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Abstract

We compute the null cusp anomalous dimension of ABJM theory at strong coupling up to
two-loop order. This is done by evaluating corrections to the corresponding superstring
partition function, weighted by the AdS4 × CP

3 action in AdS light-cone gauge. We
compare our result, where we use an anomalous shift in the AdS4 radius, with the
cusp anomaly of N = 4 SYM, and extract the two-loop contribution to the non-trivial
integrable coupling h(λ) of ABJM theory. It coincides with the strong coupling expansion
of the exact expression for h(λ) recently conjectured by Gromov and Sizov. Our work
provides thus a non-trivial perturbative check for the latter, as well as evidence for two-
loop UV-finiteness and quantum integrability of the Type IIA AdS4 × CP

3 superstring
in this gauge.
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1 Overview and results

A powerful attribute that the planar AdS4/CFT3 system [1] shares with its higher-dimensional
version, planar AdS5/CFT4 [2], is the conjectured integrability [3–6] of the gauge and (free) string
theory model that define it – respectively N = 6 super Chern-Simons-matter (ABJM) theory
in d = 3 and Type IIA superstrings in a AdS4 × CP

3 background with two- and four-form RR
fluxes. The explicit realization of the integrable structure is however non-trivial, due to significative
peculiarites of this case. A first one is the absence of maximal supersymmetry in the AdS4 ×CP

3

background. This makes the construction of the corresponding superstring action difficult, in
particular with issues on the κ-symmetry gauge-fixing suitable to describe strings moving only in
AdS, the latter being a relevant setting for the studies of quantum integrability [7–9].

A second, crucial, peculiarity of the AdS4/CFT3 system is that all integrability-based calcu-
lations are given in terms of a non-trivial, interpolating function of the ’t Hooft coupling h(λ),
appearing in the ABJM magnon dispersion relation 1

ǫ =
1

2

√

1 + 16h2(λ) sin2
p

2
. (1.1)

Its knowledge is decisive to grant the conjectured integrability of ABJM theory a full predictive
power.

The first few orders of its weak coupling expansion were computed in [16–18] and in [19–21]. At
strong coupling, one way to obtain information on h(λ) is to evaluate in string theory the universal
scaling function 2 for the ABJM theory fABJM(λ), and then compare the result obtained with the
asymptotic Bethe ansatz prediction of [4]. The latter is based on the equivalence of the BES [24]
equations for the N = 4 case and the ABJM case and reads

fABJM(λ) =
1

2
fN=4(λYM)

∣

∣

∣

∣

√
λYM
4π

→h(λ)

, (1.2)

which implies

fABJM(λ) = 2h(λ) − 3 log 2

2π
− K

8π2
1

h(λ)
+ · · · , (1.3)

where fN=4(λYM) is the cusp anomaly of N = 4 SYM and K is the Catalan constant. The leading
strong coupling value for f(λ) has been given already in [1] and reads f(λ ≫ 1) =

√
2λ, from

which via (1.3) one gets h(λ ≫ 1) =
√

λ/2. At one loop in sigma-model perturbation theory, the
scaling function has been evaluated in [25–37] via the energy of closed spinning strings in the large
spin limit or similar means, providing a first subleading correction − log 2/(2π) to h(λ) on which
some debate existed [38]. In these calculations no issues were encountered in the action to use,
as at one-loop only the quadratic part of the fermion Lagrangian is necessary, with a structure
which is well-known in terms of the type IIA covariant derivative restricted by the background RR
fluxes 3.

1In the N = 4 SYM case the relation of h(λYM) with the coupling is trivial at all orders, h(λYM) =
√
λYM/(4π),

as shown in [10–12] by evaluating the so-called “Brehmstrahlung function” both via an extrapolation on results of
supersymmetric localization and via integrability. See also discussions in [13–15].

2Scaling function and cusp anomaly appear often as synonyms in the literature. At weak coupling and in the
N = 4 case the scaling function f(λYM), multiplying the log S in the large spin anomalous dimensions of twist-two
operators, equals twice the cusp anomalous dimension Γcusp of light-like Wilson loops [22]. The same has been seen
at strong coupling in [9,23].

3Alternatively, one could still use the coset action of [39, 40] - which is not suitable when strings move confined
in AdS [40, 41] - starting with a classical solution spinning both in AdS4 with spin S and in CP

3 with spin J , and
taking on the resulting expression for the one-loop energy a smooth J → 0 limit [26].
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We extend here the evaluation of the ABJM cusp anomaly to the two-loop order in sigma-model
perturbation theory using the open string approach [9, 23] (in Type IIA), namely expanding the
string partition function for the Euclidean surface ending on a null cusp at the boundary of AdS4,
as done in the AdS5 × S5 setting in [42]. As the classical string lies solely in AdS4 and higher-
order fermions are needed we must first face the problem, mentioned above, of using the correct
superstring action. The coset OSp(6|4)/ (U(3)× SO(1, 3)) sigma-model formulation of it [39, 40]
is built following the lines of (flat space and) type IIB superstrings [43], and exhibits classical in-
tegrability. It can be interpreted as a partially gauge-fixed type IIA Green Schwarz action, where
the κ-symmetry gauge-fixing sets to zero eight fermionic modes corresponding to the eight broken
supersymmetries. However, as first argued in [40] and later clarified in [41], it is not suitable to de-
scribe the dynamics of a string lying solely in the AdS4 part

4 of the AdS4×CP
3 superspace, in that

in this case four of the eight modes set to zero are in fact dynamical fermionic degrees of freedom of
the superstring. Any action willing to capture the semiclassical dynamics on these classical string
configurations should contain these physical fermions, and should therefore be found via another,
sensible κ-symmetry gauge-fixing of the full action. This has been done in [45, 46] 5 , starting
from the D = 11 membrane action [48] based on the supercoset OSp(8|4)/ (SO(7) × SO(1, 3)),
performing double dimensional reduction and choosing a κ-symmetry light-cone gauge for which
both light-like directions lie in AdS4. The output is an action, at most quartic in the fermions,
which is the AdS4 × CP

3 counterpart of the gauge-fixed action of [49, 50]. As the latter was effi-
ciently used in [42] to evaluate the strong coupling corrections to the N = 4 SYM cusp anomaly
up to two-loop order, the analysis of [45,46] is the natural setup where to perform our calculation.

Any known classical string solution found in AdS5, which can be embedded within an AdS4
subspace, is immediately a solution for this theory [1]. Therefore we start using the null cusp
solution of [9, 42] in the AdS4 × CP

3 action of [45, 46] and proceed evaluating corrections to
the string path integral on it. These quantum string corrections are in general non-trivial to
calculate, in connection with issues of potential UV divergences and the lack of manifest power-
counting renormalizability of the string action when expanded around a particular background
(see discussion in [42,51–53])6, but have the additional important role of establishing the quantum
consistency of the proposed string actions. This is a further motivation for the study at the
quantum level of the action proposed in [45], where the more complicated structure of the CP

3

background translates in a considerably more involved expression with respect to [49, 50]. About
the integrability of this string non-coset model, the standard analysis of [57] - which applies to the
action of [40] - is not possible here. The classical integrability of strings generically moving in the
full AdS4 × CP

3 superspace has been however shown by constructing a Lax connection with zero
curvature up to quadratic order in the fermions [58] 7.

Similarly to the AdS5 × S5 case, the AdS light-cone approach to the evaluation of the cusp
anomaly turns out to be extremely efficient. The background solution is “homogeneous”, namely
the fluctuation Lagrangian turns out to have only constant coefficients. This makes immediate
the study of the fluctuation spectrum and highly simplifies the semiclassical analysis at higher
orders 8. Additional simplifications come from the fact that bosonic propagators in the AdS light-

4The same is true when the string forms a worldsheet instanton by wrapping a CP
1 cycle in CP

3 [44].
5See also [47].
6In the evaluation of the worldsheet S-matrix starting from the light-cone gauge fixed AdS5 × S5 GS superstring

action, non-cancellation of UV divergences has been observed already beyond the tree-level order (see discussion
in [54]). These issues, non present in alternative perturbative methods based on unitarity cuts [54–56], are still
calling for an explanation.

7A study of classical integrability (prior to gauge-fixing) for general motion of the string in several backgrounds
of interest for the AdS/CFT correspondence is in [59].

