally the
problem of lateral impact of a beam of uniform rectangular cross section.
. The beam was simply supporte& at the ends and was struck transversly
at the mid span by dropping a steel ball,
The beam length was sufficiént to ensure that reflection from
the beam end did not return to the beam station considered within the
time span considered at beam stations x/h = 4 and x/h = 8 forlwhich

. . e - M. .
the bending moment prediction m = §~%— vs. time t are presented .
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The authors used the Hertzian theory for the theoretical pre-.
dictions of the force-time history and observed close correlation
between theoretical and experimental results.

The analytical closed form solution was derived for an infinitely
long beam and contained complicated contour integrations and their
evaluations caused several difficulties due to singularities at both
ends of the integration intérval.

The properties and dimensions of the mild steel square beam are
given in Table II and the coefficient required for performing the
numerical solution by the method of characteristic éré listed in
Table III. The shear force applied at the centre of the beam was
assumed to be of a half sine form with an amplitude of 15.6 1b and a
duration of 14 us, as given in a general form in ?able Iv.

Comparison of the present results with those of Goland et. al.
are shown in figure 5.8 for the positions measured from the point
of impact. The;compgrison.showéd-thg excellent reproduction of the

transient components of the records in the theoretical solution obtai-

"ned -bv the TMOTCU-2 computer program. The asreement of the present

numerical results with the experimental observation was ds good as. -

the agreement of the analytical results obtained by Duhamel integrals.

Forrestal and Bertholf (1975) éomﬁéred the Goland et. al solution

'.wifh"their numerical soliution for a 1atéfa1’impact nroblem obtained by

two dimensional finite difference method. They found general agreement

between the two sets of results except for higher frequency oscillations

predicted only by the numerical solution.

The two dimensional solution is only suitable for flexural wave
propagation in beams of rectangular cross—section which could be solved
as a plane strain problems. However, Flexuéal waves in beams of
circular cross section are three-dimensional problems and cannot be

solved by the two-dimensional finite difference method.
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Furthermore, in order to apply the finite difference scheme even
to rectangular beams, one Peedstx:assume the input to be in. the form
of Dirac delta: functions or sinosoidal functions whichlare not always
adequate for the prediction  of the input force. Other difficulties
are involved in handling discontinuities and boundary conditions which
dictate the introduction of a fictitious viscosity term in order to
reduce the spurious oscillatioms.

All these factors made the finite difference scheme unsuitable
for solving various types of‘flexufal-wave propagation problems in
Timoshenko beams particularly in beams with discontinuities of cross
sections. Therefore, it was decided to use the numerical solution by
the method of éharacteiistics throughout the present work,

5.3. Finite beams subjected to end moment impacts

5.3.1., Free-free beam

The problem of a free-free finite beam subjected to a ramp plat-
form end moment suddenly applied at x = 0, was solved by the method
of characteristics. The moment time relations at various stations
along the beam are plotted. For a semi-infinite beam, the value of
the bending moment would approach the value of the maximum input
moment. However, for the finite beam the bending moment reaches
higher values due to reflection from the end of the beam.

The material properties used for the numerical computation are
those of.mild steel, which are listed in table II, together with the
geometrical data of the cylindrical beam. The bending moment time
relations in non-dimensional form are shown in figﬁ;es 5.9 and 5.10

for beam stations x = 0.1, 0.3 and 0.5.
The ramp platform input bending moment M = ML/EI was assumed to
. - . - c t
reach the value of unity after a rise time t =-—%f—= 0.1 (equivalent

to 12.285 us). It is seen that until reflected bending waves have

reached the beam station under consideration, the curves of the semi-

-118 ~



infinite and finite free-free beam are identical, "that ‘s until
T=1.9 for x =0.1, £ = 1,7 for x = 0.3, and t = 1.5 for x = 0.5.
After that time, the effect of the reflections is manifested in the
oscillations occuring in the bending moment distribution as time
progresses. It was found that the value of the bending moment
immediately after the time required for the reflection to reach the
corresponding position did differ, although in.a very small amount
not noticable on the graphs, from the value of the bending moment in
a semi~infinite beam. However, much larger differences are noticed
at later stages. For the positions x = 0.1,'the first two alternating
bending moment peaks appear at t =3.6and t = 3.7, A much larger
oscillation in thé value of the bending moment distribution is seen
at about t = 4.5 and t =5.0 where M = 1,17 and M = 0.88 respeétively.
The number of alternating‘peaks in the bending moment distribution
increases and appears at earlier times at the positions X = 0.3 and

x = 0.5.

The effect of the reflected wave is considerable and must be taken
into consideration. Furthermore, the differgnce between the moment-
time relations in a finite beam and a semi-infinite beam at various
stations increases as the number of reflections reaching the considered

positions increases. The time history of the bending moment was obtained
for t ﬁp to 7 which includes 2-3 reflections.  The mesh si;e used ‘for
thé“ﬁﬁterical evaluation was Ax=0.0025. The recuired.constantSAAi and Ci
at x=0 and D; and P; at x=L are given in Table III. for a;réﬁq‘plétform

bending moment applied at x = 0, as given in Table IV.

5.3.2. Simply supported beam

The same ramp platform bending moment of M= 1 and rise time t = 0.1
was applied at x =0 of a simply supported beam of the same properties
and dimensions as the one used in section 5.3.1. The required

s D

coefficients Ai’ Ci and Pi for the numerical solution are listed

i
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-.in Table III and the timé history of the bending moment at the beam
stations x = 0.1, 0.3 and 0.5 is presented in figures 5.11 and 5.12,

Comparison of the bending moment distribution in the beam when
the ends are simply supported with those of the free-free beam show
that the value of the bending moments in the simply supported beams is
much smaller and the build-up is much slower. However, both sets of
results show a similar pattern in the initial build up, but deviate
more and more from each other as time progresses.,

in figures-5.11 and 5.12, the effect of the change of mesh size
is investigated. Three different mesh sizes of Ax = 0.005; 0.0025
and 0.00125 are used in order to check quantitatively the difference
between the three curves obtained by different mesh sizes, chosen by
successively decreasing the mesh éize to half its value,

The difference between the three curves with various meshes for
the beanm position x = 0.1 is seen to be very small (about 1%) until
the time E%= 3.6. The maximum error occured at ? =5and t = 6.3 and
had the value of about 5% when the difference is related to the initial
unity input value of the input moment. The maximum error within the
time span considered for the bending moment-time relation at beam
stations x = 0.3 and X = 0.5 had the values of 5%;at t = 6.6 and 7%
at t = 7.0 respectively.

It is noticed that the maximum amplitude occured at the same
instant by ;11 three megﬁ sizes and the maximum differences were con-
centrated at the peak values. Furthermore, the difference between the
bending moment values obtained by two successive mesh sizes was
decreasing and the error accumulation was not increasing as time
progrésses. A smaller mesh size always requires a longer processing
time in the computer and can be considered és a serious limitation
whichwrestricts theuse of the method of characte{istics to relatively

short periods of time due to economic considerations. However, with
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- the vast increase in processing speed of modern computer, this

disadvantage has become less significant.

5.3.3. Effect of end conditionsfv.

In addition to the cases of a free-free beam and a simply supporéed
beam previously discussed, the case of a cantilever beam-subjected to
a ramp ﬁlatform input bending moment at the free end x = O wés also
considered. The bending moment distribution of all three types of
boundary conditions are plotted together with the curve of a semi infinite
free beam in figures 5.13 and 5.14 for beam stations x = 0.1, 0.3 and 0.5.

The bending moment at each considéred station of the cantilever
beam is exactly the same as that of the free beam until the time after
reflections from the ﬂuilt-in end have reached that position.,

All compared sets'of results were obtained using the same mesh
size of Ax = 0.0025, cor;esponding to a real time step of 0.306 us
and the coﬁputer code specially developed for finite beams (Programme
TMOTCU-2) as described}in chaptera4.~'

The alternating sense of the bending moment was clear1§ noticed
and indicated the presence of higher frequencies due to sup;rposition
of propagated and reflected waves. In all cases the dispersion, the
velocity of pfopagation being a function of wave length, is ¢learly
demonstrated, . The fluctuations at beam positions X = 0.3 and X = 0.5
are more dominant than at X = 0.1.

In comparison with the moment time relations in beams with
various end supports, it is seen that the highgr peaks are reached
at earlier times due to reflection from the free end, whereas the
build up in the simply supported beam was the slowest. In the case
of the cantilever beam the-highest peak value of M = 1,19 was reached
at £ = 5.6 within the time considered and at beam position §‘= 0.1.

Tt is expected that several rgflections should be considered for

the estimation of the maximum stresses in the structure,
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The boundary conditions are prescribed in generalized displacement
variables and generalized velocities. The generalized stresses are
alsd used as boundary conditions and are of practical importance in
the present solution of the flaxhtal wave propagation problem according
to the Timoshenko beam equations.

The number of generalized stresses can be equal to or greater than
the number of generalized displacements, However,'the nqmber of
generalized stresses used as a boundary condition is equal to the -
number of generalized displacements., Therefore, in the case of the
Timoshenko beam, one needs to specify only two boundary conditions at
x = L, in addition to two initial conditions for y and . A.properly
posed boundary gondition is to specify generalized stresses or - .
generalized displacement. At a particular position, one may specify
either stresses or displacements, but not both,

Properly posed initial and boundary conditions are those which
assure a unique solution of the equations.,

At a free (unsupported) end, the bending moment and shear force
.are zero ie. M = Q = 0, and at a simply supported end, the bending
moment'and transverse velocity are zero, i.e. M = v = 0, " For the
case of the built-in end of a cantilever beam,the transverse and
angular velocities are both zero, i.e. v =LQ_= 0. Various types of
loading can be applied to various types of end conditions. Plass
(1958) used generalized stress boundary conditions and Boley (1955)
used generalized displacement formulations at the boundaries. Chou
(1965) discussed in his repoft both types of boundary conditions.

5.4, Finite beams with discontinuties of cross section

5.4.1. Free-free beam

. 5.4.1.1. The variation in diameter ratio

The computer programme TMOTCU-3, based on the method of

characteristics and described in chapter 4, was developed to solve
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“the system of Timoshenko beam equations (4.3) subject to the
conditions of equilibrium of forces and moments and continuity of
displacements, as given in equations 4.6 and 4.7.

The values of the coefficients Ai and-Ci at x = O together with
the Di and Pi at x = L are exactly the same as the ones used for the
finite free-free beam and are given in Table III,

The TMOTCU-3 programme included special subroutines to evaluate
the values of M, Q, Wand V at x = Li’ where the radius of the beam
was changed from Rl to RZ’ L1 being the length of the beam in region 1
with a radius Rl’ as illustrated in gggure 4.8,

The bending moment distribution was obtained numer&cally until
the non—dimeﬁsional time t of about 2, corresponding to a real time

- Clt
of 245 us, where t =

and with a bar velocity of ¢, = 5111 m/s and

1
L = 0.625m., All parameters and material properties of the beam are

given in Table II.

The mesh size used for the numerical solution was Ax = 0.25 x 152
which is lthe mesh size required for the finite beam and 1/4 the .
mesh size required for the semi-infinite beam,

The adequacy of the present mesh size was checked by carrying
out numerical solutions with a mesh size A% = 0.125 ; 162 and it was
found that the effect of the change in mesh size was mainly con-
centrated at the points of peak values and the maximum difference
was less than 57, whereas solutions based on a larger mesh size of
AX = 0.5 x 152 were found to deviate from the present result and reduced
the effect of reflected énd transmitted pulses through the position
.of discontinuity. . |

Fur;hermore, the difference betﬁeen the results based dnA§-0.25x152
and AX = 0.125 x 152did not accumulate -as time progressed and

therefore the mesh size Ax = 0,25 x 10_2 was considered small enough

to give satisfactory results for the finite beams with discontinuity
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“of cross section.

The discontinuity of cross section was introduced at the middle
of the bar, 1i.e. L1 = 0,5L and the diameter ratio DR was varied. Five
different cases of DR = 0.9, 1.0, 1.1, 1.5 and 2.0 were investigated,
where DR = RZ/RI and with R1 = 12,5mm. The case DR = 0,9 corresponded
to a begm where the diameter of the second region was smaller than the
first regioniand DR = 1,0 was-the case of the continuous beam without
any discontinuity. All other cases were with an increased diameter
in the second region.

The bending moment responses of the cases discussed were presénted
in figure 5.15 for beam stations x = 0.1 and 0.2 and in figure 5.16
for beam stations X = 0.4 and 0.6, where the position X = 0.6 was in
the second region i.e. after the position of discontinuity.

It is seen that the bending moment in the second region with an
increased diamgter are much smaller than the stresses in the first
region. The curves of Ax = 0.6 for DR = 0.9, 1.0 and 1.1 were
presentgd in figure 5,17 separately from the curves for DR = 1.5 and
2.0, given in the second graph of figure 5.16, due to the different
scales needed.

The :values of the bending moment at Ax = 0.1 for all beams with
discontinuity showed oscillations starting at about t = 1.4 and there
were alternating signs of oscillations within the range of t = 2,
whereas the curves of M - t for a finite beam presented in figure 5.9
showed the first oscillation at t = 3.5, This indicated clearly the
effect of reflected waves from the position of discontinuity arriving
at position Ax = 0.1 after the time t = 1.4.

The deviation from the M 4'él curve corresponding to the finite
beam with DR = I:O became larger with increased diameter ratio which
also resulted in an increased amplitude.

The bending moment distribution at the position x = 0.6 after
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- introducing the discontinuity, presented in figures 5.16 and 5.17,
indicated an increased oscillation with decreased diameter ratio
with a maximum amplitude for R2 = 0,9R, ten times the maximum
amplitude in the bar with R, = 2R,. This showed a significant effect
on the bending moment time history.

Figures 5.18 and 5.19 showed the effect of the change in
diameter ratio for a second set of beams with the discontinuity
positioned at L, - 0.3L, i.e.nearer to the end x = O where the input
ramp platform bending moment was applied.

The response curves were of the same pattern as those for the
discontinuity at L= 0.5L, except that the oscillations appeared
earlier and with larger peak values, The earlier arrival of the
reflected waves is easily explained by the shorter distance to be
travelled from the new positions of discontinuities.

The effect of the variation in diameter ratio on the peak values
of bendiﬁg waves was demonstrated in figure 5.20 which presented peak
values of the bendipg moment versus diameter ratio for the bheam
stations x = 0.1, 0.2, 0.4 and 0.6 of the free-free beam subjected to
a ramp platform end moment with a rise time Eo = 0.1 and with the
discontinuity positioned at L, = 0.3L. This graph was derived from
the curves of figures 5.18 and 5.19 and showed that the peak values
incfeased with increased diameter ratio for all beams at beam positions
§;g'o,1, 0.2 aﬁh'0.4, whereas for the beam station x = 0.6, the peak
values decreased with increased diameter ratios,

5.4.1.2. The effect of change in the discontinuity position

The bending moment distributions are presented in figure 5.21 for
length ratios LR = 0.2, 0.3 and 0.5, where LR = LI/L and for a diameter
ratio DR = 1.5 ,

All curves are for bending waves transmitted through the
discontinuity of cross section except for the curve LR = 0.5 at beam

station x = 0.4 which was for a reflected wave from the discontinuity.
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At position X =0.4the q@plitudes of the alternating oscillations
increased with increased length ratio and the arrival of the pulse

was also directly related to the position of thé discontinuity, since
a reflected pulse from a position of discontinuity nearer to x =™, { was
manifested in larger peak values with alternating signs. However, the
same conclusion could not be derived from the curves for the beam
position x = 0.6 which showed the maximum amplitude for the response
curve of the beam with LR = 0.3, whereas the other two curves had their
maximum amplitude for LR = 0.2 and 0.5 were showing amplitudes of the
same magnitude. This could be caused for example by the superposition
of a transmitted wave through the discontinuity and a reflected wave
from the end of the beam for LR = 0.3; whereas the case of smaller
amplitudes could be due to the arrival of reflected and transmitted
waves of compression and tension cancelling each other.

5.4.113 The shear force distribution

Figures 5.22 and 5.23 illustrated the shear force distributions
for various diameter ratios DR = 1.0, 1.1, 1.5 and 2.0 with the
discontinuity at the middle of the beam’l!lB 0.5L. The non-dimensional
shear force Q is plotted at the positions x = 0.1, 0.2, 0.4 and 0.6.

The effect of the ramp-platform bending moment input on the shear
force time history is seen to cause much larger oscillations in the
shear fofce than in the bending moment response itself. There was a
sharp ‘jump in the value of the shear force at t = 0.2 for beam station
x = 0.1 due to the input bending moment and several oscillations with
alternating signs started after t = 1.1 due to the arrival of reflected
waves from tﬁe positién of discontinuity and increased with increasing
diameter ratio. This showed that the amplitude of the reflected wave
increased when the diameter of the second region increased, i.e. the
amplitude of the transmitted wave decreased since the total of the

reflected and transmitted wave should be related to the incident wave
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- which is the same for all the different discontinuities due to the
input bending moment and the diameter of region 1 having the same

values. However, the relation was not ggsily;dbtg{“gble‘due to the

-

dispersion of transient flexural waves._

The effect of reflection and transmission of transient waves
was strongly manifested in the shear force distribution curves, since
in comparison with bending moment responses, the shear force responses
represent a lower derivative of the displacement variable,

5.4.2?-?Sim§1y shpforted beam

5.4.2.1, The variation .n diameter ratio

Figure 5.24ldemonstrated the transient bending moment response M
due to a ramp-platform bending moment input with a rise time Eo- 0.1
as in the case of the free-free beams. The discontinuity was positioned

.at L1 = 0.5L,

The bendiné moment distribution was presented for beam station
X = 0.4 and 0.6 before and after the discontinuity and the curves were
similar to those of figure 5.16.

It is seen that the oscillations and peak values increased with
increased diameter ratio for beam station X = 0.4, whereas for the beam ’
station x = 0.6 the amplitude of the bending wave increased as the
dimension of the cross section in the second region became smaller.,

The second graph of figure 5.24 illustrated only the bending
moment time histories for the beams with diameter ratios DR =-1.5 and
2.0, whereas the curves for DR = 1.0 and 1.1 reached much higher peak
values and were off the scale. This is in agreement with the fact that
a greater percentage of the incident wave is reflected with increased
diameter in the second region. This is closely connected to the use
of beams and tubes with discontinuities of cross section for the purpose
of filtering varioﬁs frequency spectrums.

The peak values of the oscillations in the simply supported beam
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-were smaller than those of the free-free beam represented in figure 5.16
for the same beam stations.

5.4.2.2. The shear force distribution

The shear force distribution was presented in figure 5.25 for beam

stations x = 0.4 and 0.6 for various diameter ratios DR = 1.1, 1.5 and

2‘0'

.

The large fluctuations in the values of the shear forces 0 were
directly proportional to increased diameter ratio.
The maximum value of tﬁe shear force was reached for x = 0.4 at
t =0.8 and alternated its value to a similar value of opposite sign at
t =1.15
At the positiop x = 0.6, the peak values of the alternating
osciliation were reached at t = 1.15 and 1.45 and were followed with

several smaller oscillations.
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Authors Year 'Bxpressiéns‘for-k . Y] Shear coeff.
Timoshenko 1921 - - 0.750 | 0,667
Timoshenko 1922 - - 0.952 {0,889
Gons 1931 - - | 0.901 {0.833
Olsson 1934 | rectangle:

20(1+v) / (24+15v) 0.3 - (0.912
Pickett 1945 | circle:
‘ 24.612(1+v)

29.538+5,942v+64.,077 v¢ | 0.33 | 0.850 | 0.833
Davidson et. al 1946 - - 0.80 -
Sutherland et. al.! 1951 | rectangle:

16[1-£1 2v)k2/£(]-v)]. 0.33 - |o.870

(1-k")=(2-k“)™

Mindlin et. al. 1954 - 0.33 | 0.847 | 0.823
Gaines et. al. 1966 - 0.30 | 0.90 {0.833
Cowper 1966 | circle: -

6(1+v)/ (7+6v) 0.29 | 0.8856|0.849

rectangle:

. L10(1+v)/(12+11v)

Spenge et. alit ’ [1970:| - 0.33 | 0.850 |0.873
Carnegie:et.. al. |[1972 - - - 0.834
Ritchie 1973 - 0.304 - 0.833
Kaneko 1975 circleé 9

6(1+v) 7/ (7+12v+4v)

rectangle:

5(1+v)/(6+5v) 0.29 | 0.923 [0.866
Rosinger et. al. |1977 |‘circles >

6 (14v) “/ (7+12v+4v) |

rectangle:

5(1+v) / (6+5v) 0.292] 0.924 {0.866
Stephen - - 1880 c1rc1eé

' 6(1+v) /(7+12v+4v )
rectangle: 9
5(1+v)

o2 (5o 4202785
6+11v+v° (5-m +?§%r—5

TABLE I: Comparison of shear coefficient values
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Problem & Author

Semi-infinite free-free

Cantilever beaw

Simply supported

Finite beam &

Parameter Kuo (1961) Ripperger (1955) |Koenig (1968) Goland et,al (1°55) | various end cond.
Density p 0.8x10%kg/m®> | 0.283 1b/in’ 0.3 1b/in> 7.187x10"%1682/in® | 0.8x10% xp/m’
Modulus of Elast. E 209x10°N/w? | 30x10% psi 30x10® psi 305108 psi 209x10°N/m?
Poisson's ratio v ‘ 0.3 0.29 0.3 0.29 0.3
Modulus of Rigid. G 80.38x10° N/m?| 11.628x10° psi 11.538x10% psi | 11.628x10% psi 80.38x107 N/m?
Shear corr. coeff. k 0,78 0.886 0.833 0.8687 0.886
Longt. wave vel. ¢, 5111 m/s 202.351:103 in/s 196.57::103 in/s 200:(103 in/s 5111 m/e
Snear wave vel. c, 2790 n/s 118.553x10° in/s |111.26x10° in/s| 112.92x10° in/s 2983.5 o/s
Beam length & 0.625m 36.12 in. 1.5 in, 96 in. 0.625m
Beam dia. d 25mm 0.516 in. - - 25mm
Beamvheight h - - 1.0 in. ; 1.0 in. -
Beam depth b - - 1.0 in. 1.0 in. -
Cross-sect. Area A 490.87 m? 0.209117 in2 1.0 in? 1.0 in.2 490.87 m’
Cross-sect. Moment of area I 19.1748x10"%a%| 0.384x1072 in.% [0.08333 in.® |0.08333 in.* 19.1747x10 0
E1l 4007.525Mm? | 104.3975x10°1b 7o 2.5x10° 1b in? | 2.5x10% 1b in? 4007.525 nn’
12ac 30.776x10% ¥ | 2.1537x106°1b. | 9.6112x10% 15 |{9.5636x10° 1b 34.958x10° N
fise time of inp. moment tr 12.228 ps - 5.174 s -7 12.228 us
Slenderness ratio L/r 100 280 6 384 100
x2ac/e1 7680m "2 20.6268 in 3.8445 in"2  |3.825 in2 8723n"2
Mesh size Ax 0.0025m 0.0516 in 0.003125 in 0.025 in. . 0.0025 m

- 14.28 ps - 14 us -

Duration of § sine inp.

TABLE II: Material properties and parameters of various examples for the

. Timoshenko beams




End cond. Type of load’. Ceneralised fct, i Coefficients of equations 4.4%4
1 2 | 3] 4} 5| 6] 2
]
Free H(x,t) = M, bl(t) - MOIEI Adg | -1 ] 0 0 0 0 ol o
end ? 2
x=0,L 1 Qlx,t) = 0 bs(t) = Q/r°AG=0 ¢,.P ol ol a1 o
M(x,t) = O bl(t) = ¥ /EI=0 A | -1 0 0 0
11
2
Qx,t) = Qg Byt maniac 6B | oty o o] of o
' 3y
11T | wix,t) = wg bi(t) st w, (A;D; ] OlO | O O Of Of #1
Q(x,t) = 0 b3(t) = Q/k2AG ¢,y l.ol-1lofl ol«] of o
v M(x,t) =00 by(t) = M,/El Ai’Di -1] 0 ol o [} o} ©
)
v(x,t) = vg b3(t) = Vo C; Py olof o 0 0 o}
Simply |V M(x,t) = M, by(e) = M/EL A | -1f 0| of of of of o
Supported .
end x=0,L v{x,t) =0 b3(t) -;%f-vo ci'Pi o o 0 0 0 0] +1
vl M(x,t) = O b (r) = MO(EI ALD | -11 0 0 of o o 0
2
Q(x,t) = Q, by(t) = Q /x"AG |c,,P, of-1 0 o| <1 ol o
. w(x,t) = w b, (t) = dv/at A0 o] o ol o o] «1
V(x,t) = 0 b3(:) = 3y/3t=0 C; Py o] o 0 0 o ol +1
M(x,t) =0 b, (t) = ¥ /EI A;4D; 1 -1 0o o] o} of o o
VIII .
vix,t) = v by(t) = oy/st=y |C. P, o] o 0 0 0 ol %
—
Built-in M(0,t) = M, by (t) = M /EI A; <1l ol of ol ol o o
x=0,L 2
X Q(0,t) =0 ba(t) = Q/k'AG=0 ¢ ol -1 0 o] =1 o] o
w(l,t) =0 b () = ay/at D, o] o 0 o] o o] =«
v(L,t) = O b3(t) = 3y/at Pi o]l o 0 0 0 o] +1

% The loading can take any specified form such as

sinosoidal or exponential,

%% TFor the Timoshenko equations the coefficients By‘- E

other Bi and !i are zero.

step, ramp platform,

= 1 and all

TABLE II11 Specified boundary conditions and the correspondinp coefficients.
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. “Input” Tunctions

Time interval Illustration

ﬂSépinﬁm'mw' o MGy
: A
b; (t) = Y = conmst. t>0
Y is one of M,Q,u,V. .
Ramp platform MGy
X
b (t) =Yt/ t, 0O<tzxt
bi (t) = YO t > tO t
. . . MOy
Sinosoidal input vt
b. (t)=Ysin;’—T£ t>0 t t

Half sine input
super position of two

cont., sine fct. differjing

to t.72— t
- by 3 i
Trapezoidal input MG VW

The difference of two ramp
platform fct. diff. by

pulse duration t

to

* The initial conditions for M,Q,w,V are zero

TABLE IV: Time variation of_ the input functions
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FIG. 51 DIMENSIONLESS M-t CURVES
Free - Free semi-infinite beam
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CHAPTER VI

EXPERIMENTAL STUDIES ON TRANSIENT WAVES

6.1. Historical tackground -

More than 100 years ago, theoretical investigations of longitudinal
and transverse wave problems were extensively developed as was discussed
in chapter 2 and section 2.1.

However, the experimental work was lagging behind the theory and
early investigations were limited to the measurement of over all effects
such as the time of impact and impact velocity.

The use of strain gauges from the forties onwards gave an important
boost to the experimeﬁtal wqu'and the continuous measurement of forces
and.straiﬁs became possible.

By the end of the fifties most of the phenomena related to longi-
tudinal wave propagation were experimentally studied; However, the
investigation of flexural wave problems was far from complete. This
caused a revival of interest;iﬁ this field and experiments for various
types of impact using strain-gauges and to a less extent photo elastic
methods.

The experimethI studies of flexural waves have been mostly con-
cerned with unifofm and infinite structures, but these experiments
provide the basis for further work to study the behaviour of nonuniform
structures. This made it possible to carry out the present experimental
investigation of flexural waves in beams with discontinuities of cross
section subjected to transient loading.

Classically, there are two cases of impact where it is possible
to calculate the stresses set up during collision, assuming there
are no permanent changes in the dimensions of the colliding bars i.e.
no plastic deformations.

The first case was investigated by St. Venant (1867) and was that

of longitudinal impact of two long uniform bars. According to

- 156 -



St. Venant, the elastic impact initiates’in each of the colliding
bodies a rectangular pulse travelling away from the plane of contact
and the duration of impact is equal to the time taken by the wave to
travel twice the length of the shorter bar. However, this is only true
if the ends of the bars are perfectly plane and meet instantaneously
over their full area.

St. Venant treated the two bars as a single body during the
collision. In each bar, the impact was assumed to initiate a rectangular
stress pulse travelling away from the plane of coq}act and the magnitude
of the longitudinal stress can be deriQed from the relationship'between
the pressure p and the particle veloEity 4.

P = pcoﬁ
The condition of perfect plane- impact is almost impossible to realise
in experiments.

The second case was that of colliding bodies where the surfaces
are spherical, cylindrical or ellipsoidal and has been treated by
Hertz (1882). The Hertz theory is based on a quasi-static model and
obtains, . for elastic conditions, a relation between the distance a
thfough which.the colliding bodies are pressed together and the force
of impact F R =kal?% !
where k is a constant depending on the elastic constants of the.
collidingrbodies and their geometry in the region of contact.

For crossed cylinders of radius r and both of the same material

with a Poisson's ratio v and a Young's modulus E,

k = 2E /e/3 (1-v2)

The Hertz theory should only be used as gﬁide lines since the
theory:uses assumptions which break down at high velocities where the
Hertz contact time could serve only as a lower bound on the contact time.
For the case of a sphere striking a beam, the motion of the beam reduces

the force, but the contact time remains about the same.
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Finally it could be concluded that the theory of St. Venant
applies to impact between the end faces of long rods, whereas the
He;t;ftheory applies when the time of transit of an elastic wave
through the colliding bodies is small compared with the time of contact
as in the case of two colliding spheres (Goldsmith and Lyman, 1960). |

Sears (1908).showed that both these theories were complementary
and whgn the ends of long rods were rounded, the history of their
impact could be deduced by combining the theories of St. Venant and
Hertz, where the last theory was applied to the region immediately
around the surface of contact. Sears carried out the first experiments
confirming the theory just déscribed(Sears,1912) .

Later calculations .and comparison with strain measurements
demonstrated the need to introduce a gradually rising wave front, as
Sears had proposed,1rather than the abrupt jump of the Saint~Venant
theory.

To follow up the experimental research on wave propagation in
solids during the past 30 years, one must select from several hundreds
of published papers, theses and reports.,

Most of the reported experimental studies have been concerned with
longitudinal wave propagation in various types of structures., Experi=-
mental investigations of flexural wave propagation are mainly con-
éentrated on various types of transverse impact problems, whereas flexural
wave propagation due to eccentric impact are not plentiful and where
reported seldom match theoretical predictions to any desirable degree
of accuracy.

In this chapter, some of the experimental studigs and applications
of longitudinal and flexural waves in rods will bé reviewed. No attempt
will be made to be comprehensive, but merely to bring out results and

investigations in areas related to the theoretical work of the present

jnvestigation.
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Comprehensive reviews of experiments in impact loading are given
in several excellent books by Kolsky (1953), Goldsmith (1960), Johnson
(1972), Bell (1\973‘),’Graff (1975) and Miklowitz (1978).

Several articles reviewed the experimental studies elastic wave
propagation. Some of these are the surveys by Ripperger (1952), Tavies
(1956) , Kolsky (1958), Curtis (1960) and Rawlings (1963).

A large number of experimental studies have been concerned with
plastic deformation of beams subjected to high velocity loading due to
longitudinal and transverse impacts. However, these investigations are
beyond the scope of the present work and will be not discussed here.

6.2. Longitudinal waves due to impact

6.2.1. Longitudinal impact of two bars-.

Based on the earlier theoretical studies, Sears (1907) was the
first to provide experimental results for the problem of longitudinal
impact of two metal rods with rounded ends. The rods were of 1/2 inch
diameterAwith rounded ends of 1 inch radius for the curvature. Two rods
of equal length were suspended by fine cords and in their lowest posjition,
the rods were co-linear and just in contact. The impact velocity was
ca. 5 in/s.

Sears was able to obtain the velocity of propagation, as given by
St. Venant (co = /§75), by observing the duration of longitudinal impact
(t = 2L/co). Sears found that the impact duration was slightly greater
than the time‘required to travel twice the length of the bars and

" attributed the difference to the so called "end effects",

- To obtain a more accurate estimate for the duration of impact,
Sears suggested a combination of the Hertz theory and the St. Venant
theory. This gave a better agreement with experimental reSults, where

, the time of contact was measured electrically. The investigations of
Sears enabled him to explain some earlier doubts casted on the theory

because of disagreement with previous experimental results.
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- Ramsauer investigations.(1909) gave more strength to the conclusions
reached by Sears where the propagation of stress waves and the time of
contact between two rods was discussed.
" The longitudinal impact of a bar with a shorter bar as a striker
showed that the duration of impact increased with increased cylinder
length &, without being zero for £ = O. There was an additional com=
pression time depending on the form and the size of the rounded ends.
The deflection of the bar was measured by an optical method.
Tschudi (1921) used an electrical condensor circuit to measure
the duration of impact in three sets of cylinders of equal l;ngths.
ﬁe suggested that the duration of impact was not a linear function of
striker length, but there was a factor due to the initial velocity of
jmpact which had to be takeq> into account.Wagstaff(1924)conducted similar exp
The measurement of strain changes in time becanoa only possible
after the introduction of strain gauges and Fanning and Bassett: (1940)
were probably the first to use strain gauges (originally called electri-
' caily strain sensitive strips) for the measurement of longitudinal strains.
A similar arrangement to that of Sears was used for the longitudinal
impact of two rods 1.167 inch in diameter and 6 ft. long where one end
6f the bar was flat and the other was a spherical surface. The fesults
‘were in égreement with those previously published by Sears (1908 and 1912),
De Forest (1941) was able to confirm qualitatively the St. Venant
theory for longitudinal impact of two long bars suspended as bifilar
péndulum and one bar was allowed to swing into collision with the other.
However, it was pointed out that the most complete solution was_ given
"~ by Sears.
Dohrenwend and Mehaffey (1943) used strain gauges for dynamic
measurementg in a longitudinal impact of two bars and described the
equipment used succeésfuliy for dynamic stress analysis and the

impdrtant contribution of electrical resistance strain gauges.,
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- Recently the longitudinal impact of two bars has found various
applications.such as determining the yield stress of metals at various
stress levels and strain rates, as by Suh (1967) who employed for this
purpose the longitudinal impact of a long steel bar with a shorter bar.
At the opposite end of the long bar, a truncated cone was machined and
supported against a rigid wall. The stress wave amplitude could be
amplified to varying degrees by truncating the cone at different places.
,The change in the shape of the reflected wave from the conical end was
measured.

