
              

City, University of London Institutional Repository

Citation: Pothos, E. M. & Bailey, T. M. (2009). Predicting Category Intuitiveness With the 

Rational Model, the Simplicity Model, and the Generalized Context Model. Journal of 
Experimental Psychology: Learning Memory and Cognition, 35(4), pp. 1062-1080. doi: 
10.1037/a0015903 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/1974/

Link to published version: https://doi.org/10.1037/a0015903

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


GCM category intuitiveness     1 

 

 

Predicting category intuitiveness with 

the rational model, the simplicity 

model, and the Generalized Context 

Model 

 

 

 

 

Emmanuel M. Pothos 

Department of Psychology 

Swansea University 
 

 

 

Todd M. Bailey 

School of Psychology 

Cardiff University 
 

 

in press: JEP: LMC 

Please address correspondence to Emmanuel Pothos, Department of Psychology, 

Swansea University, Swansea SA2 8PP, UK, or to Todd Bailey, School of 

Psychology, Cardiff University, Cardiff CF10 3AT, UK. Electronic mail may be sent 

at e.m.pothos@swansea.ac.uk or baileytm1@cardiff.ac.uk 

 

Running head: GCM category intuitiveness; Word count (running text, excluding 

references): 8,721 

  

mailto:e.m.pothos@swansea.ac.uk
mailto:baileytm1@cardiff.ac.uk


GCM category intuitiveness     2 

 

 

Abstract 

 

Naïve observers typically perceive some groupings for a set of stimuli as more 

intuitive than others. The problem of predicting category intuitiveness has been 

historically considered the remit of models of unsupervised categorization. In 

contrast, this paper develops a measure of category intuitiveness from one of the most 

widely supported models of supervised categorization, the Generalized Context 

Model (GCM). Considering different category assignments for a set of instances, we 

ask how well the GCM can predict the classification of each instance on the basis of 

all the other instances. The category assignment that results in the smallest prediction 

error is interpreted as the most intuitive for the GCM—we call this way of applying 

the GCM unsupervised GCM. The paper then systematically compares predictions of 

category intuitiveness from the unsupervised GCM and two models of unsupervised 

categorization, the simplicity model and the rational model. We found that the 

unsupervised GCM compares favorably to the simplicity model and rational model. 

This success of the unsupervised GCM illustrates that the distinction between 

supervised and unsupervised categorization may have to be reconsidered. However, 

no model emerges as clearly superior, indicating that there is more work to be done in 

understanding and modeling category intuitiveness.  

 

Keywords: supervised categorization, unsupervised categorization, exemplar theory, 

GCM.  
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Introduction 

The distinction between supervised and unsupervised categorization has been central 

to the development of categorization theory in cognitive science. Supervised 

categorization concerns predicting how novel instances will be classified, with respect 

to a set of existing categories; such predictions can be typically carried out with 

impressive accuracy. Prominent classes of supervised categorization models include  

the exemplar theory (Medin & Schaffer, 1978; Nosofsky, 1988; Van Vanpaemel & 

Storms, 2008), prototype theory (Hampton, 2000; Minda & Smith, 2000; Posner & 

Keele, 1968), and the general recognition theory (Ashby & Perrin, 1988). Supervised 

categorization typically involves training procedures with corrective feedback. By 

contrast, in a typical unsupervised categorization experiment participants are asked to 

divide some stimuli into categories which are intuitive, without any corrective 

feedback.  

Interest in unsupervised categorization largely originates from the notion of 

category coherence (Murphy & Medin, 1985). Why do certain groupings of objects 

form psychologically intuitive categories, but other groupings are nonsensical? For 

example, most cultures have concepts such as happiness or animal. By contrast, a 

grouping which includes the Eiffel Tower, children under five, and apples would be 

considered entirely nonsensical. Murphy and Medin (1985) suggested that a category 

is coherent if it fits well with our overall understanding of the world; they argued that 

explanations based on similarity are inadequate (cf. Heit, 1997; Lewandowsky, 

Roberts, & Yang, 2006; Wisniewski, 1995). Unfortunately, creating categorization 

models on the basis of general knowledge is extremely difficult (e.g., Fodor, 1983; 

Pickering & Chater, 1995; but see Griffiths, Steyvers, & Tenenbaum, 2007 or 

Tenenbaum, Griffiths, & Kemp, 2006). Moreover, there is empirical evidence that 
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people do use similarity in unsupervised categorization, at least in some cases.  

Accordingly, some researchers have developed unsupervised categorization models 

which are based on similarity (e.g., Compton & Logan, 1993; Love, Medin, & 

Gureckis, 2004; Milton & Wills, 2004; Pothos & Chater, 2002).  

 Unsupervised categorization involves two slightly separate problems: first, 

identifying the classification for a set of stimuli, which would be preferred by naïve 

observers. For example, in Figure 1, the preferred classifications for the dots are the 

ones indicated by the continuous curves (here and elsewhere, points represent objects 

and the axes are assumed to correspond to dimensions of some putative internal 

mental space; similarities are inversely related to distances). A second problem in 

unsupervised categorization is, given a classification for a stimulus set and another for 

a different stimulus set, deciding which one is more intuitive. In Figure 1, the 

classification on top should be perceived as more intuitive compared to the 

classification in the bottom panel (this is because the difference of within- versus 

between-category similarity in the top panel is higher than in the bottom; Pothos & 

Chater, 2002). In other words, if real stimuli are created after the Figure 1 points, 

participants are likely to identify the top classification as preferred more frequently 

and with more confidence, compared to the bottom classification. In principle, a 

model of category intuitiveness provides the basis for a model of unsupervised 

categorization, under the assumption that the most intuitive categorization will also be 

the preferred one. 

--------------------------------------FIGURE 1-------------------------------------- 

 A main objective of this work is to examine predictions of category 

intuitiveness from computational models of unsupervised categorization, for a range 

of stimulus sets. As far as we are aware, there has been no systematic investigation of 
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this kind. This is an important shortcoming, given the strong intuitions we can have 

about which categorizations are more intuitive than others. We consider category 

intuitiveness predictions from the rational model (Anderson, 1991; Sanborn, Griffiths, 

& Navarro, 2006) and the simplicity model (Pothos & Chater, 2002). The inclusion of 

these two models has been partly motivated by the fact that they can readily produce a 

measure of category intuitiveness (this is not always the case with models of 

unsupervised categorization; e.g., see Compton & Logan, 1993).  

 Unsupervised and supervised categorization have typically been assumed to 

correspond to different psychological processes and the related research traditions 

have been mostly separate. A model is typically proposed as either a model of 

supervised categorization or a model of unsupervised categorization. However, this is 

an assumption which may be inappropriate. The other main objective of this paper is 

to show that a measure of category intuitiveness can be derived from one of the best 

known models of supervised categorization, Nosofsky’s Generalized Context Model 

(GCM; Nosofsky, 1988, 1989, 1991, 1992). The version of the GCM which can 

produce predictions of category intuitiveness will be referred to as unsupervised 

GCM, to reflect the fact that, in this mode of application, the GCM assesses the 

intuitiveness of a particular classification instead of classifying new instances with 

respect to existing categories. Predictions of category intuitiveness from the GCM 

will be compared to those from the rational model and the simplicity model. 

 

Unsupervised GCM 

The GCM predicts classification probabilities for a set of test stimuli based on their 

similarity to a set of previously seen training stimuli. The GCM is described by two 

equations:  
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P(A|X) is the probability of making a category A response, given instance X (the   

terms are category biases and XA  is the sum of the similarities between X and all the 

A exemplars). This is Luce’s (1963) choice rule; it sometimes involves an exponent to 

the similarities. In equation (1b), c is a sensitivity parameter, r is a Minkowski 

distance metric parameter, q determines the shape of the similarity function, wk are 

dimensional attention weights, and y’s are item coordinates. The input to the GCM 

consists of the coordinates of a set of training stimuli, information about the 

assignment of the stimuli to categories, and the coordinates of a set of test stimuli. On 

the basis of this information, the parameters of the GCM are adjusted so as to predict 

as closely as possible empirically determined probabilities of how the test items are 

classified. An error term can be computed as 
i

i
i

P

O
O ln2 , where Oi are the target 

probabilities and Pi the predicted probabilities from the model; the summation ranges 

over all the test items. Target probabilities typically correspond to how participants 

classify test items into training categories. This equation computes a likelihood ratio 

chi-square statistic (e.g., see Hahn, Bailey, & Elvin, 2005). We refer to this error term 

as a log likelihood error term.  