8 The evaluation of perturbative (sigma-model) string corrections for non-homogenous solutions is currently
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cone gauge are only diagonal, which limitates the number of Feynman graphs to be considered 9.
In general, the actual calculation inherits from its AdS5 × S5 a similar mechanism of cancellation
of divergences, and even the significative difference given by the presence of massless fermions in
the spectrum turns out not to play a role (apart from the cancellation of UV divergences) in our
final result, as they behave like effectively decoupled. The relevant interaction vertices are the
same and no genuinely new contributions, in terms of scalar integrals, appears. This results in a
different weight factor in front of the same structures (log 2 at one loop and the Catalan constant
K at two loops) appearing in the AdS5 × S5 case, where the weight is in terms of the ratio of
the AdS4 and CP

3 radii, as well as the number of bosonic transverse AdS directions and massive
fermions.

An important further ingredient in the AdS4 × CP
3 calculation is the correction to the effec-

tive string tension [64] which must be considered for the first time at this order in sigma-model
perturbation theory. The original “dictionary” proposal [1] for the effective string tension in terms
of the effective ’t Hooft coupling λ of ABJM reads

T =
R2

2πα′ = 2
√
2λ , λ =

N

k
, (1.4)

where R is the CP3 radius. As pointed out in [64], the geometry (and flux, in the ABJ [65] theory)
of the background induces higher order corrections to the radius of curvature in the Type IIA
description, which in the planar limit of interest here appear in the form of a shift in the square
root

T = 2

√

2

(

λ− 1

24

)

. (1.5)

We emphasize that the string perturbative expansion is an expansion in inverse string tension whose
coefficients are obviously not affected by the correction (1.5). The radius shift is a (corrected)
AdS4/CFT3 dictionary proposal, an assumed, new input which plays a role when expressing the
result in terms of the ’t Hooft coupling.

All this leads to the main result of this work, which is the evaluation of the first two strong
coupling corrections to the ABJM cusp anomalous dimension

fABJM(λ) =
√
2λ− 5 log 2

2π
−
(

K

4π2
+

1

24

)

1√
2λ

+O(
√
λ)−2 . (1.6)

The formula can be rewritten in a more compact way defining the shifted coupling

λ̃ ≡ λ− 1

24
, (1.7)

from which

fABJM

(

λ̃
)

=
√

2λ̃− 5 log 2

2π
− K

4π2
√

2λ̃
+O(

√

λ̃)−2 . (1.8)

This form of the result makes evident the striking similarity with the AdS5 × S5 result

fYM(λYM) =

√
λYM

π
− 3 log 2

π
− K

π
√
λYM

+O(
√

λYM)−2 , (1.9)

limited to one-loop order, as in these cases in the fluctuation spectrum (and thus in the propagator) non-trivial
special elliptic functions appear [37,60–62] which depend on the worldsheet coordinates.

9In the first two-loop calculation of [63] the conformal gauge was used, in which propagators are non-diagonal,
implying the evaluation of a larger number of two-loop diagrams.
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where the change in the transcendentality pattern is due to the corresponding difference in the
effective string tensions.

From (1.6) and via (1.2) we get then the strong-coupling two-loop correction for the interpo-
lating function h(λ), that we report here together with the weak coupling results [16–21]

h2(λ) = λ2 − 2π3

3
λ4 +O

(

λ6
)

λ≪ 1 ,

h(λ) =

√

λ

2
− log 2

2π
− 1

48
√
2λ

+O(
√
λ)−2 λ≫ 1 ,

(1.10)

where we emphasize the a priori non-obvious fact the two-loop coefficient at strong coupling is
only due to the anomalous radius shift.

A conjecture for the exact expression of h(λ) has been recently made [66], in a spirit quite
close to the one followed in [10, 11] on the comparison between two exact computations of the
same observable (see footnote 1). The authors of [66] elaborated on the similarity between two
all-order calculations in ABJM theory: one - the “slope function” [67] - derived via integrability as
exact solution of a quantum spectral curve [6] and one - a 1/6 BPS Wilson loop [68–70] - obtained
with supersymmetric localization. As the first of the two exact results is expressed in terms of the
effective coupling h(λ), an “extrapolation” for the latter has been derived in an exact, implicit,
form 10. It is

λ =
sinh 2πh(λ)

2π
3F2

(

1

2
,
1

2
,
1

2
; 1,

3

2
;− sinh2 2πh(λ)

)

, (1.11)

with weak and strong coupling expansions

h(λ) = λ− π2

3
λ3 +

5π4

12
λ5 − 893π6

1260
λ7 +O(λ9) λ≪ 1 , (1.12)

h(λ) =

√

1

2

(

λ− 1

24

)

− log 2

2π
+O

(

e−2π
√
2λ
)

λ≫ 1 . (1.13)

We see that (1.13) above, expanded for large λ, agrees with (1.10).

In general, the mutual consistency of several ingredients - our direct perturbative string cal-
culation, the corrected dictionary of [64], the prediction (1.2)-(1.3) from the Bethe Ansatz [4] and
the conjecture of [66] for the interpolating function h(λ) - provides highly non-trivial evidence
in support of the proposal (1.11) for the interpolating function h(λ) of ABJM theory, and fur-
nishes an indirect check of the quantum integrability of the AdS4 ×CP

3 superstring theory in this
κ-symmetry light-cone gauge.

The paper proceeds as follows. In Section 2 we introduce the AdS light-cone gauge-fixed action
which in Section 3 we write in terms of fluctuations over the null cusp classical solution. In Section
4 we compute the one-loop correction to the cusp anomaly. In Section 5 we extend the computation
of the string partition function to one more order, verifying the cancellation of UV divergences
and obtaining the strong coupling two-loop correction to the ABJM cusp anomaly. In Appendix
A we present for completeness a different parametrization of the κ-symmetry gauge-fixed action
of [46] which can be transparently compared with its AdS5×S5 counterpart. Appendices B and C
contain, respectively, details on the expanded Lagrangian and explicit reductions for the relevant
integrals which we use in Section 5.

10As noticed in [66], a more solid derivation of h(λ) would require comparison between the localization results
of [69, 70] and the ABJM Bremsstrahlung function [71–74], similarly to the case of the h(λYM) of N = 4 SYM, see
footnote 1.
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2 AdS light-cone gauge in AdS4 × CP
3

Our starting point is the AdS4 × CP
3 Lagrangian in the κ-symmetry light-cone gauge proposed

in [45,46]. This is obtained by double dimensional reduction from the eleven-dimensional membrane
action [48] based on the supercoset OSp(8|4)/ (SO(7)× SO(1, 3)), and choosing a κ-symmetry
light-cone gauge for which both light-like directions lie in AdS4. In the spirit of [49, 50] (and
of earlier studies of brane models on the AdS × S backgrounds) the construction of [45, 46] for-
mulates the bulk string theory in a way which is naturally related to the boundary CFT theory.
In particular, the 32-dimensional spinors whose components are the coordinates associated to
the odd generators of OSp(8|4) are divided in θ and η fermions corresponding, respectively, to
super-Poincaré generators and superconformal generators. The AdS κ-symmetry light-cone gauge
consists in setting to zero that half of the fermions which correspond to fermionic generators hav-
ing negative charge w.r.t. the SO(1, 1) generator M+− from the Lorentz group acting on the
Minkowski boundary of AdS4

11. As our analysis below explicitly shows, it has the advantage of
encompassing a quantum analysis of string configurations classically moving in the AdS4 sector of
AdS4 × CP

3 12.

The AdS4 × CP
3 background metric is

ds210 = R2

(

1

4
ds2AdS4

+ ds2
CP

3

)

, (2.1)

where R is the CP
3 radius. For AdS4 the Poincaré patch is used and the parametrization of CP3

is at this stage arbitrary

ds2AdS4
=

dw2 + dx+dx− + dx1dx1

w2
x± ≡ x2 ± x0 , (2.2)

ds2
CP

3 = gMN dz
MdzN M = 1, ..., 6 . (2.3)

Above, x± are the light-cone coordinates, xm = (x0, x1, x2) parametrize the three-dimensional
boundary of AdS4 and w ≡ e2ϕ is the radial coordinate. The κ-symmetry light-cone gauge-fixed
Lagrangian of [45,46] can be written as follows 13

S = −T
2

∫

dτ dσ L (2.5)

L = γij
[e−4ϕ

4

(

∂ix
+∂jx

− + ∂ix
1∂jx

1
)

+ ∂iϕ∂jϕ+ gMN∂iz
M∂jz

N

+ e−4ϕ
(

∂ix
+̟j + ∂ix

+∂jz
MhM + e−4ϕB∂ix

+∂jx
+
)

]

− 2 εije−4ϕ
(

ωi∂jx
+ + e−2ϕC∂ix

1∂jx
+ + ∂ix

+∂jz
MℓM

)

,

11Another κ-symmetry gauge condition based on a similar “superconformal” basis has been considered in [75].
12An alternative κ-symmetry gauge fixing of the complete AdS4×CP

3 superspace [41] which is suitable for studying
regions of the theory that are not reachable by the supercoset sigma model of [39, 40] (see Introduction) has been
considered in [47].

