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Abstract

We discuss some geometrical aspects of the semiclassical quantization of string so-
lutions in Type IIB Green-Schwarz action on AdSs x S°. We concentrate on quadratic
fluctuations around classical configurations, expressing the relevant differential operators
in terms of (intrinsic and extrinsic) invariants of the background geometry. The aim of
our exercises is to present some compact expressions encoding the spectral properties of
bosonic and fermionic fluctuations. The appearing of non-trivial structures on the relevant
bundles and their role in concrete computations are also considered. We corroborate the
presentation of general formulas by working out explicitly a couple of relevant examples,
namely the spinning string and the latitude BPS Wilson loop.
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1 Introduction

The geometric properties of string worldsheets embedded in a D-dimensional space-time, and
of linearized perturbations above them, have been object of various studies since the sem-
inal observation on the relevance of quantizing string models [1]. In the framework of the
AdS/CFT correspondence, the semiclassical study of strings in non-trivial backgrounds [2]
has played a crucial role, expecially in connection with the detection of the underlying inte-
grable structure [3]. At the same time it provides a powerful tool to check, at strong coupling,
exact QFT results obtained through localization procedure [4-7] for BPS [8-13| and non-BPS
observables [14-22] !. As a matter of fact a large variety of classical string solutions have been
proposed to correspond to CFT gauge-invariant operators, Wilson loops or dimensionally re-
duced amplitudes, the original suggestions being supported beyond the leading classical order
by sometimes non-trivial calculations at one-loop order [9,18,20,22,23,25-35] (see also [36,37]
for higher order computations in special cases, the so-called homogenous solutions, for which
derivatives of the background fields are constant).

The natural setting in which these analyses have been performed is the Green-Schwarz o-
model on AdS5xS® [38], the relevant string background for ' = 4 Super Yang-Mills gauge
theory. The first step in order to compute one-loop quantum corrections to classical solutions of
the string o-model is of course to derive the quadratic action for the small fluctuations. Then,

IThe precise match between results obtained via semiclassical quantization and the exact prediction obtained
via supersymmetric localization does not go beyond leading order in o-model perturbation theory, see [23,24].



after appropriate gauge-fixings conveniently chosen according to the original form of the action
(Polyakov or Nambu-Goto) and a careful definition of the path-integral measure, the problem
is reduced to the evaluation of a bunch of bosonic and fermionic functional determinants. The
geometry of the classical string background is encoded into the structure of the differential
operators entering the computations and in the possible appearance of zero-modes, affecting
the integration measure. Finally a regularization procedure, compatible with the symmetry of
the specific problem, should be exploited to derive sensible results from the formal expression
of the one-loop effective action. This project was first addressed in [9], where a systematic
treatment of the Green-Schwarz (GS) string in curved AdSsxS® space was initiated and the
quadratic fluctuation operators in conformal and static gauges (for Polyakov and Nambu-
Goto actions) were found. A careful treatment of the measure factors and ghost determinants
was also presented. The aim of that analysis was mainly focussed on the study of particular
minimal surfaces, namely the ones associated to the straight, the circular and the antiparallel
lines Wilson loops. Some relevant formulas were somehow tailored on the specific examples
and on the use of the conformal gauge for the Polyakov path-integral. This pioneering paper
was followed along the years by many investigations, both on the open string side (mainly
minimal surfaces associated to BPS and non-BPS Wilson loops) and on the closed string side
(for example different classes of string solutions related to CFT operators). Although a large
number of results were obtained from one-loop quantum corrections, sometimes brilliantly
confirming the expectations from integrability and localization, all this analysis relied somehow
on the particular form of the classical string configuration. To further increase the effective
power of this approach, it would be desirable to have a general and manifestly covariant
formalism to describe fluctuations, which should be also independent of the particular string
solution or of the background in which the string is embedded. Here we attempt some modest
steps in this direction, collecting and generalizing some useful formulas previously appeared
in the literature and presenting the results of a series of exercises that we hope interesting for
people working in the field.

The central point of our analysis is the application of some elementary concepts of intrinsic
and extrinsic geometry to the properties of string worldsheet embedded in a D-dimensional
curved space-time. We take full advantage of the equations of Gauss, Codazzi, and Ricci
for surfaces embedded in a general background to obtain simple and general expressions for
perturbations over them. We follow and enlarge earlier investigations [9,39] 2, starting from the
Polyakov formulation and trying to present a systematic and self-consistent perspective to the
study of fluctuations in the AdSsxS®. The main result consists in general formulas for bosonic
and fermionic fluctuation operators above a classical string solution: expressions as (3.56)-
(3.59)-(3.60) and (4.22)-(4.28)-(4.31)-(4.46)-(4.47) only require as an input generic properties
of the classical configuration and basic information about the space-time background. The
inclusion of a suitable choice of orthonormal vectors which are orthogonal to the surface
spanned by the string solution will also play a major role. In particular, after fixing the

conformal gauge, it allows to decouple explicitly the longitudinal modes arriving to a final

2See also [40,41] and references therein, where this analysis has been exploited for the description of QCD
strings or stability effects for membrane solutions, and the more recent [42].



expression, similar to ones that would be obtained in the Nambu-Goto formalism in the static
gauge for bosons. In the fermionic sector the reduction of Green-Schwarz fermions to a set of
two-dimensional Dirac spinor is equivalently accomplished. We provide explicit expressions in
terms of geometric invariants for bosonic and fermionic “masses”, noticing that in all the cases
previously analyzed simplifications occur which are associated to the flatness of the normal
bundle. While in the bosonic case similar formulas appeared before scattered in the literature,
our treatment of the fermionic case, due to the complications related to the flux term, is

somehow novel in its generality.

To proceed in the one-loop analysis, one has then to compute the functional determinants
associated to the fluctuations operators, which can be done with standard methods for func-
tional determinants (see for example [18,23,33-35]) and could involve many regularization
subtleties [43]. Here we do not address the problem of regularization procedure and other
important issues, as the appropriate definition of integration measure, k-symmetry ghosts,
Jacobians due to change of fluctuation basis are also left to future investigations. These topics
should deserve a careful study, expecially when BPS configurations are considered and the

quantum fluctuations must preserve this property.

A natural generalization of our investigations concerns Type IIA and IIB string back-
grounds relevant for the AdS,/CFT3 and AdS3/CFTy correspondences respectively: we expect
it should be possible simply exploiting some general features of their geometry. For example,
backgrounds like AdS; x CP?, AdS3 x S3 x M*, AdS3 x S? x M, AdS; x S% x MS (where
MY = T4 8% xSt M5 =S x T?) are direct products of symmetric spaces, which results
in a structure of the Riemann tensor resembling the “separability” of (3.40) and allowing the
writing of formulas similar to (3.55)-(3.57).

In the perspective adopted in this paper, there is also no explicit reference to the classical
integrability of the Green-Schwarz superstring on AdSs x S® [3]. In a number of semiclassical
studies [18,33,35] the underlying integrable structure of the AdSs x S® background emerges,
for example, in the appearance of certain special, integrable, differential operators [33, 35],
whose determinants can be calculated explicitly and result in closed (albeit in integral form)
expressions for the one loop partition functions *. The question of a deeper relation between
such geometric approach to fluctuations and the integrability of the o-model of interest should
become more manifest within the algebraic curve approach to semiclassical quantization [52—

54], likely on the lines of [55] and is an interesting issue to be addressed in the future.

The paper proceeds as follows. The geometrical formulation of classical string solutions as
minimal surfaces is briefly recalled in Section 2. In Section 3 we discuss the bosonic sector.
After reviewing previous analysis based on background field method for nonlinear o-models and
the expansion in normal coordinates, we write the relevant contributions in terms of intrinsic

and extrinsic geometric invariants of the classical solution. We discuss the gauge-fixing and

3In another kind of perturbative analysis of the worldsheet g-model, i.e. the perturbative evaluation of the
massive S-matrix for the elementary excitations around the BMN vacuum [44—46] (see also [15,47] for reviews),
the one-loop computation for the full AdSs x S® case [48-50] (in a certain regularization scheme) reproduces
exactly the results [51] predicted by (symmetries and) quantum integrability.



the decoupling of the longitudinal modes, as well as the arising of gauge connections in the
covariant derivatives associated to the structure of normal bundle. The spectral properties
are also investigated, obtaining the mass matrix and deriving some sum rules. Section 4 is
instead devoted to the fermionic sector. We explicitly obtain the fermionic kinetic terms by
performing suitable rotations that reduce the GS spinor to two-dimensional Dirac fermions
and observe the arising of normal bundle gauge connection as in the bosonic case. Then we
discuss the mass matrix that, after a careful treatment of the flux contribution, is expressed
in terms of geometrical invariants. We conclude with Section 5, where a couple of relevant
situations (the well-known spinning string solution of [2,26] and fluctuations over the minimal
surface associated to the 1/4 BPS Wilson loop operator [11,56,57]) are considered, in which

the general structures previously derived are exemplified.