 How could the GCM compute (relative) category intuitiveness? Suppose that 

in the top panel of Figure 1 we want to evaluate the intuitiveness of classification {1, 

2, 3,4, 5, 6}{7, 8, 9} versus {1, 2, 3}{4, 5, 6, 7, 8, 9}. In evaluating classification {1, 

2, 3,4, 5, 6}{7, 8, 9}, we consider the GCM error term in predicting that items 1, 2, 3, 



GCM category intuitiveness     7 

 

4, 5, 6, are in category {1, 2, 3,4, 5, 6} with 100% probability and likewise for items 

7, 8, 9 and category {7, 8, 9}. In other words, exemplars are assigned to categories in 

accordance with the category structure being evaluated and GCM fits are computed 

on this basis. A main insight in this paper is that when the GCM self-classifies a set of 

stimuli in this way, the corresponding error term can be interpreted as a measure of 

category intuitiveness. We postulate that where the error term is lower, then the 

corresponding classification is more consistent with the assumptions about 

categorization ingrained in the GCM and that, therefore, such classifications are 

considered more psychologically intuitive by the GCM. For example, self-classifying 

the Figure 1 items relative to the classification {1, 2, 3,4, 5, 6}{7, 8, 9} should be 

associated with a very small error term, as the two categories are well separated. By 

contrast, self-classification relative to {1, 2, 3}{4, 5, 6, 7, 8, 9} should lead to a high 

error term. These results correspond to the obvious impression that, for the stimuli in 

Figure 1, classification {1, 2, 3,4, 5, 6}{7, 8, 9} is psychologically more intuitive than 

{1, 2, 3}{4, 5, 6, 7, 8, 9}.  

This scheme constitutes a proposal for using the GCM to produce a measure 

of category intuitiveness (cf. Feldman, 2004; Pothos & Chater, 2002). We believe that 

given a measure of category intuitiveness one can create a full model of unsupervised 

categorization, but this is an objective for future work. One can ask what kind of 

category structures will be predicted as more intuitive by the GCM. For example, 

Feldman (2004) suggested that the Boolean complexity of concepts defined through 

logical expressions determines their psychological intuitiveness. Work on basic level 

categorization has assumed that category structure can be understood in terms of the 

ratio of within category similarity to between category similarity (Murphy, 1991; 

Murphy & Smith, 1982), a tradeoff in informativeness vs. specificity (Komatsu, 
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1992), or a tradeoff between cue and category validities (Jones, 1983). The 

corresponding claim for the  unsupervised GCM is that an intuitive classification will 

be possible for a set of stimuli if there are groupings which maximize within category 

similarity, both with respect to the original representation of the stimuli, and the 

various transformations for this representation allowed by the GCM parameters 

(suppression of dimensions and stretching/ compression of psychological space). This 

latter characteristic particularly distinguishes the GCM from other unsupervised 

categorization models based on similarity. The unsupervised and supervised versions 

of the GCM are based on the same equations, but applied to answer different 

questions. In the former case, the computed error term is interpreted as category 

intuitiveness, in the latter case classification probabilities of novel instances are 

predicted. Crucially, in the unsupervised GCM parameters are not adjusted to match a 

particular pattern of empirical results (parameters are determined by item coordinates, 

so that parameter search is guided by a prerogative to achieve an intuitive 

classification), while in the supervised GCM parameters are specified so as to achieve 

particular probabilities for the classification of new instances. 

So, our measure of category intuitiveness from the GCM is based on the same 

equations as the standard GCM (cf. Love, 2002). This is an important point, since it 

shows how a model which has been considered the hallmark of supervised 

categorization can be directly applied to unsupervised categorization. The specific 

details of how we applied the GCM are standard. The city block (r=1) and the 

Euclidean (r=2) metrics are the only metrics that have received psychological 

motivation, and likewise for the exponential (q=1) and Gaussian (q=2) forms of the 

similarity function. It has not been possible to motivate more specific values of r and 

q (Nosofsky, 1992), hence they were included as free parameters within these bounds. 
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Category biases were allowed to vary freely between zero and one, subject to the 

constraint that they summed to one, and likewise for the attentional weights. The 

sensitivity parameter, c, determines the extent to which the classification of an 

instance is influenced by remote exemplars or not. When c is very small, all 

exemplars will have an effect on how a test item is classified. As c increases in size, 

classification of a test item will be influenced primarily by its nearest neighbor 

amongst the training items, or, in a situation where the training items are the same as 

the test items, just by itself. This latter situation is pathological, so we required the 

unsupervised GCM to classify each stimulus on the basis of all the other stimuli in a 

stimulus set only. Given this requirement, in all our simulations the default approach 

was to allow c to vary freely between zero and infinity. We will later examine directly 

whether the unsupervised GCM can function adequately with an unrestricted c.  

 It is by no means obvious at the outset that our proposal will necessarily 

succeed. A common criticism for the GCM (and similar models) is that its parameters 

allow it too much flexibility in fitting empirical data (Olsson, Wennerholm, & 

Lyxzen, 2004; Myung, Pitt, Navarro, 2007; Navarro, 2007; Nosofsky, 2000; Nosofsky 

& Zaki, 2002; Smith, 2007; Smith &  Minda, 1998, 2000; 2002; Yang & 

Lewandowsky, 2004). Accordingly, one can wonder whether our suggestion for the 

unsupervised GCM might fail because the GCM can perfectly describe any 

assignment of stimuli into categories (regardless of whether the corresponding 

classifications are more or less intuitive). The burden is on us to demonstrate that not 

only is this not the case, but that the unsupervised GCM can perform comparably with 

established models of unsupervised categorization.  

 

Rational model  
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Many models of unsupervised categorization (including the unsupervised GCM and 

the simplicity model) rely on similarity. It is interesting to include in the comparisons 

a model that makes no explicit reference to similarity. Anderson’s (1991) rational 

model adopts a category utility approach. In other words, it assumes that categories 

are formed because they are useful to us, specifically because they allow us to infer 

unknown information about novel instances (cf. Corter & Gluck, 1992; Gosselin & 

Schyns, 2001; Jones, 1983; Medin, 1983; Murphy, 1982).  

 The rational model is an incremental, Bayesian (cf. Tenenbaum & Griffiths, 

2001; Tenenbaum, Griffiths, & Kemp, 2006) model of unsupervised categorization. It 

assigns a new stimulus with feature structure F to whichever category k makes F most 

probable. For example, a new object with many features of a ‘cat’, would be assigned 

to the category of cats, since the feature structure of the object is most probable given 

this category membership.  

 We implemented the continuous version of the rational model, which assumes 

that stimuli are represented in terms of continuous dimensions (for more details see 

Anderson, 1991; Anderson & Matessa, 1992). The continuous version allows the most 

direct comparison with the unsupervised GCM, since the latter also assumes 

continuous dimensions. In the rational model, the probability of classification of a 

novel instance into category k depends on the product )|()( kFPkP . P(k) is given by 

equation (3a):  

cnc

cn
kP k




)1(
)(

………………………………………………………(3a)

 

In equation (3a), nk is the number of stimuli assigned to category k so far, n is the total 

number of classified stimuli, and c is a coupling parameter. The coupling parameter 

determines how likely it is that a new instance will be assigned to a new category. 
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Thus, c indirectly determines the number of categories that the rational model will 

produce for a stimulus set. The probability that the new object comes from a new 

category is given by 
cnc

c
P






)1(

1
)0( . )|( kFP is computed as in equation (3b): 
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 where i indexes the different dimensions of variation of the stimuli and x indicates 

the different values dimension i can take. That is, )|( kxf i  is the probability of 

displaying value x on dimension i in category k, and is approximated by 
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t   , which is the t distribution with ai degrees of freedom. i and 
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-3d- is the variance for classifying into the i dimension. This tells us how much it 

‘matters’ whether a stimulus has a particular value on dimension i or not, for 

classification into a particular category. 

 

In these equations, ni  0 , ni  0 , n is the number of observations in 

category k, y  is their mean along dimension i, and s
2
 is their variance. Finally, 

00 1   , 0  is the halfway point of the range of all instances and 0  is the square 

of a quarter of the range (Anderson, personal communication).  

