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Abstract 

The work presented here shows the development of a machine vision algorithm for 

finding the position of a building inspection robot on the outside of a large building. The 

reasons for external building inspection are introduced along with the types of tests used. 

Existing methods are examined giving their limitations in terms of practicality and safety 

and an alternative using remote access is proposed. The work concentrates on the 

navigational aspects and shows how one possible solution using machine vision could be 

implemented and this is compared to similar work carried out elsewhere. 

The major part of the thesis covers the development of the robot location algorithm 

starting with the fundamentals of image processing and finishing with the actual robot's 

position. Different methods of edge detection are investigated and a pixel linking routine 

is used to group together data in an image that form features and principal lines. The 

algorithm investigates the use of the lines for detecting vanishing points and tries to 

identify the features highlighted in the image. The most significant part of the work 

concentrates on the development of a method of identifying specific features such as a 

target on the robot and different windows along with a way of matching the features to a 

computer model of the building thus enabling the position of the robot to be calculated. 

Results are given showing how the algorithm performed on a model building and robot 

in the laboratory with various tests using different camera positions, image enhancement 

and spurious features. The results presented show that the algorithm was capable of 

finding the position ofa model robot to sufficient accuracy (typically 3% of the size of 

the robot target) and that the errors measured were predictable. Additional results show 

how the algorithm performed on a real building and indicate the problems associated with 

real images with the conclusion that the algorithm will work under a certain range of 

conditions providing that certain elements of it can be improved. 
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Bit 

Byte 

CAD 

CCD 

Centroid 
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DXF 

Feature 

FSM 

GPS 

LTG 

MMI 

Normal 

Object 

Orthogonal 

PC 

Pixel 

Scan Line 
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X (direction) 

Y (direction) 

Glossary 

Short for 'Binary Digit'. Has the value 0 or 1. 

Unit of computer memory - equal to one character, has 8 bits. 

Computer Aided Design. 

Charge Coupled Device - essentially electronic film. 

The point about which the object would spin ifall its pixels had the 

same mass. The object's centre of gravity. 

City University Robot for Inspection Operations. 

Data eXchange Format file often used transferring CAD drawings. 

A collection of objects grouped in some way, for example, 

by a surrounding object. 

Finite State Machine. 

Global Positioning System. 

Laing Technology Group Ltd. 

Man-Machine Interface. 

A line normal to a plane has an angle between it and the plane 

of 900 . 

A closed group of pixels e.g. an ellipse or rectangle. 

At right angles. 

Personal Computer - mM and mM compatible. 

Short for 'Picture Element', an image is made up of pixels. 

An image line with a constant y value. 

Vanishing Point. 

A common and popular operating system for PCs. 

The horizontal position in an image. 

The vertical position in an image. 
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1 

Introduction 

A team at the Construction Robotics Unit at City University, London is developing an 

inspection robot called CURIO ( Bleakley and Chamberlain, 1994; Chamberlain and 

Bleakley, 1994 ) to be used externally on tall structures such as tower blocks or storage 

tanks. This incorporates a number of different disciplines, one being robot navigation. 

The position of the robot is vital to the recording of defects and for searching for par­

ticular inspection sites. There are a number of ways the navigation could be performed 

and it was decided to see whether a machine vision system would be suitable for this task. 

Having a real commercial application, machine vision offers a potential solution using 

cheap, readily available components and a high 'ease of use' factor requiring a minimum 

amount of effort in setting up. This thesis presents the first attempt at using a vision 

system and shows that this method of navigation has potential. 

Figure 1.1 CUlUO (prototype ) being tested on a wall at City University 

For this specific application, there has been no previous work found in the literature, and 

as it is only three years old at the time of writing, everything presented here represents the 

first investigations. The only source of related work must come from similar projects done 

by others and this can be broadly split into two main categories. Firstly there is the field 

of robot navigation, with an emphasis on machine vision and inspection; secondly there 

are general image processing techniques that are already in existence. 
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Automatic Inspection Robots 

Virtually all references to other inspection robots concentrate either on the ability to 

perform a specific inspection, or the mobility of the robot. The positioning of the robot 

appears to be a subject always left for the future and remains largely unaddressed. Perhaps 

the most similar application to CURIO is presented by Cusack and Thomas, ( 1992 ) 

which aims "to travel quickly to the points requiring inspection .. .!t is anticipated that in 

the future this system will be interfaced to a CAD system for autonomous guidance." This 

is the only work found to date where navigation for a building inspection robot is ex­

plicitly mentioned although no details of 'how' are given. Their results show the position 

of a crack relative to the robot. Similarly, Rosch and Schaab, ( 1995 ) look for incorrectly 

placed dowels in carriageway slabs using a covenneter and a frame type robot very similar 

to CURIO. The dowels are measured only relative to the robot frame, presumably 

someone has previously calculated and recorded the position of the robot. In another 

building application, Ashikawa et ai, ( 1992 ) developed a robot for removing coatings 

from exterior walls. They were only interested in travel speed, position was not mentioned 

but appears to be done manually by the operator. Tillotson, Snaith and Tachsti, ( 1993 ) 

have modified a Landrover to carry inspection equipment that looks for defects in roads. 

Again, nothing is mentioned about actual defect position but in this case, the vehicle has 

a driver and approximate position could be found using the trip meter. Similarly, other 

inspection methods may concentrate on the mechanics of the test as demonstrated by 

Sarr, ( 1992 ) who produced a hand held machine for accurately measuring scratches in 

aircraft skins using computer vision in conjunction with a laser. Results given show how 

well the scratches were found and measured, but does not mention how the operator 

records the location of the defect. A somewhat simpler approach is taken by Mangold, 

Friedmann and Rammelkamp, (1995) who use infrared thennography to locate "pins" 

( cladding fixing dowels? ) in tower blocks. Images are taken and then processed in the 

laboratory and location work appears to be done by eye, however, this deviates from the 

application developed in this thesis where images are to be processed on site. Many other 

robots are primarily designed to research mobility, for example, Lee et ai, ( 1994) look 

at the ability to move over an uneven terrain but do not mention how the robot will know 

where it is. Other robots which are designed to work on buildings such as the ones 

developed by Portech, ( 1995 ) concentrate again on mobility rather than position al­

though a window cleaning robot developed by OCS Group Ltd., ( 1995 ) can be posi­

tioned to "within a few millimetres" using guide rails on the building. One area of 

robotics that is developing the use of computer vision is that of road following vehicles 

although this tends to be mainly for guidance and object avoidance rather than absolute 
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positioning. Haifeng and Makela, ( 1991 ), for example, use the detection of edges in an 

image to look for kerbs whereas Campbell and Thomas, ( 1992 ) look for trapezium 

shapes in the image, since a road viewed from a vehicle becomes narrower with distance. 

Distance can also be obtained by using different cameras as demonstrated by Hock, 

Behringer and Thomanek, ( 1994 ) who use two of them set at different focal lengths for 

short and long range measurements. 

Building Interior Robots 

Further and perhaps more relevant work can be found from robots that work in the interior 

of buildings. These have to move around a three dimensional world rather than the two 

dimensional face of a building, but they still have to find their position. Probably the 

closest project to CURIO as far as visual navigation is concerned, is a robot for testing air 

conditioning vents developed by Fukuda et ai, ( 1993 ) and Abe et ai, ( 1994 ). This uses 

a camera to take an image of the ceiling and looks for the rectangular and circular features 

that make up the vents. The vents are quite distinctive and knowing their positions and 

using trigonometry, the position of the robot can be found. A similar project by Dulimatra 

and Jain, ( 1994 ) uses ceiling lights and the numbers on doors to navigate by. These 

robots do however, require that the features are specific and clear - almost as if they were 

targets. If a building has no clear distinguishing features, then it will be necessary to find 

an alternative navigation method. A commonly used approach makes use of depth in­

formation~ that is, by looking around and finding the distance to objects such as walls, a 

three dimensional picture is built up giving the robot its local position. This is an area of 

research carried out by the Oxford University Robotics Group which is specialising in a 

high performance binocular head/eye platform. In particular, Beardsley et ai, ( 1994 ) are 

using an uncalibrated active stereo vision system to navigate an autonomous vehicle and 

they use detected and matched corners to provide 3D point information. Also, 

Ferarri et ai, ( 1991 ) use stereo vision, as in nature, to measure distance. This is extended 

further by Weckesser, Gastinel and Dillmann, ( 1995 ) who use trinocular vision with 

calibrated cameras They are also able to detect image edges in real time and use parallel 

image processing to create a powerful navigation system. The robot works from a floor 

plan of the building and has a detailed knowledge of certain landmarks such as pillars. 

Multicamera vision systems tend to be rather complex and a simpler method of obtaining 

distance is to employ laser range finding and triangulation, as demonstrated by 

Tanaka et aI, ( 1995 ) who use it to find the position of a robot relative to pillars. If 

movement without position information is required, then a mobile robot developed by 

Vagi, Kawato and Tsuji, ( 1994) will be of interest as it has a novel way oflooking at the 
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scene with a vision system that captures images using a conical mirror. Object avoidance 

is performed by observing features that move towards the centre of the resultant image. 

Finally, Salagnac and Vinot, ( 1991 ) review specifications for construction site robots 

and they propose that vision-based positioning systems use building components such as 

floor tiles or vents which may be easily recognised. 

Photogrammetry 

So far, all the navigation methods described above use a positioning system located on the 

robot/vehicle. What if the navigation system was remote from the robot such that the 

robot was told its location? A class of surveying known as photogrammetry uses imaging 

techniques to measure objects and locate points with unknown positions. However, it 

tends to concentrate on producing an accurate 3D representation of a given object which 

could range from an industrial component to the Earth itself, rather than giving general 

positions of an object. The precision is obtained by the use of at least two images in the 

case of stereo vision and the cameras have to be accurately positioned and calibrated so 

that the true world co-ordinates of a point found in the images can be calculated. Csaki, 

( 1990 ), for example, shows a typical application where stereo vision and surveying 

techniques are used to draw and measure building data, in this case archaeological sites. 

Quite often targets, which are easy to see in images, are placed over the object to be 

measured, but in the context of buildings, many of the features themselves can be used 

instead. Benning and Schwermann, ( 1995 ) investigate the use of straight lines rather than 

points to obtain orientation information. This is particularly useful on buildings where 

lines are easy to find, especially around windows, but their example uses three images in 

which the corresponding lines have to be found and matched. A novel approach taken by 

Streilein, ( 1995 ) was to use a single, moveable S-VHS camcorder to record and sub­

sequently capture a large number of images. These images were processed later to re­

produce the building, but the camera must be calibrated. Good 3D reconstruction of the 

scene is shown but it requires extensive processing. 

Image Processing - Edges 

It has been shown above that there are a number of methods that have been used for 

navigation and locating robots. Most of these robots and vehicles use various forms of 

image processing to extract information from an image. A number of commonly used 

techniques which will be incorporated in one form or an other into the inspection robot 

location software are now reviewed. There are many books that cover the basics of image 

processing at a general level such as Gonzalez and Woods, ( 1993) or Sonka, Hlavec and 
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Boyle, ( 1994 ). These show methods which are likely to be used for most image 

processing applications, but once a specific task is required then specialised techniques 

have to be used which may be very application specific and cannot be covered by 

textbooks. What also tends to be apparent in the image processing literature is that there 

is a considerable amount of work done on specific techniques, but very few applications 

are mentioned at all. A case in point is the use of methods offinding edges in images. This 

is usually a vital step in image processing and, apart from the commonly used algorithms 

given in text books, much research is conducted into this area. Park, Nam and Park, 

( 1994 ) compare a number of different edge detection methods and propose their own 

one, which is as good as the Canny edge detector ( discussed later) and performs better 

on diagonal edges. Sarkar and Boyer, ( 1991 ) have also proposed their own detector 

which is claimed to work better than Canny. Their method works well in noisy images and 

can be "readily adapted to real-time hardware implementation". One of the problems 

encountered with other edge detectors is that they may produce good results but the 

implementation is very complex, thus making them less attractive at an early devel­

opment stage. Higgins and Hsu, ( 1994) also compare different detectors but propose one 

that has many parameters. The difficulty then becomes how to chose what value the 

parameters should take or how to change them for different images. A couple of other 

edge detectors developed by Tewfik and Deriche, ( 1993 ) and Qian and Titterington, 

( 1993 ) are also very mathematical in nature although the latter performs well on textured 

surfaces, which may have an application in looking for decorative features on a building. 

Alternative approaches to edge detection which attempt to learn the nature of edges, just 

as humans would, are also being developed by Bhandarkar, Zhang and Potter, ( 1994 ) 

who use genetic algorithms to cope with different amounts of noise in an image. Also by 

attempting to mimic the behaviour of the brain, Kendall and Hall, ( 1992 ) look at 

applying neural networks to image processing functions, such as edge detection and 

texture classification and reckon that their Quantised Neural Networks have "great po­

tential". 

Image Processing - Features 

Assuming that one method or another has successfully picked out the edges of interest, it 

then becomes necessary to try to identify the shapes and features that correspond to the 

edges. This is another area of active research similar to that in edge detection, where work 

is concentrated on a specific function rather than an application; again, some approaches 

are highly complex and would take a considerable amount of time to implement if 

adopted. A fairly frequently found topic is the identification of basic shapes such as lines, 
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comers, etc. Xin, Lim and Hong, ( 1994 ) use a description of an edge boundary to 

identify features which are made up of a number of comers, line ends, arcs and lines; 

however their example only uses a simple object: a pair of pliers. Similarly, Cooper, 

( 1993 ) looks at hypothetical objects and examines the relationships between the arcs and 

curves that make up the objects. This could have an application in recognising more 

complex features on a building. Others just concentrate on searching for lines as these are 

fairly prominent in man-made structures. Biao, ( 1994 ) looks for lines in eight different 

directions to try to identify buildings from aerial images. Kahn, Kitchen and Riseman, 

( 1990 ) on the other hand look at speeding up line detection in order to guide a robot 

down a path and suggest that their method could be implemented in hardware which 

would greatly speed up processing. Comers are significant in perception and there are 

several examples of comer detectors such as Cooper, Venkatesh and Kitchen, ( 1993 ) 

who obtain good results by first looking at the direction of the edges and then identify real 

comers based on the noise levels in the image. Rosenthaler et aI, ( 1992 ) use orientation 

energy from directional filters to look for line intersections and actually give an example 

showing the comers of windows and panels in an image of a building. Giraudon and 

Deriche, ( 1991 ) present another example of a method that uses many parameters which 

all have to be set for a certain image, but they can find comers in noisy images. An 

alternative to comer detection is to look for 'common junction types' where lines join 

such as 'L, T, K and +' junctions, as shown by Lee, Pong, Slagle and Esterline, 

( 1994 ). By trying to mimic human perception, Fischler and Wolf, ( 1994 ) have de­

veloped an algorithm that looks for key points on a curve, the points being very similar 

to those chosen by humans and could therefore be used to pick out the vertices of features. 

At a higher level, attempts are made to try and fit specific shapes to objects in an image. 

This has an advantage if objects are partially obscured, as is often the case, in that it may 

then be possible to predict where the whole of the feature lies. However, it is important 

to look at general solutions unless there is a specific application in mind. Kumar, Ra­

ganathan and Goldgof, ( 1994 ) look for circles in images using parallel methods, but in 

reality circles are seldom seen as orientation always makes them appear as an ellipse. A 

more realistic approach is taken by Wong and Kittler, ( 1993 ), who attempt to recognise 

objects such as blocks, pyramids and 'roofs' in a single image. It may be possible to use 

this if the majority of a building is visible so that its outline can be found. If features are 

not clear, then it may be possible to use an 'active contour'. An active contour can be used 

to find the border of a complex shape when there is no well defined edge. 'Snakes' can 

take two basic forms such as those which surround a feature and move in towards it, as 
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used by Leymarie and Levine, ( 1993 ) to find the outsides of a single living cell in an 

image. The other type is a 'balloon' which starts inside a feature and moves outwards to 

find its inner boundary, as demonstrated by Cohen and Cohen, ( 1993 ) to find the space 

occupied by the left ventricle of the heart. Both of these methods may have applications 

in finding either the outer boundary of a window or the individual window panes, but are 

mathematically and computationally complex. 

Finally, after examining all the related work, the question can be asked: Is there a de­

velopment system in existence which contains some of the algorithms mentioned above? 

A number of different image processing development systems are available for different 

platforms and a well known one, 'Khoros', is used at City University. A good review of 

it is given by Konstantinides and Rasure, ( 1994 ) where they discuss its advantages for 

image processing development, but is it needed for the development of the CURIO 

navigation algorithms? Since the proposed work is intended to form part of a much larger 

and real project it is necessary to develop the routines independently, thus enabling them 

to be integrated into the final application. A development platform is useful for trying out 

a few ideas but even if they are found to be useful, the routines would still have to be 

rewritten. 

1.1 Aims and Intentions 

The overall aim of this project is to obtain the position of the robot on the building. This 

requires a number of smaller goals to be achieved, as follows: 

1. To investigate the use of cheap, readily available components to produce a 

simple system for the operator. 

2. To investigate the use of a single gray level image from a single camera ( no 

stereo vision) so that data processing and image sizes are kept to a minimum. 

3. To see if it is possible to eliminate the need for the operator to measure the 

position of equipment when setting up. 

4. To investigate the use of an uncalibrated camera, that is, there is no prior 

knowledge known about the properties of the camera's optical system. 
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5. To see if it is possible to eliminate the use of navigation targets placed on the 

building. Only the robot may have a target placed on it in a permanent, known 

location. 

6. To be able to uniquely identify the robot target and to locate some reference 

point on it. 

7. To be able to recognise significant building features such as windows from a 

CAD ( Computer Aided Design) description. 

8. To identify the specific position of the features and hence define the pose of the 

building, making use of vanishing points for oblique camera angles. 

9. To obtain the position of the robot to the required degree of accuracy - this 

being to say that it is at a given floor and near a particular feature. 

The intention is to develop an algorithm capable of capturing images from a video 

camera, processing the image and displaying the real co-ordinates of a point on the robot 

target relative to the bottom left corner of the face of a building being inspected. Initial 

work is to be carried out using a model building and robot to develop the methods and 

ideas to see if this form of navigation is feasible. Once the model robot can be identified 

and its position calculated, it is intended to test the system on a real building assuming 

that the real robot is available. If not, the system will try to identify the building from its 

features. The accuracy of the algorithm will be found by fixing the model robot on the 

model building and physically measuring the position of the centre of the target. A 

number of images will be taken with the camera in different positions to see how the 

calculated position of the robot compares to the measured position. Also the robustness 

of the algorithm will be tested by using these images and by changing the visible features. 

1.2 Thesis Overview 

The work presented in this thesis begins by looking at how buildings are currently in­

spected and demonstrates that present practices require improvement. A method of 

automation using a robot is proposed and chapter 3 discusses how it may be possible to 

find the position of the robot on a building. The actual work researched and developed is 

covered in chapter 4 which begins by looking at how features may be recognised and then 

gives the overall algorithm for robot location. An introduction to image processing is 
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given and the remainder of the chapter deals with the processing of image data to produce 

features and how they are matched to a diagram of the building. Chapter 4 concludes by 

showing how the position of the robot may be found using a model building and robot. 

Chapter 5 details the experiments and results obtained to see how well the algorithm 

functioned on the model when different camera angles and image processing techniques 

were used. This gives an indication of the limits which an operator would have to observe 

when setting up. Further improvements and suggestions for future development are given 

in chapter 6 should this project be continued. The conclusions are given in chapter 7 and 

show that the aims have been achieved but further research is required to produce a more 

reliable algorithm. 
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2 

Current Inspection Methods and the 
Need for Improvement 

There are a number of well known types of defect that commonly occur in buildings, all 

of which require detection and monitoring. The defects may occur as a result of a number 

of different factors such as poor design and construction, substandard materials and 

external influences such as acid rain, earth movement and even bomb damage. There are 

several inspection methods which are documented in many publications, for example 

CEB, ( 1989 ) and Mallett, ( 1994 ); they can be divided into three broad categories: 

surface, subsurface and visual inspection. Surface inspection requires equipment to be 

placed in contact with the building and is used, for example, to measure the condition of 

reinforcement bars. Subsurface testing often requires the removal of material for sub­

sequent testing such as finding the salt content of concrete. Visual inspection is usually 

the simplest and performed first of all. Cracks, rust stains etc. can be easily seen and 

usually indicate that there is some underlying problem where further inspection is re­

quired. Figures 2.1 and 2.2 show a rust stain defect with spalling and the possible de­

terioration that results if the problem remains unchecked. In common with all these 

inspections is the need for access. 

Figure 2.1 Rust Stain and the 
Start oj Spalling at 

City Ulliversity 
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Figure 2.3 Concrete Cover Inspection by Abseiling. Photo: Laing 
Technology Group 

Current methods require one or more inspectors to be present on the building face. 

Sometimes it is possible to use existing access equipment such as window cleaning 

platforms, but often the inspector has to abseil to the desired location, as shown in 

Figure 2.3 where a typical inspection using a cover meter is being carried out. This 

introduces a number of safety and accuracy problems. On the safety side, there are the 

physical dangers of being located some distance up the side of the building. A failure of 

the rope, arresting equipment or harness would almost certainly guarantee death. Sadly, 

a greater risk can come from the residents themselves, whom the inspectors are trying to 

protect. There are several reports of people leaning out of windows trying to cut ropes, 

pouring fat out of the windows and the dropping of needles and razor blades on to the 

inspectors! Safety is becoming a bigger and bigger issue, and with the increase in liability 

and the soaring cost of legal action, fewer companies are prepared to use their own 

personnel in these situations. 

The other major problem encountered is the accuracy of the results, particularly with 

visual inspection. When a defect such as a crack is located, a sketch is made of that part 

of the building and the defect is drawn on it. This is later marked on a drawing of the 

building and possibly copied into a report. Numerous errors can occur here. Firstly, when 

one is very close to the building, it is difficult to see where one is and so it is easy, for 

example, to lose count of the floor or to make a reference against the wrong window. 

- 20 -



Current Inspection Methods and the Need/or Improvement 

tui" /.,r., .. " ., " '.: ~ , , ''': --v...; .. 
"'_4~ .. 

;? 
. 

~ I ..... tJI / ~lui"f;II'" 1'-. ... . p- -. 
.......... 

~ 
, . .. .. .. . . 0 .. .. r-

0 

" \ 
I , 

1-- ' ,~ \ \ '-:;; w" ... 0;{; I 
, 

" , - f2~ . 

~l '7~ / 

0 
,;:: 0 

I '. 
IL . . .. 

~ I , , 
'. / .:;:. , 

0 
I 

I --
: 

, , 
/ , 

I , 

0 
, 

/ , 

:1' ,. ~ /' , q , 
, .. , \ .' 

'- '- --

0 
I:' 

/.' 
/l 

• 
I I ~ ~ " 

' .' I 
I i'-

-_. .., _. 
\ 

.... !\oIt . 

- - -6"~ 

LTG 
I 

~9~ E.LC.U"T'loN P 1'1&·3 

SLATE SURVEY 

Figure 2.4 Example of Building Survey Report. Diagram: Laing Technology Group 

Secondly, a sketch is made of the defect risking further loss in accuracy. Finally, the 

sketch is copied on to a proper drawing resulting in a further loss in accuracy, along with 

the possibility of drawing it in the wrong place. Coupled with the ease of miscounting 

identical features, the result the customer sees may be rather different from what is 

actually present, making re-examination more difficult. This also has the added risk that 

a serious fault could be overlooked. An example of a real inspection report is given in 

Figure 2.4 which represents the part of a building shown in Figure 2.5 . In this instance, 

the side of the building was made up of a large number of slates which needed to be 

inspected, No drawings were available so a sketch was made and drawn up later using pen 

and paper. The defects were also added later from notes and photographs taken at the time 

of the inspection. Here, the accuracy of the defects themselves was not too important but 

what is very clear, is that there is a large potential for miscounting the slates and marking 

a defect in the wrong place because the slates, and each of the floors, were very repetitive 

in appearance. 

What is needed is a way of producing results more accurately and safely. A significant 

improvement is to use computer aided design ( CAD ) diagrams as these can be printed 

new each time they are required, or can be called up on a computer display. Many existing 
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Figure 2.5 Building Surveyed jor Figure 2.4. Photo: Laing Technology Group 

drawings are hand drawn and by the time they have been used and copied several times 

they can be hard to read and easy to misinterpret. Figure 2.6 shows the best part of a 

diagram ofa London tower block, supplied by Wong, ( 1994). Fortunately CAD systems 

are readily available and most, if not all, new buildings are designed on computer. Also 

old hand drawings may be digitised to produce as good as new diagrams, as demonstrated 

by Sivaloganathan, Jebb and Wynn, ( 1991 ). 

With computer diagrams available the major improvement in inspection is to replace the 

inspector by a machine or robot. The implications of this may sound bad, particularly at 

a time of high unemployment, but the aim is to change the role of the inspector to 

inspection robot operator. An inspection robot would effectively perform remote sensing 

and leave the inspector in a safe place. With the safety problems mentioned earlier, it is 

far better for the robot to become damaged than for a human to be injured or killed. The 

main safety risk in using a robot is it falling off the building, but simple procedures can 

greatly minimise the risk of injury to third parties. A robot also has the advantage that it 

can work 24 hours a day without having to rest. True, an operator needs to be present but 

not all the time. However, the main advantages of using a robot from a practical point of 

view is that it can minimise errors and produce more accurate results . Cameras and 

computers can keep track of the robot's position so that it knows precisely where it is, thus 

minimising confusion in defect location. Results can be taken to a better accuracy, par­

ticularly those arising from visual inspection. Calibrated equipment can be used to take 

consistent readings and the use of computers can speed up the data processing. These data 

can then be collated automatically and placed directly into reports without the need of 

intermediate manual work. 
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Figure 2.6 An Example of the Most Legible Part of a Building Drawing 

Summarising, it is seen that there is a considerable need for building inspection which 

would greatly benefit from automation; an inspection robot would be the ideal solution 

for this task. 

2.1 Proposed Semiautomatic Visual Inspection 

As mentioned earlier, one of the first inspections to be carried out is the visual inspection. 

This is also one of the simplest mechanically and would make an ideal task for the robot. 

The first mode of operation is to scan the whole building surface looking for specific 

defects. A local camera on the robot is used to spot the faults with either an operator 

viewing the camera output and deciding whether a defect is present, or on board image 

processing used to automatically find a defect. Crack detection, for example, is a subject 

researched by several groups using different techniques such as Doihara et aI, (1992), 

Bryson et aI , ( 1994 ), Miura et aI , ( 1991 ) and Song, Petrou and Kittler, ( 1992 ) and 

would be used to produce data directly. With an operator, a simpler short tenn approach 

would be for the operator to trace out the defect with a mouse or light pen. The results in 

either case are stored in a data base and then can be drawn directly on to the CAD diagram . 

The advantage of having this computerised data means that the second mode of operation 

of the robot can be employed, that is, to return to the defect area or site of interest. This 

allows repeat measurements to be taken, say at yearly intervals, and these can be 

compared to previous readings. The greater accuracy leads to better comparisons which 

give an indication as to the state of the defect, for example, is it getting worse? 

- 23 -



Current Inspection Methods ami the Need/or Improvement 

Both these modes of operation, the searching for and then returning to a specific place 

require one thing to be known in order to work - the location of the robot. Without 

knowing where the robot is, it is not possible to record the position of the defect and it 

would not be possible to return to it later. This then, gives the basis of the research 

presented here; how is the location of the robot determined? 
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Robot Location and Navigation 

In order for an inspection robot to be of any use, it is necessary to know its location so that 

defects can be accurately recorded. Two methods of operation are used, the first one being 

that the robot moves over the building looking for a specific defect and the second one 

being that the robot manoeuvres itself to a specific place where a test is to be performed. 