13Inspired by [49] we modify the action proposed in [45,46] with a convenient rescaling of the fermions

θa →
√
2 θa θ4 →

√
2 e−ϕθ4 ηa →

√
2 e−2ϕηa η4 →

√
2 e−ϕη4 (2.4)

and similar ones for the complex conjugates. With respect to [45,46], we also partially change notation.
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where the string tension T has been defined in (1.5) and the following quantities

̟i = i
(

∂iθaθ̄
a − θa∂iθ̄

a + ∂iθ4θ̄
4 − θ4∂iθ̄

4 + ∂iηaη̄
a − ηa∂iη̄

a + ∂iη4η̄
4 − η4∂iη̄

4
)

, (2.6)

ωi = η̂a∂̂iθ̄
a + ∂̂iθa ˆ̄η

a +
1

2

(

∂iθ4η̄
4 − ∂iη4θ̄

4 + η4∂iθ̄
4 − θ4∂iη̄

4
)

, (2.7)

B = 8
[

(η̂a ˆ̄η
a)2 + εabc ˆ̄η

a ˆ̄ηb ˆ̄ηcη̄4 + εabcη̂aη̂bη̂cη4 + 2η4η̄
4
(

η̂a ˆ̄η
a − θ4θ̄

4
)

]

, (2.8)

C = 2 η̂a ˆ̄η
a + θ4θ̄

4 + η4η̄
4 , (2.9)

hM = 2
[

ΩaMεabc ˆ̄η
b ˆ̄ηc − ΩaMε

abcη̂bη̂c + 2
(

ΩaM ˆ̄ηaη̄4 − ΩaM η̂aη4
)

+ 2
(

θ4θ̄
4 + η4η̄

4
)

Ω̃ a
a M

]

, (2.10)

ℓM = 2 i
[

ΩaM ˆ̄ηaθ̄4 +ΩaM η̂aθ4 +
(

θ4η̄
4 − η4θ̄

4
)

Ω̃ a
a M

]

(2.11)

include fermions up to the fourth power. As in the AdS5 ×S5 case [49,50], the action is quadratic
in the θ-fermions and quartic in the η-fermions.

Above, the fermionic coordinates ηa and θa (and their conjugates) transform in the funda-
mental (antifundamental) representation of SU(3) (a = 1, 2, 3), and correspond to the unbroken
24 supersymmetries of the AdS4 × CP

3 background. The remaining fermions η4, θ4 and their
conjugates originate from the eight broken supersymmetries. The manifest symmetry of the ac-
tion is thus only the SU(3) subgroup of the SU(4) global symmetry of CP3. This feature, as we
will see, will be inherited by the quantum fluctuations around the light-like cusp (see also discus-
sion in Appendix A). The ΩaM and ΩaM appearing in the Lagrangian are the complex vielbein
of CP3, ds2

CP
3 = ΩaMΩaN dz

M dzN , namely components of the Cartan one-forms of SU(4)/U(3),

Ωa = ΩaM dzM and Ωa = ΩaM dzM . In the construction of [45], Ω̃ a
a is associated to a one-form

corresponding to the fiber direction of S7. Its expression is given explicitly below in terms of the
CP

3 coordinates. The ΩaM and Ω̃ a
a appear in [45] in a “dressed” OSp(6|4)/(U(3) × SO(1, 3)) su-

percoset element where the dressing incorporates the information on the broken supersymmetries
and U(1) fiber direction. In (2.6), hatted quantities are related to unhatted ones via a rotation
by matrices T (similar matrices were conveniently introduced in [50]) which depend on the CP

3

coordinates and act as follows on e.g. a ηa fermion

η̂a = T b
a ηb + Tab η̄

b , ˆ̄ηa = T ab η̄
b + T ab ηb . (2.12)

In Appendix A we rewrite the Lagrangian (2.5) in a form that is more similar to the AdS5 × S5

of [49], and comment more on the Cartan forms Ω and T -matrices.

The parametrization for CP3 chosen in [76] consists of complex variables za and z̄a, transforming
in the 3 and 3̄ of SU(3) respectively. Then the metric reads

ds2
CP

3 = gab dz
a dzb + gab dz̄a dz̄b + 2 g b

a dza dz̄b , (2.13)

where

gab =
1

4|z|4
(

|z|2 − sin2 |z|+ sin4 |z|
)

z̄a z̄b , gab =
1

4|z|4
(

|z|2 − sin2 |z|+ sin4 |z|
)

za zb ,

g b
a =

sin2 |z|
2|z|2 δba +

1

4|z|4
(

|z|2 − sin2 |z| − sin4 |z|
)

z̄a z
b and |z|2 ≡ za z̄a . (2.14)

For the one-forms appearing in the Lagrangian explicit expressions then follow, which can be
derived from their definition

Ωa = Ωa,b dz
b +Ωa,b dz̄b , Ωa = Ωa,b dz

b +Ω ,b
a dz̄b , Ω̃ a

a = Ω̃ a
a ,b dz

b + Ω̃ a,b
a dz̄b , (2.15)
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using (A.7). For example,

Ω̃ a
a = i

sin2 |z|
|z|2 (dza z̄a − za dz̄a) . (2.16)

In this parametrization, the T-matrices introduced in (2.12) can be grouped in a unitary matrix

Tâ
b̂ which reads explicitly [76]

Tâ
b̂ =

(

T b
a Tab
T ab T ab

)

=

(

δba cos |z|+ z̄a z
b 1−cos |z|

|z|2 i εacb z
c sin |z|

|z|
−i εacb z̄c sin |z|

|z| δab cos |z|+ za z̄b
1−cos |z|

|z|2

)

. (2.17)

The action (2.5) has gauge-fixed local fermionic symmetry. To fix bosonic local symmetry and
further proceed with our analysis it is convenient to use, as discussed in [49] and used in [42,52,53],
a “modified” conformal gauge

γij = diag
(

−e4ϕ, e−4ϕ
)

, (2.18)

in combination with the standard light-cone gauge

x+ = p+ τ , p+ = const . (2.19)

In what follows we will give directly the expression of the Euclidean version of the action (2.5) in
this gauge (choosing p+ = 1) and on the null cusp background [9, 42].

3 The null cusp fluctuation action

In this section we consider the Wick-rotated, Euclidean formulation of the Lagrangian (2.5) in the
bosonic light-cone gauge (2.18)-(2.19) and compute its fluctuations about the null cusp background.
The equations of motion derived from the (Euclidean) AdS light-cone gauge Lagrangian (2.5) admit
a classical solution for which the on-shell action is the area of the minimal surface ending on a null
cusp on the AdS4 boundary. This configuration is just the AdS4 embedding of the classical string
solution found in the AdS5 background [9, 42], and reads

w ≡ e2ϕ =

√

τ

σ
x1 = 0

x+ = τ x− = − 1

2σ
zM = 0 . (3.1)

The requirement that the open string Euclidean world-sheet described by these coordinates ends
on a cusp at the boundary of AdS4 at w = 0 is manifestly enforced by the relation x+ x− = −1

2w
2.

