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ABSTRACT 

An investigation was carried out to determine the transient response 
of finite beams with discontinuities of cross section subiected to eccen­
tric longitudinal impact. Experiments were performed on several ste~ped 
beams with increased and reduced cross section and with various end conditions. 

The analysis was based on the Timoshenko beam theory which takes into 
account the effects of shear deformation and rotatory inertia. The gover­
ning equations were solved as a system of two second order hyperbolic 
partial differential equations • . 

The numerical solution was obtained by the method of characteristics 
and theoretical predictions w~re in excellent agreement with experimental 
observations at several monitoring positions along the various test beams. 

The agreement between theoretical and experimental results verified 
the adequacy of the Timoshenko theory and its numerical solution for 
describing the flexural wave propagation in beams with discontinuities of 
cross section • 

The effect of the discontinuity of beam cross section on the bending 
moment time distribution showed the importance of reflections in estimating 
the level of stresses and strains in structural elements when subjected 
to transient dynamic loading • 

The computer program developed in this work can be used to obtain 
numerical solutions for. a wide range of flexural wave propagation problems 
in beams with discontinuities of cross section with various end conditions 
and loading configurations • 
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INTRODUCTION 

The behaviour of structural elements under impact loading 

is a subject of great interest in dynamical structural analysis. 

When forces are applied to an elastic body over a very short 

period, the response should be considered in terms of wave 

propagation theory. 

Although beams are among the simplest engineering structures, 

the propagation of waves can be quite complicated especially if 

boundaries such as end surfaces and abrupt changes which cause 

reflections are present. 

The study of transient waves has important implications 

and find many applications for structures used in land, sea, air 

and space when they are subjected to impact. 

A revival of interest in the field of elastic wave propagation 

during the last three decades was made possible through the rapid 

development of computing facilities and the advance of experimental 

equipment. 

The problems of flexural wave propagation in beams are not 

so extensively treated as, for example, are the problems of 

longitudinal wave propagation. This was due to complexities 

involved in the propagation of flexural waves and their dispersive 

character. 

To the author's knowledge, there has been no previous solution 

to the problem of flexural waves in beams with discontinuity of 

cross-section subjected to eccentric impact, the problem investigated 

in this thesis. 

The Euler-Bernoulli theory is found to ~e inadequate for 

the study of transient bending waves since it led.to the physically 
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impossible conclusion that disturbances are propagated instantaneously 

and neglected the effects of shear deformation and rotatory inertia. 

The exact theory based on the equations of the theory of 

elasticity goes back to Pochhammer and Chree who investigated the 
J 

case of infinitely long beams of circular cross-section. Their 

equations cannot be applied to semi-infinite and finite bars. with 

arbitrarily prescribed end conditions and the solutions involve 

such mathematical complications which makes them, from the 

engineering point of view, of limited practical use. 

The Tirnoshenko theory provides the only approximate theory 

that contains the essential features of the exact theory in 

simplified form. With this theory a greater accuracy than the 

Euler-Bernoulli theory is achieved by including the effect of 

shear deformation and rotatory inertia in the governing equations, 

The Timoshenko theory provides for only two modes of 

transmission and consequently two branches of the dispersion 

curve, while the exact theory provides an infinite number of 

modes and an infinite number of higher branches of the dispersion 

curve. 

The Timoshenko equation gives excellent agreement with the 

exact theory so far as the lowest branch of the dispersion curve 

is concerned. The agreement of both theories in the next highest 

branch of the dispersion curve is not very good. 

An extensive literature survey of previous theoretical and 

experimental research will demonstrate the importance of the 

Timoshenko beam theory in the field of flexural waves and 

boundaries. 

Although the Timoshenko beam equations were formulated as 
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long ago as 1921, numerical solutions and applications appeared 

only in the last 25 years, when computer facilities oecame 

available. 

After careful consideration of several solution methods, 

the method of characteristics is chosen for the numerical 

solution presented in this work and the method is shown to 

be inherently stable and convergent. 

Several cases of flexural wave propagation problems are 

treated with the developed TMOTCU computer programs numerically, 

and solutions are obtained for semi-infinite, finite beams and 

finite beams with discontinuity of cross-section. 

The experimental work is concentrated on the monitoring of 

antisymmetric strain components in finite stepped beams of 

circular and rectangular cross-section subjected to eccentric 

impact at low velocity. 

Comparison of numerical predictions and experimental 

observations are presented with particular emphasis on the 

bending moment and bending strain-time distribution as opposed 

to the normal mode frequency analysis usually used for steady 

state vibration. The input Bending moment is assumed in a 

trap~oidal shape with a finite rise time. 

The experimental and theoretical results demonstrate the 

effect of abrupt change of cross-section on the reflected and 

transmitted bending waves where reflections have to be taken 

into consideration when estimating the level of antisymmetrical 

stresses and strains in finite beams with discontinuity of 

cross-section. 
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CHAPTER II 

REVIEW OF THEORETICAL STUDIES 

2.1. Historical background of elastic wave propagasion in bars 

The theory of transverse waves in elastic solids had its 

beginning in the works of Leonard Euler (1744) and Daniel Bernoulli 

(1751) who derived the partial d~fferential equa~ion governing the 

flexural vibration of a bar by the variation of strain-energy function 

by which they had previously expressed the work done in bending. 

The concept of transverse vibration transmitted through a medium 

was originally based on the developments of Fresnel's theory. 1816, 

which used the concept of transverse waves to explain the propagation 

of light, which was thought to be a disturbance propagating in an 

elastic aether. 

Navier (1821) was the first to investigate the theory of tra~~­

verse body waves and he formulated the general equations of equilibrium 

and vibration of elastic bodies. In his derivation, he considered forces 

acting between the individual molecules of a deformed elastic body. 

In 1822, Cauchy discovered most aspects of the theory of elasticity 

including"the dynamic equations of motion. He was the 'first tointro­

duce the concept of strain and stress which simplified greatly the 

deriyation " of"the~equations~ Cauchy obtained stress-strain relations 

for isotropic materials and '.used the following assumptions: (1) linear 

stress-strain relationship (2) the principal planes of stress are normal 

to the principal axis of strain. 

Cauchy (1826) treated the problem of longitudinal impact of two 

rods of the same material and cross-section. He concluded. that the 

impulse terminates whenever the two bars have different velocities of 

impact, which is not true. 

In 1829, Poisson discussed the three equations of equilibrium and 

- 4 -



-the three conditions at the boundary and proved that these equations 

were not only necessary but also sufficient to ensure the equilibrium 

of any portion of the body. He 'succeede1in ,inte~rad.ng the equations 

of motion and showed that if a disturbance was produced in a small 

portion of a body, it resulted in two kinds of waves, the dilatational 

wave which was associated with the motion of the particle normal to 
- . 

the wave front and accompanied by a volume change, and a distortional 

wave, associated with the particle motion tangential to the wave front, 

where there was distortion without volume change. The first faster 

wave is also called the irrotational wave, and the other wave is also 

called the equivoluminal or transverse wave. 

By that time, it was realised that the problem of wave prop'agation 

in an elastic solid needed to be investigated in a different manner than 

those concerned with the normal modes of vibration. Poisson (1831) 

and Ostrogradsky (1831) used a synthesis method of the simple harmonic 

solutions of the initial distribution of displacement ,and velocity to 

determine the displacement at any point and at any time. 

In 1833, Poisson attempted to solve the same problem of longitudinal 

impact of two bars, previously treated by Cauchy, by a method of integrati.n~ 

trigonometrical series, by which it was extremely difficult to find 

a general solution. By an error in the analysis, Poisson arrived at the 

conclusion, that when the bars are of the same material and cross-

section, they never separate unless they are equal in length. 

Seebeck (1849) presented an equation for the transverse displace-

ment of an elastic bar and showed that the difference between E values 

obtained by, statical and vibrational methods was extremely small. He 

omitted in his solution the effect of angular rotation of the cross-

J section of the rod, as was pointed out by Todhunter and Pearson (1893). 

Baree deSaint-Venant made wide ranging cont!ibutions to the theory 

of longitudinal and transverse impact. In 1853, he considered the 
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-problem of a central impact on a simply supported beam of uniform cross­

section and based his solution on different modes of vibration. He 

calculated the deflection at the middle and his results coincided with 

those given by H. Cox:(il849), when only the first, most important term 

of the series representing the maximum deflection was considered. 

However. S~.int venand solution for the problem of transverse impact 

was not complete, since the local deformation at the point where the 

impinging ball strikes the beam, was not considered. In addition, the 

assumption that the ball remained in contact with the beam until maxi­

mum def1e ction was reached, is not realistic. Furthermore, this 

solution was not applicable when the bar was very long and the strik­

ing ball had a small weight with a very great impact velocity. 

Saint-Venant made important discoveries in the theory of elasticity. 

In 1856, he was the first to examine; the assumptions of the elementary 

Euler-Bernoulli theory of bending, namely that cross-section of a beam 

remains plane during deformatio~ and that the longitudinal fibers of a 

beam are in a state of simple t~nsion or compression. Saint-Venant 

showed that these two assumptions are only fUllfflled' in uniform 

bending when the beam is subjected to two equal and opposite couples 

applied at the end and is not applicable to the case of transverse bend­

ing, where shearing stresses cause warping of the cross-section', which 

will not remain plane during bending. Saint-Venant was the first to 

point out the incorrectness of the Euler-Bernoulli theory for flex-

u!al vibration and suggested important corrections. He was interested 

not only in statical stress-analysis, but studied the dynamical action 

of loads moving along the beam and various types of impact problems 

producing lateraI" and longitudinal vibrations. 

Saint-Venant (1856) formulated the princip Ie which carries now 

his name. According to this principle, the effects produced by 

deviation from the assigned laws of loading are unimportant except 
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- near the ends of the bent beam; and near the ends, they produce merely 

"local perturbation". The condition for the validity of the results 

in practice is that the length of the beam should be many times 

greater than the largest cross-sectional dimension. 

M. Bresse (1859) discussed the problem of longitudinal and 

lateral vibration of rods and considered. moment of inertia and shear 

distribution over the cross section, in connection with his works 

on arched structures. He was the first to suggest correction terms 

for both rotatory inertia and transverse shear. However, the equation 

presented by).Bre~se for transverse' vibration' of uni ... form simply supported 

beams, included a term which took into account the effect of rotatory 

inertia,. b~t'not the shear' correction. 

, A Saint-Venant memoir, pub lished in 1867, treated the collision 

of two rods of the same material and of equal cross-section, by means: 
I . , 

of the equation '~f vibration in term of arbitrary functions, for 

,various imPact velocit1es 6J bars with vario,us length. 

In this connection, Saint-Venant derive,d the most important 

relation for the duration of impact as 21/c, where I is the length of 

the' shorter bar and c is the so called velocity of sound (~). 

A second problem discussed in the same p'aper was the problem of 

longitudinal impact of beams in the form of truncated cones. Solutions 

were obtained~ as before, by trigonometrical series which were lengthy. 

Solutions for both problems were presented graphically for the 

values of velocity and displacement. These diagrams' may be considered as 

the first' x-t diagrams, constructed for impact problems. 

Saint-Venant (1868) had given trigonometlical solutions for the 

problem of a prismatical bar fixed at one end and subjected to the 

influence of transient compressional' wave due"j to a longi tudinal impact 

at the other end. His solution was again based on the assumption that 

the striker becomes rigidly attached to the end. Summing the first few 
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· terms" of the trigonometric series, Saint-Venant was able to find 

the motion of the bar end. But in calcm.ating stresses, the series 

did not converg1rapid1y enough to allow the computatjbn of ·an accurate 

result. He pointed out the need to use some c1ose~orm expression for 

the solution instead of infinite series. 

Solutions in term of finite discontinuous functions were obtained 

by Boussinesq (1882) and independently by Sebert and Hugoniot (1882) 

and Saint-Venant (1883) presented these solutions in his famous 

annotated translation of ClebscW book and used them for graphical 

representation of the successive stages of the longitudinal impact 

of the' bar for the 'whole duia tion of "imp'act and for various ratio's 

of the mass of the bar to that of the striking mass. 

Saint-Venant was the first to investigate the problem of wave 

propagation in bars and based his researches in part on the assumption 

that they made. simu1tarieous "contact over the entire area of the end, a 

condition which is extremely 'difficu1t to achieve.' A modification 

of this theory was suggested by He'rtz (1882) J "'On" the basis of an 

electrostatic anal.ogy"for the contact of'two elastic bodies with curved 

"contact surface.EI under the action of a·"Static compressive force as an 

approximation for the actual dynamic loading. 

The Saint-Venant theory reflected with sufficient approximation 

the state of strains and stresses at positions of considerable 

distance from the point of loading and support. 

The impact forces in the immediate vicinity of the impact point 

could be dtermined more successfully by the Rertzian theory.' 

Saint-Venant (1883) presented a detailed theory of the transverse 

impact' of bars, which included the analytical and numerical solution 

of various problems of bars vibrating transversly with 'a load attached 

to it. 

Boussinesq suggested in 1895 the general wave solution of the 
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, -equation of motion for longitudinal impact. in the form of forward 

and backward travelling waves. 

Boussinesq (1885) 'investlgated also the pro~lem of ,transverse 

vibration of a uniform bar for various types of loading, in the form 

of discontinuous functions. The important contribution of Bresse was 

not mentioned in the investigations of transverse vibration problems 

by Saint-Venant and Boussinesq. 

Lord Rayleigh (1885) discovered a third type of wave propagating 

parallel to the surface with a velocity slightly smaller than the 

velocity of fistortiona1 wave. This wave t called Rayleigh surface wave, 

decays exponentially towards the interior of the body. 

L. Pochhammer (1876) investigated, on the basis of the general 

theory of elasticity, the problem of longitudinal, torsional ,and flexural 

vibrations'in an infinitely long beam of uniform circular cross-section. 

The displacements in the general trancendental frequency equations 

were given in terms of infinite harmonic wave train, as a product of 

sinusoidal and Bessel functions. For the lowest branch of the frequency 

equations, Pochhammer obtained first and second approximations for 

extensional (longitudinal) waves and a first approximation for flexur a1 

waves. Although it is 'extremely difficult to use these complex 

equations to study transient flexural wave propagation problens 

they have been guides in the use of approximate wave theories. The 

same equations were given by Chree (1889). 

Wave propagation involving dispersio'u iR important for investi- , 

gations related to flexur_Bl wave problems. 

Cauchy (1830) and Green (1839) discussed the propagation of plane 

waves through a crystalline medium and obtained equations for the 

velocity of propagation. 

Hamilton (1839) investigated the velocity of propagation of a 

fini te train of waves in a dispersive medium, in his work on the 
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-theory of light. Kelvin's group method of approximatingintegr~l 

representations of dispersive wavmwas included in his work on 

water waves in 1887. 

Lord"'Rayleigh '(18·94) discussed the problem of lateral vibration 

of rods and included in the derived equation of motion, a correction 

for the rotatory inertia. This correction is usually atributed to him, 

although it was originally given by Bresse, as early as 1859. 

Lamb (19l?> was concerned with the investigation of flexural 

waves in plates and he pointed out the inadequacy of the Euler-Bernoulli 

theory which predicts that the effect of a localised disturbance begin 

instantanous1y at all distances. 

Timospenko (1921, 1922) corrected the Euler-Bernoulli equation 

for flexural waves by including the effect of the shear deformation 

in addition the correction term for rotatory inertia.A1thou?h the shear 

correction term was originally suggested by Bress_e, Timoshenko was the 

first to include it in the approximate theory dealing wi th flexuE.al. 

wave propagation in a rod. This theory forms the basis of the present 

investigation. 

The brief history, presented in this section, of the work of the 

classical elastician, written during the 19th century and mostly in 

French, was based on books which include comprehensive survey of 

the history of the theory of e1asticity~ . such as: Todhunter and 

Pearson (1886); Love (1892); and Timoshenko ,(1953). 
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2.2. The Timoshenko bea~ theory 

2.2.1. Flexuralvibration of beams 

The simplest theory governing the flexural vibration of beams is 

the Euler-Bernoulli theory, which assumes that the bar element 

deformation is in the form of transverse displacement only. This 

theory assumes, in addition to the assumptions of uniform homogeneous 

and constant cross~section, that t~le deflection is small and that 

plane aross-sectio~remains plane and perpendicular to the neutral' 

axis after deformation,which means neglecting shearing deformations. 

The Euler-Bernoulli equation for bending vibration neglects also the 

rotatory-inertia effect. However, at low frequencies, the theory 

gives satisfactorily the f~equency spectrum and mode shape of beams 

in steady-state harmonic vibration. 

The Pochhammer-Chree theory includes a set of equations for 

flexural vibrations and is only applicable to an infinite bar in 

which continuous sinusoidal waves are progagated in either direction. 

This three-dimensional theory of elasticity cannot be used to construct 

solutions for finite and semi-infinite bars. In addition, the comp­

lexity of the frequency equations makes it very difficult to use them 

for practical solutions. 

When the Timoshenko beam theory is applied to the case of an 

infinite bar of circular cross-section although it is approximate 

and one-dimensional, it gives remarkable agreement with the exact 

theory of elasticity, especially in the first branch of the dispersion 

curve, which is the prima~ flexural mode, as was shown by Davies 

(1948) • 

The Timoshenko theory is more accurate than the Euler-Bernoulli 

theory in governing transverse and flexural free and forced vibrations 

of "a beam where frequency equations, displacement curves and mode 

shapes are determined. 
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The Euler-Bernoulli equation can be obtained directly form the 

Timoshenko beam equations, when the terms that take into account the 

effects of rotatory inertia and shear deformation are omitted. 

Although Bresse was the first to discuss, in 1859, the effect 

of non-uniform shear distribution over the cross-section and to 

include a term for the effect of rotatory inertia in his equation of 

motion for lateral vibration, it is justified to attribute the theory 

which takes these effects in to account to Timoshenko since he was 

the. first to include both terms in the equation for flexural vibration 

of beams. 

Timoshenko (1921) derived the equation for flexural vibration 
, 

and obtained the frequency equation for a simply supported prismatic 

bar of length 1. He showed the importance of the correction for shear 

. which is for some cases several times greater than the correction for 

rotatory inertia. In a second paper in 1922, Timoshenko obtained the 

solution for the case of a beam of rectangular section and approximate 

.solutions were found for the cases of plane strain and of plane stress. 

The case of a bar of circular cross section was also investigated and 

values of shear correction factor for both cross-sections were suggested. 

His solution was not applicable to other boundary condition, Goens (1931) 

used the Timoshenko equations and obtained ·complex exact expressions 

for the case of a free-free beam. The roots of these expressions 

yield the frequencies of vibration by an approximate numerical eva1u-

ation for . bars of circular cross-section and various. lengths. 

He used his results for the determination of Young's modulus. 

Davies (1937) investigated the transverse vibration of a fixed-

free bar under the effects of a shear force and bending moment. He 

used the Timoshenko beam equation and obtained a solution for the 

frequency equations which satisfied the boundary conditions. The 

solutions were approximations of the series expansions where terms of 
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- . -higher orders were neglected. The fundamental modes were determined 

for several bars of different materials and dimensions. The importance 

of the effects of rotatory inertia and shear were emphasised. 

Kruszewski (1949) gave general solutions for the Timoshenko beam 

equations and solved them for uniform cantilever and free-free beams. 

The frequencies of the first three modes were presented graphically. 

His results showed that the effect of shear increased in the higher 

modes and caused a significant decrease in the frequency value. 

Sutherland and Goodman (1951) have found that shear distortion 

is particularly important at the·'higher, frequencies. Yhev gave a ~eneral 

solution for the lateral free vibration of a pin-ended beam and natural 

frequencies were obtained for a simply supported and for a cantilever 

beams. 

Trai11-Nash and Collar (1953) pointed out that a complete new· 

spectrum of natural frequencies appeared when both shear flexibility 

and rotatory inertia were taken into account. The importance of 

higher freq,uencies in bending vibration were shown in connection with 

aircraft components, such as wings, fuselages and propellers. Various 

types of end conditions were investigated and the first five natural 

frequencies ~ere calculated usinga matrixiteration process and the 

effect of shear flexibility was found to be considerable. 

Anderson (1953) compared various solution methods for flexural 

vibrations, treated by the Timoshenko beam theory and pointed out certain 

advantages of power series expansions, according to the principles of 

superposition, over Laplace transformation solutions. The series solu­

tion presented in this paper was exactly the same as the one published 

previously by Sutherland and Goodman· (1951) for the case of a simply 

supported beam. The slight numerical difference in the valu~s of the 

graphs was due to a· somewhat higher value used for the shear correction 

factor. 
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Dolph (1954) pointed out the existance of two sinusoidal modes 

of different frequencies corresponding to the same spatial factor in 

the solutions based on Timoshenko theory. He considered the separation 

of variables and the orthogonality relations as in a typical eigen-

value problem and presented a normal mode solution for a uniform hinged-
• 

hinged beam. 

Howe and Howe (1955) demonstrated the usefulness of electronic 

differential analyser in determining solutions for the lateral vibra-

tion of beams according to the Timoshenko beam theory. They based their 

solution on a system of four simultaneous first order differential 

equations, previously given by Dolph and paid particular attention to 

the mode shapes. Half a dozen trials were necessary to find a satis-

factory solution according to the normal mode method, applied to the 

case of a free-free beam. 

Huang ( 1958, 1961) investigated in two papers the effects of 

rotatory inertia and s~ear on the flexural vibration of beams. A 

solution was obtained for the Timoshenko beam equation by the energy 

method of Ritz when applied to a simply supported beam. In his second 

paper, he presented frequency equations for a combination of various 

types of end conditions:using normal mode solutions. 

Since the middle of the sixties and through the seventies the 

finite element method has been applied to the bending vibration of 

beams treated by the Timoshenko theory. Several Timoshenko beam 

elements have been developed and only a brief account of the research 

papers published in this area will be given here. 

Hurty. and Rubenstein (1964) used an energy approach to develop 

generalized mass matrix an~ stiffness matrix including the effect of 

rotatory inertia and she1ar. These effects were illustrated in deter-

mining natural frequencies and corresponding mode shapes for a uniform 

simply supported beams. 
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Archer (1965) presented a consistent mass-matrix and a stiffness­

matrix for the vibration analysis of a Timoshenko beam. 

Kapur (1966) derived a finite element for theTimoshenko beam 

in which a cubic p1ynonUal function was assumed for both bending and 

shear deformation, w~ere no coupling between these two displacements 

was permitted and hence, the problem was overspecified. 

Eg1e (1969) presented an approximate Timoshenko beam theory designed 

to eliminate coupling between shear deformation and rotatory inertia. 

Nickel and Secor (1972) derived stiffness and mass matrices for 

what they called TIM 7, a matrix of order 7, which was reduced to 

TIM 4 using the constraint given by Egle. 

Davis et.al (1972) used an element model similar to TIM 4 which 

had the limitation that natural boundary conditions at the free end 

or hinged end could not be app lied. 

Thomas et.a1 (1973) pointed out that some errors in the matrices 

of one of the elements given by Ar~her (1965) caused some confusion 

and led, when applied, to some una~ceptab1e results. They proposed 

an element with three degrees of freedom at each of the two modes. 

This element was used to calculate the natural frequencies of a cantilever 

beam and the results were compared with the use of other elements. 

Dong and Wolf (1973) used quadratic interpolations' for the 

displacement variables of a finite element for the Timoshenko beam. 

Hamilton's principle was used to derive the equations of motion in 

discrete co-ordinates. Frequencies were obtained by the present element 

for a simply supported beam, two-bay frame and a hinged arch. 

Ramamurti and >..fahrenholtz. (1974) used simultaneous iteration method 

to determine eige~:' frequenCies for the flexural vibration problem. The 

authors concluded, from the relative1y high difference between theoretical 

and experimental frequency values, that the actual structure had to be 

modified to reduce the number of modal points to meet the available 
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· storage of the computer. 

J. Thomas and Abbas (1975) suggested a four nodal degrees of 

freedom for a two noded Timoshenko beam finite element which 

incorporated natural boundary conditons. The mass and stiffness matrices 

are based on cubic po1ynomlal expansions for total deflection and bend-

ing slope are derived from energy expressions. In a discussion by 

D.L. Thomas (1976) it was noted that it is not possible to claim that 

any' one element .. is the "best". model vibration analysi s of Timoshenko 

beams. The choice of element must depend on· the requi~ed accu~acy, 

the nature of the structure, the relative. importance of shear 

and rotatory inertia, and .the number of degrees··of freedom 

available. 

Downs (1976) detected an additional mode due to shear oscillation 

when he re-examined the equations of Dolph, Huang and Howe, et. al 

This mode was identified in the frequency discretized analysis of an 

eight segment simply supported, uniform Timoshenko beam, as well as 

a finite element solution using consistent mass theory. 

Rao et.al (1976) suggested a finite element model for vibration 

of non-uniform beams. Bishop and Price (1976) used the Timoshenko 

theory in the dynamical structural analysis of ship hulls as a non-

conservative system. 

2.2.2. Transient flexural wave propagation in beams 

The Euler-Bernoulli theory is inadequate for the treatment of 

transient bending wave p~opagation problems, since it assumes that 

disturbances with infinitely short wave lenghts, which are associa~ed 

with high frequency branches, will propogate with an infinite velocity. 

The transient input gives rise to higher frequencies, when the duration 

of impact is much smaller than the fundamentalJperiod of the vibration 

of the structure. Hence, according to the Euler-Bernoulli theory 

transient disturbances should be felt immediately at the far end of the 
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. beam and this is physically impossible and contrary to the results of 

the Pochhammer-Chree theory which predicts finite values for the velocity 

of propagation of.stress waves. Furthermore, the Euler-Bernoulli theory 

assumes that the displacement of the bar consists solely of translation. 

As regarding the exact theory, the complexity of the displacement 

and frequency equations makes it impossible to use for practical problems 

of flexural wave propagation and, in addition, it cannot satisfy the 

end conditions, together withzero stresses at the lateral surfaces. How-

ever, the Pochhammer-Chree theory has been used to determine phase 

volocities and group velocities of sinusoidal waves in narrow beams and 

beams of circular cross-section. 

Dispersion relations play an important role in the propagation of 

flexural waves in elastic bounded solids. A pulse can be seen as the 

Fourier integral of a number of sinusoidal components of different 

frequencies, which will travel with different velocities and dispersion 

is the cause for the distortion of the wave. It is necessary for dis-

persion analysis to determine the variation of the phase velocity cp 

i.e. the velocity of propagation of surfaces of constant phase, with 

the wave length, as well as the group vel~city Cg, Le. the velocity 

of propagation of a wave packet of almost the same wave l~ngth. For 
I 

flexural waves, the group velocity is more important since it is the 

velocity of the rate of transmission of energy. 

The Timoshenko beam equation, which takes into account the effects 

of rotatory inertia and shear on the displacement of the beam, gives 

a high degree of accuracYfver a wide range of wave lengths for flexural 

waves in bars. From the engineering point of view, the,Timoshenko theory 

is the best known theory to deal with transient flexural wave propagation. 

The Timoshenko beam theory provides the dynamic equations of motion for , 

transient waves in finite, semi-infinite and finite beams.The Timoshenko 

beam equations are applicable to flexural waves due to transverse impact 
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as well as flexural. waves due to eccentric longitudinal impact. 

Some research works compared the results obtained by theoretical 

models with experiments. This will be mentioned in this chapter 

briefly and. deal twi th more extensively in chapter 6 which presents' 

a review of ~xperimental works. 

Timoshenko (1913) investigated the transverse impact of a simply 

supported beam of square cross-section and used the theory of lateral 

vibration in connection with Her~ theory, to evaluate numerically 

the deflection of a short beam 15.35 em long, lxl em cross section, 

struck in the middle by a steel sphere of 1 cm radius. He used energy 

consideration, considering the transformation of the kinetic energy 

of the striking mass into potential energy of bending in the beam, with 

some estimate of energy loss due to impact. The integral equations 

were solved numerically by dividing the time into small increments 

during which the contact force between the striking mass and the beam 

could be considered constant. 

The same problem of a central impact of a simply supported beam 

was investigated by Arnold (1937) who compared experimental results 

with theoretical calculations based on the previously mentioned 

Timoshenko analysis. A more ,detailed theoretical study of ",the same 

problem was given by Christopherson (1951) • 

Lennertz, (1937) calculated the fundamental period and the maximum 

deflection for the two simply supported beamS originally discussed by 

Timoshenko (1913) and obtained comparable results. He considered the 

impact as a whole rather than as a succession of steps. Lennertz assumed 

that the duration of impact was small compared with the period of the 

fundamental mode of vibration, which was justified H ,or;Jy the 

fundamental mode was sti~ulated, which meant ne~lecting the effect of 

higher modes and therefore was not justified. 

Lee (1940) used an improvement of the method used by Lennertz with 
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ii-modified Hertzian expression and obtained a solution for central 

impact of a uniform simplY'supported beam. His calculations compared 

well with the experiments of Arnold. 

Bancroft (1941) was the first to solve the Pochhammer-Chree 

equations for the propagation of longitudinal waves and formulated the 

propagation velocity in term of two variables: the Poisson's ratio 

and the ratio of the diameter of the bar to the wave length. He dis­

cussed qualitatively the flexural mode an~ointed out the complexity 

of the flexural modes. He obtained only the lowest root of the 

equation. 

P:rescott_ (1942) gave the frequency equation in determinantal 

form for the case of flexural vibration, but he did not evaluate the 

determinant derived from the ~~a~~ the~ry of elasticity.' He' also .. 

derived' the" Timoshenko beam,equations "bY'energy considerations and 

found that the elementary theory of transverse vibration was inadequate 

for transient loadings. The velocity of flexural waves depends on 

their wave length and approaches that of Rayleigh surface waves when 

the wave length becomes small compared with the lateral dimensions of 

the bar. Prescott obtained numerical results for the velocity of 

flexural waves in a bar of circular cross-section. 

F1ligge (1942) observed the prediction of the Timoshenko theory 

that discontinuities are propagated at definite finite velocities, 

c 1 (=/E/p) and c
2

(=/k20 G!P). He pointed out that discontinuities of 

bending moment and angular velocity are propagated with 1. J whereas 

discontinuities of shear force or transverse velocity are propagated 

with c
2

• 

Hudson (1943) solved the determinant of the frequency equation, 

given by Prescott, for flexural vibration and dispersion curves were, 

presented for various values of Poisson's ratio. Hudson overlooked 

the higher modes of the flexural waves and assumed wrongly that they 
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-did not exist. 

Cremer (1943) discUssed the two distinct velocities appearing in 

the Timoshenko equation and pointed out that better agreement with the 

exact theory can be reached if the value of the shear correction factor 

is so adjusted as to produce a value for the shear velocity c2'which 

corresponds' to the asymptotic .'ya1ue of the lowest mode of the exact 

theory. 

Davidson and Meier (1946) used the Timoshenko beam theory to 

study thepropagation of transverse waves in prismatical bars in connection 

with slender tools used in the percussion drilling of rock. Eccentric 

longitudinal impact was studied experimentally. 

Pfeiffer (1947) was the first to use the method of characteristics for 

the general solution of the Timoshenko beam equation as a system of 

two sec'ond order partial differential equations. He discussed the 

propagation of discontinuities along the characteristic lines and 

described in detail all the steps needed to carry out the numerical 

calculation. However, Pfeiffer did not present a particular numerical 

example. The method of characteristics will be discussed in chapter 

three (section 3.2.4.). 

Cooper (1947) discussed the dispersive nature of the longitudial 

and flexural waves on the basis of the exact theory and pointed out that 

it was' difficult· to get' information other than that' tt'e maxihtum v'eloci tv' 

propagation' for any disturb~nce is the velocity of dilatational waves CD. 

Davies (1948) was the first to verify the·Pochhammer-Chree theory 

experimentally and pointed out the differences between the elementary 

theory and this "exact" theory. For flexural waves, Davies constructed 

dispersion curves for phase velocity and group velocity for the first 

bending modeSfor a Poisson ratio of ... 0.29. The values for the flexural 
J , , • 

curve of the exact theory were interpolated from Hudson s data. The 

dispersion curves dervied from the Timoshenko theory were shown to agree 
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well -over a wide range of a aJA with the values derived from the 

exact theory. Davies concluded that the Timoshenko theory prediction 

for the velocity of propagation of the leading edge of a flexural 

pulse, i.e. c2=/kZG7P, suffers only a small precentage of difference for 

almost any form of cross-section. However, one could expect flexural 

pulses to be progagated with higher velocities, if higher branches of 

the dispersion curves are considered. Davies paper included an 

extensive experimental part based on the modification of the Hopkinson 

pressure bar, which justified the assumption of the uniform distribution 

of the stresses over the cross-section and hence with the use of the 

one-dimensional theory. 

Uflyand (1948) used the Timoshenko beam equation to solve the 

problem of an infinite beam subjected to a concentrated load of a 

step-function time history. He employed Laplace transformation method 

to obtain displacement solutions. He was the first to show that con­

tour integration would give exact travelling wave solutions for the 

theory. He approached the problem by cutting the infinite beam at 

a station just to one side of the load and treated the unloaded, semi­

infinite portion of the beam. His interpretation of the assumed 

boundary conditions was incorrect. 

DeJuhasz.-(1949) presented a graphical analysis of several 

longitudinal impact problems as a way to avoid difficulties involved 

in mathematical analysis. Tridimensional diagrams, so called "Stereo­

grams" were constucted on the basis of x-t diagrams and v-p diagrams. 

Thegraphical analysis was based on two assumptions, namely that of 

constant velocity of propagation and that of linear relationship 

between the change of striking velocity v and the change of stress. 

Although no dispersion relations were involved, the stereograms were 

too complicated even for basic problems of longitudinal impact'of bars. 

The method was based on the original graphical analysis, given by 
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- - Saint-Venant and on several previous works of the author, as well as 

the contributions of Bergeron, originally devised for water-hamer 

calculations. 

Duwez_ (1950) studied the deformation of an infinitely long beam 

subjected to a concentrated transverse load of constant velocity. He 

investigated the influence of impact velocity and duration of impact 

on the deflection characteristics of the beam by a theory originally 

developed by Boussinesq. For steel, the plastic deformation was 

assumed to be localised at the point of impact. However, for soft 

materials such as annealed copper, plastic deformation had to be 

considered. The discrepencies between theoretical and experimental 

results were attributed to the effects of end supports and the dis­

persion characteristic of the transverse waves. 

Approximate theories for transverse. waves in plates and two 

dimensional compressional waves in bars ",·ere st imulated by the Timoshenko 

beam theory. Directly from the three-dimensional equations of motion, 

Mindlin (195l) deduced a two~inensional theory for flexural motions of 

plates which takes into account the effects of rotatory inertia and 

shear, in the same manner as Timoshenko's theory. Mindli~ theory was 

similar to the one given by Uflyand· (1948) and by Reissner (l!'l~~).­

Mindlin and Herman (1951) derived from the general theory of elasticity 

a one-diminsional theory of compressional waves in elastic rods. The 

obtained equations for radial and longitudinal motions of a bar were 

similar to the Timoshenko's equations for rC?tationai and transverse 

motions of a beam and could be treated in a similar manner. 

Den~ler:_ and Goland (1951) pointed out that the boundary conditions 

of Uflyand were incorrect and solved the same problem, avoiding thediffi­

cuI ties of boundary conditons by working with the original 4th order 

nonhomogeneous Timoshenko equation and a lateral impulsive load applied 

to the beam mid span in the form of a two Dirac function product in 
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terms of t and x. The results appeared in closed form solutions, 

which required the evaluation of complicated integrals. Another 

difficulty was that of defining proper boundary conditions in the 

"total deflection approach". The contour analysis included an error 

in connection with singularity problems, which was corrected in a 

later publication of the authors, in 1955. 

Schirmer (1952) discussed the problem of flexural waves in Timoshenko 

beam and compared solutions based on a system of two second order partial 

differential equations in terms of transverse displacement y and angular 

rotation ~ and their derivatives. He used Laplace transformation for 

the dispersion analysis and used the method of characteristics for 

obtaining bending moment distribution along the beam at certain times 

after a bending moment input at on end. 

Miklol .. ri.t~·. (1953) pointed out the difficulties involved in the 

solution methods suggested by Uflyand and Dengler et .a1 and modified the 

Uf1yand· method and gave correct interpretation to hi's boundary con-

dition's. He treated the lateral deflectioncomponents due to rotary 

inertia and shear separately in essentially the same way as used by 
.. 

-Schirmer. This approach provided insight into the physical nature 

of the travelling wave character and possessed definite advantages in 

reducing the mathematical difficulties in establishing the boundary 

conditions and obtaining the transformation for the case of an infinite 

beam under the action of a concentrated transverse load, treated 

previously in the works of Uf1yand andDeng1er et.a1. It is not always 

easy to obtain transform solutions for various end conditions and it 

is more difficult to evaluate them numerically. In 1960, Miklowitz 

applied the same method to yield travelling wave solution for flexural 

waves in plates. 

Leonard and Budiansky (1953) used the method of characteristics 

to obtain numerical travelling wave solutions for Tlmoshenko beams of 
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- - "arious end conditions subjected to ~ .. lIJtep yelocity, step bending _ 

moment and ramp-platform bending moments. However, for mathemetical 

simplicity, the solutions were based on the equality of the two pro­

pagation velocities, which is physically unrealistic. The characteristic 

equation, derived by the authors, was based on the Timoshenko beam theory 

as a system of four first order partial differential equations. For 

some cases, the solutions were compared with closed form solutions and 

with modal solution. 

Eringen (1953) applied the generalized-Galerkin method and collo­

cation method to obtain the contact force and the displacement by the 

use of the Ilertr. s law, for transverse impact of beams and plates with 

various end conditions •. Deflection curves were obtained by using 

Dirac a-function, having the same impulse as the contact force F(t). 

Newman (1955) obtained a solution of the Timoshenko equation'for 

a half-period sine excitation applied at the root of a cantilever 

beam and the appropriate initial and end conditions were specified by 

means of the use of a variat.iona1 principle. The relation between 

maximum dynamic strain and relative impact duration was plotted and 

Newman found that a thin slender bar (LJr:300) was subjected to 25.5% 

higher strain than a thick short bar (L/r-3D) at the clamped end in 

short duration impact. Newman used Laplace transformation for his 

frequency based analysis. 

Boley and Chao (1955) presented Laplace transformation solution 

of the Timoshenko beam equations for transverse impact of semi-infinite 

elastic beams. Laplace transformations were used for various types 

of sudden loadings and the obtained curves for bending moment and shear 

force for several positions were compared with elementary beam theory 

results. 

In a second paper in 1955, Boley described the behaviour of beams 

under lateral impact by means of an approximate "travelling-wave" 
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-approach, based on energy considerations. Numerical results were 

obtained for a very short portion of the beam near the point of impact 

of the order of the cross-section dimension, and for very short times. 

However, in a later paper of Boley and Chao (1958), these short-comings 

were removed from this method and solutions were obtained for semi­

infinite beams under step-inputs of velocity and bending moment. 

Deflection curves for finite simply-supported beams were constructed 

by sUperPosition. of semi-infinite beam results according to the method 

of images, as given by Leonard and Budiansk.y (1953). 

Jones (1955) obtained a solution for flexural stresses in an 

infinite beam loaded by a transverse point load. Ris solution was 

based on Timoshenko's theory of transverse vibration, solved by the 

use of Fourier transforms, from which asymptotic approximations were 

found by the method of stationary phase. The numerical evaluation for 

the variation of amplitude of bending moment and of wave length were 

presented. 

Barnhart and Goldsmith (1957) developed a theory for the transverse 

impact of spheres on elastic beams which incorporated a dynamic plastic 

force-identation law and permitted the evaluation of the effect of an 

arbitrarily lar~e number of beam bending modes. The theoretical stress­

time histories based on this theory which took account of the higher 

modes were in a better agreement up to the peak value with the observed 

data than curves based on Hertz: law whose shape during the initial 

loading increase did not agree too well with the experimental results. 

However, the peak value obtained by both theoretical methods was in 

fair agreement with the experiment at the point of impact. 

Abramson (1957) pointed out the wrong statement of Hudson 

who. calculated ,the first root of the frequency equation, and assumed 

therefore, that flexural waves are propagated in one mode only. 
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Abramson computated the three lowest modes of the determinant of 

flexural wave transmission, based on the Pochhammer-Chree theory. 

Dispersion curves were presented forv~O.29 and used to study the 

rate of energy transmission in terms of group velocity. Hence, the 

author was able to obtain some additional insight into the physical 

phenomena involed in the flexural response of beams to impulsive 

loads. 

In a second paper by Ripperger and Abramson (1957), the authors 

compared the predictions of the Pochharnmer-Chree theory concerning the 

arrival time of flexural waves with experimental results and found 

that initial distrurbances were propagated at the dilatational wave 

velocity and the bending wave pulse was propagated by a continuous 

series of arrivals. The authors were able to establish the adequacy 

of the Timoshenko beam theory in predicting quite accurately the 

arrival times for all but the very sharpest impact. Furthermore the 

amplitude response is predicted very well by the Timoshenko theory. 

So, it was concluded that, for all practical purposes, the Timoshenko 

theory provided an adequate representation of the propagational 

characteristics of bending waves. 

Plass (1958) extendedithe use of the method of characteristics 

to the general case of different propagation velocities. He studied various 

types of end conditions for Timoshenko beams under half-sine form of 

end impacts of moment, shear, angular velocity and transverse velocity. 

For comparison purposes, the case of a simply supported semi-infini~ 

beam under the action of a sinusoidal end moment, was solved by Laplace 

transforms in addition to its solution by the method of characteristics. 

Comparison with experimental data, due to Ripperger (1955) showed good 

agreement, except where the; pulses were extremely short. 

Flugge and Zajac (1959) investigated several solution methods 

other than the method of characteristics, none of which could yield 
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-a complete solution at all points of the beam. However, a combination 

of them could give an almost complete solution for a semi-infinite, 

simply supported beam under the action of a step-function end bending 

moment. The numerical results in the neighborhood of the end were 

obtained using the Laplace transformation together with term-by-term 

inversion. For long times the integral, obtained from the contour 

integration near the point of impact, was evaluated to obtain asymptotic 

solutions using the stationary phase method of Kelvin. The method 

wasa complicated combination·of several not so easily obtainable functions 

such as Bessel function, Laplace transforms and Fourier transforms. 

Kuo presented in two papers, in 1959 and 1961, the results of a 

theoretical and experimental study of bending waves in a semi-infinite 

Timoshenko free-free beam subjected to a dynami~allY applied end 

moment. He used the method of characteristics, in the same manner as 

Leonard and Budiansky " and in order to simplify the numerical analysis, 

k2GJE is taken equal to unity which is.the same as two equal characteristic 

velocities, which is physically incorr~ct. The effects of slenderness 

ratio and the change of rise-time were studied and the results were 

compared with a second theoretical treatment, based on Euler-Bernoulli 

theory by the normal mode method. The comparison of the Timoshenko beam 

theory results and observed data was lind ted to the initial stress build 

up and the dis~repancy was most marked in the phase shifting. 

Jones (1964) used the exact two-dimensional theory of plane-strain 

transverse \<7aves in a beam by the application of a transverse force having 

a step function time variation. The bar width was great in comparision 

with its depth i.e. the bar was in the form of a plate. The solution 

was used for the assessment of the validity of Timoshenko's theory and 

its advantage overe.iementary theory. 

Chou and Hortimer (19o?) pointed out the advantages of the method 

of characteristics, when compared with the mode super-position method 
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and the Laplace transform method, in solving transient response problems. 

They treated several elastic wave propagation proble~ including the 

Timoshenko beam equation as a sY$tem of second-order~yper~olic partial 

differential equations, using the method of characteristics • The 

governing equations for the propagation of discontinuities along the 

characteristic lines were obtained. Various types of input loadings 

were used for integration along the characteristic lines to evaluate 

time-histories of stresses. The method presented an improvement on 

the numerical method given by Chou and Konig in 1965, regarding the 

propagation of discontinuities. 

Chou and Koenig (1966) compared their results for the method of 

characteristics, with the results of other methods, where such solutions 

existed and found excellent agreement. 

David and Koenig (1967) used a so-called "direct finite element 

analysis" to solve dynamic flexural travelling wave problem in infinte 

beams and plates. They obtained numerical' result:;! for a very short 

cantilever beam with a step veloci ty input applied at the free end, 

according to the Timoshenko beam theory. The effect of reflection on 

the evaluated bending moment and shear force was included. 

Bejda (1967) investigated the problem of the propagation and 

reflection of stress waves in elastic-visco plastic beams, using the 

method of characteristics for both regions. Numerical results were 

obtained for a cantilever beam under suddenly applied bending moment 

and shear force to the free end. 

Edge (1970) investigated the response of aircraft arresting hook 

tmits to impact with obsta,cles in connection with aircraft landing, 

using two numerical wave propagation methods, namely the method of 

characteristics and the direct finite element analysis. He obtained 

a solution based on the Timoshenko beam theory for naval and land-based 

aircraft hook units and pointed out the advantage of the method of 
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characteristics for obtaining bounce diJnensions in land based cases. 

Garrelick (19.6~)· considered the :r_esponse of a link spring supported 

beam subjected to a uniform velocity input by the Timoshenko theory 

represented as a conservative second order hyperholic system and solved 

by means of a dual eige~ function expansion, Where the system consisted 

of real and positive eigen values and 0Ethogonal eigen functions. The 

results for the moment at midspan and the shear at the support were 

compared with the results of the Euler-Bernoulli theory and the dis-

crepancies were mostly pronounced in the vicinity of higher oscillations 

representing reflected wave fronts. The results may be applicable to 

sonic boom problems and other problems such as packaging. 

Ranganath (1971) employed the Timoshenko theory to solve the 

problem of transverse impact of an infinite elastic beam by a semi-

infinite elastic rod. The system of the hyperb?lic equation were solved 

by Laplace transformation and compared with experimental data, as well 

as with a second theoretical solution obtained by a. fini te difference 
, , 

technique. Both theoretical results correlated closely with ,observed 

data,with the finite difference nethod showing improved agreement. Dis-

crepancies at the initial times and at stations close to the point of 

impact were reflected in oscillations at early times which wa~ not 

supported by experimental observations of the strain \.Javes. 

Lee and Kolsky (1972) based their investigation of flexural waves, 

generated at the junction of two non-collinear rods, on the Timoshenk~ 

theory. The transmitted and reflected flexural wave were considered 

and the shape of the initial pulse was assumed as the integral of the 

difference between two error functions separated by the pulse length, 

expressed in an inverted Fourier cosine transform. The shapes of the 

four waves generated at the junction, two longitudinal pulses and two 

flexural pulses where both types reflected back along the first rod 

and also transmitted into the second rod inclined at various angles 
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to each others, were determined and compared with experiments. 

Sagartz and Forresta1 (1972) compared the Timoshenko solution 

with the Euler - Bernoulli solution and with experiments for the flexural 

waves, propagating from the clamped end of an impUlsively loaded semi­

infinite cantilever beam. The transform method was used to find a solution 

for the hyperbolic Timoshenko beam equations and to compare the results 

with observed data, where the input pulse was assumed in the form of a 

sine-squared uniform lateral pressure pulse. The effects of shear 

deformation and rotatory inertia were shown to be especially important 

at the initial time. 

Philips and Crowley (1972) treated pulse propagation in a curved 

beam by the Timoshenko theory and used the method of characteristics 

for the numerical solution, where the input pulse was in the form of 

a half-sine pulse, as in the case of Plass (1958). Similarities to 

the prob,lem investigated by Lee and Kolsky (1972) were also pointed 

out. I t was concluded tha t a flexural pulse in a curved beam of Moderate 

curvature was insensitive to the actual beam curvature, as far as the 

bending moment and shear were concerned. These results are in agreement 

with.the conclusions ofHorl~y·(1961)-who·showed that there was no sig­

nificant interaction between extension and flexure for small curvature. 

Forrestal et.al· (1975) checked the accuracy of a two-dimensional 

elastic-plastic wave propagation computer code TOODY, by comparing 

its results with those based on Timoshenko beam calculations for an 

impulsively loaded simply supported beam, where the transient pulse 

was a sine-squared pressure pulse of very short duration. General 

agreement between the two theoretical predictions was good except for 

higher frequency oscillations predicted by TODDY. 

Colton and Herrmann (1975) used the Timoshenko beam theory to 

calculate the beam response, before, during and after fracture. The 

method of characteristics was employed to obtain strain histories 

- 30 -



- -Under-localized impulsive loading of a beam of rectangular cross-section, 

where three models of the fracture were postulated. Comparison of , 

calculated- and measured strain~ showed that a two-stage fracture model 

approximated the structural response. A similar investigation by Colton 

(1977) showed that all fractures were initiated by bending stress. 

Parker and Neubert (1975) obtained the transient lateral response 

of a cylindrical rod with free ends to a short duration half-sine pulse 

of either moment or shear applied to one end. They applied the mode 

shapes and frequency equations, as given byJiuaag (1955), as well as 

the classical separation of variables to obtain modal. series solutions 

involving many modes for the Timoshenko beam theory with time-dependent 

boundary conditions. The theoretical solutions predicted higher peak 

values when compared with experimentally observed data reported by 

Ripperger 1955. 

Sun and Huang~ (1975) developed a higher order beam finite element 

by increasing the nodal degrees of freedom to three and t~ste.d its 

efficiency when applied to impact problems concerning the response of 

of a simply supported beam subjected to a sine pulse and the impact 

of a steel -·-sphere on a cantilever beam, where displacement curves 

and contact force histories were presented and were found to be in good 

agreement with existing solutions. 

Tanaka and Mo-toyama (1976) investigated an infinite circular bar 

subjected to impulsive bending load, using the three-dfmensional theory 

of elasticity and comparison of dispersion relations with those obtained 

from several approximate theories,showed that the results of the Timoshenko 

beam theory conformed to t~ose of the exact theory over the whole region 

for the first mode and over a small region of the second mode. Laplace 

transform and Fourier transform techniques were used in the analysis. 

In a second paper of Tanaka and Iwahashi (1977), a similar analysis 

was presented for a bar of rectangular cross-section. The solution 
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was obtained by an approximate crosswise superposition of two series 

solutions. Dispersion curves for the freque~cy specturm of the bending 

mode showed a very good agreement for the fundamental branch between 

the results of the Timoshenko theory and those obtained by the present 

method. 

A controversial brief note by Nicholson and Simmonds (1977) suggested 

that for an elastic isotropic beam of narrow rectangular cross-section 

clamped at one end, the Timoshenko beam theory was n'ot more accurate 

than e.1ementary beam theory. This provoked no less than seven discussion 

contributions, which were published in the Journal of Applied Mechanics 

(1971) as a one time exception, since it does not publish discussions 

on brief notes. In all discussions the importance of the Timoshenko 

theory as a valuable engineering tool was emphasised and the unusual 

nature of the chosen example was criticised. Van der Heijden pointed 

out that the Timoshenko beam theory yields quite accurate numerical 

results, although it is not a consistent theory from the point of view 

of asymptotic theories. Koi.ter. agreed wi th the author' 5 caution in 

the sense that engineering theories should never be applied indiscri­

min~tely, but saw no reason for singling out the Timoshenko theory 

as a particularly vulnerable case. Reissner pointed out that the 

problem constructed by the authors was of such a highly unusual nature 

that the transverse shear strain distribution was assumed uniform across 

the depth of the beam, in place of a "reasonable" parabolic or near 

parabolic distrubutions. This ment that tranverse shear deformation 

effect canceled ~ out altogether, up to terms of order .£2.. Chris tensen 

noted that beam theory was just a one-dimensional specialization of 

plate theory. Mathematically, the Euler-Bernoulli theory and the 

Timoshenko beam theory are both. of the same order, but with different 

degrees of generality or completeness. The more complete theory should 

in general be preferable, even though counter examples may exist. 
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"Sch~tdt ' demonstrated that in view of the presence of large longitudinal 

distributed shearing loads, applied to the upper'and lower edges of 

the bar, the author's loads cannot be r~garded as "reasonable" for a 

beam, as no longitudinal forces on long edges are permitted in the 

beam theory. ' Levinson stated that the validity of the Timoshenko theory, 

with its own valid mathematical structure, rested on how well it com-

pared with experience and not on its mathematical integrity alone. 

The problems of elastic wave propagation in rods and beams have 

been surveyed in many articles such as by Davies, (1956) who discussed 

in detail dispersion relations together with phase velocities and 

group velocities. A survey by Abramson (1958) gave extensive inform-' 

ation on various types of waves propagated in rods and beams. Two 

surveys 'published in 196Q by Miklowitz and by Curtis contained the 

discussion of the transient wave propagation problem in beams and rods. 

In 1963 two surveys by Kolsky and Goldsmith reviewed experimental and 

theoretical advances in the propagation of waves in elastic solids. 
\ , ... 

More recently Scott (1978) presented an annotated 'bibliography which 

included a few recent references on flexural wave propagation in rods. 

For a more detailed treatment of the theory of wave propagation 

in elastic solids, one should refer to many valuable books-: .Kol€ky!~ 

bd~k"(1953):,~ can be considered as the standard book of the modern 

history of elastic waves. A recent revival of interest in the subject 

led to the publication of many books in the seventies which included 

comprehensive treatments of wave propagation problems and a large 

number of bibliographies. These are the books by Johnson (1972), 

Graff (1975) and Miklowitz (1978). They presented the continuing and 

growing interest during the last three decades due to a number of 

reasons such as the rapid development of computing facilities, the 

advance of experimental equipment available for producing and detecting 

stress waves, and the need for information on the behaviour of structures 

- 33 -



. -subjected to impulsive loading • 

. There is also an overwhelming increase in the literature related 

to the field of geophysics, acoustic and electromagnetic waves. 

2.3. Wave propagation in beams with discontinuities of·cross section 

Structural units used in many applications are of non-uniform 

cross sectional areas. The non-uniformity can be either a continuous 

variation of cross-ection such as tapered bars and truncated cones. 

or a discontinuous abrupt cha.nge in cross-section, such as stepped'bat'S. 

In addition, nonhomogenities in the modulus of elasticity and material 

density do exist. Although the problem of elastic wave propagation in 

a rod with non-uniform cross~section has been a subject of interest 

and investigation for decades, the problem has received relatively 

little attention in the literature. 

Most of the dynamic investigations of non-uniform rods. are 

related to the analysis of longitudinal and flexural vibration and 

are based on the one dimensional elementary theory of longitudinal 

motion and the Euler-Bernoulli theory of lateral motion. However, 

many structures used in land, sea, air and space vehicles are subjected 

to impact and transient loading. Many structural units are in the type 

of beams with constant cross-section over a certain length which changes 

abruptly to another constant section. These are called stepped beams 

or beams with discontinuities of cross-section and are of main concern 

in the present investigation. 

Investigations of transient loads in stepped beams are limited to 

longitudinal wave propagation and ~orsionai waves since they are the 

simpler form for theoretical treatment. There are some studies related 

to flex~ral waves in tapered structures which are based mostly on the 

Euler-Bernoulli theory and there are some solutions related to flexural 

vibration in tapered beams based on the Timoshenko theory. However, 

there is no known research published on the analysis of flexural waves 
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- '1n a beam with discontinuity of cross-section according to the 

Timoshenko beam theory, which is the subject of this thesis. 

Donnell (193Q) investigated the effect of a sudden change in cross­

section or material of a bar on a propagated longitudinal wave, which 

when it arrives at the junction initiates two new waves, a transmitted 

wave and a reflected wave. When the sudden change was one of area only, 

Donnell found that for an incident wave striking a reduction in area, 

the reflected wave was of opposite sign to the original, whereas for 

a wave striking an enlargement, the reflected wave was of the same 

sign as the incident wave. The transmitted wave was always of the 

same sign as the incident wave. Donnell also studied the problem of 

a gradual change and formulated the differential equation of motion 

for longitudinal waves in a form which takes this effect into account. 

Compression force and longitudinal velocity of parttcles for. the bar.', 

were presented graphically, and diagrams were constructed for waves 

produced by variable forces, based on energy consideration. 

Angus (1943) derived force-velocity relationships for the elastic 

impact of a bar composed of several parts of different cross-sections, 

from analogy with hydraulic equations for water hammer. He presented 

an example of a bar composed of two cylinders of different diameters 

moving horizontally at a constant velocity and stopped because of 

striking a rigid body. It was shown that the stresses 

cu1ated by the known relation, q':p~v., 

could be ca1-

Langer (1943) used the general equation of motion for longitudinal 

vibration to obtain the frequency equation for an oil well pump rod 

consisting of a string of rods with abrupt ch~~ges in cross-section. 

The resulting natural frequencies were compared with records obtained 

from magnetic strain gauges located in the string of rods. 

Le Van Griffis (1944) discussed the propagation of longitudinal 

waves in a bar with decreased or increased area which underl~y the 
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conditions of equilibrium of forces and particle velocities. He 

explained reflections at free and fixed ends, as equivalent to a 

decrease in section to zero and infinite increase in section respectively. 

Van Griffis cons~ructed x-t diagrams with the help of a characteristic 

propagation velocity 'c=~ which determined complete time-space stress 

function for any case of longitudinal impact and compared the results 

with measurerents usl~g ~ire. resistanGe.: Strain gauges. 