It is possible to introduce a dimensional weighting mechanism in the rational 

model. In equation (3b), assume that the probability of having particular values along 
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each dimension is weighted by w1, w2 etc., to indicate the relative importance of the 

dimensions in classifying a new item. In other words,          
        

  
         The question is what kind of weighting scheme is going to be optimal for 

the rational model. Taking logs in the above equation, we have:                

                        
       Suppose that                        . Then, 

clearly, the weight combination which maximizes        is w1=0, w2=1. In other 

words, in the rational model, optimal dimensional weighting corresponds to assigning 

a weight of 1 to the most useful dimension and a weight of 0 to all the other 

dimensions (so that, in contrast to the GCM, graded weighting is never optimal for the 

rational model). Therefore, in the simulations below, where we refer to the ‘rational 

model with dimensional selection’, we assess the probabilities for the predicted 

classifications along all one-dimensional projections.  

 Note that the standard rational model can compute the probability for a 

classification, given a particular order of the items. However, all the empirical 

examples below assume concurrent presentation of the stimuli. Sanborn, Griffiths, 

and Navarro (2006) provided algorithms for the rational model, which approximate 

classification probabilities from the rational model, as if all items had been presented 

concurrently. Sanborn et al.’s examination of their algorithms was shown to both have 

desirable normative properties and outperform the standard rational model in specific 

empirical cases. Specifically, we used the Gibbs sampler algorithm to compute the 

probability for the most probable classification for a stimulus set. Moreover, we 

adapted the algorithm to compute the probability of any particular classification (not 

necessarily the most probable one) for a stimulus set. In either case, higher 

probabilities indicate that the corresponding classifications should be more intuitive.  
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Simplicity model  

The simplicity model of unsupervised categorization (Pothos & Chater, 2002, 2005; 

Pothos & Close, 2008) differs from the rational model and the unsupervised GCM in 

a number of interesting ways. First, the simplicity model is non-metric (a metric space 

is not assumed), while this is not the case for the other two models. Second, the 

simplicity model has no free parameters, a characteristic which contrasts most sharply 

with the unsupervised GCM. Third, the simplicity model aims to maximize within 

category similarity and minimize between category similarity, but only the former 

constraint is relevant to the unsupervised GCM. Finally, the simplicity model is 

currently the only model which has been applied to data from entirely unconstrained 

categorization procedures; it is therefore interesting to compare it with the rational 

model and the unsupervised GCM against such data.  

 According to the simplicity model, more intuitive categories are ones that 

maximize within category similarity and minimize between category similarity (cf. 

Rosch and Mervis, 1975). The model is specified within a computational framework 

based on the simplicity principle (Chater, 1996, 1999). The first step is to compute the 

information content of the similarity structure of a set of items without categories. 

This is done by assuming that every pair of stimuli is compared with every other pair. 

For example, suppose that we have four stimuli, labeled by 1,2,3,4. Then, similarity 

information would be encoded as similarity(1,2)>similarity(1,3), 

similarity(1,2)<similarity(1,4), etc., with each comparison requiring one bit of 

information to specify whether the first pair is more similar or less similar than the 

second (assuming no exact equalities).  

Categories are defined as imposing constraints on the similarity relations 

between pairs of stimuli; similarities within categories are assumed to be greater than 
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all similarities between categories. For example, suppose that we decide to place 

stimuli 1,2 in one category and stimuli 3,4 in a different category. Then, our definition 

of categories implies that similarity(1,2)>{similarity(1,3), similarity(1,4)} and that 

similarity(3,4)>{similarity(1,3), similarity(1,4)}. Thus, the codelength for the 

similarity structure for a set of stimuli can be reduced by using categories, if the 

constraints specified by the categories are numerous and, generally, correct (note that 

equalities in similarity relations do not falsify the constraints; Hines, Pothos, & 

Chater, 2007). If in u constraints there are e incorrect ones, the number of bits of 

information required to correct the errors is given by equation (2a).  
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Overall, there is a codelength without categories and a codelength with categories. 

The ratio of the latter to the former indicates how much codelength reduction is 

afforded by the use of categories; it is typically reported as a percentage and referred 

to as just ‘codelength’. The lower its value, the more intuitive a particular category 

structure is predicted to be. The lowest possible value of codelength is about 50%. 

When trying to identify the most intuitive classification from scratch, the simplicity 

model employs a search algorithm akin to those in agglomerative clustering 

procedures (Hines et al., 2007).  
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Analyses  

Our analyses are divided in three parts. First, all three models are examined with a 

simple toy stimulus set. For the rational model and the simplicity model, this exercise 

illustrates the way they are applied and some basic implementational assumptions. 

Regarding the unsupervised GCM, this exercise is more important, since it 

corresponds to a preliminary test of whether the model can capture some obvious 

intuitions about category intuitiveness. Second, we examined a range of classic 

stimulus sets from the supervised categorization literature, on the assumption that 

category learnability is related to intuitiveness. Third, we considered data from studies 

which employed an entirely unsupervised categorization procedure.  

Toy stimulus set/ illustration of the models’ operation 

Four stimulus sets were created to assess the three models with respect to the 

straightforward intuition that well-separated, coherent categories should be more 

intuitive than less-separated ones. Each stimulus set was intended to correspond to a 

category structure composed of two clusters. The stimulus sets differed on how close 

the two clusters were to each other, with category prototypes being 2, 3, 4, or 5 units 

apart. The two most extreme stimulus sets are shown in Figure 2; the other stimulus 

sets were in between these extremes.  

 Unsupervised GCM intuitiveness values were obtained as log likelihood error 

terms, which reflect the deviance between the intended assignment of stimuli into 

categories and the predicted assignment by the GCM. A lower error term implies that 

the corresponding classification is considered more intuitive. Constrained 

optimization of the GCM parameters was done with the fmincon Matlab function 

(version R2007b). We examined the log likelihood error term for a particular 

classification at least 50 times using different random initial parameter values (the 
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lowest error term was taken to be the intuitiveness value from the unsupervised 

GCM). To facilitate comparisons with other models, we normalized the log likelihood 

values for all category structures onto a 0-1 scale (with 0 corresponding to least 

predicted intuitiveness and 1 corresponding to the greatest intuitiveness), through the 

transformation 
minmax

min
1






X
, where X is the log likelihood error for any of the four 

category structures, min is the least log likelihood error (of these four values), and 

max is the greatest error. By carrying out this (or analogous) transformation for the 

predictions from all models, we can derive an impression of how the models compare 

with each other. The normalized scores have been used in all figures, raw model 

predictions in the tables.  

Simplicity model predictions were given as codelength values, so that a lower 

codelength indicates a more intuitive classification. Codelength values typically range 

between 50% and 100%. Recall that the input to the simplicity model is not item 

coordinates, but rather information of which pairs of similarities are greater or smaller 

than others. In order to derive such information from item coordinates, a distance 

metric has to be assumed. Consistently with previous examinations of the simplicity 

model (e.g., Pothos & Chater, 2002, 2005), we opted for the Euclidean metric. The 

Euclidean metric is an appropriate default choice, since it corresponds better to the 

way physical distances are perceived psychologically. Of the models considered, the 

simplicity model was the most straightforward to run, requiring less than a minute per 

stimulus set. Simplicity values were transformed onto a 0-1 scale as above.  

Using Sanborn et al.’s (2006) adaptation of the rational model, it is possible to 

identify the best classification for a set of items and compute the probability for any 

particular classification—as noted, these probabilities can be interpreted as 

predictions for category intuitiveness. The algorithm was run with a different number 
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of iterations for different stimulus sets (at least 10,000), with a view to ensure that not 

more than 10 hours were required per stimulus set. Sample spacing was set to 20. For 

the coupling parameter we employed the commonly used value of 0.5. Finally, for the 

rational model with dimensional selection, intuitiveness values corresponded to the 

most probable classification regardless of whether all dimensions or a particular 

dimension were employed.  

 All models correctly predicted that category structures for which the two 

categories are closer together should be less intuitive, compared to category structures 

for which the categories are further apart (Table 1). This is hardly an exciting 

prediction, but nonetheless an important basic test that the models are consistent with 

expectations in such an intuitive case. Note that the rational model with dimensional 

selection correctly predicts that the optimal dimension in all cases is dimension 1 (in 

other words, the probability of the best possible classification along dimension 1 is 

greater than the corresponding probability along either dimension 2 or both 

dimensions). In this straightforward case, there is agreement between the rational 

model and the rational model with dimensional selection. Regarding the simplicity 

model, the lowest possible codelength in this case is 51.6; as noted, the exact value 

will somewhat depend on the particular classification. Also, the worst possible 

codelength is 117.9, well over 100. This reflects the fact that when the prototypes are 

only two units apart, the costs associated with correcting errors in the constraints 

specified by the classification are so high, that we are actually better off describing 

the similarity information without categories.  

