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Abstract

Using unitarity methods, we compute, for several massive two-dimensional mod-
els, the cut-constructible part of the one-loop 2 → 2 scattering S-matrices from
the tree-level amplitudes. We apply our method to various integrable theories,
finding evidence that for supersymmetric models the one-loop S-matrix is cut-
constructible, while for models without supersymmetry (but with integrability)
the missing rational terms are proportional to the tree-level S-matrix and there-
fore can be interpreted as a shift in the coupling. Finally, applying our procedure
to the world-sheet theory for the light-cone gauge-fixed AdS5 × S5 superstring
we reproduce, at one-loop in the near-BMN expansion, the S-matrix known from
integrability techniques.

1 Introduction

The remarkable efficiency of unitarity-based methods for the calculation of space-time scat-
tering amplitudes in non-abelian gauge theories (see e.g. [1]) motivates the application of
similar techniques to perturbative regimes of other interesting models. This is certainly the
case for the AdS5 × S5 superstring world-sheet theory. The S-matrix for the scattering of
its excitations is known exactly, fixed by symmetry and integrability up to a phase [2], with
the latter determined from a non-relativistic generalization of crossing symmetry as well as
perturbative data both from the string and gauge theory sides – see the review articles [3, 4]
and references therein. However, the perturbative study of scattering amplitudes computed
from the path integral defined by the classical action is still of interest. This is true not only
because such calculations serve as a test of the proposed exact quantum S-matrix, but also
because they provide insights into the structure of the amplitudes and the manifestation
of symmetries, and confirm the integrable setup [5, 6, 7, 8, 9]. The same is true for other
integrable theories, including certain 2-d sigma-models [10, 11] and similar massive theories
(see e.g. [12]), for which exact quantum S-matrices are known. It is important to note that
in the example of the light-cone gauge-fixed sigma-model for the AdS5 × S5 superstring
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standard perturbation theory has thus far not been a viable way – due to regularization
issues 1 – to evaluate the S-matrix beyond the leading order.

The aim of this work is to initiate the use of unitarity-based methods in the perturbative
study of the S-matrix for massive two-dimensional field theories 2. Confining ourselves to
the use of standard unitarity (where only two internal lines are placed on shell, subdividing
a loop amplitude into two pieces 3) and working in a fixed number of dimensions d = 2, we
propose a formula for constructing the one-loop 2 → 2 scattering amplitude directly from
the corresponding on-shell tree-level amplitudes.

As might be expected, the two-dimensional case is much simpler than its four-dimensional
counterpart. Our proposals, equations (2.13) and (2.17) below, take a remarkably compact
form. This is a consequence of the massive 2-d kinematics, which imply that the cut loop
momenta are frozen to specific values. Therefore, the integral degenerates to a sum over
discrete solutions of the on-shell conditions. This is reminiscent of the framework of gener-
alized unitarity in the four-dimensional case when quadruple cuts (maximal cuts [14]) are
used. There, the quadruple-cut integral is completely localized by the four delta-functions
of the cut propagators, and it reduces to a product of four tree-level amplitudes.

It is important to note that our procedure is inherently finite. All the theories we
consider are either UV-finite or renormalizable. In the latter case, our procedure implicitly
chooses a particular regularization scheme. Hence the result we will compare to is the
renormalized four-point amplitude, up to scheme ambiguities. A related point is that the
expressions (2.13) and (2.17), obtained via the implementation of unitary cuts in fixed
dimension, are not necessarily expected to give the full answer, possibly missing rational
terms (terms with only a rational dependence on momentum invariants) that can arise
from the ǫ-expansion in d = 2 − 2ǫ dimensions [16]. A thorough discussion of these issues
is contained in Section 2.

The main part of this paper focusses on testing the validity of our procedure for several
models of interest, and therefore exploring the cut-constructibility (via standard unitarity
methods) of S-matrices in two dimensions. For bosonic theories with integrability, the
result obtained is rather intriguing – we find close agreement with perturbation theory, the
only price to pay being a finite shift in the coupling. Incidentally, a hint of a connection
between unitarity and integrability can be seen, for example, in the sine-Gordon model –
the only non-vanishing contribution to the connected part of the 3 → 3 tree-level amplitude
is obtained by setting the intermediate particles on-shell [12]. These results seem to suggest
a relationship between quantization preserving integrability and unitarity techniques which
would be interesting to investigate further.

Possibly more expected is that one-loop amplitudes in integrable, supersymmetric the-
ories appear to be cut-constructible via standard unitarity. This is analogous to the cut-
constructibility of one-loop amplitudes in massless, supersymmetric theories in four di-

1We thank Tristan McLoughlin and Radu Roiban for important discussions on this point.
2Earlier attempts using unitarity to identify special structures in the amplitudes for the sine-Gordon

model appeared in [13]; we thank Radu Roiban for pointing this out.
3In the case of generalized unitarity [14] (see e.g. [15]) the loop amplitude is subdivided into more than

two pieces, which corresponds to placing multiple internal lines on-shell.
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mensions [17, 18]. We also apply our procedure to the AdS5 × S5 light-cone gauge-fixed
world-sheet superstring finding agreement, at one-loop in the near-BMN expansion, with
the S-matrix known from integrability techniques.

The paper proceeds as follows. In Section 2 we set out the general formalism, and obtain
the expressions for the cut-constructible part of the one-loop 2 → 2 S-matrix. We then
apply this result to various relativistic integrable models in Section 3 and to string theory
on AdS5 × S5 in Section 4. Concluding remarks are given in Section 5.

2 Two-particle one-loop S-matrix from unitarity cuts

In this section we derive a candidate expression for the one-loop two-particle S-matrix in
terms of the tree-level one, as follows from the standard application of cutting techniques
(see for example [19]) to the two-dimensional case. While due to the expected absence of
rational terms this formula can never be completely general, we investigate its validity in
later sections on various examples.
The two-body scattering process of a field theory invariant under space and time translations

〈ΦP (p3)Φ
Q(p4) |S|ΦM(p1)ΦN (p2)〉 = APQ

MN(p1, p2, p3, p4) (2.1)

is described via the four-point amplitude

APQ
MN(p1, p2, p3, p4) = (2π)2δ(d)(p1 + p2 − p3 − p4) ÃPQ

MN(p1, p2, p3, p4) . (2.2)

In (2.1) S is the scattering operator, the fields Φ carry flavor indices to account for different
kinds of particles in the model and pi are their on-shell momenta. In this paper we will
restrict to the case where all the particles have equal non-vanishing mass, which we set to
unity. In the two-dimensional case the set of initial momenta is preserved under collision.
This translates into the following identity for the energy-momentum conservation δ-function
of (2.2)

δ(2)(p1 + p2 − p3 − p4) = J(p1, p2)
(
δ(p1 − p3)δ(p2 − p4) + δ(p1 − p4)δ(p2 − p3)

)
. (2.3)