2 The background equation

We start by recalling some basic fact about classical string theory. In particular we will review
the statement that classical string solutions are minimal surfaces, i.e. surfaces of vanishing
mean curvature. We shall deal with classical backgrounds which are extrema of the Nambu-

Goto action (fermions are of course zero at classical level)

SN.a. :/Zd%ﬁ’ (2.1)

where Yo = Gpn0a X0 X" (o, f = 1,2) is the induced metric, namely the pull-back of the

target space metric Gy, (I,m,n,p,... =1,...,D) on the worldsheet ¥. The background
X™ solves the Euler-Lagrangian equation
1
Oa (\f’waﬁ GmnaBXn) - §ﬁ’ya63man8aX"85Xp =0, (2.2)
which is conveniently rewritten as follows
1
Grn X" = §fyaﬁamanaaX"aﬁXP — P9, X8, Gl D X (2.3)
where O = % Oa (/7Y o 03) is the covariant Laplacian on worldsheet scalars. Introducing
I}, the Christoffel connections for Gy, we have
OX™ +4*P T 0, X"05XP = 0. (2.4)

The covariant Laplacian can be further expanded in terms of the induced metric 7,3 and the

related Christoffel connections AZ P to find
VP (0005 X™ — N0 30, X™ + Tt 0o X" 0 XP) = 1P K[y = 0, (2.5)

where the second fundamental form KJs of the embedding (or extrinsic curvature) has been
introduced. Then, the string equation of motion simply states that the mean curvature K™

vanishes
K™ =+""K7=0. (2.6)



As a matter of fact the extrinsic curvature is automatically orthogonal to the two vectors
th = 0, X™ (o = 1,2), tangent to the worldsheet,

Gt T KT = 0. (2.7)

Physically this means that only D — 2 of the D equations in (2.6) are independent and they
govern the D — 2 transverse degrees of freedom. The longitudinal ones are obviously gauge

degrees of freedom.

The same result can be of course recovered from the Polyakov action
Sp. = / 2o VhhP G 00 X 05 X" (2.8)
%

where the 2d worldsheet metric h,p is now an independent field. In this case the dynamical
equations for the embedding coordinates X™ are slightly different and read

O X™ + h*PT 0, X" 95 XP = h*P K + h*P(A”,

4 —I7)8,X™ =0, (2.9)

B

where O, denotes the covariant Laplacian and T' the Christoffel symbols for the auxiliary

metric hog, whereas A are the ones for the induced metric. But if we use that the algebraic

equation for the metric field hqg is solved by hog = €743, the last term in (2.9) vanishes,
h*P (AL, — TP ) =0, (2.10)

and the string equation of motion again reduces to (2.6).

3 Bosonic Fluctuations

In this section we shall discuss the action for bosonic fluctuations around a classical back-
ground. After reviewing previous analysis [9, 39| based on background field method for non-
linear o-models and the virtues of the expansion in “geodesic” normal coordinates [58], we
write the relevant contributions in terms of intrinsic and extrinsic geometric invariants of the

classical solution.

3.1 The bosonic Lagangian

We will discuss the bosonic fluctuations starting from the Polyakov action
S = / *oVhhP9,X" 95 X™ G (X). (3.1)

A well-known subtlety of the expansion of a non-linear o-model around a classical background
X™ 58] is that writing it as a power series in terms of fluctuations, defined as §X™ = Xm_xn,
does not lead to a manifestly covariant expression for the series coefficients. As a matter of fact
the difference between coordinates values at nearby points of the manifold does not transform
simply under reparametrization. The easiest way to obtain a manifestly covariant form for the

coefficients is to take advantage of the method of normal (or Riemann) coordinates, expressing



0X™ as a local power series in spacetime vectors, those tangent to the spacetime geodesic
connecting X™ with X + 6X™ [58]. More precisely one considers a geodesic X™(t) with ¢
parametrizing the arc length such that

X™0)=X™ and X™(1) = X™. (3.2)

Solving then the geodesic equation for X™(t)

X)) + T X" () XP(t) =0 (3.3)
in terms of the tangent vector to this geodesic in t = 0
("= X™(0) (3.4)

one finds )
XMt)y=X"+t¢" — §t2anp§"Cp + O(t?’). (3.5)

For t = 1, this means *

XM= XM TR HO(C) 5 XXM = (M TP O(E) . (36)

where I'70, = T (X™). The difference 6 X™ = X™ — X™ is now the desired local power series
in the vector ("™, which can then be conveniently used as a fundamental variable. Combining
the expansions of the derivatives of the embedding coordinates

v m m npm ~r 1 r m m n m sn
DaX™ =00 X"+ VoM =0, X T ¢ —gﬁaX (9, — 20T )¢ P~ "V o (PHO(CP)

where V(™ = 0,(™ + I'7;, 0o, X™ (P, with the contribution of the target metric

9 Pq

we find the fluctation action in the Polyakov formulation (3.1) (see [39] for example)
S =5W(x)+ / AoV hhP [V 0"V 5" Gon — Rym,anC 00X 05X + O(C%).  (3.8)

The term S](BO) (X) denotes the classical action, while the second one describes the quadratic
fluctuations and it will be denoted with Sg) in the following. In order to have a canonically
normalized kinetic term it is convenient to introduce a set of vielbein E;% (A,B,..=1,..,D)

for the target metric
Gyn = napEL EP (3.9)

4 At quadratic level for fluctuations, the term linear in ¢ does not play a crucial role. In fact it yields only
contributions which are proportional to the equation of motions:

S:SO+/d2c76~—S gm—l/dza<$
SXm | gox 2 SXmsXn

However, its introduction allows to simplify the algebra involved in the computation.

cmen - 68

X=X SXmxox

rzzC“c") .



and a set of zweibein € (a,b,... = 1,2) for hyg. In terms of the redefined fluctuations fields
¢ =En¢m, (3.10)
the quadratic fluctuation action for bosons becomes [9,39]
Sy = / Pov/I WP Dot Dat s — Ma peAeP ], (3.11)

where the mass matriz [9,39]
Map = RAM’BNtaMtiV (3.12)

is defined through two vectors tangent to the worldsheet
th = EAeca, x™, (3.13)
and the covariant derivative now reads
Dot =0, X4 + Q4 5, 689,X™, (3.14)

where the spin-connection Q4 Bm Teplaced the usual Christoffel symbol. To better understand
the geometrical structure of the Lagrangian (3.11), we introduce (D — 2) orthonormal vector
fields NZA orthogonal to the worldsheet, and decompose the field ¢4 in directions tangent (%)
and orthogonal (3?) to it

A =2 +y'NA a=1,2 and i,jkl=1,...,D—2. (3.15)

As is well-known from the general theory of submanifolds [59], this decomposition carries over

to the covariant derivatives and one finds
t4Dg&t = Dga® — K43Ny, NpDge? = Day' + a°Np KL . (3.16)
Here D,, is the covariant derivative on the worldsheet and it acts differently on 2 and v
Doz® = 0pz® + woz? and Doy’ = 0y’ — Aijayj, (3.17)

since 2% lives in the tangent bundle of the worldsheet, while 4 is a section of the normal

bundle. The connection A’ jo on the normal bundle® is given by
A'jp = NPPDyNp = NP (95Np — NEQF ). (3.18)

As usual the action of D, on tensors with indices on both bundles is obtained combining the
two actions in (3.17). The tensor K5 = Eapne® Ky in (3.16) is the extrinsic curvature
(2.5) of the embedding expressed in a mixed basis. In the following we will make use of the
Gauss-Codazzi equation

RacpptitStBtl =P Ro s, + napKisKE, —nap KL KL, (3.19)

®The normal bundle is an SO(D — 2) bundle and A%}, is a gauge connection induced on this bundle by the
classical solution.



an integrability condition relating the curvature (2)Rap50 to the extrinsic and background
geometry as characterized by the extrinsic curvature K 5}5 and the space-time Riemann tensor
RAC pp- Another useful constraint on the covariant derivative of the extrinsic curvature is
provided by the Codazzi-Mainardi equation

Do K}, — DsKl,, = Rynpst) th tS N [Kis = Ki3Ni] . (3.20)

Taking into account (3.19), (3.20) and the equation of motion (2.6) for the background, the
quadratic Lagrangian (3.11) finally appears to be

L = Vh[(h*PDaa Dz —PRupaab) + h¥ Doy Dyyi— (3.21)
— 20 (D2 K; 0y’ — Doy’ v K ap) — 2maiz®y’ — mijy'y’] . .