 The behavior of the models can be seen in Figure 3, where each of the model 

measures has been transformed on a 0 to 1 scale. While such a transformation 

involves some arbitrary assumptions, it provides a visually intuitive means of quickly 
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appreciating model similarities and differences (in this case, for example, the fact that 

the unsupervised GCM and the simplicity model rise quickly to their highest value, 

while the rational model’s rise is more gradual).  

--------------------------------------FIGURES 2,3, TABLE 1----------------------------------- 

Supervised categorization data 

Supervised categorization data can be used to derive estimates of category 

intuitiveness in two ways. First, we assume that if classification A is more difficult to 

learn than classification B, then, in an unsupervised context, classification A will be 

considered more intuitive compared to B. The empirical evidence supports this 

assumption. Colreavy and Lewandowsky (in press) found no difference between a 

supervised categorization condition and a matched unsupervised one, in terms of 

strategy development and rate of learning (see also Griffiths, Christian, & Kalish, 

2008). Love (2002) reached the opposite conclusion, but his supervised and 

unsupervised stimulus sets were not directly comparable, and the learning task was 

not entirely equivalent to an unsupervised categorization one.  

 Second, consider categories A and B and a new instance X. Suppose that 

participants are more likely to classify X into category A than B. Since participants 

classified X with category {A} rather than {B}, they must think that the overall 

grouping {A,X}{B} must be more intuitive than the alternative grouping {A}{B,X}. 

Therefore, we can assume that classification {A,X}{B} is more intuitive than 

{A}{B,X}. We can then examine whether the unsupervised categorization models 

consider{A,X}{B} as more intuitive compared to {A}{B,X}. Note that the 

application of the unsupervised GCM to such data is very different from the standard 

application of the GCM, where the objective is to predict classification probabilities 

for the new instances. 
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 Finally, methodologically, one can ask whether the categories employed in 

supervised categorization research may be so unstructured that they would never be 

created in a spontaneous fashion. But, this is not a problem since the difference in 

relative intuitiveness between two classifications, however unstructured, can always 

be empirically examined: participants’ spontaneous classifications should be more 

similar to the one which is predicted to be more intuitive. 

Shepard, Hovland, and Jenkins (1961). Shepard et al. (1961) considered the 

difficulty of learning six binary classifications with stimuli made of three binary 

dimensions (Table 2). Classification 1 is simple to learn because it covaries perfectly 

with the first dimension of the stimuli. Classification 2 reflects an ‘exclusive OR’ 

(non linear) category structure in its first two dimensions, while the third dimension 

constitutes random noise. Classifications 3, 4, and 5 can be described by one-

dimensional rules with exceptions and require attention to all three dimensions. 

Classification 6 also requires attention to all three dimensions, but in this case there 

are no obvious regularities. Shepard et al. reported that the cumulative error rate 

conforms to the following ordering: Classification 1 (easiest) < Classification 2 < 

{Classifications 3, 4, 5} < Classification 6 (most difficult). This result has become a 

benchmark for assessing models of supervised categorization (e.g., Love et al., 2004; 

Kurtz, 2007; Nosofsky & Palmeri, 1996).  

--------------------------------------TABLES 2, 3, FIGURE 4---------------------------------- 

 As discussed, we assumed that more intuitive classifications should be easier 

to learn (the results of Griffiths et al., 2008, support this assumption in the case of the 

Shepard et al. data, with a kind of unsupervised induction task). The unsupervised 

GCM, the simplicity model, and the rational model were applied by computing the 

log likelihoods, codelength values, and classification probabilities, respectively. The 
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raw results are shown in Table 3 and normalized predicted intuitiveness scores are 

shown in Figure 4. The unsupervised GCM performed better than both the simplicity 

model and the rational model. The unsupervised GCM correctly predicted that 

Classifications 1, 2 should be the most intuitive, 3,4,5 of intermediate intuitiveness, 

and, finally, that Classification 6 should be the least intuitive. Note that 

Classifications 1 and 2 are not distinguished (the former should be more intuitive than 

the latter). The simplicity model considered all classifications highly unintuitive; the 

codelength values produced were very close to 100, predicting that participants 

receiving these stimulus sets would be unlikely to spontaneously produce the Shepard 

et al. classifications. The model does predict that Classification 1 should be the most 

intuitive and Classification 6 the least intuitive one. However, the simplicity model 

was confused by Classification 2, which was predicted to be less intuitive than 3,4,5. 

The rational model had a similar problem: as with the simplicity model, the rational 

model correctly predicted Classifications 1 and 6 to be the most and least intuitive, 

respectively; however, it incorrectly predicted Classification 2 to be less intuitive than 

Classifications 3,4,5. The same pattern of results was predicted by the rational model 

with dimensional selection, even though the optimal dimension varied in different 

cases. To sum up, with the Shepard et al. data, the unsupervised GCM outperformed 

the models of unsupervised categorization.   

5-4 category structure. The 5-4 category structure (Medin & Schaffer, 1978) has been 

extensively explored in the context of the debate between prototype and exemplar 

theory (e.g., Johansen & Kruschke, 2005; Nosofsky, 2000; Smith & Minda, 2000; but 

see Homa, Proulx, & Blair, 2008). Medin and Schaffer (1978) reported classification 

probabilities for seven test items (Table 4) and, as discussed, we can use these 

probabilities to infer the intuitiveness of different classifications. For each 
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categorization model, two computations were made for each test item: One with the 

test item assigned to the first category and another with the test item assigned to the 

second category. These two computations corresponded to two intuitiveness values 

for each item. The difference between these two values should correspond to the 

classification probabilities reported by Medin and Schaffer (1978).  

--------------------------------------TABLES 4, 5, FIGURE 5---------------------------------- 

 The results are shown in Table 5 and Figure 5. To create Figure 5, for the 

unsupervised GCM we computed the difference in log likelihood error for the 

classification when the first test item was assigned to the first category minus the log 

likelihood error for the classification when the first test item was assigned to the 

second category; and likewise for the other test items. (In other words, we subtracted 

the values in each of the cells in Table 5.) Subsequently, these differences were 

converted onto a uniform scale, as in the other examples (in this case, the scale was 

0—2; model predictions corresponded to differences between two intuitiveness 

values, and such differences could be negative). An analogous procedure was adopted 

for the other models. Correlating classification probabilities and the differences in 

predicted intuitiveness values, for the unsupervised GCM, the simplicity model, the 

rational model, and the rational model with dimensional selection respectively, we 

obtained: -.857, -.960, .068, -.412. Note that a negative correlation is in the predicted 

direction for the unsupervised GCM and the simplicity model, since for these models 

lower values (lower error or lower codelength) correspond to more intuitive 

classifications and, hence, should be associated with higher classification probabilities 

in Medin and Schaffer’s data. The GCM and the simplicity model competently 

describe the Medin and Schaffer (1978) data; however, the rational model had 

difficulty discriminating between the (assumed) less and more obvious classifications.  
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Linear separability. A classification is linearly separable if a straight line (or the 

equivalent in more than two dimensions), can divide all the items which belong to one 

category from all items which belong to another. Linear separability is an important 

consideration in categorization, since exemplar theory is consistent with non-linearly 

separable categories, but this is not the case for prototype theory. The empirical 

results have been somewhat ambiguous (Ashby & Maddox, 1992; Kalish, 

Lewandowsky, & Kruschke, 2004; Kemler Nelson, 1984; Kemler Nelson, 1984; 

Olsson, Enkvist, & Juslin, 2006; Medin & Schwanenflugel, 1981; Ruts, Storms, & 

Hampton, 2004; Shepard et al., 1961; Smith, Murray, & Minda, 1997; Wattenmaker, 

1995). The latest research with schematic stimuli indicates that linearly separable 

categories are more intuitive (Blair & Homa, 2001). Of the category structures Blair 

and Homa used, most relevant are the ones with four categories each, in which each 

category had nine points (these were the largest stimulus sets). The linearly separable 

category structure was referred to by Blair and Homa as LS9 and the non-linearly 

separable one as NLS9. Blair and Homa reported an advantage of the LS9 

classification relative to the NLS9 one, in terms of ease of learning.  

 We modeled the LS9 vs. NLS9 contrast reported by Blair and Homa (2001). 

Each LS9 category was based around a prototype and nine ‘high distortion’ items 

from the prototype. Each NLS9 category was based around the same prototypes, six 

‘low distortion’ items from the prototype, and one low distortion item from each of 

the other three prototypes (the items from the other prototypes result in non-linearity). 

