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Abstract: We present a new analytic time dependent solution of cubic string field theory

at the lowest order in the level truncation scheme. The tachyon profile we have found

is a bounce in time, a C∞ function which represents an almost exact solution, with an

extremely good degree of accuracy, of the classical equations of motion of the truncated

string field theory. Such a finite energy solution describes a tachyon which at x0 = −∞
is at the maximum of the potential, at later times rolls toward the stable minimum and

then up to the other side of the potential toward the inversion point and then back to

the unstable maximum for x0 → +∞. The energy-momentum tensor associated with this

rolling tachyon solution can be explicitly computed. The energy density is constant, the

pressure is an even function of time which can change sign while the tachyon rolls toward

the minimum of its potential. A new form of tachyon matter is realized which might be

relevant for cosmological applications.
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1. Introduction

In recent years there has been great progress, particularly due to Sen, in our understanding

of the role of the tachyon in string theory (see [1] with references to earlier works). The

basic idea is that the perturbative open string vacuum is unstable but there exists a stable

vacuum toward which a tachyon field naturally moves.

String theory must eventually address cosmological issues and hence it is crucial to

understand the role of time dependent solutions of the theory. The rolling tachyon [2]

is an example of such a solution and in fact it has been applied to the study of tachyon

driven cosmology, cosmological solutions describing the decaying of unstable space filling D-

branes [3, 4]. In the decay, the energy density remains constant and the pressure approaches

zero from negative values as the tachyon rolls toward its stable minimum. This form

of tachyon matter could have astrophysical consequences and it then seems of utmost

importance to confirm its existence using string field theory.

The boundary states approach to the rolling tachyon is the one that initiated the new

investigation on time dependent solutions in string theory [2]. However, the understanding

of the final fate of the unstable D-brane and the description of the time evolution of the

boundary state are still far from being complete. These conformal field theory methods

provide an indirect way of constructing solutions of the classical equations of motion with-

out knowing the effective action. A more direct derivation of the classical solutions can be

realized by explicitly constructing the tachyon effective action. Namely one starts from a

string field theory in which, in principle, the coupling of the tachyon to the infinite tower of

other fields associated with massive open string states could be taken into account. String

field theory should then be a natural setting for the study of time dependent rolling tachyon

solutions. In the boundary string field theory (BSFT) approach to string field theory [5]

a rolling tachyon solution has been found and can be directly associated with a given two

dimensional conformal field theory [6 – 8]. The relationship between the boundary state

and the boundary string field theory approaches is in fact very explicit.

– 1 –
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The direct approach based on the analysis of the classical equations of motion of

bosonic open string field theory (cubic string field theory, CSFT [9]) is generally believed

to be equivalent to the approach based on two dimensional conformal field theory. This

equivalence is however less than manifest also because it is not yet known a satisfactory

rolling tachyon solution of the cubic string field theory equations of motion even at the

classical level and at the lowest order, the (0, 0), in the level truncation scheme [10, 11]. In

this paper we solve this problem providing a well behaved (almost exact) time dependent

solution of the lowest order equations of motion of cubic string field theory. At this order

one considers only the tachyon field and the cubic string field theory action becomes

S =
1

g2
o

∫
d26x

(
1

2
t(x) (¤+ 1) t(x) − 1

3
λc

(
λ(1/3)¤
c t(x)

)3
)
, (1.1)

where the coupling λc has the value

λc =
39/2

26
= 2.19213 . (1.2)

Considering spatially homogeneous profiles of the form t(x0), where x0 is time, the equation

of motion derived from (1.1) is

(∂2
0 − 1)t(x0) + λ

1−∂2
0/3

c

(
λ
−∂2

0/3
c t(x0)

)2
= 0 . (1.3)

We have found an almost exact analytic solution of this equation, which is given by the

following well defined integral 1

t(x0) =
9λ
−5/3
c

4
√
π log λc

∫ ∞

0
dτ
(
1− 2τ2

)
e−τ

2
log
[
coshx0 + cos(4τ

√
log λc/3)

]
. (1.4)

Being the equation of motion time reversal invariant, the solution (1.4) is a symmetric

bounce in x0, a C∞ function with the appropriate boundary conditions to describe a

rolling tachyon. Such a constant energy density solution, in fact, describes a tachyon

which at x0 = −∞ is at the maximum of the potential, at later times rolls toward the

stable minimum and then up to the other side of the potential toward the inversion point

and then back to the unstable maximum for x0 →∞.

If the decaying D-brane is coupled to closed strings it will act as a source for closed

string modes [12 – 14]. A rolling tachyon is a time dependent source which will produce

closed string radiation. All the energy of the D-brane will eventually be radiated away

into closed strings. In the classical rolling tachyon picture described above this would

correspond to the introduction of a friction that would eventually stop the rolling tachyon

at the minimum of its potential.