Above, p is the spatial momentum and the Jacobian J(p1, p2) = 1/(∂ǫp1/∂p1 − ∂ǫp2/∂p2)
depends on the dispersion relation ǫp (the on-shell energy associated to p) for the theory at
hand. Spatial momenta are assumed to be ordered p1 > p2. Substituting (2.3) in (2.2) we
can consider the amplitudes associated to the first product of δ-functions δ(p1−p3)δ(p2−p4)
without loss of generality. The S-matrix elements relevant for the description of the 2 → 2
scattering in the two-dimensional case are then defined as [20]

SPQ
MN(p1, p2) ≡

J(p1, p2)

4ǫ1ǫ2
ÃPQ

MN(p1, p2, p1, p2) , (2.4)

where the denominator is required to make contact with the standard definition of the
S-matrix in two dimensions. In applying the unitarity method to the one-loop four point
amplitude (2.2) one follows the standard route of considering two-particle cuts, obtained
by putting two intermediate lines on-shell.
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In general there will be contributions from tadpole and bubble graphs to the one-loop
four point amplitude. The former have no physical two-particle cuts and do not contribute
an imaginary part to the amplitude. For this reason they should not be considered in our
procedure, which is based on standard unitarity rules (derived from the optical theorem)
[17, 21]. Therefore the one-loop result following from unitarity techniques will receive con-
tributions from the s- t- and u- channel cuts illustrated in Fig. 1. Explicitly, the imaginary
part of the amplitude is given by the sum of the following three contributions

A(1)PQ
MN(p1, p2, p3, p4)|s−cut =

1

2

∫
d2l1
(2π)2

∫
d2l2
(2π)2

iπδ+(l1
2 − 1) iπδ+(l22 − 1)

×A(0)RS
MN(p1, p2, l1, l2)A(0)PQ

SR (l2, l1, p3, p4) (2.5)

A(1)PQ
MN(p1, p2, p3, p4)|t−cut =

1

2

∫
d2l1
(2π)2

∫
d2l2
(2π)2

iπδ+(l1
2 − 1) iπδ+(l2

2 − 1)

×A(0)SP
MR(p1, l1, l2, p3)A(0)RQ

SN(l2, p2, l1, p4) (2.6)

A(1)PQ
MN(p1, p2, p3, p4)|u−cut =

1

2

∫
d2l1
(2π)2

∫
d2l2
(2π)2

iπδ+(l1
2 − 1) iπδ+(l2

2 − 1)

×A(0)SQ
MR(p1, l1, l2, p4)A(0)RP

SN(l2, p2, l1, p3) (2.7)

where A(0) are tree-level amplitudes and a sum over the complete set of intermediate states
R, S (all allowed particles for the cut lines) is understood. The on-shell propagator is given
in terms of δ+(k2 − 1) = θ(k0)δ(k2 − 1) and we have included a symmetry factor of 1

2
.

To proceed, in each case we use (2.2) and the two-momentum conservation at the vertex
involving the momentum p1 to integrate over l2

Ã(1)PQ
MN (p1, p2, p3, p4)|s−cut =

1

2

∫
d2l1
(2π)2

iπδ+(l1
2 − 1) iπδ+((l1 − p1 − p2)

2 − 1)

× Ã(0)RS
MN(p1, p2, l1,−l1 + p1 + p2) Ã(0)PQ

SR (−l1 + p1 + p2, l1, p3, p4) , (2.8)

Ã(1)PQ
MN (p1, p2, p3, p4)|t−cut =

1

2

∫
d2l1
(2π)2

iπδ+(l1
2 − 1) iπδ+((l1 + p1 − p3)

2 − 1)

× Ã(0)SP
MR(p1, l1, l1 + p1 − p3, p3) Ã(0)RQ

SN(l1 + p1 − p3, p2, l1, p4) , (2.9)

Ã(1)PQ
MN (p1, p2, p3, p4)|u−cut =

1

2

∫
d2l1
(2π)2

iπδ+(l1
2 − 1) iπδ+((l1 + p1 − p4)

2 − 1)

× Ã(0)SQ
MR(p1, l1, l1 + p1 − p4, p4) Ã(0)RP

SN(l1 + p1 − p4, p2, l1, p3) . (2.10)

In each of these integrals the set of zeroes of the δ-functions are discrete. This allows us to
pull out the tree-level amplitudes with the loop-momenta evaluated at those zeroes, leaving
scalar bubbles 4. Following standard unitarity computations [17], we apply the following
replacement in the imaginary part of the amplitude (2.8)–(2.10) to the internal on-shell
propagators: iπδ+(l2 − 1) −→ 1

l2−1
. This allows us to rebuild, from its imaginary part, the

4Note that if one first uses the δ-function identity (2.3) to fix, for example, p1 = p3 and p2 = p4 the
t-cut integral is ill-defined. Furthermore, the procedure of fixing l1 = p3 no longer follows. Therefore, to
avoid this ambiguity we follow the prescription that we should only impose the δ-function identity (2.3)
at the end. In some sense this is natural as, in general dimensions, QFT amplitudes have the form (2.2),
while the δ-function identity (2.3) is specific to two dimensions.
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Figure 1: Diagrams representing s-, t- and u-channel cuts contributing to the four-point
one-loop amplitude.

cut-constructible piece of the amplitude

Ã(1)PQ
MN(p1, p2, p3, p4) =

I(p1 + p2)

4

[
Ã(0)RS

MN(p1, p2, p1, p2)Ã(0)PQ
SR (p2, p1, p3, p4)

+ Ã(0)RS
MN(p1, p2, p2, p1)Ã(0)PQ

SR (p1, p2, p3, p4)
]

+
I(p1 − p3)

2
Ã(0)SP

MR(p1, p3, p1, p3)Ã(0)RQ
SN(p1, p2, p3, p4)

+
I(p1 − p4)

2
Ã(0)SQ

MR(p1, p4, p1, p4)Ã(0)RP
SN(p1, p2, p4, p3) (2.11)

where we have introduced the bubble integral

I(p) =

∫
d2q

(2π)2
1

(q2 − 1 + iǫ)((q − p)2 − 1 + iǫ)
(2.12)

The structure of (2.11) shows the difference between the s-channel, for which there are
two solutions of the δ-function constraints in (2.8) (for positive energies), and the t- and
u-channels, for which there is only one.
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Choosing p3 = p1, p4 = p2, which corresponds to considering the amplitudes associated
to the first product of δ-functions δ(p1 − p3)δ(p2 − p4) (see comment above (2.4)), it then
follows that a candidate expression for the one-loop S-matrix elements is given by the
following simple sum of products of two tree-level amplitudes weighted by scalar bubble
integrals.