Above, the matrices appearing in the mass terms are defined as follows
Mai = —h*VoK; a5  and  mi = Ransnt™MtY NANP — hP WP K oo Ko (3.22)

So far we have treated the independent metric h,, as a non-dynamical field. We should recall

that in Polyakov’s formulation also h,, fluctuates,

Py = by + Ry, (3.23)

with respect to a classical background ﬁpa = e¥7v,, which solves the equations of motion. In
particular this means that all the h,, appearing in the previous analysis must be replaced with
ﬁpg. The quadratic part of the Polyakov action involving the fluctuations P\,“l, pedantically

reads

S = / d*oc? /7 [ (7HP A7 = P )RR —

— (DFa” + DVt — A Dyz® — 2y K )PLW},

(3.24)

where ¢ = eSa®. Of course (3.24) only depends on the traceless part P_\,“l, of RW as required
by Weyl invariance. To deal with the quadratic fluctuation (3.21) and (3.24), we have different
possibilities. For instance, we can choose the conformal gauge for the metric fluctuations

R = e#yu60. (3.25)

The action Sy then vanishes identically, while the ghost action associated to the choice (3.25)
is

Lonost = —=ppwsdit (f, Lo esp ) = Lywp D Dac® 3.26

ghost = ﬁ ¢ wv §’Yuu’Y af | = % ( uwCv +Dycy — YuwDac )- (3.26)

Here §4ff is the BRST variation under diffeomorphism of h,,, with parameter ¢, and the ghost

b* is a symmetric traceless tensor. The full ghost contribution is therefore encoded into a

functional determinant, obtained by integrating over ¢ and b*¥. It will correct the one-loop

quantum result of the bosonic fluctuations, as we will see in the following. Concretely the



computation of the ghost determinant means here to solve the following eigenvalue problem
in the background geometry

1 (07
E(Duc(n)v + Doty = YuwPaclny) = Anbmyu

(3.27)
py v
From the first equation for b, one gets
= (Ocy + RYucfry) = Al (3.28)

and therefore the ghost determinant is

1/2
Dgn =M = (H Ai) — [det(—O8Y, — B¥,)]* . (3.29)

We can now decouple the longitudinal fluctuation (%) from the transverse ones (y*). We start
from the action (3.21), and derive the equation of motion for the fluctuation parallel to the
worldsheet:

Oz + Raga® = DB, Bap = 2yiK.g (3.30)

where we introduced the traceless tensor B,g. This equation can be equivalently written as
follows
P (w)ag = Dﬁxa + Daxﬁ — ’yaﬁi)pxp = Big (3.31)

where we have introduced a projector P;, acting on the space of vectors and producing sym-
metric traceless tensors. We can conveniently decompose the traceless symmetric tensor B,g
into Bﬂ[ﬁ + B2, with Bﬂlﬁ € range(P;) and Bofﬁ € range(Py)*t = Ker(PlT). We remark that
we will be only interested in worldsheet with the topology of the sphere or the disc, where
Bi_ﬁ = 0 and thus B,g = BEBG. Considering now a solution Z of (3.31) and performing
the shift % — % 4+ z* in the path-integral, all mixed terms zy in (3.21) disappear and an

additional contribution shows up in the quadratic action
7°DPB.s = D’ (2% Bag) — %BaﬁBaﬁ = —2y;y; Kl 3 K7°P . (3.32)
We are left therefore with the quadratic Lagrangian
L = Liong + Ltransv (3.33)

where
Liong = \/ﬁ(fyaﬁDaa:“Dﬁxa —(2)Rabazaxb) (3.34)

and

Liransy = VY Dy’ Dpys — Mijy'y?)

(3.35)
Mij = RAM’BNtCMtévNZANjB + KLQBK;{B.

5This fact corresponds to the the well-known property of the absence of non-trivial Beltrami differentials at
genus 0.

10



After the above redefinition, the operator controlling the fluctuations x® parallel to the world-
sheet in (3.34) coincides with the one appearing in the ghost determinant (3.29), but we remark
that this does not mean in general that the corresponding determinant will be simply can-
celled by the ghost contribution. For instance in the case of open strings different boundary
conditions should be imposed for the two determinants. Moreover the treatment of the ghost
operator requires additional care since it might contain zero modes associated to the Killing

vectors of the worldsheet metric 7,3.

We can reach the same expression for Liransy following an alternative way. Instead of setting
to zero the traceless part ple of ple by choosing the conformal gauge fixing (3.25), we can
decouple it from the fluctuations of the embedding coordinates through the following shift

PLW — KW +Dyx, + Dyxy, — ’yWngﬁ — 2yiKiy. (3.36)

We find a quadratic algebraic action for PZW and an additional term leading to the bosonic

Lagrangian
1 _ _ . .
£ = Sy hapkse + v/ [v Doy Dayi — (mij + 25 K )y’ +
+ 2\/’_}/70{5 (,DaxaKi,aﬁyi + ,DayixaKi,aﬁ + ’Yaﬁ,DaKi,aﬁxayi) )

where the last line is a total divergence and can be neglected. The Lagrangian for the transverse

(3.37)

fluctuations is again given by (3.35). We notice that in eq. (3.37) the longitudinal fluctuations
have completely disappeared from the Lagrangian. This second way to proceed is similar to a
sort of static gauge fizring (where longitudinal fluctuations are taken to vanish). More precisely,
in the present approach the longitudinal degrees of freedom of the metric decouple, and their
role in the Lagrangian is taken by the traceless part of the metric fluctuation, which however
possesses an algebraic gaussian action. If we integrate it out, we find an ultra-local functional
determinant, whose careful regularisation and evaluation hides some of the subtleties discussed
below eq. (3.29).

Another option to get rid of the longitudinal fluctuation is to choose the static gauge fixing
2® = 0. Then (3.21) reduces to a Lagrangian for the transverse fluctuation only, with a mass
matrix given not by M;; but by m;;. However we must recall that the transverse fluctuation
are still coupled to the metric fluctuations (see eq. (3.24)):

Sy = / Poe? /7 [ Ly b b, + 2y KR, (3.38)

If we again eliminate the metric fluctuation PZW through its equation of motion, we get back
to the mass matrix M;; and to Liransy in (3.35).

We remark finally that starting from the Nambu-Goto action, where no dynamical worldsheet
metric is present, in the static gauge % = 0 we would directly obtain Liyangy-

In view of the analysis above, we will focus our attention on transverse fluctuations and will
examine closely the structure of the Lagrangian in (3.35) which governs their dynamics. These
modes are in general coupled between themselves and we can distinguish two different sources
of coupling: the SO(D —2) gauge connection A jo induced on the normal bundle and the mass

matrix M;;. In the following we shall discuss some general properties of these two objects.

11



3.2 The normal bundle

Let us begin to discuss the geometric structure of the normal bundle. The curvature F* jaB =
aaAijg — aﬁAija + AimAéjﬁ — AiwAéja can be easily evaluated in terms of the Riemann
curvature of the target space and of the extrinsic curvature through the Ricci equation:

Fljop = —Rapuntatg NYNYN — b7 (K} Kjos — K5 Kjoo). (3.39)

Focussing on the case of AdS® x S®, we see that the contribution of the Riemann tensor to
the curvature of the normal bundle vanishes identically as in flat space. In fact the Riemann

tensor for this background is given by
Rapcp = —(PacPpp — PapPpc) + (PacPep — PapPse), (3.40)

where PAB is the projector on AdSs and Pap is the on S Obviously the sum of the two

projectors gives the identity:
Pap + Pap = nap. (3.41)

The contractions Rapns NtﬁtBB NM N ]N can be written as

Rapuntaty NMNN=[(to- N*)(Es- Nj) = (bs- N*)(Es- Nj)|=[(fa- N*) ({5~ N;) = (ts- N*)(Es- N;)),
(3.42)

CbP as a product over flat spacetime

where we introduced the inner product (a-b) = nepa
indices. Above, the hats and the bars over the vectors denote the projection of the vectors on

AdS5 and S® respectively, namely
VvA=pPAgvE  and VA =pPARVE (3.43)
We can now use that
(ta - N = (to- NY) = ((ta — o) - N¥) = —(fo - N*) = — (o - NY), (3.44)
and we remain with the following expression for the normal curvature
Fljap = =77 (KpoKjos — KppKjoa) = (177 Ky, Kjov)eas = v/AeapF s (3.45)

which also holds in flat space. The normal bundle is flat when F ijag = 0. In that case, we
can always choose the normal vectors N' so that Aija = 0 and the covariant derivative acting
on the transverse fluctuations reduces to the usual one. This occurs, for instance, when the
minimal surface is confined in a three-dimensional subspace of our target space: the extrinsic
curvature is in fact not vanishing just in one normal direction [9,60-65].

For a generic worldsheet, which solves the equation of motion in the AdSs x S® background, the
extrinsic curvarture defines, at most, two independent vector fields normal to the worldsheet”.

"This follows from the fact that we have just two independent components of the extrinsic curvature (e.g.
Kf and K f2) Alternatively, we can argue this result, in a covariant way, from the following matrix relation
satisfied by F:

F= %Tr(]ﬂ)f?.
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In fact the matrix F*; can be always put in the form
Fly = (K'hj — k;hY), (3.46)

where (h' - t,) = (k' - t,) = 0 and we can choose (k- h) = 0 without loss of generality.