In either case, there are several ways of finding its position, all with advantages and 

disadvantages. Since this is an industrial application, priorities must be placed on cost and 

safety for the market place to be interested in the product. The capital cost of equipment 

can be reduced by using existing technologies available 'off the shelf and time costs are 

reduced by using equipment that is quick and easy to set up. With this in mind, there are 

three main possibilities. 

Firstly, sensors can be placed on the robot winch mechanisms to measure how far it has 

travelled from a given point. Although this may be easy to develop, it requires consid­

erable setting up since the robot is designed to work on many buildings using a variety of 

access equipment. Each one would have to be individually set up and calibrated, taking 

time. However, there are devices that contain a wire, similar in principle to a tape 

measure, which can be connected to some fixed location such that as the robot moves, the 

wire is drawn from the device which then gives a measure of distance travelled. Whereas 

this may be suitable for vertical measurement, problems would occur with horizontal 

movement as the wire would sag under its own weight and would possibly drag over other 

objects. 

Secondly, is the use of the Global Positioning System ( GPS ). A number of Earth orbiting 

satellites transmit signals that are picked up by a receiver either on the ground or on the 

robot. Knowing the positions of the satellites gives the location of the receiver and hence 

the robot. Edmundson and Novak, ( 1992 ) have developed a highway data recording 

system mounted in a van that integrates GPS, an inertial system and stereo vision to keep 

track of the van with the aim that if the GPS is unable to obtain a position, the other two 

systems can. Varying degrees of accuracy are achieved from a few tens of meters to a few 

centimetres. The latter would be required for the robot but with precision comes a very 

high price tag. Although this is dropping all the time, GPS equipment available from 

outdoor activity shops sell at around £500 and some can be interfaced to computers for a 

further £100. These sets are at the cheap end of the range and although no resolution is 
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given in the brochures, the accuracy would be within the tens of meters range - suitable 

for walking or sailing activities. The higher accuracy systems as used by the military 

would probably cost many times this. Also, there may be physical problems in receiving 

satellite signals very close to a building as the building will obscure a significant part of 

the sky, thus blocking out the satellites. A different form of GPS, developed by Leica, 

uses a laser and a 'wand' that can detect position from a distance of up to 100m. There 

may still be problems with objects obscuring the path of the laser however. 

The final solution is to literally 'look' to see where the robot is. A vision system is used 

to view the building and find the robot giving its location. This has the advantage ofusing 

affordable, readily available equipment and is very easy to set up. It is this last solution 

that is researched here to find out what would be required, and how realistic an approach 

it is. 

3.1 Location Theory 

The location of the robot is carried out in two stages. The first one, and the one which this 

work concentrates on, is the coarse positioning, that is, identifying at which floor the 

robot is, or between which two windows it is located. The second stage is to refine the 

position given that it is near some feature identified in the first stage. A number of 

different approaches have been taken to finding position using vision, with a popular one 

being stereo vision. This might seem an obvious choice since nature has developed this 

extremely well in the form of predatory animals, including humans, who employ stereo 

vision to judge distance. If the distance to objects in a scene is known, then a considerable 

amount of unwanted data can be discarded, allowing processing to concentrate on regions 

of interest. An overview of the tasks required, showing the complexity involved is given 

by Nishihara and Poggio, (1984) and above all, the 'fusion' of the left and right images 

is a complex task requiring much processing. This is an active area of machine vision 

where there is a considerable research effort, for example, Yau and Wong, ( 1994 ). 

Hellwich and Faig, ( 1994) attempt to match stereo images using the prominent edges in 

the two images to form a graph-based map of neighbouring edges. This is mathematically 

intensive but does produce a result, as demonstrated by locating the welded seams on oil 

tanks. Another approach to finding distance is taken by Ens and Lawrence, ( 1993 ) who 

use just a single camera to obtain depth information from the focus settings of the lens. 

This may, however, have problems if the camera is located some distance away'( as with 

a building) where objects at different distances will all be in focus. A simpler alternative 
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might be to use a single camera and a laser. By shining a laser on to the building and if 

the camera and laser orientations and positions are known, then the distance to the laser 

spot can be found giving the same range information as stereo vision. However, a 

practical problem is encountered. In order for the camera to detect a spot of laser light 

some distance away on the building, the laser would have to be quite powerful and 

problems of safety would need to be addressed; a powerful laser shining through 

someone's window could be a serious health risk! Photogrammetry makes use of the 

range information to provide very precise co-ordinates of features allowing the details of, 

say, a building or the ground, to be accurately recorded. For example, Brown, ( 1994 ) 

gives an example where 215 targets on the ground are used in conjunction with two sets 

of 26 photographs to obtain centimetre lateral accuracy or 1 part in 500 000 of the width 

of the photographic field. Specialist cameras are also employed which naturally increase 

the cost. This level of detail is not, however, required here and the precise positioning of 

cameras required would add considerably to the setting up time. Also, the nature of the 

problem here virtually eliminates the need for stereo vision and/or photogrammetric 

techniques as two dimensional planes only are involved, that is, the side of the building, 

where simpler methods can be used. 

3.1.1 Coarse Positioning 

The method developed in this application for the coarse positioning of the robot, is based 

on how humans see objects in a picture. If a black and white photograph showing the 

building with the robot on it is given and a diagram of the face of the building, then 

without much difficulty, the position of the robot on the diagram can be marked fairly 

accurately. In keeping with the ease of use strategy, this method requires a minimal 

amount of setting up. A single video camera is placed in a position where it can view the 

building and is connected to a computer; a typical set-up is shown in Figure 3.1. No 

calibration of the camera is required, no accurate placement of the camera is necessary, no 

measurements are needed and no complex stereo vision or photogrammetry need to be 

performed. In the proposed method, where the tasks are to be as simple as possible, the 

robot has a target permanently fixed on it making it easily recognisable. A description of 

the building ( CAD diagram) is loaded into the computer by the operator who merely has 

to align the camera and sets the software running. It could be possible for the operator to 

'click' a mouse, or some other pointing device, on easily identifiable points in the image 

to help the processing, such as the visible comers of the building but this detracts from the 

aim of the research to produce an automatic system. 

- 27-



Robot Location and Navigation 

Robot 

o 
Control Desk 

Figure 3.1 Typical Building Inspection Robot Set-Up 

The result of computer architecture is that it can calculate a more precise position than a 

human can and it is necessary to find a mapping between the image and building model 

or CAD diagram. To map the image to the diagram requires the 'Projective Transfor­

mation' (Thompson, 1966: 805-807 ) and is given below. 

[ 3.1 ] 

Interestingly, Georgopoulus and Toumas, ( 1994 ) use the same equations for 'digital 

rectification' and they also suggest that lines and circles can be used as well as the points 

here. If the eight mapping parameters bij are known then any point (x,y) in the image can 

be mapped onto a point (X,Y) on the CAD diagram. If this point happens to be some point 

on the robot, then its true location is immediately known. In order to evaluate the eight 

parameters, four corresponding points from the image and CAD diagram are required and 

it is this process that forms a bulk of the work. The overall process to find the robot's true 

position is: 

1. Find four points in the image and their corre-
sponding points in the CAD diagram. 

2. Calculate the eight mapping parameters. 

3. Identify some point on the robot in the image. 

4. Using equation 3.1, calculate the real posi tion 
o f the robot. 
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This transformation only works on planar surfaces, as is the case for many tower blocks. 

However, this is not always so. There are many instances where the face of a building is 

not smooth and deviates from the ideal. Also the robot will be at some distance from the 

building surface and therefore does not lie in the same plane, which will result in an error 

in position. This error is caused by the line of sight from the camera to the robot target not 

passing through the point directly beneath the target when viewed at an angle. The error 

is equal to the distance from the target to the building multiplied by tan( viewing angle ), 

where the viewing angle is the angle between the line of sight and the line normal to the 

target. This is shown in greater detail in section 5.1.1.1 where the effects of camera 

position are investigated. The size of error can be estimated by assuming the distance 

between the target and the building is 1 m. If the angle between the normal to the target 

and the camera is say 300 , then the error will be 1 x tan( 300 ) which is O.SSm. Since only 

coarse positioning is required here, the error when the camera angle is small does not 

matter although it can be calculated for larger angles by using a suitable target. As long 

it is known at which feature or floor the robot itself is located, confusion is avoided and 

a correct position can be found from fine positioning. 

3.1.2 Fine Positioning 

This section has been added for completeness only, as the fine positioning of the robot is 

beyond the scope of this work. Assuming the robot has stopped at some defect, its coarse 

position will have been calculated as above. An onboard camera, which is also used for 

visual inspection, will be able to view a limited part of the building surface including part 

of a recognised feature. Since this camera is part of the robot and does not require setting 

up by the operator, it can be used as a pre-calibrated measuring device and therefore its 

orientation to a specific feature can be found. With this knowledge and the knowledge of 

the feature, the robot's or the defect's position can be found accurately relative to the 

feature. It is not necessary to know the precise position from some far off point, for 

example, the bottom left comer of the face of the building, especially as buildings are not 

constructed with a high level of precision. Coarse tolerance, construction methods and 

actual movement of the building could change measurements by several mm per floor for 

example, which would then accumulate over the building. By only finding the position 

accurately relative to a known feature, errors arising through dimensional tolerances can 

be avoided. It should be noted that the onboard camera cannot be used for the coarse 

positioning as it is too close to the building to see all the relevant features. A realistic 

robot camera would be about half to one meter away from the building. 
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Figure 3.2 Display of the ROBOLOe Program 

3.2 Manual Location Program 

As this work is part ofa much larger project, a program, ROBOLOC, has been developed 

to locate the robot 'manually'. This is a quick development solution that allows the 

operator to select the four sets of points and to pick out the robot. The software then 

calculates the image to CAD mapping and gives the robot's true location as described 

above. A sample screen showing the program is given in Figure 3.2 where a captured 

image is displayed along with the CAD model. Although this might provide a suitable 

development program, it is still prone to human error, such as selecting the wrong point 

or not accurately placing a point, which the automatic version is designed to avoid. 

3.3 Automatic Robot Location 

The algorithm being researched is coded in the program, ROBONAV, which is designed 

to automatically find the robot on the building without human interaction during the 

image processing, although it could be used in conjunction with the manual program to 

select the building corners if ambiguities arise. It essentially performs the same task as the 

manual program but lets the computer select the four most suitable control points. The 
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writing and testing of the algorithm fonns the core of the work presented here and the 

program provides the platfonn, on which the various image processing algorithms have 

been developed. The following section describes the algorithm and functions in detail and 

concludes by showing that a good position for the robot can be obtained, accurate to 

within a small percentage, around 3%, of the size of the target. The accuracy of the 

position does depend, however, on the position of the camera with respect to angle and 

distance. 
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The Automatic Robot Location 

Algorithm 

Now that the location principles have been defined, it is necessary to break down the task 

into a number of specific steps and look at just how the grabbed camera image is going 

to be matched to the CAD model along with identifying the robot. For the robot, there is 

control over how it appears and a simple target placed on it is used to help find the robot. 

The buildings on the other hand, pose a difficult problem since their many different 

appearances and locations are not designed for recognition by image processing. This 

section presents the method used to identify the building and explains the different steps 

and algorithms employed. 

4.1 The Building Recognition Principle 

The principle used to recognise a building is based on how we as humans might perceive 

a scene. If a black and white photograph of a building is shown along with a diagram of 

that building, then it is fairly easy to identify and match the various features in it, such as 

the windows. This can be done without the use of any measurements or any knowledge 

of the camera optics ( lens focal length for example ). Willson, ( 1994 ) demonstrates that 

a zoom lens, which is the most beneficial in a vision system, can be calibrated for any lens 

setting, but this requires many measurements from the lens before it can be used. Clearly 

it is an advantage if this can be avoided. It is then a reasonable assumption to make, that 

if a human can perform this simple match, then it ought to be possible for a machine to 

accomplish the same task. The problem comes in trying to identify just what is it that the 

human is doing when attempting to match the picture to the diagram. 

As a scene is viewed, people do not keep their eyes fixed in one place and the entire scene 

is not perceived at once even though the complete image is present. In fact the eyes are 

constantly wandering about, latching onto small details here and there, which are then 

combined to give a perception of the scene. Applying this to tower blocks, especially 

when seen at close range, the eyes tend to scan round the different windows or other 

prominent features and if the building was being compared to a diagram, these features 

would be scrutinised even more closely. Before it is possible to find which window is 

which, it is necessary to identify the individual types of window ( or feature ). Again, 
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Figure 4.1 Image of a Window 

D 

D DDD 0= 
a: b: c: 

Figures 4.2a - c Diagrams of Windows 

studying how the human manages this can suggest ways in which a computer could 

perform the same task. By referring to Figures 4.2a through 4.2c, try to find the diagram 

which represents the actual window shown in Figure 4.1. Without much effort it is clearly 

Figure 4.2c. However, this problem was very easy to solve, as it could be done auto­

matically without thinking. Further insight can be gained when the features are not quite 

so obvious, for example, when all the features are similar. If the image is now changed so 

that the aim is to take the small group of baked beans in Figure 4.4 and find them in the 

general picture of Figure 4.3, then it is not automatic and the human mind tends to employ 

a search algorithm. Assuming that individual beans have been identified, it is noticed that 

the target group is made up of three beans. However, in the large picture there are many 

combinations of three beans so numbers alone cannot identify the group. It is the sizes, 

orientations and relative positions that identify the group and allows them to be found . 

The particular group here is characterised by two beans being vertically orientated ( with 

reference to their major axes) and next to each other with the third being horizontal and 

above them. 
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Figure 4.3 Image oj Baked Beans 

Figure 4.4 Section oj Baked Bean Image 

It is this topographical description that is used to identify a building; that is, using de­

scriptions such as 'left of, 'above' or 'inside' for example, rather than providing precise 

mathematical measurements . Using the bean analogy above, a window ( the small group 

of beans) is made up of a number of panes ( the individual beans ). As well as position 

information (left of), relative area in the sense of pane I is twice as large as pane 2 is used 

along with relative distances. A more complete description of two panes might be: Pane 

1 is twice as large as- and three pane 1 widths to the left of pane 2. Similar work done by 

Biederman et aI , ( 1993 ) develop an idea called Geon Theory and they also suggest that 

the mind works in this manner. Bergevin and Levine, ( 1993 ) also attempt to recognise 

an object from 2D images by using the geon approach to build up relationships between 

lines and arcs which make up different possible cross sections and then use these to build 

up parts of features . A significant advantage of this topographical approach is that it is 

fairly invariant when the image is distorted by perspective. Two identical windows must 

be identified as such even if one is much further away than the other. By using only the 

neighbouring panes of a window, the effects of distortion are greatly reduced. Although 

identical panes may be of a considerably different size in the image, by moving from one 

to the other via neighbouring panes, the local variations can be eliminated and the overall 

image distortion will have no effect, allowing the windows to be correctly identified. 

Similarly the effects of camera lens distortion can be virtually eliminated . An advantage 
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of being qualitative is that where maths requires precise equations and numbers giving 

exact answers, a descriptive approach means that small deviations and errors do not 

change the final result. This method has a hierarchical nature so where the discussion has 

so far concentrated on identifying windows from their panes, the same method can be 

applied to identifying a building from its windows ( or other features ). The CAD diagram 

of the building face being inspected is used to generate a map of features again with the 

descriptions of neighbouring feature positions, for example: Window 1 has a neighbour 

window 2 above it, a neighbour window 5 to the right of it and no neighbours to the left 

or below it. A separate list is generated of the individual features describing how they are 

constructed from shape primitives such as rectangles and circles etc. and is used to 

compare with shapes found in the image. 

4.1.1 Outline of Overall Algorithm 

The previous section has introduced the theory of the building recognition and chapter 3 

has described how, given a number of known points, an image can be mapped to the CAD 

diagram. This section looks at the steps necessary to perform this mapping and they can 

be summarised as follows: 

For each new building face, do: 

Load CAD model and generate mapping lists. 

For each new robot or camera posi tion, do: 

Grab and pre-process the image. 

Reduce the image to shape boundaries and 
classify them. 

Identify the robot target and remove it 
from the image. 

Identify feature types in the image. 

Map the features to their specific CAD 
counterparts. 

Choose a set of control points and 
calculate the image to CAD mapping. 

Apply mapping function to robot target to 
obtain its true location. 

These steps are shown in greater detail in Figure 4.5 which represents the main functions 

of the software that have been developed. The remainder of this chapter looks at the 

individual functions and how they were implemented. 
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Image Capture & 
Processing 
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Open Group 
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Find Robot's Position 

Figure 4.5 General Algorithm Flow Diagram 
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4.2 Fundamentals of Gray Scale Digital Images 

A computer image contains an array of pixels ( picture elements) which form a regular 

pattern and are arranged in rows and columns; ( These are analogous to the grains in 

photographic film ). In reality they are generally rectangular in shape but here they can be 

considered as a large number of small squares. Unlike a photograph, it is possible to 

identify a single pixel simply by giving it two co-ordinate values, namely a value X for the 

horizontal direction and a value Y for the vertical direction. Two conventions in use can 

either place the first pixel, which has a co-ordinate value of (X, Y) = (0,0), in the upper left 

comer of the image or the lower left corner. This can be sometimes dictated by the 

hardware and software in use and this project has the origin in the bottom left. The 

resolution of an image describes how many pixels there are in the X and Y directions and 

for a given image, the higher the resolution, the greater the number of smaller pixels for 

a given field of view. This leads to a better looking image with higher definition but 

requires extra storage. The resolution used here is 640 horizontally by 544 vertically. 

Since gray level images are being dealt with, it is necessary for each pixel to be set to a 

particular intensity with the minimum being black and the maximum being white. On a 

photograph, there is an infinite number of intensities available but it is not economical to 

store this complete range on a computer. The range from black to white needs to be split 

up into a number of distinct levels. The pixels used here have a total of 256 levels ranging 

from 0 = black to 255 = white. A value of 127 is mid-gray. This number of levels is 

sufficiently large that the human eye cannot distinguish between two adjacent levels and 

the number 256 is also convenient for computer use since one byte can also have 256 

possible values. 

An image is stored in computer memory as a number of bytes enabling each pixel to be 

processed. A simple operation, which is the equivalent of the photographic negative, can 

easily be performed on a computer image by setting the new pixel value to 255 - the old 

pixel value. For the images used here, the amount of memory required to hold each image 

is found from 640 x 544 x Ibyte = 348 160 bytes. To store the image in memory, it is 

effectively cut up into a number of strips (a strip being one horizontal line ) and the strips 

then being placed end to end to form one very long strip, which is then placed in memory. 

A pointer is used to point to the first pixel, which corresponds to the pixel at (0,0) and an 

offset is used to reference the desired pixel. The offset is found from: 

( Y x image width) + X. 

- 37 -



The Automatic Robot Location A/gorti/tm 

The image shown in Figure 4.6, which will be used for most of the examples throughout 

this work, demonstrates the above points. 

543 

Y 

218 

o 
o 273 X 639 

Pixel (273,218) Gray Level = 91 

Pixel Offset from (0,0) = 218 x 640 + 273 = 139793 

Figure 4.6 Image Parameters 
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4.3 Global Pre-Processing 

Global pre-processing covers unifonn functions applied to an image before any attempt 

is made to extract features . In a photographic context, going from a negative to a positive 

is a global , unifonn function . Some of these functions can be performed by the hardware 

at the image capture stage which is always preferable since hardware operations can work 

in real-time and are considerably faster than software operations. 

4.3.1 Image Capture - Camera/Frame Grabber 

An image is captured by the light from the scene being projected through the camera lens 

onto a Charge Coupled Device ( CCD ). The signal generated by the CCO passes through 

some electronics and emerges from the camera either as separate luminance ( Y ) and 

chrominance (C) signals forming S-VHS, which are then combined to form an additional 

composite video output known as VHS . If a gray level image is to be captured ( as is the 

case here ), then only the intensity ( or luminance) part of the signal is used . A full 

description of these are given in JYC, ( 1992 ). An important test of image quality is the 

step response of the system, that is, how well the camera responds to a rapid change in 

intensity such as black to white. Work carried out (Paterson, Dowling and Chamberlain, 

1994a ) has shown that different cameras have different step responses which can alter 

subsequent processing. The horizontal step response for the Panasonic S-VHS camera 

used to capture the images in this work are shown in Figure 4 .7. 
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Figure 4.7 Camera Step Response 
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A frame grabber is used to convert the time varying analogue video signal ( from the 

camera ), into a digital signal which is sampled to produce an array of numbers repre­

senting the image in computer memory. Some grabbers have hardware controls enabling 

certain pre-processing functions to be performed. The one used here ( see Appendix 4 ) 

has settings that can change the contrast and brightness of the image. This particular 

frame grabber has two controls, one called BLACK and one called WHITE and the best 

overall image was obtained when they were set to 12 and 5 respectively (total range is 0 

to 15) with an S-VHS input signal. However, these controls may not be available on other 

systems and it may be necessary to implement contrast functions in software with them. 

4.3.2 Contrast Enhancement 

A typical grabbed image will not usually have gray levels ranging from 0 to 255 ( black 

to white) but will tend to occupy some band in between. This may give a visually dull 

image which can be significantly improved by stretching the contrast over the whole 

range. The maximum possible contrast is produced by locating the maximum and 

minimum pixel values and finding the difference between them. This is divided into 255 

to produce a scaling factor with an offset calculated from the lowest value. Every pixel 

value is then updated to create a new image that is visually improved. This function is 

linear but often an image may contain a concentration of gray levels at a particular range. 

Histogram equalisation, (Marion, 1991 : 215-222) gives an even spread of gray levels and 

helps to bring out hidden detail as shown in Figure 4.8 . Whereas these two contrast 

operations produce visually improved images, it was found that the effect on the image 

was often to amplify any noise ( spurious pixels) present in the image which then had a 

detrimental effect on several edge detection processes described later. 

Figure 4.8 Histogram Equalisation Applied to a Dark Image (Original on/he left) 
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4.3.3 Smoothing 

Since the imaging and grabbing processes are not perfect, pixels will be assigned values 

different from their true values. This can be caused, for example, by the CCD not having 

a uniform response to a given light level. Dirt and marks on the object being viewed can 

also be classed as noise. Smoothing aims at minimising the effects of noise by blurring 

adjacent pixels. The simplest smoothing technique tried was to average the pixels in a 

3 x 3 window. A given pixel will have 8 neighbours and the new pixel value is set to the 

mean of all 9 pixels. Although this method can remove small changes, a large noise spike 

such as a white pixel on a black background will spread its influence over the neigh­

bouring pixels and the noise is not removed. Also it was found that this type of smoothing 

had a detrimental effect on significant edges. A good sharp transition, which is visually 

significant, became blurred and could, therefore, be missed in subsequent processing. 

Note that blurring can simply be performed by defocusing, if necessary. 

An alternative is to use median smoothing (Gonzalez and Woods, 1993: 191-195 ). This 

takes into account the surrounding pixels to remove any noise spikes. As with mean 

smoothing, a 3 x 3 pixel window is used and the pixel values are sorted in order of 

intensity. The middle value is then taken as the new pixel value. Noisy pixels will tend to 

be placed at the beginning or the end of the list and will, therefore, not be included. This 

technique was found to be good at reducing noise while maintaining sharp image edges 

and it was a useful step to perform before certain edge detectors were used. 

4.3.4 Edge Detection 

Edge detection is probably the single most important step in image interpretation. When 

an object is looked at and perceived, it is not the object itself that is important but its edge. 

It is the edge which distinguishes it from something else and it is what the eye tends to 

focus on. An edge can be considered to occur when one texture changes into another. 

Much has been written about texture. For example, Caelli, ( 1993 ) classifies various 

texture processing methods and compares them with human vision. Examples are given 

of good segmentation between different texture types. Also Picard and Gorkani, ( 1994 ) 

compare an algorithm with the human ability to determine texture orientation and, in this 

application, may be useful for finding the edges of such objects as decorative concrete 

panels. However, as a starting point the work here takes a simple texture as being a fairly 

uniform gray surface. A building consisting of concrete panels and windows will have a 

texture change between the panel and the window frame usually in the form of different 
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Figure 4.9 Roberts 
Cross Pixel Window 

Figure 4.10 Roberts Cross Edge Detection 
with Thresholding 

gray levels. Edge detection looks for these changes and there are a number of different 

techniques each with advantages and disadvantages; for example, Ramesh and Haralick, 

( 1992 ) examine the performance of different edge detectors. Unfortunately it was found 

that the best results were obtained from detectors that took the longest time to execute. 

The desired result of an edge detector is to produce single pixel width curves where a 

significant edge exists. Two basic types of detector were looked at for suitability, the first 

type being gradient edge detectors including Roberts Cross, Sobel and Canny. These 

require thresholding to produce an image which shows either edge or no edge. This is 

presented later in section 4.3.4.5. The second type looks at the behaviour of the pixels and 

decides whether an edge is present. 

4.3.4. J The Roberts Cross Edge Detec/or 

This detector (Roberts, 1965; Gonzalez and Woods, 1993 : 199-200 ) is probably the 

simplest of the gradient edge detectors as it only involves the use of a window of four 

pixels per image pixel. Figure 4.9 shows the 2 x 2 pixel window where pixel a is the 

current pixel of interest. The new value of a is found from a' = la - dl + Ib - cl and a 

thresholded output is given in Figure 4.10. The threshold was set to show the robot target 

as clearly as possible and it can be seen that large gaps occur in some features and some 

edges merged together to produce thicker edges. Further processing would be required to 

produce single pixel width edges but the routine is fast with a relative execution time 

defined here as 1.0. 
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Figure 4.12 Sobel Edge Detection with Thresholdillg 

4.3.4.2 The Sobel Edge Detector 

One of the more commonly used edge detectors is the Sobel edge detector (Gonzalez and 

Woods, 1993 : 418-420). Here, two 3 x 3 windows are used to calculate the gradient in 

the horizontal X direction and the gradient in the vertical Y direction . From these two 

values, the overall edge strength can be found as well as the direction of the edge, which 

may be useful in some applications. The two windows shown in Figure 4 .11 are centred 

on the chosen pixel and the values Gx and Gy are calculated from the respective windows 

by multiplying the pixel by the number in the window and summing the result. Here, Gx 

and Gy correspond to the gradients in the horizontal and vertical directions respectively 

and the resultant gradient is given by G = IGxl + IGYI· Figure 4.12 shows the thresholded 

( see section 4 .3.5 ) result and is similar to the Roberts Cross detector described earlier 

especially in that the edges are more than one pixel wide. The relative execution time 

compared to the Roberts Cross method is 3.3. 
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Figm'e 4.13 Canny Edge Detection with Thresholding 

4.3.4.3 The Canny Edge Detector 

This edge detector (Canny, 1986 ) is probably the best known and most commonly used 

since it is capable of producing single pixel width edges. Broadhurst, Pridmore and 

Taylor, ( 1994 ) chose it for their work in automated sewer pipe inspection, who state that 

it has become the "de facto standard for the computer vision community." It has a built 

in Gaussian filter, so no previous smoothing is necessary. The effects of smoothing are 

discussed in section 5.1.4.2. v.d.Merwe and Ruther, ( 1994) use this filter in four different 

directions ( horizontal , vertical and the two diagonals) to enhance their version of the 

detector. The algorithm filters in the X and Y direction to produce partial images. These 

are then used to produce temporary gradient images to which an algorithm is applied to 

determine the most likely point for an edge. An algorithm originally written for Sun 

com puters ( Ell is, 1993 ) has been rewri tten to work under Mi crosoft Wi ndows 3.1. 

