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Abstract: We compute, on the disk, the non-linear tachyon β-function, βT , of the open

bosonic string theory. βT is determined both in an expansion to the third power of the field

and to all orders in derivatives and in an expansion to any power of the tachyon field in the

leading order in derivatives. We construct the Witten-Shatashvili (WS) space-time effective

action S and prove that it has a very simple universal form in terms of the renormalized

tachyon field and βT . The expression for S is well suited to studying both processes that are

far off-shell, such as tachyon condensation, and close to the mass-shell, such as perturbative

on-shell amplitudes. We evaluate S in a small derivative expansion, providing the exact

tachyon potential. The normalization of S is fixed by requiring that the field redefinition

that maps S into the tachyon effective action derived from the cubic string field theory is

regular on-shell. The normalization factor is in precise agreement with the one required

for verifying all the conjectures on tachyon condensation. The coordinates in the space of

couplings in which the tachyon β-function is non linear are the most appropriate to study

RG fixed points that can be interpreted as solitons of S, i.e. D-branes.

Keywords: Tachyon Condensation, String Field Theory.

c© SISSA/ISAS 2004 http://jhep.sissa.it/archive/papers/jhep032004030/jhep032004030.pdf

mailto:colettie@mit.edu
mailto:forini@science.unitn.it
mailto:nardelli@science.unitn.it
mailto:gianluca.grignani@pg.infn.it
mailto:marta.orselli@pg.infn.it
http://jhep.sissa.it/stdsearch?keywords=Tachyon_Condensation+String_Field_Theory


J
H
E
P
0
3
(
2
0
0
4
)
0
3
0

Contents

1. Introduction 1

2. Boundary string field theory 4

3. Integration over the bulk variables 6

4. Partition function on the disk and the renormalized tachyon field 7

5. Background-field method 11

6. β-function 13

7. Witten-Shatashvili action 17

8. Cubic vs. Witten-Shatashvili tachyon effective actions 22

9. Conclusions 24

A. Computation of I(k1, k2, k3) 25

1. Introduction

One of the most interesting problems in string theory is to understand how the background

space-time on which the string propagates arises in a self-consistent way. For open strings,

there are two main approaches to this problem, cubic string field theory [1] and background

independent string field theory [2]–[5].

Background independent open string field theory has been useful for finding the clas-

sical tachyon potential energy functional and the leading derivative terms in the tachyon

effective action [6]–[9]. It is formulated as a problem in boundary conformal field theory.

One begins with the partition function of open-string theory where the world-sheet is a

disk. The strings in the bulk are considered to be on-shell and a boundary interaction with

arbitrary operators is added. The configuration space of open string field theory is then

taken to be the space of all possible boundary operators modulo gauge transformations

and field redefinitions. Renormalization fixed points, which correspond to conformal field

theories, are solutions of classical equations of motion and should be viewed as the solutions

of classical string field theory.

Due to the existence of a tachyon in the bosonic string theory, the 26-dimensional

Minkowski space background about which the string is quantized is unstable. An unstable

state should decay to something and the nature of both the decay process and the endpoint
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of the decay are crucial questions. Some understanding of this process has been achieved

for the open bosonic string. The key idea is that of Sen [10]. The open bosonic string

tachyon reflects the instability of the D-25 brane. This unstable D-brane should decay by

condensation of the open string tachyon field. The energy per unit volume released in the

decay should be the D-25 brane tension and the end-point of the decay is the closed string

vacuum [10, 11, 12, 7]. There are also intermediate unstable states which are the D-branes

of all dimensions between zero and 25.

The decay of unstable systems of D-branes, pictured as a tachyon field rolling down a

potential toward a stable minimum, can also be addressed in the context of the boundary

string field theory. It involves deforming the world sheet conformal field theory of the

unstable D-brane by an exact marginal, time dependent tachyon profile. The quantitative

study of rolling tachyons was initiated by A. Sen [13]–[17] and has been recently used to

obtain other forms of tachyon effective actions [18]–[22]. The construction of the space-time

tachyon effective action in background independent open string field theory is the subject

of the present paper.