Cunningham et. al (1970)Eused a bﬁofbmuitiplier‘fube‘hnd a'1aser
light source to record stress optical data associated with a moving
stress wave. The stress wave was generated either by dropping or by
pneumatically driving a 1/8 inch steel ball or a 1/8 x 2 inch steel
cylinder.

Nevill et. al (1972) performed experiments for wave propagation,
attenuation and dispersion in steel, epoxy and steel-epoxy composite
specimens. The rods were subjected to axial impact by a striker
propelled at velocities of the order of 75 fps from an airgun. The.
strikers ‘'were of varying length and of 0.382 inch diameter.

M&tsumoto and Simpson (1977) used the longitudinal impact of two
finite elastic eylinders to investigate the acoustic radiation and |
found that the noise generation was assoiciated with the injection of
air into the region between the impact surfaces just after impact
seperation. Three foil strain gauges were mounted symmetrically
around the cylinders and the transient acoustic pressures were measured
using 1/4 inch condensor microphone with the associated cathode follower,

6.2.2. The Hopkinson pressure bar

The longitudinal impact of long cylinderical bars was used by

Hopkinson (1913) to obtain pressure-time curves and impact duration of

short pulses generated by a rifle bullet fired at, or gun cotton
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"detonated near one end of the bar. At the other end of the bar, a
short piece of the sane bar was-in firm contact and when the pulse
passed the joint, the end piece flew off trapping the whole momentum
within it and leaving the long bar at rest.

The end piece was caught up in a ballistic pendulum in a fo;m of
a box and by taking end pieces of different lengths, Hopkinson was able
to obtain the pressure-time curve over the corresponding intervals.

Landon and Quinney (1923) carried out further experiments with the
Hopkinson pressure bar technique and discussed the effect of the change
of bar length and bar diameter on the variation of the mean pressure.
The authors also discussed the effect of coned bar on the propagated
longitudinal wave.

Although the Hopkinson pressure bar technique is simple, it has a
basic short coming in that the shape of the input pressure pulse is not
known and only its duration can be determined together with its maximum
value.

In the same experiment, Navies (1948) introduced the displacement
measurement technique by using the bar as the earthed member of a parallel-
plate condensor. The ra&ial and axial displacement were separately
determined.

Voltera (1948) used the Davies technique for obtaining strain- time
curves for copper and polythene specimens.

Kolsky (1949) proposed a further modification of the Hopkinson
pressure bar technique and called it the split Hopkinson bar. The new .
method consisted of sandwiching a short cylindrical specimem of test
material between two long rods of high strength steel. The stress pulse
was initiated in one of the elastic bars by a detonator and the amplitude
of the pulse was measured by a cylindrical condensor microphone., The
displacement of the free end of the extension bar was measured with a

parallel plate condensor.
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" The split Hopkinson pressure bar (SHPB) has been widely used in
dynamical studies of material properties and to obtain yield point and
if has been shown that in cases where an impact load of 100 us ;uééfioh was
applied, the stress required to iﬁ&:iaté,yield'ﬁas-about double those
required under normal static conditionms.

Davies and Hunter (1963) used the SHPB to obtain displacement-time
relations for disk shaped specimens of copper, aluminum, magnesuim, zinc,
brass and polymers.

In later experiments, strain gauges were used to measure the
incident, reflected and transmitted waves and to determine the dynamic
stress—-strain relations for the tested materials. This new form of the
 SHPB was used by Lindholm (1964) for testing three annealed face centred
cubic metals, namely lead, aluminum and copper.

Conway and Jakubowski (1969) suggested the use of the shorter
cylindrical bars for the longitudinal impact which were positioned
directly below and parallel to and slightly beyond a longer bar in order
to ensure an accurate alignment for the classical Hopkinson pressure bar.
Strain gauge records provided the essential data for axial strains.

Nicholas (1971) discussed the validity of the SHPB technique and
carried out experiments involving the variation of input stress, gauge
length and material Béhavidﬂr. The results were compared with theoretical
predictions which wére obtained using the method of characteristics.

Bértholf‘(1974)gused the split Hopkinson pressure bar (SHPB) to
demonstrate the feasibility of a two-dimensional numerical analysis.

An axial stress of 1 kbar amplitude was applied to the end of one of
two elastic bars of 1 inch diameter. The elastic specimen had an impedance
appr. 1/6th that of the steel bar.

Goldsmith and Katsamanis (1979) conducted a Hopkinson-bar type tests
with sphericai strikers to investigate strain pulses in thin rectangular

specimens of polymethyl methacrylate (PMMA) and polycarbonate of
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-bisphenol (lexan). The initial and rebound velocities of the spheres
as well as strain histories were measured. The stress intensity factor
at the tip and the nominal stress at central holes were ascertained by
means of a shadowgraphic technique.

6.2.3. Longitudinal impact of spheres on bars

The generation of a longitudinal stress wave in bars by the impact
of an elastic sphere has been originally used by Hopkinson and was
described in the previous section.’ The same arrangement approach is
used for studies of longitudinal wave propagation.

Crook (1952) investigated the impact of a hard sphere on a metal
cylinder within the ranges of the theories of elastic impacts due to
St. Venant and Hertz. A steel spehere of 100 gm was freely suspended
and allowed io fall against an anvil supported by PiQQS-EIectric
crystal for force measurements.

The calculated impact velocities from experimental force-time
curves agreed with values obtained from the fall of the sphere.

Ripperger (1953)‘conducted an extensive investigation of pulses
in rods resulting from spherical ball impact. The rod diameter ranged
from 1/8 in. to 1/2 in. and various impact ball diameters as wéll as
various impact velocities were considered.

The strain signals were detected by piezoelectric strain .gauges
and the pulse shape had a general half-sine form at positions starting
at several diameters from the impact end.

Longitudinal pulses in a narrow rectangular bar, generat;d by a
1/2 inch diameter ball bearing, were studied by Cunningham and Goldsmith
(1958). They showed excellent agreement between the experimental results
of two measurement methods for the force-time curves. One method used
strain gauges and the other method used piezoelectric crystals.

Barton et. al (1958) obtained experimental results for the longi-

tudinal impact of an elastic sphere on an infinitely long cylindrical

- 164 -



-steel bars. The spheres with diameters ranging from 1 in. to 2 in.
were dropped from the height of 7.5 cm to 30 cm to impact longitudinally
al in. in diameter bar. |

Strain gauges were placed at a position 6 inch from the impact end
and the experimental results showed good agreement with theoretical
predictions based on the Hertzian contact theory. A slightly shorter
pulse was predicted than observed and the peak amplitudes were also
slightly different.

Ramamurti and Ramanamurti (1977) studied longitudinal waves in
short bars with hemispherical ends. The specimens were made of araldite,
mild steel and aluminum and composite solid and hollow bars.

The impact pulses were generated by the impact of a hard steel ball
of 50 mm diameter and the strains were measured at various axial loca-
tions with strain gauges.

6.2.4. Longitudinal waves in beams with discontinuities of cross section

The measurement of axial strain in bars with discontinuities of
cross section could only be achieved after the introduction of electrical
resistance strain gauges in the forties.

De Forest (1941) observed the propagation of longitudinal waves
in a bar with a discontinuity of cross section at the middle and used
strain gaﬁges for the dynamic measurements. The bar was 8 ft. long and
had a diameter of 1 11/16 in. for half of its length and 9/16 in. diameter
for the other 4 ft. Three-strain gauges were axially mounted on the bar,
one 2 ft. from each end and a thifd very close to the shoulder at the
centre.

The impact was applied at both ends by a 1/2 ft. long bar travelling
at 5 fps.

Fehr et. al (1944) investigated the dynamic stresses in tensile
test specimens and obtained stress vs. time curves with strain gauges

cemented on the large diameter section of the bar. The results were in
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fair agreement-with the theoretical predictions of Donnell (1930) for
longitudinal strains in a bar with two discontinuities of cross section.
Le van Griffis (1944) discussed the problem of an impact applied to
the end of a bar with increased or decreased cross section. The conditions
for transmitted and reflected waves were derived by equating impulse and
momentum change for the particles on each side of the discontinuity.
| The author also pointed out that a fixed end was equivalent to an
infinite increase in cross section, whereas a free end was equivalent
to a decrease in cross section to zero.
Van Griffis constructed the x'— t diagrams for the wave propagation
in the tensile test specimen and in its holders.
Fischer (1954) studied the'change of the shape of a transmitted
‘wave travelling along an obstacle in the bar, consisting of a part with
reduced or increased area, called neck and swell/respectively. Oscillo-
grams were obtained using strain gauges, cathode ray oscillograph and
moving film camera. The agreement betwgen measurements and theory proved
to be fairly good. x - t diagrams were;used extensively for the graphical
treatment of the effect of the change.in area ratio on the amplitudes
of the transmitted and reflected pulses.
Ripperger and Abramson (1957+) presented ‘experimental results for -
longitudinal waves encountering a discontinuity in a rod in the form
of a step change in cross-sectional area. A pulse propagated from the
large end towards the small end was shown to retain its shape and
duration with only the amplitude being affected by the discontinuity.
Becker (1962) used strain gauge recordings of longitudinal.waves
in beams with discontinuities of cross section for impedance meésurements.
Two long elastic cylinders were ballistically suspended and formed the
hammer and wave guide. The rounded ends of the bars were replaced by
_ plane ends to obtain a transient wave approaching step loading. A 6 in.

long 5/16 in. diameter cylinder was end mounted on the 1/2 in. diameter
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wave guide.

Mechanical driving point impedance‘characteristics were derived
from the normalized‘incident and reflected wave form ! The imhortanee of
transient loading for dynamic measurement was further emphasised in a
second paper by Becker and Conway (1964).

Cone (1963) studied the longitudinal wave propagation across an
abrupt change of cross section and used embeded strain gauges in an
aluminium filled epoxy model. .

By making some corrections in the magnitude of the experimental
data to allow for suggested attenuation in the bar, Cone was able in
most cases to obtain better agreement in comparison with predictions
based on one dimensional theory.

In an investigation by Beddpe- (19655, a falling weight struck an
upright standing bar and generated a longitudinal wave propagating up
the rod where strain gauges provided the recordings. The bar was 8 ft.
long and 0.25 inch in diameter. The author obtained good agreement
between theory and experiment.

Kawata and Hashimoto (1965) used photo elastié methods for longi-
.tudinal wave measurements in a polyurethene rubber struts of rectangular
cross section with necks and notches, An approximate formulation was
derived for the dynamic stress concentration factor . by considering the
notches as discontinuities in the cross sectional area.

Mortimer et. al (1965) considered the response of stepped shells
subjected to axial impact by shells of identical material properties
and uniform cross section. The impact velocity was measured by a photo-
diode system and strain gauges measuring longitudinal strain were
mounted on the shell at various distances from the impacted end.

The experimental results for longitudinal and circumferential
strains were compared with analytical results and were in good agreement.

In a second paper Mortimer et. al {1972) investigated in a similar
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“get up, the longitudianl impact of thin cylindrical shells with cross
sectional area discontinuity. Experimental incident, transmitted and
reflected strain and stress ratios were measured and they correlated
well with the predictions of the "bending" and "membrane" theories, but
then the results were pot in agreement with the predictions of the
"yniaxial' theory.

A similar experimental study was carried out by Rose et. al (1973)
for the axial impact of a thin finite joined shell consisting of a
cylin&er-truncated cone - cylinder, which was a 1/100 scale replica of
a portion of the Apollo - Saturn V vehicle.

Habberstad and Hoge (1971) performed an experimental work similar
to that of Ripperger and Abramson (1957h) #&nd were:abie to ohtain better-
accuracy. A steel ball of 1/2 inch diameter was propelled by an air
gun and impacted longitudinally the small end of a 1/2 in. diameter bar,
machined from a 3/4 in. bar diameter with a total length of 36 in.

Yang and Hassett (19753-obtained good agreement in comparing longi-
tudinal stress waves in bars with step changes in area, in cylindricai-
cylindrical shells and in truncated cones. A sfriker was accelerated
by a high pressure airgun- to produce a transient input pulse of 50 us
duration and the data were recorded by foil strain gauges. '

Rose and Mortimer (1973) pointed out the usefulness of longitudinal
elastic wave propagation in nondestructive testing. The effect of
notches in a thin aluminum tube on the transmission and reflection of

an ultrasonic signals was investigated.

Johnson and Mamalis (1977) investigated the fracture of rectangular
perspex stepped bar subjected to end loading bv a detonator. High-speed
'lpﬁétogréphic*records'théwéd.the‘growfﬁ'of~cfack§’ad3'é§§i13,

Barez et.al. (1980) investigated the longitudinal wave propagation
in circﬁlar bars with discontinuity of cross section and material. They
showed that the predictions of the axisymmetric theory were no more accurate
than those of the elementary model When tompared”

vioh, experimenta] results.
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"6.3. Flexural waves due to impact

6.3.1. Transverse impact

6.3.1.1. Transverse impact of a steel ball on a beam

The criterion for checking the validity of approximate theories
describing the transverse impact of structures must be the degree of
their agreement with experimental results. Transverse impact tests
have been conducted under conditions where the anti-symmetrical wave
components are predominant.

The analysis of the process on the basis of the three-dimensional
theory is not feasible as was pointed out earlier and the analysis
by means of the plane stress solution is limited and too cumbersome and the
only other'pfgctical\alternative‘theoerwith reasonable prospect of accuracy
is the Timoshenko beam theory which takes into account the rotatory
jnertia and transverse shear. In most cases the Timoshenko theory
predictions were in fair agreement with experimental results.

The analysis of bending waves has been restricted in almost all
known publications, to ﬁnﬁform structural element where the comparison
with théoreti;al predictions has been conducted within a short period
of time in order to ignore the effect of reflected waves.

As early as 1849, Cox investigatéd the problem of central impact
of a beam with a steel ball suspended as a pendulum and the deflection
was measured for various ratios of beam mass to sphere mass. The
impact velocity and beam cross section and length were also varied.

In 1913, Timoshenko investigated the transverse impact of a
beam with a steel ball usjng the Hertzian theory of contact combined
with the lateral vibration theory to obtain predictions for the local
deformation and beam deflection. The specimen used was a simply supported
beam of 1 cm x 1 cm square cross section.

A similar investigation was carried out by Mason (1936).

Tuzi and Nisida (1936) used photoelastic method to study transverse
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‘stresses in a phenolite simply supported beam which was struck at the
centre. The experiﬁental values of the maximum dynamical stresses were
about 70 - 807 of the calculated one.

Hoppman (19524) investigated the response of multi span beams
subjected to a transverse impact by a solid steel sphere of 1 inch
diameter and 5.66 fps impact velocity. He measured the bending strains
by strain gauges and the maximum displacementlwas measured with a micro-
meter. The input pulse was approximated by a half sine wave for the
theoretical.study. A similar study was carried out by that author (1952 b)
for the transverse impact of a sphere on a colum.

Goland et. al (1955) measured the transverse waves in a simply
supported beam of rectangular cross section subjected to a lateral
impact by.dr0pping a steel ball bearing from a known height on the top
surface of the beam. Strain gauges were used for strain measurements
at two stations along the beam and a force gauge measured the force-
time ﬁistory. Most of the content of the '‘latter paper was included in
a report published by three authors Dengler et. al (1952) and more...
details were presented in section 5.2.4. of the present work where the
results of the report were used for comparison purposes.

Cunningham and Goldsmith (1956) reported on the oblique impact of
steel ball 1/2 inch in diameter, on a beam. Strain gauges were used
to record the outer fibre strains and it was seen that the peak amplitude
indergoes “inversion as it propagated along the beam. In addition, the
presence of high frequency components became more noticeable with distance
of propagation.

In a second publication, Goldsmith and Cunningham (1956) provided
parallel information on the kinetic history of the same problem. The
beam deflections at the centre of the beam were measured and showed
the excitation of higher modes.,

The displacement time records of longitudinally prestressed beams
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- of aluminum and steel were obtained by Moéif (1957). He used g
capacitance type pickup and a single sweep generator for the recordings
in the beams subjected to lateral impact produced by a small hammer
driven by a motor striking the beam at the centre every two or three
seconds. |

A study of the transverse impact of an elastically connected
double beam system was provided by Seelig and Hoppmanﬁf;(1964). A
half-sine pulse was produced by a 2 inch diameter steel ball with a
rubber impact head. The input pulse was recorded by a piezoelectric
force gauge and the bending waves were measured by strain gauges cemented
to each beam of square cross section 1/2 inch x 1/2 inch and c. 40 inch
long.

Schwieger (1965) investigated the elastic central impact of a
spherical mass on a steel beam. The bending wave stresses were
visualized by applying photoelastic coatings and by means of polarized
light using.azreflectionnméthod.Experimental data were obtai;ed for
impact force aﬁd contact time for various impact velocities. The
experimentS'verifiéd%thé?ﬁsg?of'thé Timoshenko method for the prediction
of maximum bending strains only under the point of contact, but not at
other positions aiong the beam even when reflections were not considered.

Kuske (1966) presented a comprehensive study of photoelastic metheds
applied in dynamic stress analysis and obtained experimental results
for flexural waves in a beam of Lakutherm -x 30 subjected to a trans-
verse impact by a 1 gram weight.

The application of laser holography to record bending waves was
presented by Aprahamian (1971). A long beam of rectangular cross
section was struck at its centre by a ballistic pendulum employing steel
‘spheres of various diameters. |

The fringé pattern provided a measure of deflection and holograms

were used for plotting the displacement curve along the beam,
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"6.3.1.2. Transverse impact of a bar on a beam

In addition to the use of spheres as striker, cylindrical bars
have also been used in some investigations. The striker had the form
of thick short cylinder in some cases as a ﬁar with a length several
times its diameter and impact of varying durationland longer than where
a'séhereﬂis used can be achieved. The most common arrangement for this
type of impact is the drop‘test where the striker falls freely from a
certain height to strike the beam trénsversely.

One of the earlier tests was carried out by Arnold (1937) who

obtained bending strains and bending stresses at the centre of an

I - beam using a extensometer for the measurement., The 8 feet long
I - beam with a cross sectional area cf.11.05 in.2 was subjected to a
central impact of a 470 1b. weight with an‘impact velocity of 11 fps.,

Vigness (1951) used an experimental method similar to that of
Dohrenwéﬁd”for the impact of ‘a ‘cantilever beam at'its clamped end. The
impact pendulum consisted of a hammer as a thick cylinder suspended by
wires. The strains were measured at various locations and streak
photographic recording of displacément was made for the free end of
the cantilever beam.

Schulze (1953) investigated the transverse impact of a steel beam
4m long and of squaré cross section 5 ¢cm x 5 cm. The striker was a
thick steel cylinder with the height equal to the diameter and with
rounded impact end. The dispersion of the flexural wave was investigated
using- strain gauges for.the measurement.

The drop test method was used by Emschermann (1954) to produce
transverse waves in a steel beam of rectangular cross section. Strain
gauges were mounted at various positions to record the strains for
various impact masses and impact velocities.

A second optical method was used for the stress measurement in
a transparent specimen. The experimental results were in good agree-
ment with predictions based on the Timoshenko beam theory. |
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A photo elastic method was also used by Durelli (1957) to study
the transient stress and strain distributions in a simply supported
beam subjected to central impact. The beam was made of plastic with
good phoéo elastic properties and fringe patterns were obtained for the
entire beam at four instances after impact. The strain-time curve was
derived from the displacement-time curve assuming uniform strain
distribution.

Flynn and Frocht (IQEi)-used streak photography to determine the
stress pattern in a uniform bars of Bakelite under longitudinal and
transverse impact.

Odaka and Nakahara (1967) performed experimental work on a simply
suppoffed beam 3m long and 25mm x 25mm cross section subjected to
central impact by a steel cylinder 20rm in diameter and lm long, dropped
from 1m height. Four strain gauges were mounted at various stations
to obtain strain recordings.

A similar investigation was carried out by Ranganath (1971) who
used a cylindrical rod with a rounded end as a striker accelerated by
a gas gun. The beam and the bar were sufficiently long so that no
reflection reached the recording position during the 100 us after
impact which was used for the bending strain measurement by foil strain
gauges.

Yew and Chen (1978) studied longitudinal and flexural waves in an
aluminum bar 2.5m long and 18mm in diameter subjected to a transverse
central impact by a hammer.

The analytical predictions were obtained using a fast Fourier trans-
form in the frequency domain and phase velocity vs. frequency curves
were presented using the Timoghenko beam equations for flexural waves.

“6:3.1.3. Other- types of’traﬁsversévimpacti"q

In some cases, airgun pellets have been used for the generation

of transient pulses of very short duration. Another method is the use
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of electricay methods such as conductors and electromagnetic drive
unit which are more common in fequency analysis.

Dohrenwend et. al (1943) presented a theoretical and:experimental
study of transverse impact of steel cables, steel beams and steel plates.

A steel beam 15 ft. long of rectangular cross section 1/2 in. x 1/4 in.
was struck by an 8 oz. ball-pointed hammer. The initial velocity was
approximated by an exponential function.

In a second test a 1/16 inch in diameter steel beam was struck by
a 0.6 gm pellet fired from an airgun at a velocity of 200 fps. The
strains were measured at various beam positions with the aid of strain
gauges.

Zemanek et. al (1961) studied the transverse waves generated in
a beam by electromagnetic drive unit where up to 306 resonant frequencies
were excited and fhe resulting phase velocity was computed. The
experimental data were compared with predictions of three different beam
theories and showed excellent agreement with the exact theory and the
Timoshenko beam theory.

Forrestal and Bertholf (1975) conducted experiments on long
aluminum bars of rectangular cross-section 50.8mm x 19.05mm subjected
to a central sine-squared current-time pressure pulse of 4 ys duration.
The loading was produced by two closely spaced parallel conductors and
bending strains were measured with strain gauges mounted on both beam
surfaces. The results were in good agreement with predictions based
on the Timoshenko theory and on a two dimensional elasticity theory.

6.3.2. Eccentric impact

6.3.2.1. Eccentric impact of a steel ball on a beam

The ecentric longitudinal impact of a steel sphere on steel bars
has been used to generate bending pulses of very short duration in the
range of few microseconds..

Investigations showed that the Timoshenko bending theory provided
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- an excellent approximation of the flexural wave propagation,

Ripperger (1955) carried out a series of measurements for bending
waves in cylindrical bars of 1/2 inch diameter subjected to eccentric
impact of steel balls of different sizes. The impacts generated
Hertzian pulses with durations ranging from 3.5 ué to 30 us. Strain
gauges were mounted at several locations along the beam to measure the
bending strains.

The results of this work were used by Ripperger and Abramson (1957a)
to discuss the dispersion of flexural waves in beams subjected to
eccentric impact by a sphere.

Ripperger's results were used in chapter 5, section 5.2.2. of the
present work as a test for the validity of solutions ohtained by the
method of characteristics based on the Timoshenko beam theory.

Goldsmith et. al (1972) investigated the elastic waves generated
by strikers consisting of steel bars with diameters from 1/8 in. to 1/2
in. and fired from an airgun:.at a~predetermined Prasaure'agaiﬁStithe
cafefully positioned target. The specimens were one solid circular rod
an& two tubes all made of aluminum and §4.5 inch long and were subjected
to eccentric impact.

The strains were measured with foil strain gauges at various
positions and the relation between transverse and longitudinal strains
was discussed. The alternate stress pattern of antisymmetric waves due
to eccentric impact was observed.

6.3.2.2. Eccentric longitudinal impact of two bars

Most of the longitudinal impact investigations have been concentric
impact producing longitudinal waves and only few experimental works on -
eccentric 1ongitudinél impact producing flexural waves are known,

# pavidson and Meier (1946) investigated the propagation of transverse
waves in prismatical bars due to eccentric impact as an unwanted

phenomenon in the percussion drilling of rock. Tests were conducted on

- 175 -



prototype tools of 4 to 8 inches diameter and 30 to 40 feet long which
were impacted by a model drilling tool made from 3/4 inch diameter steel
bar.

Kuol(1958) subjected a long cylindrical bar to eccentric longitudinal
impact with a second bar of equal length and diameter. The two bars
each 8 feet long and 1 inch in diameter were suspended by wires at two
points.

The strain measurement was carried out at various positions along
" the beam using strain gauges. The dispersion of the input pulse into
a variable frequency harmonic wave train was evident. The results of
the work were later published in two papers (Kuo, 1959 and 1961). More
details of Kuo's experiment were presented in section 5.2.1. of the
present work.

Stephenson and Wilhoit (1965) also studied the propagation of
bending waves in a rod. A rod 30 feet in length and 2 inch in diameter
was used with eight strain gauge statioﬁs. The sudden application of
the bending moment at one end of the bar was achieved by the rapid
unloading due to fracture of a tensile loading piece attached to the
beam end. The great length of the bar was useful in establishing the
wave front velocity.

6.3.2.3. Transient bending waves in bars with discontinuity of cross

section

The study of wave propagation problems in more complex structures,
such as the waves around surface obstacles and irregularities have been
limited in almost all known literature to iongitudinal waves. Even in
simple uniform structures, the investigation of flexural waves is
complicated by dispersion and has been restricted to semi-infinite
models where reflections need not be taken into account.

In the present, experimental techniques are sufficiently well

established to permit detailed investigations of problems such as the
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- effects of nonuniformities in cross sectional area and elastic
properties on the transmission and reflection of bending waves.

There have been few experimental studies of flexural waves in
curved beams and T-joined and L-joined frames which will be reviewed
in this section.

Mugiono (1955) was first to investigate flexural waves in rods
with discontinuities of cross sections as part of an acousto-dynamic
study of building structures. The testars were of aluminum and 3 to

4m long with a diameter D, = 40mm and diameter ratios D2/D were taken

1
as 2, 5 and 11.4.

Specimens with necks and double discontinuity of cross section
were excited sideways‘with a permanent dynamic system attached to the
small end of the bar. A crystél microphone was positioned at the
middle of the first portion of the bar to measure continuously the
acceleration of the steady state bending wave. The experimental
results were used to obtain a reflection coefficient,

Ripperger and Abramgon (1957 b)7studied.the reflection and trans-
mission of transient bending waves at a discontinuity of cross section
in a circular bar supported on rubber pads and subjected to eccentric
impact by a 1/2 ich steel ball fired from a spring powered gun. The
test specimen was 32.5 inch long and had a diameter of 1/2 inch in the
first half of its length and a 3/4 inch diameter in the .rest with strain
gauges mounted oﬁ both sections of the beam. The experimental results
for the bending waves were only briefly discussed because it was
realised that the theoretical predictions of Mugiono on the basis of
the Euler—Bernoulli'theory were inadequate for the transient bending
wave comparison.

The theoretical aspects of the previous two publications were
discussed in more detail in section 2.3 of the present work.

Lee and Kolsky (1972) performed experiments for longitudinal and
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" flexural waves in two rods joined end to end at an angle. A longi-
tudinal incident wave was produced by firing a projectile of the same
diameter as the bar.

When a stress wave impinged on the junction, it generated four
épiséé;'namely longitudinal and  flexural pulses which vere transmitted
into the second rod and two similar waves that were reflecteéd hack .,

The comparison of experimental results with predictions based on
the Timoshenko theory ﬁere generally in good agreement, but showed some
significant variations. .

Philips and Crowly (1972) investigated pulse propagation in curved
beams subjected to a half-sine bending moment input by using simulated
photoelastic fringe patterns. Test beams of rectangular.cross sections
were curved beam with severe bend and a quarter-turn bend. The authors
concluded that the propagation of a predominantly flexural pulse in a
curved beam of moderate curvature was insensitive to the actual beam
curvature—as far as bending moment and shear force were concerned.

In a second study of the same problem, Crowly et. al (1974)

used a pulsed ruby laser as a light source to obtain isochromatic
fringe patterns for three models of Homalite 100, impacted longi-
tudinally with a soft lead peliet. Strain gauges were also used for
supplementary experimental data.

Atkins and Hunter (1975) obtained experimental results for elastic
wave propagation in L-joint and T-joint models of equal square cross
section of 25mm x‘25mmAand 1.219m long.

A steel projectile was driven forward in a tube of compressed air
to impinge longitudinally one end of the joined frames. The longitudinal
wave produced at the right angle joint @ transverse wave ﬁhﬁcﬁf%hs pro-
pagated into the second bar. Both types of strains were measured

separately by strain gauges.

The agreement between experimental results and theoretical
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“predictions was generally satisfactory except at peak amplitude where
the theoretical value exceeded the experimented one by ca. 25%.

6.3.3. Fracture of brittle materials due to bending waves

One example for the manifestation of flexural waves is the brittle
fracture occuring in specimens under load where the growth of the
fracturé results in a very sudden change in the stress field.

Miklowitz (1953b) was" seeking~an-explanation for the fact. 'that vhen
a specimen was broken in tension two fracture surfaces instead of one
were found to occur. Miklowitz suggested that this effect was the result
of the fact that when a specimen breaks in tension, and the fracture
starts at some point off the axis of the bar, a flexural pulse as well
as an extensional pulse is generated at the fracture surface.

The superposition of extensional and flexural pulses can cause the
 build up of stresses in excess of the longitudinal stress at which
fracture originally took place and hence a second fracture can be pro-
duced at a point remote from the initial one. The specimen was made
of plexiglass. |

Several examples of dynamic fractures in metal specimens were
described by Rinehart and Pearson (1954).

Tsai and Kolsky (196§)‘-studied the generation of the fracture pulses
produced in a glass block when fracture takes place under the conditions
of a Hertzian type impact between a steel ball and a large glass plate.

Philips (1970) reiﬁvestigated the problem of brittle fracture of
a glass rod under simple tension, originally set by Miklowitz. A glass
SPeEimen of circular cross section was mounted in a tensile test machine
and the load was increased until fracture occured. The specimen length
was from 8 to 18 inch.

The two types of waves generated were longitudinal and flexural
waves and the output of strain gauges at various positions gave a

highly satisfactory agreement with the predictions of the Timoshenko
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- beam theory, although many simplifying assumptions were made.

Bodner (1973) repeated the experiments of Philips and used long
bars of square cross section subjected to pure bending

Nasim et. a}(1971)‘oﬁservedAthe spalling of curved perspex bars
subjgcted.to axiai.impulsive loading and noted its independence of curvature.

Colton (1973) performed experiments on infinite beams and plates
loaded with sheet explosives. It was found that all fractures were
initiated by bending stresses.

The strains on the surface of the Linen phenolic specimens were
measured with strain gauges and a second photoelastic method provided
qualitative strain measurements. The beam was 50 cm long and hdd a cross-
;égiion-of*ZS;ﬁm@”x‘6.4mm.

The effect of the initial central fracture was approximated by a
two stage fracture model that specified the bending moment distribution
at the fracture point and its reduction to zero behind the fracture
front.

The experimental results were in good agreement with predictions
by the method of characteristics using the Timoshenko beam theory.

Recently Philips et. al (1978) conducted experiments on an aluminium
Ear containing: a bandsawed edge crack. The bar was struck longitudinally
by a shorter bar of the same material. Both bars were of 25.4mm square
cross section, with the aim to diagnose bone fracture healing.

Strain gauges were mounted on opﬁosite sides of the bar between
the impact end and the crack location to monitor initial compressive
ctrain and reflections containing symmetric and antisymmetric components.

Kida and Oda'(1982).used photoelastic methods to study the fracture

-behaviour~ofibritt1eﬂp1astet'caﬁtilevet-béams-suHiected'to-transversefimpact
atvtheir free end by a sphere of 50.8 mm dia., and 0.53 kg mass,'

An extensive review of dynamic fracture is included in several recent

papers by Kolsky (1970, 1971, 1976).
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"6.4. Experimental methods in stress wave detection

6.4.1. Mechanical methods

The simplest mechanical method of measurement was devised
originally by Hopkinson (1913) and was described in section 6.2.2. It
is based on the trap of the mﬁmenté§{7 of the pulse in a detachable time
piece which is in close contact with the specimen and to measure thisg
momentum by a ballistic pendulum. The technique was extended by
Rinehart and Pearson (1954) to be used with specimens in the form
of plates or blocks.
The method is simple and direct and can be used successfully when
large stress amplitudes are to be recorded. Tts disadvantages are
that it does not give an accurate delineation of the pulse shape and
the method can not be used for weak stresses and where the decay is
too rapid since a useful pressure time curve can not be constructed,
After the development of modern electrical and optical methods,
the mechanical methods provide a'useful check on the stress-time curves
obtained experimentally since the momentum can generally be derived
from this curve by integration. However, one should realise that a gimple
relation doesvp_not always exist between the '"shapes" of these different
quantities.
pDavies (1948) modified the Hopkinson method and investigated the
validity of the basic assumption of the uniformity of the stress and
displacement over the cross section for an input transient pulse.
' The mechanical measurement method has been described in several
books and publications such as by Davies (1956), Kolsky (1958),

Johnson (1972) and Graff (1975).

6.4.2. Optical methods
Optical methods of measurement have been successfully used for

the direct determination of longitudinal and torsional displacements

of bars under transient loading.
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One of the most popular methods is the photo elastic method
in which the model must be of photo elastic material} these materials
usually exhibit viscoelastic behaviour when high frequency components
are present.

Interferometric techniques such as shadow'feéﬁﬁiéuesfand Schlieren
optics require the specimen surface to be highly polished and
optically flat. These conditions are hardly met in pracfice.

Another method, called a diffraction grating method, uses the
coating of the surface with a birefringent grating.

The technique of holographic interferometry which employs a pulsed
ruby laser as a coherent light source is probably the most advanced
optical method and it has been used for transient wave propagation
studies. Most of the difficulties involved in this method such as
stability and fringe interpretation could be reduced by the proper
choice of equipment and optical arrangemént.

The optical method provides two dimensional stress analysis and
can be used for longitudinal stress wave study.

However, if longitudipal and flexural waves are present the
flexural components of the stress can not be studied because after the
passage of the longitudinal wave the bar undergoes an axial displacement
which will be superimposed to some degree on the flexural wave pattern
and cause complications in the analysis. ’

Optical methods do not provide a complete solution of dynamic
loading since the results are only obtained at a particular time, but
they are most helpful to provide a qualitative visualization of the
problem.

The description of the optical method hés been brief and for more

details, one should consult one of the following references, Dove and

Adams (1964), Dally and Riley "(1965) ‘and Robertson and King (1974).
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6.4.3. Electrical methods

6.4.3.1. Condenser gauges

The condenser gauge operates on the basis of capacity changes which
can be achieved by a change in the spacing of the condenser plates or
a change in their area when a narrow air gap between the plates is used
as diele;tric medium,

One surface of the specimen itself may serve as one plate of the
condenser. This was successfully used by Davies (1948) in his modi-
fication of the'Hopkinson pressure bar.