Although producing superior results, as shown in Figure 4.13 , a considerable amount of 

memory is required for the storage of temporary images in floating point format and the 

relative execution time of 63 .8 includes some disk activity which further slows down the 

execution. Since time is not important at this stage of development, the Canny edge 

detector was adopted on the basis of edge quality, although research into speeding it up 

is being conducted, for example, Mirmhedi and Ellis, ( 1993 ) have investigated im­

plementing Canny in hardware using up to 16 transputers giving execution speeds of 

around 1.6 seconds compared with 30 seconds for a SUN Sparc 1 + workstation using a 

256 x 256 pixel image. As with the other edge detectors so far mentioned, the edges need 

to be thresholded ( see section 4.3.5 ). It should also be noted that this detector searches 

for edges, so that weak edges where adjacent gray levels are similar are found as well as 

strong edges. The result of this is that more of the window frames have been highlighted 

particularly in the top left of the Figure 4.13 . 
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Figure 4.14 Fillite State Machine 
Output 

. _ __ --+-----.-tI 

Figure 4.15 Finite State Machine 
Output after Median Smoothing 

Although the edges shown here represent edge strengths that occur above a single 

threshold, Canny goes on in his paper to describe a method of extracting true edges from 

background noise by the use of 'hysteresis thresholding' . By taking a single threshold, 

there is the possibility that an edge, although valid, will have a strength at some point that 

falls below the threshold and will thus result in a gap appearing which should not be there. 

An improvement can be obtained by selecting two threshold levels. Any edge pixels 

whose strength is greater than the upper threshold are automatically classed as edges. An 

edge is then tracked with following pixels being accepted as edges until the strength falls 

below the lower threshold and the edge is then terminated. Canny uses a ratio of high to 

low threshold of two or three to one with only the top 20% of values being classed as 

definite edges. This additional processing has not been implemented here as it was the 

performance of the actual edge detector that was of interest and separate thresholding is 

described and implemented in section 4.3.5 with a separate gap ' repair' algorithm given 

in section 4.4.1. 

4.3.4.4 The Finite State Machine (FSM) Edge Detector 

A totally different approach to edge detection is presented by Ginige, ( 1992 ). Here, the 

image is scanned in the horizontal and vertical directions to produce a list of pixel 

intensity values. A value g is calculated from the difference in the current pixel value and 

the next pixel value. The pixel is then classified into one of seven groups depending on 

value of g. An edge is assumed to exist where combinations of these groups have occurred 

in a particular order. The FSM is a method for searching the combinations by creating a 

pattern of states. Movement from one state to the next is determined by the pixel 
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Figure 4.16 Window Edge Detector 
Outpllt 

Figure 4.17 Window Edge Detector 
OlltPllt after Median Smoothing 

difference group and many different paths will be taken as the image is scanned . Only if 

a particular state is reached, is an edge said to exist at that particular pixel. This method 

has a major advantage over gradient edge detectors in that weak, but significant, edges 

give the same result as strong edges and, furthermore, the edges are a single pixel wide. 

The output of this detector is shown in Figure 4 .14. It is fairly quick, with a relative 

execution speed of 1.6. Although it can be clearly seen that all the significant features 

have been highlighted evenly, the quality of the edges is poor. By median smoothing (see 

section 4 .3.3 ) the image first, a considerable improvement is achieved as shown in Figure 

4.15, however the edge quality does not match that of the Canny edge detector. 

4.3.4.5 Willdow Edge Detector 

This detector was developed by the author to try and spot perceived edges rather than just 

strong edges. The assumption was made that if one could see a change in an image, then 

an algorithm should also be able to detect these changes. A scan line was made across an 

image and any perceived edges were marked and similarities were noted . It was found that 

if a scan window five pixels wide is used and that the difference in the pixel values at the 

ends of the scan window was more than ten, then there was a good chance of a perceived 

edge. If more than one adjacent pixel satisfied this condition then the central pixel was 

chosen to be the edge. This process is performed in the X and Y directions with the results 

being combined to give the image in Figure 4.16. As with the FSM method, all the 

significant features have been highlighted but there is a considerable amount of noise. 

Median smoothing of the image first, again produces a much better output as shown in 

Figure 4 .17 although here, the weaker edges have produced a better result. This method 
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Figure 4.18 Threshold level = 10 

was a useful experiment and runs quickly with a relative time of 1.8, but can give a quite 

different result if the brightness and contrast values are changed. Further work would be 

necessary to see if it is worth the extra processing to cope with these changes and clean 

up the edges, particularly when the Canny gives a far better, albeit slower, result. 

4.3.5 Thresholding 

Thresholding is used to convert an image from its normal 256 gray levels to a 'binary' 

image, that is, an image that only contains two colours, usually black and white. If a pixel 

has a value greater than that of the threshold level, it is turned white (255 ), otherwise it 

is turned black ( 0 ). It is used here as a post edge detection process, when gradient edge 

detectors are used, to obtain white pixel edges on a black background . As mentioned 

earlier (see 4.3.4.2), some edge detectors produce an output proportional to edge strength 

and this has become a necessary step since the Canny edge detector was adopted. The 

problem now becomes to decide at what level the threshold is to be set. lfit is set too high, 

then many of the significant edges will be lost. If it is set too low, then very weak edges 

will be included along with background noise and they will tend to obscure the desired 

edges. Tseng and Huang, ( 1993 ) take an interesting look at thresholding gray level 

images based on human perception which required "neither an iterative operation nor 

edge detection", but they do not apply their results to edge detector output. Figures 4.18 

through 4.20 show the effect of different thresholds after Canny edge detection with 

thresholds of 10, 22 and 60 respectively. The low threshold of 10 shows clearly how noise 
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Figure 4.19 Threshold level = 22 

is being included as well as spurious edges. A close inspection of the robot target shows 

that a ' ghost' circle is appearing within the real circle. The high threshold of 60 removes 

any unwanted edges, but it is also removing desired, but weak, edges. Only the strongest 

changes, which were originally black against white, have been highlighted. The level of 

22 was chosen statistically and has the best combination of a small amount of noise while 

keeping the weaker edges. This level was found by calculating the mean and standard 

deviation of the pixel values of the edge output. It was demonstrated that setting the 

threshold level T equal to the mean plus one standard deviation gave a good result. 

However, this may change for different images; the way to find the best level for a given 

image is to try several different thresholds and see which one yields the greatest number 

of identifiable features . A slightly simpler approach is to look at the number of open and 

Object Count Stat. T-8 T-7 T-6 T-5 T-4 T- 3 T·2 T ·1 
Statistical 

T+l 
Ratios Thr. Threshold 

Figure 4.6 22 0,405 0,505 0,578 0,581 0,615 0,584 0,558 0,519 0,594 0,646 

Figure 5.1d 22 0,259 0,263 0,248 0,251 0,257 0,261 0,275 0,277 0,289 0,315 

Figure 5.16 10 0,111 0,159 0,198 0,214 0,214 0,251 0,309 0,308 0,367 0,371 

Figure 5.24 9 . . . 0,229 0,240 0,247 0,286 0,279 0,338 0,373 

T+2 T+3 T+4 \ T+5 T+6 T+7 T+8 T+9 T + 10 T + 11 T + 12 T + 13 T + 14 T + 15 T + 16 

0,627 0,724 0,865 0,902 0,770 0,682 0,547 0,583 0,416 0,432 0,409 0,402 0,406 0,418 0,393 

0,287 0,291 0,308 0,325 0,319 0,327 0,333 0,309 0,295 0,301 0,322 0,313 0,326 0,285 0,328 

0,464 0,477 0,467 0,456 0,439 0,481 0,510 0,474 0,483 0,532 0,506 0,500 0,538 0,513 0,440 

0,410 0,454 0,490 0,495 0,489 0,489 0,382 0,371 0,337 0,327 0,289 0,301 0,277 0,258 0,226 

Table 4.1 Open and Closed Object COlillt Ratios at Different Thresholds 
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Figure 4.20 Threshold level = 60 

closed pixel groups ( see section 4.4.1 ) and detennine how they vary at different 

thresholds . Table 4.1 shows the ratios of closed groups to open groups for four different 

images at a range of thresholds, the first image being the one used in the accompanying 

figures . It was found that when the ratio was at a maximum over the selected range, then 

it was more likely that the features of interest would be identified, The drawback of doing 

this is that two of the processing steps need to be repeated many times, increasing the 

duration of the processing, although in a parallel system, this would not be a problem. 
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4.4 Local Processing 

Local processing in comparison to global processing looks at either small areas of an 

image or deals with groups of data. The image at this stage, although containing the same 

number of pixels, has had a considerable amount of unwanted data removed. The task 

now is to collect all the pixels of interest and group them in ways that will become 

meaningful later. Groups of adjoining pixels are linked together to form different objects . 

Some of these objects will form lines, others will fonn rectangles, simple shapes, and 

random patterns . The various shapes are also grouped together to try and form recog­

nisable features, whereas the lines are used to find information about the orientation of the 

image. 

4.4.1 Pixel Linking 

At this stage there are single pixel width edges, but there is no indication as to how the 

pixels relate to each other. Pixel linking, or connectivity, attempts to group together those 

pixels that are neighbours, as these groups are the precursors to higher level features such 

as lines and rectangles. This stage is also the one where the transition between processing 

the entire image and processing specific data structures occurs. The pixel linking function 

can be split into the two main tasks of initial grouping and group repai r followed by the 

calculation of group statistics for subsequent processing. The aim of the initial grouping 

is to run through the edge pixel image and create two lists, an open list and a closed list, 

of all pixels that are neighbours . The essential parts of an algorithm ( Rosin and West, 

1989 ) are as follows : 

1 . Convert neighbours to 8-connected form 

2 . Remove single pixels 

3 . Link pixels to form the open group list 

4 . Remove single pixels 

8-connecled neighbours 

An individual pixel can have up to eight neighbours but, since single pixel width edges 

are being dealt with, there should be a maximum of two. However, the result of the edge 

detection process can give more than two neighbours as shown in Figure 4.21. These 

pixels are connected in what is known as 4-neighbours ( Sonka, Hlavec and Boyle, 

1994: 31 ) such that it is only possible to move from one pixel to the next in the up, down, 

left and right directions . It can be seen that the comer pixels are effectively redundant if 
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Figure 4.21 4-Col111ecled Pixels Figure 4.22 8-Connected Pixels 

being allowed to move In the diagonal directions as well. These comer pixels are 

therefore removed ( made the same colour as the background) to leave the 8-neighbour 

form shown in Figure 4.22, a necessary step for the linking process. In addition, further 

information about the pixel group can be gained when the list is 8-connected. 

Removal of single pixels 

Single pixels are generally the result of noise and should, therefore, be removed. In 

addition, a group of one pixel is meaningless and can give no possible indication as to 

which lines might pass through it. 

Open group lillking 

The first set of groups to be found are open groups. These are groups of pixels which have 

two ends and may be part oflines for example. The algorithm searches the image looking 

for a pixel with only one neighbour and then follows the pixels until the other end is 

found. Once the group data and pixel co-ordinates have been stored, the group is deleted 

from the image and the process continues until no more open groups are found . It may be 

possible for the algorithm to leave single pixels so once again single pixels are removed. 

Only groups that have greater than 5 pixels are accepted. 

Closed group linking 

The only remaining pixels in the image are those that belong to closed groups, that is, 

groups that do not have ends and could form shapes such as circles and rectangles. The 

algorithm simple scans the image looking for a pixel and then follows the pixels, adding 

them to the closed list, until it returns to the starting point. As with the open groups, the 

closed group is deleted from the image and the process continues until nothing is left. 
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Figure 4.23 Possible Open Group Combinations 

Group repair 

Although the linking process is ideal for creating groups, the pixels from the edge de­

tection process are not perfect. Just as noise can add extra pixels, it can also remove 

desired pixels. As this form of processing is pixel based, it only takes one pixel to be 

missing from a closed group to make it open and is, therefore, added to the wrong group. 

The group could form part of a significant feature and, if missing, the featur would not 

be recognised, all because of one pixel. Similarly, there may be several breaks in one 

closed group meaning that the ends cannot be joined. This is shown later in Figure 4.24. 

The aim of the group repair function developed by the author is to see if any of the open 

groups can bejoined together. Here, if there is a gap of up to 5 pixels between group ends, 

then we assume that this is a genuine gap and not two separate groups. The repair function 

works as follows: 

Repeat : 
For each open group k, work through the remainder 
of the open group list ( k + 1 to k = n ) and see if 
any of these groups can be joined to group k. If it 
can, then a new joined group is created wi th the 
gap filled in by adding extra pixels and the 
original two groups are deleted . 

until it is not possible to join any more groups . 

The repaired closed list is checked to determine ifboth ends of a given group lay within 

a certain distance of each other. This distance is the same as that used for joining the open 

groups above. If the ends are within this distance, then extra pixels are added to close the 

group, the group is moved from the open group list to the closed group list. 

Joining groups is not quite as simple as it may seem. It can be seen quite clearly where to 

join two groups in an image but, since these groups are stored as lists in computer 

memory, there are four possibilities to consider to ensure that the correct ends are joined. 
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y' is the y coordinate of the following pixel. 

Figure 4_31 8-Conllected Pixel Direction Slims 

Figure 4.23 shows these possibilities with two groups A and B. The end '0' is the first one 

in the list and so it is seen that a group can be represented in two ways. In the first 

example, the ordering of the pixels does not need to be changed and the gap between Al 

and BO just needs to be filled in. If the groups are ordered as in the third example, then 

the pixels of group A must be reversed so that AO becomes A 1 and the group can be 

joined to BO. 

Figures 4.24 through 4.30 show the advantages of joining and closing groups. If the pixel 

linking stage only was performed, then the result in Figure 4.27 would be obtained for the 

closed groups, of which there are only 6 complete windows. Figures 4.28 and 4.29 show 

which closed groups were created from either joining a single group ( the closed group 

had one gap) and which closed groups were made up of multiple open groups ( many 

gaps) respectively. Figure 4.30 shows the final closed groups that will be used for further 

processing and now there are 13, more than double the number of complete windows 

which is a considerable improvement. Similarly for the open groups, Figure 4.25 shows 

which groups could bejoined. Although this is not so important as the closed groups, this 

joining of open groups reduces the amount of data to process and helps in producing 

longer and hence more significant lines in subsequent processing. 

4.4.2 Object Statistics 

Once the pixels have been grouped together it is possible to calculate statistics for the 

individual groups, particularly the closed groups where area and shape are very important. 

Some of these groups can be related to each other and extra statistics can then be found 

for the accumulated groups. These statistics will be used later in the feature identification 

processes where group statistics are compared to equivalent groups from the CAD model. 
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Figure 4.32 8-Connected Area Calcillation 

4.4.2.1 Single Object Statistics 

Area 
The area of an object can be determined ifits group of boundary pixels, found previously, 

are connected as 8-neighbours. There is no need to draw the object and count internal 

pixels as only the boundary pixel co-ordinates are required. The area is found by tracking 

along the pixels and seeing in which direction the following neighbour lies. A vertical 

single pixel width slice through the object has an area equal to the difference in the y 

co-ordinates across the object so as we go round the pixels, the y value is either added or 

subtracted depending on the x direction. Half pixels are added or subtracted if we travel 

in diagonal directions as indicated in Figure 4.31. 

Figure 4.33 Orthogonal Bounding Rectangle 
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Point Crossings Location 
Left Right 

A 2 2 Outside 
B 3 1 Inside 
C 1 1 Inside 
0 0 2 Outside 

Figure 4.34 Interior and Exterior Pixel Locations 

The resultant area will either be positive or negative depending on whether travelling 

anticlockwise or clockwise respectively round the object and so the absolute value is 

taken . The example in Figure 4.32 shows how the area is calculated from the pixels and 

compares it with a graphical representation. Note that the true boundary is considered to 

be at the centre of the pixels. 

Bounding rectangle 

The bounding rectangle is a rectangle that encloses the object. It can have a number of 

different sizes depending on its orientation but here one is taken that has horizontal and 

vertical sides as this is useful for setting limits when working on the object. The rectangle 

is found by taking the minimum and maximum x co-ordinates and the minimum and 

maximum y co-ordinates in the pixel group as shown in Figure 4 .33 . 

Object centre ( Centroid) 

The object centre is taken to be the centre of mass of the boundary pixels. Since each pixel 

can be considered as having a weight of 1, the centre is found by finding the mean x 

co-ordinate and the mean y co-ordinate. The object centre is very useful for comparing 

shape topologies by seeing if the centre lies inside or outside the object. (The letter U has 

its centre outside ). 

Object centre position 

Determining whether a point lies inside or outside an enclosed shape is in fact a nontrivial 

problem. Looking at Figure 4.34, it can be seen that a point lies inside an object if a line 

passing through that point crosses the object boundary an odd number of times on either 

side of the point. This applies to any line direction but for convenience, a scan line is taken 
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Sean Line 

Crossing Graze 

Figure 4.35 Single Pixel Edge 
Crossing 

Next Pixel above Selin line 

Previous Pixel below ~ 
Next Pixel bolow 

Crossing No Crossing 

Figure 4.36 Multiple Pixel Edge 
rossing 

running in the x-direction. There is now another problem. What is meant by 'crossing the 

boundary'? This is a transition from outside the object to the inside or vice versa but it is 

necessary to know whether the point is inside or outside, which is what is being looked 

for! By using the bounding rectangle above, the initial starting point can be set to one 

pixel outside the bounding rectangle so it is known that the start is outside the object. 

Since the object boundary is made of pixels offinite size, there is the problem of deciding 

whether the boundary is actually crossed. Because of quantisation, the boundary may be 

several pixels wide along the scan line. A resulting problem is that the object can be 

'grazed' and appear to be inside when in fact we have remained outside as shown in 

Figure 4.35. When a pixel is encountered the lines above and below the scan line must be 

inspected to see in which direction the border was travelling. Figure 4.36 shows the 

difference between a true crossing when pixels at the end of a border coincident with the 

scan line are on opposite sides of the scan line, and a graze when end pixels are on the 

same side. With 8-connected pixels, the algorithm developed by the author for a crossing 

is as follows : 

1 . Track along the scan line until a pixel is hi t . 

2 . Using the window in Figure 4 . 37, set the letters a 
to h to 1 if their corresponding posi tion contains 
a pixel, otherwise set them to O. 

3 . set s = a + b + c and t = f + g + h 

4 . If d + e = 0 , we have a single pixel width edge 
AND if s = t = 1 , mark the border as crossed, STOP . 
else 
do steps 5 to 9 . 

5 . If d + e > 0 , we have a mul tiple pixel edge . 

6 . I f s = 0 AND t = 1 set u = 1 e 1 s e if s = 1 AND t = 0 set 
u = O. 
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Figure 4.37 Edge Crossing Window 

7 . continue along scan line until last pixel is 
reached then do steps 2 and 3 . 

8 . If s = 0 AND t = 1 set v = 1 e 1 s e if s = 1 AND t = 0 set 
v = O. 

9 . If u is not equal to v then mark the border as 
crossed . 

To determine whether a point is inside or outside the object, the scan line y value is set 

to the point's y co-ordinate and start at the left edge of the bounding rectangle, keeping 

count of crossings until the selected point is reached. If the number of crossings is odd, 

then the point is inside the object. A check can be made by continuing from the point and 

seeing, if again, the number of crossings is also odd. 

Level 2 ~ 

Feature , , , 

Level 0 kj) 
~ ! 

Figure 4.38 Object Levels 
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4.4.2.2 Calculation of object levels 

Most of the features to be identified do not consist of a single closed group of pixels but 

are more likely to consist of a number of closed groups within other closed groups. This 

section aims at finding out at which level a pixel group, or object, is located. An object 

at a given level will contain at least one other object and an empty object is defined as 

being at level zero. A feature consisting of objects at different levels can be compared 

with a CAD feature to see ifit has the same number of levels. What is meant by 'level' 

can be visualised in Figure 4.38 where objects at the same level are drawn on the same 

plane. The algorithm for finding the levels is as follows, where specific colours are given 

for clarity: 

1. set the current level to 0 ( empty) . 

2. set the level of each obj ect in the closed group 
list to NO_LEVEL. 

3. Draw all the closed obj ects in WHITE on a BLACK 
background. 

Repeat 

5. For each obj ect in the list, do 6 - 8. 

6. If the object's level is set to NO_LEVEL then 
draw the obj ect in RED. 

7. I f the obj ect is empty ( see text) then set 
the obj ect' s level to the current level. 

8. Redraw the obj ect in WHITE. 

9. Erase all objects in the image at the current 
level by drawing them in BLACK ( background 
colour) . 

10. Increment the current level. 

Until there are no obj ects drawn in WHITE. 

Determining if an object is empty 

This is another instance of where a trivial human problem, with an obvious answer 

becomes a complicated task for a computer. The question: Is this object empty? can be 

rephrased: Does this object contain the pixels of any other object? and the problem is 

essentially reduced to same one as determining whether the object's centroid is inside the 

object as given in section 4.4.2.1. Using the bounding rectangle ( see section 4.4.2.1 ) of 

the object, a scan is made at each y value in the bounding rectangle. With the object drawn 

in the test colour RED on a BLACK background the algorithm moves along the scan line 
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12 
20 
22 
39 

D 22 
12 

Number of Lower Levels 
2 
o 
1 
o 

Contained List 
20, 22 

39 

Figure 4.39 Object Containment 

until it finds a WHITE pixel, which must belong to another object. This pixel is tested to 

see if it lies inside or outside the test obj ect. If the entire bounding rectangle is scanned 

without a pixel being found inside the object, then the object is empty. 

4.4.2.3 Object Containment 

Once the object levels have been found, it is possible to find which objects are contained 

or enclosed by another. This enables various objects, whose order in the closed list is 

fairly random, to be grouped together to potentially fonn a feature. The ordering of 

containment, namely which object is contained by the current object, fonns a very strong 

basis for feature recognition since this ordering cannot be changed by image distortion. 

The letter A, for example, will always have a hole in the upper half no matter how it is 

distorted. The levels found in section 4.4.2.2 are used to see whether an object is con­

tained as it is only possible to contain an object at the next lower level. An object at an 

even lower level will be contained only by the object at the level immediately above it. 

Figure 4.39 demonstrates this in that object 39 is only contained in object 22 and not 

object 12. The algorithm for finding containment is given as follows where again colours 

are given for easier understanding: 

1. set the image space to the background colour -
BLACK. 

2. For each object in the closed object list, do: 

3. set the lower level count to 0 ( empty) • 

4. I f the current obj ect is not empty ( level not 
equal to 0 ) do steps 5 to 10. 
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Figure 4.40 Line 
Finding - 1st Attempt 

Figure 4.41 Line 
Finding - 2nd Attempt 

Figure 4.42 Line 
Finding - 3rd Allempl 

5 . Draw the current obj ect in the test colour 
RED . 

6 . For each obj ect in the closed obj ect list , 
not including the current object , do steps 
7 to 9 . 

7 . I f the obj ect ' s level is one lower than the 
cU,rrent object , see if the object ' s cen­
tre lies inside the current obj ect using 
the method described in section 4 . 4.2.1 
and if it is , perform steps 8 and 9 . 

8 . Add the obj ect to the current obj ect ' s 
list of contained lower level obj ects. 

9 . Increment the lower level count of 
contained objects . 

10 . Delete the current object from image space by 
drawing it in BLACK . 

4.4.2.4 Line Finding and Counting 

Since the images being looked at are specifically of buildings, it is reasonable to assume 

that many of the features in the image will be made up of straight lines. Most windows in 

tower blocks appear as quadrilaterals, for example. The processing so far has not resulted 

o 
Figure 4.43 -I-Sided Shape from an Image with rounded Comers 
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Limit = 2 Limit = 3 Limit = 4 Limit = 5 

0 0 0 0 
Lines = 7 Lines = 6 Lines = 6 Lines = 5 

Figure 4.44 Lilles Fitted with Diffirent Limits 

in a description of the actual shapes. It should also be noted that circular ( elliptical) 

shapes can be crudely detected since they will consist of many short edges whereas a 

quadrilateral shape should consist of four lines. 

One method of line finding developed by Nelson, ( 1994 ) is to grow line segments from 

a strong point on an edge. This is fairly complex and a simpler method, which produces 

just as good, if not better results developed by Rosin and West, ( 1989 ) to break down 

edges into arcs and lines. They use a method described by Lowe, ( 1987 ) to find lines 

which recursively works on a group of8-connected pixels (see section 4.4.1 ) fitting lines 

until no more are possible. It is emphasised here that the lines being fitted are not the best 

fit through the pixel group since the shape can be quite complex. Consider the group of 

pixels given in Figure 4.40 ( an open group is used for clarity). A line is initially drawn 

between the two end points A and B. Each pixel in the group is taken in turn and its 

( normal) distance from the line is found. The pixel with the greatest distance from the 

line, point C, is considered an end point of two new lines, which fonn a better ap­

proximation to the pixel group. Figure 4.41 shows these new lines and the process is 

repeated with segments AC and Cll. If the maximum distance from a pixel to a line is less 

than a pre-defined limit, then the process is halted for that line segment. The segment AC 

is a good enough fit but the segment CB yields a further point D. The final result is shown 

in Figure 4.42 where the pixel group has been completely approximated by straight lines. 

The setting of the minimum pixel to line distance is dependent on the type of features 

being searched for. At first it may be thought that this value should be zero so that there 

is perfect line fitting but since there is noise in the image and pixel positions are quanti sed, 

there would be a very large number of very short lines. At this part of the process, closed 

objects are being examined and a fairly coarse line fitting is required. A typical 4-sided 

shape is shown in Figure 4.43 and ideally this should have only four lines fitted by the 

algorithm. But in reality there are problems caused by the corners because one needs to 
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ask: What is a corner? What may be clear to a human as a comer is not necessarily 

obvious at a pixel level where a comer may appear as a quarter circle, for example. Coarse 

line fitting, however, results in poorly aligned lines but they are sufficient to say that a 

pixel group is 4-sided and not circular, which is the aim of this section. The results of 

using different distant limits on the shape in Figure 4.43 are shown in 4.44. The best value 

to chose was one that best distinguished between a rectangle and a circle ( the robot 

target) without a significant deterioration of the shape. The value was set to 5 pixels. 

Another application of this work was in the detection of building blocks for a wall 

building robot in Stuttgart University, Germany with details of the robot given in 

Pritschow et ai, ( 1995). It was necessary to detect the outside edge of the block but it was 

known before hand what orientation the block had. In this case open pixel groups were 

used and it was found that coarse line fitting produced too many line segments at unusual 

angles. By reducing the minimum pixel to line distance, more line segments were created 

and they had a more accurate alignment. Only certain segments were then used to find a 

best line to approximate to the block boundary. In that application, the pixel to line 

distance limit was set to 3 pixels for best results. 

A consequence of pixel linking is that the first pixel in a closed group could be anywhere. 

Ifit happens to be in the centre of one of the edges of a 4-sided shape, then the line fitting 

algorithm will fit an extra line such that one edge will be made up of two smaller line 

segments. Additional processing is required to detect this condition such that the two 

segments can be joined to form one line if they are sufficiently similar. 

4.4.2.5 Orthogonal Diameters 

The orthogonal diameters of an object are the diameters taken through the centroid of the 

object in the x and y directions as shown in Figure 4.45. These diameters will be used later 

to help locate neighbouring objects. Although the object's true diameters in the vertical 

and horizontal directions are distorted by perspective, and will not necessarily appear as 

the orthogonal diameters in the image, they do give a reasonable approximation if the 

distortion is not too severe. This is considerably easier than trying to calculate the true 

diameters, which would involve the use of vanishing points. The overall algorithm uses 

the orthogonal diameter data given at this stage for a first attempt at finding the directions 

of neighbours, as this gives a satisfactory approximation. If there is too much distortion 

then the true diameters would have to be used. The orthogonal diameters are found by 

taking the object's centroid and looking at each of the pixel co-ordinates. The pixels with 
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Vertical 
Centroid 

Horizontal 

Figure 4.45 Orthogonal Diameters 

the same y co-ordinate will give the horizontal diameter by finding the difference between 

the maximum x value and the minimum x value. Similarly the vertical diameter is found 

from pixels having the same x co-ordinates as the centroid. 