3.3 Mass matrix and sum rules

The next step is to examine more closely the mass matrix (3.35) for the transverse bosonic

degrees of freedom. For a generic classical background it has the form
Mij = Ran pnt™M Y NANP + K 0p K57, (3.47)

There are few general properties of M;; that can be easily read from (3.47), since the em-
bedding equations for a sub-manifold do not provide a direct constraint on the contraction
Ram,B NteMN NZAN JB. However, its trace Tr(M) admits a quite simple and compact expres-

sion in terms of geometric quantities. If we use the completeness relation
A nriB AB AycB
NN =02 — 207, (3.48)
we can rewrite the trace of (3.47) as follows
Tr(M) = Rynt™MtY — Raps pntMtN 428 4 Tr(K?), (3.49)

where
Tr(K?) = vy napK s KL, . (3.50)

By mean of the Gauss equation (3.19) we can reduce the second term in (3.49) to
Ran pntMtN 4198 =@R + Tr(K?), (3.51)
where (R is the two-dimensional (intrinsic) scalar curvature. This leads to the sum rule
Tr(M) = Ry y tMtY R (3.52)
in terms of the Ricci tensor Rj;n and of the two-dimensional curvature. In the case of Einstein

spaces (where Ry = n Gyyy) this gives Tr(M) = 2n —)R.

We now particularize the analysis of the mass matrix (3.47) for a string moving in AdSs x S°
background. The Riemann tensor for the background AdSs x S° is given in term of projectors
by (3.40). The first contribution to the mass matrix takes the form
VP Rarpstats NENG = =477 (1, - 15)(N; - Nj) + 9P (N; - a)(N; - £g)+ (353)
+977 (B - To) (Ni - Nj) = y*P (N - Ta) (N - Tp),
where the hats and the bars over the vectors again denote the projection of the vectors on
AdSs and S° respectively and they are defined in (3.43). The relation (3.44) easily shows that

the mixed terms in (3.54) cancel and we obtain
VP Rarpstyty NENG = — 4P (&, - 1o)(N; - Nj) + 97 (E, - t) (N; - Nj). (3.54)
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With a small abuse of language we shall introduce the following notations

m?MS5 = (t, - 1,) and m%s = (t, - tos). (3.55)
Then the complete mass matrix is given by

Mij = - mid% (NZ : N]) - m%s (Nz . N]) + K,'OCBK?B. (3.56)

It is worth noticing that the two scalar quantities m%d% and més can be computed in terms
of the two-dimensional scalar curvature JR and Tr(K?2). We first observe that

m124dS5 — m?gg, — Vﬁa(fp . {U) + 7po({p . fg) — 7po(tp . to) — 2’ (3.57)

while another relation between these two quantities can be obtained from Gauss equation
(3.19) in its contracted form. After some simple manipulations we end up with

R 1 Tr(K?) =y Racppt M550 = mi, —miygs + (o 19) (- 19) — (- F)(Fa - ) =
=—2(mg, +1). (3.58)
We finally obtain:
1
mias, = —5(PR+T(E*) +1  and  m§ =3 (PR+Tr(K?)) 1. (3.59)

The results (3.59) simplify the explicit evaluation of the trace of the mass matrix Tr(M) for
the case of AdSs x S°. Since Ryn = —4 Pyn + 4Py, we find

Tr(M) =RantM Y IR = —a(m%s + m3ys,) ~PR = 4 (PR + Tr(K?) ) PR =

3.60
=3R4+ 4Tr(K?) . (3.60)

The structure of the mass matrix (3.56) can be further constrained assuming particular prop-
erties for the classical background. The simplest geometrical configuration is when in (3.56)
either £, = 0 or . = 0 (c = 1,2). In that case the minimal surface ¥ is confined in one of the
two spaces: AdSs if £, = 0 or S° if t. = 0. Let us focus on the first possibility; the second one
can be discussed in complete analogy. The mass matrix then reduces to

where we have used that miﬁ = (t. - t°) = 0 and m%dss = m%dss — miﬁ = 2. The extrinsic
curvature Kj,g is different from zero only for orthogonal directions lying in AdSs. Therefore
we have 5 massless scalar (m; = mgs =0 [i = 1,...,5]), one for each direction of S°. We
can always choose a sixth direction (lying in AdSs) orthogonal to ¥ and to the two normal
directions defined by Kj,z. The mass mg of this sixth scalar is

mi = —2. (3.62)

Finally, we have to select the last two orthogonal directions (i=7,8) and we choose the only
two orthonormal eigenvectors of KmﬁKJqB with non vanishing eigenvalues. They always exist
if the normal bundle is not flat. Then the two masses are given by

mZ=X\ —2 and m2 =)\, —2. (3.63)
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Here A1 and A5 are the two non-vanishing eigenvales of ngKJqB and they are determined in

terms of the geometric quantity of the surface through the relations:
1 1
AM+A=Tr(K>)=-®R—-2 and M= 5[(T1~(K2))2 — Tr(K%)) = 5Tr(f?), (3.64)

where Tr(K?) = KQBKJQBKZJKZPG. If the normal bundle is flat, 7 = 0 and one of the two
eigenvalues vanishes, e.g. A = 0. Then the two masses collapse to the known result [9, 18]

m2=-2 and m?=—-®R -4 (3.65)

Let us turn our attention to the general case where the worldsheet extends both in AdSs and
S spaces and the mass matrix has the general form (3.56). The first step is to choose two of
the fluctuations (i = 7,8) along the two orthogonal directions (h and k) with non-vanishing
extrinsic curvature. These two directions are defined up to a rotation in (h, k)—plane. We fix
this freedom by choosing h and k to be the only two orthonormal eigenvectors of KMBK;‘B
with non vanishing eigenvalues. Then the only non vanishing component of the field strength
in the normal bundle is F'g as discussed in subsec. 3.2.

The bosonic masses can be analysed in details if the field strength F'g is essentially abelian,
namely if the only component of the connection different from zero is given by A”s. In this

case the Codazzi-Mainardi equation (3.20) implies for the normal directions i =1,...,6
Yy (ta - Ni) = Yar(tg - Ni) = ,DaKé»y - ,DﬁKém =0, (3.66)
which immediately translates in
(tg-N;) = (tg - N;) =0 for i #17,8. (3.67)

We find that the remaining six normal directions are orthogonal both to f, and to t,, implying
that some of these vectors completely lie in AdSs, while the others in S®. Generically we expect
to find three of them in AdSs and three in S° (a different partition of the six vectors between
the two subspaces may occur when some of t, or of ., vanishes). Because of the orthogonality
relations (3.67), the 8 x 8 mass matrix M takes the form

—migs, 0 0 0 0 0 0 0
0 —miug, 0 0 0 0 0 0
0 0 —mig, O 0 0 0 0

Mo 0 0 0 —mi 02 0 0 0 (3.68)

0 0 0 0 -m% 0 0 0
0 0 0 0 0 -m% 0 0
0 0 0 0 0 0 mrr mrg
0 0 0 0 0 0 mg7 mss,

where m? 45, and m§5 are given in (3.59). The trace condition (3.52) still constrains mz77 and

mgs and it yields that
myr + mgg = Tr(K?). (3.69)
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With the help of (3.69), the reduced mass matrix in the directions 7 and 8 can be cast into to
the form

Myog = | 7778 —m2 s, +?(N77- N7)+ M\ 2(]\777' st (3.70)
e Mgy Mg 2(N7 - Ng) migs, — 2(N7 - N7) + X

where A1 and Ay again obey (3.64).

In the general case, when F'g is not generated by only taking A”g different from zero, the
structure of the mass matrix may become more intricate. However we can always choose,
at least, two orthogonal directions, one in S® and one in AdSs, which are orthogonal to the
minimal surface ¥ and to the extrinsic curvature. The masses of these two fluctuations are
then given by (3.59).

4 Fermionic fluctuations

The full covariant GS string action in AdSs x S° has a complicated non-linear structure [38,66],
but to analyze the relevant fermionic contributions it is sufficient to consider only its quadratic

part here
Lop =i (ﬁ’yo‘ﬁ ol — 50‘53”) 0! p DéK oK . (4.1)

Above, 07 (I = 1,2) are two ten-dimensional Majorana-Weyl spinors with the same chirality,

s!/ = diag(1, —1), p, are the worldsheet projections of the ten-dimensional Dirac matrices
Po = Epm 0a X™T4, (4.2)

and DJX is the two-dimensional pullback 9, X™ DK of the ten-dimensional covariant deriva-
tive (here, flat and curved indices span the range from 1 to D = 10), sum of an ordinary
spinor covariant derivative and an additional “Pauli-like” coupling to the RR flux background,
DJE =2, 675 — o Foy g T, €75

In the AdSs x S° case, it can be written as follows
1
DiRoN = DgKe" + FifoR DK =678 <aﬁ + 70X T AB) 0%, (4.3)

where the flux term F B] K responsible for the fermionic “masses”, is ®

1 .
]:B]K = —§€JKF*pB 5 F* = ZF01234 . (46)

8 An alternative form for the flux [38] is
Ft = _%EJK P8 ps =Tath +ilaty (4.4)
with which the corresponding part of the gauge-fixed Lagrangian reads

LI = —e*P G po, pp 6. (4.5)

Its equivalence with (4.6) and (4.24) below is manifest in the 5 + 5 basis of [38], see also discussion in [9].
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Looking for a general formalism for fluctuations, there is a natural choice for the xk-symmetry
gauge-fixing that is viable in type IIB string action, where both Majorana-Weyl fermions in
the GS action have the same chirality, namely *

0l =62=90. (4.7)

Since s'' = —s?2 = 1, in the kinetic part of the gauge-fixed fermionic action only the term
proportional to v will survive after the k-symmetry gauge-fixing, while in the flux part only

the term proportional to e*%.