There are many difficulties in the use of condenser gauges. The
passive capacitance of connecting cables reduces the useful capacitance
variation of the gauge and extremely high carrier frequencies are
required to avoid excessive values of circuit impedance. This'makes
it difficult to use the condenser gauges for the measurement of sharp
pulses of short duration. Additional difficulties are involved in
the calibration of the gauge.

Therefore, it is not surprising that condenser gauges are no longer
used for strain measurements in transient type loadings.

6.4.3.2. Electrical resistance strain gauges

These gauges are shortly calied strain gauges and are probably
more widely used than any other device in the measurement of strains
in transient wave problems. A strain gauge uses the fact that the
electrical resistance of a wire depends on its longitudinal strain which
was first described by Lord Kelvin (1956).' But the first practical
application of strain gauges in dynamical measurement Qas due to
Datwyler and Clark (1938). '

In addition to their simplicity and their excellent frequency
response, the strain gauges have the advantage of recording directly
a particulér comPonent of the pulse i.e. separate flexural or longi-

tudinal strain detection which is achieved by using a combination of
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‘strain gauges in circuit connections in a Wheatstone bridge and
.potentiometer.

The disadvantages are that the initial rise is not instantaneous
since the leading edge of the pulse takes a finite time to traverse
the lengfh of the gauge. The size of the strain gauge means that it
gives an integrated value for the strain over the area. However, very
small strain gaugesafew millimeters long are used to counter this dis-
advantage.

A particular care should be taken in mounting the strain gauges
on the surface of the specimen in order to avoid failure at high
frequency response due to the properties of the thin adhesive layer.

Furthermore, the strain gauge recordings on the outer surfaces of
the specimen can give the transient response of the structure adequately
only if a uniform stress distribution over the cross section can be
'assﬁmed. However, this is one of the assumptions upon which the one
dimensional theory of wave propagation is based. Therefore, it does
not represent any additional restriction to the experimental results
when compared with the predictions of the Timoshenko theorf.

Piezoelectric gauges are also sometimes used for dynamic strain
measurement. Although they have a much higher sensitivity than wire
strain gauges, the piezoelectric strain gauges are difficult to calibrate
and they produce a considerable reinforcement at the point to which they
are attached. Furthermore, the piezoelectric crystal gauges are expen-

"give and are most frequently used for triggering purpbses.

Since the forties, the use of strain gauges for dynamiec strain
measurement and various aspects of its development have been described
in several publicationms.. '

ﬁbhfenwendi(1943) described the use of strain gauges for strain
recordings in the problem of longitudinal impact of two bars where the

strain gauges were connected in a potentiometer circuit and the problems
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of instrumentation were discussed,

Fink (1950)idiscussed the calibration of strain gauges used in
dynamic méasurement when arranged as a Wheatstone bridge circuit for
recording longitudinal strain. The accuracy was sufficient for a
dynamic strain pq}se with a rise time not less than 17 us.

Krafft (1955) showed that the longitudinal impact of two flat ended.
bars did not produce a smooth square wave of strain but rather a
constant strain plus significant high frequency fluctuation which he
managed to reduce by greasing the colliding surfaces.

Cunningham and Goldsmith (1959) concluded from measurement of
waves éenerated in a bar by longitudinal impact of a steel ball that
the static gauge factor was applicable in measuring impulsive strain
with rise times not less than 7 us

The errors in the rise time display due to the basic rise time
of strain gauges were investigated by Taylor (1956) who showed that
the accuracy was improved considerably by using strain gauges with
a gauge length of about 5mm and experimental results with an error
of ca. 2% were readily obtained.

0i (1955) was able to show that strain gauges could even be used.
satisfactorily to record steep strain waves with rise times much
smaller than was possible i; previous works. An expression for the
rise time of‘ﬁonded strain gauges was given as

T =T + T
re ™w rg

where T_. was. the-total rise time and indices'w and :g corresponded
to the rise time of the strain wave and the strain gauge respectively.
0i obtained an approximate formulation for a strain gauge with the

lenéth L as

Trg< 0.5 us + 0.8 L/co
This gave a cut off frequency f >360 kHz for L =-3mm:when the strain

gauge was mounted on steel.

- 185 -



-

Bickle (1970) reinterpretted Oi's experiments and showed that
the 0.5 ps addi tive constant in Oi's expression could be greatly
reduced to 0.1 pus. Another 0.1 us was added due to the rise time of
the instrumentation system.

Bickle suggested an elimination of the 0.8 L/co term and used
instead an analytical compensation technigue basedvon,the differentiation
of the output signal of the strain gauge using positive feedback.
HoweQer, this operation is difficult to perform on experimental data,
sincedifferentiation is fundamentally a noise-amplifying process and
furthermore, the process was generally inherently unstable,

Atkins (1971) showed the advantages of the use of strain gauges
in comparison with the use of accelerometersas transducers for the
measurement of strains in impacted frames made of 1 in square section
mild steel bars formed as L- and T-joints. The results were recorded.
on a tape recorder and simultaneously monitored on an oscilloscope.

Watson (1972) was able to remove the instability from the process
of coﬁputing a continuous time derivation of analog data. He presented
an anglytical example for the averaging of an elastic pulse and used
the frequency domain analysis because of difficulties involved in a
real time domain analysis.

- :

Troke (1976) discussed the use of 1/4 bridge, 1/2 bridge and full
Wheatstone bridges for the measurement of longitudinal and flexural
wave pr0pagatiOn problems. He presented expressions for the use of
shunt calibration technique for producing equivalent tension and
compression strains where the different response of the &train gauge
to comp%ession and tension was considered.

Lundberg (1977) presénted a large number of experiments for
longitudinal waves travelling between two strain gauge positions and
.the results were evaluated for a very short interval in the real time

domain using analogue and digital techniques. The errors were estimated

- 186 -~



“as less than 107.

A thorough discussion of the various types of strain gauges,
their circuit connections, temperature compensations, proper calib-
ration and recording techniques are contained in many text books.

The Handbook of Shock and Vibration, edited gy Harris and Crede
(1961) has a number of chapters devoted to experimental methods using
strain gauges. Some books are devoted entirely to strain gauges such
as the books of Perry and Lissner (1962) and Neubert (1967). Several
other books cover photo-elastic methods and strain gauge techniques,
These are the works of McMaster (1963), Dove and Adams (1964).

Two recent publications on the use of strain gauges in dynamic
measurements are a manual of the SESA (1979) and a D.I.Y. strain gauge

transducer by Pbﬁle (1980).
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' CHAPTER VII

.. ..EXPERIMENTAL INVESTIGATION OF TRANSIENT FLEXURAL WAVES

7.1. Experimental setup

7.1.1. The impact mechanism

The impact method is considered as the simplest method of
producing pulsed loading. An impulsive load is usually of the order
of microseconds and it requires a finite rise-time to reach its highest
value. A pulse is considered transient when it is short compared with
the fundamental mode of the bar.

The impact can be achieved by a sphere impinging“on the bar and the
resulting pulse can be predicted by the'Hertzian theory .  An impulse
can also be produced by the longitudinal, central or eccentriec impact
of two bars of the same diameter. The rise time of the pulse depends
on how rapidly the end faces come into contact and this has led to
experimental difficulties. To overcome these difficulties many workers
have used bars with rounded gnds. These types of impacts are called
low velocitf impact. | |

Other forms of impact, so called high velocity impact, are those
of bullets fired against targets and the use of explosives., These
require great care to be reproducible in the shape and amplitude of the
pulses. The specimens are usually destroyed after each test and high
velocity loadings are more used in plastic wave pfopagation studies.

The advantages of low velocity loading are that the same specimen
can be used over ana over again and when the end of the tar is rounded:
they can be easily repeated to reproduce exactly the same pulse.
Furthermore, the duration and amplitude of the stress pulse can be
varied by changing the impact Velocity and the length of the striker.

It will be assumed that the one-dimensional theory is sufficient
to describe the flexural wave propagation in the bar and that the stress

is uniformly distributed across any section of the bar. It has been
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. shown experimentally (Daviés, 1948) and theoretically (Prescott, 1942)
that the stress and displacement become uniform over the cross section
when the pulse had travelled a distance equal to four or five times the
diameter of the bar from the point of impact.

In this work, the bending wa;e was produced by the eccentric longi-
tudinal impact of a bar 1.0m long and 25mm in diameter with longer
uniform bars and with bars of diécontinuous cross section. The test
bar and the striker were both suspended horizontally by fine wires
from a suitable dexion framework.

The two bars were of mild steel and were free to swing in the
direction of their length and to collide end to end. The end face of
the test bar was flat and the impact end of the striker was rounded.
The test bars were suspended by fine piano wires, 0.0167 inch in
diameter, looped around the bar at about 40mm from both ends and the
wires were attached to threaded hooks after passing through small bolts
which were used for coarse horizontal adjustment. Finer adjustments
could be made with the locking nuts on the threaded hooks.

fhe striker was also ballistically éuspended with similar fine
wires passing through two eye pieces bolted on the top of the striker
at about 25mm from both ends. The upper Fnds of the wire were attached
to threaded hooks fixed on the same dexion frame work.

The general arrangement of the test rig is shgwn scﬁematically in
figure 7.1 and is photographed in figure 7.2.

The striker could be adjusted to any desired eccentricity and the
. eccentricity was measured directly by tracing the off-centre position
of the impact.  The plane end face of the test bar was covered by a
hi-spot engineers blue and after each impact the plane end was pressed
- against a white piece pf paper to produce an indentation which showed.
.a spot locating the position of the impact. This method was considered

more accurate than the usual method of measuring the difference in the
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- heights of the two bars when in rest, The second method involves a
certain amount of inaccuracy due to the stretching of the piano wires
during the swing. B}

The horizontal positions of the test bar and the striker were so
adjusted that they just touched each other when in rest position,

The impact was achieved by pulling back the striking bar a given
distance, 180mm in most experiments, to pfoduce a loading pulse of a
given amplitude. |

The linear elastic behaviour and small deformations were guaranteed
through small impact Qelocities and various impact velocities could
easily be achieved by ﬁuiling back the striker to different distances.

A reléaée mechanism was devised to hoid the striker at the desired
distance b& a spring force which was released to allow the striker to
swing freely as a pendulum and to collide eccentrically with the test
bar. The simple release mechanism contributed to the accuracv - and
reproducibility of the results.

When the striker rebounded, it was prevented from making the

second contact and hence the test bar was loaded only once per impact

7.1.2: The strain-gauge eircuits~ <~

The use of electrical methods, especially the strain gauges, for
the measurement of dynamic transient strains has the advantage, in
addition to its simplicity, of .obtaining directly the time dependence
of the variables such as strain-and stress-time curQes.

In the present work, bending strains. and longitudinal strains were
- measured separately using the same strain gauges but in different
bridge connections. The metal surface of the mild steel test bars was
properly prepared for mounting the s;rain gauges using Loctite,

4

I1S496-Cyanoacrylate, adhesive.

The strain gauges were mounted diametrically opposite to each other

at each gauge point at several positions along the test bars, as shown
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in figure 7.3. The strain gauges were so connected in Wheatstone
bridges to be sensitive either to symmetrical (longitudinal) strain
components or to antisymmetrical (bending) strains. Each Wheatstone
bridge contained two active strain gauges positioned at the same gauge
point and two dummy strain gauges, cemented to a piece of mild steel,
provided the temperature compensation.

The strain gauges used for the uniform bars were tvpe N11-FA-8 of Showa
measuring Inst.co. Ltd. with a gauge length of 8mm and 119,80 resistance.
However, for the test bars with discontinuity of cross section, strain
gauges with a gauge length of 4mm and 120Q resistance were used. These
were type 4/120/EC foil strain gauges of Tinsley Telcon Ltd. The gauge
factors of the strain gauges were 2.10 and 2.07 respectively. The
block diagrams of the Wheatstone bridges for longitudinal and bending
strain medsurements are both shown in figure 7.4. The use of two
active gauges doubles the sensitivity of the Wheatstone bridges and
eliminates the nonlinearity effect involved in the use of one active
strain gauge.

To calculate the output of the Wheatstone bridge circuits used
for both static and dynamic measurements the following general
equation can be useq (Dove and Adams, 1964 and Pople, 1976)

e " R R

- gl gh

(e}
.. (7.1)
ei Rgl + Rgz Rg4 + Rg3

For a symmetrical bridge with Rgl = Rgz = Rg3 = Rg4 - Rg and
with one active arm Rg1 = Rg + ARg, the output voltage, e s is

directly related to strain

ARg AR
e, = —E-[1-—2]e, 7.2
4R 2R
< GFxe
e, = T————e€; . (7.3)
° 4+ 2GFxe T
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where GF = the gauge factor (ARg/Rge)
Rg = the gauge resistance
e, = the imput voltage
The dynamic sensitivity of the VWheatstone bhridge can also be written
in terms of the current to the bridge (I) and the strain in each bridge
arm GFxIxR .
e, = ———:;—-— (-ey +'e4 —€q + €4)

The net strain (enet) depends upon the number of guages being

(7.4)

strained and the strain in each gauge.

Two active gauges were used for the measurement of axial strain
(Fig. 7.4a) and for the measurement of bending strain (Fig. 7.4Db).
The active strain gauges were connected in such a way that their
output was additive. This helped to reduce the nonlinearity for axial
strain and to eliminate it for bending strain (Troke, 1976), with a
sensitivityltwice as large as that of the one-arm unbalanced bridge.
The net strain for both 1/2 bridges is €ret = 261.
The dynamic sensitivity of the 1)2 bridge used for axial strain

measurement where two opposite arms are unbalanced, is

- GF x ¢

e e, (7.5)
© 2+cFxe’
The dynamic sensitivity of 1/2 bridge used for bending strain

measurement where adjacent arms are unbalanced, is

-GExe . (7.6)
o 2 i

The calibration of the strain gauge circuits was achieved using
the shunt calibration method, It involved the production of a
known change in resistance by means of a parallel resistor or
resistors with one of the active gauges. The change in resistance

produced by connecting a shunt resistance, as shown in fig. 7.4(a),

is computed as follows

- 192 -



. (7.7
Re+sn) % Ren
or R ] Rg RSh
(g + sh)
Rg + Rsh (7.8)
= R -
ARba (g + sh) Rg (7.9)
2
-R
ARba R + R
g sh
substituting into
S ARP/Rg
- GF = —— (7.11)
€
R ... =R
N 1F 3
G (Rg + Rsh) GF x Rsh

where Eeq is the equivalent strain, defined as the strain required in
the single gauge to produce the same signal as is produced by connecting
the shunt resistance Rsh'

When the output of two gauges'is made additive in the Wheatstone
bridge, as was the case with 1/2 bfidges used in 'the measurements, then
the deflection per unit of strain is twice that when only one gauge is
active and the strain that must be applied to each of the two gauges to
produce a signal equal to the calibfation signal is

R

R . 1
e gl g (7.13)
GF(Rg + Rsh) 2 GF x Rs x 2

h

7.1.3. The measurement instrumentation

The electrical output of the strain gauge and the bridge circuit
is comparatively small and considerable amplification is required to
drive the commonly used oscilloscopes.

The strain gauge circuits were connected to shielded and earthed
leads. The leads of the Wheatstone bridge circuits at locations to be
measured were plugged in to 3A10 transducer amplifiers manufactured by

Tektronix Inc.
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Two 3A1n amplifiers were used and they were mounted in a
Tektronix power supply unit type 129 plug~in unit. The 3A10 transducer
amplifier exhibited a bandpass with a drop of 3dB at 10 megahertz and
selectable upper and lower frequency cutoff. A variable, calibrated
DC-voltage source is also provided hy the 3A10 unit for powering the
strain gauge bridge.

With only two 3A10 amplifiers available, never more than two
Wheatstone bridges could be connected during one impact and the impact
had'to be repeated for a complete set of results from all strain gauge
locations.

Signals representing the strains at several positions along the
test bars were recorded by direct measurement and also by the use of
digital transient recorders of the type DL901 manufactured by Data
Laboratories Ltd.

In the direct measuremernt system, the outputs of the two 3A10
amplifier units were fed into a 3A6 dual trace amplifier which was
incérporated in the Tektronix dual beam storage oscilloscope type
564ﬁ together with a 3B3 time base unit.

A permanent record of signals on the oscilloscope screen was
obtained using a Polaroid oscilloscope camera type A, supplied bv
Teleéuipment Ltd. The film used was type 47 high speed polaroid Land
film, with ASA exposure index of 3000 in bright sun-and produced
black and white positive prints.

In the second measurement system, the signal output of the 3A10
amplifiers was fed into the two DL901 transient recorders., The
transient recorder is a digital instrument and during reéording each
sample of the signal is converted into a digital number and stored in
the memory.

The DL901 has 1024 words of memory, and the amplitude resolution

is to one part in 256 (8 bits). It is necessary to select a suitable

- 194 -



sampling rate to avoid the occurance of 'aliasing' because of too
slow sampling rate. Sampling at 2 ps intervals provides for example
500 words in 1 ms trace.

The output of the two transient recorders was fed into the two
channels at the 3A3 unit of the storage oscilloscope and could be
photographed with the polaroid camera as in the first system of
measurement., In addition, the DL901 provided the signal input for a
two channel 26000A3 XY-plotter which was used for the simultaneous
recording of the strain time history of two locations.

The output of the DL901 can also be recorded on cards or tapes
to provide data input to a digital computer such as the HP-Fourier
analyser.

The two DL901 units were used in the single shot mode to record
and digitise the single transient signal at two locations and to store
in the memory. The trigger signal was taken from the signal itself
and the pre-trigger recording mode made it possible to-obtain the wave
form both beforg and after the trigger. Figure 7.5 shows the measure-
ment instrumentation used for the two measurement systems and Fig. 7.6
represent their block diagram.

~In the first direct measurement system, an external trigger signal
was needed to initiate the operation oscilloscope time base. This
trigger signal was obtained from a piezoelectric crystal gauge mounted
on the test beam near the impact end.

7.1.4. Experimental procedure and ~reliminarv measurements

The eccentric impact of a bar by a striker must induce a stress
system which has both symmetrical and antisymmetrical components.

The objective of this study was not to investipate the problem of
eccentric impact from a compretensive point of view, but rather to con-
centrate on the investigation of the beam in bending, i.e. to study the

antisymmetrical flexural strain wave propagation along the beam through-

- 195 -



out the impact cycle, together with the complexity of wave interaction
due to the bending wave reflections from boundaries and discontinuities.

These bending waves were recorded as rapidly changing strains for
any given location and time in the form of photographs and plots.

The experiments confirmed that, due to eccentric impact, longi-
tudinal and bending waves were, in general, superimposed on each other.
However, the Wheatstone strain gauge circuits facilitates their separate
measurements.

A preliminary measurement of longitudinal strain was needed to
determine the input pulse due to eccentric impact. This was employed
to obtain the applied axial force and the applied bending moment.

The input pulse shape was determined from the recording of the
longitudinal wave at the first position along the uniform cylindrical
beams and the beams with discontinuity of cross sections.

After the preliminary measurements of longitudinal waves, most of
the measurements were concgntrated on the bending waves.

The impact test was carried out by adjusting the bar and the
striker to be just in contact when hanging freely and bydrawing back the
striker through a known distance ( in most cases a distance of 18cm)
and allowing it to swing back by gravity using a specially deviséd
release mechanism. The radius of swing for the striker was 1.3m.

When the striker rebounded after the strain pulse returned to its
impact end, it was prevented from making a second impact by holding it
back and the specimen was loaded only once per impact. The linearly
elastic behaviour and small deformations were guaranteed through small
impact velocities. The impact end of the striker was slightly rounded
in order to make the pulse easily reproducable.

In most experiments, the transient recorder DL901 was used to
record the single transient signal using the '"pretrigpger mode'" where

the trigger was taken from the signal itself. The oscilloscope had
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two time-base generators. The trigger signal initiated the operation
of the first time-base generator which then provided a preset delav
interval before triggering the second time base. This resulted in a
single sweep of the oscilloscope beam trace at the sweep rate of the
second time base. The use of varying sweep rates of 5ms and 10ms
allowed the recording of longitudinal and bending strains and overall
trace durations of 5 and 10ms were obtained, although the working range
was usually lms.

The measurement of both longitudinal and tending strains was made
on cylindrical test bars using strain gauges. The dimensions of the rod
and the locations of the strain gauges were shown in figure 7.3. In
order to produce the bending strain, the striker was allowed to strike
as far off centre as possible and the maximum eccentricity was alwavs
smaller than the radius of the test bar,

Figure 7.7a shows the pulse shape of a longitudinal pulse measured
at the position x/d = 12 of the uniform'test bar gubjected to the
eccentric impact of a striker Im long. The input compressive pulse
takes 90 ps to reach its maximum amplitude and reﬁains at this value
until the arrival of the reflection from the far end of the striker
which is the shorter of the two colliding bars. When the reflection in
the 1m striker has returned to the contact point, the pressure decreases
and sdon after this the contact between the two bars ceases. The pulse
duration was typically 390 us and agreed very well with estimation based
ont = 2L/c1 = 389 us with a strain of about 50 u strain (pe) in good
agreement with € = %Epﬁci= %E—" 47'8116-

The variation of the striker length affects the input pulse consider-
ably. Tigure 7.7b shows that when a shorter striker 3lcm long was used,
the pulse duration was much shorter and the amplitude started to
decrease as soon as it reached its maximum value after about 100 us.

The record shows the longitudinal strain measurements at two positions
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along the uniform test bars, at x/d = 12 and 84.

The short striker could not provide an input pulse of trapezoidal
shape approximately obtainable with the striker of 1m, The 1lm striker
was therefore used throughout the experiments in order to compare the
results with theoretical predictions.

The trace in figure 7.8a covers a duration of about 5ms and shows
the reflecting longitudinal strain waves from the end of the uniform
test bars of 3m length where each reflection is accompanied by a change
of sign. The strain measurement was carried out at the position
x/d = 12 from the impact end. It is seen that the reflection of the
input compressive wave from the far end arrives at-this position as a
wave of tension. However, soon after its arrival, the strain wave is
relieved and its spreading is terminated by a compressional strain wave
arriving from the near end of the test bar. The duration between two
peaks of the same sign corresponds to the strain wave travelling twice
the bar length.

The bending strain measurement of position x/d = 12 is shown in
figure 7.8b and is obtained by the same pair of strain gauges used to
meaéure the longitudinal strain of figure 7.7a, but with a Wheatstone
b?idge connéction as shown in figure 7.4b to cancel the symmetrical
strain components. The bending pulse shape is®markedly different from
the longitudinal pulse at the same position and the bending strain has
changed drastically after travelling a distance of 12 diameters and
shows a considerable negativevportion as opposed to the positive (com-
pression type) bending strain input.

Two traces of strain and time base calibrations are shown in
figurég 7.9a and 7.9b respectively.

The calibration of the strain was carried out by photographing
and plotting a signal of known amplitude with all instrument controls

set the same as for the actual impact strain measurements. This signal
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was obtained by switching a fixed resistance of known magnitude parallel
to the active legs of the longitudinal and bending strain bridges in a

so called shunt resistance calibration., The resistances were provided

by a resistance box containing several resistances and two resistance
boxes (Fox A-and:2ox B) were uged. -The exact values of these resistances
were measured by a logarithmic LCR Bridge type B500 of Wayne Kerr Co. Ltd.

The calibrations were made at frequent intervals during the measure-
ment and a photograph of a voltage change display is shown in figure 7.9a.

The calibration was carried out during each set of experiments for
each strain gauge circuit and the equivalent longitudinal and bending
strain was deterimined for the strain gauges specified in Table V and
as they were actually connected and used at the various positions along
each of the test bars.

The exact values of the shunt resistance used and the corresponding
equivalent strains are given in Table VI.

The sweep speed calibration was made by means of a sinusoidal
signal generated by a function generator (Feedback FG 600) with a
frequency of either 1 or 10 kHz. . The sinusoidal wave was used to check
‘the accuracy of the time base which was found to be accurate and it was
assumed that subsequent sweep would be unchanged.

The sweep speed calibration was used to determine the duration of
pulses and times of wave arrivals at the various gauge positions. An
example of the sweep speed calibration is shown in figure 7.9b for a
1kHz;sine wave.

The experimental results were checked by repeating the impact at
least three times at each station and for each set of recordings. It
was found that repeat measurements of the strains at a gauge position
were practically identical fdr; a given set of conditions and the strain
profile could be reproduced almost éxactly with negligibly small

variation in the strain amplitude. Figure 7.10a represents the impact
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strain repeated 5 times as photographed at positions x/d = 4 from the
impact end of a circular test bar with discontinuity of cross section.

The repeatability of the impact was particularly important since
several impacts were needed to obtain a complete set of results from all
strain gauge locations where only a simultaneous measurement of two gauge
points at each run was possible.

However, the limitation of the measuring equipment was not a serious
disadvantage since the eccentric impact was easily reproducable.

By varying the velocity of the striker it is possible to produce
pulses of various amplitude. Figure 7.10b presents the recordings of
three different pulse shapes obtained simply by pulling back the 1lm
striker to the distances of l4cm, 18cm and 22c¢m from the impact end of
the test bar. It is seen that the longitudinal pulse in all three cases
has the same length since the pulse length is independent of the impact
velocity.

It was decided to use a constant impact velocity corresponding
to drawing back the lm striker a distance of 18cm which produced a low
velocity impact of ca. 0.5 m/s.

The longitudinal impact strain as measured at the position 1 (x/d=4)
of the;circular bar with discontinuity of cross section introduced at
the middle of the 2m long test bar is shown in figure 7.11a and the
.eccentric impact had an eccentricity of 7.85mm. These measurements of
the symmetrical strain near the impact end were used to calculate the
total force of impact and then multiplying this force by the eccentri-
city of the impact, the applied bending moment could be obtained.

Comparing the impact strain recorded in figure 7.11a with the
impact strain in figure 7.7a, it is seen that due to the partial re-
flection of the compressive wave from the position of discontinuity
which reaches the gauge position before the reflected wave in the.

striker reaches that position, there is a minor pressure increase.
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This difference from the pulse shape in the uniform circular bar can
only be explained in terms of wave reflections at the discontinuity
of cross section where the diameter of the test bar is increased by
1/4 of its value (from 25.4mm to 31.,75mm).

The effect of the eccentricity variation and the sensitivity of
the bending strain measurement bridges was checked in the results
presented in figure 7.11b.

An almost central impact was carried out and the bending strain
at gauge position 1(x/d = 4) and the longitudinal strain at gauge
position 2(x/d = 32) of the circular test bar with discontinuity of
cross section are shown in figure 7.11b for an overall duration of 10ms,

It was neceséary to enlarge the scale of channel I five times to
show the small trace of the bending strain whereas the longitudinal
strain retained its original intensity. The recorded bending strain
due to central impact comprised only tSZ of the bending strain which
could be produced by eccentricity of 7.85mm used in most measurements.

' Therefore, the bending strain bridges were considered to produce a very
good symmetrical strain cancellation especially when one realises that
it is extremely‘difficult to produce a perfect central impact.

Figure 7.12a shows the longitudinal impact strains at the gauge
positions x/d = 4 and 32 in the test bar with the discontinuity of
cross‘section situated at the middle of the bar (x/d = 40).

It is seen that whereas the pulse shape at position I cannot reach
anywhere near its original input value, as was explained in figure 7.8a,
the impact strain at the position near the middle of the bar is allowed
to reach almost its original amplitude. There is sufficient time
before the reflection of the travelling wave from each end of the bar
arrives at that position. This result is in complete agreement with the
theory of strain wave propagation.

The pulse shape of the bending wave is much more complicated since
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the velocity of flexural waves in steel bars is strongly dependent
on the wave length of the harmonic components in any input resulting
from the impact.

The recordings of bending wave measurement in position 1 and position
2 oflthe 2m long bar, described in the previous paragraph, are shown
in figure 7.12b. It is seen that the bending wave undergoes considerable
dispersion as it travels along the bar and it is clear that there is
no definite velocity of propagation for bending strain wave pulses,

At position 1 (x/d = 4) the original pulse shape is still recognise-
able whereas the bending strain wave ét position 2(x/d = 32) has under-
gone considerable dispersion and shows negative and positive peaks
within the duration of the original positive input pulse.

The plots corresponding to figure 7.12a and 7.12b ohtained by the
xy-plotter are presented in figure 7.13 and figure 7.14 respectively.

7.2. Measurement of material properties

7.2.1. Young's modulus and density measurements

In order to determine the density of the test bar made of mild
steel, the weight of a piece of the test bar was obtained using a
precision scale. The dimensions of the same‘piece were measured using
a micrometer and the density was calculated as the ratio of thé weight
to the volume which was found to be

o = 0.777 x 10° kg/m>

The modulus of elasticity E was determined by static and dynamic
measurements.

The static value of the Young's modulus E was obtained from an
ordinary tensile test where a tensile test specimen was prepared from
the same mild steel as the test bars. The static loading was carried
out on Amsler tensile machine and an extensometer was used for the
elongation measurement,

The modulus of elasticity E was obtained as the slope of the linear
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portion of the stress strain diagram in accordance with Hooke's law.
The static value of the Young's modulus was
E = 2.06 x 10' N/m?

The dynamic value of the elastic constant can te obtained by two
methods, the wave propagation methods and vibration method.

In the wave propagation method, the measured value of the pronagation
velocity is used to obtain the value of the elastiec constants.

The three types of elastic waves, extensional, torsional and flexural,
can be propagated along a solid isotropic homogeneous solid rod. The
velocity of propagation depends on the elastic constants and the density
of the material.

The velocity of longitudinal wave propagation was measured and
found to be ¢, = 5140 m/s. The description of the wave velocity measure-
ment is included in the next section.

Using the known relationship ¢, = E/p or E = clzp, the dynamic
modulus of elasticity can be obtained as

11

E=2,05x 10 N/m2

The Poisson's ratio py for the mild steel test bars was assumed as
v = 0.29 and the value of the dynamic modulus of rigidity G can be

obtained from

0

E 11
G m 0.796 x 10 N/m

This value of G is used to obtain the shear wave velocitv

chuw/ﬁzc/p which is:fortkz = 0.886

c2 =.3011 m/s

2

The wave velocity method is known to he extremely accurate and
has been widely used in obtaining the dynamic value of elastic constants.,
The vibration methods and particularly resonance methods, are also
common in obtaining elastic properties of‘materials.
In the resonant method, an oscillating force of fixed amplitude

and varying frequency is applied to a mechanical system and the resonant
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frequency of the resulting vibration is dependent on the elastic
properties of the system.

The longitudinal, torsional and flexural vibrations are used in the
resonant method to determine the elastic constants of metals and some
of the early works have been described by Kolsky in his book in 1953.

Goens (1931) solved the Timoshenko's equation relating Young's
modulus to the flexural resonance frequency for bars of different cross
seétion.

Pickett (1945) had further simplified Goen's solution and obtained the

following simplified formulation for E

2.2
E = [?"I‘zf -pT
rm

where f is the flexural resonance ffequency, r is the radius of

gyration, m is a constant which has higher values for higher modes with
m= 4.730 for the fundamental mode, where T is a correction factor which
varies with r /L and u.

Spinner et. al (1960) carried out careful measufementS‘of
mechanical flexural and longitudinal resonance frequéncies for steel
rectangular and cylindrical specimens. They showed that the theoretical
correction factors -of Goen's were in fair agreement witr exserimental
results, with the numerical solution obtained by Teff£ (1960).

Cowper (15€8) pointed out that the measurements of Hardie and
Parkins (1968) of the influence of shear and rotatory inertia on the
value of the Young's modulus was inaccurate since thev used an
inadmissionable averaging method for the freauencv which assumed that
shear and rotatory inertia effects reduce the frequencies of all
higher modes by the same percentage, contrarv to the (oen's correction
factors.

Ritchie's work in 1973 gave experimental support/to Cowper's
criticism and showed that the Timoshenko theory must be used in .

calculating the Young's modulus for beams vibrating in their higher
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modes as is the case in transient loading.

One of the disadvantages of the resonance frequency method is
the loss of energy at the supports and the difficulty of realizing
jdeal boundary conditions. This was demonstrated by Rosinger and
Ritchies (1674) for the case of a cantilever resonant beam, where the
relationship between the experimentally measured resonant frequency and
Young's modulus of the material deviated from theoretical predictions
based on ideal boundary conditions.

A different approach to the determination of dynamic elastic
constants is their analyses from the view point of microseismology in
a so called pulse method, a form of the wave propagation method. In
this method, a travelling pulée along the specimen is detected by fhe
receivi;g crystal with the arrival times giving the velocity of propa-
gation.

The pulse method has been used by Hughes et. al (1949); Kolsky
(1954) and Bell (1960). These works were reviewed by Bell (1973)

The basic difficulty lies in the interpretation of the experi-
mental results, where a number of separate transmitted and reflected
pulses are detected at the end of the rod.

| In a more recent paper, Goldsmith and Katsamanis (1979) used
the wave propagation method to obtain the dynamic Young's modulus of
perforated polymeric bars.

7.2.2. Wave velocity measurement

The wave velocity measurements were carried out for longitudinal
waves travelling along uniform circular test specimens and circular
specimens with discontinuities of cross section.

The wave velocity was measured by two observations of either the
recording of the strain at one location or the strain pulse recordings
of two strain gauges positioned at a known distance.

In the first method, the interval between two conseauative pulses
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of the same sign represented the time required for a pulse to travel
twice the length of the bar. The wave velocity is obtained from

each of the strain pulse traces shown in figure 7.15a for two positions
along a circular rod 3.295m long with the discontinuity of cross section
at Im from the impact end. The calculation of the wave speed was based
on the corresponding plot obtained by the xv-plotter, where the sweep
time of 5ms was preséribed by a distance 36.2mm long and the distance
between two peaks of the same sign was 9,.,3mm. The travelling time t was

found as e 9.3 x5

t 36.2 =1.28 ms

and the wave velocity cq

ST 2 x 3.295 x 103

) 158 = 5148 m/s

In the second method, the wave velocity between two strain gauges
was obtained by dividing the distance hetween the gauges by the difference
in arrival times of the pulse as monitored by each strain gauge circuit
connected for longitudinal strain measurement and recorqed simultaneously
in the oscilloscope trace shown in figure 7.15b for two.strain gauges
1.8m apart.

The travelling time t was 0.35ms and the wave velocity

_ 1.8 x 103

€1 ¥ 7 0.35

= 5143 m/s

The wave velocity measurements were utilized in the two circular
test specimens with discontinuity of cross section and in the uniform
circular rod and although some variations in pulse velocities were
found from test to test, where values between 5120 m/s to 5160 m/s
were observed for the longitudinal wave velocity cy. An average value

of c¢. = 5140 m/s was obtained which was well within experimental error.