S(1)PQ
MN(p1, p2) =

1

8(ǫ2 p1 − ǫ1 p2)

[
S̃(0)RS

MN(p1, p2)S̃
(0)PQ

RS (p1, p2)I(p1 + p2)

+S̃(0)SP
MR(p1, p1)S̃

(0)RQ
SN(p1, p2)I(0)

+S̃(0)SQ
MR(p1, p2)S̃

(0)PR
SN(p1, p2)I(p1 − p2)

]
, (2.13)

where S̃(0)(p1, p2) = 4(ǫ2 p1 − ǫ1 p2)S
(0)(p1, p2). The denominator on the right-hand side

comes from the Jacobian J(p1, p2) assuming a standard relativistic dispersion relation (for
the theories we consider, at one-loop this is indeed the case), and the one-loop integrals
read explicitly

I(p1 + p2) =
iπ − arsinh(ǫ2 p1 − ǫ1 p2)

4πi (ǫ2 p1 − ǫ1 p2)
, (2.14)

I(0) =
1

4πi
, (2.15)

I(p1 − p2) =
arsinh(ǫ2 p1 − ǫ1 p2)

4πi (ǫ2 p1 − ǫ1 p2)
. (2.16)

For theories including fermionic fields, the above derivation holds up to signs. To be precise
the sign prescription is given as follows:

S(1)PQ
MN(p1, p2) =

1

8(ǫ2 p1 − ǫ1 p2)

[
S̃(0)RS

MN(p1, p2)S̃
(0)PQ

RS (p1, p2)I(p1 + p2)

+(−1)[P ][S]+[R][S] S̃(0)SP
MR(p1, p1)S̃

(0)RQ
SN(p1, p2)I(0) (2.17)

+(−1)[P ][R]+[Q][S]+[R][S]+[P ][Q]S̃(0)SQ
MR(p1, p2)S̃

(0)PR
SN(p1, p2)I(p1 − p2)

]
,

where [M ] = 0 for a boson and 1 for a fermion.

The expressions (2.13) and (2.17) above, as is clear from the second term, are not
invariant under the interchange of p1 and p2 along with the corresponding flavor indices.
Furthermore, if we choose the alternative solution of the conservation δ-function in (2.6),
namely ℓ2 = ℓ1 + p4 − p2, the coefficient of I(0) in (2.13) would read

S̃(0)PS
MR(p1, p2)S̃

(0)QR
SN(p2, p2) , (2.18)

where, as before, for theories including fermionic fields there is an additional sign given by
(−1)[Q][R]+[R][S]. Therefore, consistency between the two expressions requires the following
condition on the tree-level S-matrix

S̃(0)SP
MR(p1, p1) S̃

(0)RQ
SN(p1, p2) = S̃(0)PS

MR(p1, p2) S̃
(0)QR

SN(p2, p2) . (2.19)
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In the case where there are also fermionic fields the consistency condition is generalized to

(−1)[P ][S]+[R][S] S̃(0)SP
MR(p1, p1) S̃

(0)RQ
SN(p1, p2) = (−1)[Q][R]+[R][S] S̃(0)PS

MR(p1, p2) S̃
(0)QR

SN(p2, p2) .
(2.20)

If (2.19)/(2.20) is satisfied, then the formula (2.13)/(2.17) is free from ambiguities. We
have checked this for the tree-level S-matrices of all the field theory models treated below.

Finally, let us comment on the issue of renormalization. It is clear that the results,
(2.13) and (2.17), following from our procedure are finite quantities as they only involve
the scalar bubble integral in two dimensions. This follows from the discreteness of the set of
zeroes of the arguments of the δ-functions in (2.8)-(2.10), which allows one to pull out the
tree-level amplitudes from the loop integral and was used to derive (2.11). Consequently,
no additional regularization is required and the result can be compared directly with the
2 → 2 particle S-matrix (following from the finite or renormalized four-point amplitude)
found using standard perturbation theory.

Of course, this need not be the case for the original bubble integrals before cutting –
due to factors of loop-momentum in the numerators. These divergences, along with those
coming from tadpole graphs, which we did not consider, should be taken into account for
the renormalization of the theory. In this paper we do not investigate this issue, however
all the theories we consider in Section 3 and 4 are either UV-finite or renormalizable.
Furthermore, whether the cut-constructible contribution (2.13)/(2.17) to the S-matrix gives
the full result is a priori unclear as rational terms following from non-trivial cancellations
in the regularization procedure may be missing.

In the following sections we will make use of (2.13) and (2.17) to construct the one-
loop S-matrix from its tree-level form for some relativistic models (Section 3) and for the
non-relativistic string world-sheet field theory on AdS5 × S5 (Section 4). For all these the-
ories we will compare with known results (either from perturbation theory or integrability
techniques) and analyze the effectiveness of the method of unitarity cuts in two dimensions.

3 Relativistic models

To explore the validity of the formula we will initially focus on some relativistic models. In
relativistic theories it is natural to write the on-shell momenta in terms of rapidities

pi = sinhϑi , ǫpi
= coshϑi , (3.1)

where the mass has been set to unity. Lorentz invariance then implies that the 2 → 2
scattering S-matrix should depend solely on the difference of the two rapidities associated
to asymptotic states

θ = ϑ1 − ϑ2 . (3.2)

The candidate expression for the one-loop S-matrix given in equation (2.13) is then
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given by

S(1)PQ
MN(θ) =

1

8 sinh θ

[
S̃(0)RS

MN(θ)S̃
(0)PQ

RS (θ)I(iπ − θ) + S̃(0)SP
MR(0)S̃

(0)RQ
SN(θ)I(0)

+ S̃(0)SQ
MR(θ)S̃

(0)PR
SN(θ)I(θ)

]
, (3.3)

where S̃(0)(θ) = 4 sinh θ S(0)(θ) and the one-loop integrals are given by

I(θ) =
θ csch θ

4πi
. (3.4)

The consistency condition (2.19) now reads

S̃(0)SP
MR(0) S̃

(0)RQ
SN(θ) = S̃(0)PS

MR(θ) S̃
(0)QR

SN(0) . (3.5)

As a starting point let us consider a general SO(n)-invariant theory with quartic in-
teractions up to second order in derivatives for a single SO(n) vector of unit mass X (the
light-cone derivatives ∂± are defined as ∂τ ± ∂σ)

L =
1

2
∂+X · ∂−X − 1

2
X ·X + h c1(X ·X)2 + h c2(X ·X)(∂+X · ∂−X) + . . . , (3.6)

where we have eliminated the other allowed term (X ·∂+X)(X ·∂−X) using field redefinitions.
c1,2 are arbitrary constants, while h is the small parameter that we use to do perturbation
theory. We assume that the theory is renormalizable and the ellipses denote any higher-
order interaction terms required therefor.

The requirements of SO(n) invariance and crossing symmetry imply that the S-matrix
can be parametrized in terms of two functions, T (θ) and R(θ), as follows

Skl
ij (θ) = δijδ

kl R(iπ − θ) + δki δ
l
j T (θ) + δliδ

k
j R(θ) . (3.7)

where i, j, . . . = 1, ..., n are SO(n) vector indices. Using standard perturbation theory with
dimensional regularization 5 to one loop we find the following parametrizing functions

T (θ) = 1 + 2ih(c1 + c2) csch θ

+
2ih2

π

(
2c1c2(iπ − 2θ) coth θ csch θ + iπ(2c21 + 2c1c2 + c22(1 + cosh2 θ)) csch2 θ

+ ((c1 + c2)(4c1 + n(c1 + c2))− 2c22) csch θ
)
,

R(θ) = 2ih(c1 + c2 cosh θ) csch θ (3.8)

+
2ih2

π

(
θ (c1 + c2 cosh θ)(c1(n+ 2) + c2(n− 2) cosh θ) csch2 θ

+ 2πi(c1 + c2)(c1 + c2 cosh θ) csch
2 θ + (2c21 − c22 cosh θ + c22) csch θ

)
.