In the AdS/CFT dictionary of [7, 77], the Wilson loop evaluated on a light-like cusp contour is
then given by the superstring partition function

〈Wcusp〉 = Zstring ≡
∫

D[x,w, z, θ, η] e−SE . (3.2)

In order to compute it perturbatively, we first construct the Euclidean action SE for fluctuations
about the background (3.1). Following [42], we will use a suitable parametrization of fluctuations
which, combined with a further redefinition of the worldsheet coordinates t = log τ and s = log σ,
is such that the coefficients of the fluctuation action become constant, namely (τ, σ)-independent.
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It reads 14

x1 = 2

√

τ

σ
x̃1 w =

√

τ

σ
w̃ w̃ = e2ϕ̃

za = z̃a z̄a = ˜̄za a = 1, 2, 3

η =
1√
σ
η̃ θ =

1√
σ
θ̃ . (3.3)

After the Wick rotation τ → −i τ, p+ → ip+ and having set p+ = 1, we end up with the following
action for fluctuations over the null-cusp background (3.1)

SE =
T

2

∫

dt dsL , L = LB + L(2)
F + L(4)

F , (3.4)

where

LB =

(

∂tx̃
1 +

1

2
x̃1
)2

+
1

w̃4

(

∂sx̃
1 − 1

2
x̃1
)2

+ w̃2 (∂tϕ)
2 +

1

w̃2
(∂sϕ)

2 +
1

16

(

w̃2 +
1

w̃2

)

+

+ w̃2 g̃MN ∂tz̃
M ∂tz̃

N +
1

w̃2
g̃MN ∂sz̃

M ∂sz̃
N (3.5)

L(2)
F = i

[

∂tθ̃a
˜̄θa − θ̃a∂t

˜̄θa + ∂tθ̃4
˜̄θ4 − θ̃4∂t

˜̄θ4 + ∂tη̃a ˜̄η
a − η̃a∂t ˜̄η

a + ∂tη̃4 ˜̄η
4 − η̃4∂t ˜̄η

4
]

+

+
2i

w2

[

η̂a

(

∂̂sθ̄
a − 1

2
ˆ̄θa
)

+

(

∂̂sθa −
1

2
θ̂a

)

ˆ̄ηa +
1

2

(

∂sθ4η̄
4 − ∂sη4θ̄

4 + η4∂sθ̄
4 − θ4∂sη̄

4
)

]

+ ∂tz̃
M h̃M +

4 i

w̃3
C̃

(

∂sx̃
1 − 1

2
x̃1
)

− 2i

w̃2
∂sz̃

M ℓ̃M (3.6)

L(4)
F =

1

w̃4
B̃ . (3.7)

In the expressions above, with B̃, C̃, h̃M and ℓ̃M we indicate the quantities B, C, hM and ℓM in
(2.6) where a tilde over each field appears (namely, the weighting factors for the fluctuations in
(3.3) have already been made explicit in the derivatives of products).

Since the Lagrangian has now constant coefficients and is thus translationally invariant, the
(infinite) world-sheet volume factor V factorizes. The scaling function is then defined via the string
partition function as [42]

W = − lnZ =
1

2
f(λ)V =W0 +W1 +W2 + ... , V =

1

4
V2 ≡

1

4

∫

dt ds (3.8)

where W0 ≡ SE coincides with the value of the action on the background, W1,W2, ... are one-,
two- and higher loop corrections, and for the ratio V/V2 we use the same convention as in [42] 15.
From (3.8) we explicitly define f(λ) in terms of the effective action W

f(λ) =
8

V2
W . (3.9)

We are now ready to compute the effective action perturbatively in inverse powers of the effective
string tension g ≡ T

2 . From this we will extract the corresponding strong coupling perturbative
expansion for the scaling function

f(g) = g

[

1 +
a1
g

+
a2
g2

+ . . .

]

, g =
T

2
. (3.10)

14The factor 2 in the fluctuation of the field x1 is introduced to normalize the kinetic term of x̃1.
15This is related to coordinate transformation and field redefinitions occurring between the GKP [8] string, whose

energy is given in terms of f(λ), and the null cusp solution in the Poincaré patch here used, see discussion in [53].
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where we have factorized the classical result from W0 = SE [1] and the effective string tension T
is defined in (1.5).

4 Cusp anomaly at one loop

We start considering one-loop quantum corrections to the free energy (3.2), which are derived
expanding the fluctuation Lagrangian (3.4) to second order in the fields.
For the bosonic part we obtain

L(2)
B =

(

∂tx̃
1
)2

+
(

∂sx̃
1
)2

+
1

2

(

x̃1
)2

+ (∂tϕ̃)
2 + (∂sϕ̃)

2 + ϕ̃2 + |∂tz̃a|2 + |∂sz̃a|2 . (4.1)

The bosonic degrees of freedom consist of six real massless scalars (associated to the CP
3 coordi-

nates), one real scalar x̃1 with mass m2 = 1
2 and one real scalar ϕ̃ with mass m2 = 1. This is a

simple truncation (one less transverse degree of freedom in the AdS space) of the bosonic spectrum
found in the AdS5 × S5 [42]. For the fermions one gets an off-diagonal kinetic matrix

L(2)
F = iΘKF ΘT where Θ ≡

(

θ̃a, θ̃4,
˜̄θa, ˜̄θ4, η̃a, η̃4, ˜̄η

a, ˜̄η4
)

, (4.2)

which reads

KF =

























0 0 −∂t 0 0 0 −∂s − 1
2 0

0 0 0 −∂t 0 0 0 −∂s
−∂t 0 0 0 ∂s +

1
2 0 0 0

0 −∂t 0 0 0 ∂s 0 0
0 0 ∂s − 1

2 0 0 0 −∂t 0
0 0 0 ∂s 0 0 0 −∂t

−∂s + 1
2 0 0 0 −∂t 0 0 0

0 −∂s 0 0 0 −∂t 0 0

























. (4.3)

Fermions contribute to the partition function with the determinant (∂µ = i pµ , µ = 0, 1)

det KF =
(

p2
)2
(

p2 +
1

4

)6

, (4.4)

from which we read that the fermionic spectrum is composed of six massive degrees of freedom with
mass m2 = 1/4 and two massless ones. The latter are of η4 and θ4 type, namely those fermionic
directions corresponding to the broken supersymmetries. The presence of massless fermions marks
a difference with respect to the N = 4 SYM case, already noticed in this theory when studying
fluctuations over classical string solutions only lying in AdS4 [28,32,36,37] (see comments in section
5.4).

The one-loop effective action is computed as

W1 = − logZ1 (4.5)

where Z1 is the ratio of fermionic over bosonic determinants. Therefore

W1 =
1

2
V2

∫

d2p

(2π)2

[

log
(

p2 + 1
)

+ log

(

p2 +
1

2

)

+ 4 log
(

p2
)

− 6 log

(

p2 +
1

4

)]

= −5 log 2

16π
V2 .

(4.6)
The one-loop correction to the scaling function reads, according to (3.9),

a1 = −5 log 2

2π
(4.7)

and agrees with previous independent results [28,32,36].
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5 Cusp anomaly at two loops

In this section we provide the details on the computation of the two-loop coefficient of the scaling
function. The calculation follows the lines of [42], with some important differences which we point
out in section 5.4. In particular the aim is to compute the connected vacuum diagrams of the
fluctuation Lagrangian around the null cusp background. Denoting by W the free energy of the
theory, W = − logZ, the two-loop contribution is given by

W2 = 〈Sint〉 −
1

2
〈S2
int〉c , (5.1)

where Sint is the interacting part of the action at cubic and quartic order (see appendix B). The
subscript c indicates that only connected diagrams need to be included. In the following we use
Sint = T

∫

dt dsLint and we give the expressions of the vertices as they appear in Lint. Throughout
this section we drop tildes from fluctuation fields in order not to clutter formulae. Also, we neglect
the string tension T and the volume V2 in the intermediate steps and reinstate them at the end of
the calculation.

5.1 Bosonic sector

Let us first consider the purely bosonic sector. As pointed out in section 4, the spectrum of the
theory contains one real boson of squared mass 1, one real boson of squared mass 1

2 and three
complex massless bosons. The interaction among these excitations involves cubic and quartic ver-
tices which give rise to the diagrams in figure 5.1.

Figure 1: Sunset, double bubble and double tadpole are the diagrams appearing in the two-loop
contribution to the partition function.