4.1 The fermionic kinetic term

Let us first focus on the reduction of the ordinary spinor covariant derivative ®g in (4.3) and

write the relevant part of the x-symmetry gauge-fixed Lagrangian as
. . _ 1
L5 = 2 /7y 0 po, (85 + Q5) 0, Qp = ZQQBFAB. (4.8)

The geometrical interpretation of the reduction procedure, already discussed for the bosonic
fluctuations, allows us to guess the final result of this section. In fact a straightforward, but

tedious computation must yield, at the end, the following form for the kinetic term:

L™ = 20 7y OT" €40 D © = 2i /77" OT €40 (0 + {Tbey — 1A

Q|LN>Z

r;)e. (49)

Above, Dg is the two-dimensional covariant derivative acting on spinors, and it takes into
account that © is now a two-dimensional spinor, which also transforms in the spinor represen-
tation of the SO(8) normal bundle. We remind that e% denotes the worldsheet zweibein. The
connection Aiﬁj is defined in (3.18). This pattern is completely analogous to the one obeyed
by the normal bosonic fluctuations, which are scalars for the worldsheet, but vectors for the
normal bundle.

We shall now see how the result (4.8) emerges from the explicit analysis. Although we will
work explicitly in D = 10, we remark that the reduction of the canonical covariant derivative
(passing from (4.8) to (4.9)) is independent on the dimensionality of the spacetime, exactly

10

as in the bosonic case The Dirac algebra is naturally decomposed in two subsets: the

components along the worldsheet and those orthogonal to the worldsheet, which in the ten-
dimensional case means

pa = taal?, a=1,2, (4.10)
pi = NATA, i=1,...,8. (4.11)

9A widely used alternative to (4.7) — especially in the context of AdS/CFT — is the light-cone gauge-fixing
I't¢’ = 0, where the light-cone might lie entirely in S® [67,68] or being shared between AdSs and S® [69]
(see [47] and further references therein). One of the obvious advantages of the “covariant” gauge-fixing (4.7) is
preservation of global bosonic symmetries of the action. A more general choice is 1 = k62, 02 = 0 where k
is a real parameter whose dependence is expected to cancel in the effective action, see discussion in [70]. Yet
another s-symmetry gauge-fixing, albeit equivalent to (4.7) [9], has been used for studying stringy fluctuations
in AdSs x S° in [25].

10The dimensionality of space-time will clearly influence the kind of spinors involved.
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As used earlier in [60-64] and made explicit in this context in [9], since a two-dimensional
Clifford algebra holds by construction for the {pq, ps} = 2743, it is always possible to find a
local SO(1,9) rotation S that transforms p; into two-dimensional Dirac matrices contracted
with zweibein

pa =ST%S ey a=

1
) 4.12
pi = STE25=1 =18, 2

where
FlziT2®116, F2:T1®116, I@:Tg@Ei, (4.13)

7, are Pauli matrices and 3! are (16-dimensional) Dirac matrices in 8 Euclidean dimensions.
Defining now

©=5"19 and Q,=S5"'Q,5+5719,8, (4.14)
one ends with the following rotated expression
LHM = 21\ /74P OT % ¢4, (95 + Q3) ©. (4.15)

We remark here that the present analysis is only valid at classical level: as we will see later the
local rotation S produces quantum mechanically a non-trivial Jacobian in the path-integral
measure, whose contribution is crucial to recover the correct structure of the divergent terms.

To evaluate Qa, we begin expanding
Qp = 50357 — 93857 (4.16)

in the basis provided by the Dirac algebra (4.12)

1 1 . A i ~ij 1 )
ZQQBFAB = Z(Qﬁbefjegp,w + 292265;)”1 + Q%pil-) + Z(po‘(‘)gpa + p*0spi — pptes0pean) (4.17)

The expression for 9,,957! in the second parenthesis above has been derived considering the
derivatives of (4.12) with respect to worldsheet coordinates which in turn implies

p*0ppa + p'0spi = —405SS™1 + p*ptel0pean- (4.18)
Let us now formally expand all the contributions in the same basis (4.10)
Q45T ap = Q5o + 204 P N, + Q4PN N oy (4.19)
in which

paaﬁpa - pauezaﬁeaa = paiNiAKAaﬁ - paueaaeb,uwgb + pauggBtAatBM + pazQEBtAaNBj
P9spi = P (NiaK s + Q5 paNia) + p (N DgNia + QF NipNaj). (4.20)

Collecting the different results we obtain

Aab _ ab Aai _p i 7-Ap ALJ i
QXebey = elefwy, Ofeq = —NyK5", Qy=-A (4.21)
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and the fermion kinetic part of the rotated Lagrangian takes the form
L™ =2i /37 O T eq (95 + Tyl — ING ATy, — 1A5T;; )0

: i (1.22)
=20 /777 O coa (9 + ATy — ATTy;) ©.

Namely, in the rotated basis (4.12)-(4.13) the GS kinetic operator (4.8) results in a standard
two-dimensional Dirac fermion action on a curved two-dimensional background with geometry
defined by the induced metric [9]. The spinor covariant derivative can be written as a two-
dimensional, ordinary, spinor covariant derivative plus two additional terms as in the first line
above. The first extra-term is proportional to the extrinsic curvature, it mixes tangential and
normal components and drops out naturally in the fermionic action — hence the second line in
(4.22) — once contracted with yY*$T'% e, and e** T e, 5. In fact, using the equations of motion
(2.6) and because of the symmetry of K} in «, 8, it holds

KAabFanl' — KAab(Fabi + 5ab1—‘£) = 0,

(4.23)
aaﬁe“aKébFané = aaﬁe“aKg‘b(isang + )i = (2'7'3 det(e)eng‘b + EaﬁKfﬁ)Fi =0.

The second additional term consists of an extra, normal bundle two-dimensional gauge connec-
tion A%.;l, with respect to which the 16 two-dimensional spinors making up the 32-component
MW spinor © transform in the spinorial representation of SO(8). This interacting term van-
ishes (i.e. a choice of the N exists such that ALBZ = 0) when the field-strength associated
to the normal connection vanishes, see discussion around (3.46). As mentioned there, this is
always the case, for example, for embeddings of the string worldsheet in AdS3, where indeed
the normal direction is just one and the normal bundle is then trivial. For a more general
embedding extending in both AdSs x S® subspaces, the presence or not of this interaction term
has to be checked case by case. This is what we do in Section 5, where in considering several

examples also comment on this aspect.

4.2 Fermionic “mass” matrix: the flux term

We now analyze the flux term (4.6) in the fermionic Lagrangian, (4.1)-(4.3) which after the

k-symmetry gauge-fixing ' = 6% = 0 reads
flux af p o
LF = —£ 0 Pa P*pg 0 N P* = ZF01234 . (4.24)

In order to understand the geometrical meaning of the terms in (4.24), we again decompose
the Gamma matrices in the orthonormal basis formed by the tangent and transverse vectors.

Remembering that ', contains only ten-dimensional flat indices belonging to AdSs, we have

e paTps = P (Tatd — Tatd) pp (4.25)
= e, (T 47 + NANP) faa = T 147 + NANP)Eaa ) ps

= EQBF* (’Y)\(S/D\pﬁ [(f5 “ta) — (Zg ’ t_a)] - 2prpﬁ(Nr : fa)) , r=171,8
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where we used the completeness relation n? = ’y)“;tAtB + N; AN B the fact that N; AtA N{ AtA
are non vanishing only for ¢ = r = 7,8 and that N,f“tﬁ —NAtA r=7281" Deﬁmng the

T Ya)

antisymmetric product of the Gamma matrices projected onto the worldsheet as

1
——c"pag, p? = —— e pg, (4.26)

\/z_y

p3 =

v

one can rearrange the flux term in the following way

e palpg = T, [’YM(\/’_YEW p3+18) (s - ta) — (5 - £a)] — 2prps (N7 ’fa)] (4.27)
= L [VA007°0 (Es - o) = (B - )] = 267 pr (V7 - £a)]
= L. [fﬂ3 (MAas; +mgs) +2e% pyg VAKM}

where we used that e*? (¢, -t5) = 0, the definition of masses (3.55), and the Gauss-Codazzi
equation (3.20) 2. Hence, after the rotation (4.12) and in terms of the spinors © = S~16, the

flux part of the fermionic Lagrangian takes the form
LI — BT, |77 (migs, +m3s) + 264 Ty, V K”] O, r=1,8, (4.28)
where 73 = S7!p3 S, and [, = S7II,S. In general, the rotated T, is written as

T, =S7'T,.8 =iS 1 (eABCPET, .. . TR)S (4.29)
— ieABCPE({ar, 4 NYT; + NiD,) ... (i%T. + NiT; + N3Ty),

(where the hat in ¢ABCDE i5 to signal that the A, B,C, D, E take values 0,1,2,3,4, as clear
from (4.24), 4,5 =1,...,6, r,s = 7,8) and it can be expanded in the same basis. A clever
choice among the basis vectors made possible by the string motion, drastically simplifies the
above expression. Due to the self-duality of RR flux, we have written the flux contribution only
in terms of I'y, and thus we can restrict our discussion and attention to the AdS projection.