Robinson (1950) discussed the "dyn~mic effects" in an aircraft 

under landing conditions and traced the propagation of various kind~ 

of stresses in the structure. He described the use of the method of 

characteristics for the solution of the equation of motion as a hyperbolic 

system of partial differential equations .Robinson gave a. general solution 

for shock reflection at discontinuities in connection with abrupt changes 

at the junction of aeroplane wings, such as in the wing root and in the 

vicinity of the power plant installation, where there was an abrupt 

change of characteristics relevant to wave propagation, i.e. stiffness 

and density. 

Fischer (1954) investigated the transmission and reflection of 

an elastic longitudinal rectangular pulse in a bar with a cylindrical 

neck or swell of varying length. The transmission and reflection of 

the pulse in a bar with discontinuity of cross-section was followed 

. up by a modified form of "graphodynmics method" which was applied 

before by De Juhasz (1942) and Bergeron (1938).· In this graphical 

method force-velocity and space-time diagrams were used to obtain 

stress-time and displacement-time diagrams. A more extensive study 

and comparison with experiment was presented in a second paper by 

Fischer (1959). 

Mugiono (1955) used the Euler-Bernoulli equation for the 

investigation of flexural waves in beams with one and two discontinuities 

of cross-section and used a travelling wave solution to obtain a 
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- so-called reduction factor as afunction of slenderness ratio for 

the propagation of bending wave in relation to. sound transmission 

through walls in building structures. Calculations and experiments 

showed a reasonably good agreement for harmonically sinusoidal-. excit­

ations. 

Cranch and Adler (1956) used the simple beam theory to solve 

the problem of bending vibration of beams having rectangular cross 

section with any power-width variation where the depth variation was 

linear, quadratic or cubic. Bessel function solutions were obtained 

for a truncated pyramid cantilever, a cantilever with parabolic width 

variation and compound beams of similar halves joined 'together. 

Ripperger:: . and Abramson (1957br-Tepeated:t~ theoretical solution 

of the bending wave problem in a bar with discontinuities of cross­

section, treated before by Mugiono and added a comparison with the 

reflection and transmission of longitudinal wave pulses. It was 

attempted to determine reflection and transmission coefficient of a 

stress pulse based on steady-state wave propagation. This analysis 

was successful for longitudinal propagation where the dispersion did 

not seriously alter the pulse shape, but not for be~ding waves pulses 

which are always distorted by dispersion regardless of the pulse length. 

It was concluded therefore that any comparison of amplitude in bending 

waves was not a precise method. In order to compare with experimental 

results, reflection and transmission coefficients originally derived 

for velocity were related to the corresponding quantities of moments. 

The discrepancy was too large and it was concluded that a more accurate 

theoretical analysis was needed, especially when pulses were of short 

duration. A better agreement between theory and experiment was obtained 

by 'Hi:i~ber s tao. and Hoge (1971). The prcb lem of reflection and trans-

missi~n of a longitud~nal wave across a sudden change in cross-sectional 

area was discussed by Burton (1958) where equilibrium conditions for 
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- . ~artfcle velocities and forces were formulated. 

The idea of reflection and transmission coefficient is similar 

to the idea of stress concentration factor used in the static lQ~ding 

shafts subjected to torsion and bending. Allison (1961) obtained the 

elastic stress concentration factors VB. diameter ratio in shouldered 

8h~~tst;tbjected to. pure be~ding'aB the quotient of the peak stress in 

the shouldered shaft to the maximum axial stress in a uniform shaft 

of smaller diameter, subjected to the same moment. 

Taleb and Suppiger (1961) applied the ·Cauchy function method from 

the theory of integral equations to obtain the 'approximate fundam~ntal 

frequency and modal configuration in a simply supported stepped beam. 

The solution was based on the elementary Euler-Bernoulli theory of 

lateral vibrations. The fundamental frequency computed after two 

iterations for the beam with a jump discontinuity was compared with the 

exact solution and was found to be only about three per cent above the 

ex~ct value. 

Reed (1962) reported a method for the computation of the amplitudes 

of the succession of pulses which were produced from the incidence of 

single longitudinal stress pulse on a zone of many abrupt discontinuities 

not;simply related in their properties. An identifier was assigned 

to each pulse and described its propagational history. It was used 

together with a pulse designator to calculate amplitude and arrival 

tirnesof reflected and transmitted pulses. The numerical method was used 

to'calculate the relative amplitudes of the members of resultant pulse 

trains for rods with three and six step transitions, for rods with 

stepped-cone terminations of two to ten discontinuities, and for a 

continuous linearly tapered cone. 

I Cone (1963)ohtairied a theoretical solution for the longitudinal 

wave propagation across an abrupt change in the bar's cross-section 

and predicted the ratio between the incident, reflected,and 
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transmitted waves. The investigation was based on the elementary theory 

and results were compared with experimental data obtained by strain 

gauge measurements. 

Conway and Dubil (1965) investigated transverse vibrational 

resonance frequencies of truncated cone and wedge beams for nine 

possible combinations of the simply supported, clamped, and free end 

conditons. The Euler-Bernoulli equations were used to obtain solutions 

in the form of Bessel functions of second order which were approximated 

by their polynomials and numerical results were tabulated for five 

modes and for four values of length ratios. 

Davids and Kesti (1965) compared the determination of maximum loads 

under impact using vibration analysis and stress-wave propagation n~thod 

for the design of long bars and stepped shafts. It was found that for 

a ramp-type pulse with a rise time tp', whenever the rise time of the 

impact pulse exceeded the time required to propagate the length of the 

.bar and back about three times, an almost exact sinusoidal osci llation 

.occured. However, for a step pulse, the peak stress obtained by the stress 

wave method was almost 50. per cent higher than that from the vibration 

method. The longitudinal waves in an actuater and pilot shaft conmi­

riation, designed for impact service, were investigated. An abrupt change 

of section was shown to be more sucessful in reducing the level of stress 

than a gradually changing cross-section • 

t~~ddoe (1965) obtained a transient solution of the problem of 

longitudinal stress waves in a cylindrical rod with several step changes 

in cross-sectional area,' by neans of th~ Laplace trOansform method. The 

theory was applied to a rod with a simple neck, formed by two inverse 

changes in cross-section, where damping and wave dispersion effects 

were not considered. Results, obtained by strain gauge measurement 

showed good agreement with the theory. 

Kawata and Hashimoto (1965) derived an approximate theory of 
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- . dynamic-stress concentration factors by considering notches and 

shoulders as discontinuities of cross-sectional area in struts. 

Experimental resul ts for notched specimens of.,' polyure thane rubber, 

using high-speed photoelasticitYt were shown to coincide with theoreticalJ 

results using one-dimensional theory of longitudinal wave propagation 

in an elastic bar 

Lindholm and Doshi (1965) were concerned with the propagation of 

a stress pulse in a continuously nonhomogeneous elastic bar of finite 

length where the elastic modulus was a function of the position in 

the bar. The one dimensional analysis for the propagation of longi­

tudina1waves was synthesized from the eigen functions for the non 

homogeneous bar by utilizing the principle of virtual work. Numerical 

results were presented for a finite free-free bar subjected to a 

pressure pulse and for one complete reflection in the bar. It was shown 

that the eigen functions satisfied the orthogonality conditi,ons and 

series expansions were evaluated for the first 30 terms. Based on Laplace 

transforms,an approximate solution of the same pro~lem was given by 

Whittier (1965). 

Rosefeld and Mik10witz (1965) formulated a general solution for 

the response o~ an elastic rod of arbitrary. cross-section to mixed 

end condition loading, where the orthogonality condition of the eigen 

functions for the displacements with different eigen values for the 

frequency were employed. Laplace and Fourier transforms were introduced 

in order to obtain solutions in term of harmonic waves for long-wave 

effects which governed the long-time;' . large distance behaviour. It 

was pointed out that the nature of the results for low frequencies 

did not depend directly on the boundary shape, but the higher modes 

had a more comp,licated structure. 

Yang (1966) derived a general differential equation governing 

discontinuous wave propagation in non uniform Timoshenko beams. A 
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elosed form solution was obtained for a nonuniform beam with a linear 

variation in cross-section. The method of characteristics was used 

to formulate expressions for jumps in moment, shear, angular velocity 

and transverse velocity. 

Bruner and Muster (1967) reported the attenuation characteristics 

of a typical drill-string model as a long bar with 'spaced discontinuities 

in cross~section area subjected to plane longitudinal acoustic waves. 

The analysis was based on mechanical-electrical analogy, used before 

for single area discontinuities in infinitely long bars by Miles (1946) 

who showed that the discontiniuty could be represented by a shunt 

capacitance and by Karal (1953) who represented the discontiniuty by 

a series inductance, both as functions of area ratio. Bruner and 

Muster found that attenuation peaks decreased with increasing area 

ratio and that attenuation occured at frequencies governed by the bar 

length at the last segment of the system. 

Tsui (1968) solved the problem of a projectile itnping{ng upon 

target as one of longitudinal wave propagation in a finite length bar 

with power variation in the cross-section. A solution was obtained 

for a free-free bar subjected to an arbitrary' pulse applying the 

method of separation of variables and the princi;ple of virtual work, 

as used before by Lindholm and Doshi (1965) for the non-homogeneous 

bar. The same problem was solved by Handelman and Rubenfeld (1972) 

using Laplace transform method. The calculations, although standard, 

were somewhat tedious. 

Kenner and Goldsmith (1969) inv~stigated the effect of a thin glue 

section, joining two adjacent cylindrical bars, on the longitudinal 

wave propagation. The joint was treated as a short discontiniuty by 

the <;me dimensional theory and the effect of ecc~ntric ' alignments on 

the wave transmission was also investigated. It was found that a thin 

insert placed between cylindrical sections disturbed the wave transmission 
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in varying amounts dependi?g On both the di6P~iLY in mechanical 

impedance P:o with the exterior bars and the thickness of the section. 

The eccentricity di8to~ted the trans~itted longitudinal wave very little, 

but decreased the peak strain up to 10%. The theorectica1 predictions 

were tested by experiments performed on aluminium bars glued together 

using two different adhesives. 

Habberstad (1971) formulated a two-dimensional theory for 

axisymmetric. elastic wave propagation by approximations of the Pochhammer­

Chree equations governing axisymmetric wave propagation in cylindrical 

bar~sing afirst order finite difference scheme. The numerical analysis 

was based on a displacement formulation used by Bertholf (1967) to study 

the same type of waves in uniform cylindrical rod. However, Habberstad 

used this numerical technique for a bar containing a discontinuity in 

cross-section and for a bar composed of two materials fused together. 

Ramamurti and Ramanamurti (1977) solved the same problem by the finite 

element me thode 

Mabie and Rogers (1972) obtained the differential equ~tion of motion 

for a vibrating double-tapered cantilever beam from the Euler-Bernoulli 

theory of transverse vibration. The frequencies of five modes were 

tabulated for various taper ratios. The results were obtained by . 

numerical integration. 

Mortimer et.a1 (1972) used three theories to analyse the problem 

of reflection and transmission of transient longitudinal pulse~ in 

shells with discontinuous cross-sectional areas. The three theories 

used were the bending theory which included the transverse shear, radial 

inertia, and rotary inertia effect~ 'a modified membrane theory which 

included bending and rotary inertia, and a uniaxial theory, which included 

only axial motions. Solutions were obtained by solving each, of the 

three systems of governing equations by the method of characteristics. 

The longitudinal and circumferential incident, transmitted and reflected 
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strain pulses as predicted by the bending and membrance theories were 

shoWn to be in good agreement with experimental results, whereas the 

uniaxial theory strain predictions did not agree well with the experi-

mente In a second paper by Rose et.al (l913) ,the method of characteristics 

was used to obtain a numerical solution according to the bending theory 

for the longitudinal 'impact of a joint cylinder-tnmcated cone-cylinder. 

~ood agreement was obtained with experiments carried out for a model 

consisting of a 1/100 - scale replica of a portion of the Apollo/Saturn 

V vehicle. 

Yang and Hassett (1912) utilized the method of chalacteristics 

in the theoretical analysis of the problem of transient stress in 

axisymmetric b~dies of varying areas, such as cones and structures with 

large step changes in cross-sectional area and with changing impedances. 

Rader and Mao (1912) were concerned with the amplification of 

longitudinal pulses which propagated along tapered elastic bars, which 

was regarded as a wave guide with continuously varying impedance. A 

general travelling wave solution representing waveforms propagating 

in both directions was used where the incident wave generated an 

infini te sequence of reflected and refracted waves. Experimental 

results showed that only for very short and very long pulses, dld the 

amplification approach the limiting values given by the theoretical 

prediction. 

Reismann and Tsai (1972) developed an improved theory which 

accounted for longitudinal as well as radi~ motions. The theory 

was applied to two bonded, senQ-infinite rods composed of different 

materials and to a rod of finite length bounded at each end to two 

semi-infinite rods composed of different materials. The results ,were 

comparea with the predictions of the elementary rod theory as character­

ized by the wave equation. For a harmonic excitation, phase velocity 

vs. frequency P lo~s was presented and it was shown that the improved 
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theory indicated the existence of two modes. 

Koenig and Berry (1973) applied the direct finite analysis, 

originally developed by Davids and Koenig (1967) to obtain the transient 

flexural response of a cantilever tapered beam and a composite beam 

of two different materials, sUbjected to a step moment input and a step 

velocity input. The time-histories of bending moment and shear forces 

were presented graphically. 

Lee and Wang (l973) presented a one-dimensional theory which 

accounted for longitudinal as well as radial and axial shear deform­

ation and their inertias for elastic circular rod with nonuniform 

cross-section. The theory was an extension of the Mindlin-McNiven 

theory (l960). The numerical results were obtained by the method of 

characteristics for several non-uniform semi-infinite and finite rods 

subjected to either a step or a pulse loading~ The geometrical effect 

of variation of section on the stresses and the effect of the elastic 

support on the reflection and propagation of the stress were deduced. 

Predicted and measured results were compared. 

Klein (1974) investigated the transverse free vibration of elastic 

beams with non-uniform characteristics using variational analysis, 

either as a Rayleigh-Ritz type method or as a finite element type method. 

The basic assumptions of the analysis were based on the Euler-Bernoulli 

theory. The case of a simply supported stepped beam was studied as a 

model for a non-uniform rotor blade. Comparison with experiments 

indicated that the theory adequately predicted natural frequencies 

for the first three modes and the mode shapes. 

Lee and Sechler (1975) used the one-dimensional theory to examine 

the longitudinal wave propagation in wedges due to impact at their 

large end. Closed from solutions were obtained in term of Laplace 

transforms and Bessel functions. 

Gorman (1975) investigated the lateral free vibration of beams 
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with step changes in the properties of their cross-section and gave 

extensive tables to obtain the frequencies for 4 modes and various end 

conditions. The solutions were based on the Euler-Bernoulli theory. 

Ramamurti and Ramanamurti (1975)used afinite difference formulation 

to solve the problem of longitudinal wave propagation in very short 

bar with discontinuity of cross-section. Due to the symmetry in loading 

the problem was treated as a two-dimensional one. 

Levinson (1976) studied the natural frequencies of a stepped 

simply supported beam using the Euler-Bernoulli theory. He obtained 

the frequency equation which was quite complicated to be solved exactly, 

even for a stepped beam consisting of only two distinct parts. It was 

concluded that an approximate numerical solution method should be used. 

Goe1 (1976) investigated the transverse vibration of linearly 

tapered beams and the results for the first three eigen-frequencies 

for different values of stiffness ratio's and taper ratios were tabulated • 

. The analysis was based on the Euler-Bernoulli equation of motion. 

Johnson (1977) studied the problem of longitudinal waves in a bar 

with step change in cross-sectional area and material and expressions 

relating the transmitted and reflected wave to the incident wave, usinp, 

the one-dimensional theory were presented. 

Filippo~ (1977) formulated general solutions for composite rods 

consisting of finite rods of constant but'different thickn~ss and 

of composite rods with continuously varying thickness. The solutions 

were based on the one-dimensional theory of longitudinal wave propaga-

tion using Heaviside function and Dirac delta function for the applied 

. . 
Laplace' transformation •. 

Vasudeva and Bhaskara: (1978) discus'sed the problem of a pressure 
. . 

pulse in an elastic bar' of finite 'length w(.o~e Youn~;!\1'Iodul"S, m'ltedal .... :.. 

density and cross-sectional ~reavaried along the length in a general 

power form. The solution used the elementary theory and Laplace 
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transformations gave the general expressions for stress. The numerical 

values were computed by iteration for a half-sine wave pulse and the 

results agreed fairly well with those of Lee (1974). 

Gupta and Nilsson (1978) studied the problem of longitudianl impact 

between a truncated finite conical rod and a long cylindrical rod, where 

contact was maintained from the time of i~act and the piston-rod system 

was considered as one structural unit. Two theoretical solutions were 

obtained, a closed from solution based on one-dimensional wave theory 

and a numerical finite element solution based on three dimensional 

axisymmetric. model. Finite element results were in good agreement 

with experimental results, apart from spurious oscillations shown in 

the finite element solution of i~act for pistons with various apex angles. 

Nagaya (1979) formulated an approximate numerical method for the 

dynamic analysis of a tapered Timoshenko beam with moving loads. Hamilton's 

principle was applied to obtain the equation of motion from the Lagrangian 

of the Timoshenko beam and using the oTthogonality of the eigenfunctions, 

of first and second kind. In the numerical computation the effect of 

the inertia force ~onJ' shear motion was neglected and the approximate 

solution was found to be' larger ,t han . with the exact Timoshenko 

beam with in~reased velocity of the load. 

Hashemi (1979) obtained the frequency equation and point impedance 

of a stepped beam using the elementary Euler-Bernoulli theory of transverse 

vibration. The roots of the frequency equations were obtained for the 

first five modes and various length to width ratios. The numerical 

results were compared with experimental results. 
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CHAPTER III 

ANALYSIS OF TRANSIENT BEAM RESPONSE 

3.1,. Derivation of the Equation of motion 

The Pochhammer-Chree theory can not be used to find solutions 

for flexural wave propagation in finite or even semi-infinite beam with 

arbitrary prescribed displacement or stress distribution on the end 

cross-section. The Euler-Bernoulli theory is inadequate because it 

neglects the effects of "rotatory inertia" and "shear deformation" when 

dealing with the transverse vibration of prismatic bars. 

The theory which takes these effects into account is attributed 

to Timoshenko (1921, 1922, 1928), in the so called Timoshenko beam 

theory which is widely used for solving problems of flexural vibration 

of beams and more recently for solving transient flexural wave pro­

pagation in beams. 

The T:Unoshenko' beam theory includes, in addition to the transverse 

displacement due to bending which is the only term included in the 

Euler-Bernoulli theory, the effect of rotatory inertia, originally 

introduced by Bresse in 1859 and usually attributed to Rayleigh 1894, 

as well as a second term which takes into account the effect of the 

non-uniform shear distr~bution over the cross-section. 

The Timoshenko beam equations were originally formulated by 

Timoshenko ~sing D'Alernberts principle. The same equations, however, 

can be derived, by using a more general approach from the three-

dimemsional theory of elasticity on the basis of . Hamilton's principle. 

The Timoshenko beam theory is a one-dimensional approximate theory 

which used two di~placement co-ordinates to represent the transverse 

motion of the beam axis (y), and to account for the rotation of the 

cross-section (l/J) as sh9wn by the beam element in figure 3.1" of a beam 

under the effects of bending moment M and shear force Q. 

When the beam element is deformed and,for small displacements, the 
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cross-section of the beam rotates through an angle ~, while the neutral 
e' 

axis of the beam rotates throu~ a small angle evJ3x, and it is no 

., , L" longer'perpendicular to tbe'beam cross~seCLlon. These two'rotations 

differ by the angle of the shear, i.e. ,'y~- If. If! u
1 

and u
3 

are defined as 

u 1 (x~ ,~;Zt· t)' ... - Y~(Xt ,t) , 

u
3 

(x .. y,. z· ' t)' -= v (x; t) 

The non-zero strains are then 

'£ • 
xx 

dU ' , d,I, 
=-1 = _y_'Y ax ax 

, ' 'dV :. 
~xy ,= :'. ',y' = ('-;-x '- ,lJI' ) 

.... - v . 
.. ' .. 

The shear force is distributed non-uniformly over the cross-section 
, . 

and there is' not a 'single" angle for the cross-section. But in order' 

to retain a one-dimensional mod~l.f a thea'r correcti on . factor k2 ;. 
16 

introduced to give an "equivalent" uniform shear, a form of averaging 

over the cross~section. 

The linear constitutive relations for a differential beam clement 

lead to tbe integrals for the k.ineti~ cn~rgy, strain energy a'nd'the 

potential en~rgy of a Timoshenko beam of length L. The kinetic'energy 

T consists of two parts due to translation and rotation 

L 
'T.'·': ~. {PA:C '3v )2+P1 .(jlb·.)·2}:d:·.· .. 

(J. 2' at '2 dt·)t, 

The strain energy for the Timoshenko beam is also made of two parts 

and can be found from the following relation 

L 2 . L 
U = J' r E2 € . - QAc:!x + .... (J ? €.~ cAdx 

J. x~: ~'~' o A A 

The shear force-shear strain relation is found using the value of k2 

such that 

The strain energy is then fOl-mulated as 

'1 { EI_( ~)2 . k 2CA avo lJI ) 2} U = +-'i~ (a'f- dx 
o 2 ax 
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From here on the general displacement variable y will be used , 

instead of v, since y is usually used for the location of the beam :" 

axis.. 

The ~agr~?gian~is u&ua1ll used !or the dlfference between the 
. 
kinetic en'e,rgy T and the' strain ('.ne,~ey U 

t.r:T-U 

~~en the Timoshenko beam is subjected to external forces suCh 

as shear force Q and bending moment M, the work done by these forces W, 

illustrated in fig. 3.1, can be expressed as 

, , 

The Hamilton's principle implies that all variations vnnishes at 

the arbitrary time limits t1 and t2 :'lnd can be ~p;lied ~o the ,Timoshenko 

beam system to give '~2 ' 
Q r

1 
' <J,.. - w) dt=O 

The expression' for/.,and Ware inserted in the above {'<tuation after 

the variationalcalculus.isperformed 
, t t ' L 
6j'Tdt = ], J{pA ~:6£Y+ pI..!~ 6' dW } dtdx 

t t:l 0 at at -. dt at 
1 . 

After i~tegration by part and using the fact that the variations 

:oy and ~+ 'must both vant'sh at x=o and x=L, one eets the vari ati on of 

the kinetic energy as L . 2 
t z ' t[2 J 'a2 . a j!~, 

IS [ Tdt = - (pia~ 'olJl,+ 'pA-a-'-f2 6y) 
t, I 0, t 

Similarly the variations of U and V are found as 

I lidt - -' J (~6h +. H26W2 + Qi6 Yl + Q26 Y2)dt 
1 . 1 

dxdt 

Applying Hamilton's principle and grouping the terms in the above 

equations: 
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Rearranging the equation; 

j
t t2 L . 

6 ,1 dt~J J. {(k2CA(!22 - ~)-PA~22) a2 \l1 ,a2~1 
tiy+(El --:y - 01 -.,.- + 

tl J.;. "XI aX at ax '.. at" to' 
I 

Since the variations of the two functions 6y(x,~) 'And 6¢(x,t) 

are arbitrary, the necessary conditions for tllem to v.~nish' are 

the pair of coupled partial differential equations for 0< x <L; 
.. 2 

k 2CA (~_lL.) - pA -~~ ."0 axr ax atr 

These are the governing equa,tions for a Timoshenko beam and 

the boundary conditions at x=O: (El.1.t) = -M ax 1 1 

k
2

CA (~i - ¢>1 :: - Q1 
a¢ 

(El aX> 2 = }f2 

k 2CA (~Y--".) = ax 'I' 2 Q2 

The Timoshenko beam equation is sometimes also written as a 

fourth order partial differential equation by elimin~ting one of the 

variables ~ or y from the two partial second order differential 

equation. Uncoupled and written in term of the transverse displace-

trent y 
2 4' 4 ' 

a~-,-+ pA~~-' pI(l+~~'-) ~~-:,--7, .. PLI __ a_~_==o-
E1 ~ at 'k,.£.G ax at L k AG at 

Hamilton's principle was applied for the derivation of 

the TimoshC'nko equations by the variational method, by several 

authors, e.g., Cames (1964);· Crandall eLa1.(1968). Dym and Shames 
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-(i973) and Harrison (1977). 

In Hamilton's principle the geometric constraints are embodied 

in the admissibility conditions, and the dynamic force requirements 

are embodied in the variational criterion. 

3.2. Methods of solution 

3.2.1. Transform methods 

The problem of transverse wave propagation in an elastic beam 

can be solved by using Laplace transfoI"Imand' to a lesser' extent Fourier 

transforms. Solutions have been basically obtained for transverse 

impact of semi-infinite beams of circular and rectangular cross-section, 

as was described in section 2.2.2. 

Uf1yand (1948) was the first to derive solutions employing Laplace 

transform and contour-integration inversion methods. Results were 

obtained through convolution for the response to a step input function 

and inputs having an impulsive time character 'in the form of a delta 

ftmction. 

The main difficulty is in con~ection with the treatment of end 
-

conditions. Miklowi tz' (1953a) 'obtained 1:rle 'Laplaee transform for . . . 

certain types of end conditions and pointed out at the same time that 

it was much more difficult to obtain the transform for other types of 

end condition. 

The use of transform methods is almost restricted to the study 

of transverse waves in uniform semi-infinite bars where no discontinuities 

and wave reflections are involved. However, the problem of eccentric 

impact of beams is more difficult to handle with Laplace transforms 

and no solution is available by this method even for the simplest 

case of a uniform beam • 

Transform techniques generally 'require numerical inversions and 

numerical integration schemes become morecomplicatea wben -boundarv 

conditions are incorporated. Closed form solutions provide n ttle 
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-insight into the response of structures and leave much to desired, 

regarding convergence near the wave fronts. Carnes (1964) showed 

that complex inversion integrals should be evaluated when Laplace 

transforms are used to obtain solutions for the semi-infinite beam. 

This is a rather tedious procedure. Transform formulae usually 

involve infinite integrals and difficult integrations which must be 

approximated in practical computation. Weinberger (1965) pointed 

out that transform solutions have the appearance of being exact, 

whereas in practice they require limiting processes which cannot 

usually be carried out. 

The integral, obtained after lengthy inversions, usually con­

tains different combinations of Bessel functions. When a solution is 

obtained for a certain type of input, the inversions cannot be used 

for other types of inputs, In the Laplace transform. for a differant 

input function. another lengthy transfrom and inversion process must ' 

be carried out and the resulting integral must be evaluated separately 

by numerical means. 

Closed from solutions by transform methods are usually restricted 

to some special cases of transverse wave propagation and,in most other 

cases, one has to resort to a numerical approximation method which will 

be presented in the next sections. However, Laplace transform methods 

are useful in producing "exact" solutions for certain problems which 

can be used for comparison in obtaining the accuracy of other approxi­

mate methods. It is known that th~ Laplltce tran~form'method yields 

solutions in closed form only when the special distribution of variable 

parameters is restricted to certain power law or exponential formats. 

Foran arbitrary parameter distribution asymptotic methods could be used 

but are usually valid only for short times and aiverge at inter­

"JM<l;ate..t>r long times~ (Moodie and Barclay, 1976 and Gordon, 1977). 
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- . 3.2.2~ Finite element ~thods 

F.inite element methods have been used widely for frequency 

analysis of flexural vibration of Timoshenko bea~and for predicting 

~de shapes and natural frequencies, as described in section 2.2.1. 

Several solutions have been obtained by several authors for 

axisymmetric longitudinal transient wave propagation problems. 

Costantino' (1967) used the finite element method to solve wave 

propagation problems of one-dimensional plane strain and two-dimensional 

half-space problems. The results were satisfactory for displacement 

time-histories, but stress-time histories were not as accurate and 

depended on the spatial variation of stresses as compared to the element 

size and the traversal - time of the stress pulse across the".~lement. 

Costantiti~ used a system of equations based on the "point mass" system, 

in contrast to the alternative approach "consistant mass matrix" which 

is used in structural vibration analysis. 

Shipley et.al. (1967) also used finite element formulations for 

solving axisymmetric wave propagation problems and he found that the 
( 

analysis modelled the displacemen~ field much more accuratly than the 

stress field. The stress-time histories showed a predominance of high 

frequency oscillations in trailing portions of the disturb~nce and the 

data were compared with exact solutions. 

One of the disadvantages of the finite element model is that 

computed stresses show severe oscillations- a consequence of a 50-

called "numerical dispersion". This makes the finite element method 

less attractive for flexural wave propagation problems, since it becomes 

difficult to decide whether the oscillation are due to the dispersive 

nature of the propagated wave or the dispersion is due to numerical 

inaccuracies. Another problem is the difficulty encoun~ered in 

representing discontinuities and transient wave fronts. Finite element 

models also behave like low pass filters having definite passing bands 
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and cut-off frequencies which depend upon the wave types being 

propagated, longitudinal or transverse and they depend on the finite 

element nesh as well. 

Belytschko ,et.al. (1978) showed that the numerical solution 

oscillated about the analytical- Aol(Jt~on"f(;)r,;a ~te~:fufteticn, ;nput,due 

to attenuation of all frequencies beyond'the cut off frequency in a 

discrete mesh. 

Several authors treated e~amples, ,of one-dimensional and two­

dimensional axisymmetric wave propagation problems by various triangular 

and rectangular finite element models:) In most works, the mass of each 

element was lumped at its modal points "point mass system". This made 

the mass matrix diagonal and hence, the associated inversions were 

made simple. However, this procedure led to poor approximations. Some 

of the works dealing with axisymmetric longitudinal wave propagations 

are those of Fu (1970), Buturla et. ale (19~4), Holmes et.a1. (1976). 

The main advantage of finite element methods are their ability 

to treat geometrically complex structures. A wide range of elliptic: 

and parabolic governing equations have been successfully solved using 

finite element methods (Zienckiewicz, 1971). However, finite element 

methods have not yet proven their suitability for the solution of 

transient flexural wave propagation problems which are governed by 

hyperbolic partial differential equation systems, in connection with 

mixed initial and boundary conditons. 

3.2.3. Finite difference methods 

Finite difference methods are well established and are successfully 

used in solving wave propagation problems. The solution method has 

been first discussed in a paper by Courant et.al. (1928). However, 

its usefulness was helped as by other numerical schemes, by the recent 

development in large digital computers in both speed and core size. 

There exist several forms of finite difference approximation 
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- , a~d common approximate techniques are used in finite difference 

methods. They are extensively treated in several books (Sauer, 1954 , 
Lax, 1958,' Richtmyer and Morton 1967.; Forsythe and Wasow, 1960). 

The essence of the finite differ~~~e I technique is to replace the 

differential equations and boundary conditions by simple finite 

difference approximations, such as Taylor series expansions with trun-

cation at some point to optimize both error and computation requirements. 

The resulting equations are then numerically integrated to obtain the 

solution of the problem. 

Finite difference methods are easy to programme and capable of 

solving transient problems which can give information at many frequencies 

from one computer run, in contrast to steady state solutions. The 

method is most useful in near fieia'region of sources. Finite difference 

and finite element methods differ in that the former discretizes the 

governing partial differential equations or energy functions, whereas 

the latter discretizes the structure itself. 

Cushman (1979) compared the use of finite differe nce and fini te 

element methods and concluded that for irregular domains, finite ele~ent· . 

analysis is often easier to use, while for regular domains finite 

difference methods are'more easily programmed. He illustrated for the 

case of one-dimensional longitudinal wave-propagation, the possibility 

to generate the standard finite difference scheme as a special case of 

finite element scheme, simply by applying the finite element discreti-
, I - '.~ • . . .... ' , . 

zation;'t:>roce~g:':J:b··t~me as well as to space. However, there was little 

to be gained with this technique and it involved increased storage and 

comp,utationa1 requirements. This technique is, therefore, rarely used. 

The main disadvantage of the finite difference techniques is its 

inefficiency in handling discontiniuties in geometry which suggested 

the inttoduction of doubtful assumptions of compatibi li ty at the 

discontinuities and fictitious surfaces at the boundary. This technique 
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made -the results dependent upon the chosen assumption for the dis­

p1acenent values at the junction points. Furthermore, difficulties 

were experienced in treating material interfaces or indeed any type 

of discontinuous stresses, which must be averaged. The introduction 

of artificial viscosity terms into the equations, have the effect of 

smoothing out the input function over a short distance, but can intro­

duce significeint errors into .,the analysis. The method has been 

mostly developed for two-space variable problem8. 

Karnes andtiertho1f' (1970) solved the problem of axisymmetric 

elastic-plastic wave propagation by a two-dimensional finite difference 

scheme which employed the Von Neuman and Richtmyer method for smoothing 

shock front~ by an artificialyiscosity. The study was an extension 

of the solution obtained by ier~bolf. (1967) for the elastic wave pro­

papation problem. The accuracy of the numerical results depended on 

the number of finite difference increments, or meshes used. 

Chiu: '(1970) used the finite difference scheme to investigate the 

transmission and reflection of longitudinal stresses in an elastic bar 

with discontinuities, as a one-dimensional wave propagation problem. 

Habberstad (1971) approximated the exact equations of motion' 

governing elastic, axisymmetric wave propagation in cyli~drical rod by 

a first order finite-difference scheme, which was used to study 

longitudinal wave propagation in a bar composed of two materials (steel 

and aluminum), and in bars containing a discontinuity in cross-section. 

R~mamurti et.al (1975) used the finite difference analysis to 

solve the problem of axially symmetric impact in very short uniform 

and stepped beams. The solution was based on a finite difference scheme, 

as proposed by Alterman and Karal (lg70): for wave propagation in semi­

infinite bars. The results showed high 0~ci11ations and were not 

compared with any other numerical results or with any experimental 

results. 
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Forrestal and Bertholf (1975) used a two-dimensional wave 

propagation finite difference scheme to obtain strain-time histories 

for the transverse impact of a beam of rectangular cross-section. The 

results showed higher frequency oscillations. 

Several authors have developed special finite difference schemes 

for applications in Seismology (Alterman and Lowenthal,' 1972; 'Boore, 

1972~JBond, 1978). rJlan et.al. (1979) used finite difference methods 

to study elastic waves scattered by irregularities (slots) in a 

stress free surface, a problem particularly important for ultrasonic 

non destructive testing. 

The finite difference methods are mostly used to solve problems 

in which the response is mostly dominated by axisymmetric motion. 

However, its application to study flexural wave propagation problems 

is less feasible. ThereJ~!"e finite &fference methods are used for 

solving longitudinal axisymmtric wave propagation problems where they 

are effie,ient (Swartz and Wendroff ,1974) 

3.2.4. The method of Characteristics (MOC) 

Wave propagation problems are mathematically ~~ass{fied as mixed 

initial boundary value prob~ems and their governing equations are 

mostly partial differential equations of hyperbolic type. For hyper-

bolic systems involving two independent variables, the method of 

characteristics (MOe) is undoubtedly the most convenient, most effective 

and most accurate. method of solution. Other numerical methods such as 

finite difference and finite element methods are basically more sui t-

able for hyperbolic equations in higher dimensions where the MOe might 

be less satisfactory. (Mitchell, 1969). 

In the MOC the system of the governing equations is replaced by 

a system expressed in characteristic co-ordinates,the so called 

canonical equations. One of the main advantages of characteristics, 

and a disadvantage of finite differences, is that discontinuities in 
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the initial ,values may propagate along the characteristics. This 

situation is difficult to handle by other than the characteristic net. 

(Ames, 1977). 

The earliest applications of the MOC to linear wave pr~pagation 

problems are those by Riemann (1860) in gas dynamics' by Massau (1889) 

in hydraulics and Soil mechanics and by Prandtl (1920) in mechanics 

of plastic metals. The theory of MOC is best described in the works 

of Cou~ant et.al. (1928)r Courant and Friedrichs (1937). Abbott (1966) 

gave various application examples and Cristescu (1967) and Nowacki 

(1978), gave detailed description of application examples in the theory 

of plastic flow under q'uasi-static and dynamic conditions. In a 

number of works, Chou and his co-workers used the MOC in a unified 

manner to solve elastic wave propagation problems with a variety of 

initial and boundary conditions in beams. plates and shells. 

The MOC have been used widely in solving the Timoshenko beam 

equations as a system of hyperbolic partial differential equations 

(PDE) governing transverse and bending wave propagation problems due 

to transverse and eccentric impact, as was described in section 2.2.2. 

The principle of domain of dependence in the MOC ensures a unique 

solution in the region between the characteristic lines with the 

smallest slope. Furthermore the MOC has the advantage that it follows 

the physical wave fronts as they are propagated along the beam. The 

MOC is particularly useful in solving wave propagation problems in 

finite structures, since reflections from boundaries are automatically 

alsorbed into the solution by the presence of the backward-running 

characteristic curve ~; each grid point. 

The detailed investigation given by Courant et.al. (l928) for 

the solution of hyperbolic PDE by the MOC. in which trey specified the 

condition for the stability of the numerical scheme. the so called 

Courant-Friedrichs-Lewy (C-F-L) stability condition. is particularly 
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important in obtaining numerical results using finite difference 

approximations along the characteristic lines in the domain of dependence. 

Pfeiffer (1947) was ,the first to obtain a general solution for 

the Timoshenko beam equations as a system of first order PDE, using 

the method of characteristics. Schirmer (1952) used the technique 

suggested by Pfeiffer to apply the MOC to the Timoshenko beam theory 

to study bending waves in beams. Leonard and Budiansky '(1953) utilized 

the MOC to analyse travelling waves in beams subjected to lateral 

loading, governed by the Timoshenko beam theory, but for the .rather 
", 

physically non-realistic assumption of C1 ~ ~2\ which simplified the 

numerical work involved. 

Kuo (1958) solved the problem of bending waves in rods subjected 

to eccentric impact by MOC in the same way as by Leonard and ~udiansky. 

Plass (1958) used the MOC for Timoshenko beam problems subjected to 

various type of short half-sine pulse loading and applied more realistic 

distinct bending wave (c1) and shear wave (c2) velocities. 

The Timoshenko beam equations have been treated as a system of 

second order PDE by the MOC in a series of papers, in a unified approach 

capable of dealing with discontinuities along the characteristics in 

semi-infinite structures, where no reflections were involved andjthe 

emphasis was set on the refinement of the numerical scheme. (Chou and 

l!ortimer, , 1965; Chou, 1965; Chou and Koenig, 1966). 

Aprahamian et.al. (1971) .used the MOC to solve the Timoshenko 

beam equations for a doubly infinite beam subjected to an impUlsive 

transverse load, which gave excellent agreement with experimental 

results obtained by holographic interferometry • 

Stepanenko (1976) showed how the so called "numerical dispersion" 

can be minimized, although not completely el~~inated in the case of the 

Timoshenko beam, when explicit finite difference formulations were 

used for the integration along a characteristic network constructed 
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. -with varying steps, peculiar to each type of waves. 

The method of characteristics has been used to treat flexural 

waves in curved bars in a Timoshenko-like theory (Crowley et. al. 1974) 

and to predict fractures in brittle ~terials according to the 

Timoshenko theory (Colton, 1973) as well as for determining the rate 

of healing of a partially cracked bone with the aid of a combination 

of longitudinal and Timoshenko-type waves (Philips et. al., 1978). 

Axisymmetric elastic wave propagation in beams, plates and 

shells have been treated by the MOC in a unified manner which could he 

applied to various plane cylindrical and spherical waves with one-, 

two- and three displacement variables. (Chou, 1965; Chou and MorFimer 

1967; Rose and Chou, 1973). 

Mengi and McNiven (1971) obtained the response of a semi-infinite 

transversly isotropic rod to a time-dependent input using the MOC, 

which gave an accurate prediction to the response except perhaps for 

the very front of the wave, which is influenced by the higher branches. 

Several problems of axially symmetric wave propagation in non-

uniform structures were treated by the method of characteristics (MOC) 

as was described in section 2.3. 

The method of characteristics has also been successfully ~pplied 

for the prediction of transient responses in multilayered rods and 

shells. (Chou and Flis, 1975; Zi~l 1975; Mukunoki and Ting, 1980). 

In the theory of visco-elastic and plastic wave propagation, 

the method of characteristics led to the solution of various types of 

transient response problems. 

Lee (1953) obtained the permanent plastic distribution in the 
. , 

corresponding regions of·~_ structure by MOC and the diffi~u1ties ari~i~ 

in boundary value problems of the theory of plasticity, were pointed 

out. 

Plass (1955) investigated bending waves in a rod where plastic 
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- stresses were present by the Timoshenko beam theory and relations 

about plastic flow in a solid exhibiting a strain rate effect. 

Numerical results were obtained by the MOC. 

Bejda (1967) solved wave propagation problems in elastic visco-

plastic beams by the MOC and Clifton (1967) used the same method and 

the one-dimensional theory of rate-independent plastic wave propagation 

to study IOngitudinafe1astic-P1astic waves in long bars. 

McNiven used the MOC to obtain the response of an infinite visco-

elastic body with an infinitely long cylindrical hole, where the 

lateral surface was subjected to a uniform pressure. 

The problem of one-dimensional wave propagation through a bilinear 

elastic-plastic specimen in Kolsky's split Hopkinson pressure bar, was 

investigated by Jahsman' (1971) using the MOC. 

In'his'tnesiE';.' Rang8:nath~·.(l97l) 'solVed ,the. ·prob1em of the transverse 

impact of an infinite elastic-plastic beam by a semi-infinite elastic 

rod using the MOC, based on the Timoshenko beam theory. A',strain rate 

independent model was used to describe the material behaviour and a 

strain hardening criterion was used for the pure bending, based on the 

quasi-static moment-curvature relation. 

The use of the method of characteristics is widespread in fluid 

mechanics and gas ,~ynamics to predict flow velocity at pipe outl~ 

(Iseman, 1967) and multi-dimensional unsteady flows (Sauerwein, 1967). 

Sedney (1969) gave a survey of the use of the MOC for non-equi1ibruim 

in~ernal flows. Another application field for the method of character­

istics is soil mechanics. Streeter et.al. (1974) investigated the 

wave propagation corresponding to earthquake intensities in a model 

of tnlsaturated and saturated soils. 

Wylie and Streeter (1976) found the MOC suitable to investigate 

the transmission of shear waves in soil layers. It has been attempted 

to extend the application of the method of characteristics to two-
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- --dimensional spat ial problems i.e. cases of three independent 

variables. (Thornhill. 1952). 

Clifton (1967) investigated plane stress dynamic deformation of 

an isotropic-linear elastic solid by a second order explicit method, 

as proposed by Butler (1960) for integration along the bicharacteristic. 

Ziv (1969) also studied two-dimensional spatial elastic wave propa­

gation by the MOC. Chang (1972) investigated two-dimensional motion 

of a cylindrical bar subjected to axisymmetric impact by the MOC. 

Haddow and Mioduchowski (1979) used a near characteristic scheme 

proposed by Sauer (1964)' for two-spatial variables and time' to obtain 

numerical results for waves in a plate due to a suddenly punched hole 

as a uniaxial tension field •.. 

Good agreement with experimental results and with transforms 

increased the confidence in the results of the method of characteristics. 

Therefore its results were used to check the accuracy and validity of 

the results of other numerical methods such as finite difference and 

finite element methods. 

Fu(1970)compared finite element results with MOC results for a 

circular finite length rod subjected to a suddenly applied uniform 

pressure. Raney and Howlett (1971) presented a comparison of numerical 

solutions obtained by finite element. finite difference and the method 

of characteristics for the axisymmetric response of a cylindrical ' 

shell subjected to an initial axisymmetric velocity at its centre. 

The importance of higher frequency modes was emphasised. 

Forrestal and Bertholf (1975)' compared the results of finite 

difference method with the MOC for the transverse impact of a beam of 

rectangular cross-section. 

Belyschko (1978) also compared the results of the three numerical 

results and pointed out the advantage of the method of characteristics, 

particularly for solving hyperbolic partial differential equations. 
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·In flexural wave propagation problems, where time and space play 

similar roles and where characteristics are important, since the motion 

is governed by·a PDE,the finite difference approximation along the 

characteristics has a powerful potential advantage (Morton. 1976). 

3.2.5. Conclusions 

In the solution of transient wave propagation problem, closed­

form solution> are restrictive and in most' cases impossible to obtain. 

Therefore one has to employ numerical techniques. There are basically 

two main approaches in numerical so lution of elastic wave propagation 

problems • 

(a) The method of characteristics, in which the partial differential 

equations are reformulated along directions of possible discontinuities 

and then integrated in these directions. 

(b) Discretization methods such as finite difference and finite element 

methods where the parti~l differential equations are first discretized 

in space and then integrated along parallel lines in the time domain • 

.. Discretization introduces disp,ersion and because of the finite 

cut-off frequency, high frequency input results in spurious oscillation. 

which could be reduced by introducing an artificial viscosity term. 

However, this has two tmdesirable e,ffects in that the dispersions in 

the final solution will be increased and rapid changes in the wave 

fronts will be smoothed. Therefore these methods are unable to predict 

precisely a very sharp wave front. 

After careful considerations, the method of characteristics (MOC) 

is chosen for the numerical solution of transient flexural wave propa­

gation in beams with discontinuities of cross-section. The method has 

many advantages and desirable properties,'.particularly for one-dimensional 

problems with two independent variables which are governed by hyperbolic 

partial differential equations. 

i) Characteristics are the only lines along which discontinuities in 
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the wave front may propagate. The characteristic lines represent 

natural co-ordinates for wave propagation and the progress of the waves 

or traces of the progress may be followed along these line. 

ii) Discontinuities in geometry and material may be incorporated 

easily in the numerical scheme when the MOC is used. 

iii) The MOC is capable of handling arbitrary initial and boundary 

conditions especially sharp inputs, so long as dependence on only two 

independent variables is maintained. 

iv) Numerical" integration by the MOC is stable and conforms 

the Courant-Fiedrich-Lewy stability crjterian. This will be disc~ssed 

in more detail in section 3.3.3. 

v) The method is also known to be accurate since adherence to the 

stability criterion ensures convergence to the true solution as ,!!,x 

and 6t approach zero. 

vi) Good agreement with some available solutions by transform methods 

and very goodagreeinent with" experimental results has encouraged the 

use of the MOC to obtain solutions for complicated"~r9blems wher~ no 

" other" numerical solution can deliver satisfactory results. " " 

vii) The MOC is particularly advantageous in the investigation of 

finite structures where wave reflections are involved. 

Although the MOC is most suitable for one-dimensional sp~ ial 

problems, finite difference and finite element methods are much more 

efficient in solving two dimensional spatial problems. The most 

satisfactory approximation in one case is not necessarily the most 

appropriate in another case. Furthermore, the choice of the method 

must depend on the required accuracy, the nature of the structure and 

its complexities, the importance of shear and rotatory inertia and the 

type" of analysis required, i.e. in time domain or frequency domain. 

The method of characteristics was found to be most suitable for the 

problem under consideration. 
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- " -3:3. "Solution to the Timoshenko equations by the Characteristics 

method 

3.3.1. General theory 

The method of characteristics (MOC) is used for the numerical 

solution of first order and second order partial differential 

equations (PDE) of hyperbolic type. 

Consider a quasi linear second order PDE in the form 

Where a,b,c,f are functions of x,t,u, Ux and Uti the suffices x and t 

being used to represent partial derivatives with respect to x and t. 

This equation is said to be hyperbolic, parabolic or elliptic according 

as b~ - 4ac is positive, zero or negative. 

For the hyperbolic PDE, there exists two distinct families of 

real characteristic curves at each point (x,t). For the parabolic 

case, the two characteristics coincide and they are of no significant 

value in understanding the behaviour of the solution, "Thereas the" 

elliptic form of the PDE has no real, characteristics .. 

Knowledge of the characteristics concept is most important for 

the hyperbolic PDE and,the understanding of MOC is a powerful tool in 

developing numerical solution. The MOC is the natural numerical method 

for hyperbolic systems in two independent variables. The existence of 

characteristics gives considerable insight into the expected behaviour 

of a problem's solution, even before the solution is obtained. 

The real characteristics of the PDE are curves in the real domain 

of the problem and discontinuities propagate along the characteristics. 

A step-by-step process is usually used in building-up simultaneously the 

characteristic' eridand solving" the hyperbolic PDE at the "grid points. 

For regions in the physical plane where the first derivative of u 
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exist and are continuous, one may write 

du == u dx + u dt:' 
x t ( 3.2 ) 

d{u ) - u dx + uxtdt ( 3.3 ) x xx 

d(ut~ = u dx + uttdt ( 3.4 ) xt 

writing equations (3.l) as f - au + bu + CUtt ( 3.5 ) xx xt 

Equations (3.3) to (3.5) constitute a set of three simultaneous 

equations for the three unknowns uxx~ uxt and Utt in terms of the 

known functions u, U' 
x and u

t
" They can be written in the matrix form 

a b c u f xx 

dx dt 0 uxt - d(u ) x 

0 dx dt Utt d{u
t

) 

The second partial derivatives uxx ' uxt and Utt are uniquely 

determined by this system of equations unless the determinant of the 

coefficient matrix vanishes. Upon equating this determinant to zero, 

one fin~ the characteristic equation 

a b c 

dx dt o .. 0 

o dx dt 

This yields the characteristic equation 

a(dt)2 - b(dt) (dx) + c {dx)2 - 0 ( 3.6 ) 

The two roots of equation (3.6) define the characteristics and 

• dt 1 + '2 they are real when equation (3.5) is hyperbollc -d - -2- (b {b -4ac) (3.7) x a -

When this holds, there is no solution at all unless the other deter-

minants of the system also vanish. This is based on the property that 

adding a multiple of any row (or column) of a determinant to a different, 

parallel row (or column) does not change the determinant value. One 

can write for instance one of the three other determinants as 

a f c 

dx d(u ) 0 .. 0 x 

0 d(u
t
) dt 
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(3.8) 

Equation (3.7) gives the slope of the characteristics, i.e. the 

transformation of the PDE into canonical form and (3.8) defines the 

conditions to be satisfied. 

If the characteristics are real and the initial values are pre-

scribed along a non-characteristic curve, the initial-boundary value 

problem can be solved. Furthermore, it follows that because disconti-

nuities are propagated along the characteristics in the(x,t) plane, 

finite step input functions may occur and can be handled as will be 

described later. 

A necessary condition for· the co-ordinate given in equations (3.7) 

to be non-singular is that the two real characteristics must be 

different. Hence, one must take the plus sign in one case and the 

minus sign in the other. For the hyperbolic case, where b2-4ac>O, 

second order terms may be reduced to a standard form by one linear 

transformation at anyone particular point, one can write the character-

istic ~ = const. and n = const. as roots of equation (3.6), which can 

be re~ritten in the form 

dt 2 dt a (-) - b (-) + c - 0 dx dx (3.9) 

which gives the slopes of the two families of characteristics 

~ 
dt b - y£2 - 4ac 

(3.10) =--= 
dx 2a 

dt b + /b2 - 4ac (3.11) 
n =--= 

dx 2a 

Along the characteristics, U x and u
t 

are connected by the respective 

equations, obtained from equation (3.8) as 

1dt - a~u - cu = 0 x t 

fdt - anu - cu = 0 " x t 

(3.12) 

(3.13) 

These two equations, together with the identity relation expressed in 

equation (3.2), are just sufficient to allow the step-by-step propa-

gation of the solution along the characteristic curves from a non-
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characteristic initial curve. 

In the present work, the method of characteristics is used to 

solve the Timoshenko equations as a system of two second order hyper­

bolic partial differential equations involving two independent variables 

x and t and two dependent variables. 

3.3.2. Numerical techniques 

In the theory of elasticity, a beam is a three-dimensional 

structure and its exact stress and displacement distribution are very 

difficult to obtain. In a structure, it takes a finite, though small 

time for any disturbance to be transmitted through it. Excitations 

.are propagated at either one of the two velocities, the dilatational 

velocity or the equivoluminal velocity. 

Because of the difficulties involved in the exact equations of 

elasticity, one usually needs an approximate governing equation. How­

ever, for transient response study, the derived equations must be 

totally hyperbolic, otherwise their transient response is either 

meani~gless or not obtainable. 

The Timoshenko equations are the most suitable approximate 

equations governing flexural transient response in beams. Although 

the Ti~oshenko equations are approximate, they do not alter the 

hyperbolic nature of the exact elasticity equations and the Timoshenko 

equations are practically essential for transient analysis. 

The Timoshenko equations are totally hyperbolic and involve two 

governing equations of second order or one fourth order equation. 

Alternatively, it may be decomp(.sed into four first order equations. 

The system with two second order PD~has certain advantages as compared 

to the other two systems. The wave velocities associated with each 

of the .variables appear explicitly in the second order equations and 

the factors governing the propagation of discontinuities also appear 

explicitly. A suddenly applied disturbance in ¢, or in the moment N,. 
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~ropaeates at the bar velocity ci~ ·whi1e the disturbance in y, or 

in shear prop.agate. at the shear velocity c
2

• 

It is more convenient for the numerical solution to express 

the second order governing Timoshenko equations in terms of displace-

ment, rather than the mixed stress-displacement formulation. 

When the Timoshenko equations are written in this form, they are 

a2
Jj1.': 1 a21/1 "i/ AG ,k~ AG ay 

-- ----=~1/1 .-.----
ax2 ~'Cl2 at2 El . El ax 

1 
(3.14) 

---------

2 2 _.,11-/-
where c

l 
"" E/P~ and c2 ' ~u p (3.15) 

In order to use the same notation as in the computer programme 

which will be utilized for the computation, the dependent variables "1/1 

and yare renamed as u l and u3 respectively and equations (3.14) are 

rewritten as 

1 "a2u l ' k 2AG k
2

AG 
- ------ul -

C12 at2 EI EI dX 

'1 ' ,,2 " 
•• ,' ,: 0 u 3 oUl ' 

-'-2 --a--;: £2 
C2 dt2 dX 

(3.16) 

The boundary conditions are usually prescribed in some form of 
" . 

generalized stresses; they may be defined as 

aUl M = - EI­ax 
2 dU3 

Q - It AG--""''k 2 AG u 1 ax 

(3.17) 

( 3.18) 

To classify the Timoshenko equations according to equation (3.1), 

one findS a: 1, b :d 0 and c = --L2 for the first of equations(3 .. 16) 
cl 

1 and c -= - -2 for c 2 
b2 - 4ac is equal 

the second of equations(3.16). Hence, the inequality 

4 to-2 
c1 

and~2 which is greateY than zero 'for botb 
: .c2 
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;q~ation of (3.16). Therefore the Timoshenko beam equations are 

totally hyperbolic as stated before. 

Using equations (3.10) and (3.11), the characteristics are 

determined as 

or 

dt 1 dt 1 
--- :!:--and--- +--

dx Cl dx C2 

dx dx 
--' '. + c and --= + c,2 .... 1 
dt dt 

(3.19) 

Hence, there exist four distinct real characteristics for the 

hyperbolic second order systems with two independent variables x and 

t and two dependent variables ul and u2. 

Si~ce the slopes of the characteristic are constant, the 

characteristi~ curves are straight lines in the case of the Timoshenko 

equations. 

For regions in the physical plane, where the first derivatives 

exist and are continuous, one. may write these derivatives using 

equations (3.3) and (3.4) 

d(u. ) = (u. )dx + (u. t)dt 
1.,X 1.,XX 1.,X 

d(u. t) ... (u. t) dx + (ui
l

, tt' dt 
(3.20) 

1., 1.,X 

.. .. 
auj,l aLL where 1 

u· =-- Ui,t =--1., x , 
ax at 

2 
a

2
U. a tt- ; =~ u. = 2 u. 2. 1.,XX ax l,tt at 

Since only continuous ui are being considered, one can write according 

to equation (3.20) 

= (3.21) 
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Using equations (3.12) and (3.13), the characteristics equation 

are written as 

(3.22) 

Equations (3.21) together with equations (3.22) consist of a system 

of six simultaneous equations which may be used to determine the 'six 

variables ul, u.~;~~l,t' u3' u3,x and U 3,t' if proper boundary and initial 

conditions are specified. 

For the investigation of the propagation of discontinuities, equations 

(3.16) are written in the following general form 

2 2 
a u·. 1 a u· n .. , au· 

1 1 . J -- .. ·.r (tlij Uj + B •• -) - R. (3.23) 
2 2 .2 . lJ ax 1. 

a x c· at j-1 1 

Where ui = ui (x,.t) but the ci ,Ilij' Bij are continuous functions of x 
2 2 

only. The solution for a ui/ax can be obtained from equations (3.23) 

using equations (3.20), and is written as the characteristic equations 

d(u. ) - cid(ui x) ! c.R.dx = o· 
1,t + , . 1 1. 

. '.'" 

along (dx/dt) = ~ c.' respectively. 
1 

(3.24) 

In the Timoshenko equations, the dependent variables u. s of 
1. 

first and second order may suffer discontinuities which will be shown 

to occur along the characteristic lines. Discontinuities in u. and 
l,X 

u. can occur when a finite step input (or jump input) is applied at a 
1,t 

particular x. 