Blair and Homa reported the coordinates of six items from each prototype in three 

dimensions, which were derived from similarity ratings (Blair, personal 

communication). To approximate the Blair and Homa stimulus sets, the coordinates of 

the six items from each prototype were averaged to infer the coordinates of the 



GCM category intuitiveness     23 

 

prototype. Then, we computed the average distance between the prototypes and 

low/high distortion items, and so created enough low/high distortion items to 

approximate the LS9 and NLS9 category structures (Appendix). We created two more 

extreme stimulus sets, referred to as LS9X and NLS9X, in which the prototype 

coordinates were changed so that the least distance between any two prototypes would 

be at least 1.5 times the distance between a prototype and a high distortion item. The 

LS9, NLS9 stimulus sets can only be said to approximate the actual Blair and Homa 

stimulus sets. Therefore, we examined linear separability of each stimulus set with a 

series of logistic regressions attempting to predict category membership (Ruts et al., 

2004). Our re-creation of LS9 is not linearly separable (probably because categories 

are too close to each other), but it is a lot more so compared to NLS9. Moreover, the 

new stimulus set LS9X is linearly separable.  

--------------------------------------TABLE 6, FIGURE 6---------------------------------- 

The empirical finding we aimed to model was that LS9 was easier to learn 

compared to NLS9. Although there are no relevant empirical results for LS9X and 

NLS9X, we tentatively assume that for LS9X increasing the distance between 

category prototypes would make a category structure more salient (a straightforward 

assumption), but this would not be the case for NLS9X (a more controversial 

assumption). The results are shown in Table 6 and Figure 6. The unsupervised GCM 

and the simplicity model successfully predicted a difference between LS9 and NLS9 

and a more pronounced difference between LS9X and NLS9X. Note that using the 

unsupervised GCM to predict category intuitiveness is a different computation from 

that corresponding to the standard GCM and, so, our results do not bear on the fact 

that Blair and Homa (2001) could not identify satisfactory (standard) GCM fits for the 

classification probabilities of their test items. According to the rational model, all 
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classifications were extremely unlikely, and maybe this obscured any finer differences 

due to linear separability.  

Unsupervised categorization data 

Compton & Logan (1999). Compton and Logan (1999) reported extensive data on 

judgments of category intuitiveness, in an entirely unsupervised categorization task. 

They presented participants with diagrams of dots, as in Figure 1 (but without any 

curves), and asked participants to classify the dots in a way that seemed immediately 

natural and intuitive, by drawing curves to indicate their groupings. There were no 

constraints at all as to how the items should be classified (including no constraints on 

the number of groups; cf. Murphy, 2004). Compton and Logan measured category 

intuitiveness in terms of classification variability, that is, the number of unique 

classifications for each diagram shown to participants, so as to examine whether 

classification variability changed when the arrangement of dots in a diagram was 

transformed (e.g., reflected or rotated). Compton and Logan employed 48 unique 

diagrams, which consisted of 12 examples for each numerosity of dots from 7 to 10, 

inclusive (each participant classified 144 diagrams, the 48 original ones and various 

transformations of them). Each unique diagram was created by randomly arranging 

the appropriate number of dots in a 40x40 grid.  

 The categorization procedure of Compton and Logan somewhat deviates from 

the standard procedure in unsupervised categorization experiments: participants drew 

lines around points, instead of classifying stimuli as separate entities. For example, 

the classification of dots in a diagram will be affected by the nearest neighbor 

structure in the diagram; participants would rarely classify in the same cluster dots 

which are far away from each other. By contrast, in standard unsupervised 

classification tasks, where participants receive stimuli as separate entities, 
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classification of highly dissimilar items into the same group is sometimes observed. 

However, Compton and Logan (1999) is currently the most extensive report of 

unsupervised categorization results. Moreover, perceptual grouping processes in 

Compton and Logan’s experiment is arguably very similar to the grouping by 

similarity, postulated by models such as simplicity and the GCM: in both cases, the 

assumption is that participants will prefer groupings which enhance within category 

similarity. Finally, some researchers have argued that such dot diagrams is a valid 

way to study unsupervised categorization (Pothos & Chater, 2002).  

Compton and Logan only reported the diagrams for which they observed the 

two highest and two lowest classification variability values in each of their two 

experiments; we read off the item coordinates from the diagrams (Appendix), so as to 

examine whether the predictions of the unsupervised categorization models are 

consistent with the highest/ lowest classification variability results reported by 

Compton and Logan: there should be less classification variability for stimulus sets 

for which the models can identify more intuitive classifications.  

--------------------------------------TABLE 7, FIGURE 7--------------------------------- 

 The simplicity model and the rational model can identify the best possible 

classification for a set of items. In the case of the simplicity model, we employed the 

agglomerative search algorithm described in Pothos and Chater (2002) and for the 

rational model the Gibbs sampler algorithm in Sanborn et al. (2006), which computes 

the most probable classification for a set of items, in a way that approximates 

concurrent presentation of the items.  

Regarding the unsupervised GCM, we have no algorithm to identify the 

preferred classification from scratch. Therefore, we examined the log likelihood error 

term for the preferred classifications identified by the simplicity model, the rational 
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model with dimensional selection, and K-means two- and three-cluster algorithms 

(excluding some all-inclusive categories identified by the rational model, since such 

categories are pathological for the unsupervised GCM); the intuitiveness prediction 

from the GCM for a stimulus set corresponded to the lowest identified log likelihood 

error term overall. In this case, we also examined a modification for the unsupervised 

GCM, for which the sensitivity parameter was fixed to a constant value (we chose 

c=0.5, noting that which value of c is suitable will depend on the coordinate units). 

Why is this consideration relevant in this case, but not in the case of the stimulus sets 

from supervised categorization studies? In unsupervised research, the classifications 

considered are typically chosen to be intuitive to naïve observers. Accordingly, 

without a restriction on c, the GCM can always stretch the representational space in 

such a way that the corresponding classification is maximally intuitive. 

Psychologically, by restricting the sensitivity parameter, we suggest that participants 

spontaneously classify an item not just by considering its single nearest neighbor, but 

in relation to many of the other items as well (this seems highly plausible in the case 

of the Compton & Logan results, and also the Pothos & Chater results, considered 

next).  

The results are shown in Table 7 and Figure 7. Note first that the standard 

unsupervised GCM is unable to discriminate between the intuitive and unintuitive 

stimulus set, but this is not so when a restriction in the sensitivity parameter is 

introduced.  We next correlated the classification variability results reported by 

Compton and Logan with the intuitiveness values generated from each model. These 

(Pearson) correlations were for the unsupervised GCM, .319, the unsupervised GCM 

with a c restriction, .407, the simplicity model, .430, the rational model, -.032, and the 

rational model with dimensional selection, -.902 (all in the right direction, noting that 
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higher values from the unsupervised GCM and the simplicity model correspond to 

less intuitive categories, but higher values from the rational model to more intuitive 

categories). Of these correlations, the one involving the rational model with 

dimensional selection probabilities was the highest, showing that allowing 

dimensional selection in the rational model is a key modification regarding the 

model’s explanatory power. Moreover, the unsupervised GCM with c restricted 

performs better than the unrestricted GCM. Specifically, it correctly identifies the four 

low variability stimulus sets as more intuitive than all the four high variability ones.  

Pothos and Chater (2002). Pothos and Chater examined four 10-item stimulus sets 

for which there were differing intuitions about the most intuitive classification 

(Appendix). In the first one, there were two well-separated clusters of equal size 

(referred to as ‘two clusters’). In the second one, there were also two well-separated 

clusters, but one was larger than the other (referred to as ‘big small’). In the third 

stimulus set there were three well-separated clusters (‘three clusters’). Finally, there 

was little classification structure in the last stimulus set (referred to as ‘little’).  

 We consider Experiment 2 of Pothos and Chater, whereby item coordinates 

were mapped onto (separable) dimensions of physical variations, to create stimulus 

pictures that were printed on separate sheets of paper and given to participants to be 

sorted into groups that were “intuitive and natural”. No constraints were imposed on 

participants’ classifications (e.g., participants could use as many clusters as they liked, 

they could see the stimuli in any order or way they liked, and they could make 

changes in their classifications). This represents the most naturalistic unsupervised 

categorization study we found in the published literature. Pothos and Chater employed 

28 participants and measured classification performance in terms of three indices, the 

number of distinct classifications (a higher value implies less participant agreement), 
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the number of robust distinct classifications (these are the distinct classifications with 

a frequency greater than one), and the frequency with which the best possible 

classification was produced. Because of the small sample, these three measures did 

not correlate very well with each other; Pothos and Chater considered the last two as 

the most valid. We derived two separate rank orderings for the four stimulus sets from 

these two measures, which we subsequently added together to obtain an overall rank 

ordering for the observed intuitiveness of different stimulus sets. For the ‘two 

clusters’, ‘big, small’, ‘three clusters’, and ‘little’ stimulus sets, the summation of the 

ranks for these two measures produced 3, 2, 5, and 7 respectively, whereby a lower 

number indicates higher category intuitiveness.   