This is the basis we have in mind here with the aim to simplify the product (4.29).

In the more general case discussed in Section 3.2, in order to compute (4.29), we can use

the basis build up by the two tangent vectors projected onto AdSs t, (a = 1,2) and the three

"Here we choose a basis for the normal directions i = 1,...,8 which matches the one used in the bosonic
analysis. Namely, fluctuations i=7,8 are along two orthogonal directions with non-vanishing extrinsic curvature,
and for the remaining i = 1,...,6 it holds (3.67), with three of them in AdSs and three in S°.

2 More precisely, from (3.20), it immediately follows

DaKjyy = DsKiy = —(fa - t3)(Ts - N') + (fa - N')(T5 - ty) + (fa - 1) (s - N') = (fa - N') (I - ).
Since (t5 - N;) = —(fg - N;), we find
Dakhy — Do =[(Fs 1) + (i - 1)) (Fa - N) = [(Fa - 1) + (- £))(E - N') = 9 (- N') = e (B3 - N°)

Tracing on « and v and using the equations of motion (2.6), one obtains

DK} = —(f5- N') = ({5 - NY) .
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transverse vectors N; (i = 1,2,3) which entirely lie in AdS. This set forms an orthonormal
basis spanning AdS. However, there might be further contributions also from the remaining
transverse directions N, (r = 7,8) and for this we need to project them in the above basis,
that is

Ny =&t% &=(N" -10)§esa =138, (4.30)

a

where ¢*° is the inverse matrix obtained from worldsheet metric projected in the sub-space
AdS, i.e. Gop = (ta - 1p), 8 ggs = 0f. Clearly, an analogous expression to (4.30) can be
written for the projected vectors onto the compact sub-space, with the obvious replacement
from hatted to bar vectors. By means of the relation (4.30) we can massage the product (4.29)

to the final expression

[, = ieABCPE i N NET, [tgtﬂ’g <Fab + gg’“gg]rm) + 58 ( ¢ il — tthj) rcr] . (4.31)

In writing the above expression we are assuming that the inner product (4.30) is not degenerate
(as well as the projected worldsheet metric g,3). However, whenever (at least) one of the
tangent vectors has a vanishing projection in S°, the number of transverse directions completely
lying in the compact sub-space increases (of at least one), since now we need (at least) another
transverse direction to span S°. By a simple counting of degrees of freedom, this decreases (at
least) by one the remaining N. This implies that one of the transverse direction N (r = 7,8)
can become linearly independent and lie completely in AdSs, that is the inner product (4.30)
in one of the directions 7 = 7,8 could be degenerate. This happens for example in the case of
the spinning string motion [26] discussed in Section 5.1. In the limiting case when the motion
is completely embedded in AdS3 C AdSs, the tangent vectors belong only to AdS, and both
the directions N™ can be chosen such that one will completely lie in AdS and the other one in
S°. Then, we can pick a basis given by t,, a = 1,2 (since now to = to) and three transverse
directions N; (i=1,2), N, with r either 7 or 8. The remaining vectors belong only to the sphere.
In this case there is only one term contributing to the expression (4.29), namely the first one
in (4.31). We illustrate two examples where this takes place: the folded string [26] at the end
of Section 5.1, and the string configuration dual to the circular Wilson loop operator [9] at the
end of Section 5.2. If the minimal surface is completely embedded in S® then this means that
only the transverse directions will contribute to the product (4.29), that is

[, =S57T,8 = eABPENT N NLNT NED g - (4.32)

Finally, we want to stress that the arguments explained above work in a completely sym-
metric manner by swapping the two sub-spaces AdS and S. Due to the self-duality of the flux
term, we could have chosen I'y, = il'sg789 and then write I, = iéABCDE]\_fz]Vg]\_féNéNgijk
for an AdSs motion, keeping also in mind an overall sign originated in the manipulations in
equation (4.27). However, we prefer to keep on working with the flux defined in (4.29) for
reader’s convenience.
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4.3 Comparison with bosonic masses and quantum divergences

In this section we work out a sum rule for the fermion “mass matrix” in analogy to the bosonic
one (3.60). In this last case the trace of the mass matrix M appears naturally in the Seeley-De

Witt coeflicient a(B2), controlling the logarithmic divergence of the bosonic fluctuactions [71]

2 = Tr(% R 4 M). (4.33)

A natural candidate for the traced fermionic mass matrix is therefore the companion term
appearing in the fermionic Seeley-De Witt coefficient ag), driving the logarithmic fermionic
divergences as well. In the most general case, for a self-adjoint Dirac operator ip®D, — Mg
this is given by [71]
9 R® 1

a%) = Tr(H)—12 — §Tr (P*MppaMp) , (4.34)
and we are at the moment interested in the second term above. In our case, the fermionic
mass matrix is

1 .5
- T.ps, 4.35
Mrp =5 ﬂs pal'«ps (4.35)

where we re-wrote the fermionic Lagrangian as
i
2\/7

We recall that our fermions are worldsheet scalars and the square root of the determinant of

Lop = 2i\/70 <fyaﬁpa2>ﬁ + eaﬁpar*%) 0 := 2i\/y0Dpb. (4.36)

the induced metric is the correct normalization in the fermionic norms [9]. It is important to
stress that here « is the absolute value of the determinant. When p, commutes with Mg the
invariant (4.34) reduces to the more familiar Tr (M%), analysed in [9] or in [18] for example.
This is the case for the folded spinning solution reviewed in Section 5.1. However, for a general
string solution, like the latitude configuration, the two matrices do not commute and (4.34) is
an invariant, which leads to the sum rule as we explain below.

Notice that due to the ciclicity of the trace we can compute (4.34) before performing any
local SO(1,9) rotations, and actually in this case it turns out a convenient strategy. Let us

start by rewriting (4.34) as

af

Tr (p*MppaMp) = Tr <1—76””6’\Tpapuf*p,,p5p)\lﬂ*pT> (4.37)

B
N
=Tr <E€MV€)\TpapMP* (’Yuﬁpk T VBAPY — ’Yu)\pﬁ) P*pr>

=hL+1+13.

and compute the three terms above separately. The first contribution I; gives

1
h=g (5“”6)‘Tp,,puf*p)\f‘*p7) (4.38)

1 R
TR (2 pupu DT (VA (s, +m3s) ps + 2% (fa N7) pros) )
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where we have used that

£ paTups = T {ﬁ (m2is, +m3s) ps +26* (fo - N7) pr,og} . (4.39)
computed in Section 4.2. By recalling that p3 = ﬁsaﬁ Papg, and pB = —%pg, we can

compute the following commutation relation

et

PP = s Pu (4.40)
which in I; leads to the result
1
L = —3 (mAas; +ms) Tr (p3) - (4.41)

The second term I can be manipulated in a similar manner and we obtain
1

I, =
2= 1

1
Tr <’YaﬂEuVEATPaqu*’YﬁAPVF*PT> ) (m,%xdss + m%f)) Tr(I). (4.42)
Finally let us look at the last term I3

1
I3 = —ETr (’yo‘ﬁs””&?)‘T’yy)\papMF*ng*pT) (4.43)
1 af 1 af . v
= _ZTT ('7 F*par*foﬁ) + ZTT ('7 Y puaF*PBF*Pu) .
In order to evaluate I3 we need also the expression for the symmetrized product of Gamma
matrices, that is

¥ palsps = T [(mias, +mis) +2 (ta - N;) p"p%] (4.44)
which together with (4.39) leads to
1
I3 = ~2 (mhas, +m3s) Tr(l— p3). (4.45)
Hence, collecting the three contributions (4.41), (4.42), and (4.45), and using p3 = I, we obtain
Tr (0" MppaMrp) = — (migs, +mss) Te(I) = <(2)R +Tr(K 2)) T (T) (4.46)

by means of the expressions (3.59). Armed with (4.46) we can compare the bosonic and
fermionic contribution to the total logarithmic divergences, by computing explicitly ag) + ag).

The part depending on the traced mass matrices is
1
= 5Tr (p" MppaMp) +Tr (M) = —4 (<2>R + Tr(K2)> +3@R 4 4Tr(K?) = — @R, (4.47)

We have used Tr(I) = 8 since these are eight 2d fermionic modes now, as reviewed at the
beginning of Section 4.1. The contribution of the pure intrinsic curvature terms is instead
more subtle [9]. The use of the naive Seeley-De Witt fermionic coefficient would lead to a

wrong result
1 1
85 R® 4 835 R® = 2R®), (4.48)
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that combined with (4.47) would not produce the correct coefficient 3R® [9]. The reason
of the apparent disagreement is well known [9,62-64]: the local SO(1,9) rotation S that
transforms p; into two-dimensional Dirac matrices contracted with zweibein gives rise to a non-
trivial Jacobian in the path-integral measure, that contributes additionally to the logarithmic
divergence. The net effect of this “anomalous rotation” is to change the coefficient of the
conformal anomaly of the relevant two-dimensional Dirac fermions by a factor 4. In our case

it amounts to modify the fermionic contribution to (4.48) by a factor 4 and therefore
1 1
8% R® ¢ 83 R®) = 4R®), (4.49)

recovering, in combination with (4.47), the result of [9].