The profile (1.4) does not present all the cumbersome features found in previous works

on rolling tachyons in cubic string field theory, like ever growing oscillations with time

and an energy-momentum tensor that cannot be derived [15, 16, 11, 17]. For the tachyon

profile (1.4) in fact the associated energy-momentum tensor can be computed explicitly.

1In what sense this is an “almost” exact solution will be explained in section 2.

– 2 –
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The energy density E is constant while the pressure p(x0) is an even function of time.

Pressure and energy density depend on an arbitrary constant (the constant up to which

the action is defined) and they can be chosen for example in such a way that the Dominant

Energy Condition, E ≥ |p(x0)|, holds at any instant of time. In this case the pressure p(x0)

starts negative when the tachyon is at the unstable maximum of the potential, at later times

becomes positive, while the tachyon reaches the minimum of the potential, and finally it

goes back to its negative starting value at x0 = +∞. By choosing the initial energy density

to be higher, however, one might even realize the situation in which the tachyon reaches the

minimum of its potential when its pressure vanishes. The rolling tachyon matter associated

to the solution has in this case an interesting equation of state p(x0) = wE , with w that

smoothly interpolates between −1 and 0, while the tachyon moves from the maximum of its

potential to the minimum [18]. Passed this time, however, the pressure becomes positive

until the tachyon goes again through its minimum. This form of tachyon matter is thus

different to the one described in [18, 8, 19].

In boundary string field theory and in most of the models used to study tachyon

driven cosmology, the stable minimum of the potential is taken at infinite values of the

tachyon field [20 – 22, 18, 8, 19]. The tachyon thus cannot roll beyond its minimum. One

of the main objections to the rolling tachyon as a mechanism for inflation is that reheating

and creation of matter in models where the minimum of the potential is at T → ∞ is

problematic because the tachyon field in such theory does not oscillate [23, 3]. In cubic

string field theory the naive value of the minimum of the potential is at finite values of the

tachyon field 2. Therefore, the coupling of the free theory to a Friedman-Robertson-Walker

metric [3], and the consequent inclusion of a Hubble friction term, might lead from the

classical solution (1.4) to damped oscillations around the stable minimum of the potential

well. Cubic string field theory might then open new perspectives in tachyon cosmology.

It is also possible, however, that a true solution of the complete cubic string field

theory without the level approximation would be non-oscillating, like Sen’s rolling tachyon

solution. In fact the inclusion of higher level fields might change the interactions in such a

way that even if the minimum of the potential would stay at finite values of the tachyon

field the rolling tachyon solution would not have oscillations about it, but would just reach

the minimum of the potential at infinite times. As we shall show also for the solution (1.4)

the tachyon rolls from the top of the potential towards the stable minimum and then up to

the other side, but the inversion point is lower then the maximum of the potential. This is

because the cubic term in the interaction is dressed by a kinematical factor depending on

the tachyon field derivatives.

The paper is organized as follows. In section 2 we derive the solution (1.4) and discuss

its analytical properties. In section 3 we compute the associated energy momentum tensor,

study its time dependence and discuss the tachyon matter it describes. In the conclusions

we outlook some possible checks and applications of the new rolling tachyon solution of

cubic string field theory.

2By “naive” we mean that a field redefinition could always map the minimum of the potential at infinity,

the kinetic term might however assume a non standard form [24].

– 3 –
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2. The rolling tachyon solution in cubic string field theory

The action of cubic open string field theory reads [9]

S = − 1

g2
o

∫ (
1

2
Φ ·QBΦ +

1

3
Φ · (Φ ∗ Φ)

)
, (2.1)

where QB is the BRST operator, ∗ is the star product between two string fields and Φ

is the open string field containing component fields which correspond to all the states in

the string Fock space. If we consider only the tachyon field t(x) in Φ, |Φ〉 = b0|0〉t(x), the

action (2.1) becomes (1.1). For profiles that only depend on the time x0 the equation of

motion derived from (2.1) is (1.3) and we shall now look for a solution to that equation.

Our procedure is based on the idea that eq. (1.3) can be generalized to become a non-linear

differential equation with an arbitrary parameter λ which substitutes the fixed value (1.2)

(∂2
0 − 1)t(x0) + λ1−∂2

0/3
(
λ−∂

2
0/3t(x0)

)2
= 0 . (2.2)

Then λ can be treated as an evolution parameter. Fixing the initial value λ = 1 one can

easily find an exact solution to (2.2) and then one can study how this solution evolves to

different values of λ keeping its property of being a solution of (2.2). We shall find that the

equation governing the evolution in λ is extremely simple and we shall look for a solution

of (2.2) for generic λ, setting eventually λ = λc as in (1.2).