1

The error is mainly introduced in the measurement of arrival times
and it can be concluded that the longitudinal pulses are travelling with
the wave velocity cy in the cylindrical specimen.

The effect of the reflection at the shoulder can be observed
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from the comparison of the oscilloscope traces of longitudinal strain
pulses in the unifrom circular rod (figure 7.8a) and the recordings of
the pulse shapes in the two circular rods with discontinuities of cross
section (figure 7.12a and figure 7.15a).

In the strain pulse recording shown in figure 7.8a for the uniform bar
at strain gauge laocation x/d = 12, the time required for the first
reflection of the input compressive wave from the far free end, due to
applied bending moment at x = 0,°to -arrive at the :strain gauge location
as ‘a -tension wave, was found ‘to he t = 1.05ms corrésponding to a
longitudinal wave velocity to 5142 mfs.

The reflection arrives at the strain gauge position after the contact
with the striker ceased and the amplitude of the input pulse dropped to
zero.

The results shown in figures 7.12a and 7.15a are for the test bar with
discontinuity of cross section at x/d = 40, at a distance of Im from the
impact end, with an increase in cross section causing a partial reflection
of the incident wave of the samevsign. Ihe reflection from the dis-
continuity arrives at the strain gauge location before the reflection from
the end of the striker has returned to initiate the amplitude decrease.
This was seen as a small increase at the end of the impulse shape noticable
only in the test specimen with discontinuitv of cross section.

The arrival of the reflections from the far end of the tweo stepéed
bars corresponded to the same longitudinal wave velocity of 5138m/s.

The recordings of the strain gauge location at 0.8m from the impact
end are. represented by the lower traces of figures 7.12a and 7.15a. 1t is
seen that the reflection of the input compressive pulse arrives at the
strain gauge as a tension pulse before the.original pulse has dropped to
zero in the shorter bar whereas the arrival time in the longer bar was after
the input pulse has reached the zero position and the effect of the ..

reflections from the position of discontinuity is clearly demonstrated.
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The experimentally observed value of the longitudinal wave velocity
and Young's modulus are in good agreement with values found in the literature
as can be seen from the values of ey E, G, v and p listed in table VII,
where the experimentally obtained results in the present thesis are within
the range of values found in standard textbooks and well known references
related to the field of stress waves in solids,

The travelling of the longitudinal wave along the bar with a constant
velocity and the interactions of incident, transmitted and reflected waves
can best be represented by a space-time diagram, as illustrated in figure
7.16 for the 2m long test bar with a change of its diameter at the middle
from 25.4mm to 31.75mm.

The simple x-t diagram showed the propagation of the longitudinal wave
in the striker and in the test bar where its arrival at each strain gauge
location could easily be traced.

The arrival times of the compressive strain pulse are calculated from
the instant of impact t = O when the 1lm long hammer struck the test bar.,

At t = Lllql, the pulse arrived at the position of discontinuity and the
reflection from that position travelled back as a compression wave and
arrived at the impact end at t = 2L1A;1, causing a small increase in the
strain amplitude.

At ‘time t = L/cl, with L = L1 + L2, the compression wave arrived at the
far end of the test bar and was reflected as tension wave to travel back to
the impact end arriving at t = 2L/c,, where at the same time a second
reflection from the position of discontinuity also arrived.

7.3. Steady state vibration test

The purpose of the vibration test was to investigate how accurately
the support of the test bars by fine thin wires reflected the free-free
boundary conditions.

A free-free condition implies that there shall be no constraint on the

beam. In practice, however, the weigkt of the beam must be supported and
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and some loss of energy is expected at the support and constraint.

The support of the beam at the nodal points is obviously ideal, but
the position of these points is not known exactly before the experiment is
performed and, in any case, their position varies with each mode.

The use of a suspension which is very"soft" in the direction of
displacement in vibration, achieved by hanging the beam by two vertical
wires with virtually no constraints, but prevented vertical movement and
the location of the wires near the end of the test bar was found to have
an insignificant effect on the frequency. (Traill - Nash, 1953 and
Hearmon, 1958).

The principle of the method was to excite and detect resonance in a
test piece of the same material as the one used in the flexural vibration
test, where the resonance frequency was mopitored and measured.

The test bar was 1.09m long and had a diameter of 25.4mm and was
supported by two thin wires at 15mm from each end.

The following instruments were used for the resonance test

i) Frequency oscillator Medel ® 503 of Goodmans

Industfies Ltd. with continuous frequency control
from 5 cycles to 50 ke.

ii) Charge amplifier type CA/03 of D.J. Birchall

iii) Shaker type 10 of LWG Dynamic System Ltd.

iv) Pickup tranducer typer AQ 20 Accelorometer of
Enviremental equipment Ltd.

v) Feedback digital frequency meter type FM610

vi) Storage oscilloscope type 564B of Tektronix Ltd.

The output of the oscillator was amplified through the power amplifier
and was fed to the Shaker, wvhose mechanical energy in turn was transmitted
to the_specimen simply by holding the driver manually against the specimen.
As the oscillator frequency was scanned, it reached one of the flexural

resonance frequencies of the specimen and gave a large increase in the
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amplitude of its vibration.
The resonance of the beam was detected by the pick-yp tranducer which
was mounted on one end of the beam and the output was fed into the
oscilloscope. The excitation method used was found to produce satisfactorily
the flexural modes of the free vibration. This was checked bv removing the
exciter at resonance and observing on the oscilloscope screen the drift
in the resonance frequencies which was found to be negligibly small.
The purpose of the frequency counter, connected to the oscillator, was
to providea more accurate reading than the one possible by reading the
oscillator scale directly. The same procedure was repeated for the higher
flexural modes. The block diagram of the arrangement is shown in figure 7.17.
The specimen may be caused to resonate in different ways, longitudinally,
flexurally (or transversely), and torsionally. However, longitudinal
resonance generally occurs at very high frequencies compared to the bending
vibration and the flexural vibrations are more easy to excite

A more accurate method to obtain the various tvpes of vibration and

"

their overtones is the so called "probing" where the pickwup transducer is

held against different parts of the specimen while it is vibrating in
resonance and the resulting pattern of changes in the Lissajous figures
seen on the oscilloscope establishes the type and higher modes of the
particular resonance frequency.

The electrical phase relationships of the Lissajou figures seen on the
scope are an exact reflection of the mechanical phase relationships existing
in the specimen while it is in resonance (Spinner and Tefft, 1961).

In the experiment carried out to obtain the resonance frequencies, the
use of a fixed pick-w transducer was found to give accurate results. At
the fundamental flexural resonance frequency, the ends of the specimen are
oscillating in the same direction (in phase) while the centre of the
specimen is oscillating in the opposite direction.

One of the difficulties of the resonance method is that the coupling
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between the driving system and the specimen may result in a change in
resonant frequency. The simple method of holding the driver against the
specimen was found not to affect the resonance frequency in any serious way.

The other difficulty is related to the realisation of ideal boundarv
conditions which is more difficult in the case of pinned ends and almost
impossible in the case of clamping ends. This difficulty causes the measured
resonance frequency to deviate from theoretical prediction. (Rosinger and
Ritchie, 1975).

The damping in the beam also causes the experimentally observed resonance
frequency to differ from theoretical prediction. Fortunately, this effect
was very samll at low damping and could be ignored.

The first five flexural frequencies were measured and compared with
theoretical predictions based on the elementary Euler-Bernoulli theory and
the Timoshenko bending theory.

The frequency values are listed in table V111, together with the material
properties of the mild steel test beam.

The frequency ratios and the precentage deviation‘of experimental and
theore&ical values are presented in figure 7.18a and figure 7.18b respectively
where it is seen that for the free-free end condition, experimental and
theoretical resonance frequencies of the fundamental flexural mode and its
four oveftones are almost identical., However, the deviation for the case
of pinned-pinned ends (simply supported) is more pronounced, since this
condition is msre difficult to realise practically.

. The Euler-Bernoulli theory for flexural vibration is formulated in

the differental equation

84y pA Bzy
+ —_— = ()
Bx4 EI 3t2

The natural frequency of flexural vibration is obtained by calculating

the roots of the frequency equation for a cylindrical beam
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- 417303)%
so that fl == /E/p
4w L
where ﬁnL = 4,7303; 7.8539; 10.996; 14.137; 17.279 for the modes n = 13

2
2; 3; 4.and 5 respectively in the case of a free-free beam and-%—=E%- for

circular cross-section.
The effect of shear distortion and rotatory inertia, which are taken

into consideration in the Timoshenko theory, is to reduce the natural
frequencies. (Ayre and Jacobson, 1950).

Haybey (1976) pointed out that frequency difference between measured
and calculated Euler-Bernoulli values for the lower modes in the free-free
configuration is proportional to a2/L2. The relationship was obtained
by Rosinger and Ritchie (1977),vhere a was the beam width or the rod diameter.

The theoretical calculations according to the Timoshenko theory used

the Gons correction factors to obtain the lower modes for the free-free

end conditions

Hn
]
| &
%

L 1.262 Tlp

Hh
]
=
:\

212 0.166 Ty
a /’E—_‘
52 0.043 Ty
Where T, = 1.002; T, = 1.0059 and Ty = 1.0116.

The flexural resonance frequenéies obtained by the Timoshenko theory
differed very little from the predictions of the Fuler - Bernoulli theorv
for the uniform beam tested, with a slenderness ratio of L/® = 85.8.

The results based on the Timoshenko beam equation for flexural
vibration were slightly smaller than those given by the Fuler-Bernoulli

theory and the first were nearer to the experimental observations, as can
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be seen from table. V111, where the difference between the three sets
of results is less than 17 and the agreement with experimental results
is very good.

However, in the higher modes of vibration, the effects of shear
and rotatory inertia increase with the order of the mode.

The resonance flexural vibration method has been widely used to
obtain the dynamic Young's modulus and the value of the shear correction
factor k2 for beams of circular and rectangular cross sections, as was
described in section 5.1.

A detailed theoretical investigation of the flexural vibration of
beams with discontinuity of cross section is included in appendix B,
where the FEuler-Bernoulli theory is considered to give satisfactory
results for the lower modes of the flexurai vibration for the heams
with large slenderness ratio.

7.4 Experimental results

7.4.1. Free-free beams subjected to eccentric impact

7.4.1.1. Bending strains in uniform beam of circular cross-section

The experimental investigations of flexural transient waves are of
relatively recent origin due to the complexities of bending strains and
the difficulties involved in the analysis, where the bending strain is
the strain due to the applied bending moment.

The bending strains in the various test beams were all produced by
the low velocity eccentric impact of the 1.0m long striker. 1In the
immediate vicinity of the imﬁact point, the bending strain is three
dimensional and the wave is not only propagated but also reflected from
all surfaces.

It is quite possible that, at the point of impact, a plastic flow
causes a localized damage. However, this damage is not easily detectable
and was not considered. The measurements were carried out at positions

along the beams starting at distances of 4 times the diameter of the beam
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where the bending strains were regarded as completely elastic.

The input pulse consisted of a longitudinal and a flexural transient
wave of finite rise time of 0.09ms and each tvpe of wave was measured
separately using different connections of the same strain gauges ; with
most of the experiments concentrated on the bending strain observations.

Figure 7.19(a) shows the recording of the bending strains at
position 1 and position 2 of the uniform beam of circular cross section
(Test beam I of Fig. 7.3) where the two positions along the beam corres-
pond to 0.3m and 2.1m from the impact end respectively.

The output of the oscilloscope for position 1 is magnified twice in
the vertical and horizontal scales in figure 7.19(b) and the trace shows
that a considerable part of the incident compressive bending strain has
been changed into tensile bending strain.

At position 2 the bending wave oscillates more rapidly and several
peaks of alternating signs and increased amplitude can be seen in the
time rrogress of the impact strain.

The bending strain at position 1 has a compressive peak of about
89 microstrain at about O0.7ms and the peak of the compression strain at
position 2 is about 52 microstrain as compared to the peak of the input
bending strain of about 113 microstrain.  In the discussion the positive
sign meéms bending strain of compressive type and negative sign means
bending strain of tensile type.

All oscillograms are presented on a strain time bagis.The strain
scale ﬁas calculated from the strain gauge data using the shunt calib-
ration and employing the static gauge factor given by the manufacturer.
The anti-symmetric strain component due to bending was obtained . as
half the total of the strains measured at the upper and lower surface
of the bar, assuming a uniform strain distribution across the section

of the test beams.,
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7.4.1.2. Beam with discontinuity of cross section at the middle

The bending strain-time results are recorded for six positions along
the short stepped beam of 2m length with the discontinuity of the cross
section at the middle where the diameter of the cross-section was increased
from 25.4mm to 31.75mm (d2 = 1.25d1). Two pairs of strain gaupes were
located at O0.1lm from each end of the beam (position 1 and poéition %)
and two.other pairs of strain gauges were situated at 0.8m from each end
(position 2 and position 3). Two additional pairs of strain gauges were
cemented immediately before and after the shoulder of the test beam
(position 5 and position 6). The position of the strain gauges and the
dimensions of the beam are illustrated in figure 7.3(a).

The pulse shape of the inpﬁt bending moment was obtained from the
longitudinal strain measurement at position 1, used first to obtain the
input force as 4831.5N and for an eccentricity of e = 7.85mm, the input
bendingsmoment was 38Nm and the corresponding input bending strain was
found to be 1l5pe.:

A simultaneous recording of the output bending strain of each position
together with position 1 was carried out and the reproducibility of the
impact was found to be very good. Another set of measurements included
the signal ‘output of each two of the strain gauge bridges;connected for
bending strain time history observationms.

Typical traces of the oscilloscope are shown in figures 7.20 and 7.21.
The upper and lower traces in figure 7.20(a) correspond to the output of
. the strain gauges at position 1 and position 2 respectively where positive
signais indicated as before negative strains. A portion of the same two
signals are shown with enlarged scale in both axis in figure 7.20(b).

Figure 7.21 shows the strain gauge data obtained at position 3 and
position 4 (Fig. 7.21a) and position 5 and position 6 (Fig. 7.21b) for
an eccentric impact with e = 8.30mm.

The peak strain measured at O.lm from the impact end (position 1)
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was 108 microstrain and the pulse shape of the input pulse was still
recognisable at this station,

However, at position 2, the bending wave had already several neaks
of alternating sign and was more widespread over a longer time span.

At positions 3 and 4, situated on the larger diameter of the stepped
beam, the bending strains were much smaller and more oscillatory in type
as can be seen from figure 7.21(a).

Fig. 7.21(b) shows that an increase of 257 in diameter resulted in
a drastic decrease in the propagated bending strain. The peak strain
jmmediately before the shoulder was 5lpye and decreased to 18pe immediately
after the change of the cross section, a reduction of about 657 in the
peak of the bending 'strain was caused by the relatively small change of
the diameter.

The . history of bending strain was plotted at the same time

using the xy - plotter and a typical plot of the strain gauge outputs at
positions 1 and 2 are presentedin figure 7.22. These plots are particularly
useful for direct comparison with theoretical solutions. They have ghe
advantage of easier evaluation and are considered more accurate. There-
fore the estimation of the peak strains and time Iocation were méstly based
on the ploté\:rather than on the photographs of the oscilloscope traces.

7.4.1.3. Longer beam with discontinuity of cross section

The bending wave propagation was investigated in a second longer
beam with discontinuity of cross-section (Test beam III) with a total
length of 3.295m and a change of diameter from 25.4mm to 31.75mm
(d2 = 1.25d1) at 1.0m distance from the impact end. Four pairs of strain
gauges were located along the test beam and their positions are shown
in Fig. 7.3.

Strain gauge data are presented in figure 7.23 and were obtained,
from the four stations, and the first three positions were exactly at

the same distance from the impact end as in the shorter stepped beam
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discussed in the previous section.

The comparison of the strain gauge data obtained from test heam 2
with those of test beam 3 provides useful information regarding the effect
of the discontinuity on the bending wave where the reflected wave in the
longer beam arrives considerably later at the gauge stations than in the
shorter stepped beam.

In position 1 (Fig. 7.23a) the peak strain at 410us after the
wave front arrival is about 97 microstrain due to an eccentric impact
with the 1.0m long striker and an eccentricity of e = 7.5mm. The small
alternating oscillations arrive at later times when compared with the
trace obtained from the same position of the shorter beam and therefore
these oscillations are due to reflections from the far end of the beams.
The effect of the reflection from the position of discontinuity is shown
as a sudden abrupt change in the slope of the main pulse at the same
instant in both test beams,

The similarity between the lower traces of Fig. 7.2 (a) and 7.23(a)
should be noted with differences starting at about lms from the bending
wav; arrival.

The first part of the output at position 3 is similar to the trace
of position 2 except the amplitude decrease due to the effect of dis-
continuity and the earlier arrival of the smaller. oscillationms.

At position 4 it became more diffﬁcult to distinguish between the
components of the transmitted bending wave through the cross section
change and the reflections from the far end of the test beam,

Figure 7.24 presents an enlarged recording of the bending strain
time history at positions 1 and 3 on the two parts of the stepped beam.
No aftempt was made to obtain the velocity of propagation since the
transient bending wave is composed of components with different frequencies
and different velocities of propagation clearly shown in the dispersion

of the input bending wave even within short distances of propagation.
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Therefore there is no significance in attempting to obtain velocities of
propagation except that one should notice that any flexural gisturbance
was propagated with velocities lower than the bar velocity ¢, and in most
cases longer sweeptimes were required to trace the bending wave arrival

as compared with sweep times for tracing the longitudinal wave propagation,

7.4.1.4. Stepped beam subjected to eccentric impact at the larger end

The 2m long beam with the discontinuity of cross section at the
middle (Test beam II of fig. 7.3) was subjected to eccentric impact at
its larger end with an eccentricity of e = 9.5mm. The distances of the
strain gauges from the large end were exactly the same as from the smaller
end due to the symmetrical arrangement of the strain gauges along the -
test beam. However, positions 1,2,3,4,5 and 6 in the beam loaded at the
large end correspond to positions 4,3,2,1,6.and 5 shown in figure 7.3
respectively.

Figure 7.25 shows the traces of bending strain at positions 1,2
and 3 and there is a clear similarity with Fig., 7.20 and 7.21 for the
same test beam loaded eccentrically at its small end. The striker was
the same as before,é_lm long bar with 25.4mm diameter.

The peak strain of the bending pulse is 78pe at position 1 and at
position 2 a peak strain of opposite sign with an amplitude of -41.6yuc
can be seen in the lower trace of Fig. 7.25(a).

On the second part of the test beam with a reduced cross section
the traces of the bending strains with increased amplitude and oscillations
are illustrated in the lower traces Figs. 7.25(b) and 7.26(a) for position
3 and position 4 respectively where the upper trace of both figures
represented the'bending strain time records at position 1 near the impact
end.

The bending strain at the two stations in the neighbourhood of the
discontinuity, immediately before and after the change of cross section,

is illustrated in figure 7.26(b) where a sharp increase in the bending
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strain is noticable and peak strains are more than doubled due to a 257
reduction in diameter. The peak strain at position 5 was 23pe and at
position 6 about 56 microstrain (ue).

7.4.2.- Simply supported stepped beam of circular cross section

The effect of end conditons was investigated in a set of experi-
mental results obtained for a short stepped beam simply supported af both
ends and the strain gauge data obtained from the six stations along the
beam are shown in figures 7.27 and 7.28.

The simple support was achieved by resting the test beam on two
v-slots each consisting of two ball bearings mounted on an aluminum block
and the blocks were mounted on an angle iron of about 1.0m height, bent
in L-shape at its lower end and bolted on a concrete base to provide
rigidity for the support.

The ends of the test beam were secured with collar brackets against
horizontal movement and were supposed to allow rotation but no deflection.

The input bending moment was produced by the impact of the same 1.0m
striker supported as before by thin wire and allowed to swing freely as 5
bifilar peﬁdulum. The input transient bending moment had the same
trapezoidal shape as for the case of the free-free beam and its value is
obtained by measuring symmetrical strain, calculating the total force of
impact and multiplying this force by the eccentricity of the impact.

The traces of the strain gauge data were similar to the trace
obtained for the free-free beam and show that fixing the ends of the bar
by collar brackets when resting on the V-slots had very little effect
on the form and the amplitude of the transmitted and reflected bending
wave pulse.

This suggests that the end supports did not satisfactorily produce
the required simple support and the end conditions were merely free-free

but now realized by resting the bar on V-slot ball bearings instead of

the hanging thin wires.
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7.4.3. Free-free stepped heam of rectangular cross section

’

The bendiﬁg wave propagation was investipated in a free-free bheam
of rectangular cross section with éybhaﬁge of the height from 36,44mm
to 50.8mm and with the same width over the whole length of the test
beam,which is called test beam IV and illustrated in figure 7.29.

The change of the cross section was introduced at 1.0m from the
impact end and the total length of the beam was 1,885m, Two pairs of
strain gauges were located at the first portion of the beam at 0.lm and
0.8m position 1 and 2 from the impact end and a third pair of strain
géuges was cemented on the larger cross section at 0,2m from the position
of the discontinuity of crosss section (position 3).

The effect of the change of cross-section was investigated by two
pairs of strain gauges located at 5mm distance from both sides of the
position of discontinuity (position 5 and position 6.)

The test beam was hung edgewise with thin wires in exactly the
same way as the test beams of circular cross-section pulled back a
distance of 18cm and allowed to swing freely to impact the stepped beam
of rectangular cross section.

The bending strains obtained at position 1 and position 2 are shown
in figure 7.30 and traces of bending strains at positions 3,5 and 6 are
shown in 7.31 as typical traces for the performed experiments.

The peak strain reaches 68 microstrain (ue) at about 39Nps at
position 1 and reaches -35ht at 750 microsecond at position 2, and the
dispersion of the bending wave is clearly demonstrated.

The effect of the change of cross section on the bending wave pro-
pagation is shown in the traces obtained from the strain gauges at
position 5 and position 6 illustrated in figure 7.31(b). The increase
of the cross section caused a drastic decrease in the transmitted bending

wave where the amplitude of '*49 microstrain was reduced to ahout +g micro-

strain,
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The bending strain build up at position 3 on the larger cross
section must therefore be caused by reflection from the far end of the
test beam.

The similarity with the strain gauge data of the circular beam
with discontinuity of cross-section should be noticed with the dis-
continuity of cross-section affecting the transmitted bending wave
more strongly in the beam of rectangular cross-—section with abrupt
change in the width than in the beam of circular cross section with
abrupt change of diameter,

Each set of experiments was repeated at least three times and the
bending strain amplitude against time at each position of strain gauges
was measured with reference to the strain gauge output of the position
nearest to the impact end (position 1) and the results showed a high
degree of consistancy and were satisfactorily repeatable.

All experimental results were plotted using the xy - plotter in
addition to their recording with the aid of the cameras.

The calibration of the horizontal axis was checked continuously
and the shunt resistance calibration was carried out and repeated

continuously for each strain gauge bridge connections.
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Cauge type N-11-FA-8 4/120/EC(a) | 4/120/EC(b)
mﬁ%\
Nominal resistance (Q) 119.8 120 120
Gauge length (mm) 8 4 4
Gauge factor 2.10 2.07. 2.11

Material alloys

Epoxy backed
Copper-Nickel

Epoxy backed
Copper-Nickel

—

Temp. Comp,

Bridge supply voltage

Other specif&cations Temp., Comp. |[Temp. Comp
Manufacturer Showa Tinsley ‘|Tinsley
Teleon : Telcon
Test bar uniform stepped bar' |[stepped bar of
circ. bar of circular |[rectang. sect.
sect.
Batch No. - T 14 97 T 2078
5V DC 5V DC 5V DC

TABLE V Foil Strain gauge Specifications
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Shunt resi-

Shunt resi-

Shunt resi-

’

calibrations
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stance (1) stance (2) stance (3)

Resistance Box A

Nominal resistance (k%) 220 470 1000

Exact resistance (kQ) 219.4 483 1056

Equivalent strain x 106in

bending strain bridge:

N-11-FA-8 Strain gauge 129.97 59.04 27.0

4/120/EC(a) Strain gauge 132,07 60.0 27.45

4/120/EC(b) Strain gauge 129.57 58.87 26.93

Resistance Box B

Noﬁinal resistance (kQ) 220 470 1000

Exact resistance (kQ) 242 514 1095

Equivalent strain x 106in

bending strain bridge

N-11-FA-8 Strain gauge 117.83 55.49 26.04

4/120/EC(a) Strain gauge 119.74 56.39 26.47
-~ §[120/EC(b) Strain gauge 117.47 55.32 25.97

Resistance Box A

Nominal resistance (k) 470

Exact resistanc; (kQ) 483

Equivalent Stfain X 106in

longitudinal Strain bridge

N-11-FA-8 Strain gauge 59.04

4/120/EC(a) Strain gauge 60.0

4/120/EC(b) Strain gauge 58.86

TABLE VI Shunt resistance




T
\

Reference p/ld 4 fkéJmB E/lO”gNhn? G/10 9N/m : v clﬁm/s]
Kolsky. (1953) 0.78 206 79.46 0.29 5190
Markham (1957) | 0.7825- 197.47~ 79.086~ 0.286-| 5018~
0.784 213.19 82.119 0.292 | 5219
Spinner et.al. | 0.7846~ 204,44~ 80.53- 0.269- 5152~
(1960) | 0.7854 207.29 8064 0.285 | 5199
Baumeister & 197.197- 75.845~ 0.283- 5018
Marker Hand- 0.783
book (1967) 206.85 82.051 0.292 5155
Johnson (1972) | 0.775 204 80.85 0.271| 5150
Graff (1975) 0.796 207 80.23 0.29 5060
Rosinger et.al.
(1977) 0,7851 208.4 82.09 0.292{ 5152
Measured &
used in this 0.777 205.6 79.69 0.29 5120~
work 5160

Table VII Physical

properties of mild steel

- 224 -




Mode number n 1 2 3 4 5
‘Free-free end
Bh £ 4.7303] 7.8539 |10.996| 14.137 | 17.279
Measured freq. -
values fﬁ 97.38 | 268.05 |524.77| 863.51 | 1279.87
Theor. frq. (E.B.) 97.87 | 269.83 |528.92] 874.251 ) 1306.048
"Theor. frq.(Timos.) 97.77 | 268.99 |525.84 - -
Theor. frq. ratio
f.;l/f1 1.0 2.757 }5.410 | 8.933 13.340
Exp. frq. ratio
fn £, 0,995 2.739 |5.362 | 8.823 13.077
prect diff fe/ft yA 0.995] 0.993 }0.992 0.988 0.980
Pinned-pinned
B & 3.142 | 6.283 |9.425 | 12.566 | 15.708
Measured frq. fn 42,10 { 173.92 | 347.80| 641.38 | 1047.25
Theor. frq. (E-B) 43.185] 172.69 | 388.58| 690.74 | 1079.35
Theor. frq. ratio 1.0 3.999 |8.998 | 15.995 | 24.994
Exp. frq. ratio 0.975 | 4.0273 |3.054 | 14.852 | 24.250
prect. diff. fe/ft 0.975 ) 1.007 |0.895 | 0.929 0.970

g = 1.09m; E =2.056 x 10:MN/m?; o = 0.77743 x 10% kg/d

TABLE VIII

Comparison of theoretical and experimental

results of flexural resonance frequencies
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FIG. 7.2 PHOTOGRAPH OF EXPERIMENTAL ARRANGEMENT




Positions of strain gauges
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FIG. 7.3. TEST BEAMS AND STRAIN GAUGE LOCATIONS
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A a. Axial strain measurement (A) , Active strain pauges
o (D) Nummy strain pauges

R g}i‘-"t ‘Strain ‘gauge resist.

e\ L

[}
b. Bending strain measurement

FIG. 7.4. STRAIN GAUGE LOCATIONS IN WHEATSTONE BRIDGE CIRCUITS
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FIG. 7.5 PHOTOGRAPH OF THE MEASUREMENT EOQUIPMENT
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FIG. 7.6. BLOCKDIAGRAM OF MEASUREMENT EOUIPMENT
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(b) Input pulse due to 0.31 m long striker

FIG. 7.7 LONGITUDINAL STRAIN-TIME VARTATIONS WITH STRIKERS LENGTH
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(b)

FIG. 7.8 LONGITUDINAL (a) AND BENDING(b) STRAIN-TIME RECORDS FOR THE
UNIFORM TEST BEAM(I) OF CIRCULAR CROSS SECTION STRUCK BY THE 1.0m STRIKER
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FIG. 7.9 CALTBRATION OF VERTICAL OUTPUT (a) AND SWEEP RATE (b)
FOR THE STORAGE OSCILLOSCOPE TEKTRONIX 564B
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(b)

FIG. 7.10 REPRODUCIBILITY (a) AND AMPLITUDE VARIATION (b) OF INPUT
- PULSE WITH INPUT VELOCITY AT 4 BAR DIAMETERS FROM IMPACT
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(b)

FIG. 7.11 EFFECT OF ECCENTRICITY ON THE VARTIATION OF BENDING
(ANTISYMMETRIC) STRAIN HISTORY
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FIG. 7.12 LONGITUDINAL(a) AND BENDING(b) STRAIN-TIME RECORDS IN THE
2.0 m LONG STEPPED BEAM (TEST BEAM II) DUE TO ECCENTRIC IMPACT
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FIG. 7.14 BENDING (ANTISYMMETRIC) STRAIN-TIME PLOTTER READOUT
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(a)

(b)

FIG. 7.15 LONGITUDINAL STRAIN-TIME RECORDS FOR THE 3.295 m LONG
STEPPED BEAM (TEST BEAM III) STRUCK ECCENTRICALLY BY
THE 1.0 m LONG CYLINDRICAL STRIKER
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FIG. 7.16. SPACEfTIME DIAGRAM OF LONGITUDINAL WAVES
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(b)

FIG. 7.19 BENDING STRAIN-TIME TRACES IN THE 3.0 m LONG UNIFORM
BEAM (TEST BEAM I) OF CIRCULAR CROSS SECTION DUE TO ECCENTRIC IMPACT
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(b)

: P
7.20 BENDING STRAIN-TIME PROFILES 1IN THE 2.0 m LONG STE PED
i BEAM (TEST BEAM II) DUE TO ECCENTRIC IMPACT
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(b)

BENDING STRAIN-TIME PROFILES AT VARIOUS POSITIONS ALONG. .

THE 2.0 m LONG STEPPED BEAM DUE TO ECCENTRIC IMPACT
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(a)

30 pe

(b)

FIG. 7.23 BENDING STRAIN-TIME TRACES AT VARIOUS.STATIONS OF THE.
3.295 m LONG STEPPED BEAM (TEST BEAM ITT)
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FIG. 7.24 BENDING STRAIN-TIME RECORDS AT 4 AND 48 BAR DIAMETERS
FROM THE IMPACT END(TEST BEAM III)

- 249 -



w

=3

-

o™ T

w

:_ -

o~

o~

% @

(a)

32.2ue

1.25 ms _** r*_

(b)

FIG. 7.25 BENDING STRAIN-TIME RECORDS  FOR THE 2.0 m LONG STEPPED.

BEAM DUE TO ECCENTRIC IMPACT AT THE LARGE END
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FIG. 7.26 BENDING STRAIN-TIME RECORDS . AT VARIOUS STATIONS OF. THE

2.0 m LONG STEPPED BEAM DUE TO ECCENTRIC IMPACT AT THE

LARGE END
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FIG. 7.27 BENDING STRAIN-TIME TRACES FOR THE 2.0 m LONG STMPLY
SUPPORTED STEPPED BEAM DUE TO ECCENTRIC IMPACT
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: (b)
7.28 BENDING STRAIN-TIME TRACES FOR THE 2.0 m LONG. SIMPLY
FIG. /.

SUPPORTED STEPPED BEAM DUE TO ECCENTRIC IMPACT
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(b CB All dimensions are in cm
3
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K‘:? " (b) Test beam IV

FIG. 7.29 CIRCULAR(a) AND RECTANGULAR (b) TEST BEAMS WITH DISCONTINUI
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FIG. 7.30 BENDING STRAIN-TIME RESULTS .: FOR.THE STEPPED. BFAM OF
RECTANGULAR CROSS SECTION DUE TO ECCENTRIC IMPACT WITH

THE 1.0 m LONG CYLINDRICAL STRIKER
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FIG. 7.31 BENDING STRAIN-TIME ~RESULTS FOR VARIOUS POSITIONS OF.
THE STEPPED BEAM OF RECTANGULAR CROSS SECTION DUE TO
ECCENTRIC IMPACT WITH THE 1.0 m LONG CYLTNDRTCAL STRIKER
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CHAPTER VIII

COMPARISON OF EXPERTMENTAL AND THEORETICAL RESULTS
IN FINITE FREE-FREE TIMOSHENKO BEAMS

8.1. The input bending moment-time distribution

In the eccentric impact the force P(t) is applied with
an eccentricity e and the eccentrically acting force can be
replaced by an axial force P(t) and a couple M(t) where M(t)f
is given by:

M(t) = P(t).e (8.1)

This input bending moment has the same time distribution
as the input force generated by the eccentric impact of the
striker. The duration of this pulse is governed by the time
necessary for the compressive wave front to move twice the
length of the 1.0 m striker,

Since the wavelengths of the components comprising from this
pulse are large compared to the beam diameter, the shape of
the longitudinal pulse can be recorded quite accurately by

strain gauges along the beam.

The investigation is conceﬁtréted on the propagation of
the flexural strain waves (hence bending moment) down the beam
according to the Timoshenko beam theory, where the effects of
shear force and rotatory inertia are included.

The measured axial strain is presented in figure 8,1 as
the input boundary condition and is closely approximated by
the symmetrical trapezoid shown in the same figure. The
trapezoidal form is used for the numerical computation where
experimentally obtained loading éonditions are used as input
to the numerical solution.

The trapezoidal pulse shape is obtained as the difference
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of two ramp platform input functions differing by the pulse

duration t according to
M(0,t) TRP = M(o,t) RE " M(O,t-td) RP (8.2)

where indices TRP and RP are for the trapezoidal and ramp
platform bending moments respectively and their time distribution
was given in table 4 (Chapter 5).