To investigate first order discontinuities, that is where 

\ = 0;, \ 

Let A and B be two points on a ci or ct characteristic on either sides 

of a line which is not a characteristic, ~here 

·ru.] = u. ~(B)" - u. (A) as B -+- A (3.25) 
l.'l: 1. 1. 

So finite jumps are represented by a square bracket, i.e. CUi] c'esignates 

the finite jump of the function (ui) across x = x (t). 
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Using Hadamard's lemma which states that [ui] - 0 along 

x '" x(t) implies CUi, tJ -+ (dx/dt) [ui,,J - 0, one obtaines 

[ui,J - - ~: [ui,J (3.26) 

Integrating equation (3.24) yields, 

(3.27) 

As B ~ A and dx approaches zero, the right hand side of 

equation (3.27) vanishes and the equation is reduced to 

(3.28) 

substituting equation (3.26) into equation (3.28) yields 

dx . 
{ --;c. }[ui 1", O. 

dt 1 ,x-! 

since by definition Cu. ] f 0, one finds 
1,X 

dx -_ .. 
dt 

as lines of the first order discontinuities. 

Similarly for second order discontinuities where 

[u.] '" Cu. l'" Cu. J =0 1 1,x 1,t 

(3.29) 

(3.30) 

-Equation (3.2f) can be written for both sides of x = x(t) 

and taking the difference, one obtains 

1 
[Ui, xx] - ci 2 [ui , tJ = 0 along x=x( t) (3.31) 

UsingEadama~d's lemma for the first derivatives 

Gti, t..J (3.32) 

Substituting equation (3.32) in equation (3.31) gives 

1 dX' . 
{ 1 - -; ( d' t. )2} r: ] 

L LUi,xx '" 0 
c2 

(3.33) 

But by definition ru ] f 0, so 
LJ i, xx (3.34) 
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the equations for the families of lines along which second order 

discontinuities occur. 

Hence, the lines along which first order and second order 

discontinuities occur, are the characteristic lines ~:i. 

In order 'to obtain the equations for the discontinuities, each 

family of characteristics will be treated separately. Along dx/dtcci 

and using equations (3.23) and equation (3.24) with the choice of the 

lower sign, one has the relation governing the magnitude of the jumps 

.. ' d ru1' '+c .d ru1· -, ... c'.{ ~', •• ru.] + ~' .. [u'1'] ',' dx __ ' ~ ,JU 1 ~,xJ 1 11L1 11 " (3.35) 

In this equation, there is no summation on the i's, since [u.] 
1 

Along the characteristics, one has from equation (3.28) 

Cu. J = - ddX'"fu. 1 = - c. Cu. ] 
1,t t, 1,~. ~ 1 1,x 

Substituting (3~36) in (3.35), gives 

dx dx 

dc· 
__ 1 rUe 1 
.. ~ 1 xJ 

, c'dx ' 1 

d' rUe ] 1 " . dc. 
~1 X .. 1 

, ' =-(a .. dx ---) , 
r: J _.L1 
LU' 2 ci 

1, 

Thus may be integrated to give 
( 

- B •• • ,,_11 

ru. ] = K. c. ,-I exp V (a 1'1' dx) along ~ + L'1,X 1 1 l' 

(3.36) 

(3.37) 

(3.38) 

0.39) 

• 0 

where K'. s, are constants to be determined from the boundary and 
1 

initial conditions., 

From equation (3.39) and equation (3.36), the relationship for 

the discon tinui ties of ui, t is obtained as 

. I ;., 
ru. J =- K.c. exp I!~ . . dx 
~ 1, t· 1 1 11 (3.40) 

Along the characteristics dx/dt =-ci ' the discontinuity equations 
i 

of u. and u. tare obtained in a similar way •. They are 1,X 1, 

[ui,xl = Ki C 2-
1 exp V'~!id~ 
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• 

(3.41) 

These relations are obtained in similar approaches by Chou (1965) 

and Mengi and McNiven (1970). They were also previously discussed 

by Leonard and Fudiansky (1953) and Jahsman (1958). 

The numerical solution of the Timoshenko equations consists of 

determining the values of the generalised' displacements u1. and u3 

as well as their first derivatives at a position x and at time t. The 

values of stresses and strains can then be calculated using the 

raltionships given in equations (3.17) and (~.18). In order to carry 

out the numerical calculations, the physical x-t plane is divided into 

a network by characteristic lines, as shown in figure (3~). On this 

plane, the line ~: = c1 divides the space-time domain into two parts, 

a domain representing undisturbed particles and a second domain re-

presenting rod particles in motion. This second domain is of main . 

interest for the numerical solution. The part of interest is subdivided 

by means of a primary grid which is formed by means of two sets of 

parallel lines having equal but opposite slopes ~c1. Each grid element, 

or so called mesh has diagonals measuring 2~ and 2~t, as shown in a 

typical mesh in figure 3.2 Within each mesh, a secondary grid is 
. + 

constructed using characteristic lines with the slopes - c2 and drawn 

from the point at which the unknowns are to be evaluated. 

The whole characteristic network can be constructed without the 

prior knowledge of any of the generalized stresses since the slopes of 

the characteristics depends only on the material and geometrical properties 

of the beam. The typical mesh in figure 3.2. shows the primary grid 

in fine solid lines and the secondary grid in dotted line. As the dotted 

lines fa11 within the element, i.e. clis always greater than e
2

, the 

domain of dependence of a point is conserved. 

The required properties at point 1 in figure 3.2 may be calculated 
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if the corresponding values at neighbouring points 2,3, and 4 are known. 

The characteristic lines of the secondary grid with slope ~ Cz intersects 

the primary grid at points 5 and 6 as shown in the typical mesh of figure 

3.2~ The values of the variables at point 5 and 6 are obtained from those 

at points 2, 3 and 4 by linear interpolation. In order to perform 

numerical calculation, the characteristic equations (3.22) are written 

in finite difference form, where only central differences and averaging 

operations are used. 

Consider the typical mesh illustrated in ~igure 3.1 along :: - cl 

. {ul,t(l) - uI ,t(2)} - cl ' {uI,x(l) - uI ,x(2)} --c l f 1{ x(l) - x(2)} 

along dx 
-_ - c . I 
dt 

. {uI,t(l) - uI ,t(3)} + c~{ uI,x(l) - uI ,x(3)} - clfl { x(l) - x(3)} 

dx 
along Tt= c2 

. {u
3
,t(l) - u3,t(5)} - c~{ u3,x(l) - u3,x(5)} =-c2f 2{x(l) - x(SS} 

~U3,t(1) - u3,t(6)} + c~{ u3,x(l) - u3,x(6)} - c2f 2{ x(l) - x (6)} 

(3.42) 

The values of the variables relating to points 5 and 6 are expressed 

in terms of corresponding values at points 2,3 and 4 by linear inter-

polation, using the fO.1lowing relationships, derived from the geometry 

of the typical mesh 

Thus II t'" 2 
= 

I1t l+~ 
cl 

Hence u3 t (5) = u3,t(4) , 

!:'x = c1llt 
t 

11'/'''= c II t I 
2 

c I1rJ 
2 

-- = ----- = --=~-
llx I1t c

l
l1t 

+' {u3,t(2) 
b~/_ . 

- u3, t (4) }-xx-
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(3.44) 

To obtain u3,t(6) using equation (3.44), u3,t(2) should be replaced 

by u3,t(6). Similarly, u3,x(5), 

u
3 

(2), u
3 

(3) and u3 (4). ,x ,x ,x 

u3 (6) are expressed in terms of ,x 

Equations (3.44) are used to eliminate the values of the vari-

abIes at points 5 and 6 from the second and third of equations (3.42). 

The continuity equations are written according to equations 

(3.21) for u1 and u3 along c,t and c'2":rin finite difference form as 

-.' 
ul,x(l) + ul (3) 

u
l 

(1) -u (3) = ,x '{ x(l) - x(3)} + 1 2 

uI ,t(l) + ul t (3) 
t(l) - t(3)} ,t ' { 

2 

... u
3 

'(1) u3 (6) '" . + 
u

3
(l) - u3 (6) =- ,x ,x { x(l) - x(6')} + 

2 

. ':u (1) + u 3 ,t(6){ 
+ 3,t t(1)-t(6)} 

2 (3.45) 

The four characteristic equations (3.42) and the two continuity 

equations (3.45) constitute a set of six simultaneous equations which 

are sufficient for the determination of u1' ul,x' U1,t' u3' u3,x and 

u in term of previously calculated values at points 2,3 and .4. 
3,t 

However to start the numerical calculations, certain initial values 

along the boundary x = 0 have to be specified. 

Along the boundary x = 0, the two characteristics c l + and c
2

+ are 

absent and the numerical calculation is carried out in the half mesh 

1,2,3 of the main network. If ul and u3 are specified along x = 0, 

the remaining four equations, are sufficient for finding the remaining 

four unknowns u1,x' U1,t' u3 ,x and U3,t. However, in specifying 

g~neralised stresses M and Q along x = 0, two new finite difference 

equations must be obtained from equations (3.17) and(3.l8) to replace 

the missing characteristic equations along c1+ and c
2

+. Therefore, the 
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system of six simultaneous equations necessary for the determination of 

the six unknowns is again complete. 

For the analysis of a finite Dar, 'additional boundary conditions 

at x D, L, need to be specified. When the travelling wave reaches the 

new boundary, it is reflected and a second wave is created. This 

situation is repeated at each subsequent reflection. In a bar con-

taining a discontinuity of cross section, this situation occurs at an 

earlier stage, when the wave reaches the position of discontinuity, a 

part of it will be reflected and another part will be transmitted. 

Flexural wave are dispersive in nature and these reflections cause 

additional dispersions which complicate the wave propagation consider­

ably. However, the method of characteristics seems to' be the most 

promising numerical procedure to deal with this complex situation. 

3.3.3 Accuracy and Stability 

T~e investigation of accuracy and stability is of great practical 

interest in numerical solutions such as the method of characteristics 

which employs finite difference approximation for the governing equations 

along the characteristic lines. 

Courant - Friedrich and Lewy (1928) were the first to propose an 

explicit finite difference method for solving linear :second order PDE. 

They also discovered the conditional stability of certain finite 

difference approximations and they proved the convergence of the numerical 

solution to the exact solution as ~x+ 0 when ~~t~ 1, where ~x and At are 

the space and time intervals respectively. This inequality condition 

is widely known as C-F-L stability condition. They also introduced the 

concept of the domain of dependence and pointed out that converge~ce 

required that the domain of dependence of the differential equation should 

always stay within the domain of dependence of the difference equation. 

In 1952, Courant et. al presented a difference method for the 

solution of quasi-linear hyperbolic PDE of first order. They showed that 
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-the error introduced by integration along characteristics with a fixed 

mesh, in going from the exact solution at time t to the difference 

solution at time t + ~t, was of type 0 (~t2) which is known genera~ly 

as first order accuracy method.: They showed that the error becomes 

zero as the mesh size bt tends to zero. 

Second order accurate finite difference formulations have been 

also suggested and their stability and rate of convergence extensively 

discussed. (Stetter, 1961~.Lax and Wendroff, 1964; Raganath and 

Clifton, 1972). The sta~ility investigation of mixed-initial ~oundary 

value is not as developed .as-st?hility_and converg~n~e ~on8iderations 

of pur.e init~a.1 value problems : (Cauchy problem) for which many 

researches have been published. (Osher, 1969, 1972; Gurtafsson et. aI, 

1972; llan et. aI, 1976). This is because initial boundary value 

problems are much more complicated and only recently were subject to 

increased interest (r:reis!!'~ "1971,. :t":orton··1976 '·and Gladwell et. a1, 

1979). Most of these works areof 1feneral theoretical nature and the 

practical aspects of the stability and convergence has been taken 

up only recently. 

Numerical results can be useful only when the numerical solution 

converges to the solution of the continuous· problem. This con~ergence 

condition was supplied by the Lax-Richtmye~1956) equivalence theorem; 

"Given a properly posed initial-value problem and a finite difference 

approximation to it that satisfies the consistency condition, stability 

is a necessary and sufficient condition for convergence." There are 

two excellent books which discuss error ,estimation and stability as 

related to finite difference approximations to PDE. These are the ·books 

of Forsythe and Wasow (1960) and Richtmyer and Morton (1967). 

The method of characteristics is exact in itself and when used to 

the solution of hyperbolic PDE. However, the discretization of the 

continuous structure by finite difference approximation which are needed 
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for the numerical solution, must introduce certain inaccuracies. Let 

us consider the concept of stability and convergence in its relation 

to error estimation (O'Brien, 1951; Hahn;. 1958 and Sedney, 1970). 

A difference scheme is called convergence if the solution of the 

differnce (ut}:) equation tends to that of the differential equation 
J . 

, 
u(~,t) as ~t tends to zero. 

\ A difference scheme is called stable if solutions of the difference 

equations are uniformly bounded functions of the initial data for all 

sufficiently small ~t and all n~t in a given finite interval. 

It is clear from the definitions that convergence implies stability. 

Lax and Richt~yer (1956)· proved that the converse is also true, as was 

described by their equivalence theory. 

Let u(x,t) be the exact solution of the PDE 

Let u ,be the exact solution of the partial difference equation. 
e 

Let u~ be the numerical solution of the partial difference equation 
J 

of the same problem at time t .. n~t andposition x - jflx, where fit and fix 

are the mesh sizes used in the numerical calculation. Then the error e 

is given as 
(3.46) 

The error consists of two parts u - u is called.the truncation or 
e. 

discretization error and investigations of whether and how (u - ue)+O 

as the grid st'ze approaches zero is called the problem of stability and 

u ,- u"l! is called numerical error and its main source is round-off error. 
~ J 

The convergence and stability depend on the finite difference approxi-

mat ions and upon the initial and boundary conditons. 

Forsythe and Wasow noticed that an' approximate method applied to a 

PDE may converge in a satisfactory way to a set of values that has 

nothing to do with the correct solution of the problem. The mesh size 

affects the truncation error and round-off error in opposite ways. The 

first decreases as the mesh size decreases, while the second generally 
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increases. Therefore one cannot generally assert that decreasing the 

100sh size always increases the accuracy. 

It is always necessary to observe a "stability criterion" to 

prevent errors from amplifying so much as to make the calculations 

'1 Th "tb'l't 't'" 11 ' mean~ng esse e s a ~ ~ y cr1 er10n usua y amounts to a restr1ction 

on the permissible size of At in terms of the size of the spatial 

increments. Otherwise the scheme can produce signs of instability. 

In one space variable problem, the method of characteristics is 

inherently stable because it always adheres to the C-F-L stability 

, , • I:J.x 1 h ' criter10n, wh1ch requ1res ext ~ were C 19 the largest of the wave 

ve'locitie s • The MOC as an explicit method has an obvious advantage of 

requiring relatively little computer storage as compared to the implicit 

method. 

Ideally, choosing a mesh size of infinitesimal size produces an 

exact solution, However, there are several realistic restraints pro-

hibiting the selection of infinitesmally' small increments, since this 

can cause the round-off error 'to become excessive and dominate the 

solution, in addition to the increased computer running time. 

Finite difference approximations seldom achieve more than a rather 

modest accuracy. When stability criteria are observed, the rounding 

off errorS are not amplified as time goes on, they merely accumulate in ' 

proportion to the square root of the number of steps in the calculation. 

Nevertheless roundoff error and t~uncation error are propagated along 

with the solution. Thus the fur~her the solution goes. the greater the 

error becomes. Therefore, particular care must be taken in minimizing 

the error at the beginning, although this disadvantage of error growth 

is customary to all marching numerical schemes. 

In writing the characteristic equations in finite difference form 

for the mesh points, only central differencing and averaging operations 

, 'f ( 2 were used and the truncat10n error 1S 0 second order Ax) and the 

- 80 -



'approximation is called first order accurate. 

However, . second order accuracy difference methods have been 

developed by several authors and they are . useful in certain cases, 

particularly by finite difference methods. But this does not necessarily 

mean improved accuracy. (Lax and Wendroff, 1964: Stetter, 1961: 

Ranganath and Clifton, 1972). 

The central differnce approximations as employed in the MOC are 

found to be stable and maximum accuracy is obtained by taking ~x • cI~t, 

. •• b (1.) , In practJce, 1t 1S etter to take ~t - --c" ~~ rather than 
for cl ,>c2• 1 ' 
some smaller value, since a smaller ~t would require additional calculation 

and round off error. Also for practical considerations, it is desirable 

to use the largest possible ~t for a fixed ~x. (Fox, 1960). 

One can determine the accuracy and the rate of convergence of a 

numerical scheme by evaluating exact error for two step sizes, one half 

of each other and then determining the ratio of these errors. 

A second method for determining the error requires the numerical eva-

luation of an exact solution when available for certain cases (Hoffman" 

f-.o 

1973). Several, authors compared the numerical 'solution by the method of 

characteristics with closed form "exact" solutions and obtained excellent 

agreement. This was ou'tUned in'section 3.2.4. 

For problems involving one space variable, the numerical scheme 

adopted is inherently stable. For two space variable transient problems, 

numerical schemes are not always stable. The question of stability 

must be e~tablished for each problem separately and is usually very 

difficult. 

A second criterion for stability was obtained by Von Neuman and 

Richtmyer (1950) from a study of error growth which in its necessary 

aspects was eq'ui~alent to the condition given by Courant et. aI, (1928). , 

The Von Neuman stability criterion is mostly used to study the accuracy 

of afinite difference approximation when periodic excitations are applied 
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and it uses the fact that an tnitial expone~·~ial . function remains 

exponential.' 

Assuming an initial value in the form 

ikx ., u e 
o 

." "'~ 

Then the solutlon of (3.47) at t - llt will be 

.' 'p j' 

u(x.,.At) - rc" p ....; 
ikh~x ikx'u 

e . f' e ... 0 

.. (E 'OP eikr;At) u(x,O) 
p -

.l~ • 

and at t .. nAt it will be:" 

(3.47) 

(3.48l 

, P ik!pIAt n 
u(x,t) = (~C e '; ) u(x,O) (3.49) 

The matrix ~ ,dP eikrl?6t 'is c~lied' the- amplification ~atrix. 
Von Neuman's condition for stability states that the eigen· 

value of the amplification matrix should not exceed one in absolute 

value for arty real value of k.At. This condition is discussed in the 

works of (H~hE' 1958; Fox, 1960) and has been applied by many authors. 

(Cliiu -and }."Ieubert, 1967; Uckan and Ang, 1971 and Krieg, 1973). 

Once the material properties are established, the necessary 

truncation error depends only on the frequency of excitation. In the 

case of si~~soidal excitation, the frequency is known. However, if no 

prodominant frequency exists, as in the case of transient response, the 

maximum significant frequency should be used and for a larger frequency, 

a smaller At must be used. (Wylies and Streeter, 1976). 

Strictly. speaking, the study.of the t~uncation errors is only valid 

if the physical quantities are sufficiently smooth to insure the 

existence of the Taylor series expan.sion- containing continuous bounded 

partial derivatives about the point x1t. n1erefore, at the wave front 

where discontinuities may occur, the truncation error estimates are not 

expected to hold. 

Chou and Greif (1968) showed that the combined characteristic 

.' 
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!iifference method ~Y'aS adequate in representing discontinuous wave 

fronts and the error was only 1.2%. 

Chou and Flis (1975) also presented the excellent convergence of 

the method of characteristics as applied to composite material 

response, whereas finite element methods with a high number of modes 

showed poor convergence. 

Sobel and C~ers (1973) showed the unsatisfactory convergence 

behaviour of conventional finite difference formulations for transient 

wave type problems. 

The rate of convergence depends primarly on the truncation error 

and if it is known, an extrapolation technique can be employed to 

achieve a high degree of accuracy with a small amount.of calculation. 

The extrapolation method of Richardson (1911) can be applied to the 

calculated values at any point. 

The error of the numerical calculation e is said to be of h
2

_ 

type if it can be expressed in the form 

e = u (3.50) 

where h is the mesh size. If two values ul and ul,are calculated at 

a given point, with u
1 

corresponding to a mesh size h and ul corres­

ponding to hI' then one may write (3.50) twice in truncated form 

2 
u = u l + ~l h 

u = u l + ~l Iii 
.'.... . , _E.1imination 'of ~1 gives the extrapolated value of u 

(3.51) u = (h
1

2 ul - h1
2 ~1)/(h12 - h1

2
) 

2 
This formula is called the h -type two point extrapolation. 

Similarily if calculations with three different n~sh size hI' hl,hlare 

2 performed, a three point h -type extrapolation formula can be obtained. 

Although'the finite difference equations involve errors of h2 - type 

there is no proof that the error in the calculated values of ul itself is 
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2 also of the h -type, since the round-off error might influence the error 

type of the numerical solution. Therefore, the type of error should be 

investigated in each case. 

A detailed investigation of error estimation by extrapolation tech-

nique applied to fi-nite differencing techniq~e" 8S used in the method 

of characteristics with error estimation of h-type and h2-type has been 

presented by Roberts,' 1959· Chou et.a1, (1967) presented error estimation 

for blast waves; Hoffman (1973) for irrotational and rotational flows 

and Lister (1960) for isentropic flows. 

Ripperger (1967) suggested the use of changing mesh sizes where 

the numerical procedure could be started by a very small mesh size and 

then increased to a coarser mesh. This scheme was particularly useful, 

in high rate strains 'in materialS:·with.yi~ld ~-~Tess sip;nificatl.tly lo,"'er 

than the applied stress. The author check~d' the accuracy of the numerical 

results by halving the final mesh and found the difference between the 

two solutions to be in the fifth and sixth significant digits. 

In the present numerical analysis of the transient flexural wave 

propagation according to Timoshenko equations it is sufficient to use the 

C-F-L stability criterion and a small time increment is required to , 
maintain a value of 1 for 6x/c l 6t. The characteristic lines of the pri­

mary grid are dx/dt=!cland the interval of dependence of any point is 

bounded by the lines through it at slopes of ~cI. Consequently, the 

points used in the finite difference scheme must, for convergence, 

always remain in an interval as large as that bounded by 6x/6t~cl. 

It is desired to select the largest mesh size with a minimal 

acceptable error. This is accomplished by choosing a mesh size in 

such a manner that any further reduction in this quantity wi.ll not 

alter the solution significantly. 

The choice of the correct mesh size has to be decided for each 

individual problem, depending upon the type of loading and the rise time, 

the end conditions and the size and positon.of disc~rtin~ity.· 
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CHAPTER lV 

COMPUTER CODE FOR TRANSIENT FLEXURAL WAVE PROPAGATION 

The computer programme employs the method of characteristics 

for the study of transient response in beams subjected to eccentric 

impact with zero initial conditions and time varying boundary conditons. 

The present programme is based on a computer code, MCDIT-2I, 

written by Mortimer and Hoburg (1969) and capable of handling semi-

infinite regions of various structures such as shells, Mindlin plates, 

bars and Timoshenko beams. 

The MCDIT-21, a general-purpose computer code designed to solve 

one dimensional elastic wave propagation problems governed by one, two 

or three coupled second order hyperbolic partial differential equations, 

uses a system involving two independent variables, one space and the 

other time. The dependent variables are the generalized displacements 

and the coefficients of the displacements and their first spatial 

derivatives are functions of the spatial variable. The general theory 

is given in the work of Chou and Mortimer (1966) where a system of n 

equations is analyzed by the method of characteristi~s, yielding closed 

form equations for the physical characteristics, the characteristic 

equations, and the relations governing the propagation of discontinuities. 

or 

The governing equations are one of the following forms 

.. 2 
3x 

32 . U1 

ax2 

2 I a UI aUI --=f--+ 
2 2 1 

c
l 

at ax 

J. 
2 a u1 = f 

2 at
2 I 

c1 

oU
I 

aU3 --+ f 2u
I 

+ f --+ 
5 

ax 

dU
3 

h --+ 
5 

ax 
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2 1 
2 aUI or a u1 

a ul 
aU2 aU

3 -- _D f --+ 
' 1 f zu1 + f--+ 

3 f 4u2 +f5- + /6 u3 

axZ 2 atZ ax ax c1 ax 

2 1 2 aUI 
auz a u2 

a Uz 
.. aU3 

-- -~=g-+ 
. Z Z I.' 

gzu
1 +gr +,: ~4u2+gS-·-+ g6u3 (4.3) 

ax
2 c

1 
at ax ax ax 

One can see that the Timoshenko beam equations as given in 

equations (3.16) correspond to equations (4.2) and the coefficient f. 
1. 

and h. are obtained by the equality of the two systems 
1. 

and hi = 1 

h2 = hS = h6 - ° 

f ...-
5 

For zero initial conditions and a semi-infinite beam, three 

boundary conditions are specified along the line x - 0, in the 

following form 

., \ 
.: aUI 

aU2 
aU3 auZ 

B-+ B2uI + B --+ B4
u
2 

+ BS -+ B6u3 + B - .. b (t) (4.4) 
I ax 3 ax 7 2 

.ax a~ 

aU
I 

aU2 aU3 aU 3 
C

I 
il?C + c 2u l + C3 ax+ C4u2 + Csa;-+ C6u 3 + C7a;= b 3(t) 

Where Ai' Bi' and Ci are constants (i = 1 ••.• 7) and bl(t), b2(t) and 
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· .. b-;3 ( t) are. ~unctions of time at x - O. 

For the Timoshenko beam u2 is always equal to zero andb2(t) - o. 

The second of equations (4.4) is determined as 

B4u 2 - 0 , so B4 - 1 

where Bl - B2 - B3 • BS - B6 - B7 - 0 and the three equations of (4.4) 

reduce 'to two and all terms in u2 vanish. 

For properly posed bl(t) and b 3(t), the constants A. and C. can be 
1. 1. 

determined in non-dimensional form in accordance with the various types 

of end conditions. 

In the present work the MCDlT-21 computer code has been modified 

and further developed to solve one dimensional transient flexural wave 

propagation problems in finite beams and finite beams with discontinuities 

of cross sections. 

The present TMOTCU computer code consists of three programmes: 

(a) the TMOTCU-I programme for f1exu~:'al wave propagation in semi-

infinite beams. (b) TMOTCU-2 programme for flexural waves in finite 

beams, and (c) TMOTCU-3 programme for flexural waves in finite beams 

with discontinuities of cross sections. 

TMOTCU-l,2 programmes have been used for checking the accuracy of 

the present programmes where present numerical results are compared with 

results obtained by other authors for semi-infinite and finite beams. 

However, for finite beams with discontinuities of cross sections, 

there are no theoretical or expiremental results available and the 

numerical results were compared with experimental results obtained 

during the present investigation. 

TMOTCU programmes are written in Fontran IV and are run on CDC 7600 

computer, which has approximately 29 significant figures., Thus, round-

off error was assumed to be negligible. 

TMOTCU-I consists of a main programme and 17 separate subroutines, 

employed for evaluation of the variables of each point in the 
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characteristic network. 

For the TMOTCU-2, 4 additional subroutines are needed to include 

the effect of the second boundary, and 4 further subroutines are 

required to take the effect of the discontinuity into consideration. 

Thus, TMOTCU-3 consists of the main programme and 25 subroutines. The 

number of the input cards is also different for each individual problem. 

The subroutines may be divided into two classes, as presented in 

figure 4.1: the first-level and the second-level subroutines. Each of 

the first-level subroutines is used to evaluate a different point in 

the physical plane. The second-level subroutines are general in nature. 

Their purpose is to define quantities or perform tasks which are needed 

for several types of points. ,Some second-level subroutines reamin the 

same regardless of the type of problem or boundary conditions and are 

called invariant. Other second-level subroutines are used to define the 

problem and boundary conditons and thus are completely dependent upon 

. the nature of the particular problem. These are called user-specified. 

For each new point, the main programme decides the point type and 

calls the corresponding first-level subroutine. Each first level-

_ ... _. subroutien, in turn calls those second-level subrountines necessary to 

evaluate qualities at the new point, as illustrated in figure 4.1. 

Second level subroutines 

Boundary condition time functions subroutines 

These three fo;tran' subroutines specify the three time-dependent 

functions b
l

, b
2 

and b3 which form the right-hand sides of the three 

boundary condition, equations (4.4) for a semi-infinite beam at x .. O. 

A second similar set of three subroutines is needed to specify the 
, 

three time-dependent functions at second boundary of a finite beam, at 

x = L. 

Discontinuity values subroutines 

These two subroutines are used to assign the values of the dis-
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• aUl. dU au 
continuities 1nTx "li2, 'ax3 and :~3 which may occur along the c1+ 

+ and c
2 

characteristics. These values are determined as described in 

section (3.3.2). 

Printout quantities subroutine 

This subroutine is written to obtain the desired output. Any of 

the quantities calculated at the mesh points and for any functions of 

those quantities, such as bending moment and shear force, may be printed 

out, as specified in dimensional and/or non-dimensional form. 

Governing equation coefficient definitions subroutines 

These three Fortran subroutines are used to specify the coefficients 

equations. 

Solution matrix subroutine 

This subroutine calculates the coefficient of the solution matrix 

for the quantities at all points other than the first point in terms of 

known quantities previously evaluated. During its execution, the 

simultaneous solution subroutine is called to solve the system. 

Simultaneous solution subroutine 

This subroutine solves "n" equations in "n" unknowns by a matrix 

inversion technique. No zeros may appear along the diagonal of the 

determinant (or matrix) of the coefficients of the unknowns. 

First level subroutines 

First point subroutine '. 

This subroutine calculates the quantities at point I in figure 4.2. 

The subroutine is called only once. at the beginning of evaluation of 

quantities in the physical plane. 

The quantities at point I and 2 are to be evaluated simultaneously 

and a total of 18 unknowns exist: u .• u. and u. (i = 1,2,3) at point 
1 1.x 1,t 

1 and at point 2. The 18 needed equations are obtained as follows: 

2 compatibility equations along each of the lines: 1-2. 2-3. 2-6. 
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, , 

· 1 - Compatibility equation along each of the line: 1-7, and 2-4. 

3 Continuity equations along 1-5. 

2 Continuity equations along 2-3. 

1 Continuity equations along 2-4. 

3 boundary conditons at point 1 

The compatibility relations are defined as those differential 

relations between the first derivatives of the dependent variables u. 
1 

that necessarily must be satisfied along the characteristic lines. 

They are also called characteristic equations. 

The 6 continuity equations are written using equations (3.21) and 

are used to eliminate the 3 displacement variables ul ' u2 and u3 at 

point 1 and at point 2, leaving a system of 12 equations in 12 unkowns, 

where the compatibility equations are written according to equations 

(3.2Z). After a solution for the 12 derivatives is obtained, the 6 

continuity equations are used to calculate the displacement variables 

at point 1 and 2. The first point subroutine calls the following second 

level subroutines during its execution. (see Fig. 4.1) 

(A) The boundary condition time function subroutine. 

(B) The discontinuity values subroutine. 

(F) The governing equation coefficient definitions subroutines' 

to specify the compatibility equations. 

(C) The simultaneous solution subroutine to solve the 12 

equations in 12 unknowns. 

(D) The printout quantities subroutine. 

The description of all subroutines is given in the general form for 

three displacement variables and their spatial and time derivatives, 

although for the Timoshenko beam u2 ' uZ,x and U2,t are all set equal to 

zero. 

Input point subroutine 

The input point subroutine is called at the beginning of each new 

-92-



dx --1 characteristic line. It is used to define and print out the 
cldt 
quantities specified at a point on the first discontinuity line. 

Boundary point subroutine 

This subroutine is called at the .. end of ea~h' line. It is used 

to calculate quantities at the points on the boundary x - 0 which 

satisfy the equations along left running characteristic directions and 

which satisfy the ~~ndary condition equations •. The 9 equations used 

to calculate the 9 unknowns at point I of figure 4.3, in a way similar 

to that used in the first point subroutine, are obtained as follows 

2 compatibility equation's. along 1-3. 

1 compatibility equation along 1-4 
~ 

2 continuity equation's.:'Riotlg 1~3 

1 continuity equation along 1-4 

3 boundary conditions at point 1 

Ordinary point subroutine 

This- 'subroutine is used for each point after an input point and 

before a boundary point, except for points complicated by the crossing 

of the second discontinuity lines. The 9 equations used to calculate 

the 9 unknowns at point 1 of figure' 4.4 are obtained from compatibility 

and continuity conditions along the characteristic lines. The system 

is reduced to 6 equations with 6 unknowns and is solved si~ultaneously 

as in the previous subroutines. 

Case I subroutine 

The case I subroutine is used for points complicated by the 

crossing of the second discontinuity line with both of the lines ~--l 
cldt 

in the manner shown in figure 4;5.' After solution for the quantities at 

• dU dU 
point I (Fig. 4.5a), dicontinuities 1n dX 3 and at3 are added to the 

calculated values so that the calculation may proceed to the quantities 

at point I' (Fig. 4.5b). For each of the two points 1 and 1', a 

system of 9 equations in 9 unknowns is solved, just as for an ordinary 
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point. The printout subroutine is only called once at point 1'. 

Case II subroutine 

The Case II subroutine is used for a set of points complicated by 

the crossing of c2+ second discontinuity line in the manner shown in 

figure 4.6. The procedure for this case is similar to that used in 

'that used in the case I subroutine, with quantities at both points l' 

, being cal-eu.lated in the same subroutine, alii shown in fig. 4.6b and 4.6c. 

The same second level subroutines are called during execution for each 

of the two blocks. 

Finite beam 

For transient flexural wave propagation in a beam of finite length 

~, the reflected wave from the other boundary at x - L must be considered. 

In addition to the initial and boundary conditions at x - 0, a second 

set of end and boundary conditions at x = L must be specified. In the 

programme TMOTCU-2 developed for the finite beam, there are 21 separate 

subroutines. - 17 of these subroutines are'the same as used for the semi-

infinite beam and are as described before. Additional modifications 

are needed in the main programme to provide the requirements for calling 

. the following subroutines at the end of the beam (x -IL>. Figure 4.7 

shoWS the characteristic network for a finite beam. 

Beam end point subroutine 

The beam end point subroutine is used to calculate quatities at the 

points on the boundary x = L'such as point 1 of the typical mesh 

represented in figure 4.7. The 9 equations needed to claculate the 

9 unknowns are similar to those of the boundary point subroutine, which 

are the following 

2 compatibility equation's along 9-1 

1 compatibility equation along 6-1 

2 continuity equation's along 9-1 

1 continuity equation along 6-1 
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3 boundary conditions at point 1 

The contition at the end of the subroutine are formulated in such 

a way that the required subroutine, to calculate the variab les at the 

next point backwards along the beam, is called. 

Beam end boundary condition time function subroutine 

These three subroutines are used to specify the three functions 

.el(t), e
2

(t) and e
3

(t) which form the right-hand sides of the three 

boundary condition equations corresponding to x - 1. 

aU
I 

dU2 aU3 aUI 
D1Tx+ D2Ul, ~ D3Tx+ D4u2 + DS ax + D6u 3 + Dfa"t--ei(t) 

, a'ui' , au) 

Elax~ E2u1 + E4u 2 + ES~+ E6u3 + 

au~·. 

+ p --+ P4u 2 + 
3 ax 

aU3" 
P --+ 

5 ax 

aU3 .: 

P6u 3 + P7-­
at 

(4.5) 

" ..... Where D
1 

••• D
7
,. ~1'.'~1 and Pt , .. P7 are constants and they are deter-

, .' .. - • - •• -_\ t"'"_- "'~ .... 

mined together with e1(t), e2 (t) and e 3 (t) in just the same way as 

described for the boundary c-onditions x - o .. 

Finite beam with discontinuity of cross-section 

The computer code TMOTCU-2 is further developed to \,rrite TMOTCU-3 

computer code for studying transient flexural wave propagation in 

finite beam with discontinuity of cross section at any position along 

the beam and with any area ratios of the cross section. In figure 4.8, 

the characteristic network of a finite beam with discontinuity of cross 

section are represented. together with a typical ~esh at the area 

discontinui tY"where reflection and tran~~~~sio~ of . 
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the" incident wave occur. The basic subroutines are identical to those 

of TMOTCU-2 and in addition, 4 subroutines are developed in order to 

incorporate the matching conditions at the discontinuous cross sectional 

area. ' Thus TMOTCU-3 employed a total of 25 subroutines. 

The continuity of velocity and angular velocity from region 1 to 

region 2 are (see Fig. 4.8) 

, aU
3 

aU
3 (-) .. (-) 

at 1 at 2 (4.6) 

The equilibruim of bending moment and shear forces at the area 

of discontinuity are written as 

2" , {(du3) ()} = K2 A G' {(du3\ ()} 
K 1 AlGI - 1 - ul 1 2 2 2 -"12 - u1 2 

dX dX 

dU2 (-) DO 
dX 2 

(4.7) 

It is assumed that the beam was made of the same material 

throughout its length and that the discontinuity is due to the change 
-

in dimensions oniy." This "assumption' simpli Hes ,tne prohle~ in t1-:e way 

that the characteristic lines remain"straight and with the same 

slope along the whole beam, since c1 (1) ~ c1 (2), andc2(l) ~ c2 (2). 

However the extension of this programme for the case of discontinous 

beam which is made of two different materials, should not represent 

any additional difficulties, except that the computation would 
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_ require major alterations due to the different values of the prop a-

gation velocities c l and c2 in the two materials. 

The additional subroutines required for the TMOTCU-3 computer code 

are the following 

Discontinuity subroutine 

This subroutine is used for the calculation of a typical point 

at the area discontinuity, as shown in figure 4.8. It solved 18 

equations in 18 unknowns. These are obtained as follows 

2 compatibility equations along each of 9-1 and 3-1' 

1 compatibility equation along each of 6-1 and 4-1' 

3 continuity equations along each of 5-1 and 5'-1' 

Six additional equations are obtained from the matching condition 

as given in equations (4.6) and 4.7), which are used to eliminate the 

variables at point 1'. The six continuity equations are applied at 

point 1 and l' to obtain the displacement variables ul ' u2 and u3' 

leaving the system of. 6 equations which are solved simultaneously. 

Discontinuity solution matrix subroutine 

This subroutine is similar to the solution matrix subroutine 

described before4' . The, discontinuity of the cross section is considered 

in determining the coefficients of the solution matrix for the quantities 

at points 1 and 1', in terms of the known quantities at the neighbouring 

points. 

Case I discontinuity subroutine 

This subroutine is similar to case I subroutine and is used for 

points at the area discontinuity complicated by the crossing of the 

+ h 1· dx 1 1· e with both of t e 1nes = - of the block. The dis-c2 1n cldt 

continuity solution matrix subroutine is used to set up the system of 

simultaneous equations and the same second level subroutines are 

called as in the case I subroutine. 
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___ Case II discontinuity subroutine 

This subroutine is used for a set of points complicated by the 

crossing of the c2+ line in the same way as shown for case II sub­

routine .in figure 4.6. In the first block at the area discontinuity, 

the discontinuity solution matrix subroutine is used, whereas in the 

second block which is not at the area discontinuity, the solution 

matrix subroutine is used. 

At the end of the beam, at x - L, the subroutines described before 

for the case of finite beam are used. However, the change in the 

geometry of the second region due to the discontinuity of cross 

section, has to be considered. 

TMOTCU-3 computer code for transient flexural wave propagation 

in beams with discontinuity of cross section is the most comprehensive 

version of the three TMOTCU programmes and actually incorporate the 

other two versions. TMOTCU-3 is listed in Appendix A. 

1. 

The sequence of.the numerical calculation is as follows: 

For each problem studied, one set of input cards is required and 

the initial conditons utilized by the programme are zero. From the 

initial conditions,-boundat'y· conditions. and equations governing the 

propagation ~f discontinuities, the values of the nine variables ui ' 

u. (i = 1,2,3) are known at points 1 and 2 of the characteristic 
1,t . 

network represented in figure 4.7. The values of the variables at 

point 3 are then computed through a simultaneous solution of the 

governing characteristic equations and boundary conditions. 

2. The computation then proceeds to the ~~dt= -1 characteristic line 

through point 4. The values of the nine variables are then 

computed at point 5. 

3. The known var~ables at points 3 and 5 are used to compute the 

variables at point 6 through a simultaneous solution of the 

governing characteristic equations and boundary conditions. 
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The computation then proceeds to the dXd • -1 characteristic c l t 

line through point 7. Knowing the values of the variables at 

point 4,5 and 7, the values are then computed at point ~. 

5. This" process continues by solving sets of simultaneous equations 

to obtain the values fo the variables at points 8, 9 and 10, in 

that order. 
. dx 

Again, the computation shifts to the next --- -1 
C1dt . 

. -,,,,r ""characteristic line and solves for the values of the variables 

at the':meshpoints along this line (e.g., 12, 13,14 and 15). 

dx This procedure continues until the values along the ----- -1 
Cldt 

• • h h h M th. b • character1st1c t roug teo 'polnt are 0 talned. 

6. The number of lines to be evaluated Mo can be increased for a 

calculation of longer time history, or decreased due to computer 

. memory space 'requirement limitations and computer run time. 

This is achieved by changing Mo in the common statement. 

7. The output of the programme includes a preliminary printout 

listing of all input da~a which was "read into the main programme. 

The printout of the qua~tities at mesh points will then begin 

as specified in the printout quantities subroutine which can be 

altered to give the 'output at the required points in time and 

space. 
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CHAPTER V 

NUMERICAL RESULTS FOR FLEXURAL WAVE PROPAGATION IN BEAMS 

5.1. The shear coefficient k2 

Timoshenko (1921) defined 2 k as the ratio of average shear 

strain across a section to the shear strain at the centroid, a 

coefficient which takes into account the shear stress distribution 

over the cross section of the beam. Under static conditions and 

assuming a parabolic distribution of the shear stress, the shear 

coefficient which depends on the shape of the cross section, was 

given by Timoshenko (1921) as 2/3 for rectangular cross section and 

as 3/4 for circular cross section. This definition neglects the 

effect of warping of the cross section on its rotatory inertia 

and taking this effect into account, Gons (1931) derived an 

approximate fromu1a for k2 by the principle originally suggested 

by Foppl (1897) where the work done by the forces warping an 

element must be equal to the potential energy due to shearing dis-

to~tion. The shear stress distribution was again taken as parabolic 

distribution. Gons obtained the values k
2 

c 5/6 ,for rectangular 
, 2 

section and k = 9/10 for circular section. 

The ~alues of ~he shear coefficient k
2

, which is based on the 

static parabolic distribution, is suitable for very low frequencies 

and slender beams, but in the higher modes, the shear stress dis-

2 tribution is largest near upper and lower surfaces and k must be 

modified in order to obtain the best results which the Timoshenko 

equations are capable of achieving. 

In a second paper, Timoshenko (1922) used k2 
= 8/9 for a fixed-

fixd beam of rectangular cross section in order to bring the prediction 

of his frequency equation into close agreement 'with the two-dimensional 
J 

theory of plane stress. Furthermore, Timoshenko suggested, although 

not shown in the paper, that the value of k2 can he derived for a 
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""beam of rectangular cross section by comparison of the two theories 

just mentioned and the following expression can be derived where 

v denotes Poisson's ratio 

2 k - 5(1 + v) I (6 + 5 v) (5.1) 

A more accurate expression can be derived for a bar of circular 

cross section by equating the expressions of the frequency equations 

from the Pochhammer-Chree and Timoshenko theory for flexural waves 

in an infinite beam. The shear coefficient k
2 

is then determined as 

(5.2) 

where a series expansion for the Bessel functions appearing in the 

exact frequency determinant should be employed. Therefore, in higher 

modes the shear coefficient k
2 

is not only dependent on the shape of 

the cross section but also depends on the Poisson's ratio and the 

frequency. 

There" .have been since many attempts to obtain the value of the 

shear coefficient by various theories "anq there is no general agree-

ment in the literature about the exact effects of the cross section . 

geometryand"of mode number' on the evaluation of k
2 

value which tends 

to vary betwe~n O.E67:and 1.0 and numerous attempts have been made to 

evaluate k2 theore~ically and experimentally. 

Sutherland and Goodman (1951) presented various methods of 

obtaining the shear coefficient k
2 

for beams of rectangular cross 

section. One method was based on the prediction by the exact solution 

of the general elasticity equation that the wave velocity in a thin 

rectangular beam must approach that of Rayleigh surface.waves for 

2 small wave lengths and k was determined as 0.8696 for v = 1/3. A 

second method described by the authors was based on thickness shear 

mode of vibration with the circular frequency TIC Irlf2:c ~/r 
s s ' 

2 2 
which gives k = TI 112 =0.8225. This value was also obtained by Mindlin 

and Deresiewitz (1954) who suggested that if this value is used, the 
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Timoshenko equations give good results in agreement with experiment' 

for both low and high frequencies. 

The value of k2 was obtained experimentally in connection with 

Young's modulus measurement from flexural vibrations and comparison 

with theoretical derivation was made (Gons, 1931; Pickett, 1945; 

Spinner et. a1~, 1960; Nederveen et. a1., 1964 and Ritchie, 1973). 

A new approach to the derivation of the shear coefficient was 

adopted by Cowper (1966) who derived the Timoshenko equation by 

integration of the equations of the three dimensional theory of 

e1as'ticity and obtained a general formula for k2 and various cross 

section configurations. Their expressions for a rectangular cross 

section and for a circular cross section are respectively 

k2 = 10(1 + v) I (12 + 11 v) 

k2 = 6(1 + v) I (7 + 6 v) 

(5.3) 

(5.4) 

In a second paper in 1968a, Cowper . showed -the k2 'values derived 

by his expression for a thin beam were in close agreement with the 

thickness shear mode theory. Cowper also pointed out that although 

his results were derived from the lowest mode of vibration, they also 

were applicable to higher bending modes. 

Spence and Seldin (1970) pointed out that since only the product 

of k2G can be determined from flexural resonances , the relative error 

1 . . k2 
in G is as severe as the re at1ve error 1n • They obtained experi-

mentally k2 = 0.873 for a rectangular cross section and k2 
a 0.923 for 

a round bar, where v = 0.287. 

Carnegie and Thomas (1972) jnvestigated the dynami.c behaviour of 

turbine blades, modelled as canti1ver ~eams of rectangular cross section 

and noted the marked effect of shear and rotatory inertia in the higher 

modes.k2 was chosen as 0.834 which is close to the values of Cowper 

and Mindlin. 

Alami and Atzori (1974) matched the results of the Timoshenko 

- 108 -



." equations to the results based on a three dimensional form of 

extended Rayleigh-Ritz energy method and concluded that the flexural 

frequencies ,of a simply supported Timoshenko beam are better 

expressed with two different values for the shear coefficient in the 

two branches of the flexural modes. 

Ghosh (1974) presented the effect of various values of k 2 on 

frequencies of vibration and mode shapes up to the 5th mode and concluded 

that the frequency ratios of the higher modes were lower, the greater 

2 the k values. The effect of variation of k2 was most significant in 

the higher modes. 

Kaneko (1975) gave a comprehensive review of the history of the 

Timoshenko shear coefficient and its estimation and based his calculation 

on the values suggested in general terms by Timoshenko (1922). 

Hsu (1975) suggested a modification of Cowper's theory, which 

led to k2 - values greater than unity, where k
2 

was defined as the 

effective shear coefficient since it included the effect of pressure 

gradient over the bea~ cross section. Hsu agreed with the opinion 

expressed by one reviewer of his brief note that since his derivation 

was based only on deflections, there is no guarantee that the stresses 

resulting from the pre~ent approach agree with the Timoshenko theory. 

Although this newly suggested value, which is greater than unity, may 

include some effect not included in the Timoshenko theory, it is not 

useful for the Timoshenko equations. 

Downs (1976) used Hsu's value to obtain agreement with the 

additional shear oscillation frequency mode in a uniform simply sup­

ported Tirnoshenko beam. However, the value of k
2 

greater than unity 

does not give any reasonable comparison with the basic modes of the 

flexural motion of the ,beam. 

Rosinger and Ritchie (1977) assessed experimentally the k2 values 

derived by Kaneko and obtained excellent agreement between theory 



and experiment for the first six natural frequencies • 

Stephen (1978) showed that the value of k2 as obtained by 

equating the Timoshenko phase velocity prediction to the exact phase 

velocity as calculated by Hudson (1943) was only suitable for long 

wave length propagation and should not be used for the approximate 

discription of flexural wave motion according to the more important 

first frequency spectrum. He also found that for higher frequencies 

the k2 value differed little from the value given by Kaneko. 

In a second paper in 1980, Stephen obtained the shear coefficient 

employing the distribution in a beam performing flexural vibration 

and subjected to uniform body force or gravity loading. The derived 

expressions were compared with those of Cowper and Kaneko for several 

cross sections. 

Table I presents the various values used for the shear coefficient 

for circular and rectangular cross sections. In most cases the 

. 2 • , 
expressions for k were evaluated for the POlsson s ratio v - 0.29, 

usually found in the literature for steel. 

Ideally, one should use different values for the shear coefficient 

k2 depending on the frequency range. However, in order to keep the 

concept of single correction factor for each cross section and material 

i.e. if k2 is to be taken as constant, and choose atthe same time a 

suitable value for transient loading, the values used in this thesis 

were based on the derivation of Cowper (1966) which were derived by 

integration from the three dimensional theory of elasticity. The 

2 2 Cowper k values are close to most k values except the ones based on 

the parabolic static shear distribution which are unsatisfactory for 

impact loading with a wide range of high frequency spectrum. 

The values used for the shear coefficient in this thesis are 

unless otherwise stated, as defined by equations (5.3) and (5.4) and 

2 
are for v = O.29:k = 0.8856 and 0.8492 for circular and rectangular 

cross section respectively. 

- 110 -



-5.2. Comparison of the transient response with results obtained 

by other solution methods and with experiments 

The computer code~ MOTCU-l for a semi-infinite ,beam and TMOTCU-2 

for a finite beams were both checked for accuracy by comparing their 

numerical results with various experimental, numerical and exact 

solutions available in published papers, reports and Ph.D. theses. 

The cases considered were those of a semi-infinite beam subjected 

to a ramp platform bending moment, a semi-infinite beam subjected to 

a half-sine input bending moment and a cantilever beam subjected to 

a ramp platform bending moment at the free end. The beams in all 

these cases were of circular cross sections except the cantilever beam 

which was of_rectangular cross-section. 

The developed computer code is applicable to problems of eccentric 

impact where a bending-moemnt is applied at one end of a free-free, 

simply supported, or cantilever beams. The boundary conditions can 

be formulated in terms of bending moment, shear force, angular velocity 

and transverse velocity. 

The TMOTCU-l ~o 3 computer programmes are equally applicable to 

problems of lateral impact-of finite Timoshenko beams with various end 

conditions. The case of lateral impact of a simply supported beam 

of rectangular cross section- is also investigated. 

Computer processing time for the problems just described on a 

CDC-7600 computer was from 30 seconds to 110 ~econds depending on the 

mesh size and the time span for which the bending moment distribution 

was evaluated. In most cases, the discussion is confined to bending 

moment distribution due to its importance in engineering problems. 

However, the time wise distribution of 0, wand v are all included in 

the programme output. 
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- 5.2.1.Semi _-infinite beam subjected to eccentric impact 

The results of the present numerical solution by the method of 

characteristics were compared with a solution by Kuo (1958) who 

investigated the bending stresses in a bar subjected to eccentric 

longitudinal impact, induced by a striking bar of -the same dimensions 

and "material. The.properties ~!i;dime'n!ions"":8re "given in Table II,for 

a "low. carbon -mild ~'6teelbar_ with a :slenderness ratio -L/r ., 100 ~"here L 

is th~-length of the b,am and r its cross sectional radius of gyration. 

Kuo based his theoretical solution by the method of characteristics 

on a physically unrealistic value of c l - c 2 and therefore the bending 

moment time distributions of this case were plotted in non-dimensional 

form at two beam stations x = 0.1 and 0.3 where x - x/L. 

Kuo also obtained a modal super position solution which was based 

2 
on the value c

2
/c1 = k G/E = 0.3. The coefficients required for the 

present numerical solution are listed in table III and boundary con-

ditions corresponding to a ramp platform bending moment at the end of 

the free-free beam are according to table IV for a maximum unity input 

bending moment 

M(O,e) -" = 10 t for o( t< t 
0 

H(O,t) = 1 for t>t 
0 

Q(O,t) -= ° for all t 

The non-dimensional mesh size flx = flx/L was chosen as 0.01 

and corresponded to a time step of 1.22285 ~s. Figure 5.1 shows the 

time distribution of the bending moment at beam stations x • 0.1 and 

x = 0.3 in non-dimensional form for M vs. e, where M = ML/EI and 

t = clt/L. The time history was limited as by Kuo to the initial 

stress build up with t = 2.4 (i.e. t ~ 293.5~s). 

The comparison between the present results and Kuo's solution, 

as shown in figure 5.1, is good as both curves are reaching the same 

peak value. However, there is a small shift at the initial portion 
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of the present curve which starts at t - 0.1 for x - 0.1 and. 

at t = 0.3 for x s 0.3. These points represent the earliest possible 

arrival of any bending wave. Therefore, the present curves can be 

considered to give a better picture of the wave propagation than Kuo's 

curve which start at a later position and Kuo mentioned this phase 

shifting when he compared his theoretical results with experimentally 

obs~rved data~ -~t the beam position x - 0.3, Kuo's theoretical 

solution shows large oscillations starting at t - 1.8 and there is no 

logical explanation for ~heir appearance in the case of a semi-infinite 

beam, where no reflections are considered, unless they are caused by 

numerical instability. 

_.' Kuo suggested that the'nea~>re!ponse was not particularly' sensitive 

to the change in k2G/E and that curves based on taking a higher value 

k 2G/E invariably lead ahead of those based on a lower value. The curves 

obtained by TMOTCU-1 for k2q/E = 0.3 and 1.0 were presented in figure 

5.2 and showed that the effect of the change in k
2

G/E upon the bending 

moment distribution is significant and cannot be neglected. 

The effect of varying the rise time of the ramp platform moment 

are presented in figure 5.3 for the beam stations x - 0.1 and 0.3. 

Three different rise times to = 0.025, 0.1 and 0.4, as well as a step 

input moment, were considered. The step input moment required a 

smaller mesh size of ~x = 0.0025 for the numerical solution. It is 

seen that there is a large difference between the initial portions 

of the curves, and the amplitude increases as the rise time is 

decreased and approaches the step input response curve as a limiting 

value. The difference between the later portions of the curves is 

much smaller and the amplitude becomes almost constant as time 

progesses and approaches slowly the initial value of the input bending 

moment. 
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5.2.2. Semi-infinite beam subjected to short hending wave pulse: 

Figures 5.4 and 5.5 compare the theoretical results of the 

present work with experimental results obtained by Ripperger (1955) 

for the eccentric impact of a steel ball 'of I' :i,n.dl.a on the end of a 

cylindrical steel bar of 0.516 inch diameter. The pulse shape for 

the applied bending moment was approximated for the numerical 

solution by a half sine wave, obtained by the superposition of 

solutions for the continued sine wave differing at the start by half 

the period, as given in Table IV. The pulse duration was assumed 

as t =l4.28~s and the sine input function was 
r 

M (O,t) • 27.14 sin (nt/14.28) 

The material properties and the dimensions of the beam are given in 

Table II and the required coefficient for the initial and boundary 

conditions are given in Table III. 

The agreement between the numerical results obtained by TMOTCU-l 

programme and the experimental data of Ripperger is good as shown 

in figure 5.4 for beam stations x/d - 2 and 6; and in figure 5.S 

for beam stations xld = 10 and 22 where d is the bar diameter. The 

results are presented in nondimensional form for the bending wave 

m VB. T 
- M d - cIt 

where m = Ef- and T = ~ The' range of the time for the 

bending moment pulse was much shorter than the time it takes the _ 

reflected pulse to reach the considered position and the response was 

the same as for a semi-infinite free beam. 

various authors used Ripperger's experimental data to check their 

theoretical solutions. Plass (1958) obtained good agreement for his 

numerical solution by the method of characteristics. Plass defined 

C = ~ 2/c _ 2 = E/k
2
G and assumed C = 4 for 'V oeO.3 and k2 - 3/4. The 

1 2 
exact value of C is obviously 3.467. In Plass's work C was an important 

parameter used for establishing the limits of the transform solution 

and for evaluating the integrals for one case to compare with the 
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_. numerical results of the MOC. The value C - 4 gives c l - 2~2 and 

was seemingly chosen for convenience in obtaining transform solutions, 

but it does not correspond to the properties ot the material. 

Parker (1973) compared analytical results obtained by a modal 

solution with a~fMented series, with the experimentally observed data 

of Ripperger. Parker was able to present good time-wise agreement, 

but the amplitude of his analytical predictions were much higher, some 

of them were more than twice the record~d response. Parker suggested 

the following explanation: "The fact that the amplitude of the 

experimentally recorded pulse drops off more rapidly than the analytical 

predictions may be due to internal damping, strain rate effects, or 

limitations of the experimental appratus with regard to frequency 

res~onse". This explanation can not be considered as convinc(ng for 

the very large deviations of the analytical solution from experimental 

results. One is inclined to believe in the inadequacy of analytical 

modal solutions for impact problems of short duration, particula~ly 

eccentric impact where flexural dispersive waves are to be considered. 

Even the use of a large number of modes, as by Parker who used 

up to 800 modes did not seem to improve the usefulness of the method 

for this kind of problem. 