When λ = 1, eq. (1.3) admits a particularly simple exact solution, the following bounce

t(log λ = 0, x0) =
3

2cosh2(x0/2)
= 6

∫ ∞

0

τ cos(τx0)

sinh(πτ)
dτ . (2.3)

The boundary conditions of (2.3) are such that ∂t(0, x0)/∂x0 = 0 at x0 = ±∞.

Now we shall interpret the solution (2.3) as the “initial” condition of an “evolution”

equation with respect to the “time” log λ. To find how the solution evolves we shall have

to provide a careful treatment of infinite derivative operators of the type

q∂
2

= elog q ∂2 ≡
∞∑

n=0

(log q)n

n!
∂2n , (2.4)

which act on the function t(x0) in (2.2) when λ 6= 1. These operators play a crucial role

in string field theories and related models. We shall thus provide a possible solution to

the long standing problem of how to treat this infinite derivative operators in string field

theory.

A particularly convenient redefinition of the tachyon field that leaves invariant the

initial condition (2.3) is

T (log λ, x0) = λ5/3+∂2
0/3t(log λ, x0) . (2.5)

With this field redefinition eq. (1.3) transforms into the following

(∂2
0 − 1)T (log λ, x0) + λ−2/3

(
λ−2∂2

0/3T (log λ, x0)
)2

= 0 . (2.6)

– 4 –
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Since the operator λ−2∂2
0/3 is defined as a power series of log λ through eq. (2.4), it is

natural to look for solutions of eq. (2.6) of the form

T (log λ, x0) =

∞∑

n=0

(log λ)n

n!
tn(x0) . (2.7)

It is not difficult to check that at any desired order n in (2.7) the functions tn(x0) can

always be written as finite sums of the form

tn(x0) =
n∑

k=0

a
(n)
k

cosh2k+2(x0/2)
, (2.8)

and the differential equation for the tachyon field becomes an algebraic equation for the

unknown coefficients a
(n)
k . Thus, an exact solution of (2.6) can always be obtained as a

series representation. However, in order to obtain solutions preserving the correct boundary

conditions, it is mandatory to look for solutions that, although approximate, sum the

whole series (2.7) rather than to find the exact coefficients a
(n)
k at any fixed truncation

n of the sum (2.7). In fact, it is easy to show that any truncation of the sum (2.7)

leads to solutions with wild oscillatory behavior with increasing amplitudes, whose physical

meaning is difficult to interpret. Only the resummation of the whole series smoothens such

oscillations.

A more convenient representation of tn(x0) alternative to (2.8) is given by

tn(x0) = 6

∫ ∞

0

τ cos(τx0)

sinh(πτ)
Pn(τ) dτ , (2.9)

Pn(τ) being a polynomial of even powers of τ of degree 2n. This representation is par-

ticularly useful since it provides the tn(x0) in terms of eigenfunction of the operator ∂2
0 .

The field redefinition (2.5) was chosen in such a way that the form of the coefficients (2.9)

becomes particularly simple, so simple that the series (2.7) can be resummed. Requiring

that the profile (2.7) satisfies the boundary conditions ∂T (0, x0)/∂x0 = 0 at x0 = ±∞ as

in (2.3) and that it is a very accurate approximate solution of the equation of motion (2.6),

fixes the polynomials Pn(τ) to be of the form

Pn(τ) ' τ2n . (2.10)

This leads to the following approximate solution of eq. (2.6)

T (log λ, x0) = 6

∫ ∞

0

τ cos(τx0)

sinh(πτ)
elog λ τ2

dτ = 6λ−∂
2
0

∫ ∞

0

τ cos(τx0)

sinh(πτ)
dτ , λ < 1 . (2.11)

Note that all the λ-dependence in (2.11) is encoded in the operator λ−∂
2
0 acting on the

solution of eq. (2.6) with λ = 1. In fact T (log λ = 0, x0) ≡ t(log λ = 0, x0) and λ−∂
2
0 plays

the role of the “evolution” operator (with respect to the “time” log λ) acting on the initial

condition T (log λ = 0, x0),

T (log λ, x0) = λ−∂
2
0 T (log λ = 0, x0) . (2.12)

– 5 –
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Clearly, the representation (2.11) of the solution T (log λ, x0) is valid only for λ ∈ (0, 1].

In our case the physically relevant value of λ is the one given in (1.2), which is greater

than one. Consequently, we need an analytical continuation of the representation (2.11) to

positive values of log λ.

Eq. (2.11) shows that the evolution of the tachyon field with respect to the parameter

log λ is simply driven by the diffusion equation with (negative) unitary coefficient. In

fact (2.11) satisfies the diffusion equation

∂T (log λ, x0)

∂ log λ
= −∂

2T (log λ, x0)

∂(x0)2
(2.13)

with respect to the “time” variable log λ and the “space” variable x0, with “initial” and

“boundary” conditions T (0, x0) = 3/[2cosh2(x0/2)], T (log λ,±∞) = 0.