By classical power-counting the tachyon field T (X) has dimension one and is a rel-

evant operator. If T (X) is the only interaction, the field theory is perturbatively super-

renormalizable. If T (X) and the other fields are adjusted so that the sigma model that

they define is at an infrared fixed point of the renormalization group (RG), these back-

ground fields are a solution of the classical equations of motion of string theory. Witten and

Shatashvili [2, 4] have argued that these equations of motion come from an action which

can be derived from the disk partition function Z by a prescription which we shall make use

of below. According to this prescription the effective action for a generic coupling constant

gi (which can be identified with the tachyon, the gauge or any other field that correspond

to excitations of the open bosonic string) is related to the renormalized partition function

of open string theory on the disk, Z(gi), through

S =

(

1− βi δ

δgi

)

Z(gi) , (1.1)

where βi is the beta-function1 of the coupling gi. Note that (1.1) fixes the additive ambi-

guity in S by requiring that at RG fixed points g∗, in which βi(g∗) = 0,

S(g∗) = Z(g∗) . (1.2)

The derivative of the action S with respect to the coupling constant g i must be related to

the β-function through a metric according to

∂S

∂gi
= −βjGij(g) . (1.3)

Gij should be a non-degenerate metric, otherwise there would be an extra zero which could

not be interpreted as a conformal field theory on the world sheet. Eq. (1.3) indicates that

the RG flow is actually a gradient flow. The prescription (1.1) provides a definition of the

metric Gij in the space of couplings.

1In this paper the β function is positive for relevant perturbations. In some other papers on the subject,

e.g. [7], the opposite conventions are used.
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The β-functions appearing in (1.1) are in general non-linear functions of the couplings

gi. When the linear parts of the βi (i.e. the anomalous dimensions λi of the corresponding

coupling) satisfy a so called “resonant condition”, the non linear parts of the β-function

cannot be removed by a coordinate redefinition in the space of couplings [5]. Such resonant

condition is nothing but the mass-shell condition so that, near the mass-shell, the β-

functions are necessarily non-linear.

However, when the resonant condition does not hold, a possible choice of coordinates

on the space of string fields is one in which the β-functions are exactly linear. This choice

can always be made locally [7] and is well suited to studying processes which are far off-

shell, such as tachyon condensation. These coordinates, however, become singular when

the components of the string field (e.g. T (X), Aµ(X) etc.) go on-shell. These coordinates

can be used to construct, for example, the tachyon effective potential, but become singular

when one tries to derive an effective action which reproduces the on-shell amplitudes. In

particular, if the Veneziano amplitude needs to emerge from the tachyon effective action it is

necessary to consider the whole non-linear β-function in (1.1). A complete renormalization

of the theory in fact makes the β-function non-linear in T (X) [23] so that, since the

vanishing of the β-function is the field equation for T , these nonlinear terms describe

tachyon scattering. One of the goal of this paper is to construct non-linear expressions for

the β-functions which are valid away from the RG fixed point. With these expressions for

the non-linear tachyon β-function we shall construct the Witten-Shatashvili (WS) space-

time action (1.1). We shall prove that (1.1) has the following very simple form in the

coupling space coordinates in which the tachyon β-function is non-linear

S = K

∫

d26X
[

1− TR(X) + βT (X)
]

, (1.4)

where TR is the renormalized tachyon field and K is a constant related to the D25-brane

tension. This formula is universal as it does not depend on how many couplings are

switched on. Eq. (1.4) arises from the expression that links the renormalized tachyon field

to the partition function that appears in (1.1), namely Z = K
∫

d26X(1− TR). TR is then

a non-linear function of the bare coupling T and in these coordinates the β-function is

non-linear. When couplings other than the tachyon are introduced in Z, βT will depend

on them so that S will provide the space-time effective action also for these couplings.