5.2.3. Cantilever beam 

The accuracy of TMOTCU-2 computer programme was checked by 

comparing its results with an example solved by Koenig and Davids (1968) 

for a cantilever beam subjected to a ramp platform bending monlent at 

its free end, where the effect of reflected waves in a very short 

cantilever beam of 1.5 inch length and 1 1n x 1 in cross section. The 

value of 1.0 lb.in end moment with.a rise time t = 5.l74~s was assumed. o 

The property data are listed in Table II and the required coefficients 

for the numerical solution' are given in Table III. 

The results of the present method are in a very good agreement, . 
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-with those obtained by Koenig and Davids by a so ca11ed "Direct 

analysis" which was based on a finite difference scheme. 

Figures 5.6 and 5.7 show the bending moment and shear force 

distributions at 'position x - 0.5 inch of the cantilever beam in 

comparison with the results obtained by Koenig and Davids. Both 

results are in very good agreement .and x is measured from the built-in end. 

The reflected bending wave from the built-in end of the canti-

lever beam arrives at the station x - 0.5 in. at t - 13 vs after which 

oscillations with a large amplitude are noticed. The peak at t - 23 vs 

is considerably larger than the peak at t - 15 vs and both peaks are 

larger t~an the unity input bending moment. 

Figure 5.7 shows the effect of reflected waves on shear force 

distribution' which causes the shear force to take on values other than 

zero as time increases, whereas in a semi infinite beam, the value 

of shear force would approch zero with increased time. 

In order to compare the wave propagation in cantilever. beams "rith 

ot,her end conditions a numerical solution was obtained by the use of 

TMOTCU-2 for a second much longer cantilever beam and its bending 

moment time history are compared with free-free and simply supported 

end conditions, as presented in figures 5.13 and 5.14 for various 

beam stations and discussed in section 5.3.3. 

5.2.4. Lateral impact of simply supported beam 

Dengler et. ·al (1952). studied '~nalyticallv and experimentally the 

problem of lateral impact of a beam of uniform rectangular cross section. 

The beam was simply supported at the ends and was struck transversly 

at the mid span by dropping a steel ball. 

The beam length was sufficient to ensure that reflection from 

the beam end did not return to the beam station considered within the 

time span considered at beam stations x/h = 4 and x/h = 8 for which 

d " d"" - M.h" t d the ben lng moment pre lctlon m = E 1- vs. tlme tare presen e • 
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The authors used the Hertzian theory for the theoretical pre-. 

dictions of the force-time history and observed close correlation 

between theoretical and experimental results. 

The analytical closed form solution was derived for an infinitely 

long beam and contained complicated contour integrations and their 

evaluations caused several difficulties due to singularities at both 

ends of the integration interval. 

The properties and dimensions of the mild steel square beam are 

given in Table II and the coefficient required for performing the 

numerical solution by the method of characteristic ar~ listed in 

Table III. The shear force applied at the centre of the beam was 

assumed to be of a half sine form with an amplitude of 15.6 1b and a 

duration of 14 ~s, as given in a general form in Table IV. 

Comparison of the present results with those of Go1and et. a1. 

are shown in figure 5.8 for the positions measured from the point 

of impact. Th~.comp!}rison, shmved' the excellent reproduction of the 

transient components of the records in the theoretical solution obtai-

:ne4'oy ~he TMOTCV~2'computer program. The ap,reement of the present 

numerical results with the experimental obser'1'ation Has as good as, 

the agree,m'ent ~f the analytical results obtained by Duhamel integrals. 

Forresta1 and Bertholf (1975) e~mpared the Golan~ et. a1 solution 

wrththeir 'numerical solution for a laterat-impact !lrohlem obtained bv 

two dimensional finite difference method. They found general agreement 

between the two sets of results except for higher frequency oscillations 

predicted only by the numerical solution. 

The two dimensional solution is only suitable for fl~xural wave 

propagation in beams of, rectangular cross-section which could be'solved 

as a plane stiain problems. However, flexural waves in beams of 

circular cross section are three-dimensional problems and cannot be 

solved by the two-dimensional finite difference method. 
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Furthermore, in order to apply the finite difference scheme even 

to rectangular beams, one needs to assume the input to be,in-, 'the form 
I 

of Dirac dett~: functions or sinosoidal functions which are not always 

adequate for the prediction- of the input force. Othe~ difficulties 

are involved in handling discontinuities and boundary conditions which 

dictate the introduction of a fictitious viscosity term in order to 

reduce the spurious oscillations. 

All these factor~ made the finite difference scheme unsuitable 
, 

for solving various types of flexural-wave propagation' problems in 

Timoshenko beams particularly in beams with discontinuities of cross 

sections. Therefore, it was decided to use the numerical solution by 

the method of characteristics throughout the present work. 

5.3. Finite beams subjected to end moment impacts 

5.3.1. Free-free beam 

The problem of a free-free finite beam subjected to a ramp plat-

form end moment suddenly ~pplied at x a 0, was solved by the method 

of characteristics. The moment time relations at various stations 

along the beam are plotted. For a semi-infinite beam, the value of 

the bending moment would approach the value of the maximum input 

moment. However, for the ;fini te beam the bending moment reaches 

higher values due to reflection from the end of the beam. 

The material properties used for the numerical computation are 

those of mild steel, which are listed in table II, together with the 

geometrical data of the cylindrical beam. The bending moment time 

relations in non-dimensional form are shown in figures 5.9 and 5.10 

for beam stations x = 0.1, 0.3 and 0.5. 

The ramp platform input bending moment M = ML/EI was assumed to 
_ cIt 

reach the value of unity after a rise time t =-- .. 0 1 (equivalent o L • 

to 12.285 ~s). It is seen that until reflected bending waves have 

reached the beam station under consideration, the curves of the semi-
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- infinite and finite free-free beam are ~den~ical, 'that ·j.s until 

t a 1.9 for x c 0.1, t - 1.7 for x - ,0.3, and t - 1.5 for x - 0.5. 

After that time, the effect of the reflections is manifested in the 

oscillations occuring in the bending moment distribution as time 

progresses. It was found that the value of the bending moment 

immediately after the time required for the reflection to reach the 

corresponding position did differ, although in a very small amount 

not noticable on the graphs, from the value of the bending moment in 
. 

a semi-infinite beam. However, much larger differences are noticed 

at later stages. For the positions x . 0.1, the first two alternating 

bending moment peaks appear at t - 3.6 and t - 3.7. A much larger 

oscillation in the value of the bending moment distribu~ion is seen 

at about t - 4.5 and t - 5.0 where M • 1.17 and M - 0.88 respectively. 

The number of alternating peaks in the bending moment distribution 

increases and appears at earlier times at the positions x • 0.3 and 

x = 0.5. 

The effect of the reflected wave is considerable and must be taken 

into consideration. Furthermore, the difference between the moment-

time relations in a finite beam and a semi-infinite beam at various 

stations increases as the number of r~flections reaching the considered 

positions increases. The time history of the bending moment ~as obtained 

for t ~p to 7 which includes 2-3 ·reflections.' The mesh R,ue use1 'for 

the'uulreyical evaluati:on'was'flx=O.0025. The reauired.constantsA. and C. 
~ ~ 

at x=O and Di and Pi at x=L a~e given in Table III. for a. ramp platform 

bending moment appl:iedat x = 0, as given in Table IV. 

5.3.2. Simply supported beam 

The same ramp platform bending moment of M~ 1 and rise time t - 0.1 

was applied at x - 0 of a simply supported beam of the same properties 

and dimensions as the one used in section 5.3.1. The,required 

coefficients A., C., D. and P. for the numerical solution are listed 
~ 1 1 ~ 
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in Table III and the time history of the bending moment at the beam 

stations x = 0.1, 0.3 and 0.5 is presented in figures 5.11 and 5.12. 

Comparison of the bending moment distribution in the beam when 

the ends are simply supported with those of the free-free beam show 

that the value of the bending moments in the simply supported beams is 

much smaller and the build-up is much slower. However, both sets of 

results show a similar pattern in the initial build up, but deviate 

more and more from each other as time progresses. 

In figures.-5.11 and 5.12, the effect of the change of mesh size 

is investigated. Three different mesh sizes of ~x - 0.005; 0.0025 

and 0.00125 are used in order to check quantitatively the difference 

between the three curves obtained by different mesh sizes,. chosen by 

successively decreasing the mesh size to half its value. 

The difference between the three curves with various meshes for 

the beam position x = 0.1 is seen to be very small (about 1%) until 

-
the time ~.= 3.6. The maximum error occured at t - 5 and t • 6.3 and 

had the value of about 5% when the difference is related to the initial 

unity input value of the input moment. The maximum error within the 

time span considered for the bending moment-time relation at beam 

stations x = 0.3 and x = 0.5 had the values of 5%iat t - 6.6 and 7% 

at t = 7.0 respectively. 

It is noticed that the maximum amplitude occured at the same . 

instant by all three me'sh sizes and the maximum differences were con-

centra ted at the peak values. Furthermore, the difference between the 

bending moment values obtained by two successive mesh sizes was 

decreasing and the error accumulation was. nqt increasing as time 

progresses. A smaller mesh size always requires a longer processing 

time in the computer and can be considered as a serious limitation . 
, 

which· restricts the use of the method of characteristics to relatively 

short periods of time due to economic considerations. However, with' 
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-the vast increase in processing speed of modern computer, this 

disadvantage has become less significant. 

5.3 .• '3.', Effect of end conditions .... ,' , 

In addition to the cases of a free-free beam and a simply supported 

beam previously discussed, the case of a cantilever beam· Rubjected to 

a ramp platform input bending moment at the free end x ~ 0 was also 

considered. The bending moment distribution of all three types of 

boundary conditions are plotted together ~ith the curve of a semi infinite 

free beam in figures 5.13 and 5.14 for beam stations; - 0.1, 0.3 and 0.5. 

The bending moment at each considered station of the cantilever 

beam is exactly the same as that of the free beam until the time after 

reflections from the bUilt-in end have reached that position. 

All compared sets of results were obtained using the same mesh 

size of ~x = 0.0025, corresponding to a real time step of 0.306 ~s 

and the computer code specially developed for finite beams (Programme 

TMOTCU-2) as described ,in chapter '.4 .... 

The alternating sense of the bending moment was clearly noticed 

and indicated the presence of higher frequencies due to superposition 

of propagated and reflected waves. In all cases the dispersion, the 

velocity of propagation being a function of wave length, is ~learly , 

demonstrated •. The fluctuations at beam positions; - 0.3 and x - 0.5 

are more dominant than at x = 0.1. 

In comparison with the moment time relations in beams with 

various end supports, it is seen that the higher peaks ~re reached 

at earlier times due to reflection from the free end, whereas the 

build up in the simply supported beam was the slowest. In the case 

of the cantilever beam the highest peak value of M - 1.19 was reached 

at t = 5.6 within the time considered and at beam position; - 0.1. , 

It is expected that several reflections should be considered for 

the estimation of the maximum stresses in the structure. 
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The boundary conditions are prescribed in generalized displacement 

variables and generalized velocities. The generalized stresses are 

also used as boundary conditions and are of practical importance in 

the present solution of the f1axu~al wave propagation problem according 

to the Timoshenko beam equations. 

The number of generalized stresses can be equal to or greater than 

the number of generalized displacements. However, the number of 

generalized stresses used as ~ boundary condition is equal to the 

number of generalized displacements. Therefore, in the case of the 

Timoshenko beam, one needs to specify only two boundary conditions at 

x = L, in addition to two initial conditions for y and w. A properly 

posed boundary ~ondition is to specify generalized stresses or 

generalized displacement. At a particular position, one may specify 

either stresses or displacements, but not both. 

Properly posed initial and boundary conditions are those which 

assure a unique solution of the equations. 

At a free (uns~pported) end, the bending moment and shear force 

.are zero ie. M - Q = 0, and at a simply supported end. the bending 

moment and transverse velocity are zero, i.e. M - v - O. For the 

case of the built-in end of'a cantilever beam,the trltns-verse and 

angular velocities are both zero, i.e. v m_~._ o. Various types of 

loading can be applied to various types of end conditions. Plass 

(1958) used generalized stress boundary conditions and Boley (1955) 

used generalized displacement formulations at the boundaries. Chou 

(1965) discussed in his report both types of boundary conditions. 

5.4. Finite beams with discontinuties of cross section 

5.4.1. Free-free beam 

5.4.1.1. The variation in diameter ratio 

The computer programme TMOTCU-3, based on the method of 

characteristics and described in chapter 4, was developed to solve 
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- the system of Timoshenko beam equations (4.3) subject to the 

conditions of equilibrium of forces and moments and continuity of 

displacements, as given in equations 4.6 and 4.7. 

Tbe values of the coefficients A. and C. at x - 0 together with 
~ ~ 

the D. and P. at x = L are exactly the same as the ones used for the 
~ ~ 

finite free-free beam and are given in Table III. 

The TMOTCU-3 programme included special subroutines to evaluate 

the values of M, Q, Wand V at x - Li' where the radius of the beam 

was changed from Rl to R2, Ll being the length of the beam in region I 

with a radius Rl , as illustrated in t~gure 4.8. 

The bending moment distribution was obtained numerically until 

the non-dimensional time t of about 2, corresponding to a real time 
_ CIt 

of 245 ~s, where t = ~and with a bar velocity of c l - 5111 m/s and 

L = 0.625m. All parameters and material properties of the beam are 

given in Table II. 

The mesh size used for the numerical solution was 6x • 0.25 x 152 

which is !the mesh size required for the finite beam and l/4" the 

mesh size required for the semi-infinite beam. 

The adequacy of the present mesh size was checked by carrying 

out numerical solutions with a mesh size 6i • 0.125 x 102 and it was 

found that the effect of the change in mesh size was mainly con-

centra ted at the points of peak values and the maximum difference 

was less than 5%, whereas solutions based on a larger mesh size of 

-2 6i = 0.5 x 10 were found to deviate from the present result and reduced 

the effect of reflected and transmitted pulses through the position 

oof di~continuity. 

Furthermore, the difference between the results based 0'n6x-0.25xl02 

- -2 and !J.x = 0.125 x 10 did not accumulate 'as time progressed and 

therefore the mesh size 6i = 0.25 x 10-2 was considered small enough 

to give satisfactory results for the finite beams with discontinuity 
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-cif cross section. 

The discontinuity of cross section was introduced at the middle 

of the bar, i.e. L1 - 0.5L and the diameter ratio DR was varied. Five 

different cases of DR - 0.9, 1.0, 1.1, 1.5 and 2.0 were investigated, 

where DR - R2/R1 and with Rl = l2.5mm. The case DR - 0.9 corresponded 

to a beam where the diameter of the second region was smaller than the 

first region ,and DR .. 1.0 was', the case of the continuous beam without 

any discontinuity. All other cases were with an increased diameter 

in the second region. 

The bending moment responses of the cases discussed were presented 

in figure 5.15 for beam stations i - 0.1 and 0.2 and in figure 5.~6 

for beam stations i ~ 0.4 and 0.6, where the position x • 0.6 was in 

the second region i.e. after the position of discontinuity. 

It is seen that the bending moment in the second region with an 

increased diameter are much smaller than the stresses in the first 

region. , The curves of ~x = 0.6 for DR • 0.9, 1.0 and 1.1 were 

present~d in figure 5.17 separately from the curves for DR - 1.5 and 

2.0, given in the second graph of figure 5.16, due to the different 

scales needed. 

The;values of the bending moment at ~x • 0.1 for all beams with 

discontinuity showed oscillations starting at about t • 1.4 and there 

were alternating signs of oscillations within the range of t = 2, 

whereas the curves of M - t for a finite beam presented in figure 5.9 

-showed the first oscillation at t • 3.5. This indicated clearly the 

effect of reflected waves from the position of discontinuity arriving 

at position ~i = 0.1 after the time t = 1.4. 

The deyiation from 'the M - t· curve corresponding to the finite 

beam wi th DR ... LO became larger wi th increased diameter ratio "Thich 

also resulted in an increased amplitude. 

The bending moment distribution at the position x - 0.6 after 
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- introducing the discontinuity, presented in figures 5.16 and 5.17, 

indicated an increased oscillation with decreased diameter ratio 

with a maximum amplitude for R2 - 0.9R, ten times the maximum 

amplitude in the bar with R2 - 2Rl • This showed a significant effect 

on the bending moment time history. 

Figures 5.18 and 5.19 showed the effect of the change in 

diameter ratio for a second set of beams with the discontinuity 

positioned at Ll = 0.3L, i.e.nearer to the end x - 0 where the input 

ramp platform bending moment was applied. 

The response curves were of the same pattern as those for the 

discontinuity at Ll e 0.5L, except that the oscillations appeared 

earlier and with larger peak values. The earlier arrival of the 

reflected waves is easily explained by the shorter distance to be 

travelled from the new positions of discontinuities. 

The effect of the variation in diameter ratio on the peak values 

of bending waves was demonstrated in figure 5.20 which presented peak 

values of the bending moment versus diameter ratio for the beam 

stations x = 0.1, 0.2, 0.4 and 0.6 of the free-free beam subjected to 

a ramp platform end moment with a rise time t a 0.1 and with the o 

discontinuity posit~oned at Ll = 0.3L. This graph was derived from 

the curves of figures 5.18 and 5.19 and showed that the peak values 

increased with increased diameter ratio for all beams at beam positions 

x'*. 0.1, 0.2 a~,dJO.4, whereas for the beam station x = 0.6, the peak 

values decreased with increased diameter ratios. 

5.4.1.2. The effect of change in the discontinuity position 

The bending moment distributions are presented in figure 5.21 for 

length ratios LR = 0.2, 0.3 and 0.5, where LR a Ll/L and for a diameter 

ratio DR = 1.5 

All curves are for bending waves transmitted through the 

discontinuity of cross section except for the curve LR • 0.5 at beam 

station x = 0.4 which was for a reflected wave from the discontinuity. 
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At position x ~o.4the amplitudes of the alternating oscillations 

increased with increased length ratio and the arrival of the pulse 

was also directly related to the position of the discontinuity, since 

-a reflected pulse from a position of discontinuity nearer to x ~.4was 

manifested in larger peak values with alternating signs. However, the 

same conclusion could not be derived from the curves for the beam 

position x = 0.6 which showed the maximum amplitude for the response 

curve of the beam with LR = 0.3, whereas the other two curves had their 

maximum amplitude for LR - 0.2 and 0.5 were showing amplitudes of the 

same magnitude. This could be caused for example by the superposition 

of a transmitted wave through the discontinuity and a reflected wave 

from the end of the beam for LR - 0.3; • .. hereas the case of smaller 

amplitudes could be due to the arrival of reflected and transmitted 

waves of compression and tension cancelling each other. 

5.4.11'3 The shear force distribution 

Figures 5.22 and 5.23 illustrated the shear force distributions 

for various diameter ratios DR,· 1.0, 1.1, 1.5 and 2.0 with the 

discontinuity at the middle of the beam~l- O.SL. The non-dimensional 

shear force Q is plotted at the positions x = 0.1, 0.2, 0.4 and 0.6. 

The effect of the ramp-platform bending moment input on the shear 

force time history is seen to cause much larger oscillations in the 

shear force than in the bending moment response itself. There was a 

sharp ;jump in the value of the shear force at t = 0.2 for beam station 

x = 0.1 due to the input bending moment and several oscillations with 

alternating signs started after t = 1.1 due to the arrival of reflected 

waves from the position of discontinuity and increased with increasing 

diameter ratio. This showed that the amplitude of the reflected wave 

increased when the diameter of the second region increased, i.e. the 

amplitude of the transmitted wave decreased since the total of the 

reflected and transmitted wave should be related to the incident wave 
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-' which is the same for all the different discontinuities due to the 

input bending moment and the diameter of region 1 having the same 

values. However, the relation was not easilYQ51ltai'Tlsble'due to :the - - . -
dispersion of transient £texu~al wav~s. 

The effect of reflection and transmission of transient waves 

was strongly manifested in the shear force distribution curves, since 

in comparison with bending moment responses, the shear force responses 

represent a l~~er derivative of the displacement variable. 
. ' 

5.4.2:= : Siilll'ly 'Supported beam 

5.4.2.1. The variation ~n diameter ratio 

Figure 5.24 demonstrated the transient bending moment response M 

due to a ramp-platform bending moment input with a rise time t • 0.1 o 

as in the case of the free-free beams. The discontinuity was positioned 

at Ll = 0.5L. 

The bending moment distribution was presented for beam station 

x = 0.4 and 0.6 before and after the discontinuity and the curves were 

similar to those of figure 5.16. 

It is seen that the oscillations and peak values increased with 

increased diameter ratio for beam station x • 0.4, whereas for the beam' 

station x = 0.6 the amplitude of the bendin~ wave increased as the 

dimension of the cross section in the second region became smaller. 

The second graph of figure 5.24 illustrated only the bending 

moment time histories for the beams with diameter ratios DR ="1.5 and 

2.0, whereas the curves for DR = 1.0 and 1.1 reached much higher peak 

values and were off'the scale. This is in agreement with the fact that 

a greater percentage of the incident wave is reflected with increased 

diameter in the second region. This is closely connected to the use 

of beams and tubes with discontinuities of ~ross section for the. purpose 

of filtering various frequency spectrums. 

The peak values of the oscillations in the simply supported beam 
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-were smaller than those of the free-free beam represented in figure 5.16 

for the same beam stations. 

5.4.2.2. The shear force distribution 

The shear force distribution was presented in figure 5.25 for beam 

stations x - 0.4 and 0.6 for various diameter ratios DR - 1.1, 1.5 and 

2.0. 

The large fluctuations in the values of the shear forces Q were 

directly proportional to increased diameter ratio. 

The maximum value of the shear force was reached for x - 0.4 at 

t =0.8 and alternated its value to a similar value of opposite sign at 

-t = 1.15 

At the position x - 0.6, the peak values of the alternating 

-oscillation were reached at t - 1.15 and 1.45 and were followed with 

several smaller oscillations. 
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Authors Year '£xpress"i~n9 ·f<>r. k2 .. 
" Shear coeff. 

0 rJ 
Timoshenko 1921 . - - 0.750 0.667 
Timoshenko 1922 - - 0.952 0.889 .... 
Gons 1931 - - 0.901 0.833 
Olsson 1934 rectangle: 

20(1+,,)/(24+15,,) 0.3 - 0.912 
Pickett 1945 circle: 

24.612 (1+,,) 
29.538+5.942,,+64.077 ,,2 0.33 0.850 0.833 

Davidson et. a1 1946 - - 0.80 -
Sutherland et. a1. 1951 rectangle: 2 . 

16 [r~~\-2")k/~ 0-:-,,) J • 0.33 - 0.870 
• (1-k )- (2-k )~ , 

Mindlin et. a1. 1954 - 0.33 0.847 0.823 
Gaines et. a1. 1966 - 0.30 0.90 0.833 
Cowper 1966 circle: ,. 

6 (1+,,) / (7+6,,) 0.29 0.8856 0.849 
rectangle: 
10(1+,,) / (12+11,,) 

- et.:. al~-J 
., 

s,pencr-e ·.1~70.· .' ~--. O.3~ O.SSt) 0.873 .-

Carnegie.'et." 8.1.. 1972 - - - 0.834 
Ritchie 1973 - 0.304 - 6.833 
Kaneko 1975 circle· 

6(1+,,)2/(7+12,,+4,,)2 
rectangle: 
5 (1+,,) / (6+5,,) 0.29 0.923 0.866 
:cir~ie2 . 

" 

Rosinger et. a1. 1977 
6(1+v) /(7+12\1+4,,)2 

i 
rectangle: 
5 (1+,,) / (6+5,,) 0.292 0.924 0.866 

Stephen ". 1980 circle· 
6(1+\1)2/(7+12,,+4,,2) 
rectangle: 2 

5 (1+:Il) 
6+l1~~,,2(5_m419~5s~ . 

TABLE I: Comparison of shear coefficient values 
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...... 
w 
::> 

Density p 

Modulus of Elast. E 

Poisson's ratio v 

Modulus of Rigid. G 

Shear carr. coeff. k 2 

Longt. wave vel. c1 
Snear wave vel. c

2 

Beam length 1 

Beam dia. d 

Beam height h 

Beam depth b 

Cross-sect. Area A 

Cross-sect. Moment of area I 

E I 

k2AG 

Rise tim!! 1)f inp. 1DoTlll!nt tr 

Slenderne.t ratio L/r 

k2AG/EI 

Mesh size Ilx 

Duration of sine inp. 

Semi-infinite free-free 

Kuo (1961) 

4 3 0.8x10 kg/m 

209xl09N/m2 

0.3 

Ripperger (1955) 

0.283 Ib/in3 

30xl06 psi 

0.29 

80.38xl09 N/m2\ 11.628xl06 psi 

0.78 

5111 m/s 

2790 m/s 

0.625m 

25111D 

490.87 mm2 

-9 4 19.1748xlO 111 

4007.525Nm2 

30. 776xlO~ 'N 

12.228 liS 

100 

768Om-2 

0.0025111 

0.886 

202.35xl03 in/s 

ll8.553xl03 in/s 

36.12 in. 

0.516 in. 

0.209117 in2 

-2 4 0.384xl0 in. 

104. 3975xl031b 1n2 

2.1537x10(,·lb. 

280 
. -2 

20.6268 iD 

0.0516 in 

14.28 II. 

Cantilever beam 

Koenig (1968) 

0.3 Ib/in3 
6· 

30xl0 psi 

0.3 
6' 

11.538xl0 psi 

0.833 

196.57xl03 in/s 

1ll.26xl03 inls 

1.5 in. 

1.0 in. 

l.0 in. 

1.0 in2 

0.08333 in.4 

2.5xl06 
Ib in2 

9.6112xl06 Ib 

5.174 \IS 

6 
-2 3.8445 in 

0.003125 in 

Simply supported 

Goland et.al (1~S5) 

7.187xlO-41b.2/in4 

~lo6 psi 

0.29 

1l.628x106 psi 

0.8687 

200xl03 inls 

112.92xl03 in/. 

96 in. 

1.0 in. 

1.0 in. 

1.0 in.
2 

0.08333 in.4 

2.5xl06 
Ib in2 

9.5636x106 Ib 

384 
-2 3.825 in 

0.025 in. 

14 liS 

TABLE II: Material properties and parameters of various examples for the 

. Timoshenko beams 

Finite beam & 

various end condo 

0.8x104 kg/TI? 

209xl09N/m2 

0.3 

80.38x109 N/m2 

0.886 

5111 ",Is 

2983.5 m/s 

0.625m 

25I11III 

490.87 _2 
-9 4 19.1747x10 II 

4007.525 nm
2 

34.958xl06 
N 

12.228 III 

100 

8723 .. - 2 

0.0025. 

, . 



End coad. Type of load* Ceneralised fct. i Coeffi denn of equation. 4.4** 

1 2 3 4 S 6 7 

• 
Free H(x,t) • H bItt) • M /E1 Ai,Di -1 0 0 0 0 0 0 

0 0 
end .. 

• Q/~?AG.O x-O,L I Q(x, t) • 0 b3(t) 
Ci,Pi 0 -1 0 0 +1 0 0 

M(x, t) • 0 \>1 (t) • "'o/lI.O Ai,Di -1 0 0 0 0 0 0 
II 

~ Q/l2,C Q(x,t) • Qo bl,C t) Ci,P i 0 -1 0 0 +1 0 0 -
III w (x, t) -'" 0 

b1 (t) .-1'£. ~ . 
at '0 Ai,Di 0 0 0 0 0 0 +1 

Q(x,t) - 0 b3(t) _ Q/k2AG Ci'P i 0 -1 0 0 +1 0 0 

IV M(x, t) -00 bl(t) - Mo/El Ai,Di -1 0 o· 0 0 0 0 

,,(x,t) - Vo b3(t) -~o 
at Ci,Pi 0 0 0 0 0 0 H 

Simply V M(x,t) - M bI (t) - MolEI Ai ,1>i -1 0 0 0 0 0 0 
0 

Supported 
v(x, t) b3(t) -1l-v end x-O,L - 0 . at 0 

Ci,P i 0 0 0 0 0 0 +1 

VI M(x,t) - 0 b l (t) - ~VEl Ai ,Di -1 0 0 0 0 0 0 

Q(x,t) - Qo b) (t) - Qo/l,2AG Ci,Pi 0 -1 0 0 +1 
0, 

0 

-- -
w(x, t) - w bl(t) • al/J/3t Ai,Di 0 0 0 0 0 0 +1 0 

VII 
V (x, t) - 0 b3(t) - ay/at-O Ci,P i 0 0 0 0 0 0 +1 

M(x, t) - 0 b1(t) - "'CI/EI Ai ,Di -1 0 0 0 0 0 0 
VIII 

v(x,t) - Vo b) (t) • ;'yf';,t-vo Ci,Pi 0 0 0 0 0 0 +1 . 
Built-in M(O,t) - Mo bl(t) • HolEI Ai -1 0 0 0 0 0 0 
x"O,L 

- Q fk ~AI';-O IX Q(O,t) - 0 b3 (t) C. 0 -1 0 0 +1 0 0 1 

w(L, t) - 0 ~1 (t) • aHat D. 
1 

0 0 0 0 0 0 +1 

vel, t) - 0 
b3 (t) - ay/3t P. 0 0 0 0 0 0 +1 1 

• The loading can take anv specified form such as Btep, ramp platform, 

sinosoidal or exponential. 

.* For the Timoshenko equations the coefficienta B '. E - 1 and all 
'to ~ 

other B. and E. are zero. 
1 1 

TABLE III Specified boundary conditions and the correspondinp coefficients. 
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: .:~nput·· furictions 

b. (t) - Y ~ const. 
1 0 

Y is one of M,Q;w,V·. 
o 

Ramp platform 

b • ( t) = Y t/ to 
1 0 

Sinosoidal input 

b. (t) = Y sin 2~tt 
1 0 0 

Half sine input 

super position of two 

cont. sine fct. differing 
to 

.' bYT 

Trapezoidal input 

The difference of two ramp . 
platform fct. diff. by 

pulse duration td 

Time interval 

t > 0 

, 
o <: t ~ t· 

o 

t > t o 

t > 0 

o ;< t < to 
- - 2 

Illustration 

fto....v,W 

~v 
to 

* The initial conditions for M,Q,w,V are zero 

TABLE IV~ Time variation of_the input functions 
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step function 
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CHAPTER VI 

EXPERIMENTAL STUDIES ON TRANSIENT WAVES 

6.1. Historicalba~kground . 

More than 100 years ago, theoretical investigations of longitudinal 

and transverse wave problems were extensively developed as was discussed 

in chapter 2 and section 2.1. 

However, the experimental work was lagging behind the theory and 

early investigations were limited to the measurement of over all effects 

such as the time of impact and impact velocity. 

The use of strain gauges from the forties onwards gave an impo~tant 
. 

boost to the experimental work and the continuous measurement of forces 

and strains became possible. 

By the end of the fifties most of the phenomena related to longi-

tudinal wave propagation were experimentally studied. However, the 

investigation of flexural wave problems was far from complete. This 

caused a revival of interest in this field and experiments for various 
~ 

types of impact using strain gauges and to a less extent photo elastic 

methods. 

The experimental studies of flexural waves have been mostly con­

cerned with uniform and infinite structures, but these experiments 

provide the basis for further work to study the behaviour of nonuniform 

structures. This made it possible to carry out the present experimental 

investigation of flexural waves in beams with discontinuities of cross 

section subjected to transient loading. 

Classically, there are two cases of impact where it is possible 

to calculate the stresses set up during collision, assuming there 

are no permanent changes in the dimensions of the colliding bars i.e. 

no plastic deformations. 

The first case was investigated by St. Venant (1867) and was that 

of longitudinal impact of two long uniform bars. According to 
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St. Venant, the elastic impact initiates~in each of the colliding 

bodies a rectangular pulse travelling away from the plane of contact 

and the duration of impact is equal to the time taken by the wave to 

travel twice the length of the shorter bar. However, this is only true 

if the ends of the bars are perfectly plane and meet instantaneously 

over their full area. 

St. Venant treated the two bars as a single body during the 

collision. In each bar, the impact was assumed to initiate a rectangular 

stress pulse travelling away from the plane of cont~ct and the magnitude 
• 

of the longitudinal stress can be derived from the relationship between 

the pressure P and the particle velo~ity u • 
• p = pcou 

The condition of perfect plane· impact is almost impossible to realise 

in experiments. 

The second case was that of colliding bodies where the surfaces 

are spherical, cylindrical or ellipsoidal and has been treated by 

Hertz (1882). The Hertz theory is based on a quasi-static model and 

obtains,· for elastic conditions, a relation between the distance ~ 

through which .the colliding bodies are pressed together and the force 

of impact F 

where k is a constant depending on the elastic constants of the, 

colliding bodies and their geometry in the region of contact. 
. 

For crossed cylinders of radius r and both of the same material 

with a poisson's ratio v and a Young's modulus E, 

k = 2E ~/3 (1-v2) 

The Hertz theory should only be used as guide lines since the 

theory,uses assumptions which break down at high velocities where the 

Hertz contact time could serve only as a lower bound on the contact time. 

For the case of a sphere striking a beam, the motion of the beam reduces 

the force, but the contact time remains about the same. 
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Finally it could be concluded that the theory of St. Venant 

applies to impact between the end faces of long roes, whereas the 

Hertz· theory applies when the time of transit of an elasti.c wave 

through the colliding bodies is small compared with the time of contact 

as in the case of two colliding spheres (Goldsmith and Lyman, 1960). ", 

Sears (1908) showed that both these theories were complementary 

and when the ends of long rods w~re rounded, the history of their 

impact could be deduced by combining the theories of St. Venant and 

Hertz, where the last theory was applied to the region immediately 

around the surface of contact. Sears carried out the first experiments 
. 

confirming the theory just described{Sears,1912) • 

Later calculations· ,and comparison wi th strain measurements 

demonstrated the need to introduce a gradually rising wave front, as 

Sears had proposed, rather than the abrupt jump of the Saint-Venant 

theory. 

To follow up the experimental research on wave propagation in 

solids during the past 30 years, one must select from several hundreds 

of published papers, theses and reports. 

Most of the reported experimental studies have been concerned with 

longitudinal wave propagation in various types of structures. Experi-

mental investigations of flexural wave propagation are mainly con-

c;ntrated on various types of transverse impact problems, whereas flexural 

wave propagation due to eccentric impact are not plentiful and where 

reported seldom match theoretical predictions to any desirable degree 

of accuracy. 

In this chapter, some of the experimental studies and applications 

of longitudinal and flexural waves in rods will be reviewed. No attempt 

will be made to be comprehensive, but merely to bring out results and 

investigations in areas related to the theoretical work of the present 

investigation. 
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Comprehensive reviews of experiments in impact loading are given 

in several excellent books by Kolsky (1953). Goldsmith (1960). Johnson 

(1972), Bell (i973),Graff (1975) and Mik10witz (1978). 
oJl 

Several articles reviewed the experimental studies elastic wave 

propagation. Some of these are the surveys by Ripperger (1952). ravies 

(1956), Kolsky (1958), Curtis (1960) and Rawlings (1963). 

A large number of experimental studies have been concerned with 

plastic deformation of beams subjected to high velocity loading due to 

longitudinal and transverse impacts. However, these investigations are 

beyond the scope of the present work and will be not discussed here. 

6.2. Longitudinal waves due to impact 

6.2.1. Longitudinal impact of two bars '0. 

Based on the earlier theoretical studies. Sears (1907) was the 

first to provide experimental results for the problem of longitudinal 

impact of two metal rods with rounded ends. The rods were of 1/2 inch 

diameter with rounded ends of 1 inch radius for the curvature. Two rods 

of equal length were suspended by fine cords and in their lowest posjtion, 

the rods were co-linear and just in contact. The impact velocity was 

ca. 5 in/so 

Sears was able to obtain the velocity of propagation, as given by 

St. Venant (co = /:E7P), by observing the duration of longitudinal impact 

(t = 2L/c). Sears found that the impact duration was slightly g~eater 
o 

than the time required to travel twice the length of the bars and 

attributed the difference to the so called "end effects". 

To obtain a more accurate estimate for the duration of impact, 

Sears suggested a combination of the Hertz theory and the St. Venant 

theory. This gave a better agreement with experimental results, where 

J. 
the time of contact was measured electrically. The investigations of 

Sears enabled him to explain some earlier doubts casted on the theory 

because of disagreement with previous experimental results. 
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Ramsauer investigations (1909) gave more strength to the conclusions 

reached by Sears where the propagatio~ of stress waves and the time of 

contact between two rods was discussed. 

The longitudinal impact of a bar with a shorter bar as a striker 

showed that the duration of impact increased with increased cylinder 

length 1, without being zero for 1 - O. There was an additional com~ 

pression time depending on the form and the size of the rounded ends. 

The deflection of the bar was measured by an optical method. 

Tschudi (1921) used an electrical condensor circuit to measure 

the duration of impact in three sets of cylinders of equal lengths. 

He suggested that the duration of impact was not a linear function of 

striker length, but there was a factor due to the initial velocity of 

impact which had to be taken jnto account.Wagstaff(1924)conducted similar exp 

The measurement of strain changes in time becan~· 9n1y possible 

after the introduction of strain gauges and Fanning and Ba~sett; (1940) 

were probably the first to use strain gauges (originally called electri­

cally strain sensitive strips) for the measurement of longitudinal strains. 

A similar arrangement to that of Sears was used for the longitudinal 

impact of two rods 1.lf7 inch in diameter and 6 ft. long where one end 

of the bar was flat and the other was a spherical surface. The r~sults 

were in agreement with those previously published by Sears (1908 and 1912). 

De Forest (1941) was able to confirm qualiUtively the St. Venant 

theory for longitudinal impact of two long bars suspended as bifilar 

pendulum and one bar was allowed to swing into collision with the other. 

However, it was pointed out that the most complete ~olution was.' given 

by Sears. 

Dohrenwend and Mehaffey (1943) used strain gauges for dynamic 

measurement~ in a longitudinal impact of two bars and described the 

equipment used successfully for dynamic stress analysis and the 

important contribution of electrical resistance strain gauges. 
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Recently the longitudinal impact of two bars has found various 

applications such as determining the yield stress of metals at various 

stress levels and strain rates, as by Suh (1967) who employed for this 

purpose the longitudinal impact of a long steel bar with a shorter bar. 

At the opposite end of the long bar, a truncated cone was machined and 

supported against a rigid wall. The stress wave amplitude could be 

amplified to varying degrees by truncating the cone at different places. 

~Tne change in the shape of the reflected wave from the conical end was 

measured. 

Cunningham et. al (1970); used a photomu1tip~ier ·tube·~nd·a·laser 

light source to record stress optical data associated with a moving 

stress wave. The stress wave was generated either by dropping or by 

pneumatically driving a 1/8 inch steel baIlor a 1/8 x 2 inch steel 

cylinder. 

Nevill et. al (1972) performed experiments for wave propagation, 

attenuation and dispersion in steel, epoxy and steel-epoxy composite 

specimens. The rods were subjected to axial impact by a striker 

propelled at velocities of the order of 75 fps from an airgun. The 

strikers-were of varying length and of 0.382 inch diameter. 

Matsumoto and Simpson (1977) used the longitudinal impact of two 
, 

finite elastic cylinders to investigate the acoustic radiation and 

found that the noise generation was assoiciated with the injection of 

air into the r~gion between the impact surfaces just after impact 

seperation. Three foil strain gauges were mounted symmetrically 

around the cylinders and the transient acoustic pressures were measured 

using 1/4 inch condensor microphone with the associated cathode follower. 

6.2-.2. The Hopkinson pressure bar 

The longitudinal impact of long cylinderical bars was used by 

Hopkinson (1913) to obtain pressure-time curves and impact duration of 

short pulses generated by a rifle bullet fired at, or gun cotton 
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detonated near one end of the bar. At the other end of the bar, a 

short piece of the sal'le'barwas ,in firm contact and when the pulse 

passed the joint, the end piece flew off trapping the whole momentum 

within it and leaving the long bar at rest. 

The end piece was caught up in a ballistic pendulum in a form of 

a box and by taking end pieces of different lengths, Hopkinson was able 

to obtain the pressure-time curve over the corresponding intervals. 

Landon and Quinney (1923) carried out further experiments with the 

Hopkinson pressure bar technique and discussed the effect of the change 

of bar length and bar diameter on the variation of the mean pressure. 

The authors also discussed the effect of coned bar on the propagated 

longitudinal wave. 

Although the Hopkinson pressure bar technique is simple, it has a 

basic short coming in that the shape of the input pressure pulse is not 

.known and only its duration can be determined together with its maxit'".um 

value. 

In the same experiment,.-navies·(1948) introduced the displacement 

measurement technique by using the bar as the earthed member of a parallel­

plate condensor. The radial and axial displacement were separately 

determined. 

Voltera (1948) used the Davies technique for obtaining strain- time 

curves for copper and polythene specimens. 

Kolsky (1949) proposed a further modification of the Hopkinson 

pressure bar technique and called it the split Hopkinson bar. The new 

method consisted of sandwiching a short cylindrical specimem of test 

material between two long rods of high strength steel. ' The stress pulse 

was initiated in one of the elastic bars by a detonator and the amplitude 

of the pulse was measured by a cylindrical condensor microphone. The 

displacement of the free end of the extension bar was measured with a 

parallel plate condensor. 
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The split Hopkinson pressure bar (SHPB) has been widely used in 

dynamical studies of material properties and to obtain yield point and 

it has been shown that in cases where an impact load of 100 liS ~u~~·tio~ was 

applied, the stress required to initiate.yield" .. as about dOUble those 

required under normal static conditions. 

Davies and Hunter (1963) used the SHPB to obtain displacement-time 

relations for disk shaped specimens of copper, aluminum, magnesuim, zinc, 

brass and polymers. 

In later experiments, strain gauges were used to measure the 

incident, reflected and transmitted waves and to determine the dynamic 

stress-strain relations for the tested materials. This new form of the 

SHPB was used by Lindholm (1964) for testing three annealed face centred 

cubic metals, namely lead, aluminum and copper. 

Conway and Jakubowski (1969) suggested the use of the shorter 

cylindrical bars for the longitudinal impact which were positioned 

directly below and parallel to and slightly beyond a longer bar in order 

to ensure an accurate alignment for the classical Hopkinson pressure bar. 

Strain gauge records provided the essential data for axial strains. 

Nicholas (1971) discussed the validity of the SHPB teChnique and 

carried out experiments involving the variation of input stress, gauge 

length and material behaviour. The results were compared with theoretical 

predictions which were obtained using the method of characteristics. 

B~ttholf'; (1974) ,used the split Hopkinson pressure bar (SHPB) to 

demonstrate the feasibility of a two-dimensional numerical analysis. 

An axial stress of 1 kbar amplitude was applied to the end of one of 

two elastic bars of 1 inch diameter. The elastic specimen had an impedance 

appro 1/6th that of the steel bar. 

Goldsmith and Katsamanis (1979) conducted a Hopkinson-bar type tests 

with spherical strikers to investigate strain pulses in thin rectangular 

specimens of polymethyl methacrylate (PMMA) and polycarbonate of 
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-bisphenol (lexan). The initial and rebound velocities of the spheres 

as well as strain histories were measured. The stress intensity factor 

at the tip and the nominal stress at central holes were ascertained by 

means of a shadowgraphic technique. 

6.2.3. Longitudinal impact of spheres on bars 

The generation of a longitudinal stress wave in bars by the impact 

of an elastic sphere has been originally used by Hopkinson and was 

described in the previous section.' The same arrangement approach is 

used for studies of longitudinal wave propagation. 

Crook (1952) investigated the impact of a hard sphere on a metal 

cylinder within the ranges of the theories of elastic impacts due to 

St. Venant and Hertz. A steel spehere of 100 gm was freely suspended 

and allowed to fall against an anvil supported by fiezo-electrie 

crystal for force measurements. 

The calculated impact velocities from experimental force-time 

curves agreed with values obtained from the fall of the sphere. 

Ripperger (1953) conducted an extensive investigation of pulses 

in rods resulting from spherical ball impact. The rod diameter ranged 

from 1/8 in. to 1/2 in. and various impact ball diameters as well as 

various impact velocities were considered. 

The strain signals were detected by piezoelectric strain ,gauges 

and the pulse shape had a general half-sine form at positions starting 

at several diameters from the impact end. 

Longitudinal pulses in a narrow rectangular bar, generated by a 

1/2 inch diameter ball bearing, were studied by Cunningham and r.oldsmith 

(1958). They showed excellent agreement between the experimental results 

of two measurement methods for the force-time curves. One method used 

strain gauges and the other method used piezoelectric crystals. 

Barton et. al (1958) obtained experimental results for the longi­

tudinal impact of an elastic sphere on an infinitely long cylindrical 
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·steel bars. The spheres with diameters ranging from 1 in. to 2 in. 

were dropped from the height of 7.5 cm to 30 cm to impact longitudinally 

a 1 in~ in diameter bar. 

Strain gauges were placed at a position 6 inch from the impact end 

and the experimental results showed good agreement with theoretical 

predictions based on the Hertzian contact theory. A slightly shorter 

pulse was predicted than observed and the peak amplitudes were also 

slightly different. 

Ramamurti and Ramanamurti (1977) studied longitudinal waves in 

short bars with hemispherical ends. The specimens were made of araldite, 

mild steel and aluminum and composite solid and hollow bars. 

The impact pulses were generated by the impact of a hard steel ball 

of 50 rom diameter and the strains were measured at various axial loca­

tions with strain gauges. 

6.2.4. Longitudinal waves in beams with discontinuities of cross section 

The measurement of axial strain in bars with discontinuities of 

cross section could only be achieved after the introduction of electrical 

resistance strain gauges in the forties. 

De Forest (1941) observed the propagation of longitudinal waves 

in a bar with a discontinuity of cross section at the middle and used 

strain gauges for the dynamic measurements. The bar was 8 ft. long and 

had a diameter of 1 11/16 in. for half of its length and 9/16 in. diameter 

for the other 4 ft. Three·strai~ gauges·were axially mounted on the bar, 

one 2 ft. from each end and a third very close to the shoulder at the 

centre. 

The impact was applied at both ends by a 1/2 ft. long bar travelling 

at 5 fps. 

Fehr et. al (1944) investigated the dynamic stresses in tensile 

test specimens and obtained stress VB. time curves with strain gauges 

cemented on the large diameter section of the bar. The results were in 
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fair agreement"with the theoretical predictions of Donnell (1930) for 

longitudinal strains in a bar with two discontinuities of cross section. 

Le van Griffis (1944) discussed the problem of an impact applied to 

the end of a bar with increased or decreased cross section. The conditions 

for transmitted and reflected waves were derived by equating impulse and 

momentum change for the particles on each side of the discontinuity. 

The author also pointed out that a fixed end was equivalent to an 

infinite increase in cross section, whereas a free end was equivalent 

to a decrease in cross section to zero. 

Van Griffis constructed the x"- t diagrams for the wave propagation 

in the tensile test specimen and in its holders. 

Fischer (1954) studied the"change of the shape of a transmitted 

wave travelling along an obstacle in the bar, consisting of a part with 

reduced 'or increased area, called neck and swell'respectively. Oscillo­

grams were obtained using strain gauges, cathode ray oscillograph and 

moving film camera. The agreement, betw~en measurements and theory proved 

to be fairly good. x - t diagrams were, used extensively for the graphical 

treatment of the effect of the change in area ratio on the amplitudes 

of the transmitted and reflected pulses. 

Ripperger and Abramson (1957~) presented "experimental results for 

longitudinal waves encountering a discontinuity in a rod in the form 

of a step change in cross-sectional area. A pulse propagated from the 

large end towards the small end was shown to retain its shape and 

duration with only the amplitude being affected by the discontinuity. 

Becker (1962) used strain gauge recordings of longitudinal.waves 

in beams with discontinuities of cross section for impedance measurements. 

Two long elastic cylinders were ballistically suspended and formed the 

hammer and wave guide. The rounded ends of the bars were replaced by 

plane ends to obtain a transient wave approaching step loading. A 6 in. 

long 5/16 in. diameter cylinder was end mounted on the 1/2 in. diameter 
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wave guide. 

Mechanical driving point impedance characteristics were derived 

from the normalized, incident and reflected wave form. .:. -.The imPortl.ln~ ~f 

transient loading for dynamic measurement was further emphasised in a 

second paper by Becker and Conway (1964). 

Cone (1963) studied the longitudinal wave propagation across an 

abrupt change of cross section and used embeded strain gauges in an 

aluminium filled epoxy model. 

By making some corrections in the magni tude of ,the experimental 

data to allow for suggested attenuation in the bar, Cone was able in 

most cases to obtain better agreement in comparison with predictions 

based on one dimensional theory • 

. In an investigation byBedd~e' (1965), a falling weight struck an 

upright standing bar and generated a longitudinal wave propagating up 

the rod where strain gauges provided the recordings. The bar was 8 ft. 

long and 0.25 inch in diameter. The author obtained good agreement 

between theory and experiment. 

Kawata and Hashimoto (1965) used photo elastic methods for longi-

tudinal wave measureme?ts in a polyurethene rubber struts of rectangular 

cross section with necks and notches. An approxima~e formulation was 
, 

derived for the dynamic stress concentration factor ... by considering the 

notches as discontinuities in the cross sectional area. 

'Mo~timer et. al (1968) considered the response of stepped shells 

subjected to axial impact by shells of identical material properties 

and uniform cross section. The impact velocity was measured by a photo-

diode system and strain gauges measuring longitudinal strain were 

mounted on the shell at various distances from the impacted end. 

The experimental results for longitudinal and circumferential 

strains were compared with analytical results and were in good agreement. 

In a second paper Mortimer et. al ~1972) investigated in a similar 
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set up, the longitudianl impact of thin cylindrical shells with cross 

sectional area discontinuity. Experimental incident, transmitted and 

reflected strain and stress ratios were measured and they correlated 

well with the predictions of the "bending" and "membrane" theories, but 

then the results were not in agreement with the predictions of the 

"uniaxial" theory. 

A similar experimental study was carried out by Rose et. al (1973) 

for the axial impact of a thin finite joined shell consisting of a 

cylinder-truncated cone - cylinder, which was a 1/100 scale replica of 

a portion of the Apollo - Saturn V vehicle. 

Habberstad and Hoge (1971) performed an experimental work similar 

to that of Ripperger and Abramson (1957~) !nd were' able to' ot-tl!\n better­

accuracy. A steel.ball of 1/2 i~k'diameter was propelled by an air 

gun and impacted longitudinally the small end of a 1/2 in. diameter bar, 

machined from a 3/4 in. bar diameter with a total length of 36 in. 

Yang and Hassett (1972)· :>btained good agreement in compar,ing longi-' 

tudinal stress waves in bars with step changes in area, in cyl,indrical-

cylindrical shells and in truncated cones. A striker was accelerated 

by a high pressure airgun: to produce a transient input pulse of 50~s 

duration and the data were recorded by foil strain gauges. 

Rose and Mortimer (1973) pointed out the usefulness of longitudinal 

elastic wave propagation in nondestructive testing. The effect of 

notcnes in a thin aluminum tube·on·the transmission and reflection of 

an ultrasonic signals was investigated. 

Johnson and Mamalis (1977) investigated the fracture of rectangular 

perspex stepped bar subjected to end loading by a detonator. High-speed 

.,. -:p~"iotogr~phi'C·records ~1;hm...edthe"'grmyth·of 'eraeki 'an~ lJP~i1s. 

Bar~z et.al. (1980) investigated the longitudinal wave propagation 

in circular bars with discontinuity of cross section and material. They 

showed that the predictions of the axisymmetric theory were no more accurate 

than those of the elementary model v~~n tompare~·~J.~. ~~~~r{~~nt~J r •• ultl. 

- 168 -



-6~3. Flexural waves due to impact 

6.3.1. Transverse impact 

6.3.1.1. Transverse impact of a steel ball on a beam 

The criterion for checking the validity of approximate ,theories 

describing the transverse impact of structures must be the degree of 

their agreement with experimental results. Transverse impact tests 

have been conducted under conditions where the anti-symmetrical wave 

components are predominant. 

The analysis of the process on the basis of the three-dimensional 

theory is not fe~sible as was pointed out earlier and the analysis 

by means of the plane stress solution is limited and too cumbersome and the 

only other·pract.ical.alternative tneorv""ith reasona,hle proc;pec.t of accuracv 
. I . 

is the Timoshenko beam theory which takes into account the rotatory 

inertia and transverse shear. In most cases the Timoshenko theory 

predictions were in fair agreement with experimental results. 

The analysis of bending waves has been restricted in almost all 

known publications, to uniform structural element where the comparison 

with theoretical predictions has been conducted within a short period 

of time in order to ignore the effect of reflected waves. 

As' early as 1849, Cox investigated the problem of central impact 

of a beam with a steel ball suspended as a pendulum and the deflection 

was measured for various ratios of beam mass to sphere mass. The 

impact velocity and beam cross section and length were also varied. 

In 1913, Timoshenko investigated the transverse impact of a 

beam with a steel ball us~ng the Hertzian theory of contact combined 

with the lateral vibration theory to obtain predictions for the local 

deformation and beam deflection. The specimen used was a simply supported 

beam of 1 cm x 1 cm square cross section. 

A similar investigation was carried out by Mason (1936). 

Tuzi and Nisida (1936) used photoelastic method to study transverse 
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stresses in a phenolite simply supported beam which was struck at the 

centre. The experimental values of the maximum dynamical stresses were 

about 70 - ~0% of the calculated one. 

Hoppman (1952~)·investigated the response of multi span beams 

subjected to a transverse impact by a solid steel sphere of I inch 

diameter and 5.66 fps impact velocity. He ~easured the bending strains 

by strain gauges and the maximum displacement was measured with a micro­

meter. The input pulse was approximated by a half sine wave for the 

theoretical study. A similar study was carried out by that aut~or (1952 b) 

for the transverse impact of a sphere on a column. 

Goland et. al (1955) measured the transverse waves in a simply 

supported beam of rectangular cross section subjected to a lateral 

impact by dropping a steel ball bearing from a known hei8ht on the top 

surface of the beam. Strain gauges were used for strain measurements 

at two stations along the beam and a force gauge measured the force­

time history. Most of the content of the 'latter paper was included in 

a report published by three authors Dengler et. al (1952) and more.,' 

details were presented in section 5.2.4. of the present work where the 

results of the report were used for comparison purposes. 

Cunningham and Goldsmith (1956) reported on the oblique impact of 

steel ball 1/2 inch in diameter, on a beam. Strain gauges were used 

to record the outer fibre strains and it was seen that the peak amplitude 

tihdergoes::'inversion as it propagated along the beam. In addition, the 

presence of high frequency components became more noticeable with distance 

of propagation. 

In a second publication, Goldsmith and Cunningham (1956) provided 

parallel information on the kinetic history of the same problem. The 

beam deflections at the centre of the beam were measured and showed 

the excitation of higher modes. 

The displacement time records of longitudinally prestressed beams 

- 17n -



· - of aluminum and steel were obtained by MorF. (1957). He used a 

capacitance type pickup and a single sweep generator for the recordings 

in the beams subjected to lateral impact produced by a small hammer 

driven by a motor striking the beam at the centre every two or three 

seconds. 

A study of the transverse impact of an elastically connected 

double beam system was provided by Seelig and nOPDman~ '. (1964). A 

half-sine pulse was produced by a 2 inch diameter steel ball with a 

r'ubber impact head. The input pulse was recorded by a piezoelectric 

force gauge and the bending waves were measured by strain gauges cemented 

to each beam of square cross section 1/2 inch x 1/2 inch and c. 40 ihch 

long. 

Schwie'ger (1965) investigated the elastic central impact of a 

spherical mass on a steel beam. The bending wave stress~s were 

visualized by applying photoelastic coatings and by means 6£ polarized 

light using· a ',ref1,ection:method. Experimental data were obtained 'for 

impact force and contact time for various impact velocities. The 

experiments verified: thi!'-'tifJe: of- the Timoshenko method for the prediction 

of maximum bending strains only under the point of contact, but not at 

other positions along the beam even when reflections were not considered. 

Kuske (1966) presented a comprehensive study of photoelastic metheds 

applied in dynamic stress analysis and obtained experimental results 

for flexural waves in a beam of Lakutherm: -x 30 subjected to a trans-

verse impact by a 1 gram weight. 

The application of laser holography to record bending waves was 

presented by Aprahamian (1971). A long beam of rectangular cross 

section was struck at its centre by a ballistic pendulum employing steel 

spheres of various diameters. 

The fringe pattern provided a measure of deflection and holograms 

were used for plotting the displacement curve along the beam. 
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-6.3.1.2. Transverse impact of a bar on a beam 

In addition to the use of spheres as striker, cylindrical bars 

have also been used in some investigations. The striker had the form 

of thick short cylinder in some cases as a bar with a length several 

times its diameter and impact of varying duration and longer than where 

a s~here' . is used can be achieved.' The most common arrangement for this 

type of impact is the drop test where the striker falls freely from a 

certain height to strike the beam transversely. 

. One of the earlier tests was carried out by Arnold (1937) who 

obtained bending strains and bending stresses at the centre of an 

I - beam using a extensometer for the measurement. The 8 feet long 

I - beam with a cross sectional area cf:·ll.05 in. 2 was subjected to a 

central impact of a 470 lb. weight with an impact velocity of 11 fps. 