5To be clear, we use the MS scheme and drop the divergent pieces assuming they are either cancelled
by the mass and wavefunction renormalization or absorbed into the renormalization of the coupling, which
will not contribute here.
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Having checked that the tree-level S-matrix satisfies the consistency condition (3.5), we can
use the method of unitarity cuts described in Section 2 with M,N, . . . = i, j, . . . to find the
following result

Tu.c.(θ) = 1 + 2ih(c1 + c2) csch θ

+
2ih2

π

(
2c1c2(iπ − 2θ) coth θ csch θ + iπ(2c21 + 2c1c2 + c22(1 + cosh2 θ)) csch2 θ

+ (c1 + c2)(4c1 + n(c1 + c2)) csch θ
)
,

Ru.c.(θ) = 2ih(c1 + c2 cosh θ) csch θ (3.9)

+
2ih2

π

(
θ (c1 + c2 cosh θ)(c1(n + 2) + c2(n− 2) cosh θ) csch2 θ

+ 2πi(c1 + c2)(c1 + c2 cosh θ) csch
2 θ + 2(c21 + c22 cosh θ) csch θ

)
.

Clearly (3.8) and (3.9) differ. Furthermore, they only agree for c2 = 0. Examining the
Lagrangian (3.6) we see that this is precisely the situation in which there are no derivatives
in the vertices, hence the one-loop bubble integrals in standard perturbation theory are
finite. In fact, as one might expect, it can be seen that the difference between the two results
comes precisely from rational terms that appear as a result of regularization. Notice that
the form of these terms is such that they are proportional to tree-level graphs. Therefore,
introducing separate couplings h1 = hc1 and h2 = hc2 and shifting them in (3.6) as follows

h1 → h1 +
h2

2

π
h2 → h2 −

3h2
2

π
(3.10)

we can recover the perturbative result. In this sense, the difference can be understood as
a regularization-scheme ambiguity. On the other hand one may ask if performing unitarity
cuts in d = 2 − 2ǫ dimensions [16, 22] could give rise to these rational terms and resolve
this discrepancy. We leave the study of this formalism for future investigation.

In this work we would like to explore an alternative avenue, which is to focus on inte-
grable theories. Integrable theories possess hidden symmetries that heavily constrain the
scattering theory – (i) there can be no particle production, (ii) the set of ingoing momenta
should equal the set of outgoing momenta, and (iii) the n → n scattering amplitude should
factorize into a product of 2 → 2 scattering amplitude [10]. This final requirement implies
the Yang-Baxter equation, a consistency condition for equivalent orderings of scattering of
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three-particle states, which can be represented diagrammatically as follows:

ϑ2

ϑ1 ϑ3
θ12

θ13

θ23

=

ϑ2

ϑ1

ϑ3

θ12
θ13

θ23

(3.11)

As we will see in the following sections, for these models the unitarity techniques appear
to work well giving the one-loop S-matrix associated to an “integrable quantization” up to
finite shifts in the coupling. Furthermore, for theories that are also supersymmetric we find
exact agreement.

3.1 Integrable bosonic theories

Let us first discuss on a class of generalized sine-Gordon models [23, 24]. These theories
are defined by a gauged WZW model for a coset G/H plus a potential and their classical
integrability can be demonstrated through the existence of a Lax connection. Here we will
consider the coset G/H = SO(n + 1)/SO(n), in which case the asymptotic excitations are
a free SO(n) vector with unit mass. Therefore, the S-matrix will again have the structure
(3.7). This class includes the sine-Gordon and complex sine-Gordon models for n = 1 and 2
respectively, for which the exact S-matrices are known [10, 25] and agree with perturbation
theory.

Starting from the gauged WZW formulation of these models, the gauge symmetry can be
fixed and at the classical level the unphysical modes integrated out [26] giving a Lagrangian
for just the physical excitations. To quartic order this is given by (3.6) with c1 = 0 and
c2h = π

2k
, where k is the coupling. The functions parametrizing the tree-level S-matrix are

therefore

T (0)(θ) =
iπ

k
csch θ , R(0)(θ) =

iπ

k
coth θ . (3.12)

For general n this Lagrangian is only valid for the computation of the tree-level S-matrix –
the procedure of integrating out the unphysical fields picks up a one-loop correction [26]

∆L = − π

2k2
(X · ∂+X)(X · ∂−X)− π(n− 2)

2k2
(X ·X)(∂+X · ∂−X) . (3.13)

Furthermore, the corresponding contributions to the one-loop S-matrix restore various prop-
erties of integrability. Indeed these counterterms were first studied from this perspective
for the complex sine-Gordon model in [27].
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Including these contributions the resulting functions parametrizing the one-loop S-
matrix following from perturbation theory with dimensional regularization are given by 6

T (1)(θ) =
iπ

2k2

(
iπ(1 + cosh2 θ) csch2 θ − (n− 2) csch θ

)
,

R(1)(θ) =
iπ

2k2

(
2πi coth θ csch θ − 2(n− 2) coth θ + θ(n− 2) coth2 θ

)
. (3.14)

Inputting the tree-level S-matrix (3.12) into the candidate formula for the one-loop
S-matrix (3.3) following from the unitarity techniques described in Section 2 we find the
following expressions for the parametrizing functions

T (1)
u.c.(θ) =

iπ

2k2

(
iπ(1 + cosh2 θ) csch2 θ + n csch θ

)
,

R(1)
u.c.(θ) =

iπ

2k2

(
2πi coth θ csch θ + 2 coth θ + θ(n− 2) coth2 θ

)
. (3.15)

In this case these results agree with (3.14) up to a contribution proportional to tree-level
S-matrix (3.12), which can be understood as just a shift of the coupling k → k+n−1. This
is analogous to the shift mentioned in (3.10), but it is not completely equivalent as here
we are not comparing to standard perturbation theory, but rather to integrable S-matrix
found from the gauged WZW model. It is important to observe that a consequence of this
is that we do not need to introduce an additional coupling, and as such this can still be
interpreted as a difference in the regularization scheme.

For the sine-Gordon model (n = 1) the S-matrix we are considering describes the scat-
tering of a single particle type (the Lagrangian-field excitation) and therefore for the 2 → 2
scattering is given by T (θ) + R(iπ − θ) + R(θ). In this case the two results agree exactly.
This should be expected as using field redefinitions the interaction piece of the sine-Gordon
Lagrangian can be written in a form without derivatives. For n ≥ 2 the shift in the coupling
is by the dual Coxeter number of the group G = SO(n). This structure appears regularly
in the quantization of WZW and gauged WZW models, where k is the quantized level
[31, 32, 33, 34, 35, 36].