The input strain pulse presented in figure 8,1 is used
to compute the equivalent axial force loading according to the
one dimensional dispersionless elementary longitudinal wave
theory. Unless otherwise stated, the maximum antisymmetric
strain due to the eccentric impact was measured as €n ™ 46,7 ye
the maximum axial force

P = €EA= 4831 N (8.3)

Using the measured eccentricity of e = 7.85 mm, the maximum
input bending moment is found to be
M = P.e= 38 Nm (8.4)
The recorded maximum input axial strain is in very good

agreement with the axial strain obtained from the elementary -

wave theory as

= =>._.lr_.'.= 478€
€ 55 Te] 8y (8.5)
where ¢; = 5140 m/s is the bar velocity, and v = 0.491 m/s is

the value of the impact velocity used in most experiments,
The material properties used for the theoretical solutions
throughout chapter 8 are those experimentally measured for the

actual mild steel test beams and were listed in table 7 as

9 2

E = 205.6 x 10° N/m

4

o = 0.777 x 10" kg/m
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9 2

(]
f

79.69 x 10° N/m

0.29

<
fl

5140 m/s

¢
n

c 3011 m/s

2
2 _ 0.8856

k

The bending moment M(O,t) is zero at t = O and reaches
the maximum of M = 38 Nm after a short finite rise time of
t, = 90 ﬁs during which a linear ramp increase is assumed.
The pulse duration is obtained as

-2

= 389 us (8.6)
€1

tq
where & is the length of the striker (1.0 m).
To generalize the discussion, the values of the bending

moment and time are non-dimensionalized as

M.d

5= d | (8.7)
c,.t

= 1

T = — (8.8)

where d = 25 mm (approximately equal to the diameter of the
uniform beam and equal to the small diameters of the stepped
beams) .

The input bending moment was idealized as trapeZoid and
was obtained according to equation 8.2. which describes the
input boundary condition for the antisymmetric strain components
as long as the input pulse duration is less than £yt oty and
was set equal to zefo outside this range. However, the
experimentally observed axial strain decayed to zero at a later
stage due to reflection from the far end of the test beam,

The maximum non-dimensional input bending moment is
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calculated as

3

M.d -
=5 = 0.225 x 10 (8.9)

m
and the corresponding maximum bending strain on the outer

surface of the test beam with radius r

M.d .
€ = m = 115 ue (8.10)

Unless otherwise stated the input boundary condition
as pure bending moment loading was used for the uniform test
beam of circular cross-section and for the two cylindrical
beams with discontinuity of cross-section,

The time range of the bending strain investigation was
very short (less than 2 ms) and therefore the influence of
damping was expected to be very small and was not taken into
consideration.

In comparing the experimental resulté and theoretical
predictions, one should expect some degree of discrepancy
due to one or more of the following reasons,

i) For the case of the numerical computation a relatively
simple trapegoidal pulse was used to describe approximately
the exact input pulse, This’introduces a certain amount of
error in the input boundary condition itself,

3i) The trapezoidal pulse is composed of a large spectrum of
frequency components which are dispersed due to the different
velocities at wﬁich each frequency is propagated, This
dispersion is a characteristic of tﬁe bending wave.

iii) The Timoshenko theory gives an excellent prediction of

the velocity for propagation in the first branch of the

dispersion curve, but is less satisfactory in its predictions
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for the next highest branch of the dispersion curve, particularly
at high frequency where large deviations from the exact theory
occur. A good agreement between theoretical and experimental
results indicates that there are no waves generated in the second
mode or there are only long wave transmissions.
iv) Although an excellent degree of reproducibility was achieved
for the conducted sets of experiments, there are inherent errors
in the experiments and in the reduction of experimental data,
Taking all these points into account, it will be shown in
the next sections that the numerical solution by the method of
characteristics according to the Timoshenko beam theory presents
an accurate prediction of the observed flexural deformations
in finite uniform beams and in beams with discontinuity of
cross—-section.

8.2. Uniform beam of circular cross-section subjected
to eccentric 1lmpact -

The eccentric impact of the beam by a striker of the same
cross-section produced a system of strain waves which had both
symmetrical and antisymmetrical components about the beam mid
plane. However, the aim of the present work was to investigate
the bending waves, i.e. to study the antisymmetrical strain-time
distribution at each beam cross-section.

The comparison of the measured and predicted bending moment
histories are shown in figure 8.2 for the position x/d = 12 and
84 of the 3.0 m long uniform beam of circular cross-section,

The diameter of the test beam was 25.4 mm and the beam was
subjected to eccentric impact by a2 1.0 m striker of a diameter
equal to the test beam.

The bending strain history shown in fig.8.2(a) for a position
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12 diameters from the impact end indicates that the trapeZoidal
input bending moment of maximum positive magnitude m =
0.225 x'10_3 has already built-up a negative peak of m= 0.9 x 10-4
at T = 60 and has a positive peak arriving at T = 140 with a
magnitude of m = 0.15 x 1073 which is only 607 of the input
bending moment.

Comparison of results showed a good agreement between
theoretical predictions ahd experimental observations both in
magnitude and shape up to T = 150. After that,the theoretical
prediction approaches zero faster than the measured bending
moment. This can be explained by the difference between the
trapezoidal input function which is assumed to become zero at
about T = 100 and the actual pulse which still has a finite
value at T = 100 and approaches zero at a later time,

The comparison in figure 8,2(b) for the theoretical
prediction of the bending moment history and its recorded history
at position x/d = 84 indicate a good agreement and theory results
in a slightly smaller magnitude than the experiment,

The results presented for the case of the uniform test
beam are brief and are intended to give only an example before
proceeding to the results of the finite free free beams with
discontinuity of cross-section which is the main purpose of the
present work,

‘A more detailed comparison of several cases of semi-infinite
and finite uniform beams was conducted in chapter 5,

According to the wave theory, the fastest waves in beams
are travelling with the bar velocity ey and therefore reflections

in the present example are expected to arrive at position x/d =
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12 after T = 228 and at position x/d = 84 after T = 156,
However, there was little evidence of any reflections arriving
within the considered non-dimensional time of T = 316 and 244
for x/d = 12 and 84 respectively., It is expected that the
main componénts of the transient input bending moment are
travelling at a slower velocity.
The dispersion of the flexural wave and the adequacy of
the Timoshenko beam theory in predicting the main features
of the beam response to eccentric impact are clearly demonstrated,

8.3 Cylindrical beam with discontinuity of cross-section
at the middle

The comparison of bending moment history at various positions
on both cross-sections of the stepped beam are presented in
figures 8.3 - 8.5. The numerical results were obtained using
ghe TMOTCU 3 computer program and the experimental data were
éased on the measured antisymmetric outer surface strains,

The experimental results and the numerical results are in
extremely good agreement. In all cases the major features of
the experimental results are reproduced by the numerical solution
obtained by the method of characteristics.

Fig.8.3 shows the comparison of bending moment-time
distribution at positions x/d = 4 and 32 corresponding to 0.1 m
and 0.8 m from the eccentrically impacted end of the 2,0 m long
test beam with the discontinuity of cross-section at the middle.

The maximum velocity of propagation of any wave component
in the beam is ¢y and therefore the fastest possible arrival
of the bending wave is at T = 4 and 32 for positions x/d = 4
and 32 respectively. However, the trapeZoidal input bending

moment becomes more and more widespread as it is propagated
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along the beam.

For position x/d = 4 the agreement between experimental
results and theoretical prediction is very good up to T = 96
and even at this early location only 4 diameters from impact
end,the dispersive character of the flexural wave is clearly
visible in the production of a small initial negative peak
and some reduction in the maximum peak of the input bending
moment.

After T = 96, the theoretical prediction reaches zero
faster than the experimentally observed data due to the basic
disagreement between the theoretically assumed trape;oidal
input bending moment and tﬁe bending moment magnitude e;aluated
from the observed longitudinal strain, as demonstrated in
figure 8.1.

The agreement at position x/d = 32 until T = 148 is
excellent in both amplitude and time, After T = 148 there
is some difference although the theoretical prediction still
gives the general form of tﬁe experimentally observed bending
moment history.

The experimental and theoretical bending moment- time
distributions immediately before and after the position of
discontinuity are compared in figure 8.4, The experimental
records were obtained from strain gauge locations at x/d = 39,8
and 40.2 whereas the theoretical predictions are both for
positian x/d = 40 where the diameter of the test beam increased
from d; = 25.4 mm to d, = 31.75 mm.

The time wise agreement between the two sets of results

is excellent but the theoretical solution predicts slightly
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smaller peaks at the initial stages and larger magnitudes
from T = 200 onwards. A peak value of m=0.7 x 10_4 at
T = 152 has decreased to m = 0.25 x 10-4 due to an increase
in the diameter of the test beam by 257.

The comparison of experimental and theoretical bending
moment history at position x/d = 48 and 76 is presented in
figure 8.5.

The numerical results based on the method of characteristics
produced good pulse magnitude and shape agreement with experiment,

The bending moment pulse at position x/d = 76 showed a
more oscillatory form than the pulse at any position before and
the main components arrived after T = 140 indicating clearly
that bending waves are travelling witﬁ velocities smaller
than the bar velocity cl.

Although the theoretical predictions of peaks were mostly
lower than those observed experimentally, the experimental data
showed the presence of a definite peak ét the location predicted
numerically.:

The extremely good agreement of the numerical predictions
using the TMOTCU3 computer program with experimental observations
of the bending wave propagation indicated clearly the adequacy
of the Timoshenko beam theory for flexural wave propagation in
beams with discontinuity of cross-section.

8.4. Longer Cylindrical beam with discontinuity of
cross—-section subjected to eccentric impact

Comparisons of measured and predicted bending moment history
are shown in figures 8,6 and 8.7 for a longer test beam of 3,295 m
with the discontinuity of cross-section at the same distance from

'
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the impact end as in the previous example, In this case, the
reflected bending wave from the far end of the beam is expected
to arrive at a later time.

The results shown in figure 8.6 for positions x/d = 4 and
32 are identical with the results shown in figure 8.3 for the
same positions of the shorter beam except a small difference for
x/d = 32 at T = 216, This indicates that within the considered
time of T = 240 there were no reflections from the far end
arriving at the monitoring positions and the significant change
in the shape and magnitude of the input bending moment is due to
dispersion and reflections from the position of discontinuity.
Good agreement is noted for pulse magnitude and shape.

Figure 8.7 shows a comparison of experimental observations
and theoretical predictions for positions x/d = 48 and 80, The
agreement is extremely good, although the numerical solution
predicts a slightly lower amplitude for the travelling bending
wave.

8.5. Cylindrical stepped beam subjected to eccentric
" impact at the larger end

The 2.0 m long test beam with discontinuity of cross-section
at the middle was subjected to eccentric impact at its large end
of 31.75 mm diameter where the axial force was applied with an
eccentricity of e = 9.5 mm.

The longitudinal surface strain was measured as €, = 34,5 ye
and the maximum axial force was obtained according to equation
(8.3) as

Pm = emEA = 5610 N (8.11)

The maximum input bending moment is as in equation (8.1)

Mo = Pm.e = 53,3 Nm , (8.12)
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The non-dimensional time is defined as in equation (8.8)
as T = cl.t/d with d still taken as 25 mm,
The bending moment was non-dimensionalized according to

equation (8.7) as

m = l‘i—d = 0.13 x 107> (8.13)

where I is cross sectional moment of inertia of the larger
cross section.
The maximum bending strain corresponding to the maximum
input bending moment can be obtained as
M4

€=z =825 ue (8.14)

The input bending moment for the numerical computation
was assumed as before to be in the form of trape;oid with a
finite rise time of té = 90 ﬁs (fd = 18.5) as shown in figure
8.1.

Comparison of measurements and TMOTCU3 calculations are
shown in figures 8.8, to 8.10 for the bending moment-time
distribution at x/d = 4, 32, 40 and 48, ;

In figure 8,8, the experimental results and theoretical
results are presented for strain gauge locations x/d = 4 and
32, The agreement for position x/d = & is seen to be excellent
and the bending moment approaches the maximum of m= 0.125 x 10-3
as from T = 68,

At position x/d = 32, the theory predicts a larger peak for
the bending moment at T = 100 and at T = 144 which are the same
positions of the experimentally predicted peaks. The agreement
in time variation between theory and experiment is extremely

good.
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The bending moment history at the position of discontinuity
immediately before and after the reduction of cross-section at
x/d = 40 is presented in figure 8.9 where theoretical solutions
are obtained for x/d = 40, and experimental results were observed
at strain gauge locations x/d = 39.8 and 40.2.

The theoretical solution was obtained for a shorter period
of T = 160 than in the case of increased cross-section, since
the present case required a finer mesh size of Ax = 0.625 mm in
contrast to the larger mesﬁ size of Ax = 1,25 mm used in previous
cases.

The bending moment at T = 116 increased from 0.1 x 10-4 to
0.3 x 10'_4 due to a reduction in the diameter from 31,75 mm to
25.4 mm and a larger peak was observed at T = 238,

Figure 8.10 shows the comparison between experimental and
theoretical bending moment—- time results at position x/d = 48
where there is an extremely good agreement in magnitude and
shape.

The level of the bending moment dropped to m = 0,15 x 10-4
at T = 120 and to a negativeée magnitude of m= -0.24 x 1of4 at
T = 140, and the alternating sign of the antisymmetric dispersion

bending wave is clearly visible.

8.6, Finite stepped beam of rectangular cross section
subjected to eccentric impact

The last studied case of stepped beams consisted of a test-
beam of rectangular cross-section with increased height from h1 =
36,4 mm to hi = 50.8 mm at 1.0 m from the impact end and with a
constant width of 12,7 mm over the whole length of 1,885 m (Test

beam IV of figure 7.29).
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The input axial force due to eccentric impact with the
1.0 m striker of circular cross-section was applied at an
eccentricity of.e = 9,8 mm,

The maximum longitudinal surface strain due to eccentric
impact was measured as Eh = 48,4 ﬁe.

The axial force is obtained according to equation (8.3)
as

P¢/= €FA = 4600 N (8.15)

fhis in turn results in an input bending moment of the

following maximum magnitude,

MO = Pm.e = 45 Nm . (8016)

The non—-dimensional input bending moment is defined as
M. _

- _E_Ihl =0.217 x 1072 (8.17)

The rise time of the trapezoidal input bénding moment is
taken as t& = 90 Us and the non-dimensional time is defined

as before.

T = ——  where d = 25 mm,
The maximum bending strain due to the maximum input bending

moment can be obtained as

Mo.hllz o
€=—pr— =78 )€ (8.18)

The value of the shear correction factor for the rectangular

cross section was taken as kz = 0.849 and then c, can be determined

The non-dimensional bending moment-time distribution for

as

€2

positions x/d = 4, 32 40, and 48 are shown in figures 8,11 to

8.13.

- 269 -



The agreement between theoretical predictions and experimental
results is good in magnitude and shape with the.theoretical solution
predicting higher peaks at the same positions of the measured peaks.

Fig.8.11 presents the bending moment history at positions x/d
= 4 and 32. The change in the shape of the bending moment as it
has travelled from x/d = 4 to x/d = 32 is clearly observed where
the initial positive bending moment of m = 0,205 x 10-3 at x/d = 4 builds

3 at T = 204 as monitored

up to - a negative peak of m= 0,125 x 10
in position x/d = 32, This peak is followed by smaller oscillations.
More severe .bending moment cﬁanges are noted in figure 8,12
representing the comparison of experimental and theoretical data
at x/d = 40 where the bending moment-time distribution is plotted

before and after the discontinuity of cross section,

A better agreement between theoretical and experimental results
is noted at the initial period of T = 160 with the theoretical
predictions becoming higher than experimental results as time
progressed.

Fig.8.13 demonstrates the comparison of experimental iobservations
and theoretical predictions for the bending moment history at x/d =
48,

The theoretical solution predicts the shape of the propagating
bending wave but with a shift of about T = 8 where the experimental
peaks trail behind the analyticél peaks.

It can be concluded that the propagation of flexural waves in
beams of circular and rectangular cross-section with discontinuity
of cross—section are adequately predicted by the numerical solution
accordipg to the Timoshenko beam theory, The differences between

theoretical results and experimental results were reasonably small.
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CHAPTER IX

DISCUSSION

The Euler-Bernoulli theory is known to be inadequate for
the treatment of transient bending wave propagation problems,
since it assumes an infinite velocity of propagation for
disturbances with infinitely short wavelengths associated with
the high freqﬁency branches.,

The transient respronse is assnciated with the imnact where
the duration of impact is much smaller than tﬁe period of the
first flexural mode of vibration of tﬁe structﬁre.

This period for the 2.0 m stepped beam is 10,3 ms and the
pulse duration of the trapezoidal input bending moment was 0,48
ms, more than 21 times smaller tﬁan the fundamental period,

The Timoshenko beam theory, which takes into account the
effects of rotatory inertia and shear, is practically the best
approximate theory for solving transient flexural wave propagation
problems.,

From the literature survey no previous attempt to. solve the
problem of flexural wave propagation in beams with discontinuity
of cross section according to the Timoshenkd beam theory has been
found.

The investigation concentrated on the sﬁudy of antisymmetricél
strain component-time distribution at various locations along test
beams due to the considerable importance of beams in bending for
engineering applications.

Several solution’ methods were discussed. The transform
techniques require numerical inversion and numerical integration

becomes more complicated with the incorporation of boundary
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conditions.The Laplace transform method yields solutions in
closed form only when a certain power distribution can be
assumed for the variables.

Finite element methods are mostly used for frequency
analysis of Timoshenko beams. However, computed stresses
show severe oscillations making the method less attractive
for transient‘wave propagation problems,

Although finite element methods are very useful in the
treatment of geometrically complex structures and although
they have been used successfully for the solution of elliptic
" and parabolic governing equations, they have yet to prove
themselves for solving transient flexural wave propagation
problems governed by hyperbolic partial differential equations,

Finite difference methods have been used widely in
solving one dimensional and two dimensional longitudinal wa&e
propagation problems, Tﬁe main disadvantage of the finite
difference techniques is tﬁe difficulties encountered in handling
discontihuities-in geometry and méterial.

The metﬁod of cﬁaracteristics was sﬁown to be most accurate
and most effective in solving mixed initial boundary value protlems
governed by hyperbolic partial differential equations such as
the problem of flexural wave propagation in Beams wﬁen described
by tﬁe Timosﬁenko beam equations,

The method of characteristics ﬁas tﬁe advantage that dis-
continuities in the initial values propagates along the cﬁaraéteristics
and a un{que solution is ensured in the region between the
characteristic lines,

The method of characteristics has a wide range of applications
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in the fields of elastic, viscoelastic and plastic wave propagation
problems ;s well as other fields such as fluid mechanics and gas
dynamics.

The method of characteristics was applied successfully in
solving the present problem of flexural wave propagation in finite
beams with discontinuity of cross-section, where reflections from
the far end and the position of discontinuity are automatically
absorbed into the solution by the presence of backward running
characteristic curves at each grid point, |

The adherence of the characteristic method to the stability
cfiterion °f.‘é%§KE'> 1 ensures convergence to the true solution
as Ax and At approach zero.

The choice of the correct mesh size is affected by the type
of loading, the rise time of the input load, boundary condition
and the type and pqsition of discontinuity, In order to select
the largest mesh size with a minimal acceptable error, the mesh
gize was chosen in such a manner that any further reduction in
its value did not alter the solution significantly (Fig.5.11 and
5.12)

The importance of the shear coefficient k2 was discussed in
chapter 5 (section 1) and after careful considerations the values
of 0.8856 and 0,849 were cﬁosen for beams of circular cross-section
and rectangular cross-section respectively,

Numerical results based on the developed TMOTCU computer
programs were compared with theoretical and experimental results
of several other authors to establish tﬁe accuracy of the present

numerical solution, The comparisons were carried out for the

case of a semi-infinite beam subjected to eccentric impact by a
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long rod (Fig.5.1) and the eccentric impact by a steel ball
(Fig.5.4 and 5.5.). The numerical results of this wbrk were
also compared with previous results for a cantilever beam
subjected to a ramp platform bending moment (Fig.5.6 and 5.7)
and for the case of lateral impact of a simply supported beam
(Fig.5.8).

The comparisons in all cases showed very good agreement
and indicated the advantages of the current numerical solution
in predicting recorded high frequency components of the transient
responses,

Several cases with various end conditions were considered
and theoretical solutions were obtained by the use of the 3
versions of the TMDTCU computer program, The bending moment
time curves were presented for finite uniform beams and finite
beams with discontinuity of cross-sections subjected to ramp
platform end moment impacts,

The effect of the change of mesh size was demonstrated in
figures 5.11 and 5.12 for three different mesh sizes obtained
by successfully halving the original mesh size of Ax = 0,005 and
the results indicated small differences between 17 and 57 with
the maximum differences concentrated at the peak values,

The bending moment time distribution in a free free beam,

a simply supported beam and in a cantilever beam were presented
in figures 5,13 and 5.14 for three beam positions of finite
uniform beams,

The results indicated the importance of taking the reflections
into account for the estimation of the level of stresses and

strains in structures,
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The problem of flexural waves in finite beams with
discontinuity of cross section required a finer mesh size than
in the case of a finite uniform beam,

For stepped beams, the effect of change of diameter ratio
on propagated bending waves for diameter ratios 0.9, 1;0, 1.1,
1.5 and 2.0 was presented in figures 5,15 to 5.17. An increased
diameter ratib‘resulted in an increased reflected bending wave
arriving at the considered positions.

The effect of discontinuity of cross section on the shear
force distribution in finite stepped beams subjected to ramp
platform end bending moment was presented in figures 5.22, 5.23
and 5.25. Tﬁe curves showed increased reflected shear force
with increased diameter ratio and the effect of abrupt change
in cross section was strongly manifested in the history of
reflected and transmitted shear force.

In the experimental part of this work, experimental data
were obtained for various test beams subjected to eccentric
impact by a striker 1.0 m long. Results were presented for
several positions along uniform beams and finite beams with

discontinuity of cross section and of circular and rectangular
cross section,

The eccentricity of the longitudinal impact was measured
by a direct method of tracing the off-centre position for each
impact and the results showed an excellent degree of reproduc-
ibility (Fig.7.10a).

The eccentric impact was considered to be perfectly elastic
due to the low velocity of impact and any possible local plastic

flow was neglected.
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The pulse length was sﬁown for tﬁese tests to be directly
proportional to the striker length (Fig.7.7b) and the 1.0 m
long striker provided an input pulse of approximately trapezoidal
shape.

The bending wave indicated considerable dispersion as it
travelled down the beam showing alternating sign and no definite
constant velocity of propagation for the frequency components of the
bending wave could be obtained. Fig.7.12b showed the bending
strain records at positions x/d = 4 and 32, The original
trapezoidal shape was still :feéognisable at 4 diameters from the
impact end but was more widespread at 32 diameters distance
and showed negative and positive peaks.

The bending strain-time distribution was recorded for six
positions along the 2.0 m long stepped beam subjected to eccentric
impact at the smaller end (Figs.7.20 and 7.21) and at the larger
end (Figs.7.25 and 7,26) with particular emphasis on the bending
strain-time distribution in the immediate vicinity of the abrupt
change of the cross section,

An increased cross section had the effect of a sharp decrease
in the level of the bending strains. A decreased cross section
resulted in a considerable increase in the monitored strains,

Fig.7.26b showed a sﬁarp increase in the bending strain
where peak strains were more than doubled due to a 257 reduction
in the diameter of the cross section. Tﬁe effect of change in
rectangular cross section on the propagated bending wave was
investigated and the results presented in Fig.7.31b indicated
a more drastic reduction in the level of bending strain than

in the case of a stepped beam of circular cross section,
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In order to check the validity of numerical solutions obtained
by the TMOTCU computer programs, tﬁeoretical predictions were
compared with experimental observations for several cases of
finite beams with discontinuity of cross section.

Based on the ramp platform bending moment input, a
trapezoidal bending moment shape was derived and closely
approximated the value of the actual applied bending moment as
obtained by multiplying the axial force-time curve with the
measured eccentricity of tﬁe impact (Fig.8.1),

Comparisons of experimental and theoretical results showed
extremely good agreement in magnitude and shape. A certain
degrée of discrepancy was expected due to some error introduced
in the input data itself, and the inherent errors in experimental
data reduction. Furtﬁermoge, tﬁe Timoshenko theory agrees with
the Pochhammer Chree theory:excellently only for the first branch
of the dispersion curve and the agreement is less satisfactory
for the next highest Branch of the dispersion curve.

The comparison was carried out for non-dimensional bending
moment versus non—dimensioqal time and the theoretical results
predicted accurately the dispersive character of the bending wave,
The agreement was better in the initial build up of the bending
moment and at later stages theoretical predictions were somewhat
higher than experimental records.

The pulse lengtﬁ of the input bending moment was many times
greater than the cross sgctional dimension of the test beams and
the one dimensional Timosﬁenko beam theory adequately described
the flexural wave propagation in tﬁe stepped beams,

The numerical solution by the method of characteristics
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was successful since the agreement between theoretical solution
and experimental observation was especially good for uniform
beams and for beams with discontinuity of cross section.

The importance of the effect of abrupt changes in cross
section was demonstrated in comparison between results obtained
at stations immediately before and after the position of
discontinuity in a 2.0 m long cylindrical stepped beam subjected
to eccentric impact at its small end (Fig.8.,4) and at its
larger end (Fig.8.9) as well as for a stepped beam of rectangular
cross section (Fig.8.12).

" The level ofrchange of stresses in the structure due to a
sudden change in the cross section is of practical importance
in engineering applications. The magnitude of stress variation
can be derived directly from tﬁg bending moment-time curves,

In the small cross section with an area 647 of the larger
cross section, the level of stresses at T = 160 was 2,25 times
the level of stresses recorded after the cross section was
increased. This is derived from Fig.8.4,

A reduction of 36Z in the cross sectional area resulted
in an increase in the level of stresses to 2.4 times the
original stress peak at T = 116 on the larger cross sectional
area. This is derived from Fig.8.9,

A similar drastic change in the level of stresses was
noted for the case of cross section increase in a beam of
rectangular cross section with increased depth (Fig.8.12),

The results of tﬁe present work indicated clearly the
importance of the effect of discontinuity of cross section
on antisymmetric strain and stress components in finite

structures under transient dynamic loading.
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CHAPTER X
CONCLUSIONS

The transient response of beams with discontinuity of
cross section was established experimentally and accurate
predictions were provided by the numerical method of
characteristics using the Timoshenko beam theory.

Several other solution methods were discussed and
although the method oﬁ characteristics is most suitable for
one dimensional flexural wave propagation problems governed
by the system of hyperbolic partial differential equations,
other finite element techniques can be more efficient in
solving two dimensional wave propagation problems.,

The most satisfactory approximation in one case is not
necessarily tﬁe most appropriate in another case, The
choice of the solution method must depend on the required
accuracy, the nature of the structure and its complexities,
and the importance of the shear deformation and rotatory
inertia effects,

One of the problems in the use of the method of;characteristics
was the choice of the correct mesh size which had to be decided
for each problem depending on the type of loading, the rise time
of the input function, the end conditions and the si;e and position
of discontinuity.

For bending moment input impact problems of finite beams
where reflections were taken into consideration the use of very
small mesh size was inevitable. This may be regarded a limitation
to the application of the method of characteristics, ‘ However,

this disadvantage becomes less and less significant with the
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development of ever faster computers.

The maximum values for peaks of bending moment, stresses
and strains in finite stepped beams with increased cross
section were found to be in the initial build up and at
positions nearer to the impact end, However, the peaks of
the same quantities in finite stepped beams with reduced
cross sectionvocCured at positions on the second reduced
cross section, Therefore reflections have to be considered
in order to provide realistic design data for structures
under transient dynamic loading.

The very good agreement between theory and experiment
sﬁowed the success of the metﬁod of characteristics and makes
it suitable for providing solutions for a wide range of
flexural wave propagation problems in beams with discontinuity
of cross section and for various loading configurations where
the same solution equations can be used and only the appropriate
iﬁitial and boundary conditions need to be specified.

The numerical results of the method of characteristics
can be used to check the validity of other numerical methods
and their usefulness in obtaining the dynamic transient response
of more complicated structures,

Most of the experimental and theoretical work was concentrated
on cases of free-free finite beams with discontinuity of cross
section subjected to end bending moment due to eccentric longitudinal
impact. However, other types of end conditions and lateral impact
probléms can be handled easily by the present TMOTCU computer
programs where the time variation of quantities such as M, Q,W and

v are all included.
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The study of the discontinuity id material property
combined with the discontinuity of cross section can be
the subject of future works.

Fufthetmoré:“the developed TMOTCU computer programs can be
used to solve flexural impact loading problems without assuming
the form of the impact load, but merely using the impact velocity
to formulate the input boundary condition. This is particularly
useful for practical impact problems where the impact load is not
known.

Another possible extension of the present work is to use the
experimental results to obtain the velocity of propagation of
pulse peaks and,basgd on that,to construct dispersion relationship

curves .
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APPENDIX A .

TMOTCU—3 CMPUTER PROGRAM FOR TRANSIENT FLEXURAL VWAVE PROPAGATION IN

BEAMS WITH DISCONTINUITIES OF CROSS SECTION

C MCDIT 21 COMPUTER CODE FOR 1-DIMEN. ELASTIC WAVE PROBLEMS
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G(6,3),H(6,3),2(12),0U(12),
1DU(9), V(9) UP(9) A(7) 8(7) c(7) D(7) E(7) P(7) PINC XLI EM,C1,C2,X
2ZERO, I M, S1 DS(9) R1, R2
FORMAT(IS LE15. 8)
FORMAT(ZE15.8)
FORMAT(5E15.8)
FORMAT (1H ,38HNUMBER OF POINTS ALONG LEADING WAVE = ,I4)
FORMAT (1H ,8HXZERO = ,E15.8,5X,9HDELTAX = ,E15.8)
FORMAT(1H 5HC1 = ,E15. 8 5X, SHC2 = ,E15.8)
FORMAT(1H ,1H(,E15.8 7H)*U1X+( E15.8,6H)*U1+(,E15.8,7TH) *U2X+(,E15.
18, 6H)*U2+( E15.8 7H)*U3X+( E15.8, MH)*UB)
FORMAT (1H , UH +( E15.8, 37H)*U1T = BOUNDARY CONDITION FUNCTION 1)
FORMAT( 1H ,MH +(,E15-8,37H)*UZT = BOUNDARY CONDITION FUNCTION 2)
FORMAT(1H ,4H +(,E15.8,37H)*U3T = BOUNDARY CONDITION FUNCTION 3)
FORMAT(1H ,9HELBEAM = ,E12.4,5HS1 = ,E12.4)
FORMAT(Y4E12.4) '
FORMAT(1H ,5HR1 = ,E12.4,5HR2 = ,E12.4)
Q THE SHEAR CORRECTION FACTOR IS GIVEN AS C2
Q DR IS DIAMETER RATIO
24 FORMAT(1H ,Y43HSLOPE OF II+ LINE EXCEEDS OR EQUALS MAXIMUM)
25 FORMAT(1H , "4 1HVALUE OF 3.0 COMPATIBLE WITH THIS PROGRAM)
37 FORMAT(1H ,14HERR0R IN LOGIC)
38 FORMAT(1H ,36HENDBEAM BOUNDARY CONDITION FUNCTION,/)
69 FORMAT(1H ,///7)
READ(5, 1)MZERO,XZERO,PINC,C1,C2
READ(5, 12)ELBEAM,S1,R1,DR
READ(5,3)A(1),A(2),A(3),A(4),A(5)
READ(5,2)A(6),A(7)
READ(5,3)B(1),B(2),B(3),B(4),B(5)
READ(5, 2)8(6).8(7)

[ N Y
WN—-=OWD® ~NONEWN—-

READ(5,3)C(1),C(2), c(3), C(4),c(5)
READ(S,2)0(6),C(7)
READ(S,S)D(1).D(2) D(3),D(4),D(5)
READ(5,2)D(6),D(7)
READ(5,3)E(1),E(2),E(3),E(4),E(5)
READ(5,2)E(6),E(T)
READ(5,3)P(1),P(2),P(3),P(4),P(5)

READ(5,2)P(6),P(7)

c2 = C1*¥SQRT(C2/2.58)

WRITE(6,U4)MZERO

WRITE(6,5)XZERO,PINC

WRITE(6,6)C1,C2

WRITE(6,11)ELBEAM, S1

R2 = DR*R1

WRITE(6,13)R1,R2
RITE(6.,TIA(1),A(2),A(3),AC4),A(5),A(6)

WRITE(6,8)A

(7)
WRITE(6,7)B(1)

JRITE(6,9)B(7)
JRITE(6,7)C(1),C(2),C(3),C(4),C(5),C(6)
JRITE(6, 10)C(7

WRITE(6,38)
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WRITE(6,7)D(1),D(2),D(3),D(4
wR%TEég,8)0(7) (3),D(4),D(5),D(6)
WRITE(6,7)E(1),E(2),E(3),E(4
OB rcon s reor.r ()
W ,T)P(1),P(2),P
NRITE(6 | 10)P (7} ),P(3),P(4),P(5),P(6)
CONST1 = 1.373/R1%#%2
CONST2 = 1.373/R2#%#¥2
CON1 = (R2/R1)%%2
CON2 = CON1##¥2
WRITE(6,12)CONST1,CONST2,CON1,CON2
. EM = C1/C2
IF(EM-3.)22,23,23
23 WRITE(6,24)
WRITE(6,25)
. GOT09999
22 WRITE(6,69)
XLI=1.
" CALLFIRSTP
91 LI=2
IYZ=1.-2./7(EM+1.)
GOT026
27 XLI=LI
I=1
1Y2Z=1YZ
IYZ=XLI=(2.*XLI)/(EM+1.)
MESH = ELBEAM/PINC + .5
40 IF(LI-MESH)41,41,42
41 CALL INPUTP
GOTO35
42 CALL ENDP(ELBEAM)
35 IF(I-LI)28,29,29
28 IF(I-1-1Y22)30,31,32
31 IF(IYZZ-1YZ)33,34,34
32 IF(I-1-1Y2)36,30,30
36 WRITE(6,37)
GOT09999
29 CALLBOUNDP .
92 LI=LI+1
26 IF(LI-MZER0)27,9999,9999
30 IF((LI-I)*PINC.NE.S1)GOTO 39
CALL DISCONT ,
GOTO35
39 CALL ORDINP
GOTO 35
33 IF((LI-I)*PINC.NE.(S1+PINC))GOTO 43
CALL DISCON3
GOTO35
43 CALL CASE32
GOTO35 ,
34 IF((LI-I)*PINC.NE.S1)GOTO 44
CALL DISCON1
GOTO35
44 CALL CASE1P
GOTO35
9999 CALLEXIT
END
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C SIMOLTANEOUS SOLUTION SUBROUTINE
SUBROUTINEMASUB
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G
1DU(9),V(3),UP(9),A(7),8(7),C(7).D(T), z(7§ % §6wg)xf§1§) C1ga g
22ERO,I,M,5%,05(9), R1,R2 = M,C1,C2,X
N:M—1
DO 5200 NN=1,N,1
NNN=NN+1
DO 5100 JJ=NNN,M,1 :
FRAC =-Y(JJ,NN)/Y(NN,NN)
DO 5050 KK=NN,M, 1
5050 Y(JJ,KK)=FRAC*Y(NN,KK)+Y(JJ,KK)
5100 Z(JJ)=FRAC*Z(NN)+Z(JJ)
5200 CONTINUE
. . DO 5500 NN=1,N, 1
NNN=M-NN
JJ=NNN+1-
DO 5400 KK=1,NNN, 1
5400 z(KK)=-Z(JJ)*(Y(KK JJ)/Y(JJ JJ))+Z(KK)
5500 CONTINUE
DO 5600 KKK=1,M,1
5600 UU(KKK)=Z(KKK)/Y(KKK,KKK)
9999 RETURN
END
C FIRST POINT SUBROUTINE
SUBROUTINEFIRSTP
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G(6 3
1DU(9), V(9) UP(9) A(7) B(7) C(7) D(7) E( ), P(
2ZERO,I,M, S1,DS(9),RR1 ,RR2
DIMENSIONHOLD(12)

ZERO = O.