With this prescription we shall compute the non-linear β-function βT for the tachyon

field up to the third order in powers of the field and to any order in derivatives of the field.

From this we shall show that the solutions of the RG fixed point equations generate the

three and four-point open bosonic string scattering amplitudes involving tachyons. Then,

with the same renormalization prescription, we shall compute βT to the leading orders in

derivatives but to any power of the tachyon field and we shall show that S coincides with

the one-found in [6, 7, 8]. Obviously, S up to the first three powers of T and expanded to

the leading order in powers of derivatives can be obtained from both calculations and the

results coincide.

In the case of profiles TR(k) that have support near the on-shell momentum k2 ' 1 the

equation βT (k) = 0 can be derived as the equation of motion of an action. We shall show

– 3 –
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that this action coincides with the tachyon effective action computed, for the almost on-

shell profiles, form the cubic string field theory up to the fourth power of the tachyon field.

The knowledge of the non-linear tachyon β-function is very important also for another

reason. The solutions of the equation βT = 0 give the conformal fixed points, the back-

grounds that are consistent with the string dynamics. In the case of slowly varying tachyon

profiles, we shall show that the equations of motion for the WS action can be made iden-

tical to the RG fixed point equation βT = 0. We shall find solutions of this equation to

which correspond a finite value of the WS action. Being solutions of the RG equations,

these solitons are lower dimensional D-branes for which the finite value of S provides a

quite accurate prediction of the D-brane tension.

We shall also show that the WS action constructed in terms of a linear β-function [24]

is related to the action (1.4) by a field redefinition, and that this field redefinition becomes

singular on-shell. This is in agreement with the Poincaré-Dulac theorem [25] used in [5] to

prove that when the resonant condition holds, namely near the on-shellness, the β-function

has to be non-linear.

The tachyon effective action up to the third power in the fields is known exactly

also from the cubic string field theory [1]. This raises the interesting question of how

the action S obtained in this paper is related to the cubic SFT. It seems clear that the

cubic SFT must correspond to (1.1), (1.3) for a particular choice of coordinates on the

space of string fields (or worldsheet couplings). The two sets of coordinates are related

by a complicated transformation which we shall derive in this paper. The cubic SFT

parametrization of worldsheet RG is regular close to the mass shell. It very well reproduces

tachyon scattering [26], to it must correspond a non-linear beta-function. Thus a coordinate

transformation that relates the two effective actions needs a non-linear beta function in the

definition (1.1). We shall show that this field redefinition exists and that it is non-singular

on-shell only when K in (1.4) coincides with the tension of the D25-brane, in agreement

with all the conjectures involving tachyon condensation [10, 27, 28].

2. Boundary string field theory

In Witten’s construction of open boundary string field theory [2] the space of all two

dimensional worldsheet field theories on the unit disk, which are conformal in the interior

of the disk but have arbitrary boundary interactions, is described by the world-sheet action

S = S0 +
∫ 2π

0

dτ

2π
V (2.1)

where S0 is a free action describing an open plus closed conformal background and V is a

general perturbation defined on the disk boundary. We will discuss the twenty six dimen-

sional bosonic string, for which (2.1) can be expressed in terms of a derivative expansion

(or level expansion) of the form

V = T (X) + iAµ(X)∂τX
µ +Bµν(X)∂τX

µ∂τX
ν +Cµ(X)∂2τX

µ + · · · . (2.2)

Without the perturbation V the boundary conditions on X are ∂rX
µ|r=1 = 0, where r is

the radial variable on the disk.