Now we face the problem of the analytical continuation of the representation (2.11) to

positive values of log λ. Setting τ = −is in eq. (2.11), we rewrite T as

T (log λ, x0) =
3

i
λ−∂

2
0

∫ +i∞

−i∞

sesx
0

sin(πs)
ds . (2.14)

In eq. (2.14) the integral can be closed with semi-circles at infinity to the right or to the

left depending on the sign of x0. Let us choose for instance x0 < 0. Then (2.14) reads

T (log λ, x0 < 0) = −6λ−∂
2
0

∞∑

n=1

(−1)nnenx
0
. (2.15)

In eq. (2.15) one would be tempted to replace the operator λ−∂
2
0 with its eigenvalue λ−n

2

inside the series, namely

−6
∞∑

n=1

(−1)nλ−n
2
nenx

0
, λ > 1 , (2.16)

thus providing very easily the required analytical continuation to the region λ > 1. However

this procedure is incorrect. This is an important point, as the solutions in cubic string field

theory (CSFT) analyzed in the recent literature [11] have precisely the form (2.16). A

cavalier treatment of the infinite derivative operator λ−∂
2
0 , however, might lead to the

wrong conclusion that no rolling tachyon solutions exist in CSFT.

To understand why the procedure leading to (2.16) is incorrect, note that it would

correspond to replace the operator λ−∂
2
0 with λ−s

2
in the integrand of eq. (2.14), and then

closing the integral with a semicircle at infinity in the half-plane Re s > 0. This cannot

be done when the factor λ−s
2

is inserted in the integrand. The path of integration in fact,

cannot be closed by any curve at infinity, for any sign of log λ: if λ < 1 the integral would

diverge at s = ±∞, whereas if λ > 1 it would diverge at s = ±i∞ and the integral (2.14)

could never be computed as sum of residues. Thus, in spite of the fact that the series

in (2.16) has infinite convergence radius for λ > 1, it does not provide the analytical

continuation of (2.11).

– 6 –
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Another argument which can be given to understand why (2.16) does not reproduce the

tachyon field for λ > 1 is the following. Eq. (2.11) is manifestly even, and then all its odd

derivatives must vanish at the origin x0 = 0 3. This is not true for the representation (2.16).

A possible way to overcome these difficulties, and thus to solve the problem of how

infinite derivative operators of the type λ−∂
2
0 can be treated, is through a Mellin-Barnes

representation for the operator λ−∂
2
0 ,

λ−∂
2
0 =

∞∑

n=0

(− log λ)n

n!
∂2n

0 =
1

2πi

∫ γ+i∞

γ−i∞
dsΓ(−s)(log λ)s∂2s

0 , Re γ < 0 . (2.17)

Acting with (2.17) in (2.15), we find

T (log λ, x0 < 0) = − 3

πi

∫ γ+i∞

γ−i∞
dsΓ(−s)(log λ)s

∞∑

n=1

(−1)nn2s+1enx
0

=
3ex

0

πi

∫ γ+i∞

γ−i∞
dsΓ(−s)(log λ)sΦ(−ex0

,−2s− 1, 1)

=
12ex

0

√
πi

∫ γ+i∞

γ−i∞
ds

(4 log λ)s

Γ(−s− 1/2)

∫ ∞

0

dt

t2
t−2s

ex
0

+ et
, (2.18)

where Φ is the Lerch Transcendent defined as

Φ(z, s, v) =
∞∑

n=0

(v + n)−szn , |z| < 1 , v 6= 0,−1,−2, . . .

=
1

Γ(s)

∫ ∞

0
dt

ts−1e−(v−1)t

et − z , (2.19)

and the last equation in (2.18) follows from the integral representation of Φ given in (2.19).

The gamma function in (2.18) can be rewritten by using the formula

1

Γ(−s− 1/2)
=

1

2πi

∫

C
dz ezzs+1/2 (2.20)

where C is the path drawn in figure 1.

Thus, the integral over s in (2.18) can be explicitely performed,
∫ γ+i∞

γ−i∞
ds

(
4z log λ

t2

)s
= iπ δ

[
log t− log

(
2
√
z log λ

)]
. (2.21)

In turn, integration of the δ-function leads to the expression

T (log λ, x0 < 0) =
3

i
√
π log λ

∫

C
dz

ez

1 + e2
√
z log λ−x0

. (2.22)

It is easily realized that the contribution to the integral (2.22) given by the semicircle

around the origin vanishes. The lower and upper branches of the path C are parametrized,

according to the notation of figure 1, as

z = e−iπt− iε , t ∈ (∞, 0) ,

3Another possibility would be that the odd derivatives of eq. (2.16) are discontinuous at the origin. This

is indeed what happens with (2.16). Clearly this is unacceptable as the resulting functions would not belong

to the definition domain of the operator λ−∂
2
0 .