Vigness (1951) used an experimental method similar to that of 
, 

Dohrenwend'for the imp~ct ·of·a cahtUever beam at-· i tsclamped end. The 

impact pendulum consisted of a hammer as a thick cylinder suspended by 

wires. The strains were measured at various locations and streak 

photographic recording of misplacement was made for the free end of 

the cantilever beam~ 

Schulze (1953) investigated the transverse impact of a steel beam 

4m long and 9f square cross section 5 cm x 5 cm. The striker was a 

thick steel cylinder with the height equal to the diameter and with 

rounded impact end. The dispersion of the flexural wave was investigated 

using- strain gauges for the measurement. 

The drop test method was used by Emschermann (1954) to produce 

transverse waves in a steel beam of rectangular cross section. Strain 

gauges were mounted at various positions to record the strains for 

various impact masses and impact velocities. 

A second optical method was used for the stress measurement in 

a transparent specimen. The experimental results were in good agree-

ment with predictions based on the Timoshenko beam theory. 
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A photo elastic method was also used by Durelli (1957) to study 

the transient stress and strain distributions in a simply supported 

beam subjected to central impact. The beam was made of plastic with 

good photo elastic properties and fringe patterns were obtained for the 

entire beam at four instances after impact. The strain-time curve was 

derived from the displacement-time curve assuming uniform strain 

distribution. 

Flynn and Frocht (1~6l)' used streak photography to determine the 

stress pattern in a uniform bars of Bakelite under longitudinal and 

transverse impact. 

Odaka and Nakahara (1967) performed experimental work on a simply 

supported beam 3m long and 25mm x 25mm cross section subjected to 

central impact by a steel cylinder 20Mm in diameter and 1m long, dropped 

from 1m height. Four strain gauges were mounted at various stations 

to obtain strain recordings. 

A similar investigation was carried out by Ranganath (197l) who 

used a cylindrical rod with a rounded end as a striker accelerated by 

a gas gun. The beam and the bar were sufficiently long so that no 

reflection reached the recording position during the 100 ~s after 

impact which was used for the bending strain measurement by foil strain 

gauges. 

Yew and Chen (1978) studied longitudinal and flexural waves in an 

aluminum bar 2.5m long and l8mm in diameter subjected to a transverse 

central impact by a hammer. 

The analytical predictions were obtained using a fa~t Fobrier trans­

form in the frequency domain and phase velocity vs. frequency curves 

were presented using the Timeehenko beam equations for flexural waves. 

"6~ 3.1. 3. Other- types of -tramwe-r.se impaet -:" ': 

In some cases, airgun pellets have been used for the generation 

of transient pulses of very short duration. Another method is the use 
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of electrical methods such as conductors and electrom~gnetic drive 

unit which are more common in fequency analysis. 

Dohrenwend et. al (1943) presented a theoretical and/experimental 

study of transverse impact of steel cables, steel beams and steel plates. 

A steel beam 15 ft. long of rectangular cross section 1/2 in. x 1/4 in. 

was struck by an 8 oz. ball-pointed hammer. The initial velocity was 

approximated by an exponential function. 

In a second test a 1/16 inch in diameter steel beam was struck by 

a 0.6 gm pellet fired from an airgun at a velocity of 200 fps. The 

strains were measured at various beam positions with the aid of strain 

gauges. 

Zemanek et. al (1961) studied the transverse waves generated in 

a beam by electromagnetic drive unit where up to 306 resnnant frequencies 

were excited and the resulting phase velocity was computed. The 

experimental data were compared with predictions of three different beam 

theories and showed excellent agreement with the exact theory and the 

Timoshenko beam theory. 

Forrestal and ~rthalf (1975) conducted experiments on long 

aluminum bars of rectangular cross-section 50.8mm x 19.0Smm subjected 

to a central sine-squared current-time pressure pulse of 4 ~s duration. 

The loading was produced by two closely spaced parallel conductors arid 

bending strains were measured with strain gauges mounted on both beam 

surfaces. The results were in good agreement with predictions based 

on the Timoshenko theory and on a two dimensional elasticity theory. 

6.3.2. Eccentric impact 

6.3.2.1. Eccentric impact of a steel ball on a beam 

The ecentric longitudinal impact of a steel sphere on steel bars 

has been used to generate bending pulses of very short duration in the 

range of feW'mieroseconds.· 

Investigations showed that the Timoshenko bending theory provided 
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_ an excellent approximation of the flexural wave propagation. 

Ripperger (1955) carried out a series of measurements for bending 

waves in cylindrical bars of 1/2 inch diameter subjected to eccentric 

impact of steel balls of different sizes. The impacts generated 

Hertzian pulses with durations ranging from 3.5 ~6 to 30 ~~. Strain 

gauges were mounted at several locations along the beam to measure the 

bending strains. 

The results of this work were used by Ripperger and Abramson (1957a) 

to discuss the dispersion of flexural waves in beams subjected to 

eccentric impact by a sphere. 

Ripperger's results were used in chapter 5, section 5.2~2. of the 

present work as a test for the validity of solutions ohtained by the 

method of characteristics b?sed on the Timoshenko beam theory. 

Goldsmith et. al (1972) investigated the elastic waves generated 

by strikers consisting of ste~l bars with diameters from 1/8 in. to 1/2 

in. and fired from an airgun·· .. at a-predetermined prQ&8Ure' 'agai-nst -··the 

carefully positioned target. The specimens were one solid circular rod 

and two tubes all made of aluminum and ~4.5 inch long and were subjected 

to eccentric impact. 

'. The strains were measured with foil strain gauges at various 
I 

positions and the relation between transverse and longitudinal strains 

was discussed. The alternate stress pattern of antisymmetric waves due 

to eccentric impact was observed. 

6.3.2.2. Eccentric longitudinal impact of two bars 

Most of the longitudinal impact investigations have been concentric 

impact producing longitudinal waves and only few experimental works on 

eccentric longitudinal impact producing flexural waves are known. 

I Davidson and Meier (1946) investigated the propagation of transverse 

waves in prismatical bars due to eccentric impact as an unwanted 

phenomenon in the percussion drilling of rock. Tests were conducted on 
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- prototype tools of 4 to 8 inches diameter and 30 to 40 feet long which 

were impacted by a model drilling tool made from 3/4 inch diameter steel 

bar. 

Kuo (1958) subjected a long cylindrical bar to eccentric longitudinal 

impact with a second bar of equal length and diameter. The two bars 

each 8 feet long and 1 inch in diameter were suspended by wires at two 

points. 

The strain measurement was carried out at various positions along 

the beam using strain gauges. The dispersion of the input pulse into 

a variable frequency harmonic wave train was evident. The results of 

the work were later published in two papers (Kuo. 1959 and 1961). More 

details of ~uo's experiment were presented in section 5.2.1. of the 

present work • 

. Stephenson and Wilhoit (1965) also studied the propagation of 

bending waves in a rod. A rod 30 feet in length and 2 inch in diameter 

was used with ,eight strain gauge stations. The sudden application of 

the bending moment at one end of the bar was achieved by the rapid 

unloading due to fracture of a tensile loading piece attached to the 

beam end. The great length of the bar was useful in establishing the 

wave front velocity. 

6.3.2.3. Transient bending waves in bars with discontinuity of cross 

section 

The study of wave propagation problems in more complex structures. 

such as the waves around surface obstacles and irregularities have been 

limited in almost all known literature to longitudinal waves. Even in 

simple uniform structures. the investigation of flexural waves is 

complicated by dispersion and has been restricted to semi-infinite 

models where reflections need not be taken into account. 

In the present. experimental techniques are sufficiently well 

established to permit detailed investigations of problems such as the 
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- effects of nonuniformities in cross sectional area and elastic 

properties on the transmission and reflection of bending waves. 

There have been few experimental studies of flexural waves in 

curved beams and T-joined and L~joined frames which will be reviewed 

in this section. 

Mugiono (1955) was first to investigate flexural waves in rods 

with discontinuities of cross sections as part of an acousto-dynamic 

study of building structures. The tes~ars were of aluminum and 3 to 

4m long with a diameter D2 = 40mm and diameter 'r~tios D2/D l were taken 

as 2, 5 and 11.4. 

Specimens with necks and double discontinuity of cross section 

were excited sideways with a permanent dynamic systernattached to the 

small end of the bar. A crystal microphone was positioned at the 

middle of the first portion of the bar to measure continuously the 

acceleration of the steady state bending wave. The experimental 

results were used to obtain a reflection coefficient. 

Ripperger and Abram~on (1957 b) 'studied the reflection and trans-

mission of transient bending waves at a discontinuity of cross section 

in'a circular bar supported on rubber pads and subjected to eccentric 

impact by a 1/2 ich steel1ball fired from a spring powered gun. The 

test specimen was 32.5 inch long and had a diameter of 1/2 inch in the 

first half of its length and a 3/4 inch diameter in the rest with strain 

gauges mounted on both sections of the beam. The experimental results 

for the bending waves were only briefly discussed because it was 

realised that the theoretical predictions of Mugiono on the basis of 

the Euler-Bernoulli theory were inadequate for the transient bending 

wave comparison. 

The theoretical aspe~ts of the previous two publications were 

discussed in more detail in section 2.3 of the present work. 

Lee and Kolsky (1972) performed experiments for longitudinal and 
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flexural waves in two rods joined end to end at an angle. A longi­

tudinal incident wave was produced by firing a projectile of the same 

diameter as the bar. 

When a stress wave impinged on the junction, it generated four 

I)uis~s ~ namely longitudinal and flexural pulses which ",ere t.ransmi t ted 

into the second rod and two similar waves that were reflected back • 

The comparison of experimental results with predictions based on 

the Timoshenko theory were generally in good agreement, but showed some 

significant variations. 

Philips and Crowly (1972) investigated pulse propagation in curved 

beams subjected to a half-sine bending moment input by using simulated 

photoelastic fringe patterns. Test beams of rectangular cross sections 

were curved beam with severe bend and a quarter-turn bend. The authors 

concluded that the propagation of a predominantly flexural pulse in a 

curved beam of moderate curvature was insensitive to the actual beam 

curvature as far as bending moment ~nd shear force were concerned. 

In a second study of the same problem, Crowly et. a1 (1~7.4) 

used a pulsed ruby laser as a light source to obtain isochromatic 

fringe patterns for three models of Homalite 100, impacted longi­

tudinally with a soft lead pellet. Strain gauges were also used for 

supplementary experimen~al data. 

Atkins and Hunter (1975) obtained experimental results for elastic 

wave propagation in L-joint and T-joint models of equal square cross 

section of 25mm x 25mmand l.2l9m long. 

A steel projectile was driven forward in a tube of compressed air 

to impinge longitudinally one end of the joined frames. The longitudinal 

wave produced at the right angle joint a transverse wav~ Which·~as nTO­

pagated into the second bar. Both types of strains were measured 

separately"<by strain gauges. 

The agreement between experimental results and theoretical 
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predictions was generally satisfactory except at peak amplitude where 

the theoretical value exceeded the experimented;one by ca. 25%. 

6.3.3. Fracture of brittle materials due to bending waves 

One example for the manifestation of flexural waves is the brittle 

fracture occuring in specimens under load where the growth of the 

fracture results in a very sudden change in the stress field. 

Miklowitz (l9.53b)-was··f!~eld:nS'=f1n "explanation for -t'~e.·fac::t:tn8t~~en 

a specimen was broken in tension two fracture surfaces instead of one 

were found to occur. Miklowitz suggested that this effect was the result 

of the fact that when a specimen breaks in tension, and the fracture 

starts at some point off the axis of the bar, a flexural pulse as well 

as an extensional pulse is generated at the fracture surface. 

The superposition of extensional and flexural pulses can cause the 

build up of stresses in excess of the longitudinal stress at which 

fracture originally took place and hence a second fracture can be pro­

duced at a point remote from the initial one. The specimen was made 

of plexiglass • 

Several examples of dynamic fractures in metal specimens were 

described by Rinehart and Pearson (1954). 

Tsai and Kolsky (196~) "studied the generation of the fracture pulses 

produced in a glass block when fracture takes place under the condition~ 

of a Hertzian type impact between a steel ba1l and a large glass plate. 

Philips (1970) reinvestigated the problem of brittle fracture of 

a glass rod under simple tension, originally set by Miklowitz. A glass 

specimen of circular cross section was mounted in a tensile test machine 

and the load w~s increased until fracture occured. The specimen length 

was from 8 to 18 inch. 

The two types of waves generated were longitudinal and flexural 

waves and the output of strain gauges at various positions gave a 

highly satisfactory agreement with the predictions of the Timoshenko 
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-beam theory, although many simplifying assumptions were made. 

Bodner (1973) repeated the experiments of Philips and used long 

bars of square cross section subjected to pure bending 

Nasim et. al(1971) observed the spalling of curved perspex bars 

subjected to axial impulsive loading and noted its independence of curvature. 

Colton (1973) performed experiments on infinite beams and plates 

loaded with sheet explosives. It was found that all fractures were 

initiated by bending stresses. 

The strains on the surface of the Linen phenolic specimens were 

measured with strain gauges and a second photoelastic method provided 

qualitative strain measurements. The beam was 50 em long and~8d a cross' 

;ection -of- 25- .ymmx _ 6. 4mm. 

The effect of the initial central fracture was approximated by a 

two stage fracture model that specified the bending moment distribution 

at the fracture point and its reduction to zero behind the fracture 

front. 

The experimental results were in good agreement with predictions 

by the method of characteristics using the Timoshenko beam theory. 

Recently Philips'et. a1 (1978) conducted experiments on an aluminium 

bar containi~g: a bandsawed edge crack. The bar was struck longitudinally 

by a shorter bar of the same material. Both bars were of 25.4mm square 

cross section, with the aim to diagnose bone fracture healing. 

Strain gauges were mounted on opposite sides of the bar between 

the impact end and the crack location to monitor initial compressive 

strain and reflections containing symmetric and antisymmetric components. 

Kida and Oda -(l982) used photoelastic methods to study' th~ fracture 

. behaviour' or-:pritt1e~~laster -cantilever- beams -su'"',; eeted -to -transverse impact 

at their free end by a sphere of 50.8 mm dia. and 0.53 kg mass. J 

An extensive review of dynamic fracture is included in several recent 

papers by Kolsky (1970, 1971, 1976). 
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6.4. Experimental methods in stress wave detection 

6.4.1. Mechanical methods 

The simplest mechanical method of measurement was devised 

originally by Hopkinson (1913) and was described in section 6.2.2. It 
.. '. ", 

is based on the trap of the momentum of the pulse in a detachable time 

piece which is in close contact with the specimen and to measure this 

momentum by a ballistic pendulum. The technique was extended by 

Rinehart and Pearson (1954) to be used with specimens in the form 

of plates or blocks. 

The method is simple and direct and can be used successfully when 

large stress amplitudes are to be recorded. Its disadvantages are 

that it does not give an accurate delineation of the pulse shape and 

the method can not be used for weak stresses and where the decay is 

too rapid since a useful pressure time curve can not be constructed. 

After the development of modern electrical and optical methods, 

the mechanical methods provide a'useful check on the stress-time curves 

obtained experimentally since the momentum can generally be derived 

from this curve by integration. However, one should realise that a Rimple 

relation does . _ not always exist between the "shapes" of these different 

quanti ties. 

Davies (1948) modified the' Hopkinson method and investigated the 

validity of the basic assumption of the uniformity of the stress and 

displacement over the cross section for an input transient pulse. 

The mechanical measurement method has been described in several 

books and publications such as by Davies (1956) , Kolsky (1958), 

Johnson (1972) and Graff (1975). 

6.4.2. Optical methods 

Optical methods of measurement have been successfully used for 

the direct determination of longitudinal and torsional displacements 

of bars under transient loading. 
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One of the most popular methods is the photo elastic method 

in which the model must be of photo elastic material: these materials 

usually exhibit viscoelastic behaviour when high frequency components 

are present. 

Interferometric techniques such as shadow 'te~tu;,-i~ues"-and SchHeren 

optics require the specimen surface to be highly polished and 

optically flat. These conditions are hardly met in practice. 

Another method, called a diffraction grating method, uses the 

coating of the surface with a birefringent grating. 

The technique of holographic interferometry which employs a pulsed 

ruby laser as a coherent light source is probably the most advanced 

optical method and it has been used for transient wave propagation 

studies. Most of the difficulties involved in this method such as 

stability and fringe interpretation could be reduced by the proper 

choice of equipment and optical arrangement. 

The optical method provides two dimensional stress analysis and 

can be used for longitudinal stress wave study. 

However, if longitudinal and flexural waves are present the 

flexural components of the stress can not be studied because after the 

passage of the longitudinal wave the bar undergoes an axial displacement 

which will be superimposed to some degree on the flexural wave pattern 

and cause complications in the analysis. 

Optical methods do not provide a complete solution of dynamic 

loading since the results are only obtained at a particular time, but 

they are most helpful to provide a qualitative visualization of the 

problem. 

The description of the optical method has been brief and for more 

details, one should consult one of the following references, Dove and 

Adams (1964), Dally and Riley '"(1965) 'and Robertson and' King (1974). 
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6.4.3. Electrical methods 

6.4.3.1. Condenser gauges 

The condenser gauge operates on the basis of capacity changes which 

can be achieved by a change in the spacing of the condenser plates or 

a change in their area when a narrow air gap between the plates is used 

as dielectric medium. 

One surface of the specimen itself may serve as one plate of the 

condenser. This was successfully used by Davies (1948) in his modi­

fication of the Hopkinson pressure bar. 

There are many difficulties in the use of. condenser gauges. The 

passive capacitance of connecting cables reduces the useful capacitance 

variation of the gauge and extremely high carrier frequencies are 

required to avoid excessive values of circuit impedance. This makes 

it difficult to use the condenser gauges for the measurement of sharp 

pulses of short duration. Additional difficulties are involved in 

the calibration of the gauge. 

Therefore, it is not surprising that condenser gauges are no longer 

used for strain measurements intr-ansienttype' loadings. 

6.4.3.2. Electrical resistance strain gauges 

These gauges are shortly called strain gauges and are probably 

more widely used than any other device in the measurement of strains 

in transient wave problems. A strain gauge uses the fact that the 

electrical resistance of a wire depends on its longitudinal strain which 

was first described by Lord Kelvin (.1~56).· But the first practical 

application of strain gauges in dynamical measurement was due to 

Datwyler and Clark (1938). 

In addition to their simplicity and their excellent frequency 

response, the strain gauges have the advantage of recording directly 

a particular component of the pulse i.e. separate flexural or ,longi­

tudinal strain aetectionwhich is achieved by using a comhination of 
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strain gauges in circuit connections in a ~leatstone hri~~e and 

.potentiometer. 

The disadvantages are that the initial rise is not instantaneous 

since the leading edge of the pulse takes a finite time to traverse 

the length of the gauge. The size of the strain gauge means that it 

gives an integrated value for the strain over the area. However, very 

small strain gaugesafew millimeters long are used to counter this dis-

advantage. 

A particular care should be taken in mounting the strain gauges 

on the surface of the specimen in order to avoid failure at high 

frequency response due to the properties of the thin adhesive layer. 

Furthermore, the strain gauge recordings on the outer surfaces of 

the specimen can give the transient response of the structure adequatelv 

only if a uniform stress distribution over the cross section can he 

assumed. However, this is one of the assumptions upon which the one 

dimensional theory of wave propagation is based. Therefore, it does 

not represent any additional restriction to the experimental results 

when compared with the predictions of the Timoshenko theory. 

Piezoelectric gauges are also sometimes used for dynamic strain 

measurement. Although they have a much higher sensitivity than wire 

strain gauges, the piezoelectric strain gauges are difficult to calibrate 

and they produce a considerable reinforcement at the point to which they 

are attached. Furthermore, the piezoelectric crystal gauges are expen­

sive and are most fr~quently used for triggering purposes. 

since the forties, the use of strain gauges for dynamic strain 

measurement and various aspects of its development have been described 

in several publications. 

D-;'h;enwend ;'(1943) described the use of strain gauges for strain 

recordings in the problem of longitudinal impact of two bars where the 

strain gauges were connected in a potentiometer circuit and the problems 
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., of instrumentation were discussed. 

Fink (1950)' discussed the calibration of strain gauges used in 

dynamic measurement when arranged as a Wheatstone bridge circuit for 

recording longitudinal strain. The accuracy was sufficient for a 

dynamic strain pulse with a rise time not less than 17 ~s. 

Krafft (1955) showed that the longitudinal impact of two flat ended, 

bars did not produce a smooth square wave of strain but rather a 

constant strain plus significant high frequency fluctuation which he 

managed to reduce by greasing the colliding surfaces. 

Cunningham and Goldsmith (1959) concluded from measurement of 

waves generated in a bar by longitudinal impact of a steel ball that 

the static gauge factor was applicable in measuring impulsive strain 

with rise times not less than 7 ~s 

The errors in the rise time display due to the basic rise time 

of strain gauges were investigated by Taylor (195~) who showed that 

the accuracy was improved considerably by using strain gauges with 

a gauge length of about 5mm and experimental re~mlts with an error 

of ca. 2~ were readily obtained. 
- -

oi (1966) was able to show that strain gauges could even be used. 

satisfactorily to record steep strain waves with rise times much 

smaller than was possible in previous works. An expression for the 

rise time of 'bonded strain gauges was given as 

T .. T + T rc rw rg 
--

where 'rrc was . .the---t:otal rise 'time- and indices'w 'and..g corresponded 

to the rise time of the strain wave and the strain gauge respectively. 

Oi obtained an approximate formulation for a strain gauge with the 

lengtp L as 

T <'0.5 ~s + 0.8 LIe rg 0 

This gave a cut off frequency fc>360 kH,z for·.1..·3mm~TJhe.n"1:he~,str~~.n 

gauge was mounted on steel. 
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Bickle (1970) reinterpret ted Oi's experiments and showed that 

the 0.5 vs additive constant in Oi's expression could be greatly 

reduced to 0.1 vs. Another 0.1 VS was added due to the rise time of 

the instrumentation system. 

Bickle suggested an elimination of the 0.8 Llc term and used 
o 

instead an analytical compensation technioue based on,the differentiation 

of the output signal of the strain gauge using positive feedback. 

However, this operation is difficult to perform on experimental data, 

sincedi~ferennation is fundamentally a noise-amplifying process and 

furthermore, the process was generally inherently unstable. 

Atkins (1971) showed the advantages of the use of strain gauges 

in comparison with the use of accelerometersas transducers for the 

measurement of strains in impacted frames made of 1 in square section 

mild steel bars formed as L- and T-joints. The results were recorded 

on a tape recorder and simultaneously monitored on an oscilloscope. 

Watson (1972) was able to remove the instability from the process 

of computing a continuous time derivation of analog data. He presented 

an analytical example for the averaging of an elastic pulse and used 

the frequency domain analysis because of difficulties involved in a 

re'al t.ime domain analysis. 
f 

Troke (1976) discussed the use of 1/4 bridge, 1/2 bridge and full 

Wheatstone bridges for the measurement of longitudinal and flexural 

wave propagation problem~. He presented expressions for the use of 

shunt calibration technique for producing equivalent tension and 

compression strains where the different response of the strain gauge 

to compression and tension was considered. 

Lundberg (1977) presented a large number of experiments for 

longit~dinal waves travelling between two strain gauge positions and 

the results were evaluated for a very short interval in the real time 

domain using analogue and digital techniques. The errors were estimated 
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as less than 10%. 

A thorough discussion of the various types of strain gauges, 

their circuit connections, temperature compensations, proper calib­

ration and recording techniques are contained in many text books. 

The Handbook of Shock and Vibration, edited by Harris and Crede 

(1961) has a number of chapters devoted to experimental methods using 

strain gauges. Some books are devoted e~tirely to' strain gauges such 

as the books of Perry and Lissner (1962) and Neubert (1967). Several 

other books cover photo-elastic methods and strain gauge techniques. 

These are the works' of McMaster (1963), Dove and Adams (1964). 

Two recent pUbllcations on the use of strain gauRes in dynamic 

measurements are a manual of the SESA (1979) and a D.I.Y. strain gauge 

transducer by Pop1e (1980). 
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CHAPTER VII 
., 

'" EXPERIMENTAL· INVESTIGATION OF TRANSIENT FLEXURAL WAVES 

7.1. Experimental setup 

7.1.1. The impact mechanism 

The impact method is considered as the simplest method of 

producing pulsed loading. An impulsive load is usually of the order 

of microseconds and it requires a finite rise-time to reach its highest 

value. A pulse is considered transient when it is short compared with 

the fundamental mode of the bar. 

The impact can be achieved by a sphere impinging' on the bar and the 

resulting pulse can be predicted by the Hertzian theory' • An impulse 

can also be produced by the longitudinal, central or eccentric impact 

of two bars of the same diameter. The rise time of the pulse depends 

on how rapidly the end faces come into contact and this has led to 

experimental difficulties. To overcome these difficulties many workers 

have used bars with rounded ends. These types of impacts are called 

low velocity impact. 

Other forms of impact, so called high velocity impact, are those 

of bullets fired against targets and the use of explosives. These 

require great care to be repr~ducible in the shape and amplitude of the 

pulses. The specimens are usually destroyed after each test and high 

velocity loadings are more used in plastic wave propagation studies. 

The advantages'of low velocity loading are that the same specimen 

can be used over and over again and "men the.- end of' the loar' is TOlJnded' 

they can be easily repeated to reproduce exactly the same pulse. 

Furthermore, the',~ duration and amplitude of the stress pulse can be 

varied by changing the impact velocity and the length of the striker. 

It will be assumed that the one-dimensional theory is sufficient 

to describe the flexural wave propagation in the bar and that the stress 

is uniformly distributed across any section of the hare It has been 
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" shown experimentally (Davies, 1948) and theoretically (Prescott, 1942) 

that the stress and displacement become uniform over the cross section 

when the pulse had travelled a distance equal to four or five ~imes the 

diameter of the bar from the point of impact. 

In this work, the bending wave was produced by the eccentric lon~i­

tudina1 impact of a bar 1.Om long and 25mm in diameter with longer 

uniform bars and with bars of discontinuous cross section. The test 

bar and the striker were both suspended horizontally by fine wires 

from a suitable dexion framework. 

The two bars were of mild steel and were free to swing in the 

direction of their length and to collide end to end. The end face of 

the test bar was flat and the impact end of the striker was rounded. 

The test bars were suspended by fine piano wires, 0.0167 inch in 

diameter, looped around the bar at about 40mm from both ends and the 

wires were attached to threaded hooks after passing through small bolts 

which were used for coarse horizontal adjustment. Finer adjustments 

could be made with the locking nuts on the threaded hooks. 

The striker was also ballistically suspended with similar fine 

wires passing through two eye pieces bolted on the top of the striker 

at about 25mm from both ends. The upper ,ends of the wire were attached 

to threaded hooks fixed on the same dexion frame work. 

The general arrangement of the test rig is shown schem~tically in 

figure 7.1 and is photographed in figure 7.2. 

The striker could be adjusted to any desired eccentricity and the 

eccentricity was measured directly by tracing the off-centre p~sition 

of the impact.' The plane end face of the test bar was covered by a 

hi-spot engineers blue and after each impact the plane end was pressed 

against a white piece of paper to produce Jan indentation which showed 

a spot locating the position of the impact. This method was considered 

more accurate than the usual method of measuring the difference in the 
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heights of the two bars when in rest. The second method involves a 

certain amount of in'accuracy due to the stretching of the piano wires 

during the swing. 

The horizontal positions of the test bar and the striker were so 

adjusted that they just touched each other when in rest position. 

The impact was achieved by pulling back the striking bar a given 

distance, l80mm in most experiments, to produce a loading pulse of a 

given amplitude. 

The linear elastic behaviour and small deformations were guaranteed 

through small impact velocities and various impact velocities could 

easily be achieved by pulling back the striker to different distances. 

A rel~ase mechanism was devised to hold the striker at the desired 

distance by a spring force which was released to allow the striker to 

swing freely as a pendulum and to collide eccentrically with the test 

bar. The simple release mechanism contributed to the accur~cv' and 

reproducibility of the results. 

When the striker rebounded, it was prevented from making the 

second contact and hence the test bar was loaded only once per impact. 

7 .1. 2'~~' the 'strain -~uge··dreui ts'< -: ,. 

The use of electrical methods, especially the s~rain gauges, for 

the measurement of dynamic transient strains has the advantage, in 

addition to its simplicity, of obtaining directly the time dependence 

of the variables such as strain-and stress-time curves. 

In the present work, bending strains. and longitudinal strains were 

measured separately using the same strain gauges but in different 

bridge connections. The metal surface of the mild steel test bars was 

properly prepared for mounting the strain gauges using Loctite, 

IS496-Cyanoacrylate, adhesive. 

The strain gauges were mounted diametrically opposite to each other 

at each gauge point at several positions along the test bars, as shown 
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in figure 7.3. The strain gauges were so connected in ~leatstone 

bridges to be sensitive either to symmetrical (longitudinal) strain 

components or to antisymmetrical (bending) strains. Each ~~eatstone 

bridge contained two active strain gauges positioned at the same gauge 

point and two dummy strain gauges, cemented to a piece of mild steel, 

provided the temperature compensation. 

The strain gauges used for the uniform bars were tvpe Nll-FA-8 of ~ho~'a 

measuring In~t.co. Ltd. with a gauge length of 8mm and 1l9.8P. resistance. 

However, for the test bars with discontinuity of cross section, strain 

gauges with a gauge length of 4mm and l20n resistance were used. TheRe 

were type 4/l20/EC foil strain gauges of Tinsley Telcon Ltd. The gauge 

factors of the strain gauges were 2.10 and 2.07 respectivelv. The 

block diagrams of the Wheatstone bridges for longitudinal and bending 

strain measurements are both shown in figure 7.4. The use of two 

active gauges doubles the sensitivity of the ~~eatstone brid~es and 

eliminates the nonlinearity effect involved in the use of one active 

strain gauge. 

To calculate the output of the Wheatstone bridge circuits used 

for both static and dynamic measurements the following general 

equation can be used (Dove and Adams, 1964 and Pople, 1976) 

e Rgl Rg4 0 
-= 
e. R I + R Rg4 + Rg3 

(7.1) 
1 g g2 

For a symmetrical bridge with Rgi = Rg2 = Rg3 = Rg4 - Rg and 

with one active arm R 1 = R + AR , the output voltage, e , is g g g 0 

directly related to strain 

AR t.R 
e o 

= --'l _ [I - ~] e. 

e: -o 

4R 2R 1 
g g 

GFx£ 
----'---'-- e • 

" 4" + 2GFx£ 1 
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where GF - the gauge factor (flR /R £) 
~ g 

R = the gauge resistance g 

e. = the imput voltage 
1 

The dynamic sensitivity of the ~~eatstone hrid~e can also be written 

in terms of the current to the bridge (I) and the strain in each bridge 

arm GFxIxR 
e = g (-E +·~l - £ + £ ) 

o 4 1 L. 3 4 (7.4) 

The net strain (£net) depends upon the number of ~uages heing 

strained and the strain in each gauge. 

Two active gauges were used for the measurement of axial strain 

(Fig. 7.4a) and for the measurement of bendin~ strain (Fig. 7.4b). 

The active strain gauges were connected in such a way that their 

output was additive. This helped to reduce the nonlinearity for axial 

strain and to eliminate it for bending strain (Troke, 1976), with a 

sensitivity twice as large as that of the one-arm unbalanced brid~e. 

The net strain for both 1/2 bridges is £net - 2E1• 

The dynamic sensitivity of the 1/2 bridge used for axial strain 

measurement where two opposite arms are unhalanced, is 

e o 
GF x E e. 

1 
2+GFx£ 

(7.5) 

The dynamic sensitivity of 1/2 bridge used for bending strain 

measurement where adjacent arms are unbalanced, is 

e o 
... GF x £ 

2 
e . 

1 
(7.6) 

The calibration of the strain gauge circuits was achieved using 

the shunt calibration method. It involved the production of a 

known change in resistance by means of a parallel resistor or 

resistors with one of the active gauges. The chanre in resistance 

produced by connecting a shunt resistance, as shown in fig. 7.4(a), 

is computed as follows 
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or 

111 
--------- "" --- + 

R(g + sh) 

R (g + sh) "" 

t,~a = 

t,11,a "" 

R: 
g 

R 
g 

R g 

Rsh 

+ Rsh 

R (g + sh) 

-R 2 
g 

R + Rsh g 

substi tuting into 

llR /R 
GF= 

p- g 

£ 

R 
£ a: 
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-R 
~ 

g (7.12) 
GF x Rsh 

where £eq is the equivalent strain, defined as the strain required in 

the single gauge to produce the same signal as is produced bv connecting 

the shunt resistance Rsh • 

When the output of two gauges is made additive in the ~~eatstone 

bridge, as was the case with 1/2 bridges used in 'the measurements, then 

the deflection per unit of strain is twice that when only one gauge is 

active and the strain that must be applied to each of the two gauges to 

produce a signal equal to the calibration signal is 

e: '" 
R , 

- --'"'-'g'----

GF (R + R h) g s 

1 R 
.'~ - !:! ---....>..:g---

2 GF x Rsh x 2 

7.1.3. The measurement instrumentation 

(7.13) 

The electrical output of the strain gauge and the bridge circuit 

is comparatively small and considerable amplification is required to 

drive the commonly used oscilloscopes. 

The strain gauge circuits were connected to shielded and earthed 

leads. The leads of the Wheatstone bridge circuits at locations to be 

measured were plugged in to 3ftlO transducer amplifiers manufactured by 

Tektronix Inc. 
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Two 3Aln amplifiers were used and they were mounted in a 

Tektronix power supply unit type 129 pluR-in unit. The 3Aln transducer 

amplifier exhihited a bandpass lvith a drop of 3dR at 1Q .megahertz and 

selectable upper and lower frequency cutoff. A variable, calibrated 

DCrvoltage source is also provided hy the 3AlO unit for powering the 

strain gauge hrid~e. 

With only two 3AlO amplifiers available, never more than two 

Wheatstone bridges could be connected during one impact and the impact 

had to be repeated for a complete set of results from all strain gauge 

locations. 

Signals representing the strains at several positions along the 

test bars were recorded by direct measurement and also by the use of 

digital transient recorders of the type DL901 manufactured by Data 

Laboratories Ltd. 

In the direct measurement system, the outputs of the two 3Aln 

amplifier units were fed into a 3A6 dual trace amplifier which was 

incorporated in the Tektronix dual beam storage oscilloscope type 

564B together with a 3B3 time base unit. 

A permanent record of signals on the oscilloscope screen was 

obtained using a Polaroid oscilloscope camera type A, supplied bv 

Telequipment Ltd. The film used was type 47 high speed polaroid Land 

film, with ASA exposure index of 3000 in bright sun~nd produced 

black and white positive prints. 

In the second measurement system, the signal output of the 3AlO 

amplifiers was fed into the two DL901 transient recorders. The 

transient recorder is a digital instrument and during recording each 

sample of the signal is converted into a digital number and stored in 

the memory. 

The DL901 has 1024 words of memory, and the amplitude resolution 

is to one part in 256 (8 bits). It is necessary to select a suitable 
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sampling rate to avoid the occurance of 'aliasinR' because of too 

slow sampling rate. Sampling at 2 ~s intervals provides for example 

5no words in 1 ms trace. 

The output of the two transient recorders was fed into the two 

channels at the 3A3 unit of the storage oscilloscope and could be 

photographed with the polaroid camera as in the first system of 

measurement. In addition, the DL901 provided the sienal jnput for a 

two channel 26000A3 XY-plotter which was used for the simultaneous 

recording of the strain time history of two locations. 

The output of the DL901 can also be recorded on cards or tapes 

to provide data input to a digital computer such as the lIP-Fourier 

analyser. 

The two DL901 units were used in the single shot mode to record 

and digitise the single transient signal at two locations and to store 

in the memory. The trigger signal was taken from the signal itself 

and the pre-trigger recording mode made it possible to_obtain the wave 

form both before and after the trigger. F{gure 7.S shows the measure­

ment instrument~tion used for the two measurement systems and Fig. 7.6 

represent their block diagram. 

In the fir~t direct measurement syste~, an external trigger signal 

was needed to initiate the operation oscilloscope time hase. This 

trigger signal was obtained from a piezoelectric crystal gauge mounted 

on the test beam near the i~pact end. 

7.1.4. Experimental procedure and ~Teliminarv measure~ents 

The eccentric impact of a har by a striker must induce a stress 

system which has both symmetrical and antisymmetrical components. 

The objective of this study was not to investi~ate the problem of 

eccentric impact ,from a compre~sive point of view, but rather to con­

centrate on the investigation of the heam in bending, i.e. to study the 

antisymmetrical flexural strain wave propagation along the beam through-
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out the impact cycle, together with the complexity of wave interaction 

due to the bending wave reflections from boundaries and discontinuities. 

These bending waves were recorded as rapidly changing strains for 

any given location and time in the form of photographs and plots. 

The experiments confirmed that, due to eccentric impact, longi­

tudinal and bending waves were, in general, superimposed on each other. 

However, the Wheatstone strain gauge circuits faci.lit~tes their separate 

measurements. 

A preliminary measurement of longitudinal strain was needed to 

determine the input pulse due to eccentric impact. This was employed 

to obtain the applied axial force and the applied bending moment. 

The input pulse shape was determined from the recordinR of the 

longitudinal wave at the first position alonR the uniform cylindrical 

beams and the beams with discontinuity of cross sections. 

After the preliminary measurements of longitudinal waves, most of 

the measurements were concentrated on the bending waves. 

The impact t~t was c~rried out by adjusting the bar and the 

striker to be just in contact when hanging freelY and by drawi ng back the 

striker through a known ·d~stance ( in most cases a distance of l8cm) 

and allowing it to swing back by gravity using a specially devised 

release mechanism. The radius of swing for the striker was 1.3m. 

~~en the striker rebounded after the strain pulse returned to its 

impact end, it was prevented from making a second impact by holding it 

back and the specimen was loaded only once per impact. The linearly 

elastic behaviour and small deformations were guaranteed through small 

impact velocities. The impact end of the striker was slightly rounded 

in order to make the pulse easily reproducable. 

In most experiments, the transient recorder DL901 was used to 

record the single transient signal using the "pretrip,ger mode" where 

the trigger was taken from the signal itself. The oscilloscope had 
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two time-base generators. The trigger signal initiated the operation 

of the first time-base generator which then provided a preset delav 

interval before triggering the second time base. This resulted in a 

single sweep of the oscilloscope beam trace at the sweep rate of the 

second time base. The use of varying sweep rates of 5ms and lOms 

allowed the recording of longitudinal and hending strains and overall 

trace durations of 5 and lOms were obtained, although the working range 

was usually lms. 

The measurement of both longitudinal and pending strains was mnde 

on cylindrical test bars using strain gauges. The dimensions of the rod 

and the locations of the strain gauges were shown in figure 7.3. In 

order to produce the bending strain, the striker was allowed to strike 

as far off centre as possible and the maximum eccentricity was alwavs 

smaller than the radius of the test har. 

Figure 7.7a shows the pulse shape of a longitudinal pulr.e measured 

at the position x/d = 12 of the uniform test har subjected to the 

eccentric impact of a striker 1m long. The input compressive pulse 

takes 90 vs to reach its maximum amplitude and remains at this value 

until the arrival of the reflection from the far end of the striker 

which is the shorter of the two colliding bars. When the reflection in 

the 1m striker has returned to the contact point, the pressure decreases 

and soon after this the contact between the two bars ceases. The pulse 

duration was typically 390 ~s and agreed very well wjth estimation based 

on t = 2L/C
l 

= 389 ~s with a strain of a~out 50 ~ strain (VE) in good 

. h l .. v 47.8 
agreement Wlt E: = 2E~vcl= 2c1 ·ve:· 

The variation of the striker length affects the input pulse consider­

ably. Figure 7.7b shows that when a shorter striker 3lcm long was used, 

the pulse duration was much shorter and the amplitude started to 

decrease as soon as it reached its maximum value after about 100 VS. 

The record shows the longitudinal strain measurements at two positions 

- 197 -



along the uniform test bars, at x/d - 12 and 84. 

The short striker could not provide an input pulse of trapezoidal 

shape approximately obtainable with the striker of 1m. The 1m striker 

was therefore used throughout the experiments in order to compare the 

results with theoretical predictions. 

The trace in figure 7.8a covers a duration of about 5ms and shows 

the reflecting longitudinal strain waves from the end of the uniform 

test bars of 3m length where each reflection is accompanied by a change 

of sign. The strain measurement was carried out at the position 

x/d = 12 from the impact end. It is seen that the reflecti.on of the 

input compressive wave from the far end arrives at this position as a 

wave of tension. However, soon after its arrival, the strain wave is 

relieved and its spreading is terminated by a compressional strain wave 

arriving from the near end of the test bar. The duration between two 

peaks of the same sign corresponds to the strain wave travelling twice 

the bar length. 

The bending strain measurement of position x/,d - 12 is shown in 

figure 7.8b and is obtained by the same pair of strain gauges used to 

measure the longitudinal strain of figure 7.7a, but with a ~~eatstone 

bridge connection as shown in figure 7.4b to cancel the symmetrical 

strain components. The bending pulse shape isornarkedly different from 

the longitudinal pulse at the same position and the bending strain has 

changed drastically after travelling a distance of 12 diameters and 

shows a considerable negative portion as opposed to the positive (com­

pression type) bending strain input. 

Two traces of strain and time base calibrations are shown in 

figures 7.9a and 7.9b respectively. 

The calibration of the strain was carried out by photographing 

and plotting a signal of known amplitude ~ith all instrument controls 

set the same as for the actual impact strain measurements. This signal 
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was obtained by switching a fixed resistance of known magnitude parallel 

to the active legs of the longitudinal and bending strain bridges in a 

so called shunt resistance c~libration. The resistances were provided 

by a resistance box containing several resistances and two resistance 

boxes (Eox J. and <:30x R) were' used. ,The exact values of these resistances 

were measured by a logarithmic LCR Bridge type B500 of Wayne Kerr Co. Ltd. 

The calibrations were made at frequent intervals during the measure­

ment and a photograph of a voltage change display is shown in figure 7.9a. 

The calibration was carried out during each set of experiments for 

each strain gauge circuit and the equivalent longitudinal and bending 

strain was deterimined for the strain Rauges specified in Table V and 

as they were actually connected and used at the various positions along 

each of the test bars. 

The exact values of the shunt resistance used and the corresponding 

equivalent strains are given in Table VI. 

The sweep speed calibration was made by means of a sinusoidal 

signal generated by a function generator (Feedback FG 600) with a 

frequency of either 1 or 10 ,kHz. ' The sinusoidal wave was used to check 

the accuracy of the time base which was found to be accurate and it was 

assumed that subsequent sweep would be unchanged. 

The sweep speed calibration was used to determine the duration of 

pulses and times of wave arrivals at the various gauge positions. An 

example of the sweep speed calibration is shown in figure 7.9b for a 

I kHz sine wave. 

The experimental results were checked by repeating the impact at 

least three times at each station and for each set of recordings. It 

was found that repeat measurements of the strains at a gauge position 

were practically identical for; a given set of conditions and the strain 

profile could be reproduced almost exactly with negligibly small 

variation in the strain amplitude. Figure 7.10a represents the impact 

- 199 -



strain repeated 5 times as photographed at positions xld - 4 from the 

impact end of a circular test bar with discontinuity of cross section. 

The repeatability of the impact was particularly important since 

several impac~were needed to obtain a complete set of results from all 

strain gauge locations where only a simultaneous measurement of two ~au~e 

points at each run was possible. 

However, the limitation of the measuring equipment was not a serious 

disadvantage since the eccentric impact was easily reproducahle. 

By varying the velocity of the striker it is possible to produce 

pulses of various amplitude. Figure 7.l0b presents the recordings of 

three different pulse shapes obtained simplv bv pulling hack the 1m 

striker to the distances of l4cm, l8cm and 22cm from the impact end of 

the test bar. It is seen that the longitudinal pulse in all three cases 

has the same length since the pulse length is independent of the impact 

velocity. 

It was decided to use a constant impact velocity corresponding 

to dr~wing back the 1m striker a distance of 18em which produced a low 

velocity impact of ca. 0.5 m/s. 

The longitudinal impact strain as measured at the position 1 (x/d=4) 

of the;circular bar with discontinuity of cross section introduced at 

the middle of the 2m long test bar is shown in figure 7.lla and the 

eccentric impact' had an eccentricity of 7.85mm. These measurements of 

the symmetrical strain near the impact end were used to calculate the 

total force of impact and then multiplying this force by the eccentri­

city of the impact, the applied bending moment could be obtained. 

Comparing the impact strain recorded in figure 7.lla with the 

impact strain in figure 7.7a, it is seen that due to the partial re­

flection of the compressive wave from the position of discontinuity 

which reaches the gauge position before the reflected wave in t~e, 

striker reaches that position, there is a minor pressure increase. 
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This difference from the pulse shape in the uniform circular har can 

only he explained in terms of wave reflections at the discontinuity 

of cross section where the diameter of the test bar is increased by 

1/4 of its value (from 25.4mm to 31.75mm). 

The effect of the eccentricity variation and the sensitivity of 

the bending strain measurement bridges was checked in the results 

presented in figure 7.11h. 

An almost central impact was carried out and the bending strain 

at gauge position l(x/d = 4) and the longitudinal strain at gauge 

position 2(x/d = 32) of the circular test bar with discontinuity of 

cross section are shown in figure 7.llb for an overall duration of 10ms. 

It was necessary to enlarge the scale of channel I five times to 

show the small trace of the bending strain whereas the longitudinal 

strain retained its original intensity. The recorded bending strain 

due to central impact comprised only !~~ of the bending strain which 

could be produced, by eccentricity of 7.85mm used in mJ~t measur~~ents. 

Therefore, the be?ding strain bridges were considered to produce a very 

good symmetrical strain cancellation especially when one realises that 

it is extremely difficult to produce a perfect central impact. 

Figure 7.12ashows the longitudinal impact strains at, the gauge 

positions x/d = 4 and 32 in the test bar with the discontinuity of 

cross section situated at the middle of the bar (x/d - 40). 

It is seen that whereas'the pulse shape at position I cannot reach 

anywhere near its original input value, as was explained in figure 7.8a, 

the impact strain at the position near the middle of the bar is allowed 

to reach almost its original amplitude. There is sufficient time 

before the reflection of the travelling wave from each end of the bar 

arrives at that position. This result is in complete agreement with the 

theory of strain wave propagation. 

The pulse shape of the bending wave is much more complicated since 



the velocity of flexural waves in steel bars is stronp,ly dependent 

on the wave length of the harmonic components in any input reRulting 

from the impact. 

The recordings of bending wave measurement in position 1 and position 

2 of the 2m long bAr, described in the previous paragraph, are shown 

in figure 7.l2b. It is seen that the bendjng wave undergoes considerable 

dispersion as it travels along the bar and it is clear that there is 

no definite velocity of propagation for bending strain wave pulses. 

At position I (x/d - ~) the original pulse shape is still recognise-

able whereas the bending strain wave at position 2(x/d • 32) has under-

gone considerable dispersion and shows ner,ative and positive peaks 

within the duration of the original positive input pulse. 

The plots corresponding to figure 7.12a and 7.12h o~tained by the 

xy-plotter are presented in figure 7.13 and.figure 7.14 respectively. 

7.2. Measurement of material properties 

7.2.1. Young's modulus and density measurements 

In order to determine the density of the test bar made of mild 

steel, the weight of a piece of the test bar was obtained using a 

precision scale. The dimensions of the same piece were measured using 

a micrometer and the density was calculated as the ratio of the weight 

to the volume which was found to be 

p = 0.777 x 104 kg/m3 

The modulus of elasticity E was determined by static and dynamic 

measurements. 

The static value of the Young's modulus E was obtained from an 

ordinary tensile test where a tensile test specimen was prepared from 

the same mild steel as the test bars. The static loading was carried 

out on Amsler tensile machine and an extensometer was used for the 

elongation measurement. 

The modulus of elasticity E was obtained as the slope of the linear 
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portion of the stress strain diagram in accordance with Hooke's law. 

The static value of the Young's mopulus was 

The dynamic value of the elastic constant can ~~ obtained by two 

methods, the Have propagation methods and vjbration method. 

In the wave propagat;on method, the measured value of the pronagation 

velocity is used to obtain the value of the elastic constants. 

The three types of elastic waves, extensional, torsional and flexural, 

can be propagated along a solid isotropic homogeneous sol;d rod. The 

velocity of propagation depends on the elastic constants and the density 

of the material. 

The velocity of longitudinal wave propagation was measured and 

found to be c l = 5140 m/s. The description of the wave velocity measure­

ment is included in the next section. 

Using the known relationship cl - I:E7P or E - c l
2p , the dynamic 

modulus of elasticity can be obtained as 

E • 2.05 x lOll 'N/m2 

The Poisson's ratio ~ for the mild steel test bars was assumed as 

\I m 0.29 and the value of the dynam;c modulus of rigidity r, can be 

obtained from 

G = 2(i + \I) • 0.796 x loll N/m
2 

This value of r, is used to obtain the shear wave velocity 

rr-: 2 e ' .~ .. {k-G/rJ ~ .. ,,:: c" ~ ~.' fork - 0.886 
2 

c
2 

= 3011 mls 

The wave velocity method is known to he extremely accurate and 

has been widely used in obtaining the dynamic value of elastic constants. 

The vibration methods and particularly resonance methods, are also 

common in obtaining elastic properties of ,materials. 

In the resonant method, an oscillating force of fixed amplitude 

and varying frequency is applied to a mechanical ~vstem and the resonant 
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frequency of the resulting vibration is dependent on the elaRtic 

properties of the system. 

The longitudinal, torsional and flexural vibrations are used in the 

resonant method to determine the elastic constants of metals and some 

of the early works have been described by Kolsky in his book in 1953. 

Goens (1931) solved the Timoshenko's equation relating Young's 

modulus to the flexural resonance frequency for bars of different cross 

section. 

Pickett (1945) had further simplified r.oen's solution and obtained the 

following simplified formulation for E 

E .;. [21TL ~fJ ~PT 
r:m J 

where f is the flexural resonance ffequency, r is the radius of 

gyration, m is a constant which has hi~her values for higher modes with 

m a 4.730 for the fundamental mode, where T is a correction factor which 

varies withr /L and ll. 

Spinner et. al (1960) carried out careful measurements of 

mechanical flexural and longitudinal resonance fre~uencies for steel 

rectangular and cylindrical specimens. Thev showed that the theoretical 

correction factors 'of Goen' s w'ere in fair agreement wit]-. €x::-:erimental 

results, with the numerical solution obtained bv Tefft (1960). 

Cowper (19f81 pointed out that the measurements of Hardie and 

Parkins (1968) of the influence of shear and rotatory inertia on the 

value of the Young's modulus was inaccurate since thev used an 

inadmissionable averaging method for the frequencv which assumed that 

shear and rotatory inertia effects reduce the frequencies of all 

higher modes by the same percenta~e, contrary to the Goen's correction 

factors. 

Ritchie's work in 1973 Rave experimental support to Cowper's 

criticism and showed that the Timoshenko theory must be used in . 

calculating the Young's modulus for beams vibrating in their higher 



modes as is the case in transient loading. 

One of the disadvantages of the resonance frequency method is 

the loss of energy at the supports and the difficulty of realizing 

ideal boundary conditions. This was demonstrated by Fosinger and 

Ritchies (lS74) for the case of a cantilever resonant beam, where the 

relationship between the experimentally measured resonant frequency and 

Young's modulus of the material deviated from theoretical predictions 

based on ideal boundary conditions. 

A different approach to the determination of dynamic elastic 

constants is their analyses from the view point of microseismology in 

a so called pulse method, a form of the ~ave propagation method. In 

this method, a travelling pulse along the specimen is detected by the 

receiving crystal with the arrival times giving the velocity of propa-

gation. 

The pulse method has been used by Hughes et. al (1949); Kolsky 

(1954) and Bell (1960). These works were reviewed by Bell (1973) 

The basic difficulty lies in the interpretation of the experi-

mental results, where a number of separate transmitted and reflected 

pulses are detected at the end of the rod. 

In a more recent paper, Goldsmith and Katsamanis (1979) used 
, 

the wave propagation method to obtain the dynamic Young's modulus of 

perforated polymeric bars. 

7.2.2. Wave velocity measurement 

The wave velocity measurements were carried out for longitudinal 

waves travelling along uniform circular test specimens and circular 

specimens with discontinuities of cross section. 

The wave velocity was measured by two observations of either the 

recording of the strain at one location or the strain pulse reco~dings 

of two strain gauges positioned at a kno\m distance. 

In the first method, the interval between two conse~uative pulses 
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of the same sign represented the time required for a pulse to travel 

twice the length of the bar. The wave velocity is obtained from 

each of the strain pulse traces shown in figure 7.l5a for two positions 

along a circular rod 3.29Sm long with the discontinuity of cross section 

at 1m from the impact end. The calculation of the wave speed was hased 

on the corresponding plot obtained by the xv-plotter, ~here the sweep 

time of Sms was prescribed by a distance 36.2mm long and the distance 

between two peaks of the same sign was 9.3mm. The travelling time twas 

found as t = 9.3 x 5 = 1.28 ms 
36.2 

and the wave velocity c 1 

~:~.2 x 3.295 x 10
3 = 

1 1.28 5148 mls 

In the second method, the wave velocity between two strain gauges 

was obtained by dividing the distance hetween the gauges by the difference 

in arrival times of the pulse as monitored by each strain gauge circuit 

connected for longitudinal strain measurement and recorded simultaneously 

in the oscilloscope trace shown in figure 7.1Sb for two strain gauges 

1.8m apart. 

The travelling time twas 0.35ms and the wave velocity 

c = 1.8 x 10
3 

= 5143 mls 
1 0.35 

The wave velocity measurements were utilized in the two circular 

test specimens with discontinuity of cross section and in the uniform 

circular rod and although some variations i~ pulse velocities were 

found from test to test, where values between 512) mls to 5160 mls 

were observed for the longitudinal wave velocity c l • An average value 

of c = 5140 mls was obtained which was well within experimental error. 
1 . . 

The error is mainly introduced in the measurement of arrival times 
I 

and it can be concluded that the longitudinal pulses are travelling with 

the wave velocity c 1 in the cylindrical specimen. 

The effect of the reflection at the shoulder can be observed 
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from the comparison of the oscilloscope traces of longitudinal strain 

pulses in the unifrom circular rod (figure 7.8a) and the recordings of 

the pulse shapes in the two circular rods with discontinuities of cross 

section (figure 7.12a and figure 7.l5a). 

In the strain pulse recording shown in figure 7.8a for the uniform bar 

at strain gauge laocation x/d = 12, the time required for the first 

reflection of the input compressive wave from the far free end, aue to 

appliedbendin~ motient at x - O·,:·to 'arrive at th~str8"i:n'gauge location 

as 'a tension wave.' was found toh~ t = 1.05ms correspondin~ to a 

longitudinal. wave velocity to 5142 mls. 

The ~eflection arrives at the strain gauge position after the contact 

with the striker ceased and the amplitude of the input pulse dropped to 

zero. 

The results shown in figures 7.12a and 7.15a are for the test har with 

discontinuity of cross section at x/d = 40, at a distance of 1m from the 

impact end, with an increase in cross section causing a partial reflection 

of the incident wave of the same sign. The reflection from the dis­

continuity arrives at the strain gauge location before the reflection from 

the end of the striker has returned to initiate the amplitude decrease. 

This was seen as a small increase at the end of the impulse shape noticable 

only in the test specimen with discontinuitv of cross section. 

The arrival of the reflections from the far end of the two stepped 

bars corresponded to the same longitudinal wave velocity of 5l38m/s. 

The recordings of the str~in gauge location at 0.8m from the impact 

end are~ represented by the lower traces of figures 7.l2a and 7.15a. It is 

seen that the reflection of the input compressive pulse arrives at the 

strain gauge as a tension pulse before the original pulse has dropped to 

zero in the shorter bar whereas the arrival time in the longer bar was after 

the input pulse has reached the zero position and the effect of the " 

reflections from the position of discontinuity is clearly demonstrated. 
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The experimentally observed value of the longitudinal wave velocity 

and Young's modulus are in good agreement with values found in the literature 

as can be seen from the values of c 1 ' E, G, v and p listed in table VII, 

where the experimentally obtained results in the present thesis are within 

the range of values found in standard textbooks and ~ell known references 

related to the field of stress waves in solids. 

The travelling of the longitudinal wave along the bar with a constant 

velocity and the interactions of incident, transmitted and reflected waves 

can best be represented by a space-time diagram, as illustrated in figure 

7.16 for the 2m long test bar with a change of its diameter at the middle 

from 25.4mm to 3l.75mm. 

The simple x-t diagram showed the propagation of the longitudinal wave 

in the striker and in the test bar where its arrival at each strain gauge 

location could easily be traced. 

The arrival times of the compressive strain pulse are calculated from 

the instant of impact t = 0 when the 1m long hammer struck the test bar. 

At t = LI/~l' the pulse arrived at the position of discontinuity and the 

reflection from that position travelled back as a compression wave and 

arrived at the impact end at t = 2LI/~I' causing a small increase in the 

strain amplitude. 