PHI=(EM-1.)/(EM+1.)
ALPH=1.-((4.*EM)/7((1.+EM) *¥¥2))

SLOP=PHI

X5=XZERQO

TS5 = 0.

X1=XZERO

T1=2.%PINC/C1

X3=XZERO+PINC

T3=T1/2.

X2=XZERO+(2.%¥PINC)/(1.+EM)
X4=ALPH*(X5-X3)+X3

X6=XZERQO

XT7=SLOP*(X6-X2)+X2
CALLJUMPI(X5,UX5,UT5,VX5,VT5)
CALLJUMPII(XZERO,WX5,WT5)
CALLJUMPI(X3,UX3,UT3,VX3,VT3)
CALLJUMPI(XY4,UXY4,UTY4, VXY, VTY)

CONST = 1.373/RR1¥¥2
CALLGECOFF(1,X2,X3,CONST)
CALLGECOFF(2,X2,X6,CONST)
CALLGECOFF(3,X1,X2,CONST)
CALLGECOFG(1,X2,X3)
CALLGECOFG(2,X2,X6)
CALLGECOFG(3,X1,X2)
CALLGECOFH(1,X2,X4)
CALLGECOFH(2,X2,X5)
CALLGECOFH(3,X1,X7)
CALLBCTF1(T1,R1)

-~

), H(6,3),2(12),U00(12),
7),PINC,XLI,EM,C1,C2,X
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CALLBCTF2(T1,R2)
CALLBCTF3(T1,R3)
CALLJUMPII(X2,DU(8),DU(9))

DX23=X2-X3
DX2U4=X2-X4
DX26=X2-X6
DT15=T1-T5
DX25=X2-X5
DX12=X1-X2
DX17=X1-X7
Y(1,1)=A(1)
Y(1,2)=A(2)*DT15/2. +A(7)
"Y(1,3)=A(3)
Y(1,4)=A(4)%DT15/2.
Y(1,5)=A(5)
Y(1,6)=A(6)%DT15/2.
Y(1,7)=0.
Y(1,8)=0.
Y(1,9)=0.
- Y(1,10)=0.
Y(1,11)=0.
Y§1312)=0 ,
Z(1)=R1-A(2)*DT15%UT5/2.-A(4)*DT15*VT5/2. - * *
Y(2,1)=C1*(1.-F(1,3)*DX12/2.) > A(6)*DTI5*WT5/2.
Y(2,2)=1.-C1*¥DX12#¥DT15%F(2,3) /4.
Y(2,3)=-C1¥DX12%¥F(3,3)/2.

Y(2,4)=-C1%DX12*DT15*F(4,3) /4.
Y(2,5)=-C1#¥DX12%F(5,3)/2.
Y(2, 6)--C1*DX12*DT15*F(6 3)/4.
Y(2,7)=C1#(-1.-F(1, 3)*DX12/2 -F(2,3)*DX12#DX23/4.)
Y(2,8)=-1. +F(2 3)*Dx12*ox23/u
Y(2 9)=(- C1%¥DX12/2. )¥(F(3,3)+F (4, 3)*DX23/2 )
Y(2,10)=F(4, 3)*Dx12*ox23/u
Y(2,11)=(- c1¥Dx12/2. )*(F(5,3)+F (6, 3)*Dx24/2 )
Y(2,12)=C1*F (6, 3;*?x22*0x24/(u *C2)
2(2) (C1%#¥DX12/2.)#(F(2,3)*DT15%UT5/2.+F(2,3)¥DX23#(UX3-UT3/C1) /2.
1F(4,3)*DT15%VT5/2.+F(Y4,3)*¥DX23%(VX3-VT /C1)/2.+F 6,3)*% * N
2F(6,3)*DX24%( -DU(8)+DU(3)/C2)72.) ? ‘ (6,3)3DT15%WT5/2. +

Y(3,1)=B(1)

Y(3,2) B(2)*DT15/2.

Y(3)3)=B(

Y(3,4)=B(4)*¥DT15/2.+B(T)

Y(3,5)=B(5)

Y(3,6)=B(6)*DT15/2.

Y(3p7)=0

Y(398)=0

Y(3,9)=0.

Y(3,10)=0.

Y(3,11)=0.

I(3’)12)=0(2)*1)1:15*u 5

Z(3)=R2-B T5/2.-B(4)*DT15*VT5/2.-B(6)* *
Y(4,1)=-C1¥DX12%G(1,3)/2. . >/ (6)*DT15%WT5/2.
y(u,2)=-c1*Dx12*DT15*G(2 3)/4.
Y(4,3)=C1*(1.-G(3, 3)*Dx12/2 ) -

Y(4,4)=1. -C1*DX12*DT15*G(& 3)/4. :
Y(4,5)=-C1%¥DX12%G(5,3)/2.
1(4,6)--C1*DX12*DT15*G(6 3) /4,
Y(4,7)=(-C1*DX12/2. )*(0(1 3)+G(2,3)*Dx23/2.)
Y(4,8)=G(2,3)*¥DX12*DX23/4,

- 327 -



Y(4,9)=C1%(-1.-G(3,3)*DX12/2.-G(4,3)%*DX12%DX23/4.)

Y(4,10)==-1.+G(4,3)*DX12%DX23/4,

Y(4,11)=(-C1%DX12/2.)*(G(5,3)+G(6,3)*DXx24/2.)

Y(4,12)=C1#DX12%DX2L4*G(6,3)/(4.*C2) ~

Z(4)=(C1%¥DX12/2.)*%(G(2,3)*DT15%UT5/2.+G(2,3)*¥DX23%(UX3-UT3/C1)/2.+
1G(4,3)*DT15%VT5/2.+G(4,3)*DX23#(VX3- vT3/C1) /2. +G(6,3)*DT15*WT5/2. +
2G(6,3)*DX2u*(- DU(8)+DU(9)/CZ)/2 ) :

Y(5,1)=(-C2#DX17/2.) *¥H(1,3)*(1.+SLOP*PHI)

Y(5,2)=(-C2*DX17#DT15/4. )*H(z 3)%(1.+SLOP*PHI)

Y(5,3)=(-C2%#DX17/2.) *H(3, 3)*(1 +SLOP#*PHI)

y(s,u)=(-c2*ux17*DT15/u.)*3(4,3)*(1.+SLOP*PHI)

Y(5,5)=C2%(1.-SLOP*PHI-(H(5,3)*DX17/2.)*(1.+SLOP¥*PHI)).

Y(5,6)=1.-SLOP*PHI-(C2%*DX17*DT15%H(6,3)/4.)*(1.+SLOP*PHI)

" Y(5,7)=(-C2%DX17/2.) *(H(1,3)*(1. -SLOP)+(H(2 3)%DX23/2.)%(1. -sLop))

Y(5,8)=(C2%DX17%DX23%#H(2, 3)/(u 2C1))*(1. -SLOP)

Y(5,9)=(-C2*DX17/2. )*(H(3,3)%(1.-SLOP)+(H (4, 3)*DX23/2.) *(1. -SLOP))

Y(5,10)=(C2*DX17#DX23*H(4,3)/(4.*¥C1))*(1. -SLOP)

Y(5,11)=C2#(SLOP-1.-(H(5, 3)*Dx17/2 )¥(1.-SLOP)-(H(6,3)*DX17%DX24/4
1. )*(1.-SLOP))

Y(5,12)=SLOP-1.+(H(6,3)*DX17#DX24/4, )#(1.-SLOP)

z(s) =SLOP*(WT5%*(1. -PHI))+C2*SLOP*WX5*(1 ~PHI)+(C2%*DX17/2. )*(H(1 3)
1#SLOP*UX5#(1.-PHI)+(H(2,3)*DT15*UT5/2.)*(1.+SLOP*PHI)+(H(2, 3)*DX23
2#(UX3-UT3/C1)/72.)*(1. -SLOP)+H(3 3)*SLOP*VXS5*(1,-PHI)+(H (4, 3)*DT15*
3VT5/2.)#(1.+SLOP*PHI)+(H (Y4, 3)*DX23*(VX3 VT3/C1)/2.)%(1. -SLOP)+H(5,
43)*SLOP*WX5%(1.-PHI)+(H(6, 3)*DT15*WT5/2 )*(1. +SLOP*PHI)+(H(6 3)*DX
524%(-DU(8)+DU(9)/C2)/2. y*(1. -SLOP))

Y(6,1)=C(1)
Y(o 2)=C(2)*DT15/2.
Y(6,4)=C(4)*DT15/2.

Y(6,5)=C(5)

Y(6,6)=C(6)*DT15/2.+C(7)

Y(6,7)=0’

Y(6,8)=0.

Y(6,9)=0.

Y(6,10)=0.

Y(6,11)=0.

Y(6,12)=0.

Z2(6)= R3-C(2)*DT15*UT5/2 -C(M)*DT15*VT5/2 -C(6)*DT15*WTS5/2.
Y(7,1)=0'

Y(7o2)=0-

Y(793)=0'

Y(7,4)=0.

Y('],S):O.

Y(7,6)=0.

Y(7,7)=C1*(1.-F(1,1)*DX23/2.-F(2,1)%*¥DX23*%2/4,)
Y(7,8)=1.+F(2,1)%DX23%*¥2/4
Y(7,9)=(-C1%¥DX23/2.)*(F(3,1)+F(4,1)%*DX23/2.)

Y(7,10)=F (M,1)*Dx23**2/4.
Y(7,11)=(-C1%¥DX23/2.)*(F(5,1)+F(6,1)*DX24/2.)

Y(7,12)= C1%DX23*DX2U*F(6, 1)/(4 *CZ)
z(7):UT3+C1*UX3+C1*DX23*(F(1 1)*¥0X3/72.+F(2, 1)*DX23*(UX3 UT3/C1) /4.
1+F (3, 1)#VX3/2.+F (4, 1)*DX23*(VX3 VT3/C1)/4. +F(5 1)*(-DU(8))/2.+F(6,
21)*DX24*(-DU(8)+DU(9)/C2)/4.)
Y(8,1)=C1*PHI*(1,.4F(1,2)*DX26/2.)

Y(8,2)= =PHI¥*(-1. +C1*DX26*DT15*F(2 2)/74.)
Y(8,3)=C1*DX26%*F(3,2)%PHI/2.

Y(8,4)= C1*DX26*DT15*F(4 2)*PHI/N.

Y(8,5)= C1*DX26'F(5,2)*PHI/2.

Y(8,6)=C1%¥DX26*DT15*F(6,2) *PHI/N.
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Y(8,7)=C1%(-1.+F(1,2)*DX26/2.+F(2,2)*DX26*DX23/4.)
Y(8,8)=1.-F(2,2)*DX26*DX23/4.

Y(8.9)=(C1*DX26/2 J*(F(3,2)+F(4,2)*DX23/2.)
Y(8,10)=-F(4, 2)*DX26%DX23 /4.
Y(d,11)=(C1*Dx26/2.)*(F(5,2)+F(6,2)*Dx2u/2.)
Y(8,12)2-C1#DX26*DX24*F(6,2)/(4.%C2)

Z(8)=UT5%(1.-PHI)+C1#UX5*(PHI-1.)-(C1%DX26/2. )*(F(1,2)*UX5%(1,-PHI
1)+F(2,2)*DX23*%(UX3-UT3/C1)/2.+F(2,2)*DT15*PHI*UT5/2.+F(3,2)*VX5¥%(1
2.-PHI)+F(4,2)#DX23*(VX3-VT3/C1)/2. +F(U4,2)*DT15*PHI*VTS5/2.+F(5,2) *W
3x5*(; .-PHI)+F(6,2)*DX24*(-DU(8)+DU(9)/C2) /2. +F(6,2) *DT15*PHI*WT
45/2

Y(9,1)=C1#PHI*G(1,2)*DX26/2.

Y(9,2)= =C1*DX26*DT15%G(2,2) *PHI/A.

Y(9,3)=C1¥PHI*(1.4G(3, 2)*DX26/2.)

Y(9,4)=PHI*(-1. +C1¥DX26*DT15%G (4,2) /4. )

Y(9,5)=C1¥G(5, 2)¥DX26*PHI/2.

Y(9,6)= ZC1#DX26*DT15%G(6,2) *PHI/Y.

Y(9,7)=(C1*DX26/2. )*(G(1 2)+G(2,2)%DX23/2.)

Y(9,8)=-G(2, 2)*DX26¥DX23/L.

Y(9,9)=C1#(-1.+G(3,2)*DX26/2.+G(4,2)*DX26*DX23/4.)

Y(9,10)=1.-G(4, 2)*DX26%DX23/4.

Y(9,11)= (C1#DX26/2. )%¥(G(5,2)+G(6,2)*DX2u4/2.)

Y(9,12)=-C1*DX26*DX24*G(6,2) /(4. *C2)

2(9)=VT5*(1. _PHI)+C1#VX5#*(PHI-1.)-(C1%¥DX26/2. )*¥(G(1,2)*UX5* (1. -PHI

1)+G(2,2)*DX23*(UX3-UT3/C1)/2.4G(2,2) *DT15%PHI*UTS5/2.+G(3,2) *VX5%(1

2. -PHI)+G(Y4,2)*DX23%(VX3-VT3/C1)/2.+G(Y4,2) *DT15*PHI*VT5/2 . +G(5,2) %y
3X5*(1 -PHI)+G(6 2)¥DX24* (- DU(8)+DU(9)/C2)/2 +G (6, 2)*DT15*PHI*WT5/
42.) ,

-C1*DX23/2 Y*(G(1, 1)+G(2 1)%DX23/2.)
(2,1)%¥DX23%%2/Y,

Y(10, ,9) C1#(1.-G(3,1)*DX23/2. ~G(4,1)*DX23%%2/4.)

Y(10,10)=1.4G(4, 1)*DX23**2/4

Y(10’11)=(-C1%DX23/2.) ¥ (G (5, 1)+G(6,1) %DX24/2.)
Y(10.12)=C1*DX23¥DX24%G(6,1)7 (4. *C2)
2(10)=VT3+C1#VX3+C1¥DX23#(G(1, 1) ¥UX3/2.+G(2, 1) *DX23* (UX3-UT3/C1) /X
1.+G(3,1)*VX3/2.+G(k, 1) ¥DX23% (VX3-VT3/C1) /4. +G(5 1)*(-DU(8))/2.+G(6
2.1)%DX244*(-DU(8)+DU(9)/C2) /4.)

OAOOOOOO
e o o o

)
)
)
)
)
)
)
)

Y(11,1)=0. -

Y(11,2)=0.

Y(11,3)=0.

Y(11,4)=0.

Y(11,5)=0.

Y(11,6)=0.

Y(11,7)=(-C2%*DX24/2.)*(H(1,1)+H(2,1)*DX23/2.)
Y(11,8)=C2¥DX24#DX23*H(2,1)/(4.%C1)

Y(11,9)=(-C2%DX24/2. )*(H(3 1)+H(4,1)*DXx23/2.)
Y(11,10)=C2*DX24¥DX23*H (4, 1)7(4.%C1)

Y(11,11)=C2%(1.-H(5, 1)¥DX24/2.-H(6,1) *DX24%¥2/4 , )

Y(11,12)=1.+H(6, 1)'DX24*'2/4

Z(11):DU(9)+C2*DU(8)+C2*DX2R'(H(1 1)*ux4/2, +H(2,1)*DX23% (UX3-UT3/C
11) /4. +H(3,1)*VX4/2.+H(Y, 1)¥DX23%(VX3-VT3/C1) /4. +H(5,1)%(-DU(8))72.
2+H(6.1)*DX24*(-DU(8)+DU(9)/C2)/4.)

Yy(12,1)=0.
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93
99

Y(12,2)=0.
Y(12,3)=0.
Y(12,4)=0.
Y(12,5)=0.
Y(12,6)=0
Y(12'7)=(
Y(12,8)="’
Y(12,9)=
Y(12,1
Y(12

M=12
IF(Y(1,1))1,2,1
p03J=1,12
HOLD(J)=Y(1,J)
Y(1,J)=Y(2,J)
Y(2,J)=HOLD(J)
CEEP=Z(1)
2(1)=2(2)
2(2)=CEEP
IF(Y(3,3))4,5,4
D06J=1,12
HOLD(J)=Y(3,d)
Y(3’J)=Y(M1J)
Y(4,J)=HOLD(J)
CEEP=Z(3)
Z2(3)=Z(4)
Z(4)=CEEP
IF(Y(6,6))98,8,98
D09J=1,12
HOLD(J)=Y(6,J)
Y(6,J)=Y(5,J)
Y(5,J)=HOLD(J)
CEEP=Z(6)
7(6)=2(5)
72(5)=CEEP
CALLMASUB
UP(2)=U0(
UP(3)=UU(
UP(S):UU(
UP(6)=U00(
UP(8)=0U(
UP(9)=0U(

u(6,2)=UU
u(8,2)=00
U(9,2):U0(6)

U(1,2)=(U(3,2)+UT5)*DT15/2.
U(4,2)=(U(6,2)+VI5)*DT15/2.
U(7.2)=(U(9,2)+WTS)¥DT15/2.

C2#DX25/2.)#(H(1,2)+H(2,2)*%

C2*DX25*DX23*H(2,2);(£.*C%)DXZ3/2.)

(C2%DX25/2.)*(H(3,2)+H(4,2)%DX23/2.)

1?;=Eg3:0x25*?x23fﬂ(u,2)/(u.*c1)

'11)= -1.+H(5,2) *DX25/2.+H(6,2)*
x(12,12):1.-H(6,2)*Dx25*ox2u/u.+ (6,2)¥bx25*px28/4.)
5(12)?wrsgcziwxs-(cz*oxzslz.)*

1/2.+H(3,2) #VX5+H(4,2) *DX23%(VX3-VT

2(-DU(8)+DU(9)/C2)/2.) 3 3/7C1) /2. +H(5

(H(1,2)‘UX5+H(2,2)*DX23‘(UX3;UT3/C1)

,2) ®WXS5+H(6,2) *DX24 *

uP(1)=((UP(2)+UX3)/2.-(UP(3)+UT3)/(2.%
Up(u):((UP(5)+Vx3)/2.-(UP(6):VT3)/§2.*81;;:g§§§
uP(7)=((UP(8)-DU(8))/2.-(UP(9)-DU(3))/(2.%C2))*DX24

U(1'1):0.
U(2,1)=ux3



3
w

coccacacacca
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(VIR U]

. % W W w w w

CALLPRINTO (X5, TS, ZERO, UX5,UTS, ZERO, VX5, VT5,ZERO,WX5,WTS5, XLI)

CALLPRINTO(X3,T3,U(1,1),0(2,1),0(3.1),0(4

o, 0(9(1) XLI) (3,1),U( 1) U(5 1),0(6,1),0(7,1),

CALLPRINTO(X1,T1,0(1,2),U(2,2),U(3,2),U(4

6 ) 0(9,2)" wh 3,2),U(4,2),0(5,2),u(6,2),U(7,2),
9999 RETURN

END
¢ INPUT POINT SUBROUTINE

SUBROUTINEINPUTP

COMMONU (9,8001),Y(12,12),W(9,9),F(6,3),G(6,3
1DU(9), V(9) UP(9) A(7) B(7) C(7) D(7) E(7),P(
2ZERO, I M, S1 DS(9) R1, R2

X= XZERO+XLI*PINC
T=XLI*PINC/C1
V(1)=0. \
v(4)=0.

vV(7)=0.

v(8)=0.

vV(9)=0.
CALLJUMPI(X,V(Z),V
CALLPRINTO(X,T,V(1

290 RETURN

END
C goUNDARY POINT SUBROUTINE

SUBROUTINEBOUNDP
COMMONU(9,8001),Y(12,12),%W(9,9),F(6,3),G(6,3
1DU(9), V(9) UP(9) A(7) B(7) C(7) D(7) E(7),P(
2ZERO, I, M, $1,D5(9),RR1, RR2

DIMENSIONHOLD(12)

XI=I

X1=XZERO

T=(XLI+XI)*PINC/C1

SMUK=2./(EM+1.)

X3=X1+PINC

XU=X1+SMUK*PINC

D010J=1,9

W(J,3)= V(J)
10 w(J 4)= U(J I)+SMUK*(V(J)-U(J,I))

WXLA=W (8 ,u)

WT4A=W(9,H)

CONST = 1.373/RR1%%2

CALL GECOFF(1,X1,X3,CONST)

CALLGECOFG(1, x1 X3)

CALLGECOFH(1,X1,X4)

CALLBCTF1(T, R1)

CALLBCTF2(T,R2)

CALLBCTF3(T,R3)

DX13=X1-X3 '

DX14=X1-X4 . ;
Y(2,1)=C1%#(1.-F(1,1)*DX13/2.)
Y(2,2)=1.+4F(2,1)*DX13%22/2,
Y(2,3)=-C1*F(3,1)*DX13/2.
Y(2,U4)=F(4,1)%DX13%%2/2,

),H(6,3),2(12),uU(12),
7),PINC,XLI,EM,C1,C2,X

V"\
<v
o~ .
N =<
S N
<$ N
~~

4),v(5),v(6),V(7),V(8),V(9),XLI)

),H(6,3),2(12),00(12),
7),PINC,XLI,EM,C1,C2,X
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Y(2,5)=-C1%#F(5,1)*DX13/2.

Y(2,6)=F(6, 1)*DX13**2/2

2(2) Ww(3, 3)+c1*w(2 3)+C1#DX13*(F(1,1)#W(2,3)+F(2,1)*(W(1, 3)+U(1 I)
1-U(3, I)*DX13/C1)+F(3 1)*W(5,3)+F(4, 1)*(w(u 3)+U(4 I1)-u(6, I)*DX13/C
21)+F(5 1)*W(8,3)+F (6, 1)*(w(7 3)+U(7 I) u(9, I)*DX13/C1))/2

Y(4, 1)--C1*G(1 1)*Dx13/2

Y(4,2)=G(2, 1)*Dx13**2/2

Y(4,3)= C1*(1 -G(3,1)*DX13/2.)

Y(4,4)=1.+G(4, 1)*DX13**2/2

Y(4.5)= --C1%*G(5,1)#DX13/2.
Y(4,56)=G(6, 1)*DX13**2/2

Z(U4)=W(b, 3)+c1*w(5 3)+C1*DX13%(G(1,1)*W(2,3)+G(2,1)*(W(1,3)+U(1,I)
1-U(3, 1)*DX13/C1)+G(3 1)*4(5,3)+G(4, 1)*(W(u 3)+u(u 1)-U(6, I)*DX13/C

21)+G(5 1)*W(8,3)+G(6, 1)*(W(7 3)+U(7 I)-u(9, I)*Dx13/c1))/2

DT=-2. *DX13/C1

Y(5,1)=-C2%¥H(1,1)*DX14/2.

Y(5,2)=-C2*H(2,1)*DT*DX 14/},

Y(5,3)=-C2*H(3,1)*DX14/2.

Y(5,4)=-C2*H(4,1)*DT*DX 14/},

Y(5,5)=C2%(1. -H(S 1)%¥DX14/2.)

Y(5,6)=1.-C2*H(6, 1)*DT*DX 1474,

z(5) w(9, u)+cz*w(8 4)+C2*DX14*(H(1,1)*¥W(2,4)+H(2,1)%(W(1, u)+u(1 1)
1+U(3, I)*DT/2 Y+H(3, 1) *W(5,4)+H(Y, 1)*(W(u u)+U(M I)+U(6 I)*DT/Z )+H
2(5, 1)*w(8 4)+H(6 1)*(w(7 4)+u(7 I)+U(9 I)*DT/2 ))/2

Y(1 1)= A(1)

Y(1,2)= A(7)+A(2)*DT/2

Y(1,3)=A(3)

Y(1,4)=A(4)*DT/2.

Y(1,5)=A(5)

Y(1,6)=A(6)*DT/2.

z(1) =R1-A(2)*(U(1,I)+U(3,I)*DT/2.)-AC4)*(UCY,I)+U(6,I)*DT/2.)-A(6)
1%(U(7,1)+U0(9, I)*DT/Z )

Y(3, 1) B(1)

.Y(3,2)=B(2)*DT/2.

Y(3,3)=B(3)
=B(7)+B(4)*DT/2.

B(5)

(o0)%DT/2.

(2)®#(U(1,I)+0(3,I)%DT/2.) B(H)*(U(u I)+U(6,I)%DT/2.)-B(6)
u(9, I)*DT/Z )

1)

2)%DT/2.

'.‘vav

)*¥DT/2.

oI N R
mEw
S L

N TN TN TN N TN OON TN PN N N

T)+C(6)*DT/2.
(2)#(U(1,1)+U(3,1)*DT/2.)-C(4)*(U(4,I)+U(6,I)*DT/2.)-C(6)
U(9,I)¥*DT/2.)

1,2,1

O\O\O\C\O\C\C\CUJWWU)

Cu G rnre w w v w W /e v -
ﬁMIfVQIIO“ﬂ4=UJN-A~JHChU1:

et Gy =D b e
[T N PO T T | I (I T O IO W AN |

~~
l= « RN RN LT WX R

-—
H %
T~
~C
Tl O OOO00O000~ 1t

~ O~ ~+ QAN+ O

)
(
2
L

z2(1)=2(2)
7(2)=CEEP
IF(Y(3,3))4,5,4
DO6J:1,6
HOLD(J)=Y(3,d)
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“Y(3,d)=Y(4,J)

6 Y(4,J)=HOLD(J)
CEEP=Z(3)
2(3)=2(4)
Z(4)=CEEP

4y IF(Y(6,6))99,8,99

8 D09J=1,6
HOLD(J)=Y(6,J)
Y(61J)=Y(5:J)

9 Y(5,J)=HOLD(J)
CEEP=Z(6)
Z2(6)=2(5)
Z2(5)=CEEP

99 CALLMASUB
D011J=1,3
V(3%J-1)=0U(2%J-1)

11 V(3%J)=UU(2%J)
V(1)=U(1,I)+(U(3,I)+V(3))*DT/2.
V(U)=U(4,I)+(U(6,1)+V(6))%DT/2.
V(7)=U(7,I)+(U(9,I)+V(9))*DT/2.
D012J=1 9
U(J,I)= W(J 3)

12 U(J,I+1)= V(J)

CALLPRINTO(X1 T,V(1),V(2),V(3),V(4),V(5),V(6),V(T), V(8) V(9),XLI,
9999 RETURN
E END
~ ORDINARY POINT SUBROUTINE
SUBROUTINEORDINP '
COMMONU(9,8001),Y(12,12),w(9,9),F(6,3),G(6,3),H(6,3),2(12),0U0(12),
1DU(9), V(9) UP(9) A(7) 8(7) C(7) D(7) E(7) P(7) PINC XLI EM,C1,C2,X
ZZERO 1 M s1 DS(9) R1 R2
XI=I
X1=XZERO+(XLI-XI)*PINC
T=(XLI+XI)*PINC/C1
SHMUK=2./(EM+1.)
X3=X1+PINC
X9=X1-PINC
L4=X1+SMUK*PINC
X6=X1-SMUK*PINC
p01J=1,9
W(J,3)=V(J)
1F(ABS(X9 S1)-0.1E-04)27,27,26

26 W(J,9)=U(J,I+1)
W(J,6)=U(J,I)+SMUK*(U(J,I+1)-U(J, I))
GOTO 28

27 W(J,9)=DS(J)

w(J,6) = U(J,I)+SMUK*(DS(J)-U(J,I))

28 W(J,4)=U(J,I)+SMUK*(V(J)-U(J,I))

1 U(J,I)=V(J)
WXUA=W(8,4)
WTUA=W(9,4)
CONST = 1.373/R1%#%2 :
IF(X1.GT.S1)CONST = 1.373/R2%#2
CALLGECOFF(1,X1,X3,CONST)
CALLGECOFF(2,X1,X9,CONST)
CALLGECOFG(1,X1,X3)
CALLGECOFG(2,X1,X9)
CALLGECOFH(1,X1,X4)
CALLGECOFH(2,X1,X6)
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DX13=X1-X3
DX14=X1-X4 !
DX19=X1-X9
DX16=X1-X6 )
CALLSOLMAT (WX4A,WT4A,DX13,DX14,DX19,DX16)
CALLMASUB
99 D02J=1,3
V(3%J-1)=U0U(2%J-1)
2 V(3%J)=UU(2%J) :

V(1)=W(1,3)+(W(2,3)+V(2)-(W(3,3)+V(3))/C1)#*DX13/2.
V(u)=Ww(l,3)+(W(5,3)+V(5)-(W(6,3)+V(6))/C1)¥*¥DX13/2.
V(T7)=W(T,4)+(W(8,L4)+V(B)=-(W(9,U4)+V(9))/C2)%DX14/2.
CALLPRINTO(X1,T,V(1),V(2),V(3),V(4),V(5),V(6),V(T),V(8),V(9),XLI)
290 I=I+1 :
9999 RETURN
END

C BEAM END POINT SUBROUTINTE
SUBROUTINE ENDP(ELBEAM) .
. COMMONU(9,8001),Y(12,12),w(9,9),F(6,3),G(6,3),H(6,3),2(12),0U(12), -
1DU(9),v(9),UP(9),A(7),B(7),C(7),D(7),E(T),P(7),PINC,XLI,EM,C1,C2,X
2ZERO,I,M,S1,DS(9),RR1,RR2 -

DIMENSIONHOLD(12) -
I = XLI - (ELBEAM/PINC)

XI =1

X1 = ELBEAM

T = (2%XLI-(ELBEAM/PINC))#*PINC/C?
SMUK=2./(EM+1.)
X3 = X1-PINC
X4 = X1-SMUK#*PINC
DO 10 J = 1,9
W(J,3)=U(J,I+1) )
10 W(J,4)=U(J,I)+SMUK*(U(J,T+1)-U(J,I))
WXUA = W(8,4) .
WT4A = W(9,U4)
CONST = 1.373/RR2#%#%2
CALL GECOFF(1,X1,X3,CONST)
CALL GECOFG(1,X1,X3)
CALL GECOFH(1,X1,X4)
CALL BCTN1(T,R1) i
CALL BCTN2(T,R2)
CALL BCTN3(T,R3)
DX13 =
DX14 =
Y(2,1) = C1*(-1.+F(1,1)¥*DX13/2.)

-
-
-
-

Y(2,2) = 1.-F(2,1)*DX13%%2/2,
Y(2,3) = C1¥F(3,1)#*DX13/2.
Y(2,4) = -F(U4,1)#DX13%%2/2,
Y(2,5) = C1*F(5,1)%DX13/2,.
Y(2,6) = -F(6,1)*DX13%%2/2,

Z(2) = W(3,3)-C1*¥W(2,3)-(C1¥DX13/2.)*%(F(1,1)*4(2,3)+F(2,1)*(W(1,3)
1+U(1,I)-U(3,I)*DX13/C1)+F(3,1)*W(5,3)+F (4, 1)*(W(4,3)+U(4,I)-U(6,I)
2*DX13/C1)+F(5,1)*W(8,3)+F(6,1)*(W(7,3)+U(7,I)~U(9,I)*DX13/C1))

Y(4,1) = C1%G(1,1)#DX13/2.
Y(4,2) = -G(2,1)%¥DX13%#%2/2,
Y(4,3) = C1%(-1.4G(3,1)%DX13/2.)
Y(4,4) = 1.-G(4,1)*DX13/2.
Y(4,5) = C1%G(5,1)#DX13/2.
Y(4,6) = -G(6,1)%DX13%#2/2,
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N

_Z(4) = W(6,3)-C1*W(5,3)-(CI2DX13/2.)*(G(1,1)*W(2,3)+G(2,1)*(W(1,3)
1*U(1’I)’U(3'I)'DX13/C1)*G(3»1)*w(5.3)*3(“,1)‘(W(N,3)+U(M,I)-u(6,1)
24DX13/C1)+G(5,1)*W(8,3)+G(6, 1) *(W(7,3)+U(7,I)-U(9,I)*DX13/C1))

DT = 2.%DX13/C1 \

Y(5,1) = C2¥H(1,1)*DX14/2.
Y(5,2) = C2*H(2,1)*DT*DX14/4.
Y(5,3) = C2*H(3,1)#*DX14/2.
Y(5,4) = C2%H(4,1)*DT#DX14/4.
Y(5,5) = C2#(-1.+H(5,1)*DX14/2.)
Y(5,6) = 1.4C2*H(6,1)*DT#*DX14/4,

Z(5) = W(9,4)-C2*W(8,4)-(C2*DX14/2, )% (H(1,1)*W(2,4)+H(2,1)*(W(1,4)
1+U(1’I)+U(3’I)*DT/2')+H(3’1)*w(5'u)+H(u:1)*(w(u,u)+U(u,I)+U(6,I)'D
2T/2.)+B(5, 1) *W(8,4)+H(6,1)*(W(T,4)+U(7,I)+U(9,I)*DT/2.))

Y(1,1) = D(1) :

Y(1,2) = D(7)+D(2)*DT/2.

Y(1,4) = D(4)%*DT/2.

Y(1,6) = D(6)*DT/2.