– 7 –
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Arg z =

Arg z =

Re z

Im z

−π

π

Figure 1: Contour C.

z = eiπt+ iε , t ∈ (0,∞) , (2.23)

respectively. Then, by changing variable τ =
√
t, the integral (2.22) can be rewritten as

T (log λ, x0 < 0) =
6√

π log λ

∫ ∞

0
dτe−τ

2 τ sin(2τ
√

log λ)

cosh(x0 − ε) + cos(2τ
√

log λ)
, λ > 1 . (2.24)

Note that the hyperbolic cosine in (2.24) is always greater than one (x0 ≤ 0 and ε > 0),

preventing any singularity in the integrand. Analogously, if we consider the case x0 > 0

in (2.14), we obtain for T (log λ, x0 > 0) an expression similar to (2.24) with x0− ε replaced

by x0 + ε. Therefore, in any case no singularities arise and a representation for the tachyon

field valid for any value of x0 can be conveniently written as

T (log λ, x0) =
6√

π log λ

∫ ∞

0
dτe−τ

2 τ sin(2τ
√

log λ)

eε cosh(x0) + cos(2τ
√

log λ)
, λ > 1 . (2.25)

Eq. (2.25) provides the required analytical continuation of (2.11) to positive values of

log λ. The regulator ε is immaterial for any point x0 6= 0 but it is crucial to prescribe

the behavior at the origin. It guarantees that T (log λ, x0) ∈ C∞ in a neighbour of the

origin and that all the odd derivatives of (2.25) vanish at x0 = 0. To understand the

mechanism, we can integrate by parts eq. (2.25) keeping ε 6= 0. After integration by parts,

the singularities of the denominator that would appear at x0 = 0 in the ε→ 0 limit become

logarithmic (integrable) singularities. Then the regulator ε can be removed, obtaining

T (log λ, x0) =
3√

π log λ

∫ ∞

0
dτ

d

dτ

(
τe−τ

2
)

log[coshx0 + cos(2
√

log λτ)] . (2.26)

Iterating the procedure, any derivative of T can be written in a manifestly regular way.

Note that, since ε can be eventually removed, it works as a prescription to define the

integral (2.26) with all its derivatives. For example, the formula for the even derivatives of

T reads

d2nT (log λ, x0)

d(x0)2n
=

3(−1)n

22n
√
π(log λ)n+1

∫ ∞

0
dτ

d2n+1

dτ2n+1

(
τe−τ

2
)

log[coshx0 + cos(2
√

log λτ)] .

(2.27)

The representation (2.26) is defined for any real value of log λ. For λ > 1 it provides the

analytical continuation of (2.11), for λ < 1 it is still well defined and coincides with (2.11).
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Figure 2: Different profiles of the solution T (logλ, x0). The bold profile refers to λ = λc, the

remaining ones to λ
1/3
c , 1, λ

−1/3
c , λ−1

c . As seen in the box, the behavior of the solution with λ = λc
is smooth at the origin.

The solutions (2.26) have the form of bounces, for any value of λ. In figure 2 are drawn some

profiles of the solution T for different values of λ. The bold profile refers to the physically

relevant value λ = λc, the remaining ones correspond to λ
1/3
c , 1, λ

−1/3
c , λ−1

c . Note the man-

ifest continuity in λ exhibited in figure 2 passing form positive to negative values of log λ.

To check the level of accuracy of the approximate solution (2.26) we must study the

action of operators of the form q∂
2
0 on it. At first sight, this is a non trivial problem, as the

x0-dependence in (2.26) is not through eigenfunctions of ∂2
0 . Fortunately, eq. (2.26) still

satisfies the diffusion equation (2.13), as can be checked by direct inspection. Therefore,

the action of the operator q∂
2
0 on T (log λ, x0) can be simply represented as a translation

of log λ

q∂
2
0T (log λ, x0) = elog q ∂2

0T (log λ, x0) = e− log q ∂
∂ log λT (log λ, x0) = T (log λ− log q, x0) .

(2.28)

This remarkable property can only be used thanks to the fact that we have treated the

quantity λ as a generic variable. In particular we shall have often to make use of the

following operator

λa∂
2
0T (log λ, x0) =

∞∑

n=0

an
(log λ)n

n!

∂2n

∂x02nT (log λ, x0)

=
∞∑

n=0

(−a)n
(log λ)n

n!