In summary, for a certain class of generalized sine-Gordon models we have found that
the expression for the one-loop S-matrix gotten from unitarity techniques (3.3) agrees with
that found from standard perturbation theory (including the one-loop correction coming
from the procedure of integrating out the unphysical fields (3.13)) up to a scheme-dependent
shift in the coupling.

3.2 Integrable theories with fermions

The models discussed in the previous section have an interesting origin in string theory.
They appear as the Pohlmeyer reduction of strings moving on an n + 1-sphere [37, 38].

6For n = 1, 2 the S-matrix given by equations (3.7), (3.12) and (3.14) satisfies the Yang-Baxter equation
(3.11) to the appropriate order as expected. However, for n ≥ 3 the situation is more subtle as the
perturbative excitations appear as a limit of the kinks in the spectrum [28]. The S-matrix for the scattering
of these kinks satisfies a dynamical Yang-Baxter equation [29] whose semi-classical expansion gives a non-
trivial modification of the usual classical Yang-Baxter equation [30].
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In the string interpretation the reduction uses a non-local change of variables to solve the
Virasoro constraints giving a classically equivalent theory [39, 40, 41]. The reduction can
be extended to the Green-Schwarz action for the Type IIB superstring on AdS5 × S5 [42]
giving a gauged WZW model for USp(2, 2)/SU(2)2 × USp(4)/SU(2)2 plus a potential and
coupled to fermions [43, 44]. There are two truncations of this model that we will also study
corresponding to the reduction of the superstring on AdS3 × S3 [45] and AdS2 × S2 [43],
by which we mean the formal supercoset truncations of the full 10-d superstring theories
on AdS3 × S3 × T 4 and on AdS2 × S2 × T 6 – see, for example, [46] and [47] and references
therein.

These reduced theories are all classically integrable, demonstrated by the existence of a
Lax connection, and conjectured to be UV-finite [48]. Indeed, in [48] finiteness at one loop
and at two loops in the dimensional reduction scheme was demonstrated. Furthermore,
the reduced AdS2 × S2 theory is in fact given by the N = 2 supersymmetric sine-Gordon
model and hence is supersymmetric. The reduced AdS3 × S3 and AdS5 × S5 theories have
a non-local N = 4 and N = 8 supersymmetry respectively [49, 50, 51, 52], which manifests
as a q-deformation of the S-matrix symmetry algebra.

The tree-level and one-loop S-matrices for these theories were computed in [53, 54],
while the exact S-matrices have been conjectured using integrability techniques in [55] for
the reduced AdS2×S2 model, [54] for the reduced AdS3×S3 model and [30] for the reduced
AdS5 × S5 model.

In each of the reduced superstring theories the asymptotic excitations (both bosonic
and fermionic) can be packaged into a single field

ΦAȦ , A = (a|α) , [a] = 0 , [α] = 1 . (3.16)

The particular configurations relevant for the individual theories are then as follows:

Reduced AdS2 × S2 : a = 1 , α = 2
Reduced AdS3 × S3 : a = 1, 2 , α = 3, 4 and ΦAȦ = ΩABΩȦḂΦBḂ

Reduced AdS5 × S5 : a = 1, 2 , α = 3, 4
(3.17)

where Ωab = ǫab , Ωαβ = ǫαβ and Ωaβ = Ωαb = 0. In the reduced AdS5 × S5 model the
indices a, α, ȧ, α̇ are SU(2) fundamental indices, while in the reduced AdS3×S3 model they
are SO(2) vector indices.

In each case the global symmetry [54] is such that the S-matrix should factorize under
its structure 7

SCĊ,DḊ

AȦ,BḂ
(θ) = (−1)[Ȧ][B]+[Ċ][D]SCD

AB
(θ)SĊḊ

ȦḂ
(θ) (3.18)

and indeed the tree-level results have this structure. Let us now present the tree-level
S-matrices (we write only the undotted factor – the dotted factor is given by the same

7This group-factorization property is exhibited by generic integrable theories with a non-simple global
symmetry G1 ×G2, and the fields transforming in the bi-fundamental representation of this group [11] [3].
The global symmetries of the reduced AdS2 × S2, AdS3 × S3 and AdS5 × S5 models are discussed in
[54, 51, 50].
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expression) for each of the three reduced theories 8

Reduced AdS2 × S2 : S11
11 = M1 , S22

22 = M2 , S22
11 = M3 , S11

22 = M4 ,

S12
12 = M5 , S21

21 = M6 , S21
12 = M7 , S12

21 = M8 , (3.19)

Reduced AdS3 × S3 : SCD
AB =





L1δacδbd + L2ǫacǫbd
L3δαγδβδ + L4ǫαγǫβδ
L5δacδβδ + L6ǫacǫβδ
L7δαγδbd + L8ǫαγǫbd
L9(δabδγδ + ǫabǫγδ)
L10(δαβδcd + ǫαβǫcd)
L11(δadδγβ + ǫadǫγβ)
L12(δαδδcb + ǫαδǫcb)

(3.20)

Reduced AdS5 × S5 : SCD
AB =





K1δ
c
aδ

d
b +K2δ

d
aδ

c
b

K3δ
γ
αδ

δ
β +K4δ

δ
αδ

γ
β

K5ǫabǫ
γδ K6ǫαβǫ

cd

K7δ
d
aδ

γ
β K8δ

δ
αδ

c
b

K9δ
c
aδ

δ
β K10δ

γ
αδ

d
b

(3.21)

where

M
(0)
1 (θ) = −M

(0)
2 (θ) =

iπ

k
csch θ M

(0)
3 (θ) = M

(0)
4 (θ) = − iπ

2k
sech

θ

2

M
(0)
5 (θ) = −M

(0)
6 (θ) = 0 M

(0)
7 (θ) = M

(0)
8 (θ) =

iπ

2k
csch

θ

2
(3.22)

L
(0)
1 (θ) = −L

(0)
3 (θ) =

iπ

k
csch θ L

(0)
2 (θ) = −L

(0)
4 (θ) = −iπ

k
coth θ

L
(0)
5 (θ) = −L

(0)
7 (θ) = 0 L

(0)
6 (θ) = −L

(0)
8 (θ) = 0

L
(0)
9 (θ) = L

(0)
10 (θ) = − iπ

2k
sech

θ

2
L
(0)
11 (θ) = L

(0)
12 (θ) =

iπ

2k
csch

θ

2
(3.23)

K
(0)
1 (θ) = K

(0)
3 (θ) = − iπ

2k
tanh

θ

2
K

(0)
2 (θ) = K

(0)
4 (θ) =

iπ

k
coth θ

K
(0)
5 (θ) = K

(0)
6 (θ) = − iπ

2k
sech

θ

2
K

(0)
7 (θ) = K

(0)
8 (θ) =

iπ

2k
csch

θ

2

K
(0)
9 (θ) = K

(0)
10 (θ) = 0 (3.24)