4.4.2.6 Lower Level Object Ordering 

The grouping together of objects by their relative levels above, gives the first indication 

of whether a feature is a likely match. If a feature consists of a single object containing 

another single object then it is easy to identify a specific object to compare with the CAD 

diagram. If, however, an object contains more than one lower level objects, then they 

must be sorted in such a way that they are compared with the correct potential CAD 

objects during matching. The calculation of object levels in section 4.4.2.2 creates a list 

of objects at a given level and the order in which these objects appear is essentially random. 

Several methods of ordering were considered but each was found to fail in one or two 

critical circumstances. The first was to order by linear position. With reference to 

Figure 4.46 there is an owner object containing five lower level objects where the number 

represents the object's position in the closed pixel group list. The points mark the centroid 

of each object and the diagram could typically be a window viewed from some angle. The 

ordering by linear position simply places the objects in order of their centroid's x value. 

In the example here, that would create an order of 13, 20, 47, 17, 16. For simple features 

this works but when, as in the example, two or more objects have similar x values then 

the ordering can very easily be changed if the feature is viewed from a different angle. 

This is shown in Figure 4.47 where the ordering now becomes 20, 13,47, 16, 17. Clearly 

this is unsatisfactory as a small change in perspective dramatically changes information 

about the feature. If objects 20 and 13 were identical there would be no problem since they 
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Figure 4.46 Linear Position 
Ordering 

Figure 4.48 Angular Position 
Ordering 

:: 
:: 

Figure 4.47 ... alternative 
Orientation 

Figure 4.49 ... alternative 
Orientation 

:> x 

would have the same parameters but, in reality, this can never be assumed and the feature 

identi fi cation processes could compare the wrong objects. This problem also occurs if the 

features are sorted in the y direction. 

The next alternative looked at was to sort by angular position and distance. Figures 4.48 

and 4.49 show the same features used in figures 4.46 and 4.47 respectively, but using 

angular ordering with the objects being sorted in increasing order from 00 . The point of 

origin is taken as the centroi d of the owner object marked with ' 0 ' . This is clearly an 

improvement as the change in perspective has not changed the order of the objects which 

is 16, 20,47, 13, 17. Unfortunately however, a similar problem occurs to the first method 

if two objects happen to have a very similar angle. The quantisation effects of the pixels 

(positions are not precise) plus the effects of noise can mean that if there is a change in 

position of only a couple of pixels of the object centroids, then the ordering of the objects 

may be reversed . It is preferable to have a system that is not so sensitive to minor changes. 

An added problem is that if the object is directly to the ri ght of the owner centroid, then 
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its position angle would be 00 and be the first object in the list. A change of only one pixel 

could move it to an angle of 3590 and place it last in the list. Also there is the physical 

nature of the radial approach that means that angles vary greatly with a small linear 

change near the origin, just like being near the North Pole. Although, in this case, the two 

different perspectives did not change the result, Figure 4.49 shows that point 17 is quite 

close to the 00 line and, therefore, a small change in perspective could push it over this 

line and move it to the first position in the list. 

The solution to these problems uses a combination of sorting methods and a 'fuzzy' 

approach to deciding positions. Instead of saying whether two things are equal or not 

equal, they are said to be not equal or nearly equal ( where equal is just a special case of 

nearly equal ). The sorting method first sorts objects by area placing the smallest first. If 

all the objects are of distinctly different sizes, then the ordering is complete and no further 

sorting is necessary. If as is often the case the areas are similar, in this case within 80%, 

then the subgroup of objects is sorted by centroid x co-ordinate with the lowest value first. 

Accepting similar areas as being equal avoids the area changes caused by perspective. 

Again, if the objects are well separated processing is complete but if the objects are within 

10% of the owner's orthogonal width (see section 4.4.2.5) then they are treated as if they 

have the same x value. These sub- subgroups are then sorted in the y direction with the 

lowest first. Using Figure 4.46 as an illustration, sorting by area gives: 20, 13, 16, 17,47. 

There is clearly no problem with object 47 as it is much larger than any of the others but 

objects I3 and 20 have similar areas so these then need to be sorted by x position. Again 

they have similar values so finally they need to be sorted by y position. Here there is a 

definite difference and the final sort order becomes 13,20, 16, 17,47. Applying the same 

algorithm to Figure 4.47 yields the same result as desired. 

4.4.2.7 Identification of the Robot 

Whereas the buildings under consideration can be of any shape and form, the robot design 

is under the control of the Department and its appearance can, therefore, be determined .. 

It would be too difficult to try to identify the mechanics of the robot using computer vision 

but a target placed on it can greatly simplify the task. The target can also act as a 

protective cover. When considering the target design, it should be made as simple as 

possible and should be unique so that it can not be confused with some other features on 

the building. Targets are found in numerous applications and come in a number of dif­

ferent forms. Clarke, ( 1994 ) gives a good analysis of different target types used in 

photogrammetry. However, these are small and used for high precision as demonstrated 
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It=t Target Object 0 Object 1 

Centre X 27/2 As Object 0 

Centre Y 38/2 As Object 0 

Area 27 x 38 PI x 23 x23/ 4 

Level 1 0 

Lower levels 1 0 

List 1 -

Centre Inside Inside 

Edges 4 6 

Figure 4.50 Model Robot Target Table 4.2 Model Robot Target Description 

in Clarke and Wang, ( 1995 ) where sub-pixel accuracy is achieved, but this is not 

required in this application. Aerial work described by Brown, ( 1994 ) required the use of 

ground based targets which were located at a considerable distance and problems oc­

curred with illumination when retrorefl ectors were used. Instead, circular targets were 

used which were painted with bright red fluorescent paint which made them stand out 

well when viewed through a red filter. Arodal and Metronour, ( 1992 ) have created a 

measuring tool created with a number of pre-calibrated light emitting diodes (LEDs ) to 

provide 3D measurement. But as one of the first stages of the location process requires the 

detection of edges in a black and white image, it was decided that the target itself should 

contain black and white features to produce maximum strength edges. This approach is 

adopted by Huang and Harley, ( 1990 ) who use a black circle containing a white circle 

for use in camera calibration . The target is identified by two closed objects having the 

same centroid. A slightly more complex version developed by v.d.Heuval, Kroon and 

Le Poole, ( 1992) also have a circular black and white target that has in addition, an outer 

ring made up of a lO-bit code allowing up to 1024 uniquely identifiable targets. However, 

for the application under consideration, the target should be as large as possible so that 

features are not lost due to the image resolution caused by the target lying at some 

distance. As it is intended to identify building features such as windows, it is reasonable 

to design a target of a similar size and the current robot dimensions allow for a target of 

2400mm x 1200mm to be used . The design of the target should be such that it is as easy 

as possible to locate using computer vision . The initial work done here was with a model 

robot and it was decided to use a rectangle containing a circle as shown in Figure 4.50. 

This is a compromise between simplicity and uniqueness in that the rectangle with 

straight lines is easy to locate and only two shapes reduces the complexity. However, to 
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Figure 4.51 Identification of Model Robot Target 

try to avoid possible confusion with a basic window frame, a circle is used as the inner 

shape. This type of shape combination has not been observed in windows and the only 

possible confusion with the circle may be with a satellite dish! 

Using the data given in Figure 4.50, the information about the robot target can be entered 

into the software and this is used to match against all the objects in the closed object list. 

The model robot target is made up of two objects, a rectangle containing a circle with the 

same centre position, which can be specified as given in Table 4.2. 

Although Object 1 is a ci rcle, it has been given an edge count of 6, since to a very coarse 

approximation, it is a hexagon. To improve reliability, a shape detector should be used to 

look for four sided shapes likely to be rectangles and to look for ellipses. This would take 

extra processing time and the aim here is to see if the robot target can be found in as 

simple a way as possible. The following algorithm is used to see if an image feature 

matches the robot target: 

1 . For e ach obj e ct in the closed obj ect l i st, see if 
the level value i s equal to the Objec t 0 l e vel. 

2 . I f l eve ls are equal ( 1 in t h is c a se ) s e t Obj e ct 
o score to 10 . 

3 . I f the centres of the list obj ect a n d Obj ect 0 
a r e bo th i nside , then add 10 to the Ob j ect 0 
sco r e . 

4 . Add 10 - ( I list edge count - Object 0 e d ge 
count I) to Obj ect 0 score . 
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Figure 4.52 Inspection Robot Target 

5 . I f the Obj ect 0 score is grea ter than or equal to 
25 check the lower level obj ect . 

6 . Do steps 2 ,3 and 4 with the lower list object 
and Obj ect 1 ( instead of obj ect 0 ) in the 
table . 

7 . Calculate the list and robot area ratios by 
di vi ding the lower obj ect area into the up­
per obj ect area. 

8. Divide the list ratio by the robot target 
ratio and if greater than one take the re­
ciprocal to ensure the ratio is less than or 
equal 1 . 0 . 

9 . Add 10 * area ratio to the Object 2 score. 

10 . Calculate the total score from Obj ect 0 score + 
Object 1 score and if it is greater than the 
pervious highest score, store it along wi th the 
reference to the object in the closed object 
list . 

The maximum possible score in the above algorithm is 70,30 from Object 0 and 40 from 

Object 1. A limit is set to 60 below which a feature is said not to be the robot. The scoring 

is fairly arbitrary but takes into account the strength of the visual impact of the object. For 

example, if the centre of an object was outside rather than inside, its visual appearance 

would be significantly different and is unlikely to be part of the feature that is being 
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Figure 4.53 Life size Mock-up Robot 
Target 

Figure 4.54 Image after Edge 
Detection 

looked for and hence the score of 10 is used for significant characteristics. On the other 

hand, the ratio of areas between objects can vary considerably before it can be said that 

two objects are not the same and therefore 10 times the ratio of area ratios is used. If the 

areas are the same, the ratios would be 1 giving a maximum score of 10 for this char­

acteristic. Ratios, rather than the absolute areas are used by v.d.Merwe and Ruther, 

( 1994 ) who look for "size as well as type and number of comers" to take into account 

the distortions caused by perspective. 

Figure 4.51 shows the robot target being identified from the complete set of closed 

groups. The top level object representing the robot target is tagged to indicate that it is the 

robot, so that it is ignored during future processing when building features are searched 

for. 

There is a problem with this type of target in that if the target is sitting on a building that 

has a similar gray level ( black in this case) then it is not possible to pick up the outside 

edge of the target. Similarly, as was often found during experiments, if a light was used 

that cast a shadow, it was again not possible to find the correct edge of the target as the 

edge detector would foll ow the target and the shadow. Consequently, a new target has 

been designed for the real robot as shown in Figure 4.52 . This can be considered as a 

target within a target. The original target, which is similar to the model target, is contained 

within an additional white border. The initial search tries to locate a match with a feature 

containing three levels instead of two, namely a rectangle containing another rectangle 

containing a circle. If for reasons j ust mentioned, the outer object is confused in the image 

and can not be found , then the inner two level object is searched for. By placing the third 
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Figure 4.55 Identified Target 

object round the other two the likelihood is increased that the inner target will be located, 

as it is unaffected by the background. Also placing the circle to one side will assist any 

future work on orientation. 

A full size target has been constructed that can be used separately from the robot, since 

it is only necessary to see the target and not the robot. Should the robot be unavailable 

then the target can still be used for experimentation. From a construction point of view, 

and bearing in mind that the target should cause no visual problems, it must be painted 

with a matt (satin) finish to minimise the possibilities of reflections from the target. Due 

to the amount of time and effort required to satisfy safety issues and to have the wooden 

target risk assessed, it was decided ultimately not to hang the target on the exterior of the 

University building. Instead, Figure 4.53 shows the full size mock-up target being 

suspended in the heavy structures laboratory where lighting is poor and a considerable 

amount of visible clutter present. Figure 4.54 shows the result of edge detection with a 

statistical threshold of 16 and Figure 4.55 finally shows the successfully identified target. 

This shows that the overall target design worked, especially with the use of an outer 

border. Close inspection of Figure 4.54 shows that the outer edge is incomplete due to 

background noise leaving the inner part of the target without any defects at all. In this 

image, the target height is about 80 pixels giving a single pixel resolution of approxi­

mately I5mm. Closer inspection of Figure 4.54 reveals that the outer part of the target is 

separated by only one or two pixels indicating that it is at the limit of resolution even 

though the target is amply large enough to be seen. A future target would benefit from 

having a smaller circle and a thicker outer border as it is the distances between these edges 

which determine whether the target will be detected. 
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Figure 4.56 Fitted Lines to Model Robot Target 

4.4.2.8 Shape Detection 

Shape detection is a very important part of object recognition as it forms the main 

description of an object. Two objects may have very similar parameters such as area or 

that the centroids are inside their boundary. However, when it can be seen that one object 

is square and the other is a circle, then the distinction is made clearer. But the problem is 

what is the actual difference between a square and a circle or, more generally, a rectangle 

and an ellipse? A human can see the difference but the problem here is again to get the 

computer to 'see' . Perhaps the simplest difference is that the rectangle contains four 

straight lines whereas as an ellipse has no straight lines. Other shapes, such as triangles, 

will consist of only three lines, but discussion will be limited to rectangles and ellipses as 

these are the most likely shapes to be searched for in this application. Whilst having 

observed that an ellipse contains no straight lines, it actually consists of a large number 

of very short lines, namely the lines joining adjacent pixels. This, however, is too fine a 

distinction to use since the number of lines generated will equal the number of pixels 

forming the object boundary and, again, there is no way of identifying the shape. 

To a first approximation, line fitting ( see section 4.4.2.4 ) can be used to generate a 

polygon representing an ellipse. For example, changing from a hexagon to an octagon and 

so on gets ever closer to a circle. The result is that the simplest way of distinguishing 

between a rectangle and an ellipse is to count the number of fitted lines. Figure 4.56 

shows the straight line approximation to the objects that make up the model robot target. 

The ellipse is made up of six, more or less equal line segments and the rectangle is in fact 

made up offive segments, a short one being in the upper left corner. This is caused by the 

original edge not being perfectly straight. Although line count is used at present, it can be 

seen from this example that there is only a difference of one line separating the rectangle 

from the ellipse and, therefore, a small error could produce a mismatch. More robust 

methods need to be found . 
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Maximum Distance from Diameter 

Maximum Diameter 

Figure 4.57 A Method of Finding Four Sided Shapes 

When a specific shape is being searched for, particular methods can be used to see if an 

object conforms to that shape. A typical situation here is to search for four sided shapes, 

these being rectangles distorted by perspective. Instead of using just the lines charac­

teristic given above, the four corners can be looked for and then these comers joined by 

lines. If all the object pixels lie on or near the lines, the object can be said to be four sided. 

First, however, it is necessary to decide what is meant by a comer. This is a question of 

scale, since at high magnification, a comer, such as a piece of paper, will closely resemble 

a quarter of a circle. The same is true of the groups of pixels since a magnified image is 

effectively being worked with. For a quadrilateral, however, two of the four comers are 

at points furthest from the centroid. If the largest diameter is found it is assumed that the 

two points corresponding to the diameter are two of the corners. The other two comers are 

found using the same method as the line fitting algorithm ( see section 4.4.2.4 ). Figure 

4.57 shows the results for a quadrilateral and elliptical shape. As can be seen there is a 

close correspondence between the line joining the located corners and the pixels whereas, 

for the ellipse there is hardly any correspondence. There is, however, a significant 

problem with this method in that the diagram shows that the two points searched for, after 

the diameter is found, lie on opposite sides of the diameter line. If the shape happened to 

be a trapezium, a valid four sided shape, then the maximum diameter would lie along the 

longest edge. It then becomes a difficult problem to decide where the other two comers 

are located, resulting in a considerable increase in computational effort. The most reliable 

solution is to look at the object signatures. A method given in Sonka, H1avec and Boyle, 

( 1994: 203-205) suggests that the distance of a point normal to the current section of the 

object is found . This can be very susceptible to noise. An alternative is to plot the position 

vector of every pixel in the group with respect to the centroid, that is, plot a graph of 

distance ( radius) and angle. Two plots are shown in Figure 4.58 and Figure 4.59 
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Figure 4.59 Signatllre of Model 
Robot Target Circle 

representing again the model robot target. There is a clear difference between the two 

shapes with the four sided shape being characterised by four peaks and the ellipse is 

characterised by not having peaks. The peaks correspond to the four comers with the 'U' 

shaped curves corresponding to the lines. If the mathematical functions for the curves can 

be found, then the peaks correspond to discontinuities where one function stops and the 

other one starts. Although this seems, at first sight, a better way to detect shapes, it does 

require considerable extra processing to determine whether or not peaks are actually 

present. An ellipse oflarge eccentricity will have a similar signature to a narrow rectangle 

with slightly rounded vertices. Noise is also introduced due to pixel position quantisation 

and closer inspection of Figure 4.58 shows that small steps occur along the curve since 

image lines are actually made up of a combination of horizontal and vertical lines 

segments. A processing approach to take this into account, that increases reliability while 

keeping times to a minimum, would be to use the ' line approximation and count method' 

( see section 4.4.2.4 ) to pick up significant differences. If there is a possibility of con­

fusion , then the shape signature process is used to refine the result. 
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Figure 4.60 Coarse Line Filling Figure 4.61 Fine Line Fitting 

4.4.3 Open Group Processing 

The pixel linking process described in section 4.4.1 first creates a list of open groups 

( groups with two ends) before the closed group list can be generated and is, therefore, 

a by-product of closed group processing. The question is, since this information exists, 

can it be used in any way? Recalling Figure 4.26, it is clear that open groups tend to form 

lines at the edges of the building and at the gaps between the floors and vertical structures, 

particularly if the building is constructed from panels. These lines also tend to lie in the 

horizontal and vertical directions. 

4.4.3.1 Line Fitting 

Section 4.4.3.2 deals with vanishing points, but before they can be found, the open groups 

of pixels need to have lines fitted to them . This is essentially identical to the closed group 

line fitting described in section 4.4.2.4 but the fitting accuracy needs to be different. With 

the closed groups, the line fitting is fairly coarse but for the open groups, the lines need 

to be more accurate as their orientation angles are more critical. A small deviation in the 

line can have a large effect on the position of a vanishing point, especially if the lines are 

nearly parallel. Work carried out on block identification at Stuttgart University (Paterson, 

1995 ) has shown that small changes in the line fitting parameters are significant. For the 

closed group processing, the maximum deviation of a pixel from the line is 5 pixels and 

this has been changed for 2 for the open groups. The example in Figure 4.60 shows how 

coarse line fitting has ignored a small deviation in the pixels and has resulted in a line with 

a different orientation to most of the pixels. Figure 4.61 shows that by using fine line 

fitting, a better approximation is achieved at the expense of creating more, shorter line 

segments. 
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4.4.3.2 Vanishing Point Detection 

Once the image has been broken down into a number of straight line segments, it is 

possible to see if these segments can be grouped together to find the vanishing points. 

Work done by Straforini, Coelho and Campani, ( 1990 ) uses a method similar to that of 

the Hough Transform ( see Appendix 1 ) to group lines by their position and angle. By 

plotting the line parameters in this way a line can be represented by a single point in the 

plot space. The plot space is divided up into different regions and the number of lines 

falling in these regions determine the type of vanishing points that are present as there 

may be different numbers of vanishing points. If there is a strong likelihood of a vanishing 

point, then a least squares method is used to find the position of the point that lies closest 

to all the selected line segments. However, closer inspection of the work done by 

Straforini et al indicates that they have concentrated on internal scenes which are likely 

to have a vanishing point somewhere near the centre of the image. Our scenes on the other 

hand deal with external views of buildings, usually of just one side, which yield different 

families of vanishing points. Tai et aI, ( 1993 ) also tend to concentrate on vanishing 

points near the centre of a scene and their algorithm looks at the positions of line in­

tersections and ignores all those that lie outside a region twice the linear size of the 

original image. Most of our building images have vanishing points outside this boundary. 

Having tried Straforini's method it was found that the parameter space was not suitably 

divided, the equations require a slight alteration and that nearly parallel lines, which often 

occur in building images, require special attention. In a later publication, Straforini, 

Coelho and Campani, ( 1993 ) extend their work to outdoor scenes with apparent good 

results, but they imply that this method is not complete by stating that a different par­

titioning of the parameter space ( see later) is required if the camera is not parallel to the 

floor. They do not however give the partitioning information and most of the scenes 

presented have vanishing points that are again near the centre of the image. 

Consider one of the line segments in the image. Its position and orientation can be 

specified by the following equation: 

px + qy + r = 0 [ 4.1 ] 

It is not possible to represent this line simply as the three parameters require a three 

dimensional parameter space so by dividing through by q, we obtain the more familiar 

equation of the line with only two parameters: 

px/q + y + r/q = 0 [4.2 ] 
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which is equivalent to: 

y = mx + c [4.3 ] 

The two parameters m and c could now be plotted such that the line is represented by a 

point but problems occur for near vertical lines when m and c approach infinity thus 

requiring an infinite, and unavailable plot space. If the angle of the line is used instead of 

plotting the gradient m, then all the lines fall in the range 00 to 3600 . The angle is found 

from: 

[ 4.4 ] 

If the values of the parameters in [ 4.1 ] are modified such that: 

p2 + q2 = 1 [ 4.5 ] 

then the modified line offset parameter r lies in the range -C to +C where: 

C = ~( image width2 + image height2 ) [4.6 ] 

In order to find how the parameters are modified, rewrite [ 4.3 ] in the form of [ 4.1 ] to 

get: 

mx - y + C = 0 [4.7 ] 

If this is divided by ~( m2 + 1 ), then condition [ 4.5 ] will be satisfied and the line 

equation now becomes: 

mx y + c = 0 [4.8 ] 

~(m2 +1) ~(m2 + 1 ) 

with the r value calculated from: 

r= y rnx [4.9 ] 

~(m2 + 1) 

One of the three parameters has been conveniently eliminated, with the other two lying 

within usable limits thus allowing all lines to be represented by a point in a 20 parameter 

space. Since a line is unchanged after a 1800 rotation, the limits for the horizontal range 

are reduced to 00 to 1800 . The x,y values are referenced to the centre of the image. 

Figure 4.62 shows an example of the lines used and figure 4.63 shows their corresponding 

points in plot space. 
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Vanishing Point Detection 

Figure 4.63 Line Paremeter Space 

The plot space has been divided up into a number of regions slightly different from 

Straforini's partitioning as follows : 

Hx 

Vx 

Horizontal lines 

Vertical lines 

L Lines converging to the left 

R 

C 

Lines converging to the right 

Lines that pass through the centre of the image 

Width = 1800 / 10 

Width = 1800 / 10 

Height = C /8 

In Addition, the horizontal and vertical regions are further subdivided into HL and HR 

representing horizontal lines that converge left and right respectively and VT and VB 

representing vertical lines that converge to the top and bottom respectively. To determine 

if there is a possibility of a vanishing point, a total of the number of points falling within 

a region is found and compared with the total number of lines present. The values nh, ny, 

nl, n r and ne are used for the regions and after some experimentation, it was found that 

a possible vanishing point exists if nx / ( nh + nv + nl + nr + ne ) is greater than 0.150. 

Since a line could converge to more than one vanishing point, certain assumptions have 

to be made. Straforini et al state that the camera is nearly parallel to the floor but in our 

case it may well have some pitch, so the limitation imposed here is that the camera has a 

limited amount of roll - no more than ± 90 . ( Roll affects the position of the H and V 

groups and additional processing could be done to re-establish them ). 
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Figure 4.64 Vanishing Point Grid 

If a vanishing point falls within the L, R or C groups, then there is a fair amount of 

convergence in the lines and a least squares method is used to locate the point nearest to 

all the lines within the group. However, the nature of our images tends to lead to lines 

mainly falling in the horizontal and vertical groups. Assume for the moment that all the 

lines are actually parallel. The slight inaccuracies caused by the processing will mean that 

the actual lines will have slight deviations with some converging say, to the left for the 

horizontal group and some converging to the right, albeit at some distance. If the least 

squares method is used to try and locate the near infinite vanishing point, a totally false 

result will occur as the left and right convergence tend to cancel each other out. For this 

reason the HL, HR, VT and VB groups were introduced. Depending on the position of 

say the horizontal vanishing point, a given line in the horizontal group could either 

converge to the left or the right and this ambiguity can only be resolved by looking at the 

other lines in the group. Again, by experimentation, it was found that if a least squares 

convergence is found for the HL, HR and both groups together, then a perceived con­

vergence exists when all the signs of the three x co-ordinates are the same and the 

vanishing point is taken from the combined subgroups. Similarly for the vertical group if 

all the signs of the y values are the same then the least squares is used on the combined 

VT and VB groups. If the signs are different, then the lines are considered to be parallel 

and have an infinite vanishing point. The angle of the lines is calculated by finding the 

mean of the theta values within the group. A pseudo vanishing point is then created by 

saying that it is at a distance of 30000 ( near maximum value for an integer in the C 

language) from the centre of the image and the x and y values found accordingly. Since 

the longer lines tend to be the most significant, the line parameters for the least squares 
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and mean theta are actually weighted by the length of the line with small lines con­

tributing less. Lines ofless than 15 pixels are not used. It was decided to only use the lines 

from the open groups of pixels as these tend to arise from significant parts of the building 

such as its outer edge. Using the closed groups was also considered, however, the re­

sulting lines tend to be much shorter and would therefore not contribute significantly to 

the vanishing points as the lengths are weighted. Also, shorter line segments are more 

prone to quantisation errors such that the error in the angle of the fitted line would be 

greater and consequently reduces the accuracy of the vanishing point. In a vanishing point 

detector by Brillault-O'Mahony, ( 1991 ) which uses the Canny edge detector then 

straight line extraction, it is stated that in a 256 x 256 image, line segments less than 15 

pixels long "are very numerous and do not provide meaningful information". This would 

translate into roughly 30 pixel lines in our images but it was felt that in building images, 

these lines are still valid. As we are only interested in one plane of the building, the two 

strongest vanishing points are taken as representing that plane. Figure 4.64 shows a grid 

of lines converging on the two main vanishing points laid over the open group image 

giving an acceptable level of agreement. 

Since the vanishing points are being used to determine the likely direction in which to 

search for a neighbouring feature, it can be argued whether it is necessary to find the 

global vanishing points of the whole image. If a given feature is rectangular, then the 

approximate orthogonal directions ( or those of the local vanishing points) can be in­

ferred from the two pairs of parallel lines that make up the rectangle. This naturally only 

works for rectangles, however, and other shapes would cause a problem, although most 

features on buildings are indeed made up of rectangles. Using local vanishing points 

would also overcome problems induced by severe lens distortion if, for example, a very 

wide angle lens was used. All the straight lines in the image, especially the long ones, 

would in fact be curves with no well defined vanishing point. The distortion of an 

individual feature would, however, be considerable less thus still giving a good ap­

proximation to the local orthogonal directions, but this situation is unlikely to be en­

countered. 

It is interesting to note that a precise vanishing point is not necessary for perception. 

Figure 4.65 taken from Ernst, ( 1985: 44 ) has no single vanishing point in the centre of 

the image due to the way it was drawn and yet there is no confusion in the perception of 

the scene. It is still possible to say which directions are forward, backward, left and right 

even though the lines drawn over the picture are far from converging. 
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Figure 4.65 Jean FOllquel, The Royal Banquet 
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4.5 CAD Representation of Data 

CAD diagrams or models of buildings are used in this application to find the actual 

dimensions and positions of features. Although it was stated at the beginning that no 

calibration or measurements are required, it would be more accurate so say that they are 

not required at the time of operation. The measurements are necessary but have normally 

been done at some time during the design or after some survey. This does assume, 

however, that diagrams exist for the buildings but many of those needing inspection will 

be a few decades old and were certainly designed before computer tools were available. 

It is then necessary to redraw the building as a computer diagram and of course, this will 

provide an additional cost which must be taken into consideration. However, once drawn, 

the information will always be readily available and can be incorporated into reports very 

easily so overall there should be very little cost involved. There are two ways in which the 

data can be entered into a drawing package. Firstly, most of the buildings in question will 

have drawings and these can be digitised. Secondly, if drawings are not available, then a 

survey using existing photogrammetric techniques can be carried out. This is the more 

complex approach but there are many companies and departments that can do just this. 