--------------------------------------TABLE 8, FIGURE 8---------------------------- 

 Unsupervised GCM category intuitiveness predictions were computed for the 

classifications predicted by the simplicity model, the rational model with dimensional 

selection, and K-means two-cluster and three-cluster algorithms. As before, we 

explored the version of the unsupervised GCM with and without restricting the 

sensitivity parameter; for the rational model we employed the Sanborn et al. (2006) 

algorithms. The simplicity model was applied to the stimulus sets by searching for the 

best possible classification on the basis of item coordinates. The results are shown in 

Table 8 and Figure 8. The simplicity model and the restricted unsupervised GCM 

accurately predicted the ordinal ordering of empirical classification intuitiveness in 

Table 8, but this was not the case for the unrestricted unsupervised GCM (which 

failed to discriminate between any of the stimulus sets). Finally, the rational model 

with dimensional selection was in much closer correspondence to the empirical results 

than the standard version. 
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Conclusions 

Naïve observers can often have very compelling intuitions that a particular grouping 

for a set of stimuli may be more appropriate than another. Therefore, understanding 

the computational basis for such intuitions appears an important objective for models 

of unsupervised categorization. One aim of this paper was to examine predictions 

about category intuitiveness, from computational models of categorization, against a 

series of studies from the categorization literature.  

 Models of unsupervised categorization which can readily produce a measure 

of category intuitiveness are the rational model and the simplicity model and so these 

two models were tested in our analyses. Future work could fruitfully include 

additional models, such as Schyns’ (1991) self-organizing neural network, which was 

used to model category emergence, Compton and Logan’s (1993, 1999) perceptual 

grouping approach to unsupervised categorization, or Love et al.’s (2004; Gureckis & 

Love, 2002) SUSTAIN model, which assumes two slightly separate mechanisms for 

supervised and unsupervised categorization (respectively, an explicit error term and 

surprisingness with a principle of similarity). Finally, there has been an extensive 

literature on statistical clustering (e.g., Fisher and Langley, 1990; Krzanowski & 

Marriott, 1995), which looks relevant to studies of unsupervised categorization. Such 

models could serve as psychological models of categorization, after some additional 

theoretical elaboration.  

 Another aim of this paper was to explore the possibility that a measure of 

category intuitiveness could be derived from a supervised model of categorization, the 

GCM. In our adaptation of the GCM, a candidate classification for a set of items is 

examined by considering how well the intended classification of each item can be 

predicted on the basis of all the other items. A log likelihood error term can thus be 
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computed, which indicates the ability of the GCM to describe the candidate 

assignment of items to categories. We postulated that when this error term is lower, 

then the corresponding classification is more consistent with the assumptions of the 

GCM about categorization, so that such a classification would be predicted (by the 

GCM) to be more psychologically intuitive. Both the supervised and unsupervised 

GCM are based on exactly the same equations, but are applied differently. The 

unsupervised GCM computes a number which can be interpreted as category 

intuitiveness, while the supervised GCM predicts classification probabilities for novel 

instances. Crucially, in the unsupervised GCM no parameter fitting is taking place 

relative to empirical data (parameters are searched so as to identify the best possible 

classification for a set of stimuli), while in the supervised GCM parameters are 

specified so as to achieve particular probabilities for the classification of new 

instances. 

The unsupervised GCM favors groupings of items that maximize within 

category similarity. The crucial difference between the unsupervised GCM and 

models such as the simplicity one is that similarity groupings are assessed not just 

against the initial/ unprocessed dimensional representation of the items, but against all 

possible derivative representations, which would be forthcoming from dimensional 

weighting, stretching/ compression of psychological space etc. This representational 

flexibility is, of course, the hallmark of GCM predictions and its characteristic which 

has allowed it to provide impressive fits to empirical data. It is also a characteristic 

that has provoked some criticism since, if the GCM is proved to be too flexible, then 

its explanatory power would be limited. Accordingly, a possible way in which our 

demonstration could have failed would be if the unsupervised GCM could predict 

every arbitrary assignment of items into categories to be perfectly intuitive. However, 
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this was not the case, and the accuracy of the predictions from the unsupervised GCM 

compared favorably from those of the rational model and the simplicity model.  

One can ask whether the unsupervised GCM is meant to be understood as a 

full model of unsupervised categorization. For a full model of unsupervised 

categorization what is needed is a criterion of category intuitiveness and a search 

algorithm which can use this criterion to identify the optimal classification for a set of 

stimuli from scratch. The unsupervised GCM fulfills only the first requirement. It can 

be used to compute the predicted category intuitiveness for a stimulus set, a prediction 

which can be compared with the ones from the rational model and the simplicity 

model. However, the current formulation of the unsupervised GCM fails the second 

requirement. To appreciate why this is the case, consider first how the simplicity 

model (equally for the rational model) works. The simplicity model can easily 

identify the predicted most intuitive classification for a set of stimuli from scratch, 

with simple search algorithms which take the stimulus configuration and identify the 

classification which best optimizes the model’s criterion for category intuitiveness. 

For the unsupervised GCM, the problem is that there is no single stimulus 

configuration, but rather an infinite number of possible ones, defined by stretching/ 

compressing psychological space or different relative attentional weighting of the 

item dimensions (in other words, the situation is like having different stimulus sets, 

the original one and all possible transformations of the original one, as allowed by the 

GCM parameters). Thus, in the case of the unsupervised GCM the search space is 

much more extensive, making optimization of its criterion for category intuitiveness 

intensive and difficult (so that, for example, the straightforward agglomerative 

algorithm which works for the simplicity model will not work for the unsupervised 

GCM). With future work, we hope to address this difficulty. 
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Regarding the results of our simulations, all models performed reasonably 

well, but no model could be identified as clearly superior when compared to the 

others. More work needs to be done in order to model category intuitiveness in a 

satisfactory way. For example, with the Shepard, Hovland, Jenkins (1961) data, the 

unsupervised GCM performed better than both the simplicity model and the rational 

model. In the case of the 5-4 category structure (Medin & Schaffer, 1978), the 

simplicity model came out ahead, with the unsupervised GCM providing the second 

best fit. In the case of comparing Blair and Homa’s (2001) LS/ NLS category 

structures, the simplicity model and the unsupervised GCM could both provide a 

perfect account of the empirical findings. Compton and Logan (1999) provided one of 

the early studies with an entirely unsupervised categorization procedure. The best 

description for their results was from the rational model with dimensional selection. 

The unrestricted unsupervised GCM was too powerful for this data. It was necessary 

to constrain the sensitivity parameter before the unsupervised GCM could accurately 

predict an intuitiveness difference between the low and high variability stimulus sets 

(cf. Stewart & Brown, 2005; Olsson et al., 2004). Finally, the restricted unsupervised 

GCM and the simplicity model could account for Pothos and Chater’s (2002) data, 

and the results from the rational model with dimensional selection were in close 

correspondence too.  

The relative success of the unsupervised GCM calls into question the 

distinction between supervised and unsupervised categorization which has dominated 

the literature. We showed that a model of supervised categorization could be 

straightforwardly adapted to make predictions about category intuitiveness. Also, the 

converse situation is implied in our demonstration: models of unsupervised 

categorization were used to describe empirical results from supervised categorization 
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studies, by assuming that when a classification is more difficult to learn then it should 

be less intuitive (cf. Colreavy and Lewandowsky, in press). It is therefore possible 

that both supervised and unsupervised categorization could be described within the 

same mathematical framework (e.g., the GCM), noting, however, that behavioral or 

neuroscience data may show these to correspond to distinct psychological processes 

(e.g., cf.  Ashby & Ell, 2002; Ashby & Perrin, 1988; Nomura et al., 2007; Zeithamova 

& Maddox, 2006; see also Love et al., 2004). Future work will hopefully address 

these exciting issues, as well as extend formalisms like the rational model and the 

simplicity model to provide more complete fits to category intuitiveness data.  
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Appendix. Coordinates of stimulus sets for Blair and Homa (2001), Compton and 

Logan (2001), and Pothos and Chater (2002).  