2(1) = R1-D(2)*(U(1,I)+U(3,I)*¥DT/2.)-D(4)*(U(4,I)+U(6,I)%*DT/2.)-D(
16)%(U(7,I)+U(9,1)*DT/2.) :

Y(3,1) = E(1)

Y(3,2) = E(2)%*DT/2.

Y(3,3) = E(3)

Y(3,4) = E(7)+E(L4)*DT/2.

Y(3,6) = E(6)%DT/2.

2(3) = R2-E(2)*(U(1,I)+U(3,1)*DT/2.)-E(4)*(U(4,I)+U(6,I)*DT/2.)-E(
16)*(U(7,1)+U(9,1)*DT/2.) '

Y(6,1) = P(1)

Y(6,2) = P(2)*DT/2.

Y(6,3) = P(3)

Y(6,4) = P(U)*DT/2.

Y(6,6) = P(7T)+P(6)*DT/2.

Z(6) = R3-P(2)*(U(1,1)+U(3,I)*DT/2.)-P(4)*(U(4,I)+U(6,I)*DT/2.)-P(
16)%(U(7,I)+U(9,I)¥*DT/2.

IF(Y(1,1))1,2,1 :

D03 J = 1,6 ° |

HOLD(J) = Y(1,Jd) '

Y(1,d) = Y(2,J)

Y(2,J) = HOLD(J)

CEEP = Z(1)

Z2(1) = Z2(2)

Z(2) = CEEP

IF(Y(3,3))4,5,4
pDo6 J = 1,6

HOLD(J) = Y(3,J)

Y(3,J) = Y(4,J)

Y(4,J) = HOLD(J)

CEEP = Z(3)

Z(3) =-2(4)

Z(4) = CEEP

IF(Y(6,6))99,8,99
po9 J = 1,6
HOLD(J) = Y(6,4d)

Y(6,d) = Y(5,J)

Y(SpJ) = HOLD(J)

CEEP = Z(6)
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99

11

295
9999

36

37
38

99

2(6) = Z(5)
7(5) = CEEP
CALLMASUB

pDO11 J = 1,3
V(3#J-1) = UU(2%J-1)
V(3%J) = UU(2%J)

V(1) = U(1,I)+(U(3,I)+V(3))*DT/2.

v(4) = U(4,1)+(U(6,I)+V(6))%DT/2.

V(7)) = U(7,1)+(U(9,1)+V(9))*DT/2.

gALLiﬂiNTO(X1 y Ty V(1) v(2),v(3),v(4),V(5),Vv(6),V(T), V(8) v(9),XLI)
= +

RETURN

END

SUBROUTINECASE 1P

COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G(6,3),H(6,3),2(12),U0U0(12),

10U (9), V(9) UP(9) A(7) 5(7) 0(7) D £
2ZERO,I,M,S1, DS(9) R1,R2 (7),E(7),P(7),PINC,XLI,EM,C1,C2,X

XI=I

T=(XLI+XI)*PINC/C1
X1=XZERO+(2.*PINC*XLI)/(EM+1.)
X9=X1-PINC
X3=XZERO+(XLI-XI+1.)*PINC

‘X4=XZERO+(4.*PINC¥EM*XLI)/(EM+1.)*%2_(2,  #PINC¥* (XI-1. ))/(EM+1 )

X6=X1-2.%¥PINC/(EM+1.)
SMUK9=(1.-2./(EM+1.))/(2.%(XLI-1.)/(EM+1.)-(XLI-XI-1.))
32?541(§L1 -XI+1, ) (4. *EMEXLI/(EM+1.)%%2)+(2.%(XI-1.)/(EM+1.))
W(J,3)=V(J)

IF(ABS((XLI XI)*PINC-(S1+PINC))-0.1E- ou)37 37,36

W(J,9) = UP(J)+SMUKI*(U(J,I+1)-UP(J))
GOTO 38

W(J,9) = UP(J)+SMUK9*(DS(J)-UP(J))
W(J,4) = V(J)+SMUK4*(U(J,I)-V(J))
W(J,6)=UP(J)

Uu(J,I)=v(J)

CALLJUMPII(X1,DU(8),DU(9))
W(8,3)=W(8,3)-DU(8)
WXUA=W(8,4)+DU(8)
WT4A=W(9,4)+DU(9)
W(8,4)=W(8,4)-DU(8)
W(9,4)=W(9,4)-DU(9)

CONST = 1.373/R1#%2
IF(X1.GT.S1)CONST = 1.373/R2#%%2
CALL GECOFF(1,X1,X3,CONST)

CALL GECOFF(2,X1,X9,CONST)
CALLGECOFG(1, X1 x3)
CALLGECOFG(2,X1,X9)
CALLGECOFH(1,X1,xu)
CALLGECOFH(2,X1,X6)

DX13=X1-X3

DX14=X1-X4

DX19=X1-X9

DX16=X1- xs(
CALLSOLMAT(WX4A,WTY4A,DX13,DX 14
CALLMASUB 3 'DX13, DX16)
po2J=1,3

N(3*J-1,3)=UU(2*J-1)
W(3%J,3)=0U(2%J)
W(1,3)=V(1)+(V(2)+W(2,3)-(V(3)+W(3,3))/C1)%*DX13/2.
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W(l4,3)=V(U)+(V(5)+W4(5,3)-
W(T,3)=W(T,4)+(W(8,4)+W(8
X3=X1
X1=XZERO+(XLI-XI)*PINC
X9=X1-PINC
X4=XZERO+(PINC/(EM+1.) ) *(XLI+XI+EM*(XLI-XI)-2.%EM*XLI/(EM+1.)+2.%X

1LI/Z(EM+1.))
X6 = XZERO+(PINC*(XLI-XI-2.)+EM*PINC*(XLI-XI))/(EM+1.)
SMUKM:(Z.*XLI*(EM-1.)/(EM+1.)**2)-(XLI-XI)*(EM-1.)/(EM+1.)
SMUK6 = ((XLI-XI-2.+EM¥(XLI-XI))/(EM+1.)-(XLI-XI-1.))/(2.%(XLI=1.)
1/(EM+1.)-(XLI-XI-1.))

D03J=1,9
W(J,4)=W(J,3)+SMUKLU*(W(J,9)-W(J,3))
UP(J)=W(J,3)
IF(ABS(X9-S1)-0.1E-04)27,27,26

26 W(J,9)=U(J,I+1)
GOTO 3

3 W(J,6)=W(J,9)+SMUKE*(W(J,6)-W(J,9))

WX4A=W(8,14)
WTU4A=W(9,U4)
CONST = 1.373/R1%#2 .
IF(X1.GT.S1)CONST = 1.373/R2##2.
CALLGECOFF(1,X1,X3,CONST)
CALLGECOFF(2,X1,X9,CONST)
CALLGECOFG(1,X1,X3) :
CALLGECOFG(2,X1,X9)
CALLGECOFH(1,X1,X4)
CALLGECOFH(2,X1,X6)
DX13=X1-X3
DX14=X1-XU4
DX19=X1-X9
DX16=X1-X6 _
CALLSOLMAT (WXU4A,WT4A,DX13,DX14,DX19,DX16)
CALLMASUB

98 DO4J=1,3
V(3%J-1)=UU(2%J-1)

4 V(3%J)=UU(2%J)

6)+W(6,3))/C1)*%DX13/2.
) (W(9,4)+W(9,3))sC2)*DX14/2.

‘I‘\
’\

V(1)=W(1,3)+(W(2,3)+V(2)-(W(3,3)+V(3))/C1)*DX13/2.
V(4)=W(H,3)+(H(5,3)+V(5)-(W(6,3)+V(6))/C1)¥DX13/2.
CALLPRINTO(X1,T,V(1),V(2),V(3),V(4),V(5),V(6),V(T),V(8),V(9),XLI)

290 I=I+1

9999 RETURN
END

Q CASE II POINT SUBROUTINE

SUBROUTINESASE32
COMMONU(9,8001),¥(12,12),W(9,9),F(6,3),G(6,3),H(6,3),2(12),0U(12),
1DU(9), v(9),UP(9), ACTY, B(7),C(7 7),D(17),E(7),P(T), PINC XLI,EM,C1,C2,X

22ERO, I, M, $1,D5(9), R1,R2
XI=1
T=(XLI+XI)*PINC/C1
X1=XZERO+(2.*PINC*XI)/(EM-1.)
X3=X1+PINC
X9=XZERO+(XLI-XI-1.)*PINC .
X6=XZERO+2 . *PINC*(XLI-1.)/(EM+1.)
D01J=1,7

1 W(J,6)=UP(J)
Ww(8,6)=UP(8)-DU(8)
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w(gKS)XEP(9) -DU(9)

SM I-XI+1.~(4.%EM*XI)/((E "

» IF (SMUK4-1.)302, 302, 306 )/((EM+1.) ¥ (EM=1.))+(2.#(XI=1.)/(EM+1.))
302 X4=XZERO+(4.¥EM®PINC*XI)/((EM+1.)%(EM=1.))-2. *PINC*(XI-1.)/(EM41.)

D02J=1,9
2 W(J,8)=V(J)+SMUKU*(U(J,I)-V(J))
GOTO 308
306 XU=XZERO+(4.*EM*PINC*XI/(EM-1.)%%2)_(2.*%PINC*(XLI-1.)/(EM-1
SMUKN:(XLI-XI-Q.*EM*XI/(EM-1.)**2+2.*(XLI-1.)/(EM-1:;)S(XLI;;%-2-*

1(XLI-1.)/(EM+1.))
D03J=1,9
3 W(J,H)=U(J, I)+SHUKN* (W(J, 6) u@J,1))
308 SMUK3=XLI-(XI*(EM+1.)/(EM-1.))
DO4J=1,9
IF(ABS(X9 S1)-0.1E-04)27,27,26
26 W(J,9) = U(J,I+1)

GOTO 4
4 W(J,3) = V(J)+SMUK3*(U(J,I)-V(J))

CALLJUMPII(X1 DU(8), DU(9))
W(8,9)=W(8, 9)+DU(8)
WXUA= =W(8, 4)
wrquw(9,u)'
CONST = 1.373/R1%#2
IF(X1.GT.S1)CONST = 1.373/R2##2
CALL GECOFF(1,X1,X3,CONST)
CALL GECOFF(2,X1,X9,CONST)
CALLGECOFG(1,X1,X3)
CALLGECOFG(2,X1,X9)
CALLGECOFH(1,X1,X4)
CALLGECOFH(2,X1,X6)
DX13=X1-X3
DX14=X1-X4
DX19=X1-X9
DX16=X1-X6
CALLSOLMAT (WX4A,WT4A,DX13,DX14,DX19,DX16)
CALLMASUB
99 D05J=1,3
w(3*J-1.9)=UU(2*J-1)'
5 W(3%J, 9)(UU(§*%)
W(1,9)=W(1,3)+(W(2,3)+W(2,9)-(W(3,3)+W(3,9))/C1)*DX1
W(l4,9)=W(4,3)+(W(5, 3)+W(5,9)-(W(6,3)+w(6,9))/C1§*Dx1§5§:
§§7x?) =W(T,4)+(W(8,4)+W(8,9)-(W(9,4)+W(9,9))/C2)*DX14/2.
X1=XZERO+(XLI-XI)#PINC
X3=X1+PINC
X4=X1+2.*PINC/(EM+1.)
X6= xg % *PINC/EEM+1 )
SMUK6= (XLI-XI-(XLI-XI-2.+EM* (XL
RS (XLI-XI))/(EM+1.))/(XLI-XI-2.%(XLI-1.)
SMUKY4=(EM=-1.)/(EM+1.)
po7J=1,9
W(J,3)= V(J)
W(J,6)=U(J,I)+SMUKO6*(W(J,6)-U(J,I))
W(J,4)= V(J)+SMUK4*(U(J I) V(J)) ;
7 U(J,I)=V(J)
WXUA=H(8,4)
WTUA=W(9,U4)
CONST = 1.373/R1%%2
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IF(X1.GT.S1)CONST = 1.373/R2%%2
CALL GECOFF(1,X1,X3,CONST)
CALL GECOFF(2,X1,X9,CONST)
CALLGECOFG(1,X1,X3)
CALLGECOFG(2,X1,X9)
CALLGECOFH(1,X1,X4)
CALLGECOFH(2,X1,X6)
DX13=X1-X3
DX14=X1-X4
DX19=X1-X9
DX16=X1-X6
CALLSOLMAT(WX4A,WTH4A,DX13,DX 14, Dx19 DX16)
CALLMASUB

98 Dp08J=1,3 ’
V(3%#¥J-1)=UU(2%J-1)

8 V(3%J)=UU(2%J)

Cov(1)=W(1,3)+(W(2,3)+V(2)-(W(3,3)+V(3))sC1)¥DX13/2.
V(4)=W(l,3)+(W(5,3)+V(5)- (W(6,3):V(6))/C1§*Dx1§;2.
ggzng§ngzigwé8v?3§V6?))(WE934)+V(9))/cz)*nx1u/2.

T, 2),Vv(3),v(a),v , ,
290 10 111 (-) (5),v(6),v(7),v(8),V(9),XLI)
XI= '

T=(XLI+XI)*PINC/C1
X1=XZERO+(2. *PINC*XLI)/(EM+1 )
X9=X1-PINC
X3=XZERO+(XLI- XI+1.)*PINC :
Y4=XZERO+ (4 .*PINC*EM*XLI)/(EM+1.)%¥2_(2 * * -
X6=XZERO+(2.*PINC*(XI-1.))/(EM-1?) ( PINCE(XI-1.2)/(EN+1.)
D09J=1,7
9 W(J,6)= W(J 9)
W(8,6)=W(8,9)+DU(3)
W(9,6)=W(9,9)+DU(9)
SMUKE ¥%1 §1;1 2. ¥ XLI/(EM+1.)
SMUKY4=( (XLI-XI+1. ) (4. *EM®XLI/(EM+1.)%¥%¥2)4(2.%
LTIt NPTt S )))( ) 2)+( (XI-1.)/7(EM+1.))) /(X
p010J=1,9
W(J,4)= V(J)+SMUKM*(W(J 9)-V(J))
IF(ABS((XLI-XI)*PINC (S1+PINC)) 0.1E-04)37,37,36
36 W(J,9) = U(J, I)+SMUK9*(U(J I+1)-U(J,I))
GOTO 10
37 W(J,9) = U(J,I)+SMUK9*(DS(J)-U(J,I))
10 W(J,3) = V(J)
CALLJUMPII(X1, DU(8),DU(9))
W(8,3)=W(8,3)-DU(3) -
WXBAZW(3, 4)+DU(8)
WTHA=W(9,4)+DU(9)
w(8,4)= w(8 4)-DU(8)
W(9,4)=W(9,4)-DU(9)
CONST = 1. 373/R1%#2
IF(X1.GT.S1)CONST = 1.373/R2##2
CALL GECOFF(1,X1,X3,CONST)
CALL GECOFF(2,X1,X9,CONST)
CALLGECOFG(1,X1,X3)
CALLGECOFG(2,X1,X9) ;
CALLGECOFH(1,X1,X4)
CALLGECOFH(2,X1,X6)
pX13=X1-X3
DX1U=X1-X4
pX19=X1-X9
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97
11

29
30

31
12

96
13

293
9999

DX16=X1-X6

CALLSOLMAT (WX4A,WT4A,DX13,D

CALLSOLMS 3,DX14,DX19,DX16)
D011J=1,3 '
W(3%J-1,3)=UU(2%J-1)
W(3%J,3)=UU(2%*J)
W(1,3)=V(1)+(V(2)+W(2,3)-(V( W
w(u,3)=v(u)+(v(5)+w(s,3)-(v<2§1w§2
¥§7i?)=w(7,4)+(w(8,u)+W(8 3)-(W(9,
X1=XZERO+(XLI-XI)*PINC

X9=X1-PINC

xg =X1-2. *PINC/(EM+1.)

XZER

1§I/(EM+?+§§INC/(EM+1 ))*(XLI+XI+EM* (XLI-XI)-2.¥EM*XLI/(EM+1.)+2. %X

SMUKU4=(2.*XLI*(EM=-1.)/(EM+1,) %%

SMUK6=(EM=1. ) /(EM+1.) (EM+1.)¥%2) - (XLI-XI)*(EH-1.)/(EM+1.).
D012J=1,9

UE(Jg;w(g)3)
W(J,8)=W(J,3)+SMUKL*(W(J,9)-W(J
,IF(ABS(X9-51)-0.1E-04)30,30,2§ 30

3))/C1)%*DX13/2.
3))/C1)%DX13/2.
)+W (9

’
! ,3))/C2)*DX14/2,

W(J,9) = U(J,I+1)
GOTO 31

el o

WidJ, =W J,9) SMUK6#% (U o1
U(J,I) = v(J) ¥ (U(J,I)-4(J,9))

WXUA=W(3,4)

CONST = 1.373/R1%#2
IF(X1.GT.S1)CONST = 1.373/R2%%2
CALL GECOFF(1,X1,X3,CONST)

CALL GECOFF(2,X1,X9,CONST)
CALLGECOFG(1,X1,X3)
CALLGECOFG(2,X1,X9)
CALLGECOFH(1,X1,X4)
CALLGECOFH(2,X1,X6)

DX13=X1-X3

DX14=X1-X4 -

DX19=X1-X9

DX16=X1-X6

CALLSOLMAT(WXU4A,WTY4A, DX
CALLSOLMA , , 3,DX14,DX19,DX16)
D013J=1,3

V(3%J- 1)=uu(2%J- 1)

v(3*J)(UU(2*J)

V(1)=W(1,3)+(W(2,3)+V(2)-(W(3,3)+V( /C1)#%
V(u)=W(u,3)+(W(5,3)+V(5)—(w(6,3)IV(g;;/c1;*gizgfg'
ggngg§ngz;gwé8v?z+V(8) (W(9,4)+V(9))/C2)*DX14/2.

CALLE ) V(2) V(3),V(4),V(5),V(6),V(T),V(8),V(9),XLI)
RETURN

END

SUBROUT%NEaDISCONT :
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G(6,3.
1DU(9),V(9),UR(3), A(7),B ¥
22ERO,I,M,51,DS(9),R1 R2(7) 100073, 7) B¢
XI=I

X1=XZERO+(XLI-XI)*PINC

Tz(XLI+XI)*PINC/C1

),H(6,3),2(12),UU(12),
7),PINC,XLI,EM,C1,C2,X
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SMUK=2./(EM+1.)

X2 = X1

X3=X1+PINC

X9=X1-PINC

X4=X1+SMUK*PINC

X6=X1-SMUK*PINC

DO 17 J = 1,9

Ww(Jd,3) = v(J)

w(g,g)(: %2J,I+1)
IF(ABS(T-((S1+42.%PINC)/C1)).GT.0. 1E-0
W(J,4)=U(J,1)+SMUK¥®(V(J)-U(J,I)) 9)60T015

GOTO 16

W(J,4) = DS(J)+SMUK*(V(J)-DS(J))
Ww(J,6) = U(J, I)+oMUK*(U(J I+1)-U(J,1I))
U(J,I) = V(J)

WX4A=W(8,H4)

WT4A=W(9,4)

CONST = 1 373/R2**2
CALLGECOF F(1,X2,X3,CONST)
CONST = 1.373/R1**2
CALL GECOFF(2,X1,X9,CONST)
CALLGECOF G(1,X2,X3) _
CALLGECOFG (2,X1,X9) R
" CALLGECOF H(1,X2,X4)
CALLGECOFH(2,X1,Xb6)
DX13=X1-X3
DX14=X1-X4
DX19=X1-X9
DX16=X1-X6
CON1 = (R2/R1)#¥%2
CON2 = CON1%#2
CALL SCONMAT(WXNA,WT4A,DX13,DX14,DX19,DX16)
CALLMASUB
po20 J = 1,3
V(3%J-1)=00(2%J-1)
V§3*J)(= Ug(%*J)
V(1)=W(1,9)+(W(2,9)+V(2)+(W(3,9)+V(3))/C1)*DX1
V(4)=W(l,9)+(W(s5, 9)+V(5)+(W(6,9)+V(6))/C1)*Dx135§:

V(7)=W(T,6)+(W(8,6)+V(8)+(W

YR V(2)/CON2 | +(W( cz)*Dx16/2,
DS(3) = V(3)

DS(5) = V(5)

DS(6) = V(6)

peD) T W sz,

DS(1) = W(1,3)+(W(2,3)+DS(2)-(W(3,3)+DS(3))/C1)*DX13/2.
DS(4) = W(N.3)+(w(5 3)+DS(5)-(W(6, D

D°§8§ : 3?§13;(¥(?§ v(;))/CON1 (6,3)+DS(6))/C1)*DX13/2.
DS(7) = y4)+(W(8,4)+DS(8)-(W(9, 4)+DS(9))/C2)*DX 14
CALLPRINTO(X1,T, V(1) V(2),v(3), V(u) vV(5),V(6), 3(7) vfg) V(9),XLI)
CALL PRINTO(X1 DS(1), S(2) Ds(3) DS(u) DS(

15055 %L1) 5) DS(o) DS(?) DS(8) D

I = I+1 '

RETURN

END

SUBROUT%NEBDISCON1 :

COMMONU(9,8001),Y(12,12),W(9,9), F(6 3),G(6;,3),H(6,
10U(9),V(9),UP(9),A(T),B 3),2(12),0u(12),
ey, I M 2 DS(9) R1)R2(7) C(7) D(7) E(7) P(7) PINC XLI EM,C1,C2, X

XI=I
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99

T=(XLI+XI)®*PINC/C1
X1=XZERO+(2.*PINC*XLI)/(EM+1.)
X9=X1-PINC
X3=XZERO+§XLI-XI+1.)*PINC
XU=XZERO+(4.%PINCH*EM®*XLI)/(EM+1.) *#2_ * *
X P LiCs (Bha ) ( YRA2_(2 #PINCH*(XI-1.))/(EM+1.)
SMUK9=(1.-2./(EM+1.))/(2.*(XLI-1.)/(EM+1.)-(XLI-XI-1.))
#*
ggg§u1(§L1 -XI+1,)-(4.*EM*XLI/(EM+1. )**2)+(2 *(XI-1.)/(EM+1.))
W(J,3)=V(J)
W(J,9)=UP(J)+SMUK9*(U(J,I+1)-UP(J))
W(J,4) = V(J)+SMUK4¥(DS(J)-V(J))
W(J,6)=UP(J)
u(Jd,I)=v(J)
CALLJUMPII(X1 pu(8), DU(9))
Ww(8,3)=W(8,3)-DU(8)
wqu w(s8, u)+nu(8)
WTU4A=W(9,4)+DU(9)
W(8,4)= W(8 4)-pU(8)
W(9,4)=W(9,4)-DU(9)
CONST = 1. 373/R2%%2
CALL GECOFF(1,X1,X3,CONST)
CONST = 1.373/R1%%2
CALL GECOFF(2,X1,X9,CONST)
CALLGECOFG(1,X1,X3)
CALLGECOFG(2,X1,X9)
CALLGECOFH(1,X1,X4)
CALLGECOFH(2,X1,X6)
CON1 = (R2/R1)%*%2
CON2 = CON1¥#¥2
DX13=X1-X3
DX14=X1-X4
DX19=X1-X9
DX16=X1-X6
CALL SCONMAT(WX4A,WTU4A,DX13,DX14,DX19,DX16)
CALLMASUB
D02J=1,3 ’
W(3*J-1,3)=UU(2%J-1)
W(3%J, 3) uu(2*J)

W(1,3)=V(1)+(V(2)+W(2,3)- (v(3)+w(3,3))/c1 ¥DX

Wk, 3)=V(8)+(V(5)+W(5,3)- <v<6)+w(6,3))/c1;*Dx1§552
§§7x?) =W(T,4)+(W(3, u)+w(8 3)-(W(9,4)+W(9,3))/C2)%DX1u/2.
X1=XZERO+(XLI-XI)#*PINC

X9=X1-PINC

X4=XZERO+(PINC/(EM+1.) ) *(XLI+XI+EM* (X
1L1/(EM+1 (¢ + (XLI-XI)-2. *EM*XLI/(EM+1 )+2. %X
X6 = XZERO+(PINC*(XLI-XI-2.)+EM*PINC*(XLI-XI))/(E
M+1
SMUKU4=(2.*XLI*(EM=-1.)/(EM+1.)##2)(XLI-XI)*(EM- g );(E%+1 )

UK6 XLI-

13?EM+1 )(EXLI §% % ;?M*(XLI -XI))/(EM+1.)- (XLI XI-1.))/(2.%(XLI-1.)
D?3Ju; 3(J '3)
w(J +SMUKU4 * (W (J,
SN 3 (W(J,9) W(J 3))
WEJ g; Uéj ,I41) '
W(J,6)=W(J,9)+SMUKE*

u(a Bl . (w(J 6)-W(J,9))

WT4A=W(9,4)
CONST = 1.373/R2%%2
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CALL GECOFF(1,X1,X3,CONST)
CONST = 1.373/R1#%%2
CALL GECOFF(2,X1,X9,CONST)
CALLGECOFG(-1,X1,X3)
CALLGECOFG(2,X1,X9)
CALLGECOFH(1,X1,X4)
CALLGECOFH(2,X1,X6)
DX13=X1-X3
DX14=X1-X4
pX19=X1-X9
DX16=X1-X6
CALL SCONMAT(wqu WTU4A,DX13,DX14,DX19,DX16)
CALLMASUB

98 DO4J=1,3
V(3%J- 1) uu(2%J-1)

I V(3*J)(UU(2*i)(
V(1)=W(1,9)+(W(2,9)+V(2)+(W(3,9)+V(3))/C1)*DX19/2.
V(L)=W(4,9)+(W(5,9)+V(5)+(W(b, 9)+v(6))/c1§*Dx13;2
V(7)=W(T7,6)+(W(8,6)+V(8)+(W(9, 6)+v(9))/cz)*nx16/2

DS(2) = V(2)/CON2

DS(3) = V(3)

DS(5) = V(5)

DS(6) = V(6) -

DS () = (3 3 (2, 3)

DS = +(W(2,3)+DS(2)-(W(3,3)+DS(3))/C1)*DX13/2

DS(4) = W(4,3)+(W(5,3)+DS(5)-(W(6,3)+DS(6 ' .

Dsgag - g?§13;(¥(?g‘xg1))’C°N1 (6,3)+DS(6))/C1)*DX13/2.

DS(7) = +(W(8,4)+DS(8)-(W(9,4)+DS(9))/C2)%*DX14/2.
CALLPRINTO(X1,T, V(1) v(2),v(3), V(N),V(S).V(6),3(7),V{§).V(9) XLI)
CALL PRINTO(Xj DS (1 ),DS(2),DS(3),DS(4),DS(S),Ds(é),DS(7),D§(8),D

15(9),XLI)
290 I=I+1
9999 RETURN
. END
SUBROUTINE DISCON3
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G(6
1DU(9), V(9) UP(9) A(7) B(7) C( ),D(7),E(T),
2ZERO, I M, s1 DS(9) R1, R2
XI=1I
T= (XLI+XI)*PINC/C1
X1=XZERO+(2.*¥PINC¥*XI)/(EM-1.)
X3=X1+PINC
X9=XZERO+(XLI-XI~-1.)*PINC
X6=XZERO+2.*¥PINC* (XLI-1.)/(EM+1.)
DO1J 1,7
1 W(J,6)=UP(J)
W(8,6)=UP(8)-DU(8)
w9, S)xug(gg ?U(%)
SMUK4=XL +1.-(4.*EM*XI)/((EM+ * *
S oK 1u)202 05, 306 )/ (( 1.)*(EM=-1.))+(2.%(XI-1.)/(EM+1.))
* #*
302 332§Z?R8+( EM¥PINC XI)/((EM+1.)*(EM-1.))-2 *PINC*(XI-1.)/(EM+1. )
2 W(J,4) = V(J)+SMUK4*(U(J,I)-
GOTO 308 . ( AR
306 XU4=XZERO+(U4 .*EM*PINC*XL/(EM-1.)%%2)- (2. *PINC*(XLI-1.
§s o )/(EM-1.))
1%%3% 1(§5{E§£1u))am XI/(EM-1.)%%2,2 #(XLI-1,)/(EM-1.))/(XLI-XI-2.%
po3J=1,9
3 W(J.u)zU(J,I)+SMUK4*(W(J,6)-U(J,I))

(6,3),2(12),0u(12),

»3),H
P(7), PINC,XLI,EM,C1,CZ,X
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308 SMUK3=XLI-(XI*(EM+1.)/(EM=1. ))
pouJ=1,9
W(J,3)=V(J)+SMUK3*(U(J,I)-V(J))

4 N(J,9) = DS(J) ‘
CALLJUMPII(X1,DU(8),DU(9))
W(8,9)=W(8,9)+DU(8)
WXUA=W(8,4)

WTUA=W(9,4)
CONST = 1.373/R2¥%%2
CALL GECOFF(1,X1,X3,CONST)
CALL GECOFF(2,X1,X9,CONST)
CALLGECOFG(1,X1,X3)
CALLGECOFG(2,X1,X9)
CALLGECOFH(1,X1,X4)
CALLGECOFH(2,X1,X6)
DX13=X1-X3
DX14=X1-XU4
DX19=X1-X9
DX16=X1-X6

. CALLSOLMAT (WX4A, WTY4A,DX13, Dx1u DX19,DX16)
CALLMASUB

99 DO SJ = 1,3
W(3*%J-1, 9) uu(2*#J-1)

5 W(3%J, 9) uu(2%J)

W(1,9)=W(1,3)+(W(2,3)+W(2,9)-(w(3.3)+w(3,9))/c1)*Dx13/2.
W(4,9)=W(4,3)+(W(5,3)+W(5,9)-(W(6,3)+W(6,9))/C1)%*DX13/2.
w(7i?)=W(7,4)+(W(8,4)+W(8,9)-(W(9,u)+W(9,9))/cz)*Dx1u/2.
X9=

X1=XZERO+(XLI-XI)*PINC

X3=X1+PINC

X4=X1+2.*PINC/(EM+1.)
X6=X1-2.*PINC/(EM+1.)
SMUK6=(XLI-XI-(XLI-XI-2,+EM*(XLI-XI))/(EM+3.))/(XLI-XI-2.*(XLI-1,)
1/(EM+1.))
SMUKU4=(EM-1.)/(EM+1.)
DO7J=1,9
W(J,3)=V(J) .
W(J,6)=U(J,I)+SMUK6*(W(J,6)-U(J,I))
W(J,4) = V(J)+SMUKU*¥(U(J,I)-V(J))
7 U(J,I)=V(J)
WXUA=W(8,4)
WTUA=W(9,4)
CONST = 1.373/R2#%%2
CALL GECOFF(1,X1,X3,CONST)
* CALL GECOFF(2,X1,X9,CONST)
CALLGECOFG(1,X1,X3)
CALLGECOFG(2,X1,X9)
CALLGECOFH(1,X1,X4)
CALLGECOFH(2,X1,X6)
DX13=X1-X3
DX14=X1-XU
DX19=X1-X9
DX16=X1-X6
CALLSOLMAT (WX4A,WT4A,DX13,DX14,DX19,DX16)
CALLMASUB
98 D08J=113
V(3*%J-1)=UU(2%J-1)
8 V(3*J)=UU(2%J)
V(1)=W(1,9)+(W(2,9)+V(2)+(W(3,9)+V(3))/C1)*DX19/2.
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290

9

10

97
11

V(4)=W(l,9)+(W(5,9)+V(5)+(W(6,9)+V(6))/C1)*DX1

V(T7)=uW(T, 6)+(W(8,6)+V(8)+(W(9,6):v(9;)/02;*0x12;§:

gA%L?RINTO(X1 T,V (1),V(2),V(3),V(4),V(5),V(6),V(7),V(8),V(9),XLI)
=I+ '

XI=I

T=(XLI+XI)*PINC/C1

X1=XZERO+(2.*PINC*XLI)/(EM+1.)

X9=X1-PINC

X3= XZERO+§§LI-XI+1 ) *PINC

XU=XZERO+ (Y. #PINC*EM*XLI)/(EM+1.)%%2_(2.* '
X6=XZERO+(2.*PINC*(XI-1.))/(EM- 1)) (2. ¥PINCH(XI-1. ))/(EM+1 .
D09J=1,T

W(J,6)2W(J,9)

W(8,6)=W(8,9)+DU(8)

W(9,6)=W(9,9)+DU(9)

SMUK9=XLI-XI+1.-2.%XLI/(EM+1.)

 SMUK4=( (XLI-XI+1. ) (4. *EM¥XLI/(EM+1.)%%2)4(2. *(XI 1.)7(EM+1.))) /(X

ILI-XI+1.-(2.#(XI-1.)/(EM=1.)))

D010J=1,9

W(J,3)= V(J)
W(J,4)=V(J)+SMUKU*(W(J, 9) V(J))
w(J,9)=U(J, I)+SMUK9*(U(J I+1)-U(J,I))
CALLJUMPII(X1 pDuU(8), DU(9)) '
W(8,3)=W(8,3)-DU(8)
wqu=w(8,u)+DU(8)
WTUA=W(9,4)+DU(9)
W(8,4)=W(8,4)-DU(8)
W(9,4)=W(9,4)-DU(9)

CONST = 1.373/R2%%2

CALL GECOFF(1,X1,X3,CONST)

CONST = 1.373/R1%#%2

CALL GECOFF(2,X1,X9,CONST)
CALLGECOFG(1,X1,X3)
CALLGECOFG(2,X1,X9)
CALLGECOFH(1,X1,X4)
CALLGECOFH(2,X1,X6)
DX13=X1-X3

DX14=X1-X4

DX19=X1-X9

DX16=X1-X6

CON1 =" (R2/R1)*¥2

CON2 = CON1%¥2

CALL SCONMAT(WXUYA,WTUA,DX13,DX14,DX19,DX16)
CALLMASUB

p011J=1,3
W(3%*J-1,3)=U00(2%J-1)
W(3%J,3)=UU(2*J)

W(1,3)=V(1)+(V(2)+W(2,3)-(V(3)+W(3,3))/C1)*DX13/2.
W(4,3)=V(4)+(V(5)+W(5,3)- (V(6)+w(6,3))/C1)*Dx1§;2.
§§7x?) =W (7,1)+(W(8,4)+W(8, 3)-(W(9,4)+W(9,3))/C2)*DX14/2.
X1=XZERO+(XLI-XI)*PINC |

X9=X1-PINC

X6=X1-2.*PINC/(EM+1.)
XU=XZERO+(PINC/(EM+1.) ) #(XLI+XI+EM* (XLI-XI)-2,*EM*XLI/(EM+}.)+2.%X

1LI/(EM+1.))