Once the data have been entered, they can be saved in a suitable file format which can be 

read by the robot location software. 

The aim here is to read in the appropriate information about the face of the building being 

inspected and create an internal representation of the face that can be used by the 

software. There are many CAD packages available on the market ranging from under 

£100 such as TurboCAD (used for many of the drawings here) to ones like AutoCAD 

( commonly used in industry) costing several thousands of pounds. The application 

software needs to be able to read the various files produced by these packages and 

fortunately most ifnot all of these packages can create files in the Data eXchange Format 

or .DXF. This format, a summary of which is given in Appendix 3, is the one used here. 

A process very similar to that used for the image, builds up various lists of data starting 

from the drawing primitives such as lines. The lines are grouped together to form objects, 

the objects are grouped to form features as shown in figures 4.66 and 4.67 and the features 

are used to form a map called the 'Orthomap'. The main problem to overcome is to 

distinguish between wanted and unwanted data, for example, a dimension marked on the 

drawing will also consist of lines that are not part of the building diagram. A feature of 

.DXF files and just about all drawing applications in general, is the facility to either use 

different 'pen' colours or different layers to draw the entities. This allows, say pipes to be 

- 82-



The Automatic Robot Location Algorithm 

D 
Figure 4.66 CAD Diagram 
Primitives to Closed Objects 

DOD rno 
Figure 4.67 Building Features from 

Objects 

drawn on one layer and electrical cables to be drawn on another making the various parts 

of the drawing clearer and easier to maintain. As it is not known what information will be 

supplied on a drawing, there will have to be a specification that states that all the parts of 

the diagram that are required for the robot location software be drawn on a specific layer. 

Also, if different file formats are used, then extra 'filters' would need to be written and 

linked into the software to convert the supplied file to the internal data format. 

It should be noted, that when .DXF files are used, the origin of the co-ordinate system is 

the bottom left corner of the paper so when the CAD diagram has been loaded, it must be 

displayed and the operator asked to select the (0,0) point. Also the units of measurement 

actually stored in the file are always in inches. 

4.5. J The CAD Object List 

This list contains simple closed objects such as rectangles and circles and is created from 

the list of primitives in the CAD file. As the file is loaded, a search is made for lines or 

other basic shapes which are then stored in memory. The object list created is essentially 

the same as that created for the closed groups of the image in section 4.4.2. However, the 

- Feature "d Data 

ID 8 

Centre x = 5623 y=11500 

Width 1500 

Height 800 

Neighbours E = No N'bor N=4 S = 12 W=7 
Relative Dista nce - 2.5 2.5 1.23 

Table 4.3 Typical E I1(IY ill the CAD Orthomap 
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Figure 4.68 A Feature with Four Neighbours 

process is somewhat easier since we already have line information . The lines are searched 

to see if any of the ends join and whether they can be formed into a closed object. The 

same statistics are calculated as those of the image objects although the methods used will 

be different. Geometry rather than pixel positions can be used far more effectively to 

calculate centroid, diameter, line count and some shape information which will already be 

supplied by the CAD file. 

4.5.2 The CAD Feature List 

The CAD feature list contains groups of related objects. Just as the image objects contain 

other objects, a CAD object belongs to another if it is contained by the other one, so a 

feature is complete when the outermost object cannot be surrounded by any other object. 

Once a feature has been created, its internal objects are sorted as described in section 

4.4.2.6 and then it is compared with the current features to see if it is the same or not. If 

it is different, it is given a new feature identification, the first one having an ID of 1 and 

so on. If the feature is the same as another one, it is just given the same ID. 

4.5.3 Th e CAD Orthomap 

Once the feature list has been created, the features need to be ordered in some way. The 

method adopted here is take a feature and look for its nearest neighbour in each of the four 

directions: east, north, south and west as shown in Figure 4.68 . As tower blocks are 

usually constructed with near identical floors, the major features such as windows will 
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either line up horizontally or vertically, or in other words, in the orthogonal directions. A 

map of features and orthogonal neighbours, called the orthomap, is created such that each 

feature has four neighbours and the relative distances to these neighbours, that is, 

horizontal distance I width or vertical distance I height, is also given. Even if a feature is 

located at the edge of the building, then it is said to have a 'no-neighbour' in the as­

sociated direction. Naturally there will be features which do not lie exactly in the or­

thogonal directions but since four quadrants are used, then the nearest feature lying within 

± 450 of the main direction is taken. This map allows the image features to be identi­

fied and to say for a given feature, where is a good place to search for a possible 

neighbour. A typical orthomap feature entry is given in Table 4.3 and an orthomap is 

shown in Figure 4.69. 
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Figure 4.69 Typical CAD Orthomap 

- 86-



The Automatic Robot Location Algorithm 

4.6 The Matching and Location Process 

Up to this point, a large amount of information has been gathered about various objects 

in the image and CAD diagram. This information is now grouped and compared to try to 

identify image features from the CAD feature descriptions and then identify the specific 

position of an image feature in the CAD diagram. Once the features have been identified 

as having a particular ro, they are then joined together as a group of nearest neighbours. 

This image feature map is then compared to the feature map created from the CAD 

diagram so that an image feature can be matched against a specific CAD feature thus 

enabling the image co-ordinates and the real world co-ordinates of the features to be 

combined. Four image features are then found to give four image/CAD co-ordinate pairs 

from which the image to CAD model mapping can be calculated. Once the mapping is 

known, a point from the robot target in the image can be mapped directly onto the CAD 

model giving the robot's actual position. 

4.6.1 Identification of Image Feature Types 

Before any mapping can be carried out, individual features in the image need to be 

identified. It is not necessary to find their real world positions, but merely to specify that 

a given feature is a particular window frame or panel, etc. The process is essentially the 

same as that used for identifying the robot target in section 4.4.2.7, but this time the 

feature description has been generated from the CAD information in section 4.5.2 rather 

than being pre-defined. Also the complexity of some of the features requires further 

processing. Recalling that all the objects in the CAD diagram are in the CAD object list 

and the image objects are in the image object list, then the algorithm for identifying a 

feature is as follows: 

1. For each object in the image object list, do: 

2. I f the obj ect is a top level obj ect ( surrounds 
other obj ects and must be a feature) AND is not 
the robot target 

3. I f the obj ect is not empty, find the ID of the image 
feature then do subroutine FIND FEATURE ID. 
( Assume that single obj ects are not features)". 

FIND FEATURE ID 

1. For each obj ect in the CAD obj ect list do: 

2. Clear CAD obj ect' s top level score. 
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3. If the number of lower, image level- and CAD 
level obj ects is the same then: 

4. Do subroutine SCOREOBJECT for the top level 
image object and store the score with the 
current top level CAD obj ect. 

5. For each of the top level CAD obj ects wi th a 
score do: 

6. For each of the CAD obj ect' s lower level 
objects: 

7. If the CAD- and image lower level count 
is the same: 

8. Set Total score = 0 and for each 
correspondinglowerlevelobjectdo: 

9. Set Total score = Total score + - -
result of SCOREOBJECT for cur-
rent lower level obj ect. 

10. Add Total_score to the top level score 
for the current CAD obj ect. 

11. Find the CAD object with the highest score. 

12. If Total score is within 90% of the maximum 
possible score, mark the image object with the 
CAD feature's ID. 

SCOREOBJECT 

1. Set score = o. 
2. Score = score + 10 - abs ( Number of image Obj ect 

edges - Number of CAD obj ect edges) . 

3. If the position of the centroid flags agree, then 
Score = Score + 10. 

4. If both objects are empty with no lower levels, 
then Score = Score + 10 else Score = 10 * min( 
Number of image obj ect lower levels : Number of 
CAD object lower levels) . Where the min function 
represents the minimum ratio of the two values and 
is less than or equal to 1. 

5. I f the obj ects are both top level obj ects wi th no 
owner object, then Score = Score + 10 
else 
Score = 10 * min ( min ( Image obj ect area 
obj ect owner area) : min ( CAD obj ect area 
obj ect owner area) ). 
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Figure 4.70 Selected Image Feature 

Tc Tc Tc 

GGBBGB 
ID 1 ID 2 ID 3 

Figure 4.71 CAD Features 

6 . If Score is greater than 50 % of the maximum score, 
then return Score 
else 
return o. 

An example is explained in the following: Referring to the highlighted image feature in 

Figure 4.70 it will be attempted to try to find which of the CAD features best match in 

Figure 4.71. Each of the features has had their objects marked in the sorting order found 

in section 4.4.2.6 with T representing the top level object and A,B,C etc. representing the 

sorted lower level objects. The image object taken from the list is Ti and since it is not the 

robot and is a top level object, subroutine FIND _FEA TURE JD is now executed. The 

number oflower levels for Ti is 3 ( objects Ai, Bi and Ci ) so step 4 will only be executed 

when the feature ID3 is reached as this has the same number of lower levels. The other 

two features have a lower level count of one and two and will therefore be ignored. The 

parameters for Ti and Tc can now be tabulated and a top level object score created 
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T m Tc Ti Score 

Edges 4 4 10 

Centroid Inside Inside 10 

Lower Levels 3 3 10 

Object Area 3225 6317 ~ 

Owner Area - - ~. 
,it 

Ratio - - 10 

Total Score 40 

Maximum Score 40 

Table 4.3 Top Level Object Scores 

A ,n. Ac Ai Score 

Edges 4 4 10 

Centroid Inside Inside 10 

Lower Levels 0 0 10 

Object Area 585 1008 ;l 
Owner Area 3225 6317 J 

Ratio 0.181 0.16 8.8 

Tolal Score 38.8 

Maximum Score 40 

Table 4.4 Object A Scores 

B ~~! Bc Bi Score 

Edges 4 4 10 

Centroid Inside Inside 10 

Lower Levels 0 0 10 

Object Area 585 1032 
if,,.. 

Owner Area 3225 6317 11, 

Ratio 0.181 0.163 9 

Total Score 39 

Maximum Score 40 

Table 4.5 Object B Scores 

c - Cc Ci Score 

Edges 4 4 10 

Centroid Inside Inside 10 

Lower Levels 0 0 10 

Object Area 1443 2680 
~ J '. 

Owner Area 3225 6317 

Ratio 0.447 0.424 9.5 

Tota l Score 39.5 
Maximum Score 40 

Table 4.6 Object C Scores 
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( see Table 4.3 ) from subroutine SCOREOBJECT, noting that the maximum possible 

score is 40. Then proceed directly with finding the scores for the lower level objects, 

which are shown in Tables 4.4 to 4.6. Since there is only one possible CAD object, step 

12 of FIND_FEATUREjD checks to see if the image feature is a valid one. The total 

score is 40.0 + 38.8 +39.0 + 39.5 = 157.3 which when compared to the maximum score 

of 160 gives a 98.3% match implying that the feature is indeed valid and can be marked 

as having CAD ID 3. 

4.6.2 Location of Individual Features 

So far, the various image features have been identified based on the different feature 

descriptions derived from the CAD diagram but it is not known which image feature 

corresponds to which specific CAD feature . Typically there will be several identical 

features and it is necessary to find the correct correspondence in order to obtain the image 

to CAD mapping. The method used to locate the features is to produce a map of image 

features and their neighbours, and then to 'convolve' this map over the CAD orthomap 

created in section 4.5.3. 

4.6.2.1 The Image Orthomap 

The generation of the ' image orthomap' is somewhat more complicated than the CAD 

orthomap since there will be features that are missing and the perspective distortion and 

camera roll will mean that neighbours are not necessarily in the orthogonal directions. As 

with the CAD orthomap, neighbours are assumed to be either east, north, south or west 

of the current feature, however, the definitions of the four directions must be changed for 

each feature. 
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VP1 
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/ 
/ 

/ 
/ 

"- // 

~~/~~----~~ Oo //\ , .................. . 
/ \ "-

/ "-
/ "-

/ "-
/ "-

/ "-

03 

Figu re 4.72 Location of Quadrants define by Vanishing Points 
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Figure 4.73 Orthogonal Angle Adjustment 

To commence, for the given feature, the angles from the centre of the feature to the two 

main vanishing points are calculated . Since these angles are assumed to represent the true 

horizontal and vertical directions, they are used to create the four quadrant boundaries as 

shown in Figure 4.72. The quadrant boundaries are simply found from the midpoint 

between vanishing point angles. The first quadrant boundary, QO, is defined as being less 

than 900 ensuring that the north direction is equivalent to up . 

Now that the ' real' orthogonal directions have been found . the image feature list is 

scanned to find the nearest neighbour in each of the quadrants. This can of course include 

a 'no-neighbour' for the instances where a feature lies near one of the edges of the 

building. The algorithm proceeds as follows : 

1 . For each image feature that is not the robot AND 
not the current feature do steps 2 - 7 

2 . Calculate the angle and distance from the 
current feature centre to the neighbour fea ­
ture centre and determine quadrant . 

3 . Adjust the angle based on the vanishing points 
as well as the actual vanishing point direc­
tion for that quadrant (see following text) . 

4 . Calculate the difference in angle between the 
adjusted neighbour angle and the adjusted 
vanishing point angle of the appropriate 
quadrant. 

5 . Fetch the feature diameter depending on the 
quadrant - vertical diameter for north or 
south , horizontal diameter for east or west . 

6 . Calculate the relative distance to the 
neighbour by dividing the actual distance by 
the diameter found in step 5 . 
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7. I f the rela ti ve distance is less than the 
previous distance for this quadrant AND the 
angles and distances are wi thin certain limi ts 
( see following text ), then update the 
neighbour with the current neighbour and 
relative distance. 

8. Go through the newly created image orthomap and 
delete any non-reciprocating neighbours, 
that is, keep only the neighbours that form a 
neighbour pair e. g. AB and BA. 

Step 3 above is used to find the most likely real angle to a neighbour if there is perspective 

distortion. Since the camera is likely to be at some angle to the building face, the angle 

between the lines to the vanishing points will not be 900 . A direction falling between the 

two vanishing points is adjusted as if the vanishing points were orthogonal as shown in 

Figure 4.73. If9 1 is the angle to one vanishing point (or the opposite direction) and 92 

is the angle to the other with 92 > 81> then the adjusted angle is found from: 

9New = (92 - ( 1 ) + 90ld * 90 - 45 [ 4.10 ] 

2 ( 92 - 81 ) 

Note that the calculation needs to be altered slightly by adding 3600 to any angle less than 

1800 if the angles are in the east quadrant ( Q3 to QO ) to allow for sign changes. The 

result should then have 3600 subtracted if it is greater than 3600 . The new angle is an 

approximation to the angle the neighbour would have if it was viewed with the camera 

being nonnal to the face of the building. 

To determine if a potential neighbour is a valid neighbour then limits have to be placed 

on the distances and angles to the neighbour. Since a quadrant could contain several 

neighbours it was decided to accept only those which lie within a set angle range of the 

horizontal and vertical directions, as the nearest neighbours in most buildings lie in these 

directions. Additionally, limits are also defined from the image itself. Therefore, a feature 

is considered a neighbour if: 

The adjusted angle difference ( step 4 ) is less than 
20 degrees 

AND 

The relative distance is less than 3 diameters OR the 
actual distance is less than 200 pixels. 
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Figure 4,74 Image Orthomap 

... Relative Neighbour Distances 

East North 'v\Iest South 

0 2,02 1,82 1,51 

1 2,03 . 1,55 . 

3 1,85 1,39 . 
8 1,50 1,81 · 1,84 

9 '4,56 1,83 1,50 1,84 

12 1,84 2,46 1,88 

19 1,47 1,80 · 1,81 

20 1,84 2,48 1,84 

24 '4,51 1,46 1,75 

27 2,45 1,87 

31 1,48 1,82 · 
41 '4,46 1,78 1,44 1,83 

43 1,49 1,83 

* Indicates a Far-Neighbour 

Table 4.7 Image Orthomap Relative Distances 

To allow for possible missing features, it was also decided that if the above conditions 

could not be met but there was a feature further away, it could be considered a 'far 

neighbour' if the angle difference was less than 100 . This finer limit restricts the amount 

potential spurious neighbours. 

A typical image orthomap is shown in Figure 4.74 where, although some of the features 

are missing, it is possible to reach every recognised feature from any other. Table 4.7 

gives the relative distance to each of the neighbours and it can be seen that there is close 

agreement between the neighbours in a given direction for similar feature types, espe­

cially in the north and south directions regardless of their position in the image. Also, it 

is interesting to compare these distances with the equivalent ones of the orthomap in 

Figure 4.69 of section 4.5.3. 
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4.6.2.2 Image- and CAD Orthomap Convolution ( Reconciliation) 

Matching by convolution can be best thought of by considering two separate patterns with 

one pattern being part of the other pattern. If the smaller one is moved, or convolved, over 

the larger then it will appear to disappear when it exactly lines up with the corresponding 

section of the larger pattern and so the total visible area of the two patterns will be at a 

minimum. Conversely, if the pattern consisted of a number of features, then the total 

number of features visible would also be at a maximum. 

The image orthomap is matched to the CAD orthomap in a similar fashion where this 

time, the pattern is made up of the features and also their relationship with one another. 

The process is complicated by the fact that the image orthomap is not a uniform 

(affine) transformation of the CAD orthomap and so cannot be convolved on a pixel by 

pixel basis. Instead, the convolution is performed on a feature by feature basis by seeing 

how many features have matching neighbours. The process starts by making an as­

sumption that a given CAD feature corresponds to a given image feature. It then looks to 

see how many of the neighbours are the same and assigns a score equal to the number of 

correct neighbours (maximum of 4 ). The process recursively passes around the matching 

neighbours and performs the same scoring on each new feature. A total score is built up 

for the alignment and stored. The process is repeated but this time the initial match is 

assumed to be a different pair of features and a total score is built up again. Finally, the 

alignment with the highest score is taken to be the correct alignment and each of the image 

features is tagged with its corresponding CAD feature. This can be described formally as 

follows: Suppose there are Q different types of CAD feature in a list Fr, r = 1...Q. The 

CAD orthomap consists of R features labelled Cf,j' j = l..R and the image orthomap 

contains P identified features labelled If j, j = l..P. The matching algorithm is then: , 

1. For each of the CAD features Cf do steps 2 to 3. 

2. Find the feature's first occurrence in the 
image list (If, 1) . 

3. Convolve the two orthomaps and find a best 
matching score. 

4. Use the alignment with the highest matching 
score to mark all the image features. 

The convolution stage in step 3 can be described as: 

3.1 Align If, 1 wi th each of CAD features of the same 
type Cf, j. 
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Figure 4.75 The Relationships between Image, Diagram and Orthomaps 

3.2 Calculate a matching score for this alignment. 

3.3 Save t his score and alignment details if the 
score i s higher than any earlier scores. 

Step 3.1 above increments the matching score for each successful matching neighbour. 

Two neighbours are considered the same if they occur in the same quadrant, have the 

same IDs, and the ratio of the two relative distances to the neighbours is greater than 0.8, 

the ratio being the minimum of AJB or BI A. A match is also considered to exist if there 

are no neighbours in the given quadrant. In the case when the CAD feature has a 

neighbour and the image feature does not, it is possible that the image has a missing 

feature. The matching process then tries to look for a 'far neighbour' in the given quadrant 

to see if a further match is possible. As with the ordinary neighbours, the distance ratio 

must be greater than 0.8. 

Figure 4.75 taken from Paterson, Dowling and Chamberlain, ( 1995 ) shows how the two 

orthomaps, c and e are derived from the CAD diagram, b, and the image, a. The num­

bering of the features in the feature list, d, is used to create the labelling in the algorithm 

above. The algorithm would start by assuming that the image feature 1,1 corresponds with 

CAD feature 1,1 , builds up a score and then continue with CAD feature 1,2. 

In this example it is shown that there is only one possible alignment and that is with 11,1 

and Cl,5· However, in reality there may be several alignments yielding the same score. It 

is then assumed that the uppermost alignment is the correct one as one of the set-up 
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criteria specifies that the top of the building must appear somewhere in the image, thus 

avoiding confusion. Figure 4.76 shows each of the alignment scores for the image in 

Figure 4.74 when the image feature 0 is convolved over the corresponding CAD features. 

That is, only a score of 1 is obtained if image feature 0 is aligned with CAD feature Cl,l 

whereas a maximum score of 48 results from alignment with CAD feature Cl,14. The 

same high score is obtained, as expected, if the algorithm is executed using features 

2 and 3 instead of 1. 

0G DO DDJ 
C1,1 C1,2 C2,3 C3,4 

[2] 21 DO [][]] 
C1 ,5 C1 ,6 C2,7 C3,8 

0EJ DO [][]] 
C1 ,9 C1 ,10 C2,11 C3,12 

0~ DDJ 
C1 ,13 C1 ,14 C3,16 

[2J EJ DO DOD 
C1,17 C1 ,18 C2,19 C3,20 

[2J E] DO D 
C1 ,21 C1 ,22 C2,23 C3,24 

0 8 [][] 
C1,25 C1 ,26 C3,28 

o E] DO D 
C1 ,29 C1 ,30 C2 ,31 C3,32 

!DDD! 
C5,34 

Figure 4.76 Convolution Scores for Feature Type 1 
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Figure 4.77 Four Image Control Points and their Features 

4.6.3 Finding Four Mapping Control Points 

Now that the individual image features have been matched to their counterparts in the 

CAD diagram, it will now be possible to locate the robot on the building. What is needed 

are four control points that will be used to calculate the mapping function in the next 

section. Since a high level of accuracy is not required, it was decided to use the centroids 

(see section 4.4.2) of the features as the corresponding points. The centroids, particularly 

in the image, are not necessarily the true centres, but are a close approximation. Con­

sidering a rectangular feature then, when viewed normally, the centroid will be the centre 

but since most of the views will be at some angle, the centroid will be offset. The true 

centre can be found by finding the intersection of the two lines joining diagonally op­

posite comers but this would require extra processing, the centroid is located already and 

not all features may be rectangular. 

It must now be decided which four features in the image to use to generate the control 

points. Although accuracy is not of prime importance, it is desirable to obtain the best 

possible result and this can be achieved by taking four points that are as far as possible 

from each other and, ensuring that no three of them fall on a straight line. These criteria 

are easily fulfilled by taking points as near as possible to each of the four comers of the 

image. 

The algorithm finds the co-ordinates of each of the four image comers, and for each 

comer, goes through the image feature list looking for the feature nearest to that comer. 

Once four features have been picked, a check is made to see if any of the features have 
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been selected by two or more corners and if so, the algorithm fails. The algorithm finally 

examines groups of three points from the image and the CAD model to see if any of them 

fall in a straight line. In this case, a straight line is considered if the angles between the 

lines joining the points are less than 5°. If all conditions are satisfied, then the four image 

points and the four CAD points are passed on to the mapping function. Figure 4.77 shows 

a typical set of four image points. 

4.6.4 Calculation of the Image to CAD Model Mapping Parameters 

Recalling the perspective transformation equations given in section 3.1.1, we see that 

there are 8 parameters to calculate requiring the four co-ordinate pairs from the previous 

section. Multiplying by the denominator and rewriting gives: 

xibll + Yib12 + b13 - Xixib31 - XiYib32 = Xi 

xib21 + yjb22 + b23 - YiXjb31 - YiYjb32 = Yi 

[ 4.11 ] 

Where xi,yi are the image points, Xj,Yi are the CAD model points, bmn are the unknown 

parameters and i represents the four points 0,1,2 and 3. The i equation pairs can be written 

more conveniently in matrix fonn as follows: 

Xo Yo 1 0 0 0 -XoXo -XoYo 
XI YI 1 0 0 0 -XIXI -XIYI 
x2 Y2 1 0 0 0 -X2x2 -X2Y2 
0 0 0 Xo Yo 1 -YoXo -YoYo 
0 0 0 XI YI 1 -Y1xl -Y1Yl 
0 0 0 x2 Y2 1 -Y2x2 -Y2Y2 
X3 Y3 1 0 0 0 -X3X3 -X3Y3 
0 0 0 x3 Y3 1 -Y3x3 -Y3Y3 

which is of the form 

AI! = C 

The unknowns, bmn, are theoretically found from 

h = A-I C 

bl1 

bl2 
b\3 
b21 
b22 
b23 
b31 
b23 

Xo 
XI 
X2 

Yo [ 4.12 ] 
YI 
Y2 

X3 
Y3 

[ 4.13 ] 

[4.14 ] 

but since this is a large matrix, it is not practical to find the inverse of A. Instead Gaussian 

elimination ( Lennox and Chadwick, 1979: 172-173 ) is used and this is the reason why 

the matrix in [ 4.12 ] was written in the way it is as this ensures that no zeros appear on 

the leading diagonal as it will ultimately form an 'upper triangular matrix'. Gaussian 
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Figure 4.78 Located Robot Target 

elimination proceeds by adjusting each of the rows such that the bottom left triangle of the 

matrix has only 0 elements resulting in only a single value in the row corresponding to 

b23. b23 is simply evaluated from b23 = Y3 / AS,S and the result is substituted back into 

the row above allowing b31 to be found. The process continues until all the bmn are 

evaluated, which allows any point from the image to be mapped to a point in the CAD 

diagram. 

4.6.5 The Location of the Robot on the CAD Diagram 

The final step is to calculate the position of the robot in real world co-ordinates from the 

CAD model. Using the 8 mapping parameters from the previous section, the image 

co-ordinates, (x,y) of the robot target found in section 4.4.2.7 and feeding them into the 

perspective transformation equation 3.1.1 yields the (X,Y) position of the robot target. 

Figure 4.78 shows a comparison of the original image with a section of the CAD diagram 

with the transformed robot target position superimposed on it. It is clear that the method 

is reliable, that is, showing which floor and between which windows is the robot situated. 

The main source of error is the fact that the target is not in the same plane as the building 

so the intersection of the line of sight through the target and the building will be different 

from the line normal to the target and the building. 
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Experimental Results and Discussion 

Up to this point the development of the algorithm has been described and it has been 

demonstrated that, for a given image of a model building and robot, it is possible to find 

the robot's position. To gain some idea of the performance of the algorithm and to find 

out what improvements may be necessary, a number of tests have been devised for the 

model building and a real building. The model building assumes the near ideal situation 

allowing other parameters, such as camera angle, to be checked without being concerned 

about the quality or complexity of the building, and the real building is used to find out 

what the performance is like in the real world - the ultimate goal of this work. 

5.1 The Model Building 

As stated earlier, a model building was used to develop the essential stages of the al­

gorithm without the added complications involved with real buildings. This model is now 

used to test various parameters of the algorithm and to find out when and how the 

algorithm fails. By using a near ideal model, results can be obtained to test the latter stages 

of the algorithm in a controlled way. The features on the model have been deliberately 

enhanced to make them stand out clearly thus minimising the effects of lighting condi­

tions and poor contrast. Some of the tests are aimed at trying to find an operating envelope 

for the camera with regards to position and roll. The larger this envelope is, the more 

freedom the operator has in setting up. The other tests try to find out how robust the 

algorithm is to spurious data such as missing or incorrectly identified features assuming 

the camera is operating within the correct envelope. Finally image quality is examined to 

see if additional global processing before edge detection has any advantages. 

5.1.1 Robot Placement Accuracy 

The most important measurement that can be made is to find out how accurate the 

algorithm is at placing the robot, as this gives an indication of the effectiveness of the 

algorithm. There are three main factors which influence the position of the robot, namely 

the position of the camera, the features chosen to provide the mapping points and the part 

of the feature chosen for the mapping points. The following tests show how these have 

influenced the robot position. 