Due to the presence of fermionic fields the consistency condition (3.5) is generalized to

(−1)[P ][S]+[R][S]S̃(0)SP
MR(0) S̃

(0)RQ
SN(θ) = (−1)[Q][R]+[R][S]S̃(0)PS

MR(θ) S̃
(0)QR

SN(0) . (3.25)

8Compared to [54] the following conventions have been changed: (i) the rôles of the indices a and α
have been interchanged, which amounts to sending k → −k in the factor S-matrix, and (ii) here we define
ǫ12 = ǫ12 = ǫ34 = ǫ34 = 1.
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and indeed the tree-level S-matrices (3.18)–(3.24), both the full, SCĊDḊ
AȦ,BḂ

(M,N, . . . =

(A, Ȧ), (B, Ḃ) . . .), and factor, SCD
AB (M,N, . . . = A,B, . . .), satisfy this relation. We can

therefore input them into the candidate expression for the one-loop S-matrix derived from
the procedure described in Section 2

S(1)PQ
MN(θ) =

1

8 sinh θ

[
S̃(0)RS

MN(θ)S̃
(0)PQ

RS (θ)I(iπ − θ)

+(−1)[P ][S]+[R][S] S̃(0)SP
MR(0)S̃

(0)RQ
SN(θ)I(0)

+(−1)[P ][R]+[Q][S]+[R][S]+[P ][Q]S̃(0)SQ
MR(θ)S̃

(0)PR
SN(θ)I(θ)

]
, (3.26)

where S̃(0)(θ) = 4 sinh θ S(0)(θ) and the one-loop integrals are given in (3.4). Again this can
be done with both the full (M,N, . . . = (A, Ȧ), (B, Ḃ) . . .) and factor (M,N, . . . = A,B, . . .)
tree-level S-matrices. As expected they give the same one-loop S-matrix parametrized by
the following functions

M
(1)
1 (θ) = M

(1)
2 (θ) =

P (θ)

2
M

(1)
3 (θ) = M

(1)
4 (θ) = 0

M
(1)
5 (θ) = M

(1)
6 (θ) =

P (θ)

2
M

(1)
7 (θ) = M

(1)
8 (θ) = 0 (3.27)

L
(1)
1 (θ) = L

(1)
3 (θ) = − π2

2k2
+ P (θ) L

(1)
2 (θ) = L

(1)
4 (θ) = P̃ (θ)

L
(1)
5 (θ) = L

(1)
7 (θ) = P (θ) L

(1)
6 (θ) = L

(1)
8 (θ) = P̃ (θ)

L
(1)
9 (θ) = L

(1)
10 (θ) = 0 L

(1)
11 (θ) = L

(1)
12 (θ) = 0 (3.28)

K
(1)
1 (θ) = −K

(1)
3 (θ) = −5π2

8k2
− iπθ

2k2
+

P (θ)

2
K

(1)
2 (θ) = −K

(1)
4 (θ) =

π2

2k2
+

iπθ

k2

K
(1)
5 (θ) = K

(1)
6 (θ) = 0 K

(1)
7 (θ) = K

(1)
8 (θ) = 0

K
(1)
9 (θ) = −K

(1)
10 (θ) =

P (θ)

2
(3.29)

P (θ) =
iπ

k2
csch θ +

iπ

2k2
(iπ − 2θ) coth θ csch θ − π2

2k2
csch2 θ

P̃ (θ) = − iπ

k2
coth θ − iπ

2k2
(iπ − 2θ) csch2 θ +

π2

2k2
coth θ csch θ .

These functions are in exact agreement with those found by perturbation theory [54]. In
contrast to the bosonic theories discussed in Section 3.1 no additional shift of the coupling is
required. The presence of the supersymmetry, albeit deformed, may provide an explanation
for this, with shifts arising from bosonic loops cancelled by shifts from fermionic loops.
Indeed, this is a feature of supersymmetric WZW and gauged WZW theories – see, for
example, [35]. Furthermore, we have also checked that the unitarity-cutting procedure
matches the perturbative result at one-loop in the N = 1 supersymmetric sine-Gordon
model [56].
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Let us mention that in the reduced AdS3 × S3 standard perturbative computation a
contribution coming from a one-loop correction needs to be added so that the S-matrix
satisfies the Yang-Baxter equation. It is this S-matrix that the unitarity technique matches.
This is in direct analogy with the story for the bosonic models discussed in Section 3.1,
except that currently no path integral origin for the correction in the AdS3 × S3 case
is known. Together with the complex sine-Gordon case this is another example of how
unitarity methods applied to a classically integrable theory seem to provide a quantum
integrable result. This seems to suggest a relationship between integrable quantization and
unitarity techniques which would be interesting to investigate further.

4 String theory

With the strong indication that in the presence of integrability and supersymmetry the
method of unitarity cuts gives the correct result for the one-loop S-matrix we move onto
the case of the light-cone gauge-fixed superstring on AdS5×S5 and the world-sheet S-matrix.

The integrability of the world-sheet sigma model is a well-established statement [57] [58,
59] at the classical level. Assuming the quantum integrability of the full world-sheet theory
and using the global symmetries the exact world-sheet S-matrix has been uniquely deter-
mined [2] up to an overall phase, or dressing factor [60]. The determination of the latter
exploited the non-relativistic generalization of the crossing symmetry [61, 62] as well as per-
turbative data both from the string and gauge theory sides [63, 64]. For a comprehensive
reviews and further references see [3, 4].

The perturbative study of the two-body S-matrix for the world-sheet sigma-model (for
a review, see [3, 65]) was initiated in [7] 9 starting from the Green-Schwarz action in the
so-called generalized uniform light-cone gauge [66, 67, 68] and applying LSZ reduction to
its quartic vertices. Due to gauge-fixing the theory does not possess world-sheet Lorentz
invariance, however the off-shell symmetry algebra is psu(2|2)2⋉R3, which originates from
the psu(2, 2|4) target-space symmetry of the Green-Schwarz action [42]. The action of this
symmetry is non-local and the central extensions encode the 2-d energy and momentum of
the theory [66]. It can therefore, in some sense, be understood as a non-relativistic non-
local generalization of world-sheet supersymmetry. Furthermore, while the theory is not
power-counting renormalizable, it is believed to be UV-finite – for an extensive discussion
of related issues see, for example, [69].

Relaxing the level-matching condition and taking the limit of infinite light-cone mo-
mentum (decompactification limit), the world-sheet theory becomes a massive field theory
defined on a plane, with well-defined asymptotic states and S-matrix. The scattering of
the world-sheet excitations has been studied at tree-level in [7], while one-loop [8] and two-
loop [9] results have been carried out only in the simpler near-flat-space limit [70] where
interactions are at most quartic in the fields. These studies have also explicitly shown some
consequences of the integrability of the model, such as the factorization of the many-body
S-matrix and the absence of particle production in the scattering processes [71].