5 Applications

In this Section we work out a few relevant situations in which the general structures previously
derived are exemplified. First we discuss the spinning string [2, 26|, recovering the known
spectrum of the fluctuations. Then we apply our analysis to the minimal surface associated
to the 1/4 BPS Wilson loop operator [11,56,57|, obtaining the bosonic and fermionic sectors
and the related mass matrices.

5.1 Spinning strings

The first test of our analysis is the spinning string solution, generalization of [2] and [72], whose
semiclassical quantization was worked out in [26] 3. We choose the following coordinates for
the target space metric

ds”| 4455 = — cosh? pdt? + dp? + sinh® p (dB} + cos® B1d53 + cos® By cos® Brdg?)

5.1
ds® ‘55 = dip} + cos® by [dy3 + cos® o (dip§ + cos® 1h3di] + cos® s cos® Yudp?)] . (5:1)

The motion of the spinning string in AdSs x S° is described by the following ansatz for the
embedding coordinates [26]

l=KT, p:p(0)7 BZZO(Z:172)7 ¢ =wr, ¢2:0(Z:1774)7 Y =VvT, (52)

where (7,0) are the worldsheet coordinates, and p(o) has to satisfy the equation of motion
and Virasoro constraints

Pl = (/12 — wz) cosh psinh p, p/2 = k2 cosh? p — w?sinh? p — 2. (5.3)
The solution p(o) can be found explicitly and it reads in terms of Jacobi elliptic functions,
since we will not need it here we refer the reader to [26] for further details. The parameters
K,w, and v are chosen to be positive, and moreover the finite energy condition as well as the
request of having a real solution impose certain relations on the parameters, that is
2 2

K™ — UV

k>, w>v, coth? p > (5.4)

W2 2

13See [20] for the fermionic mass matrix of the string rotating in AdSs x S*.
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In order to compute the quadratic fluctuation Lagrangian, we need to construct an or-

thonormal basis as in Section 3.3. The tangent vectors are given by
t2 = (kcosp,0,0,0,wsinhp,0,0,0,0,v),  t7=(0,0,0,0,0,0,0,0,0,0). (5.5)

Then, we choose the 8 orthogonal vectors as follows

N{#=1(0,0,1,0,0,0,0,0,0,0), N3 =(0,0,0,1,0,0,0,0,0,0), (5.6)
N{=1(0,0,0,0,0,1,0,0,0,0), N3 =(0,0,0,0,0,0,1,0,0,0),

N =1(0,0,0,0,0,0,0,1,0,0), N{*=(0,0,0,0,0,0,0,0,1,0)

N& = \/pé—w(wsinhp,O,O,O,ﬁCOShp,O,O,O,O,O) ,

N§4: %(/wcoshp,O,O,O,szinhp,O,O,O,O,l/2—i—p/z) .

N

Finally, the induced worldsheet metric is given by
Yop = (ta - tg) = p/* diag (=1,1) . (5.7)

Once the basis vectors have been chosen, then the computation of the quadratic fluctuation

Lagrangian is simply reduced to a mere application of expressions (3.35), (4.22), (4.28).

Bosonic Lagrangian Let us proceed to the construction of the bosonic transverse La-
grangian (3.35). The worldsheet curvature (2R and the trace of the extrinsic curvature Tr(K?)

turn out to be

2 2 2 2
@n_ 2(K* =) (v —’/)_2 Te(K? e e S
- /()4 ’ r( ) - /(5)4 / 2"
p'(o) p'(o) p'(o)
The only non-zero components of the extrinsic curvature projected on the transverse directions,
i.e. Kiﬁ = NAK&“B are

«

(5.8)

T _ g7 _ __kwp 8 _ 8 _ __ v
KTO’ KO’T \/m ) KTO’ KO’T \/W . (59)
This implies that the mass matrix M;; (3.35) for é,j =1,... ,6 is diagonal and given by
~ ~ 2
My = Moy = —migs, = —7 (ta - 15) = —2— ped (5.10)
- 2
Mss = Myy = Mzs = Meg = —mgs =7 (to - T3) = 7

Along the directions 7,8 the extrinsic curvature contributes to the mass (in particular, the

contribution to the off-diagonal matrix is entirely due to the extrinsic curvature), and we

obtain
2 2,2
v 2K°w
M = -2 - PE - P22+ p?)’ (5.11)
2 2,2 2 2\(,,2 2
v 2K°w 2(k* — V) (v —w
MSS:_/2+/2 2 /2+ ( 2§ )’
e p W+ p) P
2kvwp”
Mg = —4—————.
p'g(l/2 +p12)
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In order to complete the Lagrangian we construct the covariant derivative, for which we need
the connection on the normal bundle Ag (3.18). The only non-trivial directions are along the

transverse modes 7,8

RWV

T8 A48T _
Ao'_ Ao'_ I/2+pl2’

A =0, i,j=1,...,8. (5.12)
Hence, the bosonic Lagrangian agrees with [26].

Fermionic Lagrangian The construction of the fermionic Lagrangian proceeds in two steps:
the kinetic part (4.22) and the flux term (4.28). For the kinetic term the only new ingredient
we need is the worldsheet spin connection w,, 43,

/!
Wrol = —Wr10 = v Woap = 0. (5.13)

Hence, the kinetic term (4.22) is simply given by [20]

e 1 1 kvwp
— B —, - S
Liin =210 <ﬁfya Paegaﬁ + 2,0 ' + 5 (V2 n plz)rlgg> 0. (5.14)

where we have used (5.12) for the third term above, which is the connection-related part.
Notice that, as normal bundle connection (5.12) is flat, i.e. 0;A”® —9,A™ + [A; A,]™® =0,
we can introduce a rotation which cancels such term - this is what done in [20].

In order to compute the flux term (4.28) we cannot use the final expression (4.31) of the
expansion (4.29). This is due to the fact that for the spinning string one of the projected
transverse vector, i.e. N7 in our convention, is orthogonal to f,. A better choice to simplify
the term S™'I',.S is then the basis formed by the two tangent vectors t,, the two transverse
vectors Nl ,]\72 and finally ]\77. The expansion (4.30) is still valid for Ng. Thus, the only non
zero terms which can contribute to S™1T,.S are

ST, S =iéapcpE (fgfgegefoNforabrijrr + fgegNlBNjCNPNfrarijrm> = (5.15)

v
=i———To1238 — 1112389 .
p p

The remaining terms are straightforward to compute, simply from the inner products of the

basis vectors, and we obtain

i — /2 12
Ltiue = 59 <2(V2 + 0" )To1 + 2v\/ V2 + p’2F19> ( V;p Fo123s8 — §F12389> )

= ip\/v2 + p/? OT930 . (5.16)

The sum of the two contributions (5.14) and (5.16) is exactly the fermionic Lagrangian com-
puted in Appendix D of [20].
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The special case of the folded string. The folded string of [2,26] is obtained switching
off the angle ¢ in S° (setting the parameter v to zero in the classical ansatz (5.2)). Then the
string motion is confined in AdSs3, i.e. t, = 0 for a = 1,2. As explained in the main body,
this implies that we can choose 5 orthonormal vectors completely embedded in the compact
sub-space S°, (in our convention (5.6) they will be Ny, Ny, N3, Ny, Ny = Ng with v = 0).
The remaining vectors (f, with a = 1,2, Ny,Ny and N = N ™) live only in AdS. Namely,
the basis vectors is entirely split in the two sub-spaces. It is then immediate to see that the

bosonic masses reduce to

25202
My = Moy = —migg. = —2, Mrr = =2 — ,
AdSs Pz (5.17)

Msz = Myy = Mz = Mgg = Mgg = —ms =0,

which is the well-known results of 5 massless scalars in S° and the 3 massive scalar modes
living in AdS3 C AdSs [26]. Now, the cross terms are zero Mrg = 0 as well as the connection
A8 = — A% = 0.

The fermionic Lagrangian (5.14) and (5.16) simplifies as well. Being the normal bundle

connection zero, the kinetic term reduces to
_ 1
Liin =200 (ﬁ’yaﬁfaegﬁg + ip’T1> O. (5.18)

The only contribution to the flux comes from the AdS; mass in (4.28) and the first product
in (5.15) (with v = 0), thus
L flyz = iplz O Ty350. (5.19)

5.2 String dual to latitude Wilson loops

In this Section we apply our analysis to the AdSs x S° string minimal surface corresponding
to the latitude Wilson loop operators of [11,56,57]. We choose the following patches for the

target space metric:

ds?| W2 pddpt s — S0 gnan g L 247, (5.20)

s 5 = —cosh” p Pt o o ayay, §%gs = T 1o opdridz, (0
a5 R N

where § = (y1,v2,y3) With 47 = y2 +y3+y3, and = (21,... ,25), with Z- 2= 22+ .. +22.