– 4 –
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V is a ghost number zero operator and it is useful to introduce a ghost number one

operator O via

V = b−1O . (2.3)

We shall consider the simplest case in which ghosts decouple from matter so that, as

in (2.2), V is constructed out of matter fields alone

O = cV . (2.4)

The space-time string field theory action S is defined through its derivative dS which is

a two point function computed with the worldsheet action (2.1). More generally one can

introduce some basis elements Vi for operators of ghost number 0 so that the space of

boundary perturbations V can be parametrized as

V =
∑

i

giVi (2.5)

where the coefficients gi are couplings on the world-sheet theory, which are regarded as

fields from the space-time point of view, and O =
∑

i g
iOi. In this parametrization the

space-time action is defined through its derivatives with respect to the couplings and has

the form
∂S

∂gi
=
K

2

∫ 2π

0

dτ

2π

∫ 2π

0

dτ ′

2π
〈Oi(τ){Q,O(τ ′)}〉g , (2.6)

where Q is the BRST charge and the correlator is evaluated with the full perturbed world-

sheet action S.
If Vi is a conformal primary field of dimension ∆i, for O’s of the form (2.4), one has

{Q, cVi} = (1−∆i)c∂τ cVi , (2.7)

so that from (2.6) one gets
∂S

∂gi
= −(1−∆j)g

jGij(g) , (2.8)

where

Gij = 2K

∫ 2π

0

dτ

2π

∫ 2π

0

dτ ′

2π
sin2

(

τ − τ ′

2

)

〈Vi(τ)Vj(τ
′)〉g . (2.9)

Eq. (2.8) cannot be true in general, since it does not transform covariantly under reparame-

trizations of the space of theories, gj → f j(gi). Indeed, ∂iS and Gij transform as tensors,

(the latter is the metric on the space of worldsheet theories), but g i does not.

The correct covariant generalization of (2.8) was given in [4, 5]. The worldsheet RG

defines a natural vector field on the space of theories: the β-function β i(g), which trans-

forms as a covariant vector under reparametrizations of g i. The covariant form of (2.8)

is thus (1.3). If we assume that total derivatives inside the correlation function decouple

and that there are no contact terms, it turns out that the β-function in (1.1) is the linear

β-function. This implies that the equations of motion derived from the action (1.1) are just

linear. However, as shown by Shatashvili [4, 5], contact terms show up in the computation

– 5 –
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on the world-sheet and cannot be ignored. The point is that the operator Q, which is con-

structed out of the BRST operator in the bulk and should be independent on the couplings

because the perturbation is on the boundary, actually depends on the couplings when the

contour integral approaches the boundary of the disk. A way to fix the structure of the

contact terms is to consider that, since dS is a one-form, the derivative of dS should be

zero independently of the choice of the contact terms that one makes in the computation.

This leads to the following formula for the vector field in equation (1.1)

βi = (1−∆i)g
i + αi

jkg
jgk + γijklg

jgkgl + · · · . (2.10)

This is an expression for the β-function with all the non-linear terms. According to the

Poincare-Dulac Theorem about vector fields (whose relevance to the β-function related

issues was stressed many times by Zamolodchikov [25]) every vector field can be linearized

by an appropriate redefinition of the coordinates up to the resonant term. In the second

order of equation (2.10) the resonance condition is given by

∆j +∆k −∆i = 1 . (2.11)

The resonance condition means that the β-function cannot be linearized by a coordinate

transformation and that all the non-linear terms cannot be removed from the β-function

equation (2.10). When gi is the tachyon field T (k), the resonant condition (2.11) corre-

sponds to the mass-shell conditions for three tachyons. We shall prove in what follows

that the WS action S up to the third order in the tachyon fields, constructed in terms of

the linear β-function [24], is related to the S made of a non-linear β-function by a field

redefinition, but that this field redefinition becomes singular on-shell.

3. Integration over the bulk variables

Let us now restrict ourselves to the specific example of open strings propagating in a

tachyon background. The partition function reads

Z =

∫

[dXµ(σ, τ)] exp (−S[X]) , (3.1)

where the action is

S[X] =

∫

dσdτ
1

4π
∂aX(σ, τ) · ∂aX(σ, τ) +

∫ 2π

0

dτ

2π
T (X(τ)) . (3.2)

Here, the first term in (3.2) is the bulk action and is integrated over the volume of the

unit disk. The second term in (3.2) is integrated on the circle which is the boundary of

the unit disk and describes the interactions. The scalar fields Xµ have D components with

µ = 1, . . . , D and we shall assume D = 26 in what follows for a critical string. We are

working in a system of units where α′ = 1.