9Earlier work on related models with truncated field content appeared in [5, 6].
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With relaxed level-matching, the symmetry group is a centrally extended PSU(2|2)×
PSU(2|2) [66], the same appearing in the dual gauge theory [2]. The charges of the fields
under the bosonic subalgebra SU(2)4 can again be indicated via the double-index notation
(3.16), with a, α, ȧ, α̇ being SU(2) fundamental indices combined as A = (a|α), Ȧ = (ȧ|α̇)
into the fundamental indices of the two PSU(2|2) factors. The global symmetry structure
should lead to a non-relativistic generalization of the group-factorization 10 (3.18)

SCĊ,DḊ

AȦ,BḂ
(p1, p2) = (−1)[Ȧ][B]+[Ċ][D]SCD

AB
(p1, p2)S

ĊḊ
ȦḂ

(p1, p2) , (4.1)

which has indeed been verified at the tree level [7].

Since only the SU(2)2 of each PSU(2|2) is manifest in the gauge-fixed world-sheet theory,
the tree-level S-matrices are parametrized as follows in terms of the basic SU(2)-invariants

SCD
AB =





Aδcaδ
d
b +Bδdaδ

c
b

Dδγαδ
δ
β + Eδδαδ

γ
β

Cǫabǫ
γδ Fǫαβǫ

cd

Gδcaδ
δ
β Hδdaδ

γ
β

Lδγαδ
d
b Kδδαδ

c
b

. (4.2)

The functions above were obtained in the generalized uniform light-cone gauge and therefore
they show an explicit dependence on the parameter a labeling different light-cone gauge
choices [67]. In [7] those functions were evaluated at leading order in perturbation theory,
where the small parameter ζ is the inverse of the string tension

ζ−1 = g =

√
λ

2π
. (4.3)

Here we present the free part (given by the identity operator) and the tree-level expressions
for the functions above

A(free) = D(free) = G(free) = L(free) = 1

B(free) = C(free) = E(free) = F (free) = H(free) = K(free) = 0 , (4.4)

A(0) = −iζ

2
(ǫ2p1 − ǫ1p2)(a− 1

2
)A(free) +

iζ

4

(p1 − p2)
2

ǫ2p1 − ǫ1p2
,

B(0) = −iζ

2
(ǫ2p1 − ǫ1p2)(a− 1

2
)B(free) + iζ

p1p2

ǫ2p1 − ǫ1p2

,

D(0) = −iζ

2
(ǫ2p1 − ǫ1p2)(a− 1

2
)D(free) − iζ

4

(p1 − p2)
2

ǫ2p1 − ǫ1p2
,

E(0) = −iζ

2
(ǫ2p1 − ǫ1p2)(a− 1

2
)E(free) − iζ

p1p2

ǫ2p1 − ǫ1p2
,

C(0) = −iζ

2
(ǫ2p1 − ǫ1p2)(a− 1

2
)C(free) +

iζ

2

√
(ǫ1 + 1)(ǫ2 + 1)

ǫ2p1 − p2ǫ1 − p1 + p2

ǫ2p1 − ǫ1p2
,

F (0) = −iζ

2
(ǫ2p1 − ǫ1p2)(a− 1

2
)F (free) +

iζ

2

√
(ǫ1 + 1)(ǫ2 + 1)

ǫ2p1 − p2ǫ1 − p1 + p2

ǫ2p1 − ǫ1p2
,

10This can also be interpreted as the requirement that the Faddeev-Zamolodchikov algebra, used in
describing the Hilbert space of the asymptotic states, is a direct product [72, 7].
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H(0) = −iζ

2
(ǫ2p1 − ǫ1p2)(a− 1

2
)H(free) +

iζ

2

p1p2

ǫ2p1 − ǫ1p2

(ǫ1 + 1)(ǫ2 + 1)− p1p2√
(ǫ1 + 1)(ǫ2 + 1)

,

K(0) = −iζ

2
(ǫ2p1 − ǫ1p2)(a− 1

2
)K(free) +

iζ

2

p1p2

ǫ2p1 − ǫ1p2

(ǫ1 + 1)(ǫ2 + 1)− p1p2√
(ǫ1 + 1)(ǫ2 + 1)

,

G(0) = −iζ

2
(ǫ2p1 − ǫ1p2)(a− 1

2
)G(free) − iζ

4

p2
1 − p2

2

ǫ2p1 − ǫ1p2

,

L(0) = −iζ

2
(ǫ2p1 − ǫ1p2)(a− 1

2
)L(free) +

iζ

4

p2
1 − p2

2

ǫ2p1 − ǫ1p2
. (4.5)

Above, ǫi =
√

1 + p2
i is the relativistic energy, which follows from the non-relativistic

dispersion relation ǫ(p) =
√

1 + λ
π2 sin

2 p
2
[73, 2] expanded in the near-BMN limit, p →

ζp, corresponding to the perturbative regime. After having explicitly verified that the
matrix elements above verify the consistency relation (2.20), we can safely use them in
the expression (2.17) with (2.14)-(2.16) and get the one-loop S-matrix for the light-cone
gauge-fixed sigma model. The result can be written as follows

SCD
AB (p1, p2) = exp

(
iϕa(p1, p2)

)
S̃CD
AB

= exp
(
− iζ

2
(e2p1 − e1p2)(a− 1

2
) + iζ2ϕ̃(p1, p2)

)
S̃CD
AB +O(ζ3) , (4.6)

where we have pulled out a factor that to the one-loop order can be resummed as an
overall phase (this exponentiation is consistent with the requirement of integrability that
all dynamical information and the gauge dependence on the parameter a should be encoded
in the scalar factor [74]). The remaining part S̃CD

AB has the same structure as in (4.2) with
parametrizing functions to the one-loop order given by

Ã(1) = 1 +
iζ

4

(p1 − p2)
2

ǫ2p1 − ǫ1p2
+

ζ2

4

(
p1p2 −

(p1 + p2)
4

8(ǫ2p1 − ǫ1p2)2
)
,

B̃(1) = iζ
p1p2

ǫ2p1 − ǫ1p2

− ζ2

4
p1p2 ,

D̃(1) = 1− iζ

4

(p1 − p2)
2

ǫ2p1 − ǫ1p2
+

ζ2

4

(
p1p2 −

(p1 + p2)
4

8(ǫ2p1 − ǫ1p2)2
)
,

Ẽ(1) = −iζ
p1p2

ǫ2p1 − ǫ1p2

− ζ2

4
p1p2 ,

C̃(1) =
iζ

2

√
(ǫ1 + 1)(ǫ2 + 1)

ǫ2p1 − p2ǫ1 − p1 + p2

ǫ2p1 − ǫ1p2
,

F̃ (1) =
iζ

2

√
(ǫ1 + 1)(ǫ2 + 1)

ǫ2p1 − p2ǫ1 − p1 + p2

ǫ2p1 − ǫ1p2

,

H̃(1) =
iζ

2

p1p2

ǫ2p1 − ǫ1p2

(ǫ1 + 1)(ǫ2 + 1)− p1p2√
(ǫ1 + 1)(ǫ2 + 1)