 

The coordinates for the LS9 and NLS9 category structures, after Blair and Homa 

(2001).   

 

LS9 

dim1  dim2  dim3 category membership 

0.512577 -0.79309 0.599944 1 

0.950823 -0.43238 -0.64205 1 

0.919654 -0.21622 0.84206 1 

0.568712 -0.39062 0.806167 1 

0.880188 -1.05977 0.25976 1 

0.870623 -0.12556 0.828048 1 

0.582638 -0.79996 -0.43682 1 

0.803067 -0.30819 -0.65991 1 

0.876774 -0.58663 -0.61081 1 

-0.37315 0.377606 -0.70526 2 

-0.73816 0.51154 0.740735 2 

-1.0016 -0.22806 -0.23997 2 

-1.16004 0.355098 0.491137 2 

-0.89618 0.516986 0.680177 2 

-0.47673 1.029432 -0.24724 2 

-0.12914 -0.00409 -0.49905 2 

0.135353 0.036625 0.084978 2 

-0.9625 0.412114 0.664558 2 

-0.94764 -0.07662 -0.57309 3 

-0.16205 0.250033 -1.35296 3 

-0.19715 -0.36733 -1.42623 3 

0.12512 0.365261 -0.24335 3 

-0.49901 0.220019 -1.30251 3 

-0.01908 -0.65789 -0.18377 3 

-0.15327 -0.23203 -1.45411 3 
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-0.21237 -0.32686 0.030132 3 

-0.0272 0.535436 -1.00146 3 

-0.00022 0.108769 1.334538 4 

-0.65028 0.589483 0.717457 4 

-0.08156 0.110816 -0.17754 4 

0.1981  -0.19542 -0.05218 4 

-0.48844 -0.4543 0.799656 4 

-0.5698 0.011733 1.129052 4 

-0.12106 0.094234 1.334165 4 

0.522919 0.424834 0.962302 4 

-0.08454 0.180491 1.335545 4 

 

NLS9 

dim1  dim2  dim3 category membership 

0.838829 -0.36053 0.501983 1 

0.461945 -0.17192 0.194231 1 

0.619334 0.015154 0.190737 1 

0.768688 -0.26211 0.495337 1 

0.68267 -0.60588 -0.15475 1 

0.740189 -0.04274 0.380288 1 

-0.27036 0.610669 2.62E-05 1 

-0.15634 -0.11304 -0.30074 1 

-0.36082 0.40637 0.609859 1 

-0.49422 0.210742 -0.35648 2 

-0.93876 0.259376 -0.10888 2 

-0.25408 0.371623 0.289483 2 

-0.27109 0.358076 0.309954 2 

-0.6851 0.26592 -0.35547 2 

-0.60909 0.265358 0.425998 2 

1.088306 -0.11084 0.327542 2 

0.070897 -0.19185 -0.99894 2 

-0.43094 -0.02517 0.646929 2 

-0.00154 0.010836 -0.38427 3 

-0.45214 -0.28763 -0.98939 3 
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-0.21596 -0.50962 -0.53759 3 

-0.36785 -0.23031 -0.34315 3 

-0.21239 0.267929 -0.70358 3 

0.200385 -0.10851 -0.73687 3 

0.47956 -0.19797 -0.07317 3 

-0.54098 0.321569 0.433105 3 

0.320622 0.068017 0.701643 3 

0.335456 0.08753 0.653351 4 

0.160945 -0.04609 0.289989 4 

0.214626 -0.04449 0.339537 4 

-0.15039 0.004641 0.203744 4 

-0.04018 0.27801 0.200659 4 

-0.11774 0.162605 0.177971 4 

0.928562 0.017137 0.298591 4 

-0.55534 0.339004 0.433492 4 

-0.43699 0.087898 -0.94817 4
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The Compton and Logan (1999) stimulus sets for which highest and lowest 

classification variability was observed in Compton and Logan’s Experiments 1 and 2. 

Classification variability is expressed in terms of number of unique classifications 

produced for each dataset, and shown between parentheses for each dataset (this is the 

way to reference the coordinates in Compton and Logan’s diagrams). The horizontal 

and vertical dimensions in Compton and Logan’s diagrams are denoted as ‘x’ and ‘y’.  
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Experiment 1  

Low classification variability (4) 

             x              y 

0 5 

2 9 

8 8 

9 7 

7 2 

9 0 

11 1 

 

Experiment 1 

Low classification variability (6) 

             x             y 

0 5 

5 11 

6 10 

5 2 

8 8 

9 9 

10 9 

 

 

 

 

 

Experiment 2  

Low classification variability (5) 

             x              y 

0 5 

1 10 

4 11 

4 6 

6 4 

7 11 

9 5 

 

Experiment 2  

Low classification variability (5) 

             x                    y 

1 3 

1 1 

3 10 

4 11 

8 9 

8 7 

9 6 

8 5 

9 4 

 

 

Experiment 1  

High classification variability (21) 

             x              y 

0 6 

2 6 

3 0 

5 5 

6 2 

8 7 

7 11 

11 1 

 

Experiment 1  

High classification variability (25) 

             x                     y 

0 9 

5 8 

4 5 

5 1 

8 4 

9 1 

10 2 

10 4 

11 7 

 

Experiment 2  

High classification variability (20) 

                    x              y 

1 5 

2 4 

4 4 

5 10 

7 8 

7 6 

7 4 

10 6 

11 10 

11 1 

Experiment 2  

High classification variability (23) 

             x                    y 

1 8 

2 5 

5 6 

6 3 

6 8 

9 10 

11 9 

10 8 

11 1 
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The coordinates of the four datasets employed by Pothos and Chater (2002). The 

intended horizontal and vertical dimensions are the first and second dimension 

respectively.  

 

Two clusters  

2 2 

2 3 

3 3 

3 2 

3 4 

8 6 

7 7 

8 7 

8 8 

7 9 

 

Big, small 

2 5 

3 5 

3 6 

9 4 

7 4 

8 4 

8 5 

7 5 

8 6 

9 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three clusters 

2 3 

3 3 

3 4 

1 2 

6 6 

7 8 

6 7 

8 0 

9 0 

9 1 

 

Little 

5 4 

4 5 

2 5 

2 2 

4 1 

6 1 

7 3 

7 6 

5 8 

3 8
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Tables 

Table 1. The application of the unsupervised GCM, simplicity model, and the rational 

model to the ‘toy’ dataset of Figure 2.  

 

 Distance between prototypes 

Model 2 3 4 5 

Assumed intuitiveness least medium high highest 

GCM
1 

5.97 1.15 0 0 

Simplicity
2 

118 66.9 54.7 51.6 

Rational
3 

    

 all dims 3.07 3.55 4.87  5.99 

 best dim
4
  6.10 15.0 26.0 31.0 

Notes: 
1
Goodness of fit (smaller values predict greater intuitiveness); 

2
Codelength % 

(smaller values predict greater intuitiveness); 
3
Classification probability x 10

-4
 (larger 

values predict greater intuitiveness); 
4
The best dimension was always dimension 1. 
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Table 2. The Shepard, Hovland, and Jenkins (1961) classifications. The stimuli are 

specified in terms of three binary features (feature values: 1, 2). Each stimulus is 

assigned to category A or B, as specified, for each of the six category structures (I-

VI). 

 

 Category structure 

Stimulus I II III IV V VI 

1 1 1 A A B B B B 

1 1 2 A A B B B A 

1 2 1 A B B B B A 

1 2 2 A B A A A B 

2 1 1 B B A B A A 

2 1 2 B B B A A B 

2 2 1 B A A A A B 

2 2 2 B A A A B A 
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Table 3. Predictions of category intuitiveness from the unsupervised GCM, simplicity 

model, and the rational model for the Shepard et al. (1961) classifications.  

 

 

 Classification 

Model I II III IV V VI 

Observed lowest low intermediate intermediate intermediate highest 

GCM
1
 0 0 11.1 11.1 13.1 13.6 

Simplicity
2
 93.9 107.6 103.2 101.1 104 113 

Rational
3
       

 all dims 68 38 53 55 51 31 

 best dim
4 

     

240 

d2 

214 

d1 

227 

d1 

236 

d2 

229 

d2 

192 

d1 

Notes: 
1
Goodness of fit; 

2
Codelength %; 

3
Classification probability x 10

-4
; 

4
The best 

dimension for the rational model with dimensional selection is shown below each 

probability.  
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Table 4. Medin and Schaffer’s (1978) 5-4 dataset and classification probabilities of 

the test items. Items are represented in terms of four binary dimensions (values 0,1).  