We observe that the AdS light-cone gauge Lagrangian contains only diagonal bosonic propaga-
tors, which introduces considerable simplifications in the perturbative computation. The explicit
expressions of the propagators are

Gϕϕ(p) =
1

p2 + 1
Gzaz̄b(p) =

2 δba
p2

Gx1x1(p) =
1

p2 + 1
2

. (5.2)

The cubic interactions involving only bosonic fields are of three different kinds

Vϕx1x1 = −4ϕ
[

(∂s − 1
2)x

1
]2

Vϕ3 = 2ϕ
[

(∂tϕ)
2 − (∂sϕ)

2
]

Vϕ|z|2 = 2ϕ
[

|∂tz|2 − |∂sz|2
]

.
(5.3)

When combining vertices and propagators in the sunset diagrams they originate various non-
covariant integrals with components of the loop momenta in the numerators. Standard reduction
techniques allow to rewrite every integral as a linear combination of the two following scalar ones
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(explicit reductions for the relevant integrals are spelled out in appendix C)

I
(

m2
)

≡
∫

d2p

(2π)2
1

p2 +m2
(5.4)

I
(

m2
1,m

2
2,m

2
3

)

≡
∫

d2p d2q d2r

(2π)4
δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

. (5.5)

The latter integral is finite, provided none of the masses vanishes, and is otherwise IR divergent.
The former is clearly UV logarithmically divergent, and also develops IR singularities in the mass-
less case. In our computation we expect all UV divergences to cancel and therefore no divergent
integral to appear in the final result. Nonetheless, performing reduction of potentially divergent
tensor integrals to scalar ones still implies the choice of a regularization scheme. In our case we
use the one adopted in [42, 51, 78]. This prescription consists of performing all manipulations in
the numerators in d = 2, which has the advantage of simpler tensor integral reductions. In this
process we set to zero power UV divergent massless tadpoles, as in dimensional regularization

∫

d2p

(2π)2
(

p2
)n

= 0 , n ≥ 0. (5.6)

All remaining logarithmically divergent integrals happen to cancel out in the computation and
there is no need to pick up an explicit regularization scheme to compute them.
As an explicit example, we consider the contribution to the sunset coming from the first vertex in
(5.3)

− 1

2
〈V 2
ϕx1x1〉 = −

∫

d2p d2q d2r

(2π)4
(1 + 4q21) (1 + 4r21) δ

(2)(p+ q + r)

(p2 + 1)(q2 + 1
2)(r

2 + 1
2)

=
1

2
I
(

1, 12 ,
1
2

)

. (5.7)

The reason why the coefficient of the integral in the second term of (5.7) is exactly (−1) is the topic
of section 5.4. We note that the integral I

(

1, 12 ,
1
2

)

already appeared in [42] and is a particular
case of the general class

I
(

2m2,m2,m2
)

=
K

8π2m2
, (5.8)

where K is the Catalan constant

K ≡
∞
∑

n=0

(−1)n

(2n + 1)2
. (5.9)

The contribution of the sunset diagram involving the second vertex in (5.3) is proportional to
I(1)2, whereas the contribution of the third vertex vanishes

− 1

2
〈V 2
ϕ3〉 = 2 I(1)2 − 1

2
〈V 2
ϕ|z|2〉 = 0 (5.10)

The final contribution of the bosonic sunset diagrams is

W2,bos. sunset =
1

2
I
(

1, 12 ,
1
2

)

+ 2 I(1)2 . (5.11)

The first two vertices in (5.3) can also be contracted to generate non-1PI graphs, namely double
tadpoles. However the resulting diagrams turn out to vanish individually.
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Next we consider bosonic double bubble diagrams. The relevant quartic vertices are

Vϕ2x1x1 = 16ϕ2
[

(∂s − 1
2)x

1
]2

(5.12)

Vϕ4 = 4ϕ2

[

(∂tϕ)
2 + (∂sϕ)

2 +
1

6
ϕ2

]

(5.13)

Vϕ2|z|2 = 4ϕ2
[

|∂tz|2 + |∂sz|2
]

(5.14)

Vz4 =
1

6

[

(z̄a∂tz
a)2 + (z̄a∂sz

a)2 + (za∂tz̄a)
2 + (za∂sz̄a)

2

−|z|2
(

|∂tz|2 + |∂sz|2
)

− |z̄a∂tza|2 − |z̄a∂sza|2
]

. (5.15)

Despite the lengthy expressions of the vertices, the only non-vanishing contribution comes from
Vϕ4 and gives

W2,bos. bubble = −2 I(1)2 (5.16)

and cancels the divergent part of (5.11). As a result, the bosonic sector turns out to be free
of divergences without the need of fermonic contributions, which was already observed in the
AdS5 × S5 case [42].

5.2 Fermionic contributions

We compute the diagrams arising from interactions involving fermions. The fermionic propagators
can be read from the inverse of the kinetic matrix KF (4.3)

Gη4 η̄4(p) = Gθ4θ̄4(p) =
p0
p2

Gη4θ̄4(p) = Gθ4η̄4(−p) = −p1
p2

Gηa η̄b(p) = Gθaθ̄b(p) =
p0

p2 + 1
4

δba Gηaθ̄b(p) = Gθa η̄b(−p) = −p1 +
i
2

p2 + 1
4

δba (5.17)

The main difference between the spectrum of AdS5 × S5 and the one introduced in section 4
resides in the fermionic part. Although both theories have eight fermionic degrees of freedom, in
AdS4×CP

3 they are split into six massive and two massless excitations, which interact non-trivially
among themselves.
We start by considering diagrams involving at least one massless fermion. The relevant cubic
vertices are (we denote by ψ the fermions η and θ collectively)

Vzηaη4 = −2 ∂tz
aηaη4 + h.c. Vzηaθ4 = 2 ∂sz

aηaθ4 − h.c.

Vϕη4θ̄4 = −2 i ϕ (θ̄4∂sη4 − ∂sθ̄
4η4)− h.c. Vx1ψ̄4ψ4

= −2 i (η̄4η4 + θ̄4θ4)(∂s − 1
2 )x

1 . (5.18)

The quartic interactions are either not suitable for constructing a double tadpole diagram or they
produce vanishing integrals. These include vector massless tadpoles, which vanish by parity, and
tensor massless tadpoles, which have power UV divergences and are set to zero. For completeness
we list them in appendix B.
Focussing on the Feynman graphs which can be constructed from cubic interaction we also note
that the only double tadpole diagrams that can be produced using (5.18) involve tensor massless
tadpole integrals and therefore vanish. In the sector with massless fermions we are therefore left
with the sunset diagrams, which, thanks to the diagonal structure of the bosonic propagators, turn
out to be only five

W2,ψ4
= −1

2
〈Vzηaη4Vzηaη4 + Vzηaθ4Vzηaθ4 + 2Vzηaη4Vzηaθ4 + Vϕη4θ̄4Vϕη4θ̄4 + Vx1ψ̄4ψ4

Vx1ψ̄4ψ4
〉 .
(5.19)
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The explicit computation of the individual contributions shows that they are all vanishing. As an
example we consider

− 1

2
〈Vϕη4θ̄4Vϕη4θ̄4〉 = 4

∫

d2p d2q d2r

(2π)4
(p1 − q1)

2(p0q0 − p1q1) δ
(2)(p+ q + r)

p2q2(r2 + 1)
= 0 (5.20)

and similar cancellations happen for the other diagrams. Therefore we conclude that W2,ψ4
= 0

and that massless fermions are effectively decoupled at two loops.
We then move to consider massive fermions, starting from their cubic coupling to bosons

Vzηη = −ǫabc∂tz̄aηbηc + h.c. Vzηθ = −2 ǫabcz̄aηb(∂s − 1
2)θc − h.c.

Vϕηθ = −4 i ϕ ηa(∂s − 1
2)θ̄

a − h.c. Vx1ηη = −4 i η̄aηa(∂s − 1
2 )x

1 . (5.21)

Precisely as in the massless case, this generates five possible sunset diagrams. None of them is
vanishing. We present the details of a particularly relevant example, i.e. the one involving the
vertex Vx1ηη . This gives

−1

2
〈Vx1ηηVx1ηη〉 = 24

∫

d2p d2q d2r

(2π)4
(p21 +

1
4) q0 r0 δ

(2)(p + q + r)

(p2 + 1
2)(q

2 + 1
4)(r

2 + 1
4)

= −3

8
I
(

1
2 ,

1
4 ,

1
4

)

+
3

4
I
(

1
4

)2
.