At time t = L/e l , with L = L1 + L2, the compression wave arrived at the 

far end of the test bar and was reflected as tension wave to travel back to 

the impact end arriving at t = 2L/e l , where at the same time a second 

reflection from the position of discontinuity also arrived. 

7.3. Steady state vibration test 

The purpose of the vibration test was to investigate how accurately 

the support of the test bars by fine thin wires reflected the free-free 

boundary conditions. 

A free-free condition implies that there shall be no constraint on the 

beam. In practice, however, the weig~t of the beam must be supported and 
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and some loss of energy is expected at the support and constraint. 

The support of the beam at the n~dal points is obviously ideal, but 

the position of these points is not known exactly before the experiment is 

performed and, in any case, their position varies with each mode. 

The use of a suspension which is very"soft" in the direction of 

displacement in vibration, achieved by honging the beam by two vertical 

wires with virtually no constraints, but prevented vertical movement and 

the location of the wires near the end of the test bar was found to have 

an insignificant effect on the frequency. (Traill - Nash, 1953 and 

Hearmon, 1958). 

The principle of the method was to excite and detect resonance in a 

test piece of the same material as the one used in the flexural vibration 

test, where the resonance frequency was mo~itored and measured. 

The test bar was 1.09m long and had a diameter of 25.4mm and was 

supported by two thin wires at l5mm from each end. 

The following instrum~nts were used for the resonance test 

i) Frequency oscillator H6del·~ 503 of Goodmans 

ii) 

iii) 

j'v' 

Industries Ltd. with continuous frequency control 

from 5 cycles to 50 kc. 

Charge amplifier type CA/03 of D.J. Birchall 

Shaker type 10 of LWG Dynamic System Ltd. 

Pick~p tranducer typer AQ 20 Accelorometer of 

Enviremental equipment Ltd. 

v) Feedback digital f~equency meter type FM6l0 

vi) Storage oscilloscope type 564B of Tektronix Ltd. 

The output of the oscillator was amplified through the power amplifier 

and was fed to the Shaker, whose mechanical energy in turn was transmitted 

to the specimen ~imply by holding the driver manually against the specimen. 

As the oscillator frequency was scanned, it reached one of the flexu~al 

resonance frequencies of the specimen and gave a large increase in the 
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amplitude of its vibration. 

The resonance of the beam was detected hy the pick-up tranducer which 

was mounted on one end of the beam and the output was fed into the 

oscilloscope. The excitation method used was found to produce satisfactorily 

the flexural modes of the free vibration. This was checked bv removing the 

exciter at resonance and ohserving on the oscilloscope screen the drift 

in the resonance frequencies which was found to be negligibly small. 

The purpose of the frequency counter, connected to the oscillator, was 

to providea more accurate reading than the one possible by reading the 

oscillator scale directly. The same procedure was repeated for the higher 

flexural modes. The block diagram of the arrangement is shown in figure 7.17. 

The specimen may be caused to resonate in different ways, longitudinally, 

f1exural1y (or transversely), and torsionally. However, longitudinal 

resonance generally occurs at very high frequencies compared to the bending 

vibration and the flexural ~ibrations are more easy to excite • 

A more accurate method to obtain the various tvpes of vibration and 

their overtones is the so called "probing" t.:rhere the pick-up transducer is 

held against different parts of the specimen while it is vibrating in 

resonance and the resulting pattern of changes in the Lissajous figures 

seen on the oscilloscope establishes the type and higher modes of the 

particular resonance frequency. 

The electrical phase relationships of the Lissajou figures seen on the 

scope are an exact reflection of the mechanical phase relationships existing 

in the specimen while it is in resonance (Spinner and Tefft, 1961). 

In the experiment carried out to obtain the resonance frequencies, the 

use of a fixed pick-up transducer was found to give accurate results. At 

the fundamental flexural resonance frequency, the ends of the specimen are 

oscillating in the same direction (in phase) while the centre of the 

specimen is oscillating in the opposite direction. 

One of the difficulties of the resonance method is that the coupling 
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between the driving system and the specimen may result in a change in 

resonant frequency. The simple method of holding the driver against the 

specimen was found not to affect the resonance frequency in any serious way. 

The other difficulty is related to the realisation of ideal boundary 

conditions which is more difficult in the case of pinned ends and almost 

impossible in the case of clamping ends. This difficulty causes the measured 

resonance frequency to deviate from theoretical prediction. (Rosinger and 

Ritchie, 1975). 

The damping in the beam also causes the experimentally observed resonance 

frequency to differ from theoretical prediction. Fortunately, this effect 

was very samll at low damping and could be ignored. 

The first five flexural frequencies were measured and compared with 

theoretical predictions based on the elementary Euler-Bernoulli theory and 

the Timoshenko bending theory. 

The frequency values are listed in table VIII, together with the material 

properties ~f the mild steel test beam. 

The freq~ency ratios and the precentage deviation of experimental and 

theoretical values are presented in figure 7.l8a and figure 7.18b respectively 

where it is seen that for the free-free end condition, experimental and 

theoretical resonance frequencies of the fundamental flexural mode and its 

four overtones are almost identical. Ho~~ever, the deviation for the case 

of pinned-pinned ends (simply supported) is more pronounced, since this 

condition is m~re difficult to realise practically. 

The Euler-Bernoulli theory for flexural vibration is formulated in 

the differental equation 

pA a2y 
---= 0 
EI at2 

The natural freQuency of flpxural vibration is obtained by calculating 

the roots of the frequency equation for a cylindrical beam 

- 211 -



fn = 
-~n2 E 
lnPA 

(4l7303)2r 
/E/p that f = so 1 41r L2 

where e L = 4.7303; 7.8539; 10.996; 14.137; 17.279 for the modes n • 1; 
n 

I 1t 2 
2; 3; 4.and 5 respectively in the case of a free-free beam andT.=T for 

circular cross-section. 

The effect of shear distortion and rotatory inertia, which are taken 

into consideration in the Timoshenko theory, is to reduce the natural 

frequencies. (Ayre and Jacobson, 1950). 

Haybey (1976) pointed out that frequency difference between measured 

and calculated Euler-Bernoulli values for the lower modes in the free-free 

. •• • 1 2/L2 conf1gurat10n 1S proport1ona to a • The relations~ip was obtained 

by Rosinger and Ritchie (1977),,,There a "las the beam width or the rod diameter. 

The theoretical calculations according to the Timoshenko theory used 

the G~ns ~orrection fa~tors to obtain the lower modes for the free-free 

end conditions 

I d E 
fl = 

~2 1. 262 TIP 

d / E 
f2 = -

L2 0.166 T2P 

d L E 
f3 ~2 0.043 T3P 

.~~ere Tl = 1.002; T2 ~ 1.0059 and T3 = 1.0116. 

The flexural resonance frequencies obtained by the Timoshenko theory 

differed very little from the predictions of the Euler - Bernoulli theorv 

for the uniform beam tested, with a slenderness ratio of L~, • 85.8. 

The results based on the Timoshenko beam equation for flexural 

vibration were slightly smaller than those given by the Euler-Bernoulli 

theory and the first were nearer to the experimental observations, as can 
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be seen from table.Vlll, where the difference between the three sets 

of results is less than lr. and the agreement with experimental results 

is very good. 

However, in the higher modes of vibration, the effects of shear 

and rotatory inertia increase with the order of the mode. 

The resonance flexural vibration method has been widely used to 

obtain the dynamic Young's modulus and the value of the shear correction 

2 factor k for beams of circular and rectangular cross sections, as was 

described in section 5.1. 

A detailed theoretical investigation of the flexural vibration of 

beams with discontinuity of cross section is included in appendix B, 

where the Euler-Bernoulli theory is considered to give satisfactory 

results for the lower modes of the flexural vibration for the heams 

with large slenderness ratio. 

7.4 Experimental results 

7.4.1. Free-free beams sub,; ected to eccentric impact 

7.4.1.1. Bending strains in uniform beam of circular cross-section 

The experimental investigations of flexural transient waves are of 

relatively recent origin due to the complexities of bending strains and 

the difficulties involved in the analysis, where the bending strain is 

the strain due to the applied bending moment. 

The bending strains in the various test beams were all produced by 

the low velocity eccentric impact of the 1.Om long striker. In the 

immediate vicinity of the impact point, the bending strain is three 

dimensional and the wave is not only propagated but also reflected from 

all surfaces. 

It is quite possible that, at the point of impact, a plastic flow 

causes a localized damage. However,' this damage is not easily detectable 

and was not considered. The measurements '·!ere carried out at positions 

along the beams starting at distances of 4 times the diameter of the beam 
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where the bending strains were regarded as completely elastic. 

The input pulse consisted of a longitudinal and a flexural transient 

wave of finite rise time of O.09ms and each type of wave was measured 

separately using different connections of the same strain gaup,es ; l~ith 

most of the experiments concentrated on the bending strain observations. 

Figure 7.l9(a) shows the recording of the bending strains at 

position 1 and position 2 of the uniform beam of circular cross section 

(Test beam I of Fig. 7.3) where the two positions along the beam corres­

pond to O.3m and 2.lm from the impact end respectively. 

The output of the oscilloscope for position 1 is magnified twice in 

the vertical and horizontal scales in figure 7.l9(b) and the trace shows 

that a considerable part of the incident compresslve bending strain has 

been changed into tensile bending strain. 

At position 2 the bending wave oscillates more rapidly and several 

peaks of alternating signs and increased amplitude can be seen in the 

time progress 0:£ the impact strain. 

The bending strain at position 1 has a compressive peak of about 

89 micros train at about O.7ms and the peak of the compression strain at 

posi tion 2 is about 52 micros train as compared to the peak of the i·n.put 

bending strain of about 113 microstrain.· In the discussion the positive 

sign means bending strain of compressive type and negative sign means 

bending strain of tensile type. 

All oscillograms are presented on a strain time basis. The strain 

scale was calculated from the strain gauge data usinR the shunt calib­

ration and employing the static gauge factor given by the manufacturer. 

The anti-symmetric strain component due to bending was obtained as 

half the total of the strains measured at the upper and lower surface 

of the bar, assuming a uniform strain distribution across the section 

of the test beams. 
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7.4.1.2. Beam with discontinuity of cross section at the middle 

The bending strain-time results are recorded for six positions alon~ 

the short stepped beam of 2m length with the discontinuity of the cross 

section at the middle where the diameter of the cross-section was increased 

from 25.4mm to 3l.75mm (d2 = 1.25d1). Two pairs of strain gauges were 

located at O.lm from each en~ of the beam (position 1 and position 4) 

and two other pairs of strain gauges were situated at O.8m from each end 

(position 2 and position 3). Two additional pairs of strain gauges were 

cemented immediately before and after the shoulder of the test beam 

(position 5 and position 6). The position of the strain gauges and the 

dimensions of the beam are illustrated in figure 7.3(a). 

The pulse shape of the input bending moment was obtained from the 

longitudinal strain measurement at position 1, used first to obtain the 

input force as 483l.SN and for an eccentricity of e = 7.85mm, the input 

bending.moment was 38Nm and the corresponding input hending strain was 

found to be l15~E.; 

A simultaneous recording of the output bending strain of each position 

together with position 1 was carried out and the reproducihility of the 

impact was found to be very good. Another set of measurements included 

the signal 'output of each two of the strain gauge bridges ,connected for 

bending strain time history observations. 

Typical traces of the oscilloscope are shown in figures 7.20 and 7.21. 

The upper and lower traces in figure 7.20(a) correspond to the out~ut of 

. the strain gauges at position 1 and position 2 respectively where positive 

signals indicated as before negative strains. A portion of the same two 

signals are shown with enlarged scale in both axis in figure 7.20(b). 

Figure 7.21 shows the strain gauge data obtained at position 3 and 

position 4 (Fig. 7.2la) 'and position 5 and position 6 (Fi~. 7.2lb) for 

an eccentric impact with e = 8.3Omm. 

The peak strain measured at O.lm from the impact end (position 1) 
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was 108 microstrain and the pulse shape of the input pulse was still 

recognisable at this station. 

However, at position 2, the bending wave had already several ~eaks 

of alternating sign and was more widespread over a longer time span. 

At positions 3 and 4, situated on the larger diameter of the stepped 

,beam, the bending strains were much smaller and more osdllatory in type 

as can be seen from figure 7.2l(a). 

Fig. 7.21(b) shows that an increase of 25~ in diameter resulted in 

a drastic decrease in the propagated bending strain. The peak strain 

immediately before the shoulder was 51~£ and decreased to 18~£ immediately 

after the change of the cross section, a reduction of about 65' in the 

peak of the bending"strain was caused by the relatively small change of 

the diameter. 

The history of bending strain was plotted at the same time 

using the xy - plotter and a typical plot of the strain gauge outputs at 

positions 1 and 2 are presented in .figure 7.22. These plots are particularly 

useful for direct comparison with theoretical solutions. They have the 

advantage of easier evaluation and are considered more accurate. There-

fore the estimation of the peak strains and time location were mostly based 

on the plots ~ rather than on the photographs of the oscilloscope traces. 
- \ ' 

7.4.1.3. Longer beam with discontinuity of cross section 

The bending wave propagation was investigated in a second longer 

beam with discontinuity of cross-section (Test beam III) with a total 

length of 3.295m and a change of diameter from 25.4mm to 3l.75mm 

(d
2 

= 1.25dl ) at 1.Om distance from the impact end. Four pairs of strain 

gauges were located along the test beam and their positions are shown 

in Fig. 7.3. 

Strain gauge data are presented in figure 7.23 and were obtained, 

from the four stations, and the first three positions were exactly at 

the same distance from the impact end as in the shorter stepped beam 
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discussed in the previous section. 

The comparison of the strain gauge data obtained from test heam 2 

with those of test beam 3 provides useful information regarding the effect 

of the discontinuity on the bending wave where the reflected wave in the 

longer beam arrives considerably later at the gauge stations than in the 

shorter stepped beam. 

In position 1 (Fig. 7.23a) the peak strain at 4l0~s after the 

wave front arrival is about 97 micros train due to an eccentric impact 

with the 1.Om long striker and an eccentricity of e = 7.5mm. The small 

alternating oscillations arrive at later times when compared with the 

trace obtained from the same position of the shorter beam and therefore 

these oscillations are due to reflections from the far end of the beams. 

The effect of the reflection from the position of discontinuity is shown 

as a sudden abrupt change in the slope of the ~ain pulse at the same 

instant in both test beams. 

The similarity between the lower traces of Fig. 7.2b (a) and 7.23(a) 

should be noted with differences starting at about lms from the bending 

wave arrival. 

The first part of the output at position 3 is similar to the trace 

of ~osition 2 except the amplitude decrease due to the effect of dis­

continuity and the earlier arrival of the smaller: oscillations. 

At position 4 it became more difficult to distinguish between the 

components of the transmitted bending wave through the cross section 

change and the reflections from the far end of the test beam. 

Figure 7.24 presents an enlarged recording of the bending strain 

time history at positions 1 and 3 on the two parts of the stepped beam. 

No attempt was made to obtain the velocity of propagation since the 

transient bending wave is composed of components with different freQuencies 

and different velocities of propagation clearly shown in the dispersion 

of the input bending wave even within short distances of propagation. 
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Therefore there is no significance in attempting to obtain velocities of 

propagation except that one should notice that any flexural disturbance 

was propagated with velocities lower than the bar velocity cl and in most 

cases longer sweeptimes were required to trace the bending wave arrival 

as compared with sweep times for tracing the longitudinal wave propagation. 

7.4.1.4. Stepped beam sub;ected to eccentric impact at the larger end 

The 2m long beam with the discontinuity of cross section at the 

middle (Test beam II of fig. 7.3) was subiected to eccentric impact at 

its larger end with an eccentricity of e a 9.5rnm. The distances of the 

strain gauges from the large end were exactly the same as from the smaller 

end due to the symmetrical arrangement of the strain gauges along the . 

test beam. However, positions 1,2,3,4,5 and 6 in the beam loaded at the 

large end correspond to positions 4,3,2,1,6. and 5 shown in figure 7.3 

respectively. 

Figure 7.25 shows the traces of bending strain at positions 1,2 

and 3 and there is a clear similarity with Fig. 7.20 and 7.21 for the 

same test beam loaded eccentrically at its small end. The striker was 

the same as before,a 1m long bar with 25.4rnm diameter. 

The peak strain of the bending pulse is 78lJE at position 1 and at 

position 2 a peak strain of opposite sign with an amplitude of -41.6lJ€ 

can be seen in the lower trace of Fig. 7.25(a). 

On the second part of the test beam with a reduced cross section 

the traces of the bending strains with increased amplitude and oscillations 

are illustrated in the lower traces Figs. 7.2'5(b) and 7.26(a) for position 

3 and position 4 respectively where the upper trace of both figures 

represented the bending strain time record~ at position 1 near the impact 

end. 

The bending strain at the two stations in the neighbourhood of the 

discontinuity, immediately before and after the change of cross section, 

is illustrated in figure 7.26(b) where a sharp increase in the bending 
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strain is noticable and peak strains are more than doubled due to a 251 

reduction in diameter. The peak strain at position 5 was 23~£ and at 

position 6 about 56 microstrain (~E). 

7.4.2:' Simply supported stepped beam of circular cross section 

The effect of end conditons was investigated in a set of experi­

mental results obtained for a short stepped,beam simply supported at both 

ends and the strain gauge data obtained from the six stations along the 

beam are shown in figures 7.27 and 7.28. 

The simple support was sehieved by resting the test beam on two 

V-slots each consisting of two ball bearings mounted on an aluminum block 

and the blocks were mounted on an angle iron of about 1.0m height, bent 

in L-shape at its lower end and bolted on a concrete base to provide 

rigidity for the support. 

The ends of the test beam were secured with col.l~r brackets against 

horizontal movement and were supposed to allow ~otation but no deflection. 

The input bending moment was produced by the impact of the same 1.Om 

striker supported as before by thin wire and allowed to swing freely as a 

bifilar pendulum. The input transient bending mo~ent had the same 

trapezoidal shape as for the case of the free-free beam and its value is 

obtained by measuring symmetrical strain, calculating the total force of 

impact and mUltiplying this force by the eccentricity of the impact. 

The traces of the strain gauge data were similar to the trace 

obtained for the free-free beam and show that fixing the endQ of the bar 

by collar brackets when resting on the V-slots had very little effect 

on the form and the amplitude of the transmitted and reflected bending 

wave pulse. 

This suggests that the end supports did not satisfactorily produce 

the required simple support and the end conditions were merely free-free 

but now realized by resting the bar on V-slot ball bearings instead of 

the hanging thin wires. 
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7.4.3. 'Free-free stepped heam of rectangular cross section 

The hending wave propagation was investip-ated in a free-free heam 

of rectangular cross section with s·"change of the height from 36.44mm 

to 5D.8mm and with the same width over the w~ole length of the test 

beam~which is called test beam IV and illustrated in figure 7.29. 

The change of the cross section was introduced at 1.Om from the 

impact end and the total length of the beam was 1.885m. Two pairs of 

strain gauges were located at the first portion of the beam at O.lm and 

D.8m position 1 and 2 from the impact end and a third pair of strain 

gauges was cemented on the larger cross section at O.2m from the position 

of the discontinuity of crosss section (position 3). 

The effect of the change of cross-section was investigated bv two 

pairs of strain gauges located at 5mm distance from both sides of the 

position of discontinuity (position 5 and position 6.) 

The test beam was hung edgewise with thin wires in exactly the 

same way as the test beams of ci.rcular cross-se.ction pulled back a 

distance of 18cm and allowed to swing freely to impact the stepped beam 

of rectangular cross section. 

The bending strains obtained at position 1 and position 2 are shown 

in figure 7.30 and traces of bending strains at positions 3,5 and 6 are 

shown in 7.31 as typical traces for the performed experiments. 

The peak strain reaches 68 microstrain (~£) at ahout 39n~s at 

position 1 and reaches -36pt at 750 microsecond at position 2, and the 

dispersion of the bending wave is clearly demonstrated. 

The effect of the change of cross section on the bending wave pro­

pagation is shown in the traces obtained from the strain gauges at 

position 5 and position 6 illustrated in figure 7.3l(b). The increase 

of the cross section caused a drastic decrease in the transmitted bending 

wave where the amplitude of·:~9 micros train was reduced to ahout ±s micro-

strain. 
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The bending strain build up at position 3 on the larger cross 

section must therefore be caused by reflection from the far end o~ the 

test beam. 

The similarity with the strain gauge data of the circular beam 

with discontinuity of cross-section should be noticed with the dis­

continuity of cross-section affecting the transmitted bending wave 

more strongly in the beam of rectangular cross-section with abrupt 

change in the width than in the beam of circular cross section with 

abrupt change of diameter. 

Each set of experiments was repeated at least three times and the 

bending strain amplitude against time at each position of strain gauges 

was measured with reference to the strain gauge output of the position 

nearest to the i.mpact end (position 1) and the results sho\\Ted a high 

degree of consistancy and were satisfactorily repeatable. 

All experimental results were plotted using the xy - plotter in 

addition to their recording with the aid of the cameras. 

The calibrati.on of the horizontal axis was checked continuously 

and the shunt resistance calibration was carried out and repeated 

continuously for each strain gauge bridge connections. 
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~ 
N-11-FA-8 4/l20/EC(a) 4/l20/EC(b) 

Gauge Speei ~ • 

Nominal resistance (n) 119.8 120 120 

Gauge length (rom) 8 4 4 

Gauge factor 2.10 2.07 2.11 

Material alloys - Epoxy backed Epoxy backed 
Copper-Nickel Copper-Nickel 

.. 
" 

, . . . 
Other speeifications Temp. Comp. Temp. Compo Temp. Comp 

Manufacturer Showa Tinsley Tinsley 
Telc:on' Telcon 

Test bar uniform stepped bar' stepped bar of 
eirc. bar of circular rectang. sect. 

sect. 

Batch No. - T 14 97 T 2078 

Bridge supply voltage 5VDC 5V DC SV DC 

TABLE V Foil Strain gauge Specifications 
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Shunt resi- Shunt resi- Shunt resi-
stance (1) stance (2) stance (3) 

-. 
Resistance Box A 

Nominal resistance (kO) 220 470 1000 

Exact resistance (kO) 219.4 483 1056 

· 1 • 106 . Equ1va ent stra1n x 1n 

bending strain bridge: 

N-11-FA-8 Strain gauge 129.97 59.04 27.0 

4/120/EC(a) Strain gauge 132.Q7 60.0 27.45 

4/120/EC(b) Strain gauge 129.57 58.87 26.93 

~esist~nceoBox B 

Nominal resistance (kO) 220 470 1000 

Exact resistance (kO) 242 514 1095 

· 1 . 106 . Equ1va ent stra1n x 1n 

bending strain bridge 

N-11-FA-8 Strain gauge 117.83 55.49 26.04 

4/120/EC(a) Strain gauge 119.74 56.39 26.47 

0". 41120/EC (b) Strain gauge 117.47 55.32 25.97 

Resistance Box A 

Nominal resistance (kO) 470 
I 

Exact resistance (kO) 483 

· 1 S -. 106 . Egu1va ent tra1n x 1n 

longitudinal Strain bridge 

N-11-FA-8 Strain gauge 59.04 

4/120/EC{a) Strain gauge 60.0 

4/120/EC{b) Strain gauge 58.86 

TABLE VI Shunt resistance calibrations 
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p/H.J 4 . . 3 "9 l' 9 2 c1 [m/s] Reference ,kglm R/10 N/m' G:f10 N/m' \I 

Kolsky, (1953) 0.78 206 79.46 0.29 5190 

- ... 

Markham (1957) 0.7825- 197.47- 79.086- 0.286- 5018-
0.784 213.19 82.119 0.292 5219 -. . , . -- .. 

Spinner et.a1. 0.7846- 204.44- 80.53- 0.269- 5152-
(1960) 0.7854 207.29 8064 0.285 5199 

Baumeister & 197.197- 75.845- 0.283- 5018 
Marker Hand- 0.783 
book (1967) 206.85 82.051 0.292 5155 

Johnson (1972) 0.775 204 80.85 0.271 5150 

Graff (1975) 0.796 207 80.23 0.29 5060 

Rosinger et.al. 
(1977) 0.7851 208.4 82.09 0.292 5152 

Measured & 
used in this 0.777 205.6 79.69 0.29 5120-
work 5160 

Table VII Physical properties of mild steel 
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, 

Mode number n 

'Ftee-free end 

Measured freq. 
values f" n 

Theor. frq. (E.B.) 

.' Theor. frq. (Timos.) 

Theor. frq. ratio 
f;/f 1 

Exp. frq. ratio 
fn f1 

prect diff f If i. 
e t 

Pinned-pinned 

Measured frq. f n 

Theor. frq. (E-B) 

Theor. frq'. ratio 

Exp. frq. ratio 

R. .., 1.09m; 

1 2 3 4 5 

4.7303 7.8539 10.996 14.137 17.279 

97.38 268.05 524.77 863.51 1279.87 

97.87 269.83 528.92 874.251 1306.048 

97.77 268.99 525.84 - -

1.0 2.757 5.410 8.933 

0.995 2.739 5.362 8.823 

0.995 0.993 0.992 0.988 

13.340 

13.077 

0.980 

3.142 6.283 9.425 12.566 15.708 

42.10 173.92 347.80 641.38 1047.25 

43.185 172.69388.58 690.74 1079.35 

1.0 3.999 8.998 15.995 24.994 

0.975 4.0273 3.054 14.852 24.250 

0.975 1.007 0.895 0.929 0.970 

p = 0.77743 x 10~ kg/m j
, 

TABLE VIII Comparison of theoretical and experimental 

results of flexura1'resonance frequencies 
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positions of strain gauges 
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c. Long stepped beam ( Test beam III ) 

FIG. 7.3. TEST BEAMS AND STRAIN GAUGE LOCATIONS 
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FIG . 7 . 5 PHOTOGRAPH OF THE MEASUREMENT EQUIPMENT 
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CHAPTER VIII 

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS 
IN FINITE FREE-FREE TIMOSHENKOBEAMS 

8.1. The input bending moment-time distribution 

Tn the eccentric impact the force pet) is applied with 

an eccentricity e and the eccentrically acting force can be 

replaced by an axial force pet) and a couple M(t) where Met) ." 

is given by: 

M(t) = P(t).e (8.1) 

This input bending moment has the same time distribution 

as the input force generated by the eccentric impact of the 

striker. The duration of this pulse is governed by the time 

necessary for the compressive wave front to move twice the 

length of the 1.0 m striker. 

Since the wavelengths of the components comprising from this 

pulse are large compared to the beam diameter, the shape of 

the longitudinal pulse can be recorded quite accurately by 

strain gauges along the beam. 

The investigation is conce~trated on the propagation of 

the flexural strain waves (hence bending moment) down the beam 

according to the Timoshenko beam theory, where the effects of 

shear force and rotatory inertia are included. 

The measured axial strain is presented in figure 8.1 as 

the input boundary condition and is closely approximated. by 

the symmetrical trapezoid shown in the same figure. The 

trapezoidal form is used for the numerical computation where 
J 

experimentally obtained loading conditions are used as input 

to the numerical solution. 

The trapezoidal pulse shape is obtained as the difference 
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of two ramp platform input functions differing by the pulse 

duration td according to 

M(O,t) TRP = M(O,t) RP (8.2) 

where indices TRP and RP are for the trape~oidal and ramp 

platform bending moments respectively and their time distribution 

was given in table 4 (Chapter 5). 

The input strain pulse presented in figure 8.1 is used 

to compute the equivalent axial force loading according to the 

one dimensional dispersionless elementary longitudinal wave 

theory. Unless otherwise stated, the maximum anti symmetric 

strain due to the eccentric impact was measured as E - 46.7 ~£ m 

the maximum axial force 

N (8.3) 

Using the measured eccentricity of e = 7.85 rom, the maximum 

input bending moment is found to be 

M = P .e = 38 Nm o m (8.4) 

The recorded maximum input axial strain is in very good 

agreement with the axial strain obtained from the elementary. 

wave theory as 

pclv v .. 
C = ~=-= 47.8 \..1£ m LE 2c

l 
(8.5) 

where c l = 5140 mls is the bar velocity, and v = 0.491 mls is 

the value of the impact velocity used in most experiments. 

The material properties used for the theoretical solutions 

throughout chapter 8 are those experimentally measured for the 

actual mild steel test beams and were listed in table 7 as 

E = 205.6 x 109 N/m2 

0.777 104 3 
P = x kglm 
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9 N/m2 
G = 79.69 x 10 

'V = 0.2.9 

c l 
= 5140 mls 

c2. = 3011 mls 

k2 0.8856 

The bending moment M(O,t) is zero at t = 0 and reaches 

the maximum of M = 38 Nm after a short finite rise time of o 

to = 90 VS during which a linear ramp increase is assumed. 

The pulse duration is obtained as 

389 VB (8.6) 

where 1 is the length of the striker (1.0 m). 

To generalize the discussion, the values of the bending 

moment and time are non-dimensionalized as 

M.d 
m = EI 

_ cl·t 
T = --cr-

(8.7) 

(8.8) 

where d = 25 rom (approximately equal to the diameter of the 

uniform beam and equal to the small diameters of the stepped 

beams) • 

The input bending moment was idealized as trapezoid and 

was obtained according to equation 8.2.. which describes the 

input boundary condition for the antisymmetric strain components 

as long as the input pulse duration is less than td + to and 

was set equal to zero outside this range. However, the 

experimentally observed axial strain decayed to zero at a later 

stage due to reflection from the far end of the test beam. 

The maximum non-dimensional input bending moment is 
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calculated as 

m = ~id "" 0.225 x 10-
3 

(8.9) 

and the corresponding maximum bending strain on the outer 

surface of the test beam with radius r 

e: "" ~ = 115 lle: (8.10) 

Unless otherwise stated the input boundary condition 

as pure bending moment loading was used for the uniform test 

beam of circular cross-section and for the two cylindrical 

beams with discontinuity of cross-section. 

The time range of the bending strain investigation was 

very short (less than 2 ms) and therefore the influence of 

damping was expected to be very small and was not taken into 

consideration. 

In comparing the experimental results and theoretical 

predictions, one should expect some degree of discrepancy 

due to one or more of the following reasons. 

i) For the case of the numeri'cal computation a relatively 

simple trape~oidal pulse was used to describe approximately 

the exact input pulse. This introduces a certain amount of 

error in the input boundary condition itself. 

ii) The trapezoidal pulse is composed of a large spectrum of 

frequency components which are dispersed due to the different 

velocities at which each frequency is propagated. This 

dispersion is a characteristic of the bending wave. 

iii) The Timoshenko theory gives an excellent prediction of 

the velocity for propagation in the first branch of the 

dispersion curve, but is less satisfactory in its predictions 
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for the next highest branch of the dispersion curve, particularly 

at high frequency where large deviations from the exact theory 

occur. A good agreement between theoretical and experimental 

results indicates that there are no waves generated in the second 

mode or there are only long wave transmissions. 

iv) Although an excellent degree of reproducibility was achieved 

for the conducted sets of experiments, there are inherent errors 

in the experiments and in the reduction of experimental data. 

Taking all these points into account, it will be shown in 

the next sections that the numerical solution by the method of 

characteristics according to the Timoshenko beam theory presents 

an accurate prediction of the observed flexural deformations 

in finite uniform beams and in beams with discontinuity of 

cross-section. 

8.2. Uniform beam of circular cross-section subjected 
to eccentric impact-

The eccentric impact of the beam by a striker of the same 

cross-section produced a system of strain waves which had both 

symmet~ical and antisymmetrical components about the beam mid 

plane. However, the aim of the present work was to investigate 

the bending waves, i.e. to study the antisymmetrical strain-time 

distribution at each beam cross-section. 

The comparison of the measured and predicted bending moment 

histories are shown in figure 8.2 for the position x/d - 12 and 

84 of the 3.0 m long uniform beam of circular cross-section. 

The diameter of the test beam was 25.4 mm and the beam was 

subjected to eccentric impact by a 1.0 m striker of a diameter 

equal to the test beam. 

The bending strain history shown in fig.B.2(a) for a position 
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12 diameters from the impact end indicates that the trape~oidal 

input bending moment of maximum positive magnitude 

0.225 x'10-3 has already built-up a negative peak of m - 0.9 x 10-4 

-at T = 60 and has a positive peak arriving at T - 140 with a 

-3 magnitude of m = 0.15 x 10 which is only 607. of the input 

bending moment. 

Comparison of results showed a good agreement between 

theoretical predictions and experimental observations both in 

magnitude and shape up to T = 150. After that, the theoretical 

prediction approaches zero faster than the measured bending 

moment. This can be explained by the difference between the 

trapezoidal input function which is assumed to become zero at 

about T = 100 and the actual pulse which still has a finite 

value at T = 100 and approaches zero at a later time. 

The comparison in figure 8.2(b) for the theoretical 

prediction of the bending moment history and its recorded history 

at position x/d = 84 indicate a good agreement and theory results 

in a slightly smaller magnitude than the experiment. 

The results presented for the case of the uniform test 

beam are brief and are intended to give only an example before 

proceeding to the results of the finite free free beams with 

discontinuity of cross-section which is the main purpose of the 

present work. 

A more detailed comparison of several cases of semi-infinite 

and finite uniform beams was conducted in chapter 5. 

According to the wave theory, the fastest waves in beams 

are travelling with the bar velocity c1 and therefore reflections 

in the present example are expected to arrive at position x/d -
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· 12 after T = 228 and at position x/d = 84 after T - 156. 

However, there was little evidence of any reflections arriving 

within the considered non-dimensional time of T = 316 and 244 

for x/d = 12 and 84 respectively. It is expected that the 

main components of the transient input bending moment are 

travelling at a slower velocity. 

The dispersion of the flexural wave and the adequacy of 

the Timoshenko beam theory in predicting the main features 

of the beam response to eccentric impact are clearly demonstrated. 

8.3 Cylindrical beam with discontinuity of cross-section 
at the middle 

The comparison of bending moment history at various positions 

on both cross-sections of the stepped beam are presented in 

figures 8.3 - 8.5. The numerical results were obtained using 

the TMOTCU 3 computer program and the experimental data were 

based on the measured antisymmetric outer surface strains. 

The experimental results and the numerical results are in 

extremely good agreement. In all cases the major features of 

the experimental results are reproduced by the numerical solution 

obtained by the method of characteristics. 

Fig.8.3 shows the comparison of bending moment-time 

distribution at positions x/d = 4 and 32 corresponding to 0.1 m 

and 0.8 m from the eccentrically impacted end of the 2.0 m long 

test beam with the discontinuity of cross-section at the middle. 

The maximum velocity of propagation of any wave component 

i~ the beam is cl and therefore the fastest possible arrival 

of the bending wave is at T = 4 and 32 for positions x/d = 4 

and 32 respectively. However, the trape~oidal input bending 

moment becomes more and more widespread as it is propagated 
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along the beam. 

For position x/d = 4 the agreement between experimental 

results and theoretical prediction is very good up to T - 96 

and even at this early location only 4 diameters from impact 

end, the dispersive character of the flexural wave is clearly 

visible in the production of a small initial negative peak 

and some reduction in the maximum peak of the input bending 

moment. 

After T = 96, the theoretical prediction reaches zero 

faster than the experimentally observed data due to the basic 

disagreement between the theoretically assumed trapezoidal 

input bending moment and the bending moment magnitude evaluated 

from the observed longitudinal strain, as demonstrated in 

.figure 8.1. 

The agreement at position x/d = 32 until T - 148 is 

excellent in both amplitude and time. After T - 148 there 

is some difference although the theoretical prediction still 

gives the general form of the experimentally observed bending 

moment history. 

The experimental and theoretical bending moment-time 

distributions immediately before and after the position of 

discontinuity are compared in figure 8.4. The experimental 

records were obtained from strain gauge locations at x/d - 39.8 

and 40.2 whereas the theoretical predictions are both for 

position x/d = 40 where the diameter of the test beam increased 

from d
l 

= 25.4 mm to dZ = 31.75 mm. 

The time wise agreement between the two sets of results 

is excellent but the theoretical solution predicts slightly 
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smaller peaks at the initial stages and larger magnitudes 

from T= 200 onwards. A peak value of m - 0.7 x 10-4 at 

T = 152 has decreased to m = 0.25 x 10-4 due to an increase 

in the diameter of the test beam by 257.. 

The comparison of experimental and theoretical bending 

moment history at position x/d = 48 and 76 is presented in 

figure 8.5. 

The numerical results based on the method of characteristics 

produced good pulse magnitude and shape agreement with experiment. 

The bending moment pulse at position x/d c 76 showed a 

more oscillatory form than the pulse at any position before and 

the main components arrived after T = 140 indicating clearly 

that bending waves are travelling with velocities smaller 

than the ba~ velocity c • 
1 

Although the theoretical predictions of peaks were mostly 

lower than those observed experimenta1lYt the experimental data 

showed the presence of a definite peak at the location predicted 

numerically. ; 

The extremely good agreement of the numerical predictions 

using the TMOTCU3 computer program with experimental observations 

of the bending wave propagation indicated clearly the adequacy 

of the Timoshenko beam theory for flexural wave propagation in 

beams with discontinuity of cross-section. 

8.4. Longer Cylindrical beam with 'discontinuity of 
cross-section subjected to eccentric impact 

Comparisons of measured and predicted bending moment history 

are shown in figures 8.6 and 8.7 for a longer test beam of 3.295 m 

with the discontinuity of cross-section at the same distance from 
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the impact end as in the previous example. In this case. the 

reflected bending wave from the far end of the beam is expected 

to arrive at a later time. 

The results shown in figure S.6 for positions x'd - 4 and 

32 are identical with the results shown in figure 8.3 for the 

same positions of the shorter beam except a small difference for 

x'd s 32 at T - 216. This indicates that within the considered 

time of T = 240 there were no reflections from the far end 

arriving at the monitoring positions ,and the significant change 

in the shape and magnitude of the input bending moment is due to 

dispersion and reflections from the position of discontinuity. 

Good agreement is noted for pulse magnitude and shape. 

Figure 8.7 shows a comparison of experimental observations 

and theoretical predictions for positions x'd = 48 and SO. The 

agreement is extremely good. although the numerical solution 

predicts a slightly lower amplitude for the travelling bending 

wave. 

8.5. Cylindrical'steppedoeam'subjectedto eccentric 
impact at the larger end 

The 2.0 m long test beam with discontinuity of cross-section 

at the middle was subjected to eccentric impact at its large end 

of 31.75 mm diameter where the axial force was applied with an 

eccentricity of e = 9.5 mm. 

The longitudinal surface strain was measured as E - 34.5 ~E m 

and the maximum axial force was obtained according to equation 

(S.3) as 

P = E EA = 5610 N m m (S.ll) 

The maximum input bending moment is as in equation (8.1) 

M = P .e - 53.3 Nm o m 
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The non-dimensional time is defined as in equation (8.8) 

as T ... c1 .t/d with d still taken as 25 mm. 

The bending moment was non-dimensiona1ized according to 

equation (8.7) as 

m ... ~id - 0.13 x 10-3 (8.13) 

where I is cross sectional moment of inertia of the larger 

cross section. 

The maximum bending strain corresponding to the maximum 

input bending moment can 

~ ... M.~ . II: 82 5 
... 2EI • 

be obtained as 

(8.l4) 

The input bending moment for the numerical computation 

was assumed as before to be in the form of trapezoid with a 

finite rise time of to ... 90 '\-Is (To - 18.5) as shown in figu,re 

8.1. 

Comparison of measurements and TMOTCU3 calculations are 

shown in figures 8.8. to 8.10 for the bending moment-time 

distribution at x/d ... 4, 32, 40 and 48. 

In figure 8.8. the experimental results and theoretical 

results are presented for strain gauge locations x/d a 4 and 

32. The agreement for position x/d - 4 is seen to be excellent 

- -3 and the bending moment approaches the maximum of m a 0.125 X 10 

as from T !II: 68. 

At position x/d ... 32, the theory predicts a larger peak for 

the bending moment at T ... 100 and at T - 144 which are the same 

positions of the experimentally predicted peaks. The agreement 

in time variation between theory and experiment is extremely 

good. 
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The bending moment history at the position of discontinuity 

immediately before and after the reduction of cross-section at 

x!d - 40 is presented in figure 8.9 where theoretical solutions 

are obtained for x!d - 40, and experimental results were observed 

at strain gauge locations x!d = 39.8 and 40.2. 

The theoretical solution was obtained for a shorter period 

of T c 160 than in the case of increased cross-section, since 

the present case required a finer mesh size of 6x - 0.625 mm in 

contrast to the larger mesh size of ~ - 1.25 mm used in previous 

cases. 

The bending moment at T = 116 increased from 0.1 x 10-4 to 

0.3 x 10-4 due to a reduction in the diameter from 31.75 rom to 

25.4 rom and a larger peak was observed at T - 238. 

Figure 8.10 shows the compar~son between experimental and 

theoretical bending moment- time results at position x!d - 48 

where there is an extremely good agreement in magnitude and 

shape. 

The level of the bending moment dropped to ~ = 0.15 x 10-4 

at T = 120 and to a negative magnitude of m - -0.24 x 10~4 at 

T = 140, and the alternating sign of the antisymmetric dispersion 

bending wave is clearly visible. 

8.6. Finite stepped beam of rectan ular cross section 
su Jected to eccentr1c 1mpact 

The last studied case of stepped beams consisted of a test-

beam of rectangular cross-section with increased height from hI -

36.4 mm to hz = 50.8 rom at 1.0 m f~om the impact end and with a 

constant width of 12.7 rom over the whole length of 1.885 m (Test 

beam IV of figure 7.29). 
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The input axial force due to eccentric impact with the 

1.0 m striker of circular cross-section was applied at an 

eccentricity of e c 9.8 mm. 

The maximum longitudinal surface strain due to eccentric 

impact was measured as Em - 48.4 ~E. 

as 

The axial force is obtained according to equation (8.3) 

F- = E EA = 4600 N 
1Il.. m (8.15) 

This in turn results in an input bending moment of the 

following maximum magnitude. 

M = P .e = 45 Nm o m 
(8.16) 

The non-dimensional input bending moment is defined as 

_ M.~ -3 
m = ~= 0.217 x 10 (8.17) 

The rise time of the trapezoidal input bending moment is 

taken as to = 90 ~s and the non-dimensional time is defined 

as before. 

where d = 25 mm. 

The maximum bending strain due to the maximum input bending 

moment can be obtained as 

Mo ·hl /2 ., 
E = EI = 78 ~€ (8.18) 

The value of the shear correction factor for the rectangular 

2 cross section was taken as k = 0.849 and then c2 can be determined 

as 

= 2949 mls (8.19) 

I 

The non-dimensional bending moment-time distribution for 

positions x/d = 4, 32 40, and 48 are shown in figures 8.11 to 

8.13. 
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The agreement between theoretical predictions and experimental 

results is good in magnitude and shape with the theoretical solution 

predicting higher peaks at the same positions of the measured peaks. 

Fig.B.11 presents the bending moment history at positions x/d 

= 4 and 32. The change in the shape of the bending moment as it 

has travelled from x/d = 4 to x/d - 32 is clearly observed where 

the initial positive bending moment of m = 0.205 x 10-3 at x/d - 4 builds 

up to - -3 a negative peak of m = 0.125 x 10 at T - 204 as monitored 

in position x/d - 32. This peak is followed by smaller oscillations. 

More severe .bending moment changes are noted in figure B.12 

representing the comparison of experimental and theoretical data 

at x/d = 40 where the bending moment-time distribution is plotted 

before and after the discontinuity of cross section. 

A better agreement between theoretical and experimental results 

is noted at the initial period of T - 160 with the theor~tical 

predictions becoming higher than experimental results as time 

progressed. 

Fig.8.13 demonstrates the comparison of experimental:observations 

and theoretical predictions for the bending moment history at x/d -

48. 

The theoretical solution predicts the shape of the propagating 

bending wave but with a shift of about T = 8 where the experimental 

peaks trail behind the analytical peaks. 

It can be concluded that the propagation of flexural waves in 

beams of circular and rectangular cross-section with discontinuity 

of cross-section are adequately predicted by the numerical; solution 

according to the Timoshenko beam theory. The differences between 

theoretical results and experimental results were reasonably small. 
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CHAPTER IX 

DISCUSSION 

The Euler-Bernoulli theory is known to be inadequate for 

the treatment of transient bending wave propagation problems, 

since it assumes an infinite velocity of propagation for 

disturbances with infinitely short wavelengths associated with 

the high frequency branches. 

The transient response is associ ated "ri. t" the im'l8ct ~Jhere 

the duration of impact is much smaller than the period of the 

first flexural mode of vibratton of the structure. 

This period for the 2.0 m stepped beam is 10.3 ms and the 

pulse duration of the trapezoidal input bending moment was 0.48 

IDS, more than 21 times smaller than the fundamental period. 

The Timoshenko Beam theory, which takes into account the 

effects of rotatory inertia and shear, is practically the best 

approximate theory for solving transient flexural wave propagation 

problems. 

From the literature survey no previous attempt to. solve the 

problem of flexural wave propagation in beams with discontinuity 

of cross section according to the Timoshenko beam theory has been 

found. 

The investigation concentrated on the study of antisymmetrical 

strain component-time distribution at various locations along test 

beams due to the considerable importance of beams in bending for 

engineering applications. 

Several solution' methods were discussed. The transform 

techniques require numerical inversion and numerical integration 

becomes more complicated with the incorporation of boundary 
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conditions.TheLaplace transform method yields solutions in 

closed form only when a certain power distribution can be 

assumed for the variables. 

Finite element methods are mostly used for frequency 

analysis of Timoshenko beams. However, computed stresses 

show severe oscillations making the method less attractive 

for transient wave propagation problems. 

Although finite element methods are very useful in the 

treatment of geometrically complex structures and although 

they have been used successfully for the solution of elliptic 

, and parabolic governing equations, they have yet to prove 

themselves for solving transient flexural wave propagation 

problems governed by hyperbolic partial differential equations. 

Finite difference methods have been used widely in 

solving'one dimensional and two dimensional longitudinal wave 

propagation problems. The main disadvantage of the finite 

difference techniques is the difficulties encountered in handling 

disconti~uities in geometry and material. 

The method of characteristics was shown to be most accurate 

and most effective in solving mixed initial boundary value problems 

governed by hyperbolic partial differential equations such as 

the problem of flexural wave propagation in beams when described 

by the Timo'shenko beam equations. 

The method of characteristics has the advantage that dis­

continuities in the initial values propagates along the characteristics 

and a unfque solution is ensured in the region between the 

characteristic lines. 

The method of characteristics has a wide range of applications 
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in the fields of elastic, viscoelastic and plastic wave propagation 

problems as well as other fields such as fluid mechanics and gas 

dynamics. 

The method of characteristics was applied successfully in 

solving the present problem of flexural wave propagation in finite 

beams with discontinuity of cross-section, where reflections from 

the far end and the position of discontinuity are automatically 

absorbed into the solution by the presence of backward running 

characteristic curves at each grid point. 

The adherence of the characteristic method to the stability 
.. ·flx .... 

criterion of c It ~ 1 ensures convergence to the true solution 
1 

as !::.x and /j.t approach zero. 

The choice of the correct mesh size is affected by the type 

of loading, the ri~e time of the input load, boundary condition 

and the type and pQsition of discontinuity, In order to select 

the largest mesh size with a minimal acceptable error, the mesh 

size was chosen in such a manner that any further reduction in 

its value did not alter the solution significantly (Fig.S.ll and 

5.12) 

The importance of the shear coefficient k2 was discussed in 

chapter 5 (section 1) and after careful considerations the values 

of 0.8856 and 0.849 were chosen for beams of circular cross-section 

and rectangular cross-section respectively. 

Numericai results based on the developed TMOTeU computer 

programs were compared with theoretical and experimental results 

of several other authors to establish the accuracy of the present 

numerical solution. The comparisons were carried out for the 

case of a semi-infinite beam subjected to eccentric impact by a 
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long rod (Fig.5.l) and the eccentric impact by a steel ball 

(Fig.5.4 and 5.5.). The numerical results of this work were 

also compared with previous results for a cantilever beam 

subjected to a ramp platform bending moment (Fig.5.6 and 5.7) 

and for the case of lateral impact of a simply supported beam 

(Fig.5.B) • 

The comparisons in all cases showed very good agreement 

and indicated the advantages of the current numerical solution 

in predicting recorded high frequency components of the transient 

responses. 

Several cases with various end conditions were considered 

and theoretical solutions were obtained by the use of the 3 

versions of the TMOTCU computer program. The bending moment 

time curves were presented for finite uniform beams and finite 

beams with discontinuity of cross-sections subjected to ramp 

platform end moment impacts. 

The effect of the change of mesh size was demonstrated in 

figures 5.11 and 5.12 for three different mesh sizes obtained 

by successfully halving the original mesh size of ~x - 0.005 and 

the results indicated small differences between 1% and 5% with 

the maxUnwn differences concentrated at the peak values. 

The bending moment time distribution in a free free beam, 

a simply supported beam and in a cantilever beam were presented 

in figures 5.13 and 5.14 for tnree beam positions of finite 

uniform. beams. 

The results indicated the importance of taking the reflections 

into account for the estimation of the level of stresses and 

strains in structures. 
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The problem of flexural waves in finite beams with 

discontinuity of cross section required a finer mesh size than 

in the case of a finite uniform beam. 

For stepped beams, the effect of change of diameter ratio 

on propagated bending waves for diameter ratios 0.9, 1.0, 1.1, 

1.5 and 2.0 was presented in figures 5.15 to 5.17. An increased 

diameter ratio resulted in an increased reflected bending wave 

arriving at the considered positions. 

The effect of discontinuity of cross section on the shear 

force distribution in finite stepped beams subjected to ramp 

platform end bending moment was presented in figures 5.22, 5.23 

and 5.25. The curves showed increased reflected shear force 

with increased diameter ratio and the effect of abrupt change 

in cross section was strongly manifested in the history of 

reflected and transmitted shear force. 

~ the experimental part of this work, experimental data 

were obtained for various test beams subjected to eccentric 

impact by a striker 1.0 m long. Results were presented for 

several positions along uniform beams and finite beams with 

discontinuity of cross section and of circular and rectangular 

cross section. 

The eccentricity of the longitudinal impact was measured 

by a direct method of tracing the off-centre position for each 

impact and the results showed an excellent degree of reproduc­

ibility (Fig.7.l0a). 

The eccentric impact was considered to be perfectly elastic 

due to the low velocity of impact and any possible local plastic 

flow was neglected. 
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The pulse length was shown for these tests to be directly 

proportional to the striker length (Fig.7.7b) and the 1.0 m 

long striker provided an i.nput pulse of approximately trape~oida1 

shape. 

The bending wave indicated considerable dispersion as it 

travelled down the beam showing alternating sign and no definite 

constant velocity of propagation for the frequency components of the 

bending wave could be obtained. Fig.7.l2b showed the bending 

strain records at positions x/d - 4 and 32. The original 

trapezoidal shape was still; recognisable at 4 diameters from the 

impact end but waS more widespread at 32 diameters distance 

and showed negative and positive peaks. 

The bending strain-time distribution was recorded for six 

positions along-~he 2.0 m long stepped beam subjected to eccentric 

impact at the s~al1er end (Figs.7.20 and 7.21) and at the larger 

end (Figs.7.25 and 7.26) with particular emphasis on the bending 

strain-time distribution in the immediate vicinity of the abrupt 

change of the cross section. 

An increased cross section had the effect of a sharp decrease 

in the level of the bending strains. A decreased cross section 

resulted in a considerable increase in the monitored strains. 

Fig.7.26b showed a sharp increase in the bending strain 

where peak strains were more than doubled due to a 25% reduction 

in the diameter of the cross section. The effect of change in 

rectangular cross section on the propagated bending wave was 

investigated and the results presented in Fig.7.31b indicated 

a more drastic reduction in the level of bending strain than 

in the case of a stepped beam of circular cross section. 
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In order to check the validity of numerical solutions obtained 

by the TMOTCU computer programs, theoretical predictions were 

compared with experimental observations for several cases of 

finite beams with discontinuity of cross section. 

Based on the ramp platform bending moment input, a 

trapezoidal bending moment shape was derived and closely 

approximated the value of the actual applied bending moment as 

obtained by multiplying the axial force-time curve with the 

measured eccentricity of the impact (Fig.B.I). 

Comparisons of experimental and theoretical results showed 

extremely good agreement in magnitude and shape. A certain 

degree of discrepancy was expected due to some error introduced 

in the input data itself, and the inherent errors· in experimental 

data reduction. Furthermo~e, the Timoshenko theory agrees with 

the pochhammer Chree theory ,excellently only for the first branch 

of the dispersion curve and the agreement is less satisfactory 

for the next highest branch of the dispersion curve. 

The comparison was carried out for non-dimensional bending 

moment versus non-dimensional time and the theoretical results 

predicted accurately the dispersive character of the bending wave, 

The agreement was better in the initial build up of the bending 

moment and at later stages theoretical predictions were somewhat 

higher than experimental records. 

The pulse length of the input bending moment was many times 

greater than the cross sectional dimension of the test beams and 

the one dimensional Timoshenko beam theory adequately described 

the flexural wave propagation in the stepped beams. 

The numerical solution by the method of characteristics 
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was successful since the agreement between theoretical solution 

and experimental observation was especially good for uniform 

beams and for beams with discontinuity of cross section. 

The importance of the effect of abrupt changes in cross 

section was demonstrated in comparison between results obtained 

at stations immediately before and after the position of 

discontinuity in a 2.0 m long cylindrical stepped beam subjected 

to eccentric impact at its small end (Fig.8.4) and at its 

larger end (Fig.B.9) as well as for a stepped beam of rectangular 

cross section (Fig.8.12) • 

. The level of change of stresses in the structure due to a 

sudden change in the cross section is of practical importance 

in engineering applications. The magnitude of stress variation 

can be derived directly from the bending moment-time curves. 

In the small cross section with an .area 64% of the larger 

cross section, the level of stresses at T - 160 was 2.25 times 

the level of stresses recorded after the cross section was 

increased. This is derived from Fig.8.4. 

A reduction of 36% in the cross sectional area resulted 

in an increase in the level of stresses to 2.4 times the 

original stress peak at T - 116 on the larger cross sectional 

area. This is derived from Fig.8.9. 

A similar drastic change in the level of stresses was 

noted for the case of cross section increase in a beam of 

rectangular cross section with increased depth (Fig.8.12). 

The results of the present work indicated clearly the 

importance of the effect of discontinuity of cross section 

on anti symmetric strain and stress components in finite 

structures under transient dynamic loading. 
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CHAPTER X 

CONCLUSIONS 

The transient response of oeams with discontinuity of 

cross section was established experimentally and accurate 

predictions were provided by the numerical method of 

characteristics using the Timoshenko beam theory. 

Several other solution methods were discussed and 

although the method of characteristics is most suitable for 

one dimensional flexural wave propagation problems governed 

by the system of hyperbolic partial differential equations, 

other finite element techniques can be more efficient in 

solving two dimensional wave propagation problems. 

The most satisfactory approximation in one case is not 

necessarily the most appropriate in another case. The 

choice of the solution method must depend on the required 

accuracy, the nature of the structure and its complexities, 

and the importance of the shear deformation and rotatory 

inertia effects. 

One of the problems in the use of the method of'characteristics 

was the choice of the correct mesh size which had to be decided 

for each problem depending on the type of loading, the rise time 

of the input function, the end conditions and the size and position 

of discontinuity. 

For bending moment input impact problems of finite beams 

where reflections were taken into consideration the use of very 

small mesh size was inevitable. This may be regarded a limitation 

to the application of the method of characteristics. However, 

this disadvantage becomes less and less significant with the 
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development of ever faster computers. 

The maximum values for peaks of bending moment, stresses 

and strains in finite stepped beams with increased cross 

section were found to be in the initial build up and at 

positions nearer to the impact end. However, the peaks of 

the same quantities in finite stepped beams with reduced 

cross section occured at positions on the second reduced 

cross section. Therefore reflections have to be considered 

in order to provide realistic design data for structures 

under transient dynamic loading. 

The very good agreement between theory and experiment 

showed the success of the method of characteristics and makes 

it suitable for providing solutions for a wide range of 

flexural wave propagation problems in beams with discontinuity 

of cross section and for various loading configurations where 

the same solution equations can be used and only the appropriate 

initial and boundary conditions need to be specified. 

:The numerical results of the method of characteristics 

can be used to check the validity of other numerical methods 

and their usefulness in obtaining the dynamic transient response 

of more complicated structures. 

Most of the experimental and theoretical work was concentrated 

on cases of free-free finite beams with discontinuity of cross 

section subjected to end bending moment due to eccentric longitudinal 

impact. However, other types of end conditions and lateral impact 

problems can be handled easily by the present TMOTCU computer 

programs where the time variation of quantities such as M, Q,W and 

v are all included. 
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The study of the discontinuity iri material property 

combined with the discontinuity of cross section can be 

the subject of future works. 

Furthermore, the developed TMOTCU computer programs can be 

used to solve flexural impact loading problems without assuming 

the form of the impact load, but merely using the impact velocity 

to formulate the input boundary condition. This is particularly 

useful for practical impact problems where the impact load is not 

known. 