We begin with the observation that the bulk excitations can be integrated out of (3.1)

to get an effective non-local field theory which lives on the boundary [29]. To do this we

write the field in the bulk as [9]

X = Xcl +Xqu ,

– 6 –
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where

∂2Xcl = 0

and Xcl approaches the fixed (for now) boundary value of X,

Xcl → Xbdry and Xqu → 0 .

Then, in the bulk, the functional measure is dX = dXqu and

S =

∫

d2σ

4π
∂Xqu · ∂Xqu +

∫

dτ

2π

{

1

2
Xµ|i∂τ |Xµ + T (X)

}

, (3.3)

where we omitted the cl index in the last integral. Then, the integration of Xqu produces

a multiplicative constant in the partition function - the partition function of the Dirichlet

string, which we shall denote K. The kinetic term in the boundary action is non-local.

The absolute value of the derivative operator is defined by the Fourier transform,

|i∂τ |δ(τ − τ ′) =
∑

n

|n|
2π

ein(τ−τ
′) .

The partition function of the boundary theory is then

Z(J) = K

∫

[dXµ]e
−

∫ 2π
0

dτ
2π (

1
2
Xµ|i∂|Xµ+T (X)−J ·X) , (3.4)

where we have added a source Jµ(τ) so that the path integral can be used as a generating

functional for correlators of the fields Xµ restricted to the boundary. In particular, this

source will allow us to compute the correlation functions of vertex operators of open string

degrees of freedom. The remaining path integral over the boundary Xµ(τ) defines a one-

dimensional field theory with non-local kinetic term. If the tachyon field were absent

(T = 0), the further integration over Xµ(τ) would give a factor which converts the Dirichlet

string partition function to the Neumann string partition function.

4. Partition function on the disk and the renormalized tachyon field

When only the tachyon field is considered as a boundary perturbation, the Witten-Shatash-

vili action is given by

S =

(

1−
∫

βT δ

δT

)

Z , (4.1)

where Z is the partition function of the boundary theory on the disk and βT is the tachyon

β-function. It is useful to introduce a constant source term k for the zero mode of the

X field, the integral over the zero mode variable will just provide the energy-momentum

conservation δ-function. The partition function (3.4) in the presence of this constant source

reads

Z(k) = K

∫

[dXµ]e
−

∫ 2π
0

dτ
2π (

1
2
Xµ|i∂τ |Xµ+T (X)−ik·X̂) , (4.2)

– 7 –
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where X̂ is the zero mode which is defined by

X̂µ =

∫ 2π

0

dτ

2π
Xµ(τ) . (4.3)

In this section we shall expand the exponential in eq. (4.2) in powers of T (X). The first

non-trivial term is

Z(1)(k) = −K
∫

[dXµ]

∫

dk1

∫ 2π

0

dτ1
2π

T (k1)e
−

∫ 2π
0

dτ
2π (

1
2
Xµ|i∂τ |Xµ)−ikX̂+ik1X(τ1) . (4.4)

The functional integral over the non-zero modes of X(τ) gives

Z(1)(k) = −K
∫

dX̂µ

∫

dk1T (k1)e
−

k2
1
2
G(0)+i(k1−k)X̂ , (4.5)

where G(τ) is the Green function of the operator |i∂τ |

G(τ1 − τ2) = 2

∞
∑

n=1

e−εn
cosn (τ1 − τ2)

n
= − log

[

1− 2e−ε cos (τ1 − τ2) + e−2ε
]

(4.6)

and ε is a cut-off. In all the calculations we shall use the following prescription for G(τ)

G(τ) =

{

− log
[

c sin2
(τ

2

)]

τ 6= 0

−2 log ε τ = 0
. (4.7)

The