(5.22)

We note the appearance of another integral in the class (5.8). The coefficient in front of this
integral depends on the degrees of freedom of the theory and is thoroughly discussed in section
(5.4). The partial results of the remaining sunset diagrams are

− 1

2
〈(Vzηη + Vzηθ)(Vzηη + Vzηθ)〉 = 3 I

(

1
4

)2 − 6 I
(

1
4

)

I(0)

− 1

2
〈VϕηθVϕηθ〉1PI = 6 I

(

1
4

)

I(1) +
3

4
I
(

1
4

)2
. (5.23)

The latter vertices can be contracted also in a non-1PI manner

− 1

2
〈VϕηθVϕηθ〉non-1PI = −1

2
Gϕϕ(0) × 26 × 32 ×

∫

d2p

(2π)2
p21 +

1
4

p2 + 1
4

= −9

2
I
(

1
4

)2
(5.24)

where the factor in front of the integrals comes from the expression of the vertex and from counting
the degrees of freedoms that can run in the loops. As in [42], the divergent contribution proportional

to I
(

1
4

)2
cancels exactly those coming from (5.22) and (5.23).

The total cubic fermionic part reads

W2,ferm. cubic = −3

8
I
(

1
2 ,

1
4 ,

1
4

)

+ 6 I
(

1
4

)

I(1)− 6 I
(

1
4

)

I(0) . (5.25)

Finally we consider the fermionic double bubble diagrams. These involve the fermionic quartic
vertices. However, most of the vertices appearing in the Lagrangian cannot contribute to the
partition function either because the bosonic propagators are diagonal or because they would
produce vanishing integrals. We present the whole list of quartic vertices in appendix B and we
spell out here only the relevant ones for our computation

Vϕ2ηθ = 8 i ϕ2 ηa(∂s − 1
2)θ̄

a − h.c. Vzzηθ = −2 i
[

|z|2ηa(∂s − 1
2)θ̄

a − z̄bz
aηa(∂s − 1

2 )θ̄
b
]

− h.c. .

(5.26)
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Although we can build a diagram with Vη4 , fermion propagators carry one component of the loop
momentum in the numerator and produce vector tadpole integrals, which vanish by parity. We
conclude that the contribution from fermionic double bubble graphs is

W2,ferm. bubbles = −6 I
(

1
4

)

I(1) + 6 I
(

1
4

)

I(0) . (5.27)

Summing all the partial results and reinstating the dependence on the string tension and the
volume, we obtain

W2 =
V2
T

[

1

2
I
(

1, 12 ,
1
2

)

− 3

8
I
(

1
2 ,

1
4 ,

1
4

)

]

= −1

4

V2
T
I
(

1, 12 ,
1
2

)

= − K

16π2
V2
T

(5.28)

where T is defined in (1.5). Finally we can plug this expression into equation (3.9) and read out
the second order of the strong coupling expansion (3.10) of the ABJM cusp anomalous dimension

a2 = − K

4π2
. (5.29)

5.3 The cusp anomalous dimension

We summarize the results of our superstring computation, presenting the strong coupling expansion
of the ABJM cusp anomalous dimension up to two-loop order. Reinstating the definition of the
string tension (1.5) in terms of the ABJM ’t Hooft coupling and plugging (4.7) and (5.29) into
(3.10), we find

fABJM (λ) =
√
2λ− 5 log 2

2π
−
(

K

4π2
+

1

24

)

1√
2λ

+O
(

λ−1
)

, (5.30)

which is the main result of the paper. From the string dual point of view it looks convenient to
define the shifted coupling

λ̃ ≡ λ− 1

24
, (5.31)

in terms of which we can rewrite the scaling function more compactly as

fABJM

(

λ̃
)

=
√

2λ̃− 5 log 2

2π
− K

4π2
√

2λ̃
+O

(

λ̃−1
)

. (5.32)

5.4 Comparison with AdS5 × S5

In this section we point out similarities and differences between the calculation we performed and
its AdS5×S5 analogue [42]. The starting points, i.e. the Lagrangians in AdS light-cone gauge, look
rather different. Yet the final results of the two-loop computations are strikingly similar. More
precisely, when written in terms of the string tension, the two expressions have exactly the same
structure up to the numerical coefficients in front of the integrals. Indeed the AdS5 computation
gives

W
(AdS5)
2 =

V2
T

[

1

4
I
(

1, 12 ,
1
2

)

− 1

4
I
(

1
2 ,

1
4 ,

1
4

)

]

, (5.33)

which looks very similar in structure to (5.28). Furthermore, using (5.8), both combinations sum
up to

W2 = −V2
T

1

4
I
(

1, 12 ,
1
2

)

(5.34)
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and only the different relation between the string tension and the ’t Hooft couplings distinguishes
the final results. It is easy to trace the origin of the integrals and their coefficients back in the
vertices of the Lagrangian and to understand their meaning. In particular in both computations
only the sunset diagrams involving the interactions Vϕxx and Vxψψ (with massive fermions) seem
to effectively contribute. All other terms are also important, but just serve to cancel divergences.
Hence we can now focus on the relevant interactions and point out the differences between the
AdS5 and the AdS4 cases.
We start from the bosonic sectors. The two theories differ for the number of scalar degrees of
freedom with given masses. Focussing on massive fluctuations, after gauge fixing we have one
scalar with m2 = 1 associated to the radial coordinate of AdSd+1 and (d − 2) real scalars with
m2 = 1

2 . In the metric we chose for the AdS4 × CP
3 background, the size of the AdS4 part is

rescaled by a factor of r2 = 4. We have compensated this, parametrizing the radial coordinate as
w = erϕ and introducing a factor r in the fluctuation of x1, so as to have the same normalization
for their kinetic terms as in AdS5×S5. This causes some factors r to appear in interaction vertices
in our Lagrangian. Apart from this, the relevant interaction vertices are exactly the same. Then,
the number of x fields (d− 2) and this factor r determine the coefficient of the integral I

(

1, 12 ,
1
2

)

appearing in equations (5.28) and (5.33).
Turning to fermions, the first striking difference between the AdS5 and AdS4 cases is the presence
of massless ones. As pointed out at the beginning of section 5.2 their contribution is effectively
vanishing at two loops (though they do contribute at first order). Focussing on massive fermions,
the relevant cubic interactions giving rise to I

(

1
2 ,

1
4 ,

1
4

)

look again similar in the AdS4 and AdS5
cases. The difference is given once more by the ratio of the radii r (through the normalization of ϕ
and x coordinates) and the number nf of massive fermions in the spectrum (nf = 8 for AdS5×S5

and nf = 6 for AdS4 × CP
3).

The final results (5.28) and (5.33) can be re-expressed in the general form

W
(AdSd+1)
2 =

V2
T

(d− 2)r2

8

[

I
(

1, 12 ,
1
2

)

− nf
8
I
(

1
2 ,

1
4 ,

1
4

)

]

=
V2
T

(d− 2)r2

8

(

1− nf
4

)

I
(

1, 12 ,
1
2

)

, d = 3, 4 , (5.35)

where the cases at hand are d = 4, nf = 8, r = 1 for N = 4 SYM and d = 3, nf = 6, r = 2 for
ABJM.

6 Concluding remarks

In this work we have computed the cusp anomalous dimension of ABJM theory up to second order
in its strong coupling expansion. This result has been determined considering the AdS4 × CP

3 κ-
symmetry gauge-fixed action of [45,46] and studying its fluctuations about the null cusp background
(3.1), which is a classical solution thereof. As in the AdS5×S5 counterpart of this calculation [42],
the AdS light-cone gauge approach [49] makes the explicit evaluation rather manageable, allowing
us to push the expansion of the string partition function up to second order.

While at one loop we confirm a known result [28, 32, 36], at two-loops we provide a new im-
portant piece of data, see (1.6), which we combine with a proposal based on the Bethe Ansatz
of AdS4/CFT3 [4] to give our two-loop correction to the so-called interpolating function h(λ) of
ABJM theory, equation (1.10). Importantly, the recent conjecture of [66] for an all-order expression
of h(λ), implicitly given in terms of a non-trivial hypergeometric function, agrees with our result,
which is a relevant perturbative test of validity for the conjecture. In particular, at this level of
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perturbation theory we must implement in our calculation a “correction” to the string tension in
terms of the ’t Hooft coupling, which was pointed out in [64] to be due to higher order corrections
(in curvature) to the background. We show that the strong coupling two-loop correction for h(λ)
is only due to the anomalous shift of the curvature radius in the Type IIA description [64]. This
supports the observation in [66] on the origin of the shift appearing in its proposal (1.13), which
knows nothing about the gravity side but coincides in fact with the correction of [64].