Another possible extension of the present work is to use the 

experimental results to obtain the velocity of propagation of 

pulse peaks and,based on that,to construct dispersion relationship 

curves • 
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A P P E DIe E S 



ft.PPENDIX A 

TMOTCU-3 CMPUTER PROGRAM FOR TRANSIENT FLEXURAL PAVE PROPAGATION IN 

BEAMS WITH DISCONTINUITIES OF CROSS SECTION 

C MCDIT 21 COMPUTER CODE FOR 1-DIMEN. ELASTIC WAVE PROBLEMS 
COMMONU(9,a001),Y(12,12),W(9,9),F(6,3),G(6,3),H(6,3),Z(12),UU(12), 

1DU(9),V(9),UP(9),A(7),B(7),C(7),D(7),E(7),P(7),PINC,XLI,EM,C1,C2,X 
2ZERO,I,M,S1,DS(9),R1,R2 

1 FORMAT(I5,4E15.H) 
2 FORMAT(2E15.8) 
3 FORMAT(5E15.8) 
4 FORMAT (1H ,38HNUMBER OF POINTS ALONG LEADING WAVE = ,14) 
5 FORMAT (1H ,8HXZERO = ,E15.8,5X,9HDELTAX = ,E15.8) 
6 FORMAT(1H ,5HC1 = ,E15.8,5X,5HC2 = ,E15.8) 
7 FORMAT(1H ,1H(,E15.8,7H)*U1X+(,E15.8,6H)*U1+(,E15.8,7H)*U2X+(,E15. 

18,6H)*U2+(,E15.8,7H)*U3X+(,E15.8,4H)*U3) 
8 FORMAT(1H ,4H +(,E15.8,37H)*U1T = BOUNDARY CONDITION FUNCTION 1) 
9 FORMAT(1H ,4H +(,E15.8,37H)*U2T = BOUNDARY CONDITION FUNCTION 2) 

10 FORMAT(1H ,4H +(,E15.8,37H)*U3T = BOUNDARY CONDITION FUNCTION 3) 
11 FORMAT(1H ,9H~LBEAM = ,E12.4,5HS1 = ,E12.4) 
12 FORMAT(4E12.4) 
13 FORMAT(1H ,5HR1 = ,E12.4,5HR2 = ,E12.4) 

~ THE SHEAR CORRECTION FACTOR IS GIVEN AS C2 
~ DR IS DIAMETER RATIO 

24 FORMAT(1H ,43HSLOPE OF 11+ LINE EXCEEDS OR EQUALS MAXIMUM) 
25 FORMAT(1H ,41HVALUE OF 3.0 COMPATIBLE WITH THIS PROGRAM) 
37 FORMAT(1H ,14HERROR IN LOGIC) 
38 FO~MAT(1H ,36HENDBEAM BOUNDARY CONDITION FUNCTION,/) 
69 FORMAT(1H ,1111) 

READ(5,1)MZERO,XZERO,PINC,C1,C2 
READ(S,12)ELBEAM,S1,R1,DR 
READ(S,3)A( 1) ,A(2) ,A(3) ,A(4) ,A(S) 
READ(5,2)A(6),A(7) 
READ(S,3)B(1),B(2),B(3),B(4),B(5) 
READ(S,2)B(6),B(7) 
READ(5,3)C(1),C(2),C(3),C(4),C(S) 
READ(5,2)C(6),C(7) 
READ(5,3)D(1),D(2),D(3),D(4),D(5) 
READ(5,2)D(6),D(7) 
READ(S,3)E(1),E(2),E(3),E(4),E(5) 
READ(S,2)E(6),E(7) 
READ(S,3)P(1),P(2),P(3),P(4),P(S) 
READ(5,2)P(6),P(7) 
C2 = C1*SQRT(C212.58) 
i'lRITE(6,4)MZERO 
WRITE(6~5)XZERO,PINC 
WRITE(6,6)C1,C2 
~RITE(6,11)ELBEAM,S1 
R2 = DR*R1 
~RITE(6,13)R1,R2 
wRITE(6,7)A(1),A(2),A(3),A(4),A(5),A(6) 
WRITE(6,8)A(7) _ 
WRITE(6,7)B(1),B(2),B(3),B(4),B(5),B(6) 
~RITE(6,9)B(7) 
dRITE(6,7)C(1),C(2),C(3),C(4),C(S),C(6) 
wRITE(6,10)C(7) 
',jRITE(6,38) 
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WRITE(6,7)O(1),O(2),O(3),D(4),D(5),D(6) 
WRITE(6,8)D{7) 
WRITE(6,7)E(1),E(2),E(3),E(4),E(5),E(6) 
WRITE(6,9)E(7) 
WRITE{6,7)P{1),P(2),P(3),P(4),P(5),P(6) 
W R IT E ( 6 , 1,0) P ( 7 ) 
CONST1 = 1.373/R1**2 
CONST2 = 1.313/R2**2 
CON1 = (R2/R1)**2 
CON2 = CON1**2 
WRITE(6,12)CONST1,CONST2,CON1,CON2 
EM = C1/C2 
IF(EM-3.)22,23,23 

23 WRITE(6,24) 
WRITE{6,25) 

. GOT09999 
22 WRITE{6,69) 

XLI=1. 
CALLFIRSTP' 

91 LI=2 
IYZ=1.-2./(EM+1.)' 
GOT026 

27 XLI=LI 
1=1 
IYZZ=IYZ 
IYZ=XLI~{2.*XLI)/(EM+1.) 
MESH = ELBEAM/PINC + .5 

40 IF(LI-MESH)41,41,42 
41 CALL INPUTP 

GOT035 
42 CALL ENDP(ELBEAM) 
35 IF(I-LI)28,29,29 
28 IF(I-1-IYZZ)30,31,32 
31 IF(IYZZ-IYZ)33,34,34 
32 IF(I-'-IYZ)36,30,30 
36 ~~RITE(6, 37) 

GOT09999 
29 CALLBOUNDP . 
92 LI:::LI+1 
26 IF(L1-MZERO)27,9999,9999 
30 IF«LI-I)*PINC.NE.S1)GOTO 39 

CALL D1SCONT 
GOT035 

39 CALL OROINP 
GOTO 35 

33 IF«LI-I)'PINC.NE.(S1+PINC»GOTO 43 
CALL DISCON3 
GOT035 

43 CALL CASE32 
GOT035 

34 IF«LI-I)'PINC.NE.S1)GOTO 44 
CALL DISCON1 
GOT035 

44 CALL CASE'P 
GOT035 

9999 CALLEXIT 
END 
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C SIMOLTANEOUS SOLUTION SUBROUTINE 
SUBROUTINEMASUB 
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G(6,3),H(6,3),Z(12),UU(12), 

1DU(9),V(9),UP(9),A(7),a(7),C(7),D(1),E(1),P(7),PINC,XLI,EM,C1,C2,X 
2ZERO,I,M,S1,DS(9),R1,R2 

N=M-1 
DO 5200 NN=1,N,1 
NNN=NN+1 
DO 5100 JJ=NNN,M,1 
FRAC =-Y(JJ,NN)/Y(NN,NN) 
DO 5050 KK=NN,M,1 

5050 Y(JJ,KK)=FRAC*Y(NN,KK)+Y(JJ,KK) 
5100 Z(JJ)=FRAC*Z(NN)+Z(JJ) 
5200 CONTINUE 

DO 5500 NN=1,N,1 
NNN=M-NN 
JJ=NNN+1 
DO 5400 KK=1,NNN,1 

5400 Z(KK)=-Z(JJ)*(Y(KK,JJ)/Y(JJ,JJ»+Z(KK) 
5500 CONTINUE 

DO 5600 KKK=1,M,1 
5600 UU(KKK)=Z(KKK)/Y(KKK,KKK) 
9999 RETURN 

END 
~ FIRST POINT SUBROUTINE 

SUBROUTINEFIRSTP 
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G(6,3),H(6,3),Z(12),UU(12), 

1DU(9),V(9),UP(9),A(7),BC7),C(7),D(7),E(7),P(7),PINC,XLI,EM,C1,C2,X 
2ZERO,I,M,S1,DS(9),RR1,RR2 

DIMENSIONHOLD(12) 
ZERO = o. 
PHI=(EM-1.)/(EM+1.) 
ALPH=1.-«4.*EM)/(C1.+EM)**2» 
SLOP=PHI 
X5=XZERO 
T5 = o. 
X1=XZERO 
T1=2.*PINC/C1 
X3=XZERO+PINC 
T3=T1/2. 
X2=XZERO+(2.*PINC)/(1.+EM) 
X4=ALPH*(X5-X3)+X3 
X6=XZERO 
X7=SLOP*(Xo-X2)+X2 
CALLJUMPI(X5,UX5,UT5,VX5,VT5) 
CALLJUMPII(XZERO,WX5,WT5) 
CALLJUMPI(X3,UX3,UT3,VX3,VT3) 
CALLJUMPI(X4,UX4,UT4,VX4,VT4) 
CONST = 1.373/RR1**2 
CALLGECOFF(1,X2,X3,CONST) 
CALLGECOFF(2,X2,X6,CONST) 
CALLGECOFF(3,X1,X2,CONST) 
CALLGECOFG(1,X2,X3) 
CALLGECOFG(2,X2,X6) 
CALLGECOFG(3,X1,X2) 
CALLGECOFH(1,X2,X4) 
CALLGECOFH(2,X2,X5) 
CALLGECOFH(3,X1,X7) 
CALLBCTF1 (T1 ,R1) 
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CALLBCTF2(T1,R2) 
CALLBCTF3(T1,R3) 
CALLJUMPII(X2,DU(8),DU(9» 
DX23=X2-X3 
DX24=X2-X4 
DX26=X2-X6 
DT15=T1-T5 
DX25=X2-X5 
DX12=X1-X2 
DX17=X1-X7 
Y(1,1)=A(1) 
Y(1,2)=A(2)*DT15/2.+A(7) 

·Y(1,3)=A(3) 
Y(1,4)=A(4)*OT15/2. 
Y(1,5)=A(5) 
Y(1,6)=A(6)*DT15/2. 
Y(1,7)=O. 
Y(1,B)=O. 
Y(1,9)=O. 
Y(1,10)=O. 
Y(1,11)=O. 
Y(1,12)=0. 
Z(1)=R1-A(2)*OT15*UT5/2.-A(4)*OT15*VT5/2.-A(6)*DT15*WT5/2. 
Y(2,1)=C1*(1.-F(1,3)*OX12/2.) 
Y(2,2)=1.-C1*DX12*OT15*F(2,3)/4. 
Y(2,3)=-C1*OX12*F(3,3)/2. 
Y(2,4)=-C1 f OX12*OT15*F(4,3)/4. 
Y(2,5)=-C1*OX12 f F(5,3)/2. 
Y(2,6)=-C1*OX12*OT15*F(6,3)/4. . 
Y(2,7)=C1*(-1.-F(1,3)*OX12/2.-F(2,3)*OX12-0X23/4.) 
Y(2,8)=-1.+F(2,3)*OX12*OX2 3/4 • . 
Y(2,9)=(-C1*OX12/2.)*(F(3,3)+F(4,3)*OX23/2.) 
Y(2,10)=F(4,3)*OX12*OX2 3/4 . . 
Y(2,11)=(-C1*OX12/2.)*(F(S,3)+F(6,3)*OX24/2.) 
Y(2,12)=C1*F(6,3)*OX12·0X24/(4.*C2) 
Z(2)=(C1*OX12/2.)*(F(2,3)*OT15*UT5/2.+F(2,3)*OX23*(UX3-UT3/C1)/2.+ 

1F(4,3)*OT15*VT5/2.+F(4,3)*OX23*(VX3-VT3/C1)/2.+F(6,3)*DT15*WT5/2.+ 
2F(6,3)*OX24~(-OU(B)+OU(9)/C2)/2.) . 

Y(3,1)=B(1) . 
Y(3,2)=B(2)*OT15/2. 
Y(3,3)=B{3) 
Y(3,4)=B(4)*OT15/2.+B(7) 
Y{3,5)=B(5) 
Y(3,6)=B(6)*OT15/2. 
Y(3,7)=0. 
Y(3,B)=0. 
Y(3,9)=O. 
Y(3,10)=O. 
Y(3,11)=O. 
Y(3,12)=0. 
Z(3)=R2-B(2)*OT15*UT5/2.-B(4)*OT15*VT5/2.-B(6)*DT15*WT5/2. 
Y(4,1)=-C1*OX12*G(1,3)/2 •. 
Y(4,2)=-C1*OX12 f OT1S*G(2,3)/4. 
Y(4,3)=C1*(1.-G(3,3)*OX12/2.) 
Y(4,4)=1.-C1*OX12*OT15*G(4,3)/4. 
Y(4,S)=-C1*OX12*G(S,3)/2. 
Y(4,6)=-C1*OX12 f OT1S*G(6,3)/4. 
Y(4,7)=(-C1 f OX12/2.)*(G(1,3}+G(2,3)*OX23/2.) 
Y(4.B)=G(2,3)*OX12* OX2 3/4 . 
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Y(4:9)=C1*(-1.-G(3,3)*OX12/2.-G(4,3)IOX12*OX23/4.) 
y(4,10)=-1.+G(4,3)*OX12*OX23/4. 
Y(4,11)=(-C1*OX12/2.)*(G(5,3)+G(6,3)*OX24/2.) 
Y(4,12)=C1*OX12*OX24-G(6,3)/(4.*C2) 
Z(4)=(C1*OX12/2.)*(G(2,3)*OT15*UT5/2.+G(2,3)*OX23 f (UX3-UT3/C1)/2.+ 

1G(4,3)*OT15*VT5/2.+G(4,3)*OX23*(VX3-VT3/C1)/2.+G(6,3)IOT15*WT5/2.+ 
2G(6,3)*OX24*(-OU(8)+OU(9)/C2)/2.) 

Y(5,1)=(-C2*OX17/2.)*H(1,3)*(1.+SLOP*PHI) 
Y(5,2)=(-C2*OX17 f OT15/4.)*H(2,3)*(1.+SLOP*PHI) 
Y(5,3)=(-C2*OX17/2.)*H(3,3)*(1.+SLOP*PHI) 
Y(5,4)=(-C2~OX17*OT15/4.)*H(4,3)*(1.+SLOP*PHI) 
Y(5,5)=C2*(1.-SLOPIPHI-(H(5,3)*OX17/2.)*(1.+SLOpIPHI», 
Y(5,6)=1.-SLOpIPHI-(C2*OX17*OT15*H(6,3)/4.)1(1.+SLOP*PHI) 
Y(5,7)=(-C2 IOX17/2.)*(H(1,3)*(1.-SLOP)+(H(2,3)*OX23/2.)*(1.-SLOP» 
Y(5,8)=(C2*OX17*OX23 IH(2,3)/(4.*C1»*(1.-SLOP) , 
Y(5,9)=(-C2*OX17/2.)I(H(3,3)*(1.-SLOP)+(H(4,3)*OX23/2.)*(1.-SLOP» 
Y(5,10)=(C2*OX17*OX23*H(4,3)/(4.*C1»*(1.-SLOP) 
Y(5,11)=C2*(SLOP-1.-(H(5,3)*OX17/2.)*(1.-SLOP)-(H(6,3)*OX17*OX24/4 

1.)*(1.-SLOP» . , 
Y(5,12)=SLOP-1.+(H(6,3)*OX17*OX24i4.)*(1.-SLOP) 
Z(5)=SLOP*(WT5 1 (1.-PHI»+C2 I SLOP*WX5*(1.-PHI)+(C2 I OX17/2.)I(H(1,3) 

1*SLOP*UX5*(1.-PHI)+(H(2,3)IOT15*UT5/2.)*(1.+SLOP*PHI)+(H(2,3)*OX23 
2*(UX3-UT3/C1)/2.)*(1.-SLOP)+H(3,3)*SLOP*VX5*(1.-PHI)+(H(4,3)*OT15* 
3VT5/2.)*(1.+SLOP*PHI)+(H(4,3)*OX2 3*(VX3-VT3/C1)/2.)*(1.-SLOP)+H(5, 
43)*SLOP*WX5*(1.-PHI)+(H(6,3)*OT1S*WT5/2.)*(1.+SLOP*PHI)+(H(6,3)*OX 
524*(-OU(8)+OU(9)/C2)/2.)*(1.-SLOP» 

Y(6,1)=C(1) , 
Y(6,2)=C(2)*DT15/2. 
y(6,3)=C(3) 
Y(6,4)=C(4)*OT15/2. 
y(6,5)=C(5) 
Y(6,6)=C(6)*DT15/2.+C(7) 
y(6,7)=0. 
Y(6,8)=0. 
Y(6,9)=0. 
Y(6,10)=0. 
Y(6,11)=0. 
Y(6,12)=0. 
Z(6)=R3-C(2)*OT15*UT5/2.-C(4)*OT15*VT5/2.-C(6)fOT15*WT5/2. 
Y(7,1)=0. r ' 

Y(1,2)=0. 
Y(7,3)=0. 
Y(1,4)=0. 
Y(1,5)=0. 
Y(1,6)=0. 
Y(1,7)=C1*(1.-F(1,1)'OX23/2.-F(2,1)IOX23**2/4.) 
Y(7,8)=1.+F(2,1)*OX23**2/4 .. 
Y(1,9)=(-C1*OX2 3/2 .)*(F(3,1)+F(4,1)*OX23/2.) 
Y(7,10)=F(4,1) IOX2 3**2/4. 
Y(7,11)=(-C1* OX2 3/2 .)*(F(5,1)+F(6,1)*OX24/2.>, 
Y(7,12)=C1*OX23*OX24*F(6,1)/(4.*C2) , 
Z(1)=UT3+C1*UX3+C1*OX23*(f(1,1)*UX3/2.+F(2,1).*OX23*(UX3-UT3/C1)/4. 

1+F(3,1)*VX3/2.+F(4,1)IOX23*(VX3-VT3/C1)/4.+F(5,1)*(-OU(8»/2.+F(6, 
21)*OX24*(-OU(8)+OU(9)/C2)/4.) 
y(8,1)=C1*PHI*(1.~F(1,2)IDX26/2.) , 
y(8,2)=PHI*(-1.+C1 I OX26*OT15*F(2,2)/4.) 
y(8,3)=C1*OX26*F(3,2)*PHI/2. 
y(8,4)=C1*OX26*OT15*F(4,2)IPHI/4. 
y(8,5)=C1*OX26 IF(5,2)·PHI/2. 
y(8,6)=C1 IOX26*OT15*F(6,2)*PHI/4. 

- 328 -



Y(8,7)=Cl*(-1.+F(1,2)*OX26/2.+F(2,2)*OX26*OX23/4.) 
Y(d,8)=1.-F(2,2)*OX26* OX2 3/4 • 
Y(d,9)=(Cl*OX26/2.)*(F(3,2)+F(4,2)*OX23/2.) 
y(8,10)=-F(4,2)*DX26*OX23/4. 
Y(d,11)=(Cl*OX26/2.)*(F(S,2)+F(6,2)*OX24/2.) 
Y(8,12)=-Cl*OX26*OX24*F(6,2)/(4.*C2) 
Z(8)=UT5*(1.-PHI)+C1*UXS*(PHI-l.)-(Cl*OX26/2.)*(F(1,2)*UXS*(1.-PHI 

1)+F(2,2)*OX23*(UX3-UT3/Cl)/2.+F(2,2)*OT1S*PHI*UTS/2.+F(3,2)*VXS*(1 
2.-PHI)+F(4,2)*DX2 3*( VX 3-VT3/Cl)/2.+F(4,2)*OT1S*PHI*VTS/2.+F(S,2)*W 
3X5*(1.-PHI)+F(6,2)*OX24*(-OU(8)+OU(9)/C2)/2.+F(6,2)*OT1S*PHI*WT 
45/2. ) 
Y(9,1)=C1*PHI*G(1,2)*OX26/2. 
Y(9,2)=Cl*DX26*DT1S*G(2,2)*PHI/4. 
Y(9,3)=C1*PHI*(1.+G(3,2)*OX26/2.) 
Y(9,4)=PHI*(-1.+C1*OX26*OT15*G(4,2)/4.) 
Y(9,5)=Cl*G(5,2)*OX26*PHI/2. 
Y(9,6)=Cl*OX26*DT15*G(6,2)*PHI/4. 
Y(9,7)=(Cl f OX26/2.)*(G(1,2)+G(2,2)*OX23/2.) 
Y(9,8)=-G(2,2)*OX26*OX2-3/4. . 
Y(9,9)=C1*(-1.+G(3,2)*OX26/2.+G(4,2)*DX26*OX23/4.) 
Y(9,10)=1.-G(4,2)*OX2610X23/4. 
Y(9,11)=(Cl*OX26/2.)*(G(5,2)+G(6,2)*OX24/2.) 
Y ( 9 ; ·12) = -C 1 * 0 X2 6 *0 X 2 4*G (6 , 2 ) / ( 4 • * C2 ) 
Z(9)=VT5*(1.-PHI)+Cl*VX5*(PHI-l~)-(Cl*OX26/2.)*(G(1,2)*UX5*(1.-PHI 
1)+G(2~2)*OX23*(UX3-UT3/Cl)/2.+G(2,2)*DT1S*PHI*UT5/2.+G(3,2)*VX5*(1 
2.-PHI)+G(4,2)*OX23*(VX3-VT3/C1)/2.+G(4,2)*OT1S*PHI*VT5/2.+G(5,2)*W 
3XS*(1.-PHI)+G(6,2)*OX24*(-OU(8)+OU(9)/C2)/2.+G(6,2)fDr15*PHlfWTS/ 
42.) 
Y(10,1)=0. 
Y(10,2)=0. 
Y(10,3)=0. 
Y(10,4)=0. 
Y(10,5)=0. 
Y(10,6)=0. . 
Y(10,7)=(-Cl*OX23/2 .)*(G(1,1)+G(2,1)*DX23/2.) 
Y(10,8)=G(2,1)*OX23**2/4. ' 
Y(10,9)=C1*(1.-G(3,1)*OX23/2.-G(4,1)*OX23if2/4.) 
Y(10,10)=1.+G(4,1)*OX2 3**2/4. 
Y(10,11)=(-C1*DX23/2 .)*(G(S,1)+G(6,1)*OX24/2.) 
Y(10,12)=C1*DX23IDX24*G(6,1)/(4.*C2) 
Z(10)=VT3+C1*VX3+C1*OX23*(G(1,1)*UX3/2.+G(2,1)*OX23*(UX3-UT3/Cl)/4 

1.+G(3,1)*VX3/2.+G(4,1)*OX23*(VX3-VT3/C1)/4.+G(5,1)*(-DU(8»/2.+G(6 
2,1)IOX24*(-OU(8)+DU(9)/C2)/4.) 
Y(1',1)=0. 
Y(1',2)=0. 
Y(11,3)=0. 
Y(11,4)=0. 
Y(11,5)=0. 
Y(11,6)=0. 
Y(11,7)=(-C2*OX24/2.)*(H(l,1)+H(2,1)*OX23/2.) 
Y(11,8)=C2*OX24*OX23*H(2,1)/(4.*C1) 
Y(11,9)=(-C2*OX24/2.)*(H(3,1)+H(4,1)*OX23/2.) 
Y(11,10)=C2*OX24*OX2 3*H(4,1)/(4.*C1) . 
Y(11,11)=C2*(1.-H(5,l)*OX24/2.-H(6,1)*OX24**2/4.) 
Y(11,12)=1.+H(6,1)*OX24**2/4~ . 
Z(11)=DU(9)+C2*OU(8)+C2*OX24*(H(1,1)*UX4/2.+H(2,1)*OX23*(UX3-UT3/C 

11)/4.+H(3,1)*VX4/2.+H(4,1)*OX23*( VX 3-VT3/C1)/4.+H(S,1)*(-OU(8»/2. 
2+H(6,1)IOX24*(-DU(8)+OU(9)/C2)/4.) 

Y(12,1)=0. . 
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Y(12,2)=0. 
Y(12,3)=0. 
Y(12,4)=0. 
Y( 12,5)=0. 
Y(12,6)=0. 
Y(12,1)=(C2*OX25/2.)-(H(1,2)+H(2,2)*OX23/2.) 
Y(12,8)=-C2*OX25~OX23*H(2,2)/(4.*C') 
Y(12,9)=(C2*nX25/2.)*(H(3,2)+H(4,2)*DX23/2.) 
Y(12,10)=-C2*OX25*OX23*H(4,2)/(4.*C1) 
Y(12,11)=C2-(-1.+H(5,2)*OX25/2.+H(6,2)*OX25 f OX24/4.) 
Y(12,12)=1.-H(6,2)fOX25*OX24/4. . 
Z(12)=WT5-C2*WX5-(C2*OX25/2.)*(H(1,2)*UX5+H(2,2)*DX23*(UX3-UT3/C1) 

1/2.+H(3,2)*VX5+H(4,2)*OX23*(VX3-VT3/C1)/2.+H(5,2)*WX5+H(6,2)*DX24* 
2(-DU(8)+OU(9)/C2)/2.) . 

M::12 
IF(Y(1,1»1,2,1 

2 003J=1,12 
HOLO(J)=Y(1,J) 
Y(1,J)=Y(2,J) 

3 Y(2,J)=HOLD(J) 
CEEP=Z (1) . 
Z(1)=Z(2) 
Z(2)=CEEP 

1 IF(Y(3,3»4,5,4 
5 D06J= 1, '2 

HOLO(J}=Y(3,J) 
Y(3,J)=Y(4,J) 

6 Y(4,J)=HOLO(J) 
CEEP=Z (3 r 
Z(3)=Z(4) 
Z(4)=CEEP 

4 IF(Y(6,6»9 8,8,98 
8 D09J=1, 12 

HOLO(J)=Y(6,J) 
Y(6,J)=Y(5,J) 

9 Y(5,J)=HOLD(J) 
CEEP=z(6) 
Z(6)=Z(5) 
Z(5)=CEEP 

9d CALLMASUB 
99 UP(2)=UU(1) 

UP(3)=UU(8) 
UP(5)=UU(9) 
UP(6)=UU(10) 
Up(8)=UU(11) 
UP(9)=UU(12} 
U(2,2)=UU(1) 
U(3,2)=UU(2) 
U(5,2}::UU(3) 
U(6,2)=UU(4) 
U(8,2)=UU(5) 
U(9,2)=UU(6) 
U(1,2)=(U(3,2)+UT5)*OT15/2. 
U(4,2)=(U(6,2)+VT5)*OT15/2. 
U(7,2)::(U(9,2)+WT5)*DT15/2. 
UP(1)=«UP(2)+U X3)/2.-(UP(3)+UT3)/(2J*C1»*DX23 
Up(4)=«UP(5)+ VX 3)/2.-(UP(6)+VT3)/(2.*C1»*DX23 
UP(1)=«UP(8)-OU(8»/2.-(UP(9)-OU(9»/(2.*C2»*OX24 
U(1,1)::0. 
U(2,1~=UX3 
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U{3,1)=UT3 
U(4,1)=0. 
U{5,1)=VX3 
U (6, 1 ) = VT 3 
U{1,1)=0. 
U(8, 1 )=0. 
U(9,1)=0. 
CALLPRINTO(X5,T5,ZERO,UX5,UT5,ZERO,VX5,VT5,ZERO,WX5,WT5,XLI) 
CALLPRINTO(X3,T3,U(1,1),U{2,1),U(3,1),U(4,1),U(5,1),U(6,1),U(1,1), 

1U{8,1),U(9,1),XLI) 
CALLPRINTO(X1,T1,U(1,2),U(2,2),U(3,2),U(4,2),U(5,2),U(6,2),U(1,2), 

1U(8,2),U(9,2),XLI) 
9999 RETURN 

END 
~ INPUT POINT SUBROUTINE 

SUBROUTINEINPUTP 
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G(6,3),H(6,3),Z(12),UU(12), 

1DU(9),V(9),UP(9),A(1),B(1),C(1),D(1),E(1),P(1),PINC,XLI,EM,C1,C2,X 
2ZERO,I~M,S1,DS(9),R1,R2 

X=XZERO+XLI*PINC 
T=XLI*PINC/C1 
V(1)=0. . 
V(4)=0. 
V(1)=0. 
V(8)=0. 
V(9)=0. . 
CALLJUMPI(X,V(2),V(3),V(5),V(6» 
CALLPRINTO(X,T,V(1),V(2),V(3),V(4),V(5),V(6),V(1),V(8),V(9),XLI) 

290 RETURN 
END 

~ BOUNDARY POINT SUBROUTINE 
SUBROUTINEBOUNDP 
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G(6,3),H(6,3),Z(12),UU(12), 

1DU(9),V(9),UP(9),A(7),B(1),C(1),D(1),E(1),P(1),PINC,XLI,EM,C1,C2,X 
2ZERO,I,M,S1,DS(9),RR1,RR2 

DIMENSIONHOLD(12) 
XI=I 
X 1 =XZERO . 
T=(XLI+XI)*PINC/C1 
SMUK=2./(EM+1.) 
X3=X1+PINC 
X4=X1+SMUK*PINC 
D01 OJ = 1,9 . 
W(J,3)=V(J) 

10 W(J,4)=U(J,I)+SMUK*(V(J)-U(J,I» 
WX4A=W(8,4) 
WT4A=W(9,4) 
CONST = 1.313/RR1**2 
CALL GECOFF(1,X1,X3,CONST) 
CALLGECOFG(1,X1,X3) 
CALLGECOFH(1,X1,X4) 
CALLBCTF 1( T, R 1 ) 
CALLBCTF2(T,R2) 
CALLBCTF3(T,R3) 
DX13=X1-X3 
DX14=X1-X4 
Y(2,1)=C1*(1.-F(1,1)* DX1 3/2.) 
Y(2,2)=1.+F(2,1)*DX1 3**2/2. 
Y(2,3)=-C1*F(3,1)* DX1 3/2 • 
Y(2,4)=F(4,')*DX~~**2/2. 
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Y(2,5)=-C1 I F(5,1)*DX13/2. 
Y(2,6)=F(6,1)*DX13**2/2 •. 
Z(2)=W(3,3)+C1*W(2,3)+C1* DX1 3*(F(1,1)*W(2,3)+F(2,1)*(W(1,3)+U(1,I) 

1-U(3,1)*DX13/C1)+F(3,1)*W(S,3)+F(4,1)*{W{4,3)+U{4,1)-U{6,I)*DX13/C 
21)+F{S,1)*W(B,3)+F(6,1)*{W(7,3)+U(7,I)-U(9,I)*DX13/C1 »/2. 
Y{4,1)=-C1~G(t,1)*DX13/2. 
Y(4,2)=G(2,1)IDX 13**2/2. . 
Y(4,3)=C1*(1.-G{3,1)*DX13/2.) 
Y(4,4)=1.+G{4,1)* DX1 3**212. 
Y(4,~)=-C1*G(5,1)~DX13/2. 
Y(4,6)=G(6,1)*OX13~*2/2. 
Z(4)=~(6,3)+C1·W(5,3)+C1*OX13*(G(1,1)'W(2,3)+G(2,1)*(W(1,3)+U(1,I) 

1-U(3,1)*OX13/C1)+G(3,1)*W{S,3)+G(4,1)*(W{4,3)+U(4,I)-U(6,I)*DX13/C 
21)+G(5,1)*W{B,3)+G(6,1)*(W(7,3)+U(7,I)-U(9,I)*DX13/C1 »/2. . 

OT=-2.*DX13/C1 
Y(5,1)=-C2*H(1,1)*DX14/2. 
Y(5,2)=-C2*H{2,1)*OT*OX14/4L 
Y(5,3)=-C2*H(3,1)*OX14/2. 
Y(5,4)=-C2 I H(4,1)*OT*DX14/4. 
Y(5,5)=C2*(1.-H(5,1)*DX14/2.) 
Y(5,6)=1.-C2*H(6,1)*DT*OX 14/4. 
Z(5)=W(9,4)+C2*W(8,4)+C2 I DX14*(H(1,1)IW(2,4)+H(2,1)*(W(1,4)+U(1,I) 
1+U(3,I)*DT/2.)+H(3,1)*W(5,4)+H(~,1)*(W(4,4)+U(4,I)+U(6,I)*DT/2.)+H 
2 (5, 1) *w (8,4 )+H (6, 1) 1 (W ( 7 ,4) +U (7 , I ) +U (9, I) *OT 12. ) ) 12 •. 

Y ( 1 , 1 ):A ( 1 ) 
Y(1,2)=A(7)+A(2)*DT/2. 
Y(1,3)=A(3) 
Y(1,4)=A(4)*DT/2. 
Y(1,5)=A{5) 
Y(1,6):A(6)*DT/2. 
Z(1):R1-A(2)*(U(1,1)+U(3,I)*DT/2.)-A(4)*(U(4,I}+U(6,I} *DT/2.)-A(6) 

1*(U(7,1)+U(9,I)*DT/2.) 
Y(3, 1)=8( 1) 
~Y(3,2)=8(2)*OT/2. 
Y(3,3)=8(3) 
Y(3,4)=8(7)+8(4)IOT/2. 
Y(3,5) = B(5) 
Y(3,6)=8(6)*OT/2. 
Z ( 3 ) = R 2 - B ( 2 ) 1 ( U ( 1 , I ) + U, ( 3 , I ) * D T 12. ) - B ( 4 ) * ( U ( 4 , I ) + U ( 6 , I ) lOT 12 • ) - 8 ( 6 ) 

1*(U(7,I)+U(9,I)*Dr/2 .) 
Y(6,1)=C(1) 
Y(6,2)=C(2)IDT/2. 
Y(6,3)=C(3) 
Y(6,4)=C(4)*DT/2. 
Y(6,5)=C(5) 
Y(6,6)=C(7)+C(6)*OT/2. 
Z(6)=R3-C(2)*(U(1,I)+U(3,I)*OT/2.)-C(4)*(U(4,I)+U(6,I)IDT/2.)-C(6) 

1*{U(7,1)+U(9,I)IDT/2.) 
IF ( Y ( 1 , 1) ) 1 ,2, 1 

2 D03J=1,6 
HOLD(J)=Y(1,J) 
Y{1,J)=Y{2,J) 

3 Y{2,J)=HOLD{J) 
CEEP=Z(1) 
Z(1)=Z(2) 
Z(2)=CEEP 

1 IF(Y(3,3»4,5,4 
5 006J=1,6 

HOLD(J)=Y(3,J) 
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· Y(3;J)=Y(4,J) 
6 Y(4,J)=HOLD(J) 

CEEP=Z(3) 
Z(3)=Z(4) 
Z(4)=CEEP 

4 IF(Y(6,6»99,8,99 
8 D09J=1,6 

HOLD(J)=Y(6,J) 
Y(6,J)=Y(5,J) 

9 Y(5,J)=HOLD(J) 
CEEP=Z(6) 
Z(6)=Z(5) 
Z(5)=CEEP 

99 CALLMASUB 
D011J=1,3 
V(3*J-1)=UU(2*J-1) 

11 V(3*J):UU(2*J) 
V(1)=U(1 i I)+(U(3,I)+V(3»*DT/2. 
V(4)=U(4,I)+(U(6,I)+V(6»*DT/2. 
V(1)=U(1,I)+(U(9,I)+V(9»*OT/2. 
D012J=1,9 . 
U(J,I)=W(J,3) 

12 U(J,I+1)=V(J) 
CALLPRINTO(X1,T,V(1),V(2),V(3),V(4),V(5},V(6),V(1),V(8),V(9),XLI: 

9999 RETURN 
~,> END 

ORDINARY POINT SUBROUTINE 
SUBROUTINEORDINP 
COMMONU(9,a001),Y(12,12),W(9,9),F(6,3),G(6,3),H(6,3),Z(12),UU(12), 

1DU(9),V(9),UP(9),A(1),B(1),C(1),D(1),E(1),P(1),PINC,XLI,EM,C1,C2,X 
2ZERO,I,M,Sl,DS(9) ,R1 ,R2 

XI=I 
X1=XZERO+(XLI-XI)*PINC 
T=(XLI+XI)*PINC/C1 
SI1UK=2./(EM+1. ) 
X3=X1+PINC 
X9=X1-PINC 
X4=X1+SMUK*PINC 
X6=X1-SMUK*PINC 
D01J=1,9 
W(J,3)=V(J) 
IF(ABS(X9-S1)-O.1E-04)21,21,26 

26 W(J,9):U(J,I+1) 
W(J,6):U(J,I)+SMUK*(U(J,I+1)-U(J,I» 
GOTO 28 

21 W(J,9)=DS(J) 
W(J,6) = U(J,I)+SMUK*(DS(J)-U(J,I» 

28 W(J,4)=U(J,I)+SMUK*(V(J)-U(J,I» 
, U(J,I):V(J) 

WX4A=W(8,4) 
WT4A=W(9,4) 
CONST = 1.313/R1**2 
IF(X1.GT.S1)CONST = 1.373/R2**2 
CALLGECOFF(1~X',X3,CONST) 
CALLGECOFF(2,X1,X9,CONST) 
CALLGECOFG(1,X1,X3) 
CALLGECOFG(2,X1,X9) 
CALLGECOFH(1,X1,X4) 
CALLGECOFH(2,X1,X6) 
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DX13=X1-X3 
DX14=X1-X4 
DX19=X1-X9 
DX16=X1-X6 
CALLSOLMAT(wX4A,wT4A,DX13,DX14,DX19,DX16} 
CALLMASUB 

99 D02J=1,3 
V(3*J-l)=UU(2*J-1} 

2 V(3*J)=UU(2*J} . 
V(l)=W(1,3}+(W(2,3}+V(2)-(W(3,3)+V(3}}/C1)*DX13/2. 
V(4)=w(4,3)+(W(5,3)+V(5}-(W(6,3)+V(6»/C1}*DX13/2. 
V(1)=W(7,4}+(W(8,4}+V(8)-(W(9,4)+V(9)}/C2)*DX14/2. 
CALLPRINTO(Xl,T,V(1},V{2},V(3),V{4},V(S),V{6),V(1},V(8),V{9),XLI} 

290 1=1+1 . 
9999 RETURN 

END 
C BEAM END POINT SUBROUTINTE 

SUBROUTINE ENDP{ELBEAM} 
. COMMONU (9 , 8001) , Y ( 12, 12) , W (9 , 9) , F (6 ,3) , G (6, 3) , H (6,3) , Z ( 12) , UU ( 12 ) , 
1DU(9)~V{9),UP{9),A{1),B{1},C{1),D(1),E(1),P(1),PINC,XLI,EM,C1,C2,X 
2ZERO,I,M,S1,DS(9),RR1,RR2 

D1MENSIONHOLD(12) 
I = XLI - (ELBEAM/PINC) 
XI = I 
X1 = ELBEAM 
T = (2*XLI-(ELBEAM/PINC»*PINC/Cl 
SMUK=2./(EM+1.) 
X3 = Xl-PINC 
X4 = X1-SMUK*PINC 
DO 10 J = 1,9 
W(J,3)=U(J,I+1) . 

10 W(J,4)=U(J,1)+SMUK*{U{J,1+1}-U(J,1» 
WX4A = W(8,4) 
WT4A = W(9,4) 
CONST = 1.313/RR2**2 
CALL GECOFF{1,X1,X3,CONST) 
CALL GECOFG(1,X1,X3) 
CALL GECOFH(1,X1,X4) 
CALL BCTN1(T,Rl) 
CALL BCTN2(T,R2) 
CALL BCTN3(T,R3) 
DX13 = Xl-X3 
OX14 = X1-X4 
Y{2,1) = Cl*(-1.+F(l,1)*DX13/2.) 
Y(2,2) = 1.-F(2,l)*DX13**2/2. 
Y(2,3) = C1*F{3,1)*DX13/2. 
Y{2,4) = -F(4,1}*DX13**2/2. 
Y{2,S) = C1*F(5,1)*DX13/2. 
Y{2;6) = -F{6,1)*DX13**212. • 
Z(2) = W(3,3)-C1*W(2,3)-(C1*OX13/2.)*(F(1,1}*W(2,3)+F(2,1)*(W(1,3) 

1+U(1,1)-U(3,I)*DX1 3/C1)+F(3,1)*W(S,3)+F(4,1)*(W(4,3)+U(4,I)-U(6,1) 
2*DX13/C1)+F(5,l)*W(8,3)+F(6,l)*(W(1,3)+U(1,I)~U(9,I)*DX13/C1» 
Y(4,1) = C1*G(1,1)*DX13/2. 
Y{4,2) = -G{2,1}*DX13**2/2. 
Y{4,3) = C1*(-1.+G{3;1)*DX13/2.) 
Y{4,4) = 1.-G{4,1)*DX13/2. 
Y(4,5) = C1*G(5,1)*DX13/2. 
Y{4,6) = -G(6,1)*DX13**2/2. 
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Z(4) = W{6,3)-C1*W(S,3)-(C1*DX 13/2.)*(G(1,1)*W(2,3)+G(2,1)I{W(1,3) 
~+U(1,I)-U(3,I)*DX13/C1)+G(3,1)*W(S,3)+G(4,1)'(W(4,3)+U{4,I)-U(6,I) 
2·DX13/C1)+G(5,1)*W(8,3)+G(6,1)*(W(7,3)+U(7,I)-U(9,I)* DX13/C1» 

DT = 2.*DX13/C1 ' 
Y(S,1) = C2 fH(1,1)*DX14/2. 
Y(S,2) = C2*H(2,1)*DTIDX14/4. 
Y(S,3) = C2*H(3,1)*DX14/2. 
Y(S,4) =' C2*H(4, 1)*DT*DX14/4. 
Y(5,5) = C2*(-1.+H(5,1)*DX14/2.) 
Y(S,6) = 1.+C2*H(6,1)*DT*DX14/4. . 
Z(S) = W(9,4)-C2*W(8,4)-(C2*DX14/2.) *(H( 1,1 )*W(2,4)+H(2, 1 )1(W(.1 ,4) 

1+U(1,I)+U(3,I)IDT/2.)+H(3,1)*W(S,4)+H(4,1)*(W(4,4)+U(4,I)+U(6,I)*O 
2T/2.)+H(S,1)*W(8,4)+H(6,1)*(W(7,4)+U(1,I)+U(9,I)*DT/2.» 
Y(1,1) = D(1) . 
Y(1,2) = D(7)+D(2)IDT/2. 
Y(1,3) = D(3) 
Y(1,4) = D(4)*DT/2. 
Y(1,5) = D{S) 
Y(1,6) = D(6)*DT/2. 
Z(1) = R1-D(2)I(U(1,I)+UC3,I)*DT/2.)-D(4)*(U{4,I)+UC6,I)*DT/2.)-O( 

16)*(U{1,I)+U(9,I)*OT/2.) 
Y(3,1) = E(1) 
Y{3,2) =. E(2)IDT/2. 
Y(3,3) = E(3) 
Y(3,4) = E(1)+E(4)*DT/2. 
Y(3,5) = E(S) 
Y(3,6) = E(6)*DT/2. 
Z(3) = R2-E(2)*(U(1,I)+UC3,I)*OT/2.)-E(4)I(U{4,I)+U(6,I)*OT/2.)-E{ 

16)*(U(1,I)+U(9,I)*DT/2.) . 
Y(6,1) = p(n 
Y(6,2) = P(2)*DT/2. 
Y(6,3) = P(3) 
Y(6,4) = P(4)*DT/2. 
Y(6,S) = P(5) 
Y(6,6) = P(7)+P(6)*DT/2. 
Z(6) = R3-P(2)*(U(1,I)+U{3,I)*OT/2.)-P(4)*CU(4,I)+U(6,I)fOT/2.)-P( 

16)*(UC1,I)+U(9,I)*DT/2.) 
IF ( Y ( 1 , 1 » 1 , 2, 1 

2 003 J = 1,6 . 
HOLDCJ) = YC1,J) 
Y(1,J) = Y(2,J) 

3 Y(2,J) = HOLO(J) 
CEEP = Z(1) 
Z(1) = Z(2) 
Z(2) = CEEP 

1 IF(Y(3,3»4,S,4 
5 D06 J = 1,6 

HOLD(J) = Y(3,J) 
Y(3,J) = Y(4,J) 

6 Y(4,J) = HOLO(J) 
CEEP = Z(3) 
Z(3) =.Z(4) 
Z( 4)' = CEEP 

4 IF(y(6,6»99,8,99 
8 D09 J = 1,6 

HOLD(J) = Y(6,J) 
y(6,J) = Y(S,J) 

9 Y(S,J) = HOLD(J) 
CEEP = Z(6) 
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Z(6) = Z(5) 
Z(S) = CEEP 

99 CALLMASUB 
DO 11 J = 1,3 
V(3*J-1) = UU(2*J-1) 

11 V(3*J) = UU(2*J) 
V(1) = U(1,I)+(U(3,I)+V(3»*DT/2. 
V(4) = U(4,I)+(U(6,I)+V(6»*DT/2. 
V(1) = U(1,I)+(U(9,I)+V(9»*DT/2. 
CALLPRINTO(X1,T,V(1),V(2),V(3),V(4),V(5),V(6),V(1),V(8),V(9),XLI) 

295 I = 1+1 
9999 RETURN 

END 
SUBROUTINECASE1P 
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G(6,3},H(6,3),Z(12),UU(12), 
1DU(9),V(9),UP(9),A(7),B(1),C(7),D(1),E(1),P(1),PINC,XLI~EM,Cl,C2,X 
2ZERO,I,M,S1,DS(9),R1,R2 

XI=I 
T=(XLI+XI)*PINC/C1 
X1=XZERO+(2.*PINC*XLI)/(EM+1.) 
X9=X1-PINC 
X3=XZERO+(XLI-XI+1.)*PINC , 
'X4=XZERO+(4.*PINC*EM*XLI)/(EM+1.)1*2-(2. I PINC*(XI-1.))/(EM+1.) 
X6=X1-2. I PINC/(EM+1.) . 
SMUK9=(1.-2./(EM+1.»/(2.*(XLI-1.}/(EM+1.)-(XLI-XI-1.)) 
SMUK4=(XLI-XI+1.)-(4. I EM*XLI/(EM+1.)1*2)+(2.*(XI-1.)/(EM+1.» 
D01J=1,9 
W(J,3)=V(J) 
IF(ABS«XLI-XI)IPINC-(S1+PINC})-O.1E-04)37,37,36 

36 W(J,9) = UP(J)+SMUK9*(U(J,I+1)-UP(J» 
GOTO 38 

31 W(J,9) = UP(J)+SMUK9 1 (DS(J)-UP(J» 
38 W(J,4) = V(J)+SMUK4*(U(J,I)-V(J}) 

W(J,6)=UP(J) 
1 U(J,I)=V(J) 

CALLJUMPII(X1,DU(B),DU(9» 
W(8,3)=W(8,3)-DU(8) 
WX4A=W(8,4)+DU(8) 
WT4A=W(9,4)+DU(9) 
W(8,4)=W(8,4)-DU(8) 
W(9,4)=W(9,4)-DU(9) 
CaNST = 1.313/R1 1f2 
IF(X1.GT.S1)CONST = 1.373/R2112 
CALL GECOFF(1,X1,X3,CONST) 
CALL GECOFF(2,X1,X9,CONST) 
CALLGECOFG(1,X1,X3) 
CALLGECOFG(2,Xl,X9) 
CALLGECOFH(1,Xl,X4) 
CALLGECOFH(2,X1,X6) 
DX13=Xl-X3 
DX14=X1-X4 
DX19=X1-X9 
DX16=X1-X6 
CALLSOLMAT(WX4A,WT4A,DX13,DX14,DX19,DX16) 
CALLMASUB 

99 D02J=1,3 
w(3*J-1,3)=UU(2 I J-1) 

2 W(3 I J,3)=UU(2*J) 
W(1,3):V(1)+(V(2)+W(2,3)-(V(3)+W(3,3»/C1)*DX13/2. 
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W(4,3)=V(4)+(V(S)+w(5,3)-(V(6)+W(6,3»/C1)*DX13/2. 
W(7,3)=W(7,4)+(W(8,4)+W(8,3)-(W(9.4)+W(9,3»/C2)*DX1412. 
X3=X1 
X1=XZERO+(XLI-XI)*PINC 
X9=X1-PINC 
X4=XZERO+(PINC/(EM+1.»*(XLI+XI+EM*(XLI-XI)-2.*EM*XLII(EM+1.)+2.*X 

1LI/(EM+1.» 
X6 = XZERO+(PINC*(XLI-XI-2.)+EM*PINC*(XLI-XI»/(EM+1.) 
SMUK4=(2.*XLI*(EM-1.)/(EM+1.)**2)-(XLI-XI)*(EM-1.)/(EM+1.) 
SMUK6 = «XLI-XI-2.+EMf(XLI-XI»/(EM+1.)-(XLI-XI-1.»/(2.*(XLI-1.) 

1/(EM+1.)-(XLI-XI-1.» 
D03J=1,9 
W(J,4)=W(J,3)+SMUK4*(W(J,9)-W(J,3» 
UP(J)=W(J,3) 
IF(ABS(X9-S1)-0.1E-04)27,27,26 

26 W(J,9)=U(J,I+1) 
GOTO 3 

27 W(J,9)=DS(J) 
3 W(J,6):W(J,9)+SMUK6*(W(J,6)-W(J,9» 

WX4A=W(8,4) 
WT4A=W(9,4) 
CONST = 1.373/R1**2 . ~ 
IF(X1.GT.S1)CONST =·1.373/R2**2· 
CALLGECOFF(1,X1,X3,CONST) 
CALLGECOFF(2,X1,X9,CONST) 
CALLGECOFG(1.X1,X3) 
CALLGECOFG(2,X1,X9) 
CALLGECOFH(1,X1,X4) 
CALLGECOFH(2,X1,X6) 
DX13=X1-X3 
DX14=X1-X4 
DX19=X1-X9 
DX16=X1-X6 
CALLSOLMAT(WX4A,wT4A,DX13,DX14,DX19,DX16) 
CALLMASUB 

98 D04J=1,3 
V(3*J-1)=UU(2*J-1) 

4 V(3*J)=UU(2 I J) 
V(1)=W(1,3)+(W(2,3)+Y(2)-(W(3,3)+Y(3»/C1)*DX13/2. 
V(4)=W(4,3)+(W(5,3)+V(5)-(W(6,3)+Y(6»/C1)*DX13/2. 
V(7)=W(7,4)+(W(8,4)+V(8)-(W(9,4)+Y(9»/C2)*DX14/2. 
CALLPRINTO(X1,T.V(1),V(2),V(3),V(4),V(5),V(6),V(7),V(8),V(9),XLI) 

290 1=1+1 
9999 RETURN 

END 
~ CASE II POINT SUBROUTINE 

SUBROUTINECASE32 
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G(6,3),H(6,3),Z(12),UU(12), 

1DU(9),V(9),UP(9),A(7),B(7).C(7).D(7),E(7),P(7),PINC,XLI,EM,C1,C2,X 
2ZERO,I,M,S1,DS(9),R1,R2 

XI=I 
T=(XLI+XI)*PINC/C1 
X1=XZERO+(2.*PINC*XI)/(EM-1.) 
X3=X1+PINC 
X9=XZERO+(XLI-XI-1.)*PINC 
X6=XZERO+2.*PINC*(XLI-1.)/(EM+1.) 
D01J=1,7 

, ·..J(J,6)=UP(J) 
W(8,6)=UP(8)-DU(8) 

.... ' 
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W(9,6)=UP(9)-DU(9) 
SMUK4=XLI-XI+1.-(4.*EMIXI)/«EM+1.)*(EM-1.»+(2.*(XI_1.)/(EM+1.» 
IF(SMUK4-1.)302,302,306 

302 X4=XZERO+(4. I EMfPINC*XI)/«EM+1.)*(EM-1.»-2. I PINC*(XI-1.)/(EM+1.) 
D02J=1,9 

2 W(J,4)=V(J)+SMUK4*(U(J,I)-V(J» 
GOTO 308 

306 X4=XZERO+(4.*EM*PINC*XI/(EM-1.)*'2)-(2.*PINC*(XLI-1.)/(EM-1.» 
SMUK4=(XLI-XI-4.*EM*XI/(EM-1.)**2+2.*(XLI-1.)/(EM-1.»/(XLI-XI-2.* 

1(XLI-1.)/(EM+1.» 
D03J=1,9 

3 W(J,4)=U(J,I)+SMUK4*(W(J,6)-U(J,I» 
308 SMUK3=XLI-(XI*(EM+1.)/(EM-1.» 

D04J=1,9 
IF(ABS(X9-S1)-O.1E-04)21,21,26 

26 W(J,9) = U(J,I+1) 
GOTO 4 

27 W(J,9) = DS(J) . 
4 W(J,3) = V(J)+SMUK3*(U(J,I)-V(J» 

CALLJUMPII(X1,DU(8),DU(9» . 
W(8,9)=W(8,9)+DU(8) 
WX4A=W(8,4) 
WT4A=W(9,4) 
CONST = 1.313/R1If2 
IF(X1.GT.S1)CONST = 1.373/R2*'2 
CALL GECOFF(1,X1,X3,CONST) 
CALL GECOFF(2,X1,X9,CONST) 
CALLGECOFG(1,X1,X3) 
CALLGECOFG(2,X1,X9) 
CALLGECOFH(1,X1,X4) 
CALLGECOFH(2,X1,X6) 
DX13=X1-X3 
DX14=X1-X4 
DX19=X1-X9 
DX16=X1-X6 
CALLSOLMAT(WX4A,WT4A,DX13,DX14,OX19,DX16) 
CALLMASUB . 

99005J=1,3 
W(3 I J-1 ,9)=UU(2 I J-1) . . 

5 W(3 I J,9)=UU(2 I J) , 
W(1,9)=W(1,3)+(W(2,3)+W(2,9)-(W(3,3)+W(3,9»/C1)*DX13/2. 
W(4,9)=W(4,3)+(W(5,3)+W(5,9)-(W(6,3)+W(6,9»/C1)*OX13/2. 
W(1,9)=W(1,4)+(W(8,4)+W(8,9)-(W(9,4)+W(9,9»/C2)*OX14/2. 
X9=X1 
X1=XZERO+(XLI-XI)*PINC 
X3=X1+PINC 
X4=X1+2.*PINC/(EM+1.) 
X6=X1-2.*PINC/(EM+1.) 
SMUK6=(XLI-XI-(XLI-XI-2.+EMf(XLI-XI»/(EM+1.)Y/(XLI_XI-2. f (XLI-1.) 