- 101 -



Experimental Results and Discussion 

5.1.1.1 Effects o/Camera Angle 0/ Incidence 

When the building is viewed face on, features are easily recognisable but when moving 

around it, the features become harder to recognise. The same is true with the robot 

location algorithm and these tests were designed to see at what point the algorithm fails 

for different camera angles. Firstly, the camera was placed normal to the building and a 

position for the robot was found, then the building was rotated at 150 intervals to 900 to 

see what would happen. Rotating the building had the same effect as moving the camera 

but was simpler to do. Next the process was repeated but this time the building was tilted 

back to simulate looking up at it. Finally the building was tilted and rotated to give a 

change in two planes simultaneously. Figure 5.1 shows all the images used and the terms 

yaw and pitch are used to indicate the amount of rotation in the horizontal and vertical 

planes respectively. Table 5.1 shows the results indicating the amount of position error or 

the type of failure that occurred ifitwas not possible to obtain a position. The actual robot 

placements are shown graphically in figure 5.2. 

The model robot was fixed on the building and the position was measured at x = 237mm 

and y = 539mm. The first result with the camera normal to the building gave a zero error 

although the accuracy of measurement is approximately lmm in any direction. As the yaw 

of the camera increased, so did the amount of error in the x direction. This is expected 

(ij -c: 
a 
N .t: 
a 
I 

C\l 
c: a 
CI 
C\l 

i5 

Table 5.1 Changes in Robot Position with Camera Angle 

- 102 -



Experimental Results and Discussion 

a: Nonnal b: Yaw = IS, Pitch = 0 c: Yaw = 30, Pitch = 0 

d: Yaw = 45, Pitch = 0 e: Yaw = 60, Pitch = 0 f: Yaw = 75, Pitch = 0 

g: Yaw = 90, Pitch = 0 

h: Yaw = 0, Pitch = 15 i: Yaw = 0, Pitch = 30 j: Yaw = 0, Pitch = 45 

k: Yaw = 0, Pitch = 60 

Figure 5.1 Views of the Model Buildingfrom Different Camera Angles 
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I: Yaw = 15, Pitch = 15 m: Yaw = 30, Pitch = 30 n: Yaw = 45, Pitch = 45 

Figure 5.1 Continued 

since the robot target is not in the same plane as the building and therefore the line of sight 

from the camera to the robot target passes through the target and intersects the plane of 

the building at a different point. The model target was approximately 20mm from the 

building and the error when the angle was 450 was 18mm. At 450 , the error should be 

equal to the distance of the target from the building and the result here verifies this. More 

specifically, if the camera is at an angle 8 to the normal to the building face, then the error 

is given by: 

Error = h tan( e ) 

Where h is the distance of the selected point on the robot target from the building. 

0,45 
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Figure 5.2 Changes in Calculated Robot Position with Camera Angle 

- 104 -



Experimental Results and Discussion 

As expected, similar results were obtained when the camera was moved in the vertical 

plane with errors being a near perfect match for the equivalent angles. The results when 

the camera was moved in two planes are slightly different but it must be considered that 

the resultant angle will be greater than the two angles indicated. 

These results show that the algorithm has worked with angles up to 450 , but at 600 there 

are problems. For the case of movement in the horizontal plane, the algorithm failed at 

this value because it was unable to identify the robot target. By a chance alignment, part 

of the robot target, the robot leg and the edge of a window coincided in such a way that 

the edge detection process created a closed group that combined the robot and window 

into a single feature and was hence unrecognised. If this had not occurred, the algorithm 

may have worked since six features were identified correctly and could have yielded four 

suitable control points. Changing the contrast and threshold levels did not affect the 

result. When moved to 750 , not a single feature was identified. At this point the width of 

the window frames in the vertical direction are becoming sufficiently narrow that where 

two edges should occur, only one appeared, in other words, the resolution limit of the 

system had been reached. The 900 case was really included for completeness for when the 

camera was in the plane of building face, none of the features could be seen and it was 

effectively beneath the robot target. Very similar failures were found when the camera 

was moved in the vertical plane. At 600 , the robot was again not detected but for a 

different reason. At this angle, more of the side of the robot was visible creating more 

edges near the target. A small gap existed after edge detection but instead of the repair 

process closing it, it joined the group to a different group very close by. Had the ordering 

of the groups in memory been different, the correct join would have been made. Again, 

although the target was not found, 17 features were identified with only one missing 

indicating that the algorithm only just failed. Also it was not possible to correct the 

problem by pre-processing. Greater angles were not tested for practical reasons and also 

because there was no reason to expect a different result from that obtained when moving 

in the horizontal plane. 

When moving in both planes, the algorithm was only successful up to 300 . Even then, the 

150 image only worked with a significantly different threshold to remove a false edge 

which had again produced incorrect pixel linking. This in tum reduced the number of 

identified features but sufficient were found to obtain a valid answer. The algorithm did 

not work at 450 due to a vanishing point failure. The target had been identified along with 

11 features (7 missing) so sufficient data was present to produce a result. However, all 
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Figure 5.3 Original image with 
maximum contrast processing. 

0~ Q 
@] 0 OJ 
0lliJ OJ 

Figure 5.4 Identified features . 

the real vertical lines in this image were tilted over quite considerably to the point that the 

line parameters moved into a different group in the vanishing point algorithm, which then 

assumed that a different vanishing point should be used. This false vanishing point meant 

that wrong directions were searched for, resulting in incorrect feature neighbours and 

therefore no matches and control points could be found . 

5.1.1.2 Effects of Different Control Points 

The effects of using different features to provide the four mapping points are presented 

here. Figure 5.3 shows the image used where the camera was placed such that the line of 

sight was normal to the building surface in order to minimise the influence of other 

effects. The image was processed to use maximum contrast and a threshold level of 9 was 

used after the edge detection to end up with the 13 identified features shown in Figure 5.4. 

The aim here was to see if the calculated robot position is changed by using different 

groups of four features. 

The results of the different groups are shown in Table 5.2 and the first group, acmj, 

represents the group chosen automatically by the software. Other groups have been 

chosen to try to find the ones producing the greatest error and as expected, these come 

from groups made up of four neighbouring features. The positions are shown graphically 

in Figure 5.5 where the dark circle represents the actual measured position of the robot 

with an accuracy of ± lmm. Similarly the calculated circles represent a precision of ±1 

digit or ± 1 pixel. The largest errors are from groups containing feature g and h forming 

small groups to one side of the robot. This could result from lens distortion coupled with 
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Table 5.2 Robot positions using 
different f eatures. 

f 
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Figure 5.5 Positions of the robot 
calculated using different features. 

small errors from the position of the centroids. Groups chosen, including the auto­

matically selected group, such that the features surround the robot, produce results that are 

all in close agreement with a deviation within 1 mm, however, they are all slightly to one 

side of the measured position. This could be caused by a number of reasons such as the 

model building not being exactly the same size as that given in the CAD diagram 

( inaccuracies in construction, as with real buildings, means that distances are not exact, 

but this is not a problem as the final measurements will be relative to a known feature) 

and more likely, the camera line of sight not being exactly normal to the centre of the 

robot target as is the case here. Remembering that the target is not in the same plane as 

the building surface, the apparent position when viewed at an angle will not be the same 

as the actual position. 

In conclusion, the choice of the four features does make a difference as expected but the 

error produced is well within the range of the desired accuracy as it is still known which 

features are closest to the robot. The automatic selection of the four furthest points does 

produce the most reliable position. 
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o 
a b 

d c 

o o 
Figure 5.6 Image with perspec­

tive distortion 
Figure 5.7 The four 

automatically chosen f eatures and 
points 

5.1.1.3 Effects of Using Vertices 

The aim of this test is to determine ifusing the centroid of an image feature for a mapping 

point is a suitable approximation to the centre. Figure 5.6 was used for this experiment but 

had to be enhanced by sharpening since it was out of focus and the processing was unable 

to identify the robot target. Figure 5.7 shows the features chosen automatically by the 

algorithm and the locations of the centroids used. An image with perspective distortion 

was used as the true centres of the rectangular features are not in the same place as the 

centroids. It was decided that the best indication of accuracy was to use the vertices of the 

rectangles rather than the true centres as the vertices are easier to locate and the result is 

just as valid. The vertices were located manually using an image editing package which 

allowed lines to be drawn over the feature edges. The position of the intersection of these 

lines then gave the co-ordinates of the vertices and was more accurate than picking one 

of the pixels by sight as a certain amount of comer rounding occurs. 

Error (mm) 

Groups 
r-~----~r---r---+---+---+----4-----~---+~~ 

Table 5.3 Calculated robot positions 
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Figure 5.8 Relative positions of the robot 

The results for the different combinations of the four mapping points are given in 

Table 5.3 and are shown graphically in Figure 5.8 where the circles represent the one pixel 

quantisation error in position. The groups of four were chosen such that each of the 

vertices of the features were used and these have been labelled TL for top left, BR for 

bottom right etc. The outer group has the greatest spread of points, the inner has the 

minimum spread and the others use the same comer on each of the features. There is very 

little difference in the results and considering that the size of the model robot target is 

27mm x 38mm, the errors are very small indeed and the deviation in position using the 

centroids is similar to that of using the different vertices. This shows then, that using the 

centroids of the features as an approximation for the mapping points is quite acceptable. 
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5.1.2 Feature Identification 

The results so far have concentrated on finding the position of the robot and in order for 

that to be possible, the features themselves must first be identified. This test looks at how 

camera angle affects feature recognition. Using the same images as those in Figure 5.1 it 

has already been shown that moving the camera to an angle of 450 was sufficient to 

identify enough features whereas at larger angles, failures started to occur. Figures 5.9 and 

5.10 show the closed groups for angles of 600 and 700 respectively using the statistical 

threshold. At 600 , features were beginning to disappear as close groups such as adjacent 

window panes could not be separated. Although several features look intact, several of 

them could not be recognised as false edges were beginning to appear. By 750 , not a 

single feature was recognised and close inspection of the closed groups reveals that the 

remaining features are in fact made up of smaller but false closed groups. The results here 

give an upper limit on performance as the model building surface is totally flat. In reality, 

windows and other features will be proud of the surface so that as the angle of incidence 

increases, these parts of the features will obscure other parts causing failure at lower angles. 

5.1.2.1 Effects of Camera Roll 

The effects of the camera angle on the features were covered indirectly in the tests on the 

robot position in section 5.1.1 where some features were still detectable at quite large 

angles of incidence. This test primarily looks at what happens if the camera is kept in the 

same position but is rolled about its optical axis ( or the line of sight). This effectively 

simulated what would happen if the camera was not set up evenly on a real site and gave 

some indication as to how much leeway there is. 
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Figure 5.9 Closed Groups at 600 Figure 5.10 Closed Groups at 750 

- 110 -



Experimental Results and Discussion 

a: Roll = SO b: Roll = 100 c: Roll = 150 

d: Roll = 300 e: Roll = 45° 

Figure 5.11 Views of the Model Building with different Camera Roll Angles 

For practical reasons, the test again used a fixed camera and rotated the building the 

desired amount. As humans have a good perception of horizontal and vertical, that is, are 

able to detect small deviations from these directions, it was decided to concentrate more 

on smaller angles than the larger ones. It is highly unrealistic that someone would set up 

the camera with a roll of more than 200 and is probable that no more than a 50 roll would 

normally be present. Figure 5.11 shows the different images used and even at 50, there is 

an obvious tilt that the operator would probably correct. However, it was interesting to see 

how the algorithm performed and although the main aim here was to see if the features 

could remain detectable, the robot position was also calculated when possible. 

50 Roll 
It proved to be very difficult to detect the robot in this image. It was only possible to use 

a VHS signal rather than a S-VHS one, due to equipment not being available. This 

resulted in an image which contained more noise although it was useful to see what effect 

this had. Several different types of pre-processing were attempted but the robot target was 

never detected since incorrect pixels were linked even though the other features were 

found . In the end, it was decided to edit the image and only one pixel was moved to 

produce a result. This is a valid solution as feature position rather than detection is being 

tested here. Although this would not normally be done, this showed that if an almost 

negligible amount of noise occurs injust the wrong place, then a result is not possible and 

the editing was merely done to check the final matching process. Without the editing, all 
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the features visible were correctly identified when the statistical threshold level of21 was 

used. The calculated robot position was x = 208mm and y = 539mm which corresponded 

to only a Imm error in the x direction so assuming that another image was taken where 

the target could be identified, a 50 roll had no effect. 

100 Roll 
This imaged worked perfectly. With a statistical threshold of 17, the robot target and all 

14 visible features were correctly identified and the robot position was calculated as 

x = 207mm & y = 539mm which had zero error. 

150 Roll 
The result here was identical to that of the 100 roll except that 13 out of 15 features were 

detected although the failures were caused by incomplete objects which were not the 

result of the camera roll. 

300 Roll 
At this angle many of the features were still being identified with only two missing, again 

because of incorrect features, but the algorithm started failing as a result of the vanishing 

point failures described in section 5.1.1.1 with large angles of pitch and yaw. 

450 Roll 
The results from this image were essentially the same as for a roll of 300. This time only 

one feature was missing and the overall algorithm failed through a vanishing point failure. 

Angles larger than this are rather academic as this would not happen in reality. Also 

beyond 450 the x and y axes become effectively swapped which would mean that the 

ordering of smaller objects within larger ones would change greatly, reducing the like­

lihood of a successful match. Some features such as squares would, however, remain 

unaffected since they have a 900 rotational symmetry and appear unchanged at angles 

greater than 450 . 

In summary, the roll results showed that angles up to 150 had no effect on the ability to 

identify features and correctly locate the robot. Although this is quite a small angle 

numerically, the way humans perceive a scene makes this appear as a large angle visually 

meaning that an operator would be very unlikely to set up the camera with an angle as 

large as this. (Humans can easily see if a camera view is deviating only slightly from the 

horizontal). At angles of300 and greater many of the features were still identified but the 

overall algorithm failed at the matching stage although this is not relevant here as these 

angles would not be expected. 
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5.1.3 Feature Location - Convolution 

The position of the robot can only be calculated if the features in the image can be 

correctly identified and located. The following set of tests look at how well the algorithm 

performs when there are errors in some of the features and if features are missing. Ideally, 

changes in the data should not make any difference to the final robot position for good 

reliability, but naturally as the number of errors increases, the correct positions of features 

become ambiguous, for example, one set of features is mistaken for another. The tests are 

designed to identify at what point features cannot be recognised when the camera is 

moved, then see what effect missing, or incorrectly identified features have. 

5.1.3.1 Effects of Camera Angle and Roll 

The effects of camera angle and roll on convolution have been covered in sections 5.1.1 

and 5.1.2 respectively, where robot location failures have been described. The main cause 

of failure at angles of greater then 450 was a failure in the vanishing point algorithm. As 

this routine does not give an output at these angles, it is not possible to search in the 

correct direction for neighbours. Indeed, limits were set for the search angles and without 

vanishing point modification, the neighbours fell outside the accepted range leaving no 

features to convolve. This implies that an alternative vanishing point algorithm is needed. 

5.1.3.2 Effects of Missing Features 

It is almost a certainty that there will be features missing from the image and it is 

necessary to see how well the algorithm copes with partial data. This could result from the 

earlier stages of processing not filling gaps in pixel data for example, but in an ideal 

situation, the robot itself may well obscure one or more windows. The test image used, is 

the same as the one in Figure 5.3 since this minimises the effects of perspective distortion. 

The features located from this image are shown in Figure 5.12 and it can be immediately 

seen that there are already three missing features. One window is hidden by the robot and 

the other two were not detected since the background gray level happened to be very 

similar to the window frame rendering it indistinguishable in black and white ( although 

in colour there was a large difference ). 

This test removes a number of different features by editing the data in the software so that 

a feature is ignored in the subsequent processing and has the same effect as hiding a 

feature in an image. The results of the feature removal are shown in Table 5.4 and are split 

up into a number of different sections. The first shows what happens when just a single 
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GG 

Figure 5.12 Identified Image Features 

feature is removed and in all cases the calculated robot position is no more than 2mm 

different from the automatically calculated position which is caused by picking a different 

set of control points ( see the test in section 5.1.1.2 ). If the set of control points chosen 

is the same as for the automatic set ( features 44, 24, 0, and 31 ), then the table entry is 

marked as 'Normal' otherwise the chosen features are shown. Two types of position error 

have occurred here marked 'A' and 'B'. Error type A is caused by using a different set of 

control points and all the remaining features were used in the convolution. Error type B 

is slightly different in that the feature removed has meant that a number of features have 

been left out of the orthomap. Take the removal of feature 0 for example. Here, it is not 

possible to class features 1 and 35 as neighbours using the orthomap and as a result the 

group of features 24, 19 and 35 have not been included even though they were identified. 

Consequently none of them can be used for the selection of a control point. 

The next group in the table looks at removing two features and the ones chosen were the 

features chosen for control points by the algorithm. A new type of error has occurred here 

and is marked as 'C' in the table. This was unexpected and needs to be investigated. 

However, it is likely to have been caused by feature 23 ending up with only one neighbour 

below it and has caused an error in the convolution. A type C error occurs when the 

remaining features produce ambiguous data for example, when the row of features 44, 23 

and 24 are removed, the windows below are then assumed to be at the top of the building 

and the robot position has moved up one floor. There is no way of knowing that the 
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Robot 
Error Chosen Features Position Control Error 

Removed 
Points 

Type 
x y dx dy 

0 207 538 2 -1 44,23,1,31 B 
1 207 538 2 -1 44,23,2,31 B 
2 203 541 -2 2 44,23,10,31 B 
10 205 539 0 0 Normal 

18 205 539 0 0 Normal 

19 206 539 1 0 44,35,0,31 B 
S ingle 23 205 539 0 0 Normal 

24 205 540 0 1 44,19,0,31 A 

31 205 539 0 0 44,24,0,2 A 
33 205 539 0 0 Normal 
35 206 538 1 -1 44,23,0,31 B 

Feature 37 205 539 0 0 Normal 

Groups 
Removed~------~Ir-~~--~~~~~~-1~~~~~~-r~~ 

44 205 540 0 1 23,24,0,31 A 
44,24 205 220 0 -319 23,19,0,31 C 

Dual, 
Chosen 
Features 

Rows 

Columns 

M isc. 

24,0 207 538 

0 ,31 207 538 

31,44 205 539 

44,23,24 205 620 

18,37,19 206 540 

33,10,35 

31 ,2 ,1,0 208 537 

44 ,18,33,31 205 539 

23,37,10,2 

24,19,35,0 207 538 

18,23,2,33 

2 -1 44,23,1,31 

2 -1 44,23,1,2 

0 0 23,24,0,2 

0 81 18,19,0,31 

1 33,35,0,31 

3 -2 44,23,10,33 

0 0 23,24,0,2 

2 -1 44,23,1,31 

Table 5.4 Robot Positions with Feature Removal 

B 

B 

A 

C 

C 

D 

B 

A 

D 

B 

D 

windows are not at the top and an assumption has to be made. Although the type C errors 

are large, considering that the distance between floors on the model building is 80mm, it 

can be seen that the error size is a multiple offioor height and the actual position error is 

again only a couple of millimetres. The final type of error marked as 'D' has occurred in 

the last three groups. Here, three or more features were removed and that resulted in only 

a small group of connected features remaining. If the column of features 23,37,10 and 

2 is removed, then as before, an incomplete image orthomap is produced and only features 

44, 18, 33 and 31 are used for the convolution. If these are correctly identified, then the 

control points end up in a straight line and it is not possible to produce a mapping. 

Summarising, the algorithm is robust when up to 25% of the features are missing with the 

robot's position well within the desired accuracy range. As the percentage increases, more 

significant errors occur due to wrong assumptions being made during the convolution of 

the orthomaps and when most of the features are missing, it is not possible to find four 

suitable control points. However, certain features such as the ones near the edges of the 
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Figure 5.13 Recognised Features and their Identities 

building have a greater significance and are therefore more likely to cause an error/failure 

if they are missing. These results show that for relatively simple situations, the orthomap 

convolution works fine but in more complex situations, a different method of determining 

neighbours is needed and possibly information about the edge of the building could be 

used to remove the floor ambiguity. 

5.1.3.3 Effects of Incorrectly Identified Features 

Some features in an image may be very similar to other features or may be partially 

obscured so that they appear to look like another one after the edge detection stage. This 

can lead to one feature being mistaken for another and this test is aimed at finding out how 

an incorrectly identified feature affects the position of the robot. The image used is the 

same as the one in Figure 5.3 and the resultant features used for this test are shown in 

Figure 5.13 along with their index in the data list followed by their type identification. 

The image feature list was edited in the software to simulate incorrect identification. All 

the features of type 1 were altered type 2, those of type 2 were changed to type 3 and type 

3 features were changed to type 1. Only one feature was changed at a time and the results 

giving the robot's position and the four control points chosen are shown in Table 5.5. 

With one feature incorrect, there was no significant change in the robot's position, with 

a maximum of only 2mm in either the x or y directions. Closer inspection of the results 
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- Robot 
Error 

New Position Chosen 
(mm) .. 10 (mm) Control 

x y dx dy 
Points 

44 2 205 540 0 1 23,24,0,31 
23 2 205 539 0 0 Normal 

18 2 205 539 0 0 Normal 

37 2 205 539 0 0 Normal 

33 2 205 539 0 0 Normal 

~ 10 2 205 539 0 0 Normal 
:::I 

31 2 205 539 0 0 44,24,0,2 -C1l 
CI) 

2 2 203 u. 541 -2 2 44,23,10,3 

1 3 207 538 2 -1 44,23,2,31 

24 1 205 540 0 1 44,19,0,31 

19 1 206 539 1 0 44,35,0,31 

35 1 206 538 1 -1 44,23,0,31 

0 1 207 538 2 -1 44,23,1 ,31 

Table 5.5 Robot Positionfoundfrom Incorrect Features 

reveals that they are the same as those for single missing features in section 5.1.3 .2 and 

therefore the same conclusions can be drawn. The algorithm is deleting features whose 

identifications do not match after the reconciliation process has found the best alignment 

between the image and CAD diagram. 

5.1.3.4 Effects of Extra Features 

Extra features are unlikely to occur unless they are small and simple. It is not possible for 

a window containing a few panes to just appear on the building surface for example. Iffor 

some reason extra features do appear, for example when something is hanging out of a 

window, then the chances are that they will not be recognised and will therefore not 

appear in the image orthomap. The problem can be treated the same as for missing 

features, since an incorrect match will be ignored leaving the position of the robot un­

changed. 
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5.1.4 Image Pre-processing 

The following two tests are aimed at seeing what effects pre-processing the image has on 

identifying features and ultimately the robot's position. Every image has a certain level of 

contrast and a degree of blurring, both of which change the nature of edges between dark 

and light objects. Since edge detection is a crucial stage in the algorithm, it was decided 

to see how these two operations change the type of edges detected and compare the 

number of closed objects found. 

5.1.4.1 Effects a/Contrast 

Lighting conditions, surface finishes, camera hardware and frame grabber settings can all 

effect the range of gray levels of an image. The range for the images used here is from 

o ( black) to 255 (white) and ideally an image wants to have intensities spread over most 

of this range. However, this is not always the case and a small range of gray levels can 

lead to edges not being detected. 

The experiment carried out here was to see what happened to the edges and closed groups 

when the contrast was stretched. The raw image used to generate all the others is shown 

in Figure 5.14a and has a gray level range from 39 to 179 which is just over half the 

maximum possible. The first experiment stretches the gray level range of the entire image 

by setting the image minimum of39 to 0, the image maximum of 179 to 255 and scaling 

all intermediate values with the resultant image shown in Figure 5.14d. The remaining 

images have their contrasts increased in a similar manner except that a smaller range in 

the image is chosen. One reason for doing this is that an image may contain a single dark 

or light noisy pixel which is not representative of the image and may unduly affect the 

contrast stretching. 

The next experiment sets the minimum and maximum levels of the image to 5% of the 

raw image giving a range from 46 to 172. This is then scaled as before to fit all 256 levels 

with any pixels falling outside the full range being clipped to 0 and 255. Figures 5.14g, 

j and m have percentage levels of 5%, 10% and 20% respectively. Each of the gray level 

images was processed in the same way to produce the edge images including the use of 

a statistical threshold to create the binary edges. The threshold levels increased which 

indicates that the overall edge strength increased with contrast as expected. The last image 

in each group shows the closed groups from pixel linking and is used to see what effects 

increasing the contrast has. Although the raw image had a very low contrast and was quite 

- 118 -



Experimental Results and Discussion 

dark, most of the features were visible as can be seen by looking at the closed groups. 

Increasing the contrast has really only improved the visual appearance of the image with 

Figure 5.14m being much clearer than Figure 5.14a. Increasing the contrast increases the 

strength of edges which can sometimes produce extra closed groups as can be seen in 

Figures 5.141 and 5.14m since the edge strengths were brought above the threshold level. 

However, noise is also amplified and this has caused some of the features to be in­

complete in the final set of images. On the whole, contrast has not made much difference 

to the output but if the contrast is exceptionally low, then it may be useful to increase it 

a little, say to the 5% range. A single missing feature is not that critical as shown in the 

previous tests but if it happened to be the robot target, then the system would fail and a 

change in contrast could make the difference. 
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5.1.4.2 Effects of SmoothingIDe10cusing 

Each image captured has passed through some form of optical system. The quality of the 

captured image is controlled by a number of factors but the one that plays a major part is 

focus. Even if the camera optics are ideal, an otherwise perfect image is severely degraded 

if the focus is incorrectly set. In this application, this has the effect of smoothing out edges 

with the possibility that they may not be detected. Smoothing however, can have an 

advantage in that noise, maybe in the form of a textured surface, can be reduced. 

The test carried out here used a typical image of the model building which was slightly 

blurred due to imprecise focusing. The image was then artificially sharpened using an 

image editing facility to produce Figure 5.15a. This was then processed using statistical 

thresholding to produce the edge image in Figure 5.15b followed by pixel linking to give 

the closed groups in Figure 5.15c. Smoothing was used to simulate an out of focus image 

and provides a good approximation. The method used was to take an n x n pixel window 

with n being odd and set the central pixel value to the mean value of all the pixels in the 

window. Figures 5.15d, 5.15g and 5.15j show the image smoothed by 3 x 3, 5 x 5 and 

7 x 7 windows respectively with Figure 5.15d being very similar to the original image that 

was sharpened. 

It can be seen by looking at the closed groups in Figure 5.15 that quite a few groups are 

missing from the sharp image. Here, noisy pixels and other unwanted marks on the 

building have the greatest effect. A significant improvement was made by the minor 

blurring using the 3 x 3 window with most of the features being complete. As smoothing 

increased, fewer and fewer closed objects were found. This was particularly significant 

with this image as the robot target was incomplete and a position could not be found. The 

outer part of the target was blended with some of its surroundings, which gave false 

edges. The final image exaggerated the problems and, where features remained intact, 

they were somewhat distorted. Clearly, if smoothing was increased, then one window 

pane would merge with the next and it would not be recognised. 

These results show that a small amount of smoothing is advantageous, which supports the 

use of the Canny edge detector in section 4.3.4.3. This can be done using software, where 

a 3 x 3 mean window is best but takes time. Alternatively, if the camera lens is defocused 

slightly, the smoothing is achieved instantly. 
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Figure 5.15 The Effects of Applying Smoothing to an Image 
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5.2 Real Building 

The ultimate aim of this work is to locate a real robot on a real building, rather than just 

using a model. The performance of the algorithm is tested here on two types of building, 

one with a simple construction and the other consisting of a number of complex features . 

Since no robot is available, and considerable effort would be required to produce a replica 

target and obtain permission to hang it on a building, it was simply decided just to pick 

a point at random on the building surface to simulate the position of the robot target. 

5.2.1 Simple Building 

The building chosen representing a simple structure was a residential block for statT at 

Northwick Park Hospital near Harrow, London and the first image used is shown in 

Figure 5.16. Since it was not possible to set up a computer and frame grabber at these 

locations, an S-VHS video camera was used to record a few seconds of image with the 

camera mounted on a tripod. This gave a steady image allowing frames to be captured 

with the minimum amount of degradation. It can be seen from the image that the building 

consists of a dark brick construction with simple white window frames. Figure 5.17 

shows the identified closed groups and as expected most of them are visible. The point 

marked by the cross is the randomly chosen point that was used instead of the robot target. 