The classical string solution [57] is described by the ansatz

=2sing, y?=2cosp, y>=0 (5.21)
A =0, 22=0, 22 =2cosb(0), z'=2sinf(o)sinp, 2°=2sinb(c)cos. .

where the worldsheet coordinates are ¢ € [0,27) and o € [0,00). The classical equations of

motion read
p'(0) = —sinhp(0), 0" (o) = sinh p(o) cosh p(o), (5.22)

- _— = 1 I —
:Fcosh(o—o +0) Fsind(o), 0" (o) = sinf(o) cosb(o),

27



with solutions given in terms of simple hyperbolic functions

1 1
inh = inf(oc) = —. 5.23
sinh p(7) sinho’ siné(o) cosh(og £ o) (5:23)
The parameter o is a constant of integration defined by the internal latitude angle 6
cosfy = tanh oy . (5.24)

To compute the quadratic fluctuation Lagrangian, we build an orthonormal basis choosing the
tangent vectors as (from now on we only consider the solution in (5.22)-(5.23) with the upper

sign, as it is this one that corresponds to the minimum of the action)

= (0,0, cos ¢ sinh p, — sin ¢ sinh p, 0,0, 0,0, cos ¢ sinf, —sin sinf) , (5.25)
f = (0, —sinh p,0,0,0,0,0,sin? @, — cos @ sin 6 sin ¢, — cos ¢ sin f cos 0) ,

where we omit the dependence of p and € on 0. The vectors orthogonal to the worldsheet can
be chosen to be

= (0,0,0,0,0,1,0,0,0,0) , N{‘ = (0,0,0,0,0,0,0,cos ,sin ¢ sinf, cos p sinf) , (5.26)
= (0,0,0,0,0,0,1,0,0,0) ,

N1 _( 1,0,0,0,0,0,0,0,0,0) , N3i'=(0,0,0,0,1,0,0,0,0,0) ,

N4 = (0,0, sin ¢, cos ¢, 0,0,0,0,0,0) .

The basis is completed constructing the normal vectors as

N{‘ =——1 (0,0, cos psinf, —sin ¢ sin 6,0, 0,0, 0, —cos ¢ sinh p, sin ¢ sinh p) ,
y/sin? f+sinh? p
(5.27)
Ng‘ = —1L ___ (0,sin6,0,0,0,0,0,sin @ sinh p, — cos § sinh p sin ¢, — cos @ sinh pcos @) .
y/sin2 +sinh? p

For this string configuration the worldsheet is space-like. The induced worldsheet metric

Yo has then Euclidean signature and is given by

Yap = Q*(0) diag(1, 1), Q%(0) = sinh? p +sin? 9 = P07 = 1 + —L—. (5.28)

cosh?(o+a0) sinh? o

Instead, the orthonormal vectors on AdS have a time-like component, so that in this Section

we will use that
(Ni.Nj) =y, my=diag(—1,1,1), i,j=123, (5.29)

while the remaining scalar products are unchanged with respect to Section 3.3. We report
here for completeness the expressions of the worldsheet curvature (2R and of the trace of the

squared extrinsic curvature Tr(K?):

202 log Q(0)
(o)

sinh?(o) cosh? (o + o9)
cosh (og) cosh (20 + 7¢) 3

@R = - Tr(K?) = (5.30)
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Bosonic Lagrangian We want to compute the transverse Lagrangian (3.35). We proceed
first evaluating the mass matrix (3.68). In the case of a space-like worldsheet the matrix is
slightly modified: the first element in the diagonal acquires a relative sign. From the definition
(3.55) we obtain

2 cosh? (o + ag)

2 _ B (N
m = ta13) = 5.31
Aas; =7 (fa+15) cosh o cosh(20 + o)’ (5:31)
_ 2sinh? o
2 af _
megs = — to - tg) = —
s° 7t t5) cosh og cosh(20 + 09)
while the reduced matrix (3.70) vanishes identically. Thus, the matrix (3.68) reads
—m2ys, 0 0 0 0 000
0 miys O 0O 0 0 00
0 0 mi O 0 0 00
; ; 0 0 0 m%; 0 0 00
*PR tatf NIMNIN = — 5° 5.32
T AMBNTats 0 0 0 0 m% 0 00 (5.32)
0 0 0 0 0 mi 00
0 0 0 0 0 0 00
0 0 0 0 0 0 00

with m3 4g. and mg; given in (5.31).
Let us now construct the projection of the extrinsic curvature along the transverse direction, i.e.

Klg= N4y K24, (2.5). The only non-zero components are

v/cosh
KI, =Kl =- o : (5.33)
sinh o cosh(o + 0¢) y/cosh(20 + o9)
K RS v/cosh og '
e 7 sinh o cosh(o + 0¢) y/cosh(20 + g9)
It is then straightforward to construct the whole mass matrix M,; in (3.35)
2 cosh? (o + 0¢)
2
Mu Mz Mas MAdSs T osh oo cosh(20 + aq) ’ (5:34)
2sinh? &
= = = 25 = —
Mag = Mss = Mes = m; coshog cosh(20 + o)’
2 cosh?(o 4 o) sinh® &
Mz = Msg = ( 30) , Mg = Mgz =0.
coshog cosh” (20 + 09)
Finally, we calculate the normal connection A% (3.18), whose non-vanishing components read
AT = —AST = —tanh(20 + o) . (5.35)

The covariant derivatives on the transverse fields (3.17) appearing in (3.35) will be non-trivial only
along the directions given by (5.35). Notice that the field-strenght 9, AT® =9, AT®+[A, , A ]™ = 9, AT?
does not vanish.

Fermionic Lagrangian The construction of the fermionic Lagrangian proceeds in two steps: the
kinetic part (4.22) and the flux term (4.28). We perform the computations in a Lorentzian signature
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for the induced worldsheet metric, and only at the end Wick-rotate back. For the kinetic term the

only new ingredient we need is the worldsheet spin connection wy, g,

1 h tanh(o+
W12 = ~We2l = —oz(y) (:1(1)12127; + cssr;ﬂ((iﬁr?))’ (5.36)

then, the final expression of the kinetic term turns out to be

El;ﬂm —92;0 (\/,—Y,_Yaﬁra eaaaﬁ _ 2521(0) (;:{)};}1277 + tanh(o+00) )I‘4 =+ @tanh@a + Uo)Fggg) 0. (5.37)

cosh?(o+00)
For the flux term (4.28), one obtains

. _ 1 1
i _ 9,9 <_—1" -7 ) 0. 5.38
F sinh? o *78 COShz(U + 00) * ( )

The evaluation of the determinants associated to the fluctuations above is in [43].

String dual to circular Wilson loop. In the limit when 6y — 0, the latitude on S® shrinks
to a point, and the Wilson loop reduces to a circular one, whose string dual was studied in [9,23].
From equations (5.22) and (5.24) the limit is equivalent to op — oo and § — 6y — 0, that is the string
motion is turned off on the compact space. Taking these limits in our formulas we can reconstruct the
bosonic and fermionic Lagrangian of [9,23]. We will only change the last two normal vectors N, since
in this way the normal connection A vanishes by construction (otherwise one can always perform a

rotation after to eliminate such a connection since now the corresponding field strength is flat):
N;=(0,0,0,0,0,0,0,0,1,0), Ng =(0,0,0,0,0,0,0,0,0,1). (5.39)

As for the degenerate case of the folded string, here five normal vectors completely lie in S° while AdSs
is spanned by the two transverse vectors £, = t, (o = 1,2) and three normal vectors N; (i=1,2,3).
The rest proceeds as before, and we have

1
sinh? o
Mllz_MQQZ_M3t3:m‘2AdSSZ27 M“:—mégzo, 124,,8

PR=-2, T(K?)=0, Q*o)= (5.40)

As mentioned, the choice of vectors (5.39) allows us to immediately eliminate the connection (5.35)
without resorting to any further rotation, hence we can write

Lk =2i0 (77T eaa0p — 2cothoTy) O, (5.41)
- 1 _
Lol — _9; oI, 70 .

F sinh? o ’

We conclude this section by noticing that we have also carried on the computations for the minimal
surface dual to generalized cusped Wilson loops [18]. The quadratic Lagrangian for the string fluctu-
ations was computed in [18], and we have checked that also in this case we reproduces all the bosonic
masses of [18]. Notice that the only non-vanishing component is the o-component

4,92 2 2 _ b4
A§7:_ \/bp \/(b +1)p b (542)

. 4 _n2 ’
sinh? p(0)+/b* + p2 (sirl:h27§@') + b2p2)
which makes this case to fall - the solution lies both in AdSs and S° — in the class of solutions discussed

around eqs. (3.66)-(3.70). As 0, A3" — 9,A2" = 0, and so the field-strength vanishes, bosonic masses
are described by (3.70) with one of the eigenvalues A; vanishing. Also, as mentioned in Section 4.1 a

local target space rotation can be found which eliminates the normal bundle contribution to the kinetic
part of the fermionic action (see formulas C.16-C.17 in [18]).
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