∂n

∂(log λ)n
T (log λ, x0)

= T ((1 − a) log λ, x0) . (2.29)

where in the second equality we have used the diffusion equation (2.13).
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A quantitative estimate of the accuracy of (2.26) can be obtained by calculating the

L2 norm of the left hand side (LHS(log λ, x0)) of eq. (2.6) evaluated on the approximate

solution (2.26). If the solution of the equation was exact the value of this norm would be

zero. Let us consider the physically relevant case λ = λc. In this case the L2 norm of LHS

gives ||LHS||2 = 4.636 · 10−8.

This value should be compared with a typical scale of the problem, for instance with

the L2 norm of T , which is ||T ||2 = 2.019. This shows the impressive level of accuracy of

the solution (2.26) 4
( ||LHS||2
||T ||2

)

λ=λc

∼ 2.3 · 10−8 . (2.30)

3. Energy-momentum tensor

The tachyon field t(x0) appearing in the original form of the level truncated CSFT (1.1)

is obtained by the field redefinition (2.5) applied to (2.26) with λ = λc. Using (2.29), one

has t(x0) = λ
−5/3
c T (4

3 log λc, x
0), namely

t(x0) =
9λ
−5/3
c

4
√
π log λc

∫ ∞

0

d

dτ

(
τe−τ

2
)

log[coshx0 + cos(4τ
√

log λc/3)] . (3.1)

Eq. (3.1) is the analytic solution of our problem. It has the extremely good degree of

accuracy (2.30) and it does not depend on any free parameter. In principle, one could

try to improve the solution by introducing some external parameter in (3.1), but we have

checked that this does not improve its accuracy.

Since we have at hand an action for the tachyon field, the energy-momentum tensor

can be calculated as usual, by first including a metric tensor gµν in the action (1.1), varying

the action S with respect to gµν and setting afterwards the metric to be flat, gµν = ηµν .

It is also possible to add a constant term −α to the action (1.1). This is the only free

constant we have and its choice can be dictated by physical considerations. In this way

the tachyon potential reads

V [ t ] = −1

2
t2 +

λc
3
t3 + α . (3.2)

Thus, we consider the action

S =
1

g2
o

∫
d26x
√−g

(
1

2
t2 − 1

2
gµν∂µt ∂νt−

1

3
λc t̃

3 − α
)
, (3.3)

where t̃ = λ
1
3
¤

c t. The stress tensor then reads

Tαβ = − 2√−g
δS

δgαβ
. (3.4)

4Another possibile check of the approximation would be to write eq. (2.6) as LHS = RHS, where

LHS = (∂2
0 − 1)T , and to consider the quantity ||LHS−RHS||2/||LHS||2. The order of magnitude of this

ratio is as in (2.30).
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In varying (3.3) with respect to the metric tensor, one has to consider the covariant

form of the D’Alembertian operator

¤ =
1√−g ∂µ

√−ggµν∂ν . (3.5)

The variation of the operator λ
1
3
¤

c with respect to the metric can be performed by using

the following identity

δλ
1
3
¤

c

δgαβ
=

1

3
log λc

∫ 1

0
ds λ

1
3
s¤

c
δ¤
δgαβ

λ
1
3

(1−s)¤
c . (3.6)

An alternative way to get the variation of the infinitely many derivatives operator λ
1
3
¤

c

would be through a power series [15, 16] representation of the type (2.4). However, the

remarkable property (2.29) of our solution is particularly well suited to deal with operators

of the type λ
1
3
s¤

c . In fact, their action on T (log λc, x
0) consists in a trivial translation

log λc → (1 + 1
3s) log λc. This will permit to write the energy momentum tensor in a

simple and closed form. Most importantly, it will be written as a bilinear in the fields

T (log λc, x
0) containing only finite derivatives. Substituting infinite derivative operators

on the field T (x0, log λc) with the field itself, but with the parameter λc traslated, allows

to write the energy momentum tensor in a form analogous to that of an ordinary (finite

derivatives) field theory.

Taking the equation of motion (1.3) and eqs. (2.5), (2.29), (3.3)-(3.6) into account,

after some integrations by parts we get the following expression for the energy-momentum

tensor

Tαβ = λ−10/3
c

{
δα0 δβ0

(
∂0T

(
4

3
log λc, x

0

))2

+

+ gαβ

[
1

2

(
∂0T

(
4

3
log λc, x

0

))2

+
1

2

(
T

(
4

3
log λc, x

0

))2

−

− 1

3
T

(
5

3
log λc, x

0

)
(1− ∂2

0)T (log λc, x
0)− αλ10/3

c

]
−

− 1

3
log λc

∫ 1

0
ds

[
gαβ(1− ∂2

0)T

(
4− s

3
log λc, x

0

)
∂2

0T

(
4 + s

3
log λc, x

0

)
+

+ gαβ(1− ∂2
0) ∂0T

(
4− s

3
log λc, x

0

)
×

× ∂0T

(
4 + s

3
log λc, x

0

)]
+

+ 2 δα0δβ0 (1− ∂2
0)∂0T

(
4− s

3
log λc, x

0

)
∂0T

(
4 + s

3
log λc, x

0

)}
. (3.7)