This is a valid substitution, as it has been shown earlier that the model robot target was 

easy to detect. A full size version would have appeared the same size in the image and 

therefore detectable, the only difference being that the camera was just further away. 

Figure 5.16 Real Tower Block with Simple Features 
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Figure 5.18 CAD Diagram of Tower 
Block plus calculated Robot Position 

Figure 5.18 shows the CAD diagram for the face of the building and the calculated robot 

position. Clearly, there is a very close correspondence, showing that the algorithm worked 

correctly and, had a robot been present, its location would have been found successfully. 

Although this image is simple, the windows at the left presented potential problems by not 

being aligned orthogonally in the horizontal direction. These windows were part of the 

stair well and consequently did not line up with the floors. Fortunately, the flexibility 

designed into the orthomap has meant that the features were properly identified showing 

that even though there were considerable misalignments, the algorithm coped success­

fully. Larger misalignments than this though would cause problems using the current 

orthomap implementation and further work is required to extend the orthomap principle 

to cope with features that do not line up in the two principle directions. 

Three of the building windows were not detected and the reason that this did not effect the 

final robot's position was explained earlier in section 5.1.3 .2. This raises the question as 

to why such clearly visible features were missed? After pixel linking, the groups making 

up a couple of these features were open groups rather than closed groups and were hence 

missed. Figure 5.19 shows two of the features in close up and Figure 5.20 shows the 

corresponding linked pixel groups. Looking more closely at the windows, it is seen that 

the vertical edges of the window frame are not straight and contain an oscillation. This 

originated from the image coming from a video tape with a slight difference between 

frames producing the effect as alternate frames are grabbed using the interlace. This has 

not affected the edge detection significantly since the Canny edge detector applies a 

degree of filtering. Close inspection of the linked pixels reveals the true reason why these 
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(OJ 

Figure 5.19 Unidentified Windows Figure 5.20 Corresponding Linked 
Pixel Groups 

features were not detected. In both the examples an edge has been detected in the upper 

right hand comer and the linking process has tracked from the outside of the window 

frame and crossed to the inside therefore splitting the two closed objects that should exist. 

It is very hard to understand with the original image why this occurred, but there is a 

barely visible shadow caused by the upper part of the window frame. Since this is slightly 

darker, a false edge has been found in the comer. This shows that the current edge 

detection process is extremely sensitive to small errors, as in this case only a small 

percentage of wrong pixels has caused a failure in the identification of a feature, but the 

robustness of the algorithm allowed a correct map to be established. 

It has now been shown that small errors occurred in the image that could cause large 

failures in the feature detection. However, if only a few were unrecognised, the robot's 

position is still calculated correctly. So how well did the algorithm perform on other parts 

of this building which have a more complex structure? The next image used was taken on 

the opposite side of the building and was in direct sunlight. Figure 5.21 shows the image 

after 5% contrast stretching with Figures 5.22 and 5.23 showing the thresholded edges 

(the level selected by hand and used was 16, slightly lower than the statistical threshold 

Figure 5.21 Image Figure 5.22 Edges 
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Figure 5.24 Image 
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Figure 5.26 CAD 
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Position 

of 19 ) and the closed groups respectively. The threshold chosen was the one that pro­

duced the most complete features. The first observation is how direct lighting has brought 

out more of the blemishes on the building with the brickwork beginning to become visible 

( rather than appearing as a uniform surface). This could cause problems as bricks are 

unwanted features, but since they have not made a significant impression in this case, it 

is unlikely that they would need to be treated separately. The most obvious problem is the 

lack of closed groups making up features. Only 5 out of 17 visible features could be 

identified. Close inspection of the original image shows dark vertical bands appearingjust 

to the right of the vertical parts of the white window frames . This could be an artefact 

produced by using video tape which often occurs when there are strong light to dark 

transitions and caused extra edges to be detected, which confused the pixel linking process. 

Returning to the original side of the building, Figure 5.24 is taken from a position much 

closer to the building requiring a wide angle lens to view the whole building. This image 

was taken directly into the sunlight which required over exposing to see the building 

details with a threshold level of 11 chosen ( statistical = 9 ) the maximum number of 

complete features were produced, as shown in Figure 5.25. This produced a very good 

result with only one feature missing leaving plenty to perform a mapping. As with the first 

image, a point was chosen to represent the robot and it had the same pixel co-ordinates as 

Figure 5.17. ( It appears in a different position on the building because the co-ordinates 

correspond to a different place on the building in figure 5.24 due to the camera being in 

a different position). The mapping produced the point shown in Figure 5.26 which again 

is in close agreement with the image. 

Taking a different view of the building, Figure 5.27 shows a more typical situation with 

different types of window, some of which are open and many containing other visible 

features . This view was taken again in fairly strong sunlight at close range using a wide 
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Figure 5.27 Image 
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field of view which gives the strong perspective. A number of different threshold levels 

were tried to produce the greatest number of complete features after pixel linking. Figure 

5.28 shows the edges with a threshold level of 19 (statistical = 16) and it is immediately 

apparent that very few complete features are present. Only three were found, with one 

partially complete and thirteen where only the outer boundary was detected. The failure 

to pick up the features was caused by a variety of reasons. Particularly noticeable in the 

upper left and upper right of the image are windows reflecting a large amount of light 

from the sky. The gray level of this reflection, unfortunately, matches that of the window 

frames meaning that only the outer boundary was detected. There was also a high level of 

visual clutter caused by objects behind the windows such as curtains, lights, stickers and 

things placed on window sills. This led to a number of true but unwanted edges being 

found and, in one case, in particular at the right of the closed group image, the artefacts 

have joined together to produce a highly irregular but closed object, which clearly does 

not exist. Curtains pose a particular problem due to their size being the same as the 

windows and, being adjacent to them, are illuminated by light from outside making them 

bright. Added to this, curtains are often pale in colour, especially net curtains, or have a 

pale backing which does not produce a contrast between the curtains and the windows 

thus making the window edges disappear. Also, since the illumination in a room is much 

Figure 5.30 Image Figure 5.31 Edges 
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Figure 5.33 Complex 
Building Image 

Figure 5.34 Edges 

o 

Figure 5.35 Closed 
Groups 

less than that outside, the area behind the window appears dark and so a pale curtain 

stands out particularly well and a very strong edge is seen which then confuses the 

processing software. By looking at the window area in greater detail and extracting the 

straight lines as well as looking for rectangular type features, may improve on this aspect. 

Open windows, as seen on the mid-left, also altered the appearance and caused them not 

to be detected. The three features that were detected had no curtains present and there was 

little light reflected from the glass. These images show that there needs to be an improved 

method of picking out features - edge detection alone has no knowledge of the image and 

therefore often picks the incorrect edges. 

Figures 5.30, 5.31 and 5.32 show a similar scene from a slightly different building. Again 

the building was in strong sunlight which highl ighted some of the brickwork. In addi tion 

this image contains a tree plus a cable obscuring part of the building. However, if the 

visible features had been detected, then there would have been sufficient to find a proper 

match. Here, the statistical threshold produced a value of 14 for the edges and the one 

used to produce the most features was 12. With this value, only 5 features were complete 

with 4 partial and 7 with just a single closed group. As with the previous image, the 

failures were due to reflections, open windows and visual clutter within the window 

panes. It is interesting to note that although there is effectively a low signal to noise ratio 

with these two images, the edge pixels do form ' clumps' in the approximate areas of the 

feature. It may be an area for further research to see if it is only necessary to find the 

outside of these clumps, using a 'snake' type of active contour that behaved much like a 

rubber band stretched around the pixels. These clumps could then be inspected to see if 

they form a pattern that matches feature distribution in the orthomap, especially if the 

shapes of the clumps are similar to the expected features. If most of the features are found 

in this way, it would probably not be necessary to identify them specifically, merely their 

distribution could be matched to the orthomap. 
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Summarising the simple building results, it is clear that if sufficient numbers of features 

are detectable, then a good mapping result is achieved. However, many features are 

missed, particularly in direct sunlight which enhances reflections and objects inside a 

room, both of which cause a significant increase in the number of unwanted edges. 

5.2.2 Complex BUilding 

The image shown in Figure 5.33, which is ofa large tower block near City University has 

a complex visual structure. Along with the usual windows, there are recessed balconies 

leaving holes in the building surface and there are large concrete columns and decorative 

panels. The detected edges are shown in Figure 5.34 and it is immediately apparent that 

there are a very large number of edges making it hard to differentiate features and, after 

pixel linking, only a few closed groups were created as shown in Figure 5.35. In this case, 

there would be no possibility of producing a mapping. Apart from the difficulties covered 

in the previous section, the main reason that features have not been found is that the 

resolution is too low, causing features, or rather their boundaries to merge with adjacent 

features. For example, the recessed balconies in the centre of the building have produced 

a fairly dark region with a concrete pillar in the middle. The edge detection process has 

joined the two regions into one with the edges running along the shaded parts of the pillar. 

Also the window frames have not been found as they are really too narrow. Increasing the 

resolution would mean much larger images from the increased number of pixels and 

would require the use of expensive sensors. Alternatively the same camera with a zoom 

lens may be able to pick up individual features and this is discussed further in chapter 6. 

5.3 Summary 

Summarising, the general algorithm worked well when used with the model building and 

robot which consisted of idealised features. This proved the principle of the algorithm 

with the robot being found to within a millimetre of its measured position when viewed 

normal to it. The parallax error caused by camera position was predictable and can be 

calculated thus eliminating it. Difficulties were encountered however, when real build­

ings were used with many features not being identified due to poor edge detection, 

although when sufficient features were identified, the algorithm worked successfully. 
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Further Work and Exploitation 
Considerations 

This chapter discusses how the research might be continued towards improvements and 

greater reliability. Since this work has ultimately a real application, a few thoughts on 

exploitation are also presented. 

6.1 Further Work 

The major problem experienced is the extraction of recognisable features. So far, only 

complete features have been used, which have been shown to work well for an idealised 

model building. However, the difficulty with real buildings is the amount of noise present 

in forms of unwanted additional data such as reflections in glass. The edge detection 

phase has proven to be the most critical phase and a few alternatives, each one requiring 

considerable effort, are presented. 

6.1.1 Close Up Feature Recognition 

The existing method of taking a single image of the whole building and processing it 

globally to find smaller features has been shown to work only when the features are very 

well defined i.e. pale window frames on a dark building. An alternative, which is also 

based on how humans might recognise things, is to do the reverse and concentrate on a 

local area of the scene. 

Suppose the camera previously used has zoomed into part of the build and only a single 

feature occupies the field of view. The resolution will be much higher, yielding greater 

detail; window frames will be more than a couple of pixels wide. If the same processes 

are used, there may well be the same number of edge pixels but they will tend to fonn 

fewer- and larger straight lines and comers. This makes it somewhat easier to fill in 

missing data. As an example, Figure 6.1 shows part of a window frame on a brick 

building. The results of edge detection shown in Figure 6.2 have managed to separate the 

individual window panes, which certainly would not have been possible at a lower 

resolution because the frame here is very thin. By fitting lines to the open groups and 

employing the existing filtering in the vanishing point algorithm, Figure 6.3 shows that 

the longest lines do in fact form part of the window frame. The large number of horizontal 
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Figure 6.1 Close up of a window 

lines are caused by the brickwork. Note also that the air vent to the upper right of the 

window, although not really visible, does have two vertical lines in Figure 6.3 . By looking 

for line intersections of sets of parallel lines to make rectangles, it could be said that there 

is a potential feature here. For the first feature, extra computational effort can be used to 

identify it, for as soon as it is recognised, there is a key point from which to search for 

other features . The orthomap and CAD data is used to indicate what other features could 

be present and their positions relative to the feature. The identified feature would 

automatically yield scaling and directional information, the camera is then moved so as to 

have a good approximation of what may be present. ( A computer controlled moveable 

camera mount that only has to be calibrated once for angles, can easily be used to search 

the building. ). Also, if a complete feature is not visible, then corner information can 

indicate in which directions to move to bring a feature into view. Instead of using a 

Figure 6.2 Edges Figure 6.3 Filled and Filtered Lines 
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moveable camera, one with a very high resolution CCD could be employed to take a 

single image. This would, however, add significantly to the cost. This approach would 

make interesting further work, with use of the various routines developed here. 

6.1.2 Neural Networks / Fuzzy Logic 

A single gray level image contains enough information to successfully identify all the 

visible features; after all, humans can manage that without too much difficulty, so why are 

there problems using edge detection alone? Clearly a feature consists of more than just its 

edges and the difficulty comes in trying to find what makes a window frame, a window 

frame. A human can be shown an unknown building and straight away pick out a window, 

because of having learned some set of characteristics about a window that makes it 

instantly recognisable as one. Neural networks are designed around the structure of the 

brain with the aim of mimicking it. A useful area of research would be to design a network 

and train it on a number of images of different windows. Spirkovska and Reid, ( 1994 ) 

have a network that can work with images which are rotated, scaled and translated and can 

be trained with only one view of an object. They use the outlines of aircraft and it may be 

possible to adapt this to windows frames. However, it would have to be more generalised 

and there is no coverage of distortion due to perspective. The images should only contain 

one window and then, if small areas of a building image are presented to the network, it 

would indicate that a window is present. Only then are the edge detection and other 

processes used to refine the position and type of window. This, ifit worked, would have 

the advantage that no image processing needs to be done at the start and the network can 

work on the raw image. However, neural networks and the understanding of them is still 

in its infancy and this may be a rather ambitious task, although they are already being used 

in areas such as vehicle recognition. Alternatively, networks along with fuzzy logic could 

be used to search for particular patterns in an image such as an improved edge detector. 

By training with images marked with only the desired edges, a network may be able to 

perform a kind of filtered edge detection. There is considerable potential here. 

6.1.3 Hardware / Parallel Processing 

Hardware and parallel processing are worth pursuing once algorithms have been thor­

oughly investigated and shown to work reliably. The benefits are processing speed, which 

will certainly be the main requirement in any exploitation. Costs could be high, however. 

Specialist hardware needs designing and the use of parallel processing means increasing 

the amount of equipment used. Ideally, since most of the stages work in a serial manner, 
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Table 6.1 Execution Times 
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549 

o 
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714 

4120 

5273 
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hardware would be designed for each task so that new images can be captured while 

previous ones are still being processed. In the current algorithm there are only a few 

processes which would benefit from parallel processing. The open and closed groups can 

be treated separately and some of the closed group processing can be done in any order 

with results being combined at the end. Table 6.1 shows the execution times of various 

functions when applied to Figure 4.6 which is 640 x 544 pixels in size. Clearly the Canny 

is by far the slowest routine and is the one that would need to be tackled first. The times 

given depend on the image and some extra functions are given for comparison. 
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Figure 6.4 Example of the ROBONAV Screen Display 

6.2 Exploitation and Practical Considerations 

The ultimate objective of this research is to contribute to simpler and more cost effective 

ways of carrying out external building inspection. Since the end result is aimed at in­

dustry, exploitation considerations need to be taken into account as well as the research 

findings . For robot navigation to be fully automatic, many more man-years are required 

to develop and prove the algorithms and build hardware. In the meantime, what is 

important is to have a system working, particularly since navigation is part of a larger 

project. The best practical solution is to continue developing the ROBOLOC program 

mentioned in section 3.2. This makes the compromise of marrying the best of human 

perception ability to the precision of computer processing. A fully working system is 

close to completion and will give a result in its most basic form . As real inspections are 

carried out, modifications to the program can be used to enhance and simplify its per­

formance by increasing the amount work done by the computer. This would allow de­

velopment to continue while maintaining a working system. The enhancements may be in 

the form oflocal image processing. When the operator has selected a particular part of the 

image, the processor could effectively 'snap' ( as in CAD packages) to the correct 

position, say a comer of a window, thus improving accuracy. 
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Ease of use is also a major consideration as simpler systems should lead to fewer errors. 

An operator may not necessarily be a computer expert and the operator-program interface 

( or man-machine interface [MMI] ) needs to be as simple and as infonnative as possible. 

This is also a large area of research, e.g. Chua, ( 1996). Most people are now familiar with 

Windows based applications on PCs, so any software developed under this operating 

system would be an advantage. The program ROBONA V was the second program written 

to develop the ideas and algorithms used earlier and although the MMI is not part of the 

research, a partial interface was developed to give an indication of what may be used in 

the field. Figure 6.4 shows a screen dump of the program in which the main aspect to 

notice are the status buttons. Although the final software is meant to give a result at the 

touch of a button, it gives a psychological reassurance to the operator if indicators come 

on showing progress. For functions that take a long time to execute, a slider bar indicates 

how much work there is left to do; also a moving display just to show that the computer 

is doing something. Colour, display layout and the rest of the MMI are covered by work 

done by others. 
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Conclusions 

The main aim of the research is to investigate the application of using image processing 

techniques to the problem of locating a building inspection robot. The work and the 

results presented here show that the principles of the algorithm worked and further 

investigations are required to improve the reliability on real buildings. 

7.1 Main Conclusions 

Referring back to the original aims stated in section 1.1 it is now possible to see how 

successfully each one was achieved. The first, second and third aims were accomplished 

by using a readily available video camera with single gray level images being captured on 

a PC. The results show conclusively that only a single camera is necessary and no par­

ticular setting up of the camera is required. Merely placing it at some convenient location 

is appropriate. The experiments were conducted with the camera at different distances 

from buildings (model and real) with the lens adjusted to provide the best picture. This 

satisfies the fourth aim by showing that no previous knowledge of the camera optics was 

required. The only target used in obtaining the robot's position was placed on the robot, 

indicating that it is unnecessary to place targets on the building, thus fulfilling aim five. 

The sixth aim was achieved since the target was successfully identified, and it was 

possible to locate a point on the target to the nearest pixel, inferring that the overall design 

of the target was satisfactory. The algorithm was able to distinguish between different 

windows on the model building and to classify them according to a simple CAD de­

scription of the windows. This, in tum, meant that the positions of the features and hence 

the pose of the building could be found satisfying aims seven and eight. The main 

innovation of the project was, therefore, demonstrated, namely the orthomap idea of 

locating features and that it has potential, to overcome the problems of perspective and 

distortion. It could be used in a variety of situations, with some improvements, without 

being restricted to one particular design of building. Other applications which may benefit 

from it, include the inspection of large structures such as storage tanks where the welds 

between plates may act as the features to be searched for. The final aim was realised by 

obtaining positions for the robot within the resolution of measurement (±1 pixel) when 

the camera was normal to robot. Predictable errors ( parallax) occurred which could be 

use to obtain a more accurate position for large camera angles. 
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Although, the results when the system functioned in its entirety were excellent ( the 

position of the robot was found to within the measurement accuracy of ±lmm ), there 

were often image processing failures which showed the weak points of the algorithm; the 

most significant being the detection of individual features. It was shown on several 

occasions that as few as 2 false pixels ( out of348 160) could be sufficient to cause failure 

if they occurred at a significant place. The method of edge detection followed by pixel 

linking worked satisfactorily for very simple features but was easily confused on real 

buildings by shadows, open windows, reflections and uneven surfaces which may par­

tially obscure a feature when observed at an angle. The other main failing occurred when 

there were two vanishing points close to the image centre, as would occur if the camera 

was placed on the ground near the building at some angle to it and looking upwards. This 

had the effect of preventing the location of neighbouring features and hence the algorithm 

failed. The results showed that the algorithm, could, however cope with a single strong 

vanishing point. 

Alternative methods, discussed in section 6.1.1, for feature matching suggest that a major 

difference from the present algorithm would be that a single feature could be searched for 

and positively identified. Extra time could be spent locating the first feature, but once 

found, it would provide the scale and orientation necessary to look for other features with 

simpler and quicker algorithms. The results also showed that features which occur near 

the edge of a building and form its outline are far more critical to success than features in 

the middle. Indirectly this has proven that the bounding edges of an object are far more 

significant in perception than the interior of an object and so an improved search algo­

rithm could concentrate on finding these more significant features. Additionally, if the 

building edges can be detected (see the segmentation in Appendix 2), then it may be of 

benefit to give an extra weight to those features found near the building edge thus 

representing their significance. The orthomap method of looking for neighbours that 

occur in nearly orthogonal directions proved satisfactory and works well, except when 

features are placed in odd locations such as windows in stair wells. A map producing a 

mesh type grouping of nearest neighbours would overcome this problem. The vanishing 

points require further work to ensure that they are always correctly found, as the existing 

method started to fail once the angle between the visual horizontal/vertical lines and the 

true horizontal/vertical became large. This may occur if there are limitations in placing 

the camera, for example, a narrow street where camera angles would be similar to those 

in the results when the system failed. An alternative would be to use the feature shapes 

themselves to produce local vanishing points. Rectangles are very good indicators for 

searching for neighbours. 
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The research carried out here has laid the foundations for a machine vision based robot 

location system and has shown that correct results can be achieved. The system should be 

investigated further with improvements made to the various stages, particularly looking 

at alternatives to individual pixel based processing for detecting the boundaries offeatures. 

7.2 Potential Improvements 

During the development of this research, ideas arose which could not be investigated in 

the time scale. A number of enhancements are suggested here, concentrating on the image 

processing and analysis stages. 

7.2.1 Edge Detection and Thresholding 

This has turned out to be the most crucial area for detennining the success of the op­

eration. Chosen edges are found from thresholding the whole image and there is no 

precise way of determining what that threshold is. One way is to simulate the manual 

method of trying a level and seeing how well it turns out. The existing method would be 

used as a starting point and the number of identified features stored. Thresholds higher 

and lower than the starting threshold are then used to find new numbers of identified 

features. The process is repeated until a maximum number of features are identified. A 

simpler version of this was tried in section 4.3.5 which looked at the numbers of closed 

and open objects but did not check to see if the objects formed part of an identifiable 

feature. This adds significantly to the amount of processing required, but if implemented 

on a parallel system, different threshold levels could be checked simultaneously. 

An alternative to thresholding, which covers the entire image unifonnly. is to select the 

strongest edges and track along them. Although edges may have quite different strengths. 

some weak edges may be just as perceptually significant as the strong ones. A strong edge 

may even tum into a weak edge, the latter being deleted by the thresholding process with 

the possibility that a feature may not be detected. 

7.2.2 Shape Detection 

A more robust method of shape detection is needed. The current method of counting 

straight lines is suitable as a very coarse approximation, and a small perturbation can 

mean the difference in recognising or missing the robot target, for example. The sig­

natures covered in section 4.4.2.8 are worth looking at for complete shapes but would add 
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significantly to the processing, as the problem is shifted to looking at the shape of a graph. 

Partial shapes may be completed by using gradient results from edge detection. So far, 

only the amplitude of the edge is used but the direction normal to the edge, that is, from 

light to dark, can be used in possible places of confusion where one shape occludes 

another. The Hough Transform mentioned in Appendix 1 can also be used for shapes as 

well as lines, for example, ellipses as in Tsuji and Matsumoto, ( 1978 ). An alternative 

method of finding arcs and ellipses is given in Rosin and West, ( 1989 ). Since the data 

at this point are only from a small part of the image, many of the problems associated with 

Hough would be eliminated. 

7.2.3 Open Group Processing 

The open groups have only been used so far for vanishing point detection. It may be 

possible to use the lines from these groups to detect the visible boundary of the building. 

Certainly, if the building has the sky as a background, then strong boundary edges will 

exist. If the outside edge of the building is known, then any ambiguities in the location of 

the features may be resolved. If there are two or more equally possible feature alignments, 

then the alignments can be compared to the probable building outline as a window cannot 

be in the sky, and a more reliable result achieved. 

7.2.4 Control Points 

The algorithm requires that only four control points are required. The locations of these 

four points was shown to make a difference in the final position calculated for the robot. 

It may be possible to obtain a more accurate result by using more control points since lens 

distortion cannot be mapped in this way. However, considering that a high degree of 

accuracy is not necessary, this needs only to be investigated for interest. 

7.2.5 Image Aspect Ratio 

Most images are presented to the human eye in 'landscape' form, that is, the picture is 

wider than it is tall. For image processing, there is no reason why a camera cannot be used 

on its side to give a 'portrait' view with the software simply exchanging the rows and 

columns to obtain the correct orientation. This would make better use of the pixels 

available since most buildings under inspection will probably be taller than they are wide. 

More detail can therefore be included in the image by being able to zoom in further. 
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Conclusions 

7.2.6 Alternative Robot Detection 

Although the purpose of this work was to investigate the possibility of finding the robot 

by 'seeing', other methods still using vision may be easier and less 'glamorous' to 

implement. The more distinctive the robot target is, the more easier it is to find. If colour 

were to be used (requiring a more expensive camera) then two bright colours next to each 

other which would not normally be found together could be used. Simple software colour 

filters would soon identify the robot. 

Another approach is to use a changing target. A regularly flashing light is easy to detect 

by capturing different frames from the camera and subtracting them from each other. As 

long as the frame capture rate was similar to the frequency of the flashing light, the light 

would be the only feature to show up as a difference between two images. Several pairs 

of images can be used to eliminate a moving object. Image capture and difference cal. 

culations are fast operations and would be relatively easy to implement in hardware. 

7.2.7 Image Capture 

Specialist cameras are available glvmg a much higher resolution, for example, 

1024 x 1024 pixels. For a single image, assuming good optics, this allows more of the 

small features to be visible. Also when looking at a narrow object, say part of the window 

frame, then the two sides will be distinguishable rather than appearing as a noisy line, 

which gives a false result at the edge detection stage. Also, since the edge detection and 

group selection stages are very susceptible to pixel noise, a technique commonly em. 

ployed in astronomy could be investigated. Not all the CCD elements respond in the same 

way so with the camera lens completely covered, a black image can be captured. Ideally 

all the pixels should register the same amount ( may not be 0 due to offsets and biases ), 

but in reality there will be a difference. These pixels contribute to permanent noise in the 

image and the effects can be reduced by subtracting the black noisy image. 
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Appendix 1 

Line Finding using the Hough 
Transform 

This appendix covers the considerable amount of work done with the Hough Transform, 

which proved not to be central to the main research. Although a promising technique, for 

reasons given here, it was decided not to implement it. The technique, called the Hough 

Transform ( HT ), was popularised by Duda and Hart, ( 1972 ) and is widely used today. 

However, it will be seen that it tends to fail in certain situations, particularly, in images 

of tower blocks. 

The HT works by searching the edge image for pixels and then fitting all possible lines 

through the pixels. Each line can be described by two parameters which form the two axes 

of 'parameter space'. Every time a given line passes through a certain pixel, the corre­

sponding cell in the parameter space is incremented. If several pixels lie in a straight line, 

the cell for that line will have a higher number of counts or 'votes'. 

Usually the equation of a line is given as y = rnx + c, so the two parameters describing it 

are rn and c. A problem arises for near vertical lines when the values for m and c 

approach infinity. This would require an infinite parameter space which is not possible. 

An alternative is to use angle and distance parameters since the angle of a line can only 

range between 00 and 1800, and the distance of the line from the centre of the image is 

no more than the distance to a comer of the image. The equation of the line becomes: 

p = x * cos(8) + y * sin(8) [ Al.I ] 

where p is the distance from the origin and 8 is the angle. This is shown diagrammatically 

in Figure Al.l. 

Taking the simple case of the rectangle in Figure A1.2, consisting ofa pair of horizontal­

and vertical lines, then the resulting parameter space is shown in negative form in 

Figure Al.3. The two dark peaks in the centre of the parameter space correspond to the 

two horizontal lines and the peaks right at the edge ( which tend to wrap round the 

parameter space) correspond to the two vertical lines. In this instance, the peaks are well 

defined and the found lines will have parameters given by the locations of the peaks. 
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Line Finding using tlte Houglt Transform 
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Figure A1.1 Definition of Line Parameters 

Ai.i Practical Problems Encountered with the Hough Transform 

The first and simplest problem is that the lines found in the parameter space do not have 

any length information. The main interest is in line segments and further processing is 

required to trace along a given line to pick out the segments. One of the main attractions 

of the HT is its ability to fill in missing data. Lines with pixels missing can be found ; 

however, it then becomes a question of whether a gap is valid or not and this leads to the 

first problem encountered with building images. A typical building may have a whole line 

of features such as windows all at the same height with a fairly small gap between them. 