1/(EM+1.» 
SMUK4=(EM-1.)/(EM+1.) 
D01J=1,9 
W(J,3)=V(J) 
W(J,6)=U(J,I)+SMUK6*(W(J,6)-U(J,I» 
W(J,4)=V(J)+SMUK4 f (U(J,I)-V(J» 

7 U(J,I)=V(J) 
WX4A=W(8,4) 
WT4A=W(9,4) 
CONST = 1.313/R1·'2 
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IF(X1.GT.S1)CONST = 1.373/R2**2 
CALL GECOFF(1,X1,X3,CONST) 
CALL GECOFF(2,X1,X9,CONST) 
CALLGECOFG(1,X1,X3) 
CALLGECOFG(2,X1,X9) 
CALLGECOFH(1,X1,X4) 
CALLGECOFH(2,X1,X6) 
OX13=X1-X3 
OX14=X1-X4 
OX19=X1-X9 
OX16=X1-X6 . 
CALLSOLMAT(WX4A,WT4A,DX13,DX14,DX19,DX16) 
CALLMASUB 

98 D08J=1,3 
V(3*J-1)=UU(2 f J-1) 

8 V(3*J)=UU(2*J) . 
_ V(1)=W(1,3)+(W(2,3)+V(2)-(W(3,3)+V(3»/C1)*OX13/2. 

V(4)=W(4,3)+(W(5,3)+V(S)-(W(6,3)+V(6»/C1)*OX13/2. 
V(7)=W(7,4)+(W(8,4)+V(8)-(W(9,4)+V(9»/C2)*OX14/2. 
CALLPRINTO(X1,T,V(,),V(2),V(3),V(~),V(5),V(6),V(7),V(8),V(9),XLI) 

290 1=1+'" 
XI=I 
T=(XLI+XI)*PINC/C1 
X1=XZERO+(2. I PINC*XLI)/(EM+1.) 
X9=X1-PINC 
X3=XZERO+(XLI-XI+'.)*PINC 
X4=XZERO+(4.*PINC*EM*XLI)/(EM+'.)**2-(2.*PINC*(XI-1.»/(EM+'.) 
X6=XZERO+(2.*PINC*(XI-'.»/(EM-1.) 
009J=',7 

9 W(J,6)=W(J,9) . 
W(8,6)=W(8,9)+DU(B) 
W(9,6)=W(9,9)+OU(9) 
SMUK9=XLI-XI+1.-2.fXLI/(EM~1.) 
SMUK4=«XLI-XI+'.)-{4.*EM*XLI/(EM+1.)**2)+(2.'(XI-1.)/(EM+'.»)/(X 

'LI-XI+'.-(2.*(XI-1.)/(EM-1.») 
D010J=',9 
W{J,4}=V{J}+SMUK4*(W{J,9)-V(J» 
IF(ABS«XLI-XI)*PINC-(S1+P~NC»-0.1E-04)37,37,36 

36 W(J,9} = U(J,I)+SMUK9*(U(J,I+1)-U(J,I» 
GOTO 10 

37 W(J,9) = U(J,I)+SMUK9*(DS(J)-U(J,I» 
10 W(J,3) = V(J) 

CALLJUMPII(X1,DU(8),DU(9» 
W(8,3)=W(8,3)-DU(8) 
WX4A=W(B,4)+DU(8) . 
WT4A=W(9,4)+OU(9) 
W(8,4)=W(8,4)-DU(B) 
W(9,4)=W(9,4)-OU(9) 

" CONST = 1.373/R1'-2 
IF(X1.GT.S1)CONST = 1.373/R2**2 
CALL GECOFF(1,X1,X3,CONST) 
CALL GECOFF(2,X1,X9,CONST) 
CALLGECOFG(1,X1,X3) 
CALLGECOFG(2,X1,X9) 
CALLGECOFH(1,X1,X4) 
CALLGECOFH(2,X1,X6) 
OX13=X1-X3 
OX14=X1-X4 
DX19=X1-X9 
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DX16=X1-X6 
CALLSOLMAT(WX4A,WT4A,DX 13,DX14,DX19,DX16) 
CALLMASUB 

97 D011J=1,3 
W(3*J-1,3)=UU(2*J-1) 

11 W(3*J,3)=UU(2*J) 
W(1,3)=V(1)+(V(2)+W(2,3)-(V(3)+W(3,3»/C1)*DX13/2. 
W(4,3)=V(4)+(V(5)+W(5,3)-(V(6)+W(6,3»/C1)*DX13/2. 
W(7,3)=W(7,4)+(W(8,4)+W(8,3)-(W(9,4)+W(9,3»/C2)*DX1412. 
X3=X1 
X1=XZERO+(XLI-XI)*PINC 
X9=X1-PINC 
X6=X1-2~*PINC/(EM+1.) 
X4=XZERO+(PINC/(EM+1.»*(XLI+XI+EM*(XLI-XI)-2.*EM*XLII(EM+1.)+2.*X 

1LI/(EM+1.» . 
SMUK4=(2.*XLI*(EM-1.)/(EM+1.)**2)-(XLI-XI)*(EM-1.)/(EM+1.). 
SMUK6=(EM-1.}/(EM+1.} . 
D012J=1,9 
UP(J}=W(J,3) 
W(J,4)=W(J,3)+SMUK4*(W(J,9)-W(J,3)} 

_IF(ABS(X9-S1)-0.1E-04)30,30,29 
29 W(J,9) = U(J,I+1) 

GO TO 31 
30 W(J,9) = DS(J) 
31 W(J,6) = W(J,9)+SMUK6*(U(J,I)-W(J,9» 
12 U(J,I) = V(J) 

WX4A=W(8,4) 
WT4A=W(9,4) 
CONST = 1.373/R1**2 
IF(X1.GT.S1)CONST = 1.373/R2**2 
CALL GECOFf(1,X1,X3,CONST) 
CALL GECOFF(2,X1,X9,CONST) 
CALLGECOFG(1,X1,X3) 
CALLGECOFG(2,X1,X9) 
CALLGECOFH(1,X1,X4) 
CALLGECOFH(2,X1,X6) 
DX13=X1-X3 
DX14=X1-X4 . 
DX19=X1-X9 ; 
DX16=X1-X6 
CALLSOLMAT(WX4A,WT4A,DX 13,DX14,DX19,DX16) 
CALLMASUB 

96 D013J=1,3 _ 
V(3*J-1)=UU(2*J-1) 

13 V(3*J)=UU(2*J) 
V(1)=W(1,3)+(W(2,3)+V(2)-(W(3,3)+V(3»/C1)*DX13/2. 
V(4)=W(4,3)+(W(S,3)+V(5)-(W(6,3)+V(6»/C1}*DX13/2. 
V(1)~W(7,4}+(W(8,4)+V(8)-(W(9,4)+V(9»/C2)*DX14/2. 
CALLPRINTO(X1,T,V(1),V(2),V(3),V(4),V(5),V(6),V(7),V(8),V(9),XLI) 

293 1=1+1 
9999 RETURN 

END 
SUBROUTINE DISCONT _ 
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G(6,3),H(6,3),Z(12),UU(12), 

1DU(9),V(9),UP(9),A(7),B(1),C(7),D(1),E(7),P(7),PINC,XLI,EM,C1,C2,X 
2ZERO,I,M,S1,DS(9),R1,R2 

XI=I 
X1=XZERO+(XLI-XI)*PINC 
T=(XLI+XI)*PINC/C1 
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SHUK=2./(EH+1.) 
X2 = X1 
X3=X1+PINC 
X9=X1-PINC 
X4=X1+SMUK*PINC 
x6=X1-SMUK*PINC 
DO 11 J = 1,9 
'w(J,3) = V(J) 
w(J,9) = U(J,I+1) 
IF(ABS(T-«S1+2. f PINC)/C1».GT.0.1E-09)GOT015 
W(J,4)=U(J,I)+SMUK*(V(J)-U(J~I» 
GOTO 16 

15 ~(J,4) = DS(J)+SMUK*(V(J)-DS(J»' 
16 W(J,6) = U(J,I)+SMUK*(U(J,I+1)-U(J,I» 
11 U(J,I) = V(J) 0 

WX4A=W(8,4) 
WT4A=W(9,4) , 
CONST = i.313/R2 ff2 
CALLGECOF F(1,X2,X3,CONST) 
CONST = 1.313/R1**2 
CALL GECOFF(2,X1,X9,CONST) 
CALLGECOF G{1,X2,X3) 
CALLGECOFG{2,X1,X9) 
CALLGECOF H(1,X2,X4) 
CALLGECO'FH (2, X 1, X6) 
DX13=X1-X3 
DX14=X1-X4 
DX19=X1-X9 
DX16=X1-X6 
CON1 = (R2/R1)**2 
CON2 = CON1**2 
CALL SCONMAT(WX4A,WT4A,DX13,DX14,DX19,DX16) 
CALLMASUB . 
D020 J = 1,3 
V(3*J-1)=UU(2*J-1) 

20 V(3*J) ; UU(2*J) . 
V(1)=W(1,9)+(W{2,9)+V(2)+(W(3,9)+V(3»/C1)*OX19/2. 
V(4)=W(4,9)+(W(5,9)+V{5)+{W(6,9)+V(6»/C1)*DX19/2. 
V(1)=W(1,6)+{W(8,6)+V(8)+(W(9,6)+V{9»/C2)*OX16/2. 
OS(2) = V(2)/CON2 ' 
OS (3) = V (3) 
OS (5) = V (5) 
DS (6) = V (6) 
os (9) = V (9) 
OS(1) = W(1,3)+(W(2,3)+DS(2)-(W(3,3)+OS(3»/C1)*DX13/2. 
OS(4) = W(4,3)+(W(5,3)+OS(5)-(W(6,3)+OS(6»/C1)*DX13/2. 
OS(8) = DS(1)+(V(8)-V(1»/CON1 
OS(1) = W(1,4)+(W(8,4)+OS(8)-(W(9,4)+OS(9»/C2)*DX14/2. 
CALLPRINTO(X1,T,V(1),V(2),V(3),V(4),V(5),V(6),V(1),V(8),V(9),XLI) 
CALL PRINTO(X1,T,DS(1),OS(2),OS(3),OS(4),OS(5),DS(6),DS(1),DS(8),D 

1 S (9) ,XLI) " 
I = 1+1 
RETURN 
END 
SUBROUTINE DISCON1 -
COMMONU(9,8001),Y(12,~2),W(9,9),F(6,3),G(6~3),H(6,3).Z(12),UU(12), 

10U(9),V(9),UP{9),A(1),B(1),C(1),D{1),E(1),P(1),PINC,XLI,EM,C1,C2,X 
2ZERO,I,M,S1,DS(9),R1,R2 

XI=I 
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T=(XLI+XI)'PINC/Cl 
X1=XZERO+{2.*PINC*XLI)/(EM+1.) 
X9=Xl-PINC 
X3=XZERO+{XLI-XI+l.)IPINC 
X4=XZERO+(4. I PINCIEM'XLI)/(EM+l.)*'2-(2.*PINC*(XI-1.»/(EM+1.) 
X6=X1-2.*PINC/(EM+l.) 
SMUK9~{1.-2./{EM+1.»/(2.*(XLI-l.)/(EM+l.)-(XLI-XI-l.)) 
SMUK4=(XLI-XI+1.)-(4.*EM*XLI/(EM+l.)**2)+(2.*(XI-l.)/(EM+l.» 
D01J=1,9 
W(J,3)=V(J) 
W(J,9)=UP{J)+SMUK9*(U(J,I+l)-UP(J» 
W(J,4) = V(J)+SMUK4*(DS(J)-V(J» 
W(J,6)=UP(J) 

1 U(J,I)=V(J) . 
CALLJUMPII(X1,DU(8),DU(9» 
W(8,3)=W(8,3)-DU(8) 
WX4A=W(8,4)+DU(8) 
WT4A=W(9,4)+DU(9) 
W(8,4)=W(8,4)-DU(8) 
W(9,4)=W(9,4)-DU(9) 
CONST = 1.373/R2**2 
CALL GECOFF(1,Xl,X3,CONST) 
CONST = 1.373/Rl**2 
CALL GECOFF(2,Xl,X9,CONST) 
CALLGECOFG(1,Xl,X3) 
CALLGECOFG(2,X1,X9) 
CALLGECOFH(l,Xl,X4) . 
CALLGECOFH(2,X1,X6) 
CON1 = (R2/R1)**2 
CON2 = CON1**2 
DX13=Xl-X3 
DX14=Xl-X4 
DX19=Xl-X9 
DX16=Xl-X6 
CALL SCONMAT(WX4A,WT4A,DX13,DX14,DX19,DX16) 
CALLMASUB 

99 D02J=1,3 . 
W{3*J-l,3Y=UU{2*J-l) 

. . 

2 W{3*J,3)=UU(2*J) 
W{1,3)=V(1)+(V(2)+W(2,3)-(V(3)+W(3,3»/Cl)*DX13/2. 
W(4,3)=V(4)+(V(5)+w(5,3)-(V(6)+W(6,3»/Cl)*DX13/2. 
W(7,3)=W(7,4)+(W(B,4)+W(8,3)-(W(9,4)+W(9,3»/C2)*DX14/2. 
X3=Xl 
Xl=XZERO+{XLI-XI)'PINC 
X9=Xl-PINC 
X4=XZERO+{PINC/(EM+1.»*(XLI+XI+EM*(XLI-XI)-2.*EM*XLI/(EM+1.)+2.*X 

1LI/(EM+l.» 
x6 = XZERO+(PINC*(XLI-XI-2.)+EM*PINC'(XLI-XI»/(EM+l.) 
SMUK4=(2.*XLI*(EM-l.)/(EM+l.)·f2)-(XLI-XI)*{EM-l.)/(EM+1.) 
SMUK6 = «XLI-XI-2.+EM*(XLI-XI»/{EM+l.)-(XLI-XI-1.»/{2.*{XLI_1.) 

1/(EM+1.)-(XLI-XI-l.» 
D03J=1,9 . 
W{J,4)=W(J~3)+SMUK4*(W(J,9)-W(J,3» 
UP(J)=W(J,3) . . 
W(J,9)=U(J,I+l) ; 

3 W(J,6)=W(J,9)+SMUK6*(W(J,6)-W{J,9» 
WX4A=W(8,4) 
WTijA=W(9,4) 
CONST = 1.373/R2**2 
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CALL GECOFF(1,X1,X3,CONST) 
CONST = 1.373/R1**2 
CALL GECOFF(2,X1,X9,CONST) 
-C ALL G E C 0 F G (.1 , Xl, X 3 ) 
CALLGECOFG(2,X1,X9) 
CALLGECOFH(1,X1,X4) 
CALLGECOFH(2,X1,X6) 
OX13=X1-X3 
OX14=X1-X4 
OX19=Xl-X9 
DX16=X1-X6 
CALL SCONMAT(WX4A,WT4A,DX13,OX14,DX19,DX16) 
CALLMASUB 

9B D04J=1,3 
V(3*J-1)=UU(2*J-1) 

4 V(3*J)=UU(2*J) 
V(1)=W(1,9)+(W(2,9)+V(2)+(W(3,9)+V(3»/C1)*DX19/2. 
V(4)=W(4,9)+(W(5,9)+V(5)+(W(6,9)+V(6»/Cl)*DX19/2. 
V(7)=W(7,6)+(W(8,6)+V(B)+(W(9,6)+V(9»/C2)*DX16/2. 
DS(2) = V(2)/CON2 
OS (3) = V (3) 
DS(5) = V(5) 
os (6) = V (6) 
OS(9) = V(9) . 
OS(1) = W(1,3)+(W(2,3)+DS(2)-(W(3,3)+OS(3»/C1)*OX13/2. 
03(4) = W(4,3)+(W(5,3)+DS(5)-(W(6,3)+DS(6»/C1)IDX13/2. 
OS(8) = DS(1)+(V(8)-V(1»/CON1 
OS(7) = W(7,4)+(W(8,4)+DS(8)-(W(9,4)+OS(9»/C2)*DX14/2. 
CALLPRINTO(X1,T,V(1),V(2),V(3),V(4),V(5),V(6),V(7),V(8),V(9),XLI) 
CALL PRINTO(X1,T,OS(1),DS(2),DS(3),DS(4),DS(5),DS(6),DS(7),DS(8),D 

1S (9) , XLI) 
290 1=1+1 

9999 RETURN 
END 
SUBROUTINE DISCON3 
COMMONU(9,B001),Y(12,12),W(9,9),F(6,3),G(6,3),H(6,3),Z(12),UU(12), 

10U(9),V(9),UP(9),A(7),B(7),C(7),D(7),E(7),P(7),PINC,XLI,EM,C1,C2,X 
2ZERO~I,M,S1,DS(9),R1,R2 

XI=I 
T=(XLI+XI)*PINC/Cl 
X1=XZERO+(2.*PINC*XI)/(EM-l.) 
X3=X1+PINC 
X9=XZERO+(XLI-XI-1.)*PINC 
X6=XZERO+2.*PINC*(XLI-1.)/(EM+1.) 
D01J=1,7 

1 W(J,6)=UP(J) 
~(B,6)=UP(B)-DU(8) 
W(9,6)=UP(9)-DU(9) 
SMUK4=XLI-XI+1.-(4. f EM*XI)/«EM+1.)*(EM-l.»+(2.*(XI_l.)/(EM+l.» 
IF(SMUK4-1.)302,302,306 

302 X4=XZERO+(4.*EM*PINC*XI)/«EM+1.)f(EM-1.»-2 fPINC*(XI-l.)/(EM+1.) 
D02J=1,9 

2 W(J,4) = V(J)+SMUK4*(U(J,I)-V(J» 
GOTO 308 

306 X4=XZERO+(4. I £M*PINC*XI/(EM-1.)**2)-(2.*PINC*(XLI_1.)/(EM-l.» 
SMUK4=(XLI-XI-4.*EM*XI/(EM-1.).12+2. I (XLI-1.)/(EM_1.»/(XLI-XI-2.* 

1(XLI-l.)/(EM+1.» 
D03J=1,9 

3 W(J,4)=U(J,I)+SMUK4*(W(J,6)-U(J,I» 
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308 SMUK3=XLI-(XI*(EM+l.)/(EM-1.» 
D04J=1,9 
W(J,3)=V(J)+SMUK3*(U(J,I)-V(J» 

4 w(J,9) = DS(J) 
CALLJUMPII(Xl,DU(8),DU(9» 
W(8,9)=W(8,9)+DU(8) 
WX4A=W(8,4) 
WT4A=W(9,4) 
CONST = 1.313/R2**2 
CALL GECOFF(1,Xl,X3,CONST) 
CALL GECOFF(2,Xl,X9,CONST) 
CALLGECOFG(1,Xl,X3) 
CALLGECOFG(2,Xl,X9) 
CALLGECOFH(1,Xl,X4) 
CALLGECOFH(2,Xl,X6) 
DX13=X1-X3 
DX14=X1-X4 
DX19=X1-X9 
DX16=X1-X6 . 

. CALLSOLMAT(WX4A,WT4A,DX13,DX14,DX19,DX16) 
CALLMASUB 

99 DO SJ = 1,3 . 
W(3*J-1,9)=UU(2*J-l) 

S W(3*J,9)=UU(2*J) 
W(1,9)=W(1,3)+(W(2,3)+W(2,9)-(W(3,3)+W(3,9»/Cl)*DX13/2. 
W(4,9)=W(4,3)+(W(S,3)+W(5,9)-(W(6,3)+W(6,9»/Cl)*DX13/2. 
W(1,9)=W(7,4)+(W(8,4)+W(8,9)-(W(9,4)+W(9,9»/C2)*DX14/2. 
X9=Xl 
Xl=XZERO+(XLI-XI)*PINC 
X3=Xl+PINC 
X4=Xl+2.*PINC/(EM+l.) 
X6=X1-2.*PINC/(EM+1.) 
SMUK6=(XLI-XI-(XLI-XI-2.+EM*(XLI-XI»/(EM+i.»/(XLI-XI-2.*(XLI-l.) 

1/(EM+l.» 
SMUK4=(EM-l.)/(EM+l.) 
D07J=1,9 
W(J,3)=V(J) . 
W(J,6)=U(J,I)+SMUK6*(W(J,6)-U(J,I» 
W(J,4) = V(J)+SMUK4*(U(J,I)-V(J» 

7 U(J,I)=V(J) 
wX4A=W(8,4) 
WT4A=W(9,4) 
CaNST = 1.373/R2**2 
CALL GECOFF(1,Xl,X3,CONST) 
CALL GECOFF(2,Xl,X9,CONST) 
CALLGECOFG(1,Xl,X3) 
CALLGECOFG(2,Xl,X9) 
CALLGECOFH(1,Xl,X4) 
CALLGECOFH(2,Xl,X6) 
DX13=Xl-X3 
DX14=Xl-X4 
DX19=Xl-X9 
DX16=Xl-X6 

. CALLSOLMAT(WX4A,wI4A,DX 13,DX14,DX19,DX16) 
CALLMASUB 

98 D08J=1,3 
V(3*J-l)=UU(2 I J-l) 

8 V(3*J):UU(2*J) 
V(1)=W(1,9)+(W(2,9)+V(2)+(W(3,9)+V(3»/Cl)*DX19/2. 
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V(4)=W(4,9)+(W(5,9)+V(5)+(W(6,9)+V(6»/C1)*DX19/2. 
V(1)=W(1,6)+(W(B,6)+V(8)+(W(9,6)+V(9»/C2)*DX16/2. 
CALLPR1NTO(X1,T,V(1),V(2),V(3),V(4),V(5),V(6),V(1),V(B),V(9),XLI) 

290 1=1+1 
XI=! 
T=(XLI+XI)*PINC/C1 
X1=XZERO+(2.*P1NC*XLI)/(EM+1.) 
X9=X1-PINC 
X3=XZERO+(XL1-XI+1.)*P1NC 
X4=XZERO+(4.*PINC*EM*XLI)/(EM+1.)**2-(2.*PINC*(XI-1.» I(EM+1.). 
X6=XZERO+(2.*PINC*(XI-1.»/(EM-1.) 
D09J=1,7 

9 W(J,6)=W(J,9) 
W(8,6)=W(8,9)+DU(8) 
W(9,6)=W(9,9)~DU(9) 
SMUK9=XLI-XI+1.-2.*XLI/(EM+1.) 
SMUK4=«XLI-XI+1.)-(4.*EM*XLI/(EM+1.)**2)+(2.*(XI_1.)1 (EM+1.»)/(X 

1 L I -X 1+ 1. - ( 2 • * (XI - 1 • ) I ( EM -1. » ) 
D010J=1,9 
W(J,3)=V(J) . 
W(J,4)=V(J)+SMUK4*(W(J,9)-V(J» 

10 W(J,9)=U(J,I)+SMUK9*(U(J,1+1)-V(J,I» 
CALLJUMPII(X1,DU(8),DU(9» 
W(8,3)=W(8,3)-DU(8) 
WX4A=W(8,4)+DU(8) 
WT4A=W(9,4)+DU(9) 
W(8,4)=W(8,4)-DU(8) 
W(9,4)=W(9,4)-DU(9) 
CONST = 1.373/R2**2 
CALL GECOFF(1,X1,X3,CONST) 

·CONST = 1.313/R1**2 
CALL GECOFF(2,X1,X9,CONST) 
CALLGECOFG(1,X1,X3) 
CALLGECOFG(2,X1,X9) 
CALLGECOFH(1,X1,X4) 
CALLGECOFH(2,X1,X6) 
DX13=X1-X3 
DX14=X1-X4. 
DX19=X1-X9 
DX16=X1-X6 
CON1 =··(R2/R1)**2 
CON2 = CON1 f *2 
CALL SCONMAT(WX4A,WT4A,DX 13,DX14,DX19,DX16) 
CALLMASUB 

97 D011J=1,3 
W(3*J-1,3)=UU(2*J-1) 

11 W(3*J,3)=UU(2*J) 
W ( 1 ,3) = V ( 1 ) + (V (2) +w (2,3) - (V (3) +il( 3, 3) ) IC 1,) fDX 13/2. 
w(4,3)=V(4)+(V(5)+W(5,3)-(V(6)+W(6,3»/C1)*DX13/2. 
W(7,3)=W(1,4)+(W(8,4)+W(8,3)-(W(9,4)+W(9,3»/C2)*DX14/2. 
X3=X1 : 
X1=XZERO+(XLI-XI)*PINC 
X9=X1-P1NC 
x6=X1-2.*PINC/(EM+1.) 
X4=XZERO+(PINC/(EM+1.»I(XLI+XI+EM*(XLI-XI)-2.*EM*XLII(EM+l.)+2.IX 

1LI/(EM+1.» 
SMUK4=(2.*XLI*(EM-1.)/(EM+1.)**2)-(XLI-XI)f(EM-1.)/(EM+1.) 
SMUK6=(EM-1.)/(EM~1.) , 
D012J=1,9 ' 
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UP(J)=W(J,3) 
W(J,4)=W(J,3)+SMUK4*{W{J,9}-W{J,3)} 
W(J,9)=U{J,I+1) 
W(J,6)=W(J,9)+SMUK6*{U(J,I)-~(J,9» 

12 U(J,I)=V(J) 
WX4A=W(B,4) 
WT4A=W(9,4) 
CaNST = 1.313/R2**2 
CALL GECOFF(1,X1,X3,CONST) 
CaNST = 1.373/R1**2 . 
CALL GECOFF(2,X1,X9,CONST) 
CALLGECOFG{1,X1,X3) 
CALLGECOFG(2,X1,X9) 
CALLGECOFH(1,X1,X4) 
CALLGECOFH(2,X1,X6) 
DX13=X1-X3 
DX14=X1-X4 
DX19=X1-X9 
DX16=X1-X6 . 
CALL SCONMAT(WX4A,WT4A,DX13,DX14,DX19,OX16) 
CALLMASUB 

96 D013J=1,3 
V(3*J-1)=UU(2*J-1) 

13 V(3*J)=UU(2*J) . 
V(1)=W(1,3)+(W(2,3)+V{2)-(W(3,3)+V(3»/C1)*OX13/2. 
V(4)=W(4,3)+(W(5,3)+V(5)-(W(6,3)+V(6»/C1)*OX13/2. 
V(7)=W(7,4)+(W(B,4)+V(B)-(W(9,4)+V(9»/C2)*OX14/2. 
DS(2) = V(2)/CON2 . 
DS(3)- = V(3) 
os (5) = v (5) 
OS (6) = v (6) 
os (9) = v (9) 
DS(1) = W(1,3)+(W(2,3)+OS(2)-{W{3,3)+OS(3»/C1)*OX13/2. 
DS(4) = W(4,3)+(W{5,3)+OS(S)-(W{G,3)+OS(6»/C1)*OX13/2. 
OS(B} = DS(1)+(V(B)-V(1»/CON1 
OS(1) = W(7,4)+(W(B,4)+OS(B)-(W{9,4)+OS(9»/C2)*DX14/2. 
CALLPRINTO(X1,T,V(1),V(2),V(3),V(4),V(5),V{6),V(1},V(B),V(9),XLI) 
CALL PRINTO(X1,T,OS(1),OS(2),OS(3),OS(4),OS(S),OS(6),DS(7),OS(B),O 

1 S (9) , XLI) 
293 1=1+1 

9999 RETURN 
END 

~ DISCONTINUITY SOLUTION MATRIX SUBROUTINE 
SUBROUTINE SCONMAT{WX4A,WT4A,DX13,DX14,DX19,OX16) 
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G{6,3),H(6,3),Z(12),UU(12), 

10U(9),V{9),UP{9),A{1),B(7),C{1),O(7),E{1),P(1),PINC,XLI,EM,C1,C2,X 
2ZERO,I,M,S1,OS(9),R1,R2 

CON1 = (R2/R1)*12 
CON2 = CON1**2 
Y(1,1)=C1*(-1.+F(1,2)*OX19/2.+F(2,2)*OX19*OX13/4.) 
Y(1,2)=1.-F(2,2)*OX19*OX13/4. 
Y(1,3)=C1*(F(3,2)*DX19/2.+F(4,2)*OX19*DX13/4.) 
Y(1,4)=-F(4,2)*OX19*OX13/4. 
Y{1,5)=C1*(F{S,2)*OX19/2.+F{6,2)*OX19*OX14/4.) 
Y{1,6)=-C1*F{6,2)*OX19 I OX14/{4.*C2) 
Z(1)=W(3,9)-C1*W(2,9)-(C1 I OX19/2.)*(F(1,2)*W(2,9)+F(2,2)IOX13*(W(2 

',3)-W(3,3)/C1)/2.+F(2,2)*(W(1,3)+W(1,9»+F(3,2)*W(5,9)+F(4,2)'OX13 
2*(W(S,3)-W(6,3)/C1)/2.+F{4,2)*(W(4,3)+W(4,9»+F(5,2)*W(B,9)+F(6,2) 
3*OX14 1 (W(B,4)-W(9,4)/C2)/2.+F(6,2)*(W(1,4)+W(!,9») 
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Y{3,1)=C1*(G(1,2)*DX 19/2.+G{2,2)*OX19*OX13/4.) 
Y{3,2)=-G(2,2)*OX19*DX13/4. 
Y{3,3)=Cl*(-1.+G(3,2)*DX19/2.+G{4,2)*DX19*DX13/4.) 
Y(3,4)=1.-G(4,2)*OX19*DX13/4. 
Y(3,5)=C1*(G(5,2)*DX19/2.+G(6,2)*OX19*OX14/4.) 
Y(3,6)=-C1*OX19*DX14*G(6,2)/(4.*C2) 
Z(3)=W(6,9)-Cl*W(5,9)-(C1*DX1 9/2.)*(G(1,2)*W(2,9)+G(2,2)*DX13*(W(2 

1,3)-W(3,3)/C1)/2.+G(2,2)*(W(1,3)+W(1,9»+G(3,2)*W(5,9)+G(4,2)*DX13 
2*{W(5,3)-W(6,3)/C1)/2.+G(4,2)*(W(4,3)+W(4,9»+G(5,2)*W(8,9)+G(6,2) 
3*OX14*(W(8,4)-W(9,4)/C2)/2~+G(6,2)*(W(7,4)+W(7,9») 
Y(6,1)=C2*(H(1,2)*DX16/2.+H(2,2)*DX16*DX13/4.) 
Y(6,2)=-C2*DX16*DX13*H(2,2)/(4.*Cl) 
y(6,3)=C2*(H(3,2)*DX16/2.+H(4,2)*OX16*DX13/4.) 
Y{6,4)=-C2*DX16*DX13*H(4,2)/(4.*Cl) 
Y(6,5)=C2*(-1.+H(5,2)*DX16/2.+H(6,2)*OX16*DX14/4.) 
Y(6,6)=1.-H(6,2)*OX16*OX14/4. 
Z(6)=W(9,6)-C2*W(8,6)-(C2*DX16/2.)*(H(1,2)*W(2 6)+H(2,2)*OX13*(W(2 

1 , 3 ) - W (,3 , 3 ) 1 C 1 ) 12 • + H ( 2-, 2 ) * ( W ( 1 , 3 ) + W ( 1 , 6 ) ) + H ( 3 , 2 ) ,. W ( 5 , 6 ) + H ( 4 , 2 ) * 0 X 1 3 
2*(W(5,3)-W(6,3)/C1)/2.+H(4,2)*(W(4,3)+W(4,6»+H(5,2)*W(8,6)+H(6,2) 
3*OX14*(W(8,4)-W(9,4)/C2)/2.+H(6,2)*(W(7,4)+W(7,6») 
Y(2,1) = (C1/CON2)*(1.-F(1,1)*DX13/2.-F(2,1)*OX13**2/(4.*CON1» 
Y{2,2) = 1.+F(2,1)*OX13**2/(4.~CON1) 
Y(2,3)=C1*(-F(3,1)*DX13/2.-F(4,1)*DX13**2/4.) 
Y(2,4)=F(4,1)*DX13 Iw2/4. 
Y(2,5) = (C1/CON1)*(-F(5,1)*D~13/2.-F(6,1)*OX13*oX14/4.) 
Y(2,6)=C1*DX13*DX14*F(6,1)/(4.*C2) 
Z(2)=W(3,3)+C1*W(2,3)+C1*DX13*(F(1,1)*W(2,3)/2.+F(2,1)*DX13*(W(2,3 

1)-W(3,3)/C1)/4.+F(2,1)*W(1,3)/CON1+F(3,1)*W(5,3)/2.+F(4,1)*DX13*(W 
2(5,3)-W(6,3)/C1)/4.+F(4,l)*W(4,3)+F(5,1)*W(8,3)/2.+F(6,1)*DX14*(W( 
38,4)-W(9,4)/C2)/4.+F(6,1)*(W(7,4)+W(7,3»/2.) 
Y(4,1) = (Cl/CON2)*(-G(1,1)*DX13/2.-G(2,1)*OX13**2/(4.*CON1» 
Y(4,2) = G(2,1)*DX13**2/(4.*CON1) 
Y(4,3)=C1*(1.-G(3,1)*OX13/2.-G(4,1)*DX13**2/4.) 
Y ( II , 4) = 1 • +G ( 4', 1 ) * DX 13 * * 2/4. 
Y(4,5)=Cl*(-G(5,1)*OX13/2.-G(6,1)*DX13*OX14/4.)/CONl 
Y(4,6)=C1*DX13*DX14*G(6,1)/(4.*C2) 
Z(4)=W(6,3)+C1*W(5,3)+C1*DX13*(G(1,1)*W(2,3)/2.+G(2,1)*DX13*(W(2,3 

1)-W(3,3)/C1)/4.+G(4,1)*W(1,3)/CON1+G(3,1)*W(5,3)/2.+G (4,1)*DX13*(W 
2(5,3)-W(6,3)/C1)/4.+G{4,1)*W{4,3)+G(5,1)*W(8,3)/2.+G( 6.,1)*DX14*(W( 
38,1l)-W(9,4)/C2)/4.+G(6,1)*(W(7,4)+W(7,3»/2.) , 
Y(5,1) = (C2/CON2)*(-H(1,1)*DX14/2.-H(2,1)*DX14*OX13/(4.*CON1» 
Y(5,2) = C2*DX14*DX13*H(2,1)/(4.*C1*CON1) 
Y(5,3)=C2*(-H(3,1)fDX14/2.-H(4,1)*DX14*DX13/4.) 
Y(5,4)=C2*DX14*DX13*H(4,1)/(4~*C1) 
Y{5,5)=C2*(1.-H(5,1)*OX14/2.-H(6,1)*OX14**2/4.)/CONl 
Y(5,6)=1.+H(6,1)*OX14**2/4. 
Z(5)=WT4A+C2 f WX4A+C2*OX14*(H(1,1)*W{2,4)/2.+H(2,1)*OXl3*(W(2,3)-W( 

13,3)/C1)/4.+H(2,1)*(W(1,3)/CON1+W(1,4»/2.+H(3,1)*W(5,4)/2.+H(4,l) 
2*DX13*(W(5,3)-W(6,3)/C1)/4.+H(4,1)*(W(4,3)+W(4,4»/2.+H(5,1)*W(B,4 
3)/2.+H(6,1)*DX14*(W(8,4)-W(9,4)/C2)/4.+H(6,1)*W(7,4» 

M=6 
RETURN 
END 

~ SOLUTION MATRIX SUBROUTIN~ 
SUBROUTINESOLMAT(WX4A,WT4A, DX1 3,OX14,DX19,DX16) , 
COMMONU(9,8001),Y(12,12),W(9,9),F(6,3),G(6,3),H(6,3),Z(12),UU(12), 

10U(9),V(9),UP(9),A(7),B(7),C(7),D(7),E(7),P(7),PINC,XLI,EM,Cl,C2,X 
2ZERO,I,M,S1,DS(9),R1,R2 

Y(1,1)=C1*(-1.+F(l,2)*OX19/2.+F(2,2)IOX19*OX13/4.) 
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Y(1,2)=1.-F(2,2)*DX19 f DX13/4. 
Y(1,3)=C1*(F(3,2)IDX19/2.+F(4,2)*DX19*DX13/4.) 
Y(1,4)=-F(4,2)*DX19*DX13/4. 
Y(1,S)=C1*(F(S,2)*DX19/2.+F(6,2)*DX19*DX14/4.) 
Y(1,6)=-C1*F(6,2)*DX19*DX14/(4.*C2) 
Z(1)=W(3,9)-C1*W(2,9)-(C1IDX19/2.)*(F(1,2)*W(2,9)+F(2,2)*DX13*(W(2 

1,3)-W(3,3)/C1)/2.+F(2,2)*(W(1,3)+W(1,9»+F(3,2)fW(S,9)+F(4,2)*DX13 
2*(W(5,3)-W(6,3)/C1)/2.+F(4,2)*(W(4,3)+W(4,9»+F(S,2)*W(8,9)+F(6,2) 
3*DX14*(W(8,4)-W(9,4)/C2)/2.+F(6,2)*(W(7,4)+W(7,9») 
Y(3,1)=C1*(G(1,2)*DX19/2.+G(2,2)*DX19*DX13/4.) 
Y(3,2)=-G(2,2)*DX19*DX13/4. 
Y(3,3}=C~*(-1.+G(3,2)*DX19/2.+G(4,2)*DX19*DX13/4.) 
Y(3,4)=1.-G(4,2)*DX19*DX13/4. 
Y(3,S)=C1*(G(S,2)*DX19/2.+G(6,2)*OX19*DX14/4.) 
Y(3,6)=-C1*DX19*OX14*G(6,2)/(4.*C2) 
Z(3)=W(6,9)-C1*W(S,9)-(C1*OX19/2.)*(G(1,2)*W(2,9)+G(2,2)*DX13*(W(2 

1,3)-W(3,3)/C1)/2.+G(2,2)*(W(1,3)+W(1,9»+G(3,2)*W(S,9)+G(4,2)*DX13 
2*(W(S,3)-W(6,3)/C1)/2. 7G(4,2)*(W(4,3)+W(4,9»)+G(S,2)*W(8,9)+G(6,2) 
3*OX14*(W(8,4)-W(9,4)/C2)/2.+G(6,2)*(W(1,4)+W(1,9») 
Y(6,1)=C2*(H(1,2)*OX16/2.+H(2,2)*OX16*OX13/4.) 
Y(6,2)=-C2*DX16*DX13*H(2,2)/(4.*C1) . 
Y(6,3)=C2*(H(3,2)*OX16/2.+H(4,2)*DX16*DX13/4.) 
Y(6,4)=-C2*OX16*OX13*H(4,2)/(4.~C1) 
Y(6,S)=C2*(-1.+H(S,2)*DX16/2.+H(6,2)*OX16*DX14/4.) 
Y(6,6)=1.-H(6,2)*DX16*OX14/4. 
Z(6)=W(9,6)-C2*W(8,6)-(C2*OX16/2.)'(H(1,2)*W(2,6)+H(2,2)*DX13*(W(2 

1,3)-W(3,3)/C1)/2.+H(2,2)*(W(1,3)+W(1,6»+H(3,2)*W(S,6)+H(4,2)*DX13 
2*(W(S,3)-W(6,3)/C1)/2.+H(4,2)*(W(4,3)+W(4,6»+H(S,2)*W(8,6)+H(6,2) 
3*OX14*(W(8,4)-W(9,4)/C2)/2.+H(6,2)*(W(1,4)+W(7,6») 
Y(2,1)=C1*(1.-F(1,1)*OX13/2.-F(2,1)*OX13**2/4.) 
Y(2,2)=1.+F(2,1)*DX13**2/4. 
Y(2,3)=C1*(-F(3,1)*DX13/2.-F(4,1)*DX13**2/4.) 
Y(2,4)=F(4,1)*DX13**2/4. 
Y(2,S)=C1*(-F(S,1)*DX13/2.-F(6,1)*DX13*DX14/4.) 
Y(2,6)=C1*DX13*OX14*F(6,1)/(4.*C2) 
Z(2)=W(3,3)+C1*W(2,3)+C1*DX13*(F(1,1)*W(2,3)/2.+F(2,1)*DX13*(W(2,3 

1)-W(3,3)/C1)/4.+F(2,1)*W(1,3)+F(3,1)*W(S,3)/2.+F(4,1)*DX13*(W(S,3) 
2-W(6,3)/C1)/4.+F(4,1)*W(4,3)+F(S,1)*W(8,3)/2.+F(6,1)*DX14*(W(8,4)-
3W(9,4)/C2)/4.+F(6,1)*(W(7,4)+W(1,3»/2.) . 
Y(4,1)=C1*(-G(1,1)fDX13/2.-G(2,1)*DX13**2/4.) 
Y(4,2)=G(2,1)fDX13 f *2/4. . 
Y(4,3)=C1*(1.-G(3,1)IDX13/2.-G(4,1)fDX13**2/4.) 
Y(4,4)=1.+G(4,1)*DX13**2/4 .. 
Y(4,5)=C1*(-G(5,1)*DX13/2.-G(6,1)*DX13*OX14/4.) 
Y(4,6)=C1*DX13 fOX14*G(6,1)/(4. f C2) 
Z(4):W(6,3)+C1*W(S,3)+C1* DX1 3*(G(1,1)*W(2,3)/2.+G(2,1)*DX13*(W(2,3 

1)-W(3,3)/C1)/4.+G(2,1)*W(1,3)+G(3,1)*W(S,3)/2.+G(4,1)*DX13*(W(5,3) 
2-w(6,3)/C1)/4.+G(4,1)*W(4,3)+G(S,1)*W(8,3)/2.+G(6,1)*DX14*(W(8,4)-
3W(9,4)/C2)/4.+G(6,1)*(W(7,4)+W(1,3»/2.) . 
Y(5,1)=C2*(-H(1,1)*DX14/2.-H(2, 1)*DX14*OX13/~.) 
Y(S,2)=C2*DX14* DX1 3*H(2,1)/(4.*C1) 
Y(S,3)=C2*(-H(3,1)*DX14/2.-H(4,1)*DX14*DX13/4.) 
Y(S,4)=C2*DX14* DX1 3*H(4,1)/(4.*C1) 
Y(5,S)=C2*(1.-H(5,1)fDX14/2.-H(6,1)*OX14*12/4.) 
Y(S,6)=1.+H(6,1)*DX14**2/4. 
Z(S)=WT4A+C2*WX4A+C2*DX14*(H(1,1)*W(2,4)/2.+H(2,1)*DX13*(W(2,3)-W( 

13,3)/C1)/4.+H(2,1)*(W(1,3)+W(1,4»/2.+H(3,1)*W(5,4)/2.+H(4,1)*DX13 
2*(W(S,3)-W(6,3)/C1)/4.+H(4,1>*(W(4,3)+W(4,4»/2.+H(5,1)*W(8,4)/2.+ 
3~(6,1)*DX14·(W(B,q)-W(9,4)/C2)/4.+H(6,1)IW(7,4» 
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M=6 
-RETURN 
END 
SUBROUTINE JUMPI(X,DU1X,DU1T,DU2X,DU2T) 
DU1X = O. 
DU1T = -DU1X*0.5l40E+04 
DU2X=0. 
DU2T=0. 
RETURN 
END 
SUBROUTINEJUMPII(X,DU3X,DU3T) 
DU3X = O. 
DU3T = O. 
RETURN 
END 
SUBROUTINE ~ECJF F(ID,XA,XB,CONST) 
COMMON U(9,8001),Y(l2,l2),W(9,9),F(6,3) 
X = (XA+XB)/2. 
F ( 1 , ID) = O. 
F(2,ID) = CONST 
F(3,ID) = o. 
F(4,ID) = o. 
F(5,ID) = -CONST 
F(6,ID) = O. 
RETURN 
END 
SUBROUTINE GECOFG(ID,XA,XB) 
COMMON U(9,8001),Y(12,12),W(9,9),F(6,3),G(6,3) 
DO 1 J = 1,6 

1 G(J,ID) = O. 
RETURN 
END 
SUBROUTINE GECOFH(ID,XA,XB) 
COMMON U(9,8001),Y(12,12),W(9,9),F(6,3),G(6,3),H(6,3) 
X = (XA+XB)/2. 
H(1,ID) = 1. 
DO 1 J = 2,6 

1 H(J,ID) = O. 
RETURN 
END 
SUBROUTINE BCTF1(T,F1) 
IF(T-0.9 0E-04)1,1,2 

1 Fl = T*0.1E+03 
GOTO 3 

2 F1 = 0.90E-02 
3 RETURN 

END 
SUBROUTINE BCTF2(T,F2) 
F2 = O. 
RETURN 
END 
SUBROUTINE BCTF3(T,F3) 
F3 = O. 
RETURN 
END 
SUBROUTINE BCTN1(T,F1) 
F1 = O. 
RETURN 
END 
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SUBROUTINE BCTN2(T,F2) 
F2 = D. 
RETURN 
END 
SUBROUTINE BCTN3(T,F3) 
F3 = D. 
RETURN 
END 
SUBROUTINEPRINTO(X,T,U1,U1X,U1T,U2,U2X,U2T,U3,U3X,U3T,XLI) 

1 FORMAT(1H ,4HX = ,E15.8,2X,4HT = ,E15.B) 
10 FORMAT(1H ,5HU1 = ,E15.8,2X,6HU1X'= ,E15.B,2X,6HU1T = ,E15.8) 
11 FORMAT(1H ,5HU2 = ,E15.8,2X,6HU2X = ,E15.B,2X,6HU2T = ,E15.B) 
12 FORMAT(1H ,SHU3 = ,E15.8,2X,6HU3X = ,E1S.B,2X,6HU3T = ,E15.8) 

13 FORMAT(1H ,4HQ = ,E15.B,2X,4HY = ,E15.8) 
2 FORMAT(1H ,4HV = ,E15.B,2X,4HW = ,E1S.B,2X,4HS = ,E15.8,/) 

TOL = O.10DE-03 
TTOL = 0.40E-D6 
IF(ABS(X-0.)-TOL)8,8,3 

3IF(ABS(X-O.1)-TOL)8,8,4 
4 IF(ABS(X-0.3)-TOL)B,8,5 

5 IF(ABS(X-0.B)-TOL)B,B,6 
6 IF(ABS(X-1.0)-TOL)8,8,7 
7 IF(ABS(X-1.2)-TOL)B,B,9 
9 IF(ABS(X-1.9)-TOL)8,8,14 

8 TLIM = 0.0 
DO 16 IDO = 1,900 
IF(ABS(T-TLIM)-TTOL)17,17,16 

16 TLIM = TLIM+0.194552E-04 
GOTO 14 

17 WRITE(6,1)X,T 
WRITE(6,10)U1,U1X,U1T 
WRITE(6,11)U2,U2X,U2T 
WRITE(6,12)U3,U3X,U3T 
Q = S.4S*(U3X-U1) 
Y = U3/0.02S 
V = X/0.025 
W = 0.5140E+04*T/O.025 
S = -0.02S*U1X -

21 FORMAT(1H ,SHVA = ,E1S.8,2X,5HWB = ,E15.8) 
VA = U3T/O.S140E+04 
WB = O.02S*U1T/O.S140E+04 
flRITE(6,13)Q,Y 
~RITE(6,21)VA,WB 
WRITE(6,2)V,W,S 
WRITE(d,92)X,T,S 

92 FORHAT(3E12.4) 
14 RETURN 

END 
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w 
V1 
I-' 

card 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

INPUT D~TA .CARDS FOR TMOTCU-3COMPUTER PROGRAM 

+40uO+0.00000000E+OO+0.12500000E-02+5.14000000E+03+0.88558000E+00 
+ 2.000QE+00+ 1.0000£+00+12.70008-03+ 1.2500E+00 
-0.10000000E+01+0.00000000£+00+0.00000000£+00+0.000000OO£+OO+O.OOOOOOOOE+OO 
+O.OOOOOOOOE+OO+O.OOOOOOOOE+OO 
+0.00000000~+00+0.00000000E+ob+0.00000000E+00+0.10000000E+01+0.00000000E+00 
+O.OOOOOOOUE+OO+O.OOOOOOOOE+OO 
+0.00000000E+00-0.10000000E+01+0.00000000E+00+0.00000000E+00+0.10000000E+01 
+O.OOOOOOOOE+OO+O.OOOOOOOOE+OO 
-0.10000000E+01+0.00000000E+00+0.00000000E+00+0.000000OOE+OO+O.OOOOOOOOE+OO 
+O.OOOOOOOOE+OO+O.OOOOOOOOE+OO 
+0.000000008+00+0.00000000E+00+0.00000000£+00+0.10000000E+01+0.00000000£+00 
+0.000000008+00+0.00000000E+00 
+0.00000000£+00-0.10000000£+01+0.00000000£+00+0.00000000£+00+0.10000000E+01 
+0.000000008+00+0.000000008+00 



APPENDIX B 

Flexural vibration of beams with discontinuity of cross section 

The simplest governing differential eauation for the lateral 

vibration of beams that have step changes in the properties of their 

cross section is based on the Euler-Bernoulli theorv and consists of 

disassembling the structure into suh-beam components of uniform hending 

stiffness. 

2 
a Y2 
~=o 

(E.!) 

A solution can be obtained by formulatin~ the displ~cements of the 

beam segments of constant cross-sectional properties by individual 

functions in the form of 

and X
2

(x
2

) = C
S
sinS2x

2 
+ C

6 
cosS2x2 + C7 sirih82X2 + C8coshS 2x

2 

where Y
l 

= XI(x l )· T(t) and Y2 = X2 (x2). T(t) 

and e 4 
2 

P2A2 2 
=--w 

E212 

(R.2) 

(B.3) 

(B.4) 

The subscripts I and 2 refer to the dght-handand left hand se?ments of 

the beam shown in figure 4.8. 

The frequency equation is found using the proper boundary condition 

and expanding the determinant, and solutions are obtained numerically for 

the given values of material properties and dimensions. 

To obtain the solution for a free-free beam, the corresponding 

boundary conditions are applied together with the continuity conditions 

of displacement, slope, momnet, and shear at the junction,of the two 

parts of the beam, in a similar way to that described in chapter 4 

(eqtS. 4.6 and 4.7) 
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a2x (2'1) laxi 
2 3 3 (B.5) I: d XI (l l )/axl - 0 I 

a2x (2'2) IdX2 
2 3 3 (B.6) = a X2 (12"dx2 = 0 2 

Equations (B.5) and (B.6) satisfy the requirements of zero bending 

moment and shearing force at both ends of the free-free beam and the 

continuity conditions at the junctions are formulated as 

XI(O) = X2 (O) (B.7) 

aXI (O)/axl = -aX2(O)/ax2 (B.8) 

222 2 
EIIld XI(O)/axl = E212d X2 (O)/dX 2 (B.9) 

3 3 3 3 EIIld XI(O)/axl ~ -E212d X3 (O)/ax2 (B.IO) 

Substituting the derivatives of equations (B.2) in equations (B.5) and 

(B.6) 

(B.11 ) 

Further 4 equations for the constants C1 ••••••• CS are obtained by 

substitution of equations (B.2) in equation (B.7) to (B.IO). 

The eigenvalues are now obtained from the coefficient matrix of 

the system of equation, as those values that make the determinant of the 

coefficient matrix vanish. 

For the determination of the roots of the frequency equations, the 

values of E, I, p, A for both parts of the beam are to be specified and 

when the whole beam is made of the same material, one has El = E2 and 

p .s:" . . I 2 

The ratio of IIA is to be obtained from the geometry of the beam, 

and beams of rectangular cross section and rods of circular cross section 

are of interest. 

The flexural vibration of a stepped beam of rectan~.ular cross section 

is either flatwise or edgewise and the value of I/A is determined for each 
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section, and for a beam of the same thickness h and different widths 

bl 
and b

2 

i) 

ii) 

For flatwise vibration 

II/AI 0:: (b l h3/12)/b l h = h2/l2 

12/A2 = (b2h3 /12) Ib
2
h .., h2/12 

and therefore (II/AI) 

For edgewise vibration 

= (hb I
3/12)/hbl 

(hb
2 
3/12 ) Ihb

2 I!A = 
2 2 

0:: 1
2

/A
2

) 

= b1
2

/12 

= b2
2

/12 

iii) For a stepped beam of circular cross section 

The computer programme uses the so called "Bisection method" to 

solve the frequency equations for beams with discontinuitv of cross 

sections for various width ratios (~~ = R2!Rl ) and length ratios 

When the beam becomes uniform over its entire length, i.e. 

p,A
l 

= A2 and II = 1
2

, the frequency is obtained from hte expression 

1 M ~2 
f.'. = -~2/··~-- e·· 

n n· 
2'11' L PIAl 

and for a beam of circular cross section 

f n 

2 rC l Sn 
= ---::;---

4'11' L2 

The programme was used to obtain the fundamental frequency and 

its six higher modes for two unifrom beams for L 0:: 2.Om and d 0:: 25.4mm, 

d 0:: 3l.75mm and the frequencies of a beam of Ll = L2 = 1.Om and 

dl = 3l.75rmn and d2 = 25.4rmn where E '" 2.056 x lO"N/m2 and po::O.77743xl04kg/m3 • 
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The following values were obtained fo~·n - 1,2,3,4,5,6,7 

i) For the unifrom beam of 25.4mm diameter, the freauencies in 

Hertz are f 1Hz m 29.083; e~.166~ 157.150; 259.733; 388.036; 
n 

541.954 and 722.333. 

ii) For the uniform beam of 31.75mm diameter, the frequencies 

in Hz are f 1Hz = 36.354; 100.212; 196.437; 324.668; 
n 

485.041; 677.556 and 900.976 

iii) For the stepped beam, the frequencies in Hz are 

f 1Hz = 34.353: 93.780; 175.662; 291.645: 436.880; n . 

611.345 and 815.064 

The lateral frequencies of stepped beams with various end con-

ditions vere obtained by Gorman (1975). A stepped beam pf rectangular 

cross section in f1atwise vibration was investigated bv R1shemi (1979). 

The vibration analysis can be carried out further to obtain 

impedance and mobility ,a concept particularly useful for the prediction 

of transient response of structures subjected to impact loading. 

Point impedance measurement for the finite beam with discontinuity 

of cross section can be used to· describe the dynamic system in the 

frequency domain in terms of input-output characteristics under sinusoidal 

conditions. The motion is described without the need for a complete analysis 

of the entire system. This impedance concept is widely used in electrical 

engineering and is adaptable to dynamical systems bv electro-mechanical 

analogy • 
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COMPUTER PROGRAM FOR FLEXURAL VIBRATION OF FINITE STEPPED BE~~S 

HASTER 
REAL wR(5),LR(10),RFE(7),AA(7),RI(7),LI(10),BI(7),W(7) 
REAL Kl,K2 
READ(l,aO)N,M 

80 FORMAT(214) 
79 FORMAT(10FO.O) 

READ(1,79)(WR(I),I=1,N) 
READ(1,79)(LR(J),J=1,M) 
READ(1,95)(AA(II),II=1,7) 

95 FORMAT(10FO.O) 
READ(1,78)C1 

78 FORMAT(E15.B) 
READ(1,79)(RI(I)~I=1,N) 
READ(1,79)(LI(J),J=1,M) 
DO 10 I=1,N 
K1=0.5+0.5/WR(I) . 
K2=1.-K1 
WRITE(2,60) 

60 FORMAT(lHl,IIII,5X,2HWR,~X,2HLR,5X,8H1ST-ROOT,6X,BH2ND-ROOT,6X,8H3 
1RD-ROOT,6X,BH4TH-ROOT r 6X,BH5TH-ROOT,6X,BH6TH-ROOT,6X; 8H7TH-ROOT,11 
2) 

DO 10 J=1,H 
KK=O 
R=LR(J) 
Y2=0. 
BL1=0. 

30 A=BL1 
Yl=Y2 
BL1=BL1+0.l 
B=BL1 
BL2 = BL1*R*SQRT(1/WR(I» 
F1=0.5*(EXP(BL1)-EXP(-BL1» 
F2=0.S*(EXP(BL1)+EXP(-BL1» 
F3=0.5*(EXP(BL2)-EXP(-BL2» 
F4=0.5 1 (EXP(BL2)+EXP(-BL2» 
T1=F1*COS(BL1)-F2*SIN(BL1) 
T2=F2*COS(BL1)-F1*SIN(BL1) 
T3=F1*SIN(BL1)+F2*COS(BL1) 
T4=F2*SIN(BL1)+Fl*COS(BL1) 
T5=F3*cOS(BL2)-F4*SIN(BL2) 
T6=F4 I COS(BL2)-F3*SIN(BL2) 
T7=F3*SIN(BL2)+F4 I COS(BL2) 
TB=F4*SIN(BL2)+F3 I COS(BL2) 
AL1=K1*T3-K2*T3*T7-K1*r7+K2*r1*T8+K2 
AL2=K1*T4-K2*T4*T7+K1*rB+K2*r2*TB 
AL3=K1 I Tl+K2 i r3*T5+K1*T5-K2*r1*T6 
AL4=Kl*T2+K2*T4*T5-K1*T6-K2*T2*T6+K2 
Y2=AL1*AL4-AL2*AL3 
IF(Y2)15,40,25 

15 IF(Yl)30,30,35 
25 IF(Yl)35,30,30 
35 CALL ROOTS (A,B,R,Kl,K2.Y',X) 

KK=KK+l 
BI(KK) = X 
BI(KK) = BI(KK)/LI(J) 
W(KK) = BI(KK)*BI(KK)*(RI(I)/2.)*Cl 
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RFE(KK)=(X**2./AA(KK)**2.)*«1.+LR(J»**2.) 
IF(KK-7)30,45,45 

40 KK=KK+1 
RFE(KK)=(BL1**2./AA(KK)·*2.)*«1.+LR(J»·*2.) 
IF(KK-7)30,45,45 

45 WRITE(2,50)wR(I),LR(J),(RFE(JJ),JJ=1,7) 
WRITE(2,50)WR(I),LR(J),(BI(KK),KK=1,7) 
WRITE(2,50)RI(I),LI(J),(W(KK),KK=1,7) 

50 FORMAT(lHO,2X,3F7.3,7E14.5) 
10 CONTINUE 

STOP 
END 
SUBROUTINE ROOTS (A,B,R,K1,K2, Y1 i X) 
REAL K1,K2 

. 15 X=(A+B)/2. 
Z=X*R 
F1=0.5 f (EXP(X)-EXP(-X» 
F2=0.5 f (EXP(X)+EXP(-X» 
F3=0.5*(EXP(Z)-EXP(-Z» 
F4=0.5*(EXP(Z)+EXP(-Z» 
T1=F1*COS(X)-F2*SIN(X) 
T2=F2*COS(X)-F1*SIN(X) 
T3=F1*SIN(X)+F2*COS(X) 
T4=F2*SIN(X)+F1*COS(X) 
T5=F3*COS(Z)-F4*SIN(Z) 
T6=F4*COS(Z)-F3*SIN(Z) 
T7=F3*SIN(Z)+F4 f COS(Z) 
T8=F4*SIN(Z)+F3*COS(Z) 
AL1=K1*T3-K2*T3*T7-K1*T7+K2*Tl*T8+K2 
AL2=Kl f T4-K2*T4*T7+Kl*T8+K2*T2*T8 
AL3=K1*T1+K2*T3*T5+K1*T5-K2*Tl*T6 
AL4=K1*T2+K2*T4*T5-K1*T6-K2*T2 f T6+K2 
Y=AL1*AL4-AL2*AL3 
IF(ABS(B-X)-0.001)40,40,45 

45IF(Yl)5,40,25 
5IF(Y)10,40,20 

10 A=X 
GO TO 15 

20 B=X 
GO TO 15 

25 IF(Y)30,40,35 
30 B=X 

GO TO 15 
35 A=X 

GO TO 15 
140 RETURN 

END 
FINISH 

tli. f f 

DOC DATA 
3 3 

1.0 0.8 1.0 
1.0 0.0 0.0 
4.7305 7.d539 10.996 14.137 17.279 20.42 
+5. 14400000E+03 
0.0254 0.03175 0.0254 
2.0 3.0 2.0 
•• f. 

- 357 -

23.575 