,

K̃(1) =
iζ

2

p1p2

ǫ2p1 − ǫ1p2

(ǫ1 + 1)(ǫ2 + 1)− p1p2√
(ǫ1 + 1)(ǫ2 + 1)

,

G̃(1) = 1− iζ

4

p2
1 − p2

2

ǫ2p1 − ǫ1p2
+

ζ2

8

(
p1p2 −

(p1 + p2)
4

4(ǫ2p1 − ǫ1p2)2
)
,
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L̃(1) = 1 +
iζ

4

p2
1 − p2

2

ǫ2p1 − ǫ1p2

+
ζ2

8

(
p1p2 −

(p1 + p2)
4

4(ǫ2p1 − ǫ1p2)2
)
, (4.7)

and

ϕ̃(p1, p2) =
1

2π

p2
1p

2
2

(
(ǫ2p1 − ǫ1p2)− (ǫ1ǫ2 − p1p2) arsinh[ǫ2p1 − ǫ1p2]

)

(ǫ2p1 − ǫ1p2)2
. (4.8)

As mentioned above, because of the complicated structure of interactions of the light-
cone gauge-fixed sigma model, the perturbative S-matrix is known beyond the leading
order [8, 9] only in the kinematic truncation known as near-flat-space limit [70]. Therefore,
to test the validity of the unitarity method, we need to compare our one-loop result to
the corresponding limit of the exact world-sheet S-matrix. This is achieved by extending
the analysis of [7] to next-to-leading order, where the comparison between the perturbative
S-matrix and the exact one was performed at the tree level. One considers the matrix
elements derived in [2] for a single SU(2|2) sector together with the dressing phase, here
needed at next-to-leading order in the 1/

√
λ expansion. In the comparison with the world-

sheet calculation all dimensional quantities (such as the spin-chain length and the momenta)
should be rescaled via a factor of

√
λ/(2π) [7], for us p → ζ p.

Here we take the form of the matrix elements of [2] given in eq. (6.9) of [7]. To be
explicit let us define

Aex =
1

2
√
AB

(AB −BB) , Bex =
1

2
√
AB

(AB +BB) , Cex =
1

2
√
AB

CB ,

Dex =
1

2
√
AB

(−DB + EB) , Eex =
1

2
√
AB

(−DB − EB) , Fex = − 1

2
√
AB

FB ,

Hex =
1√
AB

HB , Kex =
1√
AB

KB , Gex =
1√
AB

GB , Lex =
1√
AB

LB , (4.9)

where Aex, . . . , Lex are comparable to the parametrizing functions A, . . . , L (4.2). The final
piece of information required is the phase eiθ(p1,p2) (defined as in eq. (6.12) of [7]). The
leading order piece of θ(p1, p2) is given in eq. (6.13) of [7], while at next-to-leading order we
found it useful to use the expression given in eqs. (15)-(19) of [74]. Expanding the phase
in the near-BMN limit gives

exp
(
iθ(p1, p2)

)
= exp

(
iζ

(p1 − p2 − ǫ2p1 + ǫ1p2)
2

2(ǫ2p1 − ǫ1p2)
+ 2iζ2ϕ̃(p1, p2) +O(ζ3)

)
, (4.10)

where ϕ̃(p1, p2) is defined in eq. (4.8).

The exact S-matrix then should be compared with the string calculation in the constant-
J gauge a = 0. Doing so we find

(SCD
AB )ex = e

iζ
4

(
([A]+2[B]−[C]−2)p1+([B]−2[C]−[D]+2)p2

)
eϕa=0(p1,p2) S̃CD

AB +O(ζ3) . (4.11)

From (4.11) we see that we have agreement up to a phase whose argument is linear in
momenta. This is not surprising, as it simply amounts to moving from the string frame
to the spin-chain frame [72, 75]. As argued already at the tree level [7] such terms should
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not affect the physical spectrum following from inputting the S-matrix into the asymptotic
Bethe equations.

In summary, up to a phase whose argument is linear in momenta, the method of uni-
tarity cuts reproduces the near-BMN expansion of the string world-sheet S-matrix [2]. It
is important to note that the result we are comparing to is that found using the techniques
of integrability. Indeed, previous attempts have been made to compute the one-loop re-
sult using standard perturbation theory, however there are unresolved issues relating to
regularization (see footnote 1). As discussed in Section 2, assuming there exists a suitable
regularization scheme and there are no additional rational pieces (as is apparently the case
for the string world-sheet S-matrix), our procedure näıvely circumvents these problems as
(2.13) and (2.17) are manifestly finite.

5 Conclusions

In this work we have applied the method of unitarity cuts to two-dimensional quantum
field theories. The computation of the cut-constructible piece of the one-loop four-point
scattering amplitude (from which follows the S-matrix describing the scattering of two
particles) reduces to a sum of products of two tree-level amplitudes weighted by scalar
bubble integrals.

As in four dimensions, it is not immediately clear in which theories the cut-constructible
piece provides the full result – that is there are no rational terms. The examples studied in
Section 3 do however allow us to postulate that this should be the case for supersymmetric,
integrable theories. It is also natural to expect, by analogy with four dimensions, that
this should also be true for theories that are just supersymmetric – however, we have not
analyzed any models in this class. Furthermore, we found evidence that cut-constructibility
also partially works for integrable field theories without supersymmetry. For these models
the missing rational terms are proportional to the tree-level S-matrix and therefore can be
understood as a finite shift in the coupling.

The cut-constructible piece of the one-loop world-sheet S-matrix for the light-cone
gauge-fixed superstring on AdS5 × S5, which we computed in Section 4, matches per-
fectly with the result following from integrability. It is therefore hopeful that this method
would work for other integrable string backgrounds [76, 77], for example AdS2 × S2 × T 6,
AdS3 × S3 × T 4, AdS3 × S3 × S3 × S1 and AdS4 × CP3 – expressions for some tree-level
and one-loop amplitudes for these theories are contained in [78, 79, 80, 81, 82]. It would
also be interesting to apply analogous unitarity techniques to other physical world-sheet
observables, for example, in the form factor program initiated in [83].

Finally, the natural extension of this work would be to generalize to both higher loops
and higher points. The latter would be of particular interest in the case of non-integrable
theories, and would necessarily involve a deeper understanding of rational terms.

Note added: We refer the reader to the related paper [84]. In this work the authors
independently proposed the idea of and developed (to two loops) generalized unitarity
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techniques applied to two-dimensional S-matrices. These techniques were used to compute
the logarithmic terms of the one- and two-loop four-particle world-sheet S-matrix for the
massive sectors of string theory on AdS3 × S3 × T 4, AdS3 × S3 × S3 × S1, AdS4 × CP3

and AdS5 × S5 finding agreement with previous conjectures and results. At one-loop the
two derivations are similar, however the contribution of the t-channel cut (amounting to
rational terms) is fixed in a different way – in [84] it is fixed by symmetries, whereas here
we use a prescription following from the cutting procedure.
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