 

 

 

Training items  Test items 

Category 1 Category 2  Label Coordinates Probability
1
  

1 1 1 0 1 1 0 0   T1 1 0 0 1 0.59 

1 0 1 0 0 1 1 0  T2 1 0 0 0 0.31 

1 0 1 1 0 0 0 1  T3 1 1 1 1 0.94 

1 1 0 1 0 0 0 0  T4 0 0 1 0 0.34 

0 1 1 1   T5 0 1 0 1 0.50 

   T6 0 0 1 1 0.62 

   T7 0 1 0 0 0.16 

Notes: 
1
This is the probability of classification to Category 1.  
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Table 5. The application of the unsupervised GCM, simplicity model, and the rational model to the Medin and Schaffer (1978) data. The first 

value in each cell corresponds to the intuitiveness of a classification assuming the test item is assigned to the first category, the second number 

assuming that the test item is assigned to the second category.  

 Test items    

Model T3 T6 T1 T5 T4 T2 T7 

Empirical probability
1 

.94 .62 .59 .50 .34 .31 .16 

GCM
2 

5.56 – 15.5 5.99 – 13.5 5.94 – 13.5 14.9 – 8.73 13.4 – 8.75 13.4 – 8.79 15.2 – 8.65 

Simplicity
3 

90.3 – 101 95.8 – 97.5 95.8 – 97.5 98.4 – 94.8 97.8 – 95 97.8 – 95 100 – 90.6 

Rational
4 

       

 all dims 9.5 – 7.5 4.9 – 18 4.9 – 18  4.9 – 18 8.1 – 12 7.8 – 12 8.0 – 12 

 best dim
5
  46 – 74 45 – 76 46 – 74 46 – 76 45 – 74 46 – 73 47 – 73 

     d1/d3 – d4 d3 – d2 d1 – d2 d2 – d4  d3/d4 – d1 d1 – d2 d2 – d1/d3 

Notes: 
1
Empirical probabilities refer to classification into the first category; 

2
Goodness of fit; 

3
Codelength %; 

4
Classification probability x 10

-4
; 

5
The best dimension for classification into Category 1 – the best dimension for classification into Category 2 is shown below each probability 

Where two dimensions are shown, this means that the probability of the best classification along one dimension is the same as that of the other.
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Table 6. Unsupervised GCM, simplicity model, rational model, and rational model 

with dimensional selection predictions for linearly separable (LS9, LS9X) and 

nonlinearly separable (NLS9, NLS9X) category structures, created after Blair and 

Homa (2001).  

 

 Category structure 

Model LS9 LS9X NLS9 NLS9X 

Predicted intuitiveness high highest lowest lowest 

GCM
1 

49.1 1.69 100 100 

Simplicity
2 

91.4 71.3 99.5 98.6 

Rational
3 

    

 all dims 1.96 0.959 2.15  6.72 

 best dim
4
 1.96 17.1 5.96 13.7 

 all d3 d1 d2 

Notes: 
1
Goodness of fit; 

2
Codelength %; 

3
Classification probability x 10

-24
; 

4
The best 

dimension for the rational model with dimensional selection is shown below each 

probability; ‘all’ indicates that no one-dimensional solution was better than the 

solution with all dimensions.  
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Table 7. Unrestricted and restricted unsupervised GCM, simplicity model, rational model, and rational model with dimensional selection, for the 

Compton and Logan (1999) data. Stimulus sets for which the lowest and highest classification variabilities were observed are denoted by ‘L’ and 

‘H’ respectively (there were two stimulus sets of each kind in Compton and Logan’s study).  

 

 Category structure     

Model Exp1 L Exp1 L Exp2 L Exp2 L Exp1 H Exp1 H Exp2 H Exp2 H 

Empirical data
1
 4 6 5 5 21 25 20 23 

GCM
2 

        

    unrestricted 0 0 0 0 4.39 0 0 0 

    restricted (c=0.5) 0.28x10
-4 

4.52x10
-4 

10.9x10
-4 

0.26x10
-4 

10.2 1.24 0.64 0.07 

Simplicity
3 

69.3 53.9 84.7 60.2 87.7 74.6 76.5 71 

Rational
4 

        

 all dims .128 .135 .153  .091 .135 .115 .117 .136 

 best dim
5
 .438 .287 .576 .487 .135 .132 .117 .136 

     d1 d2 d2 d1  all d1 all all 
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Notes: 
1
 This is the number of distinct classifications produced by Compton and Logan’s participants; as there were 30 participants in each of 

their Experiments 1 and 2, the highest possible value for classification variability is 30 (and the lowest possible value one); 
2
Goodness of fit; 

3
Codelength %; 

4
Classification probability; 

5
The best dimension for the rational model  is shown below each probability; ‘all’ indicates that no 

one-dimensional solution was better than the solution with all dimensions. 
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Table 8. Unrestricted and restricted unsupervised GCM, simplicity model, rational 

model, and rational model with dimensional selection predictions for the Pothos and 

Chater (2002) stimulus sets.  

 

 

 Stimulus set 

Model Two clusters Big, small 

cluster 

Three clusters Little 

GCM
1 

    

    unrestricted 0 0 0 0 

    restricted (c=0.5) 0.002 0.002 0.104 4.110 

Simplicity
2 

51.6 51.2 62.3 87.7 

Rational
3 

    

 all dims .640 .082 .083 .144 

 best dim
4
 .752 .671 .360 .144 

     d1 d1 d1 all 

Notes: 
1
Goodness of fit; 

2
Codelength %; 

3
Classification probability; 

4
The best 

dimension for the rational model with dimensional selection is shown below each 

probability; ‘all’ indicates that no one-dimensional solution was better than the 

solution with all dimensions. 
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Figure captions 

 

Figure 1. Each point in the diagram represents an item in psychological space. The top 

panel shows an intuitive category structure, while the bottom one a corresponding less 

intuitive one.  

 

Figure 2. Shown is the most intuitive (left) and least intuitive (right) category 

structure, in a set of four category structures which were used to illustrate the function 

of the models. The distance between the prototypes of the two categories varied 

between five and two units (in decrements of 1 unit). In the right figure, there was a 

point that is identical for categories A and B.  

 

Figure 3. Unsupervised GCM, simplicity, and rational model intuitiveness values for 

the Figure 2 category structures.  

 

Figure 4. Unsupervised GCM, simplicity, and rational model intuitiveness values for 

the six classifications of Shepard et al. (1961). The intuitiveness values from each 

model were converted onto a 0-1 scale.  

 

Figure 5. Unsupervised GCM, simplicity, and rational model intuitiveness values for 

the classification of the seven test items in the 5-4 dataset of Medin and Schaffer 

(1978). The intuitiveness values from each model were converted onto a uniform 

scale (0-2). Also shown are the empirically measured classification probabilities, 

converted onto a 0-2 scale; the results are ordered in terms of decreasing likelihood 
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that the test item would be classified in the second category. The horizontal axis refers 

to the test items (T1-T7).  

 

Figure 6. Unsupervised GCM, simplicity, and rational model intuitiveness values for 

the LS9 and NLS9 category structures of Blair and Homa (2001), as well as two 

derivative category structures in which the prototypes were pushed further apart. The 

intuitiveness values from each model were converted onto a 0-1 scale.  

 

Figure 7. Unsupervised GCM with c=0.5, simplicity model, and rational model with 

dimensional selection intuitiveness values (converted onto a scale between 0 and 1) 

for the Compton and Logan (1999) datasets. The horizontal axis indexes the datasets, 

in the same order as they appear in Table 7. In the graph we also show Compton and 

Logan’s empirical results, converted onto a 0 – 1 scale.  

 

Figure 8. Unsupervised GCM with c=0.5, simplicity model, and rational model with 

dimensional selection intuitiveness values (converted onto a scale between 0 and 1) 

for the Pothos and Chater (2002) datasets. The aggregate empirical measure of 

category intuitiveness from Pothos and Chater’s (2002) results is also shown 

(converted to a 0—1 scale).  
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Figure 2. 

  

 



GCM category intuitiveness  62 

Figure 3. 
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Figure 4.  
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Figure 5. 
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Figure 6.  

 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

LS9 LS9X NLS9 NLS9X 

P
re

d
ic

te
d

 i
n

tu
it

iv
e
n

e
s
s

 

Stimulus set 

GCM 

Simplicity model 

Rational model 



GCM category intuitiveness  66 

Figure 7.  

 

 



GCM category intuitiveness  67 

Figure 8.  
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