In perspective, we observe that the light-cone gauge approach could be pushed to a much
stronger check of (1.11), by testing its finite coupling regime. Following [79], one could discretize
the light-cone Lagrangian (3.4), put it on a lattice and perform numerical simulations to determine
the ABJM scaling function in terms of the coupling constant, for any value thereof. By comparison
with the same results for N = 4 SYM one could then provide numerical values of h(λ) at some
finite values of λ, which could then be contrasted with (1.11).

The manifest cancellation of UV divergences that we find here provides a direct demonstra-
tion of the quantum consistency of the AdS4 × CP

3 action of [45, 46], and shows that it can be
readily used for non-trivial strong coupling computations in the AdS4/CFT3 framework (following
for example [52, 53]). In particular, the consistency of the result with predictions coming from
integrability, the conjecture [66] and the “corrected” dictionary of [64] can be taken as evidence,
albeit indirect, of quantum integrability for the Type IIA AdS4 × CP

3 superstring in this gauge.

Acknowledgments

It is a pleasure to thank Alessandra Cagnazzo, Andrea Cavaglià, Ben Hoare, Valentina G.M.Puletti,
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A Lagrangian in the Wess-Zumino type parametrization

In this appendix we rewrite the Lagrangian (2.5) in a form that resembles the Wess-Zumino type
parametrization introduced in [49], and compare it to the AdS5×S5 case. In [49] the authors found
two possible ways to eliminate the fermion rotation (2.12), either by a change of parametrization
for S5 or by the introduction of a covariant derivative for the terms quadratic in fermions. Here
we explore only the second option and we leave the first one for future development. We first
introduce a collective index for upper and lower indices so that

ηâ =

(

ηa
η̄a

)

. (A.1)

In this notation the action of the matrix T on the fermions (2.12) can be rewritten as

η̂â = Tâ
b̂η
b̂

(A.2)

where the matrix Tâ
b̂ is given in (2.17). We also introduce the shorthand notation

∂iηaη̄
a − ηa∂iη̄

a = −ηâ∂iηâ , (A.3)
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where ηâ = (η̄a, ηa). In [49] a recipe for going from the Killing parametrization to a Wess-Zumino
type gauge was given, which consists of rotating back the fermions. This generates additional
terms coming from derivatives that can be reabsorbed into a covariant derivative. In particular,
we apply the transformation

ηâ →
(

T−1
)b̂

â
η
b̂
. (A.4)

In contrast with the AdS5 × S5 case the matrix T is not block diagonal, therefore one has
ηâ∂iηâ = η̂â∂̂iηâ, where it is crucial to use hatted indices. This transformation removes all the hats
from fermions, at the price of introducing the covariant derivative

D = d− Ω , (A.5)

where Ω ≡ Ωâ
b̂ = dTâ

ĉ (T−1)ĉ
b̂
and dΩ − Ω ∧ Ω = 0. More explicitly16, the (matrix) Cartan form

entering the definition of the (dimensionally reduced) supercoset element reads

Ωâ
b̂ = i

(

Ω b
a − δbaΩ

c
c ǫacbΩ

c

−ǫacbΩc −Ωab + δabΩ
c
c

)

, (A.6)

with components given by

Ω b
a = i

(1 − cos |z|)
|z|2 (z̄adz

b − dz̄az
b)− iz̄az

b (1− cos |z|)2
2|z|4 (dzcz̄c − zcdz̄c), (A.7)

Ωa = dz̄a
sin |z|
|z| + z̄a

sin |z|(1− cos |z|)
2|z|3 (dzcz̄c − zcdz̄c) + z̄a

(

1

|z| −
sin |z|
|z|2

)

d|z|, (A.8)

Ωa = dza
sin |z|
|z| + za

sin |z|(1− cos |z|)
2|z|3 (zcdz̄c − dzcz̄c) + za

(

1

|z| −
sin |z|
|z|2

)

d|z|. (A.9)

Above, Ω c
c is the trace of (A.7) and is related to Ω̃ c

c defined in (2.16) via Ω̃ c
c = 2Ω c

c .

We can also decompose the matrix Ω in order to separate the contributions from the vielbein
and from the spin connection17

Ωâ
b̂ = Ωĉ(Eĉ)â

b̂ +Ωcd(J
d
c )â

b̂
(A.10)

with18

(Eĉ)â
b̂ = i

(

0 ǫacb
−ǫacb 0

)

(Jdc )â
b̂
= i

(

δdaδ
b
c − δbaδ

d
c 0

0 −δdb δac + δab δ
d
c

)

. (A.12)

This decomposition provides a way to project out the spin connection and find the exact relation
between the vielbein Ωâ and the matrix Ω

Ωĉ =
1

2
Tr(Eĉ Ω) . (A.13)

16 The matrix Ω was already introduced in [76] however there it was defined as Ωâ
b̂ = iTâ

ĉdT−1
ĉ
b̂
= −idTâ

ĉT−1
ĉ
b̂
,

differing from ours by a factor of i. To make contact with the expressions of [76] we add such a factor in formula
(A.6).

17A similar procedure was applied in [49] where in that case the decomposition is expressed in terms of the SO(5)
γ-matrices.

18Let us stress that the meaning of the first term of equation (A.10) in matrix form is the following

Ωĉ(Eĉ)â
b̂ =

(

Ωc(Ec)a
b + Ωc(E

c)a
b Ωc(Ec)ab + Ωc(E

c)ab
Ωc(Ec)

ab + Ωc(E
c)ab Ωc(Ec)

a
b
+ Ωc(E

c)a
b

)

(A.11)

and the explicit expression of (Eĉ)â
b̂ shows that the only non-vanishing elements are (Ec)ab and (Ec)ab.
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After having introduced all the necessary ingredients, we are ready to rewrite the Lagrangian in a
form which resembles the AdS5 × S5 case. We separate it into

L = LB + L
(2)
F + L

(4)
F (A.14)

where the bosonic contribution is simply given by the standard bosonic sigma model with AdS4 ×
CP

3 as target space

LB = γij
[

e−4ϕ

4

(

∂ix
+∂jx

− + ∂ix
1∂jx

1
)

+ ∂iϕ∂jϕ+ΩaiΩaj

]

(A.15)

where the vielbein Ωai are defined in the natural way Ωa = Ωai dσ
i with σi = (τ, σ). Notice also

that ΩâiΩâj = 2Ωai Ωaj for the symmetry of the worldsheet metric. The quadratic part in the
fermion fields can be expressed as

L
(2)
F = −2 e−4ϕ∂ix

+
[ i

2
γij
(

ηâDjηâ + θâDjθâ − 2Ωĉj ηEĉη
)

+ εijηâCâ
b̂
(

Djθb̂ + e−2ϕη
b̂
∂jx

1)

+
i

2
γij
(

η̄4∂jη4 + θ̄4∂jθ4 − 4 i ηaΩ
a
jη4 + 2 iΩ a

a jΘ− h.c.
)

+
1

2
εij
(

η̄4∂jθ4 − θ̄4∂jη4 + 4 i ηaΩ
a
jθ4 + 2 iΩ a

a jΘ̃− e−2ϕΘ∂jx
1 + h.c.

)

]

.

(A.16)

Here we have introduced the charge conjugation matrix C, given explicitly by19

Câ
b̂ =

(

δba 0
0 −δab

)

, (A.17)

and the combinations Θ = θ4θ̄
4 + η4η̄

4 and Θ̃ = θ4η̄
4 − η4θ̄

4. The first line of this Lagrangian
(A.16) closely resembles expression (1.6) of [49], that is the AdS5×S5 Lagrangian in Wess-Zumino
type parametrization. This is the part of the Lagrangian that does not contain the fermions η4
and θ4, which emerge [45] when obtaining the AdS4 × CP

3 action from dimensional reduction of
the AdS4 × S7 supermembrane action. The main difference with respect to AdS5 × S5 is that
the SU(4) R-symmetry is not explicitly realized on the fermionic Lagrangian (A.16). This feature
is inherited by the quantum fluctuations around the light-like cusp. As a result of the broken
symmetry, the spectrum contains fermionic degrees of freedom with different masses (one gets 6
massive and 2 massless excitations). Our one- and two-loop calculations have explicitly shown
that the role of the massless fermions (η̃4 and θ̃4) is crucial for compensating the bosonic degrees
of freedom, making the one-loop partition function UV-finite. At two loops their interactions with
the other excitations would in principle start playing a part. Nevertheless it turns out that the
massless fermions decouple from the computation and do not contribute to the two-loop result.