From (3.7) the explicit form of the energy density E(x0) = T00 and the pressure p(x0) = T11

can be obtained

E(x0) = λ−10/3
c

{
1

2

(
∂0T

(
4

3
log λc, x

0

))2

− 1

2

(
T

(
4

3
log λc, x

0

))2
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+
1

3
T

(
5

3
log λc, x

0

)
(1− ∂2

0)T (log λc, x
0) + αλ10/3

c −

− 1

3
log λc

∫ 1

0
ds

[
(1− ∂2

0)T

(
4− s

3
log λc, x

0

)
∂2

0T

(
4 + s

3
log λc, x

0

)
−

− (1− ∂2
0) ∂0T

(
4− s

3
log λc, x

0

)
×

× ∂0T

(
4 + s

3
log λc, x

0

)]}
, (3.8)

p(x0) = λ−10/3
c

{
1

2

(
∂0T

(
4

3
log λc, x

0

))2

+
1

2

(
T

(
4

3
log λc, x

0

))2

−

− 1

3
T

(
5

3
log λc, x

0

)
(1− ∂2

0)T (log λc, x
0)− αλ10/3

c −

− 1

3
log λc

∫ 1

0
ds

[
(1− ∂2

0)T

(
4− s

3
log λc, x

0

)
∂2

0T

(
4 + s

3
log λc, x

0

)
+

+ (1− ∂2
0) ∂0T

(
4− s

3
log λc, x

0

)
×

× ∂0T

(
4 + s

3
log λc, x

0

)]}
. (3.9)

Even if from (3.8) the energy density seems to depend strongly on time, its plot will

show that E(x0) is actually a constant. The energy density is conserved and is always

identical to the chosen height of the maximum of the potential, E = α. The pressure p(x0)

is an even function of x0, it has the shape of a bounce in time asymptotically reaching

the value −α. Thus, increasing the value of α in (3.2), the energy grows and the pressure

lowers of the same amount.

The choice of α can strongly influence the physical picture described by the solu-

tion (3.1). However, there are some features that are independent on this choice, namely

the qualitative description of the tachyon motion and the asymptotic equation of state,

which is always p ∼ −E at x0 → ±∞.

Consider the time evolution of the solution, eq. (1.3) (or (2.6)) only admits even

solutions and therefore the asymptotical states at x0 → ±∞ must coincide. The motion

is shown in figure 3. At x0 = −∞ the tachyon stays on the maximum A of the potential

V [t] (unstable vacuum). Since it has no kinetic energy, its energy density - that will

be conserved during all its time evolution - is just V [0] = α. The pressure is negative

(p = −α), forcing the tachyon to roll towards the minimum. As time evolves, the tachyon

rolls and at x0
M = −0.144576 reaches the minimum M of the potential taking the value

t(x0
M ) = 1/λc. Here the kinetic energy is maximal. Since E is conserved and the system

is classical, the tachyon cannot stop its motion and proceeds to an inversion point. This

happens at x0 = 0, that corresponds to B in figure 3. Note that the value of the potential

at the inversion point B is lower than the value taken in A, still the energy being conserved.

This is because the interaction felt by the tachyon is not described by V [t], as the cubic

term in the interaction is “dressed” by the kinematical factor λ
−∂2

0/3
c (see (1.1)). This
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Figure 3: The tachyon potential V [t]. The bold part of V [t] refers to the motion A→M → B →
M → A of the classical solution t(x0).

Figure 4: Energy density and pressure. The value of α = 0.056 is the minimum required to

guarantee the DEC for any value of x0.

“dressing” is most significative when the acceleration is maximal, that is precisely at the

inversion point B. This is the reason why the tachyon does not reach the point C in

figure 3. For x0 > 0 the tachyon inverts its motion, passing again through the minimum

and asymptotically reaching the unstable maximum A at x0 → +∞, where again p ∼ −E =

−α. As already mentioned, different choices of α = E simply raise or lower the profile of

the pressure, that maintains the shape of a bounce. However, different values of α can

describe different physical scenarios. Among all the possible choices, at least three deserve

consideration.