The HT would interpret the edge output as having a strong ( many votes) line with a few 

gaps. The question is should these gaps be filled in or do they occur at the corners of the 

feature? 

D 

Figure A1.2 Image of Rectangle 
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Line Finding using the Hough Transform 
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Figure AI.4 Curved Line made of Straight Line Segments 

A similar problem encountered with building features is that of close, parallel or nearly 

parallel lines as are particularly likely to occur at window frames. Examples of the HT in 

literature such as Leavers, ( 1992: 68 ) often show some simple object with well defined 

and separated lines. In these cases the voting peaks are easy to locate. However, two 

parallel lines near each other translate to two adjacent peaks in parameter space with the 

consequence that they tend to merge together. Coupled with noise, particularly in the form 

of quantisation, it becomes difficult to distinguish the two peaks with the result that 

possibly only one line is found. Also if the resultant peak is in a slightly different position, 

the equivalent line may have a slightly different angle which means that away from the 

centre of the line, it may be some distance away from the pixels that contributed to it. 

Images taken using conventional cameras with flat sensing devices suffer from a degree 

of distortion, most noticeable when wide angle lenses are used. This results in real straight 

lines appearing as curved lines in the image, particularly away from the centre. Although 

this may not be perceptible, a deviation of a few pixels may nevertheless exist over the 

length of the line. Figure AlA shows an exaggerated curved horizontal line. The effects 

of quanti sati on mean that the line is made up of a number of straight line segments, some 

of which still lie on the same line. The result is that the HT sees these as a number of 

parallel lines near to one another, with the problems mentioned above. 

The final major problem encountered was caused by having a complex image containing 

a large number of legitimate edge pixels. The advantage of the HT in this situation now 

becomes its downfall. Since the HT has no actual knowledge of connectivity, it has no 

way of telling whether a group of pixels actually form a line or are merely a chance 

alignment. A horizontal 'search' line may cross a large number of vertical line segments 

resulting in a high vote when no perceivable line exists. For complex images, this was 

particularly the case where false lines appeared along the diagonals of the image. This 

occurs because if the pixels were spread at random, then more would lie on the diagonal 
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Line Finding using tlte Houglt Transform 

Figure A1.5 Complex Edge Image Figure A1.6 Hough Transform with 
False Peaks 

lines than any other direction. Figure A1.5 shows a complex edge image with Figure Al .6 

showing the corresponding HT in negative form . It can be seen that there are several false 

groupings corresponding to angles of 450 and 1350 - the angles of the diagonals of a 

square Image. 

AI.2 Hough Parameter Space Enhancements 

In an ideal situation, a desired line would be found in parameter space by a single peak. 

The way the HT works however tends to form ridges hence the appearance of the peaks 

in Figure A1.3 . If a peak is zoomed into, it is seen that it is more than a single isolated 

point. Table Al.1 shows individual parameter space cells for an image containing a single 

horizontal line oflength 512 pixels with a y value of 300. It is clear that the peak lies on 

a ridge and contains two 'bumps' giving three maxima in total. The two bumps with 

values of 116 must not be detected as lines. Filters can be used to enhance the true peaks 

and one developed by Leavers, ( 1992: 70 ) known as the Butterfly filter is shown in 

iii!tlli Theta 

82 83 84 65 86 87 88 89 90 91 92 93 94 95 96 97 

296 0 0 0 0 0 0 0 0 0 114 56 36 30 24 20 16 

297 0 0 0 0 0 0 0 0 0 114 58 36 28 22 18 16 

298 8 2 0 0 0 0 0 0 0 ~ 56 36 28 24 20 16 

~ 299 14 18 16 14 12 8 6 4 0 112 :>4 32 20 10 4 0 
ct 300 14 16 20 24 28 40 58 114 512 0 0 0 0 0 0 0 

301 14 16 18 22 28 36 56 114 0 0 0 0 0 0 0 0 

302 16 16 20 22 30 36 58 116 0 0 0 0 0 0 0 0 
303 14 16 20 24 26 36 56 114 0 0 0 0 0 0 0 0 

Table A1.1 Close up of a Single Line Peak in Hough Space 

- 144 -



Line Finding using the Hough Transform 
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Figure A1.7 Butterfly Filter 

Figure A1.7. The actual values can be altered to eliminate certain lines and the results of 

using the filter are shown in Figures A1.8 and A1.9 where Figure A1.8 shows the lines 

detected before any filtering is applied to the parameter space. Figure Al.9 shows that 

more lines have been detected and the number of false lines bunching together has been 

reduced. 

The problem of false lines appearing is partly caused by aliasing and is discussed in 

Kiryati , ( 1989) although a simple improvement suggested by Leavers, ( 1993 ) is to use 

a vote of 1 as usual for the given cell but to also add a vote of 0.5 to the adjacent cells in 

the p direction of parameter space. 

There are no doubt other enhancements that can allow lines to be more easily detected but 

this would form a research project in its own right. The fact that no solution has yet been 

found suggests that the HT should only be used in certain circumstances and other line 

finding algorithms used for complex images. 

Figure Al.8 Hough Lines 
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Appendix 2 

Image Pixel Intensity Segmentation 

One of the problems encountered in edge detection is the break up real edges and the 

inclusion of extra edges resulting from noise. If the number of gray levels in an image are 

reduced, it then takes on a somewhat 'chunky' appearance but with well defined edges. 

Very simple edge detection can be used to merely search for a difference in adjacent 

pixels resulting in continuous single pixel edges. Two methods were investigated, namely 

global segmentation and local segmentation. 

A2.1 Global Segmentation. 

Global segmentation uses a method essentially the same as flood filling used in computer 

graphics. A pixel is chosen and tagged as visited and its value is stored. All neighbouring 

pixels that have a value within a certain range of the original pixel are stored. The first 

pixel in the list is chosen and all its neighbours, less previously tagged ones, are checked. 

This process continues until there are no untagged neighbours left. Figure A2.2 shows the 

results when the intensity range is set to ±IO gray levels and applied to figure A2.1. The 

background sky has been successfully segmented, which may well be good for finding the 

edges of the building; but on the building itself, nothing else has. A problem occurs if the 

intensity of a region changes beyond the limits set, perhaps by a shadow or the region is 

textured. Another method tried was to use local segmentation. 

A2.2 Local Segmentation 

This method works in the same way as global segmentation but instead of storing the 

original pixel value, the current pixel value is used and neighbours are only considered if 

they are within a certain range of this pixel. This solves intensity variations as only local 

changes are taken into account. The results of this method are shown in Figure A2.3 with 

a neighbour intensity range of ±4 gray levels. There is an improvement in that the local 

variations have been eliminated but a new problem occurs from 'leaking'. If for some 

reason noise is present at a perceived boundary or an intensity edge is not sharp, then the 

segmentation process will leak from one region to another resulting in the large patches 

seen, possible erasing desired features. Further research is required into the many dif­

ferent types of region segmentation to see if they are of any potential use. 
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Image Pixel Intensity Segmentation 

Figure A2.1 Raw Image of Part of a Tower Block 

Figure A2.2 Globally Segmented Image 

Figure A2.3 Locally Segmented Image 
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Appendix 3 

DXF File Specification 

The following sections describing the specification of the DXF file are taken from 

Autodesk, ( 1990: 527-557) and cover the necessary steps for extracting line information: 

"To assist in interchanging drawings between AutoCAD and other programs, a Drawing 

Interface file format ( DXFTM ) has been defined". "DXF files are standard ASCII text 

files. They can easily be translated to the formats of other CAD systems or submitted to 

other programs for specialised analysis." 

General File Structure 

A Drawing Interchange File is simply an Ascn text file with a file type of .dxf and 

specially formatted text The overall organisation of a DXF file is as follows: 

1. HEADER section - General information about the drawing is found in this section of 

the DXF file. Each parameter has a variable name and an associated value. 

2. TABLES section. - This section contains definitions of named items. 

• Linetype table (LTYPE) 

• Layer table (LA YER) 

• Text Style table (STYLE) 

• View table (VIEW) 

• User Co-ordinate System table (UCS) 

• Viewport configuration table (VPORT) 

• Dimension Style table (DIMSTYLE) 

• Application Identification table (APPID) 

3. BLOCKS section - This section contains Block Definition entities describing the 

entities comprising each Block in the drawing. 

4. ENTITIES section - This section contains the drawing entities, including any BLOCK 

references. 

5. END OF FILE 
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DXF File Format 

A DXF file is composed of a multiplicity of groups, each of which occupies two lines in 

the DXF file. The first line of a group is a group code, which is a positive nonzero integer 

output in FORTRAN D format ( that is, right-justified and blank filled in a three­

character field ). The second line of the group is the group value, in a format which 

depends on the type of the group as specified by the group code. 

The specific assignment of the group code depends upon the item being described in the 

file. However, the type of the value this group supplies is derived from the group code in 

the following way: 

Group Code Following value Group Code 
Following value 

range range 

0-9 String 999 Comment (string) 

10 - 59 Floating-point 1000 - 1009 String 

60-79 Integer 1010-1059 Floating-point 

210 - 239 Floating-point 1060 - 1079 Integer 

Table A3.l Group Code Ranges 

Thus a program can easily read the value following a group code without knowing the 

particular use of this group in an item in the file. The appearance of values in the DXF file 

is not always affected by the setting of the Units command: co-ordinates are always 

represented as decimal ( or possibly scientific notation ifvery large) numbers, and angles 

are always represented in decimal degrees with zero degrees to the east of the origin. 

Co-ordinate values always appear to be in inches. 

Variables, table entries, and entities are described by a group that introduces the item, 

giving its type and/or name, followed by multiple groups that supply the values associated 

with the item. In addition, special groups are used for file separators such as markers for 

the beginning and end sections, tables, and the file itself. 

Entities, table entries, and file separators are always introduced with a 0 group code that 

is followed by a name describing the item. 
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DXF File Format 

Group Codes 

Group codes are used both to indicate the type of the value of the group, as explained 

earlier, and to indicate the general use of the group. The specific function of the group 

code depends on the actual variable, table item, or entity description. This section in­

dicates the general use of groups, noting those as '(fixed)' and which always have the 

same function. 

Group oode Value type 

0 
Id.ntifi •• the .tart of an .ntity, tabl •• ntry, or fil ••• parator. Th. t.xt valu. that 
follows indixcat •• what It I. 

1 The primary t.xt value for an entity. 

2 A name; Attribute tag, Blockname, and .0 on. 

3-4 Oth.r t.xtual or name valu ••. 

S Entity handle .xpr •••• d a. a h.xadecimal .tring. 

6 Line type name (fixed). 

7 Text .tyl. name (fixed). 

8 Lay.r name (fixed). 

9 Variabl. name id.ntifier (us.d only in HEADER section of the DXF file). 

10 Primary X coordinate (start point of a Line or Text entity, center of a circle, .tc.). 

11 -18 Oth.r X coordinate •. 

20 
Primary Y coordinate. 2n value. alway. correspond to 1 n valu •• and Imm.diat.ly 
follow th.m In a fil •. 

21 - 28 Other Y coordinate •. 

30 
Primary Z coordinate. 3n value. alway. correspond to 1 n value. and 2n value. 
and immediately follow them In a file. 

31 - 37 Oth.r Z coordinate •. 

38 
This .ntity'. elevation if nonz.ro (fixed). Exists only in output from v.r.lon. prior 
to R11. 

39 Thi. entity'. thickn ••• if nonzero (fixed). 

40 - 48 Floating-point value. (text h.ight, .cale factor., etc.). 

Repeat.d value - multiple 49 groups may app.ar In on. entity for variable length 
49 table. (.uch a. the da.h I.ngth. In the L TYPE table). A 7x group alway. appear. 

before the fir.t 49 group to .p.cify the table I.ngth. 

50- 58 Angle •. 

62 Color numb.r (fixed). 

66 -Entitie. folloW- flag (fixed). 

70-78 Integer values, such as repeat counts, flag bits, or modes. 

210.220.230 X. y, and Z components of extrusion direction. 

999 Comments. 

Table A3.2 Entity Group Codes ... 
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DXF File Format 

Group code Value type 

1000 ASCII string up to 255 bytes long. 

1001 Registered application name (ASCII string up to 31 bytes long). 

1002 XDATA Control string. 

1003 XDATA Layer name. 

100 .. Chunk of bytes (up to 127 bytes long). 

1005 XDATA Database handle. 

1010,1020, XDATA X, Y, and Z coordinates. 
1030 

1011, 1021, XOATA X, Y, and Z coordinates of 3D World space position. 
1031 

1012,1022, XDATA X, Y, and Z components of 3D World space displacement. 
1032 

1013,1023, XDATA X, Y, and Z components of 3D World space direction. 
1033 

10 .. 0 XDATA Floating-point value. 

10 .. 1 XDATA Distance value. 

10 .. 2 XDATA Scale factor. 

1070 XDATA 16-bit integer. 

1071 XDATA 32-bit signed long. 

Table A3.2 Continued 

Comments 

The 999 group code indicates that the following line is a comment string. Thus the 999 

group can be used to include comments in a DXF file which has been edited. For example: 

999 

This is a comment. 

999 

This is another comment. 

HEADER Section 

The HEADER section of the DXF file contains settings of variables associated with the 

drawing. These variables are set with various commands and are the type of information 

displayed by the Status command. Each variable is specified in the header section by a 

9 group giving its name, followed by groups that supply its value. The following list 

shows the header variables and their meanings. 
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Variable Type 

SACADVER I 

SANGBASE 50 
SANGDIR 70 
SATTDIA 70 
SATTMODE 70 
SATTREQ 70 
SAUNITS 70 
SAUPREC 70 
SAXISMODE 70 
SAXISUNIT 10,20 
SBLIPMODE 70 
SCECOLOR 62 
SCELTYPE 6 
SCHAMFERA 40 
SCHAMFERB 40 
SCLAYER 8 
SCOORDS 70 

SDIMALT 70 
SDIMALTD 70 
SDIMALTF 40 
SDIMAPOST I 
SDIMASO 70 

SDIMASZ 40 
SDIMBLK 2 
SDIMBLKI I 
SDIMBLK2 I 
SDIMCEN 40 
SDIMCLRD 70 

SDIMCLRE 70 

SDIMCLRT 70 

SDIMDLE 40 
$DIMDLI 40 
$DIMEXE 40 
$DIMEXO 40 
$DIMGAP 40 
SDIMLFAC 40 
SDIMLIM 70 
$DIMPOST I 
$DIMRND 40 
$DIMSAH 70 
$DIMSCALE 40 
$DIMSEI 70 
SDIMSE2 70 
SDTh-1SHO 70 

DXF File Format 

Description 

The AutoCAD drawing database version number; 
ACI006 = RIO, ACI009 = RII. 
Angle 0 direction. 
I = clockwise angles, 0 = counterclockwise. 
Attribute entry dialogues, I = on, 0 = off. 
Attribute visibility: 0 = none, I = normal, 2 = all. 
Attribute prompting during Insert, I = on, 0 = off. 
Units format for angles. 
Unites precision for angles. 
Axis on if nonzero. 
Axis X and Y tick spacing. 
Blip mode on if nonzero. 
Entity colour number; 0 = BYBLOCK, 256 = BYLA YER. 
Entity linetype name, or BYBLOCK or BYLA YER. 
First chamfer distance. 
Second chamfer distance. 
Current layer name. 
o = static coordinate display, I = continuous update, 
2 = "d<a" format. 
Alternate unit dimensioning performed if nonzero. 
Alternate unit decimal places. 
Alternate unit scale factor. 
Alternate dimensioning suffix. 
I = create associative dimensioning, 
o = draw individual entities. 
Dimensioning arrow size. 
Arrow block name. 
First arrow block name. 
Second arrow block name. 
Size of centre mark/lines. 
Dimension line colour, range is 0 = BYBLOCK 
256 = BYLA YER. 
Dimension extension line colour, range is 0 = BYBLOCK, 
256 = BYLA YER. 
Dimension text colour, range is 0 = BYBLOCK, 
256 = BYLAYER. 
Dimension line extension. 
Dimension line increment. 
Extension line extension. 
Extension line offset. 
Dimension line gap. 
Linear measurements scale factor. 
Dimension limits generated if nonzero. 
General dimensioning suffix. 
Rounding value for dimensioning distances. 
Use separate arrow blocks if nonzero. 
Overall dimensioning scale factor. 
First extension line suppressed if nonzero. 
Second extension line suppressed if nonzero. 
I = Recompute dimensions while dragging. 
0= drag original image. 
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SDIMSOXD 70 
SDIMSTYLE 2 
SDIMTAD 70 
SDIMTFAC 40 
SDIMTllI 70 
SDIMTIX 70 
SDIMTIM 40 
SDIMTOFL 70 

DXF File Format 

Suppress outside-extensions dimension lines if nonzero. 
Dimension style name. 
Text above dimension line if nonzero. 
Dimension tolerance display scale factor. 
Text inside horizontal if nonzero. 
Force text inside extensions if nonzero. 
Minus tolerance. 
!ftext outside extensions, force line extensions between 
extensions if nonzero. 

SDIMTOH 70 Text outside horizontal if nonzero. 
SDIMTOL 70 Dimension tolerances generated if nonzero. 
SDIMTP 40 Plus tolerance. 
SDIMTSZ 40 Dimensioning tick size: 0 = no ticks. 
SDIMTVP 40 Text vertical position. 
SDIMTXT 40 Dimensioning text height. 
SDIMZIN 70 Zero suppression for "feet & inch" dimensions. 
SDRAGMODE 70 0 = ofT, 1 = On, 2 = auto. 
SELEVATION 40 Current elevation set by Elev command. 
SEXTMAX 10,20, X, Y, and Z drawing extents upper right comer 

SEXTMIN 

SFILLETRAD 
SFll.LMODE 
SHANDLING 
SHAND SEED 
SINSBASE 

30 (in WCS). 
10,20, X, Y, and Z drawing extents lower-left comer 
30 (in WCS). 
40 Fillet radius. 
70 Fill mode on if nonzero. 
70 Handles enabled if nonzero. 
5 Next available handle. 
10,20, Insertion base set by Base command 
30 (in WCS). 

SLTh1CHECK 70 Nonzero if limits is on. 
SLIMMAX 10,20 XY drawing limits upper-right comer (in WCS). 
SLTh~1IN 10,20 XY drawing limits lower-left comer (in WCS). 
SLTSCALE 40 Globallinetype scale. 
SLUNITS 70 Units format for co-ordinates and distances. 
SLUPREC 70 Units precision for co-ordinates and distances. 
SMAXACTVP 70 Sets maximum number of viewports to be regenerated. 
SMENU 1 Name of menu file. 
SMIRRTXT 70 Mirror text if nonzero. 
SORTHOMODE 70 Ortho mode on if nonzero. 
SOSMODE 70 Running object snap modes. 
SPDMODE 70 Point display mode. 
S PDSIZE 40 Point display size. 
SPELEV ATION 
SPEXTMAX 40 Maximum X, Y, and Z extents for paper space. 
SPEXTMIN 40 Minimum X, Y, and extents for paper space. 
SPLIMCHECK 70 Limits checking in paper space when nonzero. 
SPLIMMAX 40 Maximum X and Y limits in paper space. 
SPLIMMIN 40 Minimum X and Y limits in paper space. 
SPLINEWID 40 Default polyline width. 
SPUCSNAME 2 Current paper space UCS name. 
SPUCSORG 10,20,30 Current paper space UCS origin. 
SPUCSXDIR 10,20,30 Current paper space UCS X axis. 
SPUCSYDIR 10,20,30 Current paper space UCS Yaxis. 
SQTFXTMODE 70 Quick text mode on if nonzero. 
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SREGENMODE 70 Regenauto mode on if nonzero. 
SSHADEDGE 70 0 = faces shaded, edges not highlighted. 

1 = faces shaded, edges highlighted in black. 
2 = faces not filled, edges in entity colour. 
3 = faces in entity colour, edges in black. 

SSHADEDIF 70 Percent ambient/diffuse light, range 1 - 100, default 70. 
SSKETCillNC 40 Sketch record increment. 
SSKPOL Y 70 0 - sketch lines, 1 - sketch polylines. 
SSPLFRAME 70 Spline control polygon display, 1 = on, 0 = off. 
SSPLINESEGS 70 Number of line segments per spline patch. 
SSPLINETYPE 70 Spline curve type for Pedit Spline. 
SSURFT AB 1 70 Number of mesh tabulations in first direction. 
SSURFT AB2 70 Number of mesh tabulations in second direction. 
SSURFTYPE 70 Surface type for Pedit Smooth. 
SSURFU 70 Surface density (for Pedit smooth) in M direction. 
SSURFV 70 Surface density (for Pedit smooth) in N direction. 
STDCREATE 40 Date/time of drawing creation. 
STDINDWG 40 Cumulative editing time for this drawing. 
STDUPDATE 40 DatelTime of last drawing update. 
STDUSRTIMER 40 User elapsed timer. 
STEXTSIZE 40 Default text height. 
STEXTSTYLE 7 Current text style name. 
ST1flCKNESS 40 Current thickness set by Elev command. 
STll..EMODE 70 1 for previous release compatibility mode, 0 otherwise. 
STRACEWID 40 Default Trace width. 
SUCSNAME 1 Name of current UCS. 
SUCSORG 10,20,30 Origin of current UCS (in WCS). 
SUCSXDIR 10,20,30 Direction of current UCS's X axis (in WCS). 
SUCSYDIR 10,20,30 Direction of current UCS's Y axis (in WCS). 
SUNITMODE 70 Low bit set = display fractions, feet-and-inches, and 

SUSERII-S 70 
SUSERRI-S 40 
SUSRTIMER 70 
SWORLDVIEW 70 

Example 

surveyor's angles in input format. 
Five integer variables intended for third-party use. 
Five real variables intended for third party use. 
o = timer off, 1 = timer on. 
1 = set UCS to WCS during DviewNpoint, 
0= don't change UCS. 

Most of the above parameters look rather confusing and are not likely to be used in this 

application, where basically a line drawing is all that is required to represent one face of 

a building. In reading a DXF file, if only the lines are of interest, for example, it becomes 

merely a case of identifying the appropriate groups in order to read them and jump past 

them to only pick out the line entities. The following file shows the significant part of a 

DXF file representing a 100mm x SOmm rectangle drawn on layer 0 at position 

7Smm,75mm relative to the bottom-left comer of a sheet of A4 paper orientated in 

portrait format. The text 'Rectangle' is written on layer 1 and is placed near the top of the 

page. Comments added later are in [ square brackets]. Further details can be found from 

the AutoCAD manual. 
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o 
SECTION 
2 
HEADER 
9 
SLTSCALE 
40 
0.5 
9 
SLIMMIN 
10 
0.0 
20 
0.0 
9 
SLIMMAX 
10 
8.3 
20 
11.7 
9 
SEXTMIN 
10 
0.0 
20 
0.0 
9 
SEXTMAX 
10 
8.3 
20 
11.7 
9 
SCLAYER 
8 
1 
9 
SCECOLOR 
62 
7 
9 
SCELTYPE 
6 
CONTINUOUS 
o 
END SEC 
o 
SECTION 
2 
TABLES 
o 
TABLE 
2 

DXF File Format 

[ HEADER section] 

[ Global line scale = 0,5 ] 

[ Lower-left drawing limits] 

[X = 0,0] 

[Y = 0,0] 

[ Upper-right drawing limits] 

[ X = 210,82mm or 8,3" ] 

[ Y = 297,18mm or 11,7" ] 

[Lower-left drawing extent in WCS ] 

[ Upper-right drawing extent in WCS ] 

[ Current layer name is 1 ] 

[ Entity colour number is 7 ] 

[ Entity linetype name is CONTINUOUS] 

[TABLES section] 

[Table LTYPE has 10 items] 
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LTYPE 
70 
10 
o 
LTYPE 
2 
CONTINUOUS 
70 
64 
3 
Solid line 
72 
65 
73 
o 
40 
0.0 

o 
ENDTAB 
o 
TABLE 
2 
LAYER 
70 
256 
o 
LAYER 
2 
1 
70 
o 
6 
CONTINUOUS 
62 
1 

o 
ENDTAB 
o 
END SEC 
o 
SECTION 
2 
ENTITIES 
o 
LINE 
8 
1 

DXF File Format 

[ LTYPE CONTINUOUS] 

[ Line description = 'Solid line' ] 

[ Alignment code = 65 ] 

[ Number of dash lengths = 0 ] 

[ Total pattern length = 0 ] 

[ Table LAYER] 

[ Layer is on and thawed] 

[LAYER 1] 

[ on and thawed ] 

[ Linetype CONTINUOUS is colour 1 ] 

[ENTITIES section - the drawing proper] 

[ Line entity ] 

[Layer name = 1 ] 
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DXF File Format 

6 [ Line type is CONTINUOUS ] 
CONTINUOUS 
62 [ Colour = 1 ] 
1 
10 [From X = 75mm] 
2.95275590549863E+0000 
20 [ From Y = 75mm ] 
2.95275590549863E+OOOO 
11 [ To X = 75mm ] 
2.95275590549863E+OOOO 
21 [To y= 125mm] 
4.92125984250015E+0000 
o [Line from 75,125mm to 175,125mm ] 
LINE 
8 
1 
6 
CONTINUOUS 
62 
1 
10 
2.95275590549863E+0000 
20 
4.92125984250015E+0000 
11 
6.88976377950166E+OOOO 
21 
4.92125984250015E+0000 
o [Line from 175,125mm to 175,75mm] 
LINE 
8 
1 
6 
CONTINUOUS 
62 
1 
10 
6.88976377950 166E+OOOO 
20 
4.92125984250015E+0000 
11 
6.88976377950 166E+0000 
21 
2.95275590549863E+0000 
o [ Line from 175,75mm to 75,75mm ] 
LINE 
8 
1 
6 
CONTINUOUS 
62 
1 
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DXF File Format 

10 
6.88976377950166E+0000 
20 
2.95275590549863E+OOOO 
11 
2.95275590549863E+OOOO 
21 
2.95275590549863E+OOOO 
o [ Text entity ] 
TEXT 
8 [Layer name = 1 ] 
1 
62 [ Colour 1 ] 
1 
10 [ X position = 59,3mm ] 
2.3363670774633 6E +0000 
20 [ Y position = 256,Omm ] 
1.00758467478054E+OOO 1 
40 [ Height 20mm ] 
7.87401574800242E-OOOI 
1 [ Text string is 'Rectangle' ] 
Rectangle 
7 [Text style name is 'STANDARD' ] 
STANDARD 
11 [ Alignment point X = 59,3mm] 
2.33636707746336E+OOOO 
21 [ Alignment point Y = 265,9mm] 
1.046954753 52055E+000 1 
50 [ Angle = 0 degrees] 
O.OOOOOOOOOOOOOOE+OOOO 
41 [ Relative X scale factor] 
3.67135835028439E-OOOI 
o 
ENDSEC 
o [End of file ] 
EOF 
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Appendix 4 

Development Platform 

The work presented here was developed using the following hardware: 

mM compatible PC consisting of: 

- 486 DX 33MHz processor 

- 8MB Ram 

- Windows 3.1 operating system 

Vidi-PC 24 frame grabber 

- 256 gray level mode 

- 640 x 544 pixels ( dual interlaced grab) 

- S-VHS and composite video inputs 

- Supplied by: 

Rombo Ltd. 

Kirkton Campus 

Livingston 

SCOTLAND 

EH547A2 

Tel: +44 (0)1506 41 4631 

Panasonic S-VHS video camera 

And the following software: 

Microsoft Visual C++ Version 1.0 including the 

Windows Software Development Kit 

Vidi-PC 24 Toolkit 'C' library routines from Rombo Ltd. 
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