The last term of the superstring Lagrangian is quartic in fermions

L
(4)
F = 4 e−8ϕγij∂ix

+∂jx
+[(ηaη̄

a)2 + 2 εabcηaηbηcη4 + 2η4η̄
4ηaη̄

a −Θ2 + h.c.] . (A.18)

As discussed for the quadratic part, the first terms clearly reminds the expression for AdS5 × S5

(equation (1.10) of [49]), whereas the others contain the non-trivial interactions of η4 and θ4.

19The fact that the matrix is diagonal and not anti-diagonal is a consequence of our conventions for grouping the

spinors. Notice also that for our conventions ηâηâ = 0 whereas ηâCâ
b̂ηb̂ = −2ηaη̄

a.
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B Details on the expanded Lagrangian

In this appendix we provide the details of the Lagrangian (3.4) expanded up to quartic order. As
in section 5 we list the vertices as they appear in Lint, namely with an extra factor 1

2 with respect
to the original Lagrangian. We drop tildas, understanding that we are dealing with the fluctuation
fields of (3.4). The cubic vertices are

Vϕx1x1 = −4ϕ
[

(∂s − 1
2 )x

1
]2

Vϕ3 = 2ϕ
[

(∂tϕ)
2 − (∂sϕ)

2
]

Vϕ|z|2 = 2ϕ
[

|∂tz|2 − |∂sz|2
]

Vzηη = −ǫabc∂tz̄aηbηc + h.c. Vzηθ = −2 ǫabcz̄aηb(∂s − 1
2 )θc − h.c.

Vϕηθ = −4 i ϕ ηa(∂s − 1
2)θ̄

a − h.c. Vx1ηη = −4 i η̄aηa(∂s − 1
2)x

1

Vzηaη4 = −2 ∂tz
aηaη4 + h.c. Vzηaθ4 = 2 ∂sz

aηaθ4 − h.c.

Vϕη4θ̄4 = −2 i ϕ (θ̄4∂sη4 − ∂sθ̄
4η4)− h.c. Vx1ψ̄4ψ4

= −2 i (η̄4η4 + θ̄4θ4)(∂s − 1
2)x

1 (B.1)

The quartic vertices read

Vz4 =
1

6

[

(z̄a∂tz
a)2 + (z̄a∂sz

a)2 + (za∂tz̄a)
2 + (za∂sz̄a)

2

−|z|2
(

|∂tz|2 + |∂sz|2
)

− |z̄a∂tza|2 − |z̄a∂sza|2
]

(B.2)

Vϕ2x1x1 = 16ϕ2
[

(∂s − 1
2)x

1
]2

Vϕ4 = 4ϕ2

[

(∂tϕ)
2 + (∂sϕ)

2 +
1

6
ϕ2

]

(B.3)

Vϕ2|z|2 = 4ϕ2
[

|∂tz|2 + |∂sz|2
]

Vżz̄ψ̄4ψ4
= −2 i (η̄4η4 + θ̄4θ4)z̄b∂tz

b + h.c. (B.4)

Vη2η4η̄4 = 8 η̄4η4η̄
aηa Vz′z̄ψ̄4ψ4

= −2 i (η̄4θ4 − θ̄4η4)z̄b∂sz
b − h.c. (B.5)

Vη4 = 4(η̄aηa)
2 Vϕ2η4θ̄4

= 4 i ϕ2 (θ̄4∂sη4 − ∂sθ̄
4η4)− h.c. (B.6)

Vη4η̄4θ4θ̄4 = −8 η̄4η4θ̄
4θ4 Vϕx1ψ̄4ψ4

= 12 i ϕ (η̄4η4 + θ̄4θ4)(∂s − 1
2 )x

1 (B.7)

Vη3η4 = 4 ǫabcηaηbηcη4 + h.c. Vzzη̄aη4 = −2 i ǫabc∂tz
azbη̄cη4 + h.c. (B.8)

Vϕ zηaθ4 = −8ϕ∂sz
aηaθ4 − h.c. Vϕ zηθ = 8ϕǫabcz̄aηb(∂s − 1

2)θc − h.c. (B.9)

Vzzη̄aθ4 = 2 i ǫabc∂sz
azbη̄cθ4 − h.c. Vzzηη = −2 i (z̄a∂tz

aη̄bηb − z̄b∂tz
aη̄bηa) + h.c. (B.10)

Vϕx1ηη = 24 i ϕ η̄aηa(∂s − 1
2)x

1 Vzzηθ = −2 i [|z|2ηa(∂s − 1
2)θ̄

a − z̄bz
aηa(∂s − 1

2 )θ̄
b]− h.c.
(B.11)

Vϕ2ηθ = 8 i ϕ2 ηa(∂s − 1
2)θ̄

a − h.c. Vx1zηη = −4 (∂s − 1
2 )x

1ǫabcz̄aηbηc − h.c. (B.12)

C Integral reductions

In this appendix we provide the relevant tensor integral reductions in two dimensions that we used
in the computation of the two-loop correction to the partition function. We define the two basic
scalar integrals

I
(

m2
)

≡
∫

d2p

(2π)2
1

p2 +m2
(C.1)

I
(

m2
1,m

2
2,m

2
3

)

≡
∫

d2p d2q d2r

(2π)4
δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)
. (C.2)
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Then we have (the factors (2π)4 in the denominator of the integrands are understood)
∫

d2p d2q d2r pµqν δ(2)(p + q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

= (C.3)

=
δµν

4

[

I(m2
1)I(m

2
2)− I(m2

1)I(m
2
3)− I(m2

2)I(m
2
3) + (m2

1 +m2
2 −m2

3)I(m
2
1,m

2
2;m

2
3)
]

(C.4)

Iµµ(m
2
1,m

2
2;m

2
3) =

∫

d2p d2q d2r (p · q) δ(2)(p + q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

= (C.5)

=
1

2

[

I(m2
1)I(m

2
2)− I(m2

1)I(m
2
3)− I(m2

2)I(m
2
3) + (m2

1 +m2
2 −m2

3)I(m
2
1,m

2
2;m

2
3)
]

(C.6)

∫

d2p d2q d2r pµ pν δ(2)(p + q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

=
δµν

2

[

I(m2
2)I(m

2
3)−m2

1 I(m
2
1,m

2
2;m

2
3)
]

(C.7)

J ≡
∫

d2p d2q d2r p2q2 δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

= m2
1m

2
2 I(m

2
1,m

2
2;m

2
3)−m2

1 I(m
2
1)I(m

2
3)−m2

2 I(m
2
2)I(m

2
3)

(C.8)

K ≡
∫

d2p d2q d2r (p · q)2 δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

=
1

2

[

−m2
2 I(m

2
2)I(m

2
3)−m2

1 I(m
2
1)I(m

2
3)+

+(m2
1 +m2

2 −m2
3)I

µ
µ (m

2
1,m

2
2;m

2
3)
]

(C.9)
∫

d2p d2q d2r pµ pν qρ qσ δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

=

(

3

8
J − 1

4
K

)

δµνδρσ +

(

1

4
K − 1

8
J

)

(δµρδνσ + δµσδνρ)

(C.10)
∫

d2p d2q d2r pµ pν pρ qσ δ(2)(p + q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

=
1

8
(δµνδρσ + δµρδνσ + δµσδνρ)

[

m2
2 I(m

2
2)I(m

2
3)−m2

1 I
µ
µ (m

2
1,m

2
2;m

2
3)
]

(C.11)

L ≡
∫

d2p d2q d2r p2 (q · r) δ(2)(p + q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

= −m2
1 I

µ
µ(m

2
3,m

2
2;m

2
1) (C.12)

M ≡
∫

d2p d2q d2r (p · q)(p · r) δ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

=
1

2

[

(m2
1 +m2

3 −m2
2)I

µ
µ (m

2
1,m

2
2;m

2
3)+

+m2
1 I(m

2
1)I(m

2
3)−m2

2 I(m
2
2)I(m

2
3)
]

(C.13)
∫

d2p d2q d2r pµ pν qρ rσδ(2)(p+ q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

=

(

3

8
L− 1

4
M

)

δµνδρσ +

(

1

4
M − 1

8
L

)

(δµρδνσ + δµσδνρ) .

(C.14)
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