SMUKY=(2. #*XLI*(EM=1.)/(EM+1. ) *¥2) = (XLI-XI)*
SMUK6=(EM=1.)/7(EM21. ) ( )*(EM-1.)/(EM+1.)
D012J=1,9
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UP(J)=W(J,3)
W(J,B)=W(J,3)+SMUKU*(W(J,9)-W(J,3))
W(J,9)=U(J,I+1)
W(J,6)=W(J,9)+SMUK6*(U(J,I)-W(J,9))

12 U(J,I)= V(J)
wqu=w(8,u)

- WTuA=W(9'u)

CONST = 1.373/R2#%%2
CALL GECOFF(1,X1,X3,CONST)
CONST = 1. 373/R1**2
CALL GECOFF(2,X1,X9,CONST)
CALLGECOFG(1, x1 X3)
CALLGECOFG(Z,X1,X9)
CALLGECOFH(1,X1,X4)
CALLGECOFH(2,X1,X6)
DX13=zX1-X3
DX14=X1-X4
DX19=X1-X9
DX16=X1-X6
CALL SCONMAT(WXUA WT4A,DX13,DX14,DX19,DX16)
CALLMASUB

96 D0O13J=1,3 '
V(3*J-1)=UU(2*J-1)

13 V(3#%#J)=UU(2%J) .
v(1)=W(1, 3)+(W(2 3)+V(2)-(W(3,3)+V(3))/C1)*DX13/2.
V(4)=W(l,3)+(W(5,3)+V(5)-(W(6,3)+V(6))/C1)*DX13/2.
v(z; =W(T,4)+(W(8,4)+V(8)-(W(9,4)+V(9))/C2)*DX14/2.
DS
DS(3
DS(5

DS (6
9
1

V(2)/CON2

DS(
DS(
DS(4)
DS(8)
DS(7) = w
CALLPRINTO
CALL PRINT
15(9),XLI)
293 I=I+1
9999 RETURN
END
Q pDISCONTINUITY SOLUTION MATRIX SUBROUTINE
SUBROUTINE SCONMAT(WX4A,WT4A,DX13,DX14,DX19,DX16)
188?§?N3§g)8832;)¥§z$)1227§(9(9; F(6 3),G(6, 3) H(6,3),2(12),0U0(12),
’ ’ ’ :B ’C 1 ’D sE rP ’ ] ’
>ZERO,I,M,81,DS(9),R1,R2 (79,E(7),#{T),PING, XL, EH,C1,C2, X
CON1 = (R2/R1)%%2
CON2 = CON1##¥2
y(1 1)=C1*(-1.+F(1,2)%DX19/2.+F(2,2)*DX19%DX13/4.)
§1 %; é1;$§%32%;ox19*0x13/u
¥DX19/2.+F(4,2)%DX19#DX
Y(1,4)=-F(4,2)*DX19%DX13/4. ‘ ’ 13/4.)
Y(1,5)= C1'(F(5 2)%DX19/2.+F(6,2)*DX19*DX14/4.)
1(1 6)=-C1*F(6,2)*DX19%DX 14/ (4. *C2)
z;;) =W(3,9)- C1‘w(2 9)-(C1%¥DX19/2.)*(F(1,2)*W(2,9)+F(2,2)*¥DX13*(W(2
l(w
#DX

)
)
)
)
)
) C1)*DX13/2.

)
)/C1)#*DX13/2.

(
(
(
(
( 3)+DS(2)-(W
( 3)+DS(5)-(W
V(1))/CON?
( 4)+DS(8)-(W
),V(3),
DS(2),D

3 ),V(7),V(8),V(9),XLI)

3)
5)
6)
9)
1,
4,
S(1
Ty
(X
o( 5),Ds(6),Ds(7),DS(8),D

3)+(W(2,3)+ (3,3)+DS(3))/
3)+(W(5,3)+ (6,3)+DS(6))/
)+(V(8)-v(1
)+(W(8,4)+ (9,4)+DS(9))/C2)#*DX1Ur2.
1,T,V(1),v(2 v(4),v(5),V(6
X1,T,DS(1), 5(3),D3(4).DS(

1 w(3,3)/c1)/2 +F(2 2)%(W(1,3)+W(1, 9))+F(3 2)*H(5, F(4,2)%DX1
2 (5,3)-W(6,3)/C1)/2.+F (4, 2)*(w(u 3)+w(u 9))+F(5(2)2&28(9)+g(6 2?
3 4% (W(8, 4)- W(9,4)/C2)/72.+F(6, 2)*(w(7 u)+w(7 9)))
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2)*DX19/2.+G(2,2)#DX19*DX13/4.)
DX19%*DX13/4.

(3,2)%DX19/2.+G(4,2)%DX19%DX13/4.)

)*Dx19*Dx13/u.
2)%DX19/2.+G(6,2)*DX19*DX14/4.)
¥DX14*G(6,2)/(4.%C2)

y9)-C1*4(5,9)- (c1*Dx19/2 YE(G(1,2)*¥W(2,9)+G(2,2)*DX13*(W(2
3)/C1)/2. +G(2 2)%(W(1,3)+W(1, 9))+G(3 2)*W(5 9)+G(4 2)*DX13
-W(6,3)/C1)/2.+G(4, 2)*(W(u 3)+W(u 9))+G(5 2)*W(8 9)+G(6 2)
(8,4)-W(9,4)/C2)/2.+G(6, 2)*(w<7 u)+w(7 9)))

2%(H(1, 2)*DX16/2 +H(2, 2)*DX16*DX13/M )
c2*nx16*nx13*ﬂ(2 2)/(4 *C1)
C2*(H(3,2)*DX16/2.+H(4,2)*DX16%*DX13/4.)

-cz*nx16*nx13*ﬂ(u 2)/(u ¥C1)
C2%*(-1.+H(5, 2)%¥DX16/2. +H(6,2)%*DX16%DX 14 /4. )

1.-H(6, 2)*Dx16*Dx1u/u

9,6) CZ*W(B 6)-(C2%*DX16/2.)*(H(1,2)*W(2,6)+H(2,2)*¥DX13*(W(2
3)/C1)/2. +H(2 2)%(W(1,3)+W(1, 6))+H(3 ZS*W(S 6)+H(u 2)%DX13
-W(6,3)/C1)/2.+H (4, 2)*(W(u 3)+W(u 6))+H(5 2)*w(8 6)+H(6 2)
8, u) W(9,4)/C2)/2.+H(6, 2)*(W(7 u)+W(7 6)))

(C1/CON2)*(1 ~-F(1, 1)*DX13/2 -F(2 1)*Dx13**2/(u ¥CON1))
1.4F(2, 1)*Dx13**2/(4 *CON1)
*
4
(
#*

WN =
N KKK

N FSFQ GG G o ke

Nt mmomammomammma O oo o D /U)o oo o
[} Oi.‘.v"

1,
2%
3% (

(-F(3,1)*DX13/2.-F(4,1)%DX13%%2/4 )

1)*Dx13**2/u
C1/CON1)*( F(5,1)*DX13/2.-F(6, 1)*Dx13*0x1u/u )
=C1*¥DX13*DX14*F (6, 1)/(4 *C2) ‘
(3,3)+C1¥W(2, 3)+C1*DX13*(F(1 1)*¥W(2,3)/2.+F(2,1)*DX13%(W(2, 3
3)/C1)/4. +F(2 1)*W(1, 3)/CON1+F(3 1)*W(5 3)/72. +F(u 1)*DX13*(W
W(6,3)/C1)/4. +F(u 1)*w(u 3)+F(5, 1)*W(8 3)/2 +F (6, 1)*Dx1u*(w(
(9,4)/C2)/4.+F (6, 1)*(w(7 4)+w(7,3))/2. )

(C1/CON2) ¥ (- 0(1 1)*DX13/2 -G(2 1)%DX13%%2 /(Y. *CON1))
G(2, 1)*DX13%%2 /(4. *CON1)
*
+

ENDNDNNOVNMODINNLDE OO OO OV E W wwiw

)
(
Y

= (1.-G(3,1)%DX13/2.-G(4,1)%DX13%%2/4 )

= G(4, 1)*DX13**2/4 ;

= 1*( G(S 1)*DX13/2.-G(6,1)*DX13*¥DX14/4,)/CON1

= 1*DX13*DX1H*G(6 1)/7(4.%C2)

(6,3)+C1*W(5, 3)+C1*DX13*(G(1 1)*¥W(2,3)/2.+G(2,1)*DX13%(W(2,3
3)/C1)/4 +G(4 1)*W (1, 3)/CON1+G(3 1)*W(5 3)/72. +G(4 1)*DX13*(W
(

N | S
Lo S L O

) =i
( (6,3)/C1)/4. +G(u 1)*W(u 3)+G(5, 1)*W(8 3)/2. +G (6, 1)*Dx1u*(W(
9, 4)/02)/u +G (6, 1)*(W(7 4)+w(r,3))s2. )

(C2/CON2) % (- H(1 1)*Dx14/2 —H(2 1)#DX14%*DX13/(4.%CON1))
c2*nx1u*nx13*ﬂ(2 1)/(4. *C1*CON1)
=C2%(-H(3,1)*DX1U4/2.-H(4,1)%¥DX14%¥DX13/4.)

2*Dx1u*ox13*ﬂ(u 1)/(4. *c1)

=C2*(1.-H(5,1 )*DX1472. -H(6,1)%DX14%%2 /4 ) /CON1

1. +H(6,1)*DX14*%2 /Y,
TuA+c2*wqu+c2*Dx1u*(H(1 1)*W(2,4)/2.+H(2, 1)*DX13*(W(2 3)-W(
1 CI)/4.+H(2,1)%(W(1, 3)/CON1+J(1 u))/z +H(3, 1)*W(5 Wys2. +H(u 1)
2¥DX13*(W(5,3)- w(6 3)/C1)74. +H (4, 1)*(W(M 3)+W(4,4)) /2. +H(5 1)'W(8
3)/5 .+H(6, 1)*Dx1u*(W(8 4)-w(9, u)/CZ)/u +H(6 1)*u(7 4))
M=
RETURN
END :

Q sOLUTION MATRIX SUBROUTINE
SUBROUTINESOLMAT(WX4A,WT4A,DX13,DX14,DX19,DX16)
COMMONU(9,8001),Y(12, 12) W(9 9),F(6, 3) G(6 3),H(6,3), z(12) UU(12)

1DU(9), V(9) UP(9) A(7) B(7) C(7) D(7) E(7) P(7) PINC XLI EM,C1,C2,
27ZERO, I, M, S1 DS(9) R1, R2
Y(1, 1)= C1%(-1., +F(1 2)*Dx19/2.+F(2.2)*Dx19*0x13/u.)

Y

NSNS O NN

3)
(
1
).
(
1
Y (2,
Y (2,
Y(2,
Y(2,
Y(2,
Y(2,
Z2(2)
(
3
3,4)
Y (4,
Y (4,
Y (4,
Y(4,
Y (4,
Z(4)
(
3
8,4)
Y (5,
Y(5,
Y(5,
Y(5,
Y(5,
Z2(5)
3,3)

?
4
5
5
5
5
5
5
5
3
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1.-F(2,2)*DX19%DX13/4. -
C1#(F(3,2)*DX19/2.4F(4,2)*DX19%DX13/4.)
-F(4,2)*DX19%DX13/4.
C1#(F(5,2)*DX19/2.+F(6,2)*DX19*DX14/4.)
-C1*F(6,2)*DX19*DX14/(4, *C2)
3,9)-C1*W(2,9)-(C1%DX19/2.)*(F(1,2)*W(2,9)+F(2,2)*DX13*(W(2
3)/C1)/2.+F(2,2)*(W(1,3)+W(1,9))+F(3,2)*W(5,9)+F(4,2)%DX13
~W(6,3)/C1)/2.+F(Y4,2)*(W(H4,3)+W(H4,9))+F(5,2)*W(8,9)+F(6,2)
(8,4)-W(9,4)/C2)/2.+F(6,2)*(W(T,4)+W(7,9)))
1%#(G(1,2)*DX19/2.+G(2,2)*DX19*DX13/4.)
G
1

W=

(2,2)*DX19%DX13/4,
1%#(-1.+G(3,2)*DX19/2.+G(4,2)*DX19*DX13/4.)
.-G(4,2)%*DX19#DX13/4.
1%#(G(5,2)%*DX19/2.+G(6,2)*DX19*DX14/4,)
C1*DX19#¥DX1U*G(6,2)/(4.*C2)
19)-C1*W(5,9)-(C1*DX19/2.)%(G(1,2)%*W(2,9)+G(2,2)%*DX13%(W(2
3)/C1)/2.+4G(2,2)*(W(1,3)+W(1,9))+G(3,2)*W(5,9)+G(4,2)*DX13
-W(6,3)/C1)/2.3G(4,2)*(W(H,3)+W(4,9))+G(5,2)*W(8,9)+G(6,2)
(8,4)-W(9,4)/C2)/2.4G(6,2)%(W(T,4)+W(7,9))) .
Y(6,1)=C2*¥(H(1,2)*DX16/2.+H(2,2)*DX16#*DX13/4.)
Y(6,2)=-C2*DX16¥%DX13%H(2,2)/(4.%C1) -

Y(6,3)=C2%(H(3,2)*DX16/2.+H(4,2)*DX16*DX13/4.)

Y(6,4)=-C2¥*DX16*DX13*%H(Y4,2)/(U4.*C1)
Y(6,5)=C2¥%¥(-1.+H(5,2)*DX16/2.+H(6,2)%DX16%DX14/4.)

Y(6,6)=1.-H(6,2)%DX16*DX14/4,

Z2(6)=W(9,6)-C2*W(8,6)-(C2*DX16/2.)*(H(1,2)*W(2,6)+H(2,2)*DX13%(W(2
1,3)-W(3,3)/C1)/2.+H(2,2)*(W(1,3)+W(1,6))+H(3,2)*W(5,6)+H(4,2)*DX13
2% (W(5,3)-W(6,3)/C1) /2. +H(U4,2)*(W(U4,3)+W(l,6))+H(5,2)*W(8,6)+H(6,2)
3%DX14*(W(8,U4)-W(9,U4)/C2)/2.+H(6,2) % (W(T,4)+W(7,6)))
Y(2,1)=C1*(1.-F(1,1)*DX13/2.-F(2, 1)¥DX13%*%2/4 )
Y(2,2)=1.4F(2,1)%DX13%%2/4, ‘
Y(2,3)=C1*(-F(3,1)*DX13/2.-F(4,1)*DX13%%2/Y )

Y(2,4)=F(4,1)%DX13%#2/4,
Y(2,5)=C1#(-F(5,1)%DX13/2.-F(6,1)*DX13%DX14/4.)
Y(2,6)=C1%¥DX13*DX14*F(6,1)/(4.%C2) :

2(2)=W(3,3)+C1*W(2,3)+C1¥DX13*(F(1,1)*W(2,3)/2.+F(2,1)*DX13*(W(2,
1)-W(3,3)/C1)/4.+F(2,1)*W(1,3)+F(3,1)*W(5,3)/2.+F(4, 1)*DX13*(W(5,3

)

3
)
2-W(6,3)/C1) /4. +F (4, 1)*W(l4,3)+F(5,1)*W(8,3)/2.+F(6,1)*DX14%¥(W(3,4)-

3W(9,4)/C2) /4. +F (6, 1)*(W(T,4)+W(7,3))/2.)
Y(4,1)=C1#(-G(1,1)¥DX13/2.-G(2, 1) *DX13%*2/4,)
Y(4,2)=G(2,1)*¥DX13%#2/},

Y(4,3)=C1%(1.-G(3,1)*DX13/2.-G(4, 1)%DX13%%2/4 )
Y(4,4)=1.+G(4,1)¥DX13%%2/4, .
Y(4,5)=C1#(-G(5,1)%DX13/2.-G(6,1)*DX13*DX14/4.)
Y(4,6)=C1¥DX13¥DX14%*G(6,1)/(4.%C2)
Z(4)=W(6,3)+C1¥W(5,3)+C1*DX13%(G(1,1)*W(2,3)/2.+G(2,1)*DX13*(W(2,
1)-W(3,3)/C1)/4.4+G(2, 1)*W(1,3)+G(3,1)*¥W(5,3)/2.+G(4,1)*DX13%(W (5,3
2-W(6,3)/C1)/4.+G(4,1)*W(4,3)+G(5,1)*W(8,3)/2.+G(6,1)*DX14#(W(8,4)
3W(9,4)/C2)/4.+G(6,1)%¥(W(T,4)+W(T,3))/2.) ‘
Y(5,1)=C2*(-H(1,1)*DX14/2.-H(2, 1) *DX14%¥DX13/4.)
Y(5,2)=C2*DX14*DX13%H(2,1)/(4.%C1)
Y(5,3)=C2*(-H(3,1)*DX14/2.-H(4,1)%¥DX14*DX13/4.)
Y(5,4)=C2*DX14*DX13%H(4,1)/(4.%C1)
Y(5,5)=C2%(1.-H(5,1)*DX14/2.-H(6, 1) *DX14%%2/4 )
Y(5,6)=1.+H(6,1) DX 14%%2 /14
Z(5)=WTHA+C2¥AXUA+C2¥DX14%(H(1,1)¥W(2,4)/2.+H(2,1)*DX13*(W(2,3)-W(
13,3)/C1) /4. +H(2, 1) ¥ (W(1,3)+W(1,4)) /2. +H(3,1)*W(5,4) /2. +H(4,1) ¥DX13
2%(W(5,3)-W(6,3)/C1)/U4. +H(4,1)%(W(H,3)+W(4,U4))/2.+H(5, 1)*W(8,4)72.+
3H(6,1)*DXI4*(W(8,4)-W(9,4)/C2)/4.+H(6,1)*W(T,4))

3
)
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M=6

-RETURN

END

SUBROUTINE JUMPI(X,DU1X,DU1T,DU2X,DU2T)
DU1X = O.

DUIT = -DU1X*0.5140E+04

DU2X=0.

DU2T=0.

RETURN

END

SUBROUTINEJUMPII(X,DU3X,DU3T)

DU3X = O.

DU3T = 0.

RETURN

END

SUBROUTINE GECJF F(ID,XA,XB,CONST)
COMMON U(9,8001),Y(12, 12) w(9 9),F(6,3)
X = (XA+XB)/2.

F(1,ID) = 0.
F(2.ID) = CONST
F(3)ID) = 0.
F(4,ID) = 0.
F(5,ID) = -CONST
F(6,ID) = 0.
RETURN

END

SUBROUTINE GECOFG(ID,XA, XB)

COMMON U(9,8001), 1(12 12) Ww(9,9),F(6,3),G(6,3)

DO 1J = 1,6

G(J,ID) = O.

RETURN

END

SUBROUTINE GECOFH(ID XA,XB)

COMMON u(9,8001), Y(12 12) w(9,9),F(6,3),G(6,3),H(6,3)

(XA+XB) /2.
H(1 D) = 1.
DO 1J = 2,6
H(J,ID) = O.
RETURN

END

SUBROUTINE BCTF1(T,F1)
IF(T-0.90E-04)1,1,2

F1 = T*#0.1E+03

GOTO 3

F1 = 0.90E-02

RETURN

END

SUBROUTINE BCTF2(T,F2)
F2 = 0. .

RETURN

END

SUBROUTINE BCTF3(T,F3)
F3 = 0.

.RETURN

END

SUBROUTINE BCTN1(T,F1)
F1 = 0.

RETURN

END
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SUBROUTINE BCTN2(T,F2)
F2 = 0.

RETURN

END

SUBROUTINE BCTN3(T,F3)
F3 =

RETURN

END

SUBROUTINEPRINTO(X,T,U1,U1X,U1T,U2,U2X,U2T,U3,U3X,U3T,XLI)
FORMAT(1H ,4HX = E15 8 y2X, HHT =

FORMAT(1H .5HU1
FORMAT(1H ,5HU2
FORMAT(14 ,SHU3
FORMAT(1H , 4HQ

,E15.8,2X,6HU1X = ,E15.8,2X, 6HU1T
JE15.8,2X. 6HU2X
JE15.8.2X, 6HU3X
,E15.8,2X, BHY =

FORMAT(1H ,4HV = ,E15.8,2X, 4HW = |

TOL = 0.100E-03

TTOL = 0.40E-06
IF(ABS(X-0.)-TOL)S,8
IF(ABS(X-0.1)- TOL)B
IF(ABS(X-0.3)-TOL)8
IF(ABS(X-0.8)-TOL)8
IF(ABS(X-1.0)-TOL)8
IF(ABS(X-1.2)-TOL)8
IF(ABS(X-1.9)-TOL)8
TLIM = 0.0

DO 16 IDO = 1,900

8
8
8
8
8
8

3
U
? ’5
8,6
8,7
»8,9
’ 11

y

IF(ABS(T- TLIM) TTOL)17,17, 16

TLIM = TLIM+0.194552E- OH
GOTO 14

WRITE(6,1)X,T
WRITE(6,10)U1,U1X,U1T
WRITE(6,11)U2,U02X,U2T
WRITE(6,12)U3,U3X,U3T

Q = 5. 45*(U3X U1)

Y = 03/70.025

V = X/0.025

W = 0.5140E+04#*T/0. . 025
S = -0.025*U1X

FORMAT(1H ,5HVA = ,E15.8,2X,5HWB =

VA = U3T/0.5140E+0%

WB = 0.025%U1T/0.5140E+04
ARITE(6,13)Q,Y
ARITE(6,21)VA,WB
WRITE(6,2)V,W,S
WRITE(3,92)X,T,S
FORMAT(3E12.4)

RETURN

- END
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card

WSSO~

INPUT DATA .CARDS FOR TMOTCU-3 COMPUTER PRNGRAM

+4000+0.00000000E+00+0.12500000£-02+5. 14000000E+03+0.88558000E+00

+ 2.000QE+00+ 1.0000E+00+12.7000E-03+ 1.2500E+00
~0.10000000E+01+0.00000000E+00+0.00000000E+00+0.00000000E+00+0.00000000E+00
+0.00000000E+00+0.00000000E+00
+0.00000000£+00+0.00000000E+00+0.00000000E+00+0. 10000000E+01+0.00000000E+00
+0.00000000£+00+0.00000000E+00
+0.00000000E+00-0.10000000E+01+0.00000000E+00+0.00000000E+00+0. TOOOOOOOE+O1
+0.00000000E+00+0.00000000E+00

-0.10000000E+01+0.00000000E+00+0. 00000000E+00+0.00000000E+00+0.00000000E+00
+0.00000000E+00+0.00000000E+00

+0.00000000E+00+0.00000000E+00+0. 00000000E+00+0 10000000E+01+0. OOOOOOOOE+OO
+0.00000000E+00+0.00000000E+00

+0.00000000E+00-0. 10000000E+01+0.00000000E+00+0.00000000E+00+0.10000000E+01
+0.00000000E+00+0.00000000E+00



APPENDIX B

Flexural vibration of beams with discontinuity of cross section

The simplest governing differential eauation for the lateral
vibration of beams that have step changes in the properties of their
cross section is based on the Fuler-Bernoulli theorv and consists of
disassembling the structure into sub-beam components of uniform hending

stiffness.

9 Y1 plA1 3 Y1
&t =0
Bxl ElI1 ot
(R.1
4 2
3’y pA, 3y
2,272 2 _ g

4 2
2 E212 at

ox
A solution can be obtained by forﬁulating the displacements of the
beam seéments of constant cross-sectional properties by individual

functions in the form of

xl(xl) = C1 s1nle1 + C2 cos lel + C3 su\hle,l + CA coshle1

- . ‘ . : (B.2)
and Xz(xz) CSS1n82x2 + C6 cosBzx2 + C7 s1nh62x2 + C8cosh82x2
Where yl = Xl(xl). T(t) and Yz = Xz(xz)' T(t) (Bt3)
e .'-... ~ p A p A
and B 4= 11 m2 and B 4 = 22 wz ) (B.lo)
1 F,I 2 E.1
11 272 |

The subscripts 1 and 2 refer to the right-hand and left hand segments of
the beam shown in figure 4.8.

The freouency equation is found using the proper boundarv condition
and expanding the determinant, and solutions are obtained numerically for
the given values of material properties and dimensions.

To obtain the solution for a free-free beam, the corresponding
bouﬁdary conditions are applied together with the continuitv conditions
of displacement, slope, momnet, and shear at the junction,of the two
parts of the beam, in a similar way to that described in chapter 4

(eqts. 4.6 and 4.7)
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32x1 (zfl)/axl2 - 33X1(£1)/ax13 =0 (8.5)

2 2 _ .3 3
) X2 (22)/8x2 ) Xz(lz)/ax2 = 0 (B.6)
Equations (B.5) and (B.6) satisfy the requirements of zero bending
moment and shearing force at both ends of the free-free beam and the
continuity conditions at the junctions are formulated as
XI(O) = XZ(O) (B.7)
BXI(O)/ax1 = -ax2(0)/ax2 (B.8)
E.T.3°% (0)/9x,2 = E,1,3°X,(0)/ox,%  (B.9)
117 71 1 272" 72 2 '
3 3 3 3
ElIla Xl(O)/axl- EZIZB X3(0)/3x2 (B:10)
Substituting the derivatives of equations (B.2) in equations (B.5) and

(B.6)

n
o)

. J .
C1s1n81£1 + 026088121 -C s1nh8121 - C,coshB_ 2

3 4 171

n
o

ClcosBIZ1 - Czs1n81£1 -~ C coshBll1 -C s1h58121

3 4

) (B.11)
0551n82£2 + C6c038222 - C751nh8212 - Cscoshszl2

(]
o]

C5c038222 - C6sin8222 - C7cosh82£2 - Cssinhezlz =0
Further 4 equations for the constants Cl""°'°c8 are obtained by
substitution of equations (B.2) in equation (B.7) to (B.10).

The eigenvalues are now obtained from the coefficient matrix of
the system of equation, as those values that make the determinant of the
coefficient matrix vanish,

For the determination of the roots of the frequency equations, the
values of E, I, p, A for both parts of the beam are to be specified and
when the whole beam is made of the same material, one has E1 = E2 and
Pye
The ratio of I/A is to be obtained from the geometry of the beam,
anh beams of rectangular crdss section and rods of circular cross section
are of interest. '

The flexural vibration of a stepped beam of rectangular cross section

js either flatwise or edgewise and the value of I/A is determined for each
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section, and for a beém of the same thickness h and different widths
b1 and b2
i) TFor flatwise vibration
3 2
Il/Al (blh /12)/b1h = h"/12
I/A, = (b,h>/12)/boh = h2/12
2°72 2 2
and therefore (Il/Al) = IZ/AZ)

ii) For edgewise vibration

3 2
11/A1 (hb1 /12)/hb1 b1 /12

_ 3 2
I,/A, = (hby"/12)/hb, = b,"/12

and therefore (II/AI) is different from (12/A2)

iii) For a stepped beam of circular cross section

1, /A = (nr14/4)/ﬂr12 - r12/4

I, /A

Jlh, = (wr24/4)/nr22 - r22/4

2
The computer programme uses the so called "Bisection method” to

solve the frequency equations for beams with discontinuitv of cross

sections for various width ratios (WR = RZ/RI) and length ratios

(LR = 2,/2,).

When the beam becomes uniform over its entire length, i.e.

psA; = Ay and I, = 12, the frequency is obtained from hte expression

Y At R
n 2 n-
2n L plA1
and for a beam of circular cross section
rC an
1
fn =7
4 L

The programme was used to obtain the fundamental frequency and
its six higher modes for two unifrom beams for L = 2.0m and d = 25.4mm,

d = 31.75mm and the frequencies of a beam of L1 = L2 = 1.0m and

d1 = 31.75mm and d2 = 25.4mm where E = 2.056 x 10"N/m2 and p=0.77743x104kg/m3.
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The following values were obtained for n = 1,2,3,4,5,6,7

i) For the unifrom beam of 25.4mm diameter, the frecuencies in
Hertz are fn/Hz = 29.083; £9.166; 157.150; 259.733; 388.036;
541.954 and 722,333.

ii) For the uniform beam of 31.75mm diameter, the frequencies
in Hz are fn/Hz = 36.354; 100.212; 196.437; 324.668;
485.041; 677.556 and 900,976

iii) For the stepped beam, the frequencies in Hz are
£ /Hz = 34.353: 93.780; 175.662; 291.645: 436.880;
611.345 and 815.064

The lateral frequencies of stepped beams with various end con-
ditions were obfained by Gorman (1975). A stepped beam pf rectangular
Eross section in flatwise vibration was investigated bv Hishemi (1979).

The vibration analysis can be carried out further to obtain
impedance and mobility ,a concept particularly useful for the prediction
of transient response of structures subjected to impact loading.

Point impedance measurement for the finite beam with discontinuity
of cross section can be used to describe the dynamic system in the
frequencv domain in terms of input-output characteristics under sinusoidal
conditions. The motion is described without the need for a complete analvsis
of the entire system. This impedance concept is widely used in electrical

engineering and is adaptable to dynamical systems bv electro-mechanical

analogy .
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79

95
78

60

30

15
25
35

COMPUTER PROGRAM FOR FLEXURAL VIBRATION OF FINITE STEPPED REAMS

MASTER
REAL WR(5),LR(10),RFE(7),AA(7),RI(7),LLI(10),BI(7),W(T)
REAL K1,K2

READ(1,30)N,M

FORMAT(214)

FORMAT(10F0.0)

READ(1,79) (WR(I),I= 1 ,N)

READ(1,79)(LR(J),Jd=1,M)

READ(1.95)(AA(II),II=1,7)

FORMAT(10F0.0)
READ(1,78)C1
FORMAT(E15.8)
READ(1,79)(RI(I),I=1,N)
READ(1,79)(LI(J),J=1,M

DO 10 I=1,N
K1=0.5+0.5/WR(I) .
K2=1.-K1

WRITE(2,60) !
FORMAT(1H1 ////,5X%, ZHWR 4X,2HLR,5X,8H1ST-ROOT, 6X, 8H2ND-ROOT, 6X, 8H3
1§D -ROOT, 6X, 8H4TH ROOT 6X BHSTH ROOT 6X,8H6TH- ROOT 6X,8HTTH- ROOT //
2

po 10 J=1,HM

KK=0

R=LR(J)

Y2=0.

BL1=0.

A=BL1

Yi=Y2

BL1=BL1+0.1

B=BL1

BL2 = BL1¥R*¥SQRT(1/WR(I))
F1=0.5*(EXP(BL1)-EXP(-BL1))
F2=0.5*(EXP(BL1)+EXP(-BL1))
F3=0.5*(EXP(BL2)-EXP(-BL2))
F4=0.58(EXP(BL2)+EXP(-BL2))
T1=F1*COS(BL1)-F2*SIN(BL1)
T2=F2*COS(BL1)-F1*SIN(BL1)
T3=F1*SIN(BL1)+F2%*COS(BL1)
TY=F2%*SIN(BL1)+F1*COS(BL1)
TS5=F3*COS(BL2)-F4*SIN(BL2)
T6=F4%¥COS(BL2)~-F3*SIN(BL2)
T7=F3*SIN(BL2)+F4#*¥C0OS(BL2)
T8=F4*SIN(BL2)+F3*COS(BL2)
AL1=K1¥T3-K2*T3*T7T-K1%*TT+K2*T 1%T84K2
AL2=K1*TU-K2*TU*TT7+K1*T8+K2*T2*%T8
AL3=K1¥T1+K24T3%TS+K1XTS-K2%T 1#T6H
ALUzK1¥T2+K2*TU¥TS5-K1*T6-K2*¥T2*T6+K2
Y2=AL1*ALY-AL2¥%AL3

IF(Y2)15,40,25

IF(Y1)30,30,35

IF(Y1)35,30,30

CALL ROOTS (A B,R,K1,K2,Y1, X)

KK=KK+1

BI(KK) = X

BI(KK) = BI(KK)/LI(J)

W(KK) = I(KK)*BI(KK)'(RI(I)/Z.)'C1
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RFE(KK)=(X*#2 /AA(KK)*#2 )#((1.4+LR(J))*%2 )
IF(KK-7)30,45,45
40 KK=KK+1
RFE(KK)=(BL1#%2_ /AA(KK)*#2 ) *((1.+LR(J))**2.,)
IF(KK-7)30,45,45
45 WRITE(2,50)WR(I),LR(J),(RFE(JJ),JJ=1,7)
WRITE(2,50)WR(I),LR(J),(BI(KK),KK=1,7)
WRITE(2,50)RI(I),LI(J),(W(KK),KK=1,7)
50 FORMAT(1HO0,2X,3F7.3,7E14.5)
10 CONTINUE
STOP
END
SUBROUTINE ROOTS (A,B,R,K1,K2,Y1,X)
REAL K1,K2
15 X=(A+B)/2.
Z=X*R
F1=0.5*(EXP(X)-EXP(-X
F2=0.5%(EXP(X)+EXP(-X
F3=0.5%(EXP(Z)-EXP(-Z
F4=0.5%(EXP(Z)+EXP(-2
T1=F1%COS(X)-F2*SIN(X)
T2=F2%COS(X)-F1*SIN(X)
T3=F1%¥SIN(X)+F2%¥COS(X)
TY4=F2*SIN(X)+F1*#COS(X)
T5=F3*COS(Z)-FU4*SIN(Z)
T6=F4*¥COS(Z)-F3I*SIN(Z)
-TT=F3%*SIN(Z)+FU*cos(z)
T8=F4*SIN(Z)+F3*C0S(2Z)
ALT1=K1*¥T3-K2*T3*TT-K1*TT7+K2%T1*T8+K2
AL2=K1*T4-K2*#Ty*TT+K1*T8+K2#T2%T8
AL3=K1*T14+K2*T3#T54+K1%¥T5-K2*T1#T6
ALU=K1¥T24+K2*¥TY%TS5-K1#TH-K2*¥XT2*#T6+K2
Y=AL1#AL4-AL2#AL3
IF(ABS(B-X)-0.001)40,40,U45
b5 IF(Y1)5,40,25
5 IF(Y)10,40,20
10 A=X
GO TO 15
20 B=X
GO TO 15
25 IF(Y)30,40,35
30 B=X
GO TO 15
35 A=X
GO TO 15
40 RETURN
END
FINISH
%* it % %
DOC DATA
3 3
1.0 0.8 1.0
1.0 0.0 o 0.0 '
4,7305 T7.8539 10.996 14.137 17.2 . .
+5.14400000E+03 3 7-279 20.82 23.515

0.0254 0.03175 0.0254
2.0 3.0 2.0

TR X . ESEffa
310

))
))
))
))
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