We can fix α in such a way the Dominant Energy Condition (DEC) E ≥ |p(x0)| holds

for any value of x0. This can be realized by choosing α ≥ 0.056. In the limiting case

α = 0.056 the energy density is tangent to the pressure at the origin x0 = 0. At this

time the equation of state E ∼ |p(x0)| describes stiff matter. This is the case displayed in

figure 4.
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Other interesting choices can be obtained by fixing the physical properties of the matter

distribution at the minimum M of the potential. One could require that the tachyon

describes dust when reaches M . Thus, by imposing p(x0
M ) = 0, one gets α = 0.103. With

this choice the DEC obvioulsy holds and the tachyon matter has the interesting equation of

state p(x0) = wE , with w that smoothly interpolates between −1 and 0 while the tachyon

moves from the maximum to the minimum of its potential. Precisely as in the tachyon

matter considered by Sen. The motion however continues passed the minimum of the

potential and the pressure becomes positive. This form of tachyon matter is thus different

to the one described in [18, 8, 19].

Another intersting scenario is realized by requiring that the DEC, E ≥ |p(x0)|, holds

in x0 ∈ (−∞,−x0
M ), i.e. during the rolling A → M from the unstable maximum to the

stable minimum of the potential. This is obtained by requiring that E = |p(x0
M )|, which

gives α = 0.051. Remarkably, the choice α = 0.051 reproduces the brane tension (that in

these units is 1/(2π2)) within the 99% of accuracy. This might be an indication that the

solution we found might be the exact solution of the tachyon equation obtained by keeping

into account also higher level fields. The equation we studied is certainly approximated,

we wonder if the solution might be exact. In fact, since α just gives the height of the

maximum of the potential, a natural choice for it would be the one that sets to zero the

minimum of the potential. In this case, when coupled to gravity, the potential would

not produce a cosmological constant term when the tachyon is at the minimum. At the

(0, 0) level truncation we are considering, such a constant is 1/(6λ2
c ) (which is the 68% of

the brane tension). When all the higher level fields are taken into account, the depth of

the “effective” potential increases and the constant that sets to zero the minimum of the

potential should reproduce the D-brane tension 1/(2π2). Thus, the DEC request naturally

selects the correct depth of the potential when all levels are included.

4. Conclusions

In this paper we have shown that Cubic String Field Theory (CSFT) at the lowest order in

the level truncation scheme has a classical rolling tachyon solution. This form of tachyon

matter could have cosmological consequences. Having proven its existence directly from

cubic string field theory, at least at this level of approximation, seems to provide a solid

theoretical basis to tachyon driven cosmology.

Some interesting questions are raised by the CSFT rolling tachyon solution.

• What will happen to the rolling solution if we include higher level fields and higher

powers of the tachyon field effective action? This problem should certainly be studyed

since the level (0,0) is quite a crude approximation that does not keep into account

interactions of the tachyon with higher string modes. At least at the classical level

this analysis is doable and interesting. The profile we found is an extremely good

approximation of the level (0,0) equations of motion, and one wonders if the inclusion

of higher level fields might just lead to an improvement of this approximation. The

equation we studied is certainly approximated, we wonder if the solution might be

exact. Would the diffusion equation (2.13) still hold?
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• It would be interesting to consider the coupling of the decaying D-brane, described

by the rolling solution, to closed strings and study the emission of closed string from

it. It would in particular be interesting to see if this would cause damped oscillations

around the minimum or it might lead to a friction term that would just stop the

rolling tachyon at the stable minimum of the potential.

• In order to provide a possible cosmological model it would be inconsistent not to take

into account effects of gravity during the decaying process. The coupling of the cubic

string field theory action to a Friedman-Robertson-Walker type metric is a formidable

task because of the D’Alambertian operators in curved space that would appear in

the action. If one could still assume the validity of the diffusion equation (2.13), this

task could be, however, extremely simplifyed. This might provide an alternative to

the Born-Infeld type effective action that has been so extensively used in the study

of tachyon driven cosmology [3, 23, 25, 4, 26]. Cubic string field theory certainly

provides a tachyon effective action that correctly describes tachyon physics [27, 28]

and it is derived from first principles. In any case it should be at least possible

to study the gravitational effects generated by the energy-momentum tensor of the

rolling tachyon solution we have computed here, and see what kind of equations for

the scale factor this will produce.

• The relationship between the rolling solution found here and the known solution in

Boundary String Field Theory (BSFT) and vacuum string field theory [29, 30] is

worth investigating [31]. The former is also related to the boundary conformal field

theory approach, so that if a link could be established between the CSFT solution and

the BSFT one, it should be possible to determine also the boundary state associated

to the solution found here. This should shed some more light on the relations between

the two approaches to string field theory [22]. It would be interesting to investigate

also here the spatial inhomogeneous decay [6, 32].

• The solution found here does not contain free parameters, thus it should be compared

with the half-S-brane case [6, 14] where the only parameter present can be set to 1

by a time translation. The full S-brane case [2, 33 – 35] contains instead a parameter

whose sign provides a prescription for which side of the tachyon potential maximum

the tachyon would roll. The CSFT solution we found does not present this possibility,

the tachyon always rolls to the “right side”, i.e. to the side where the tachyon potential

is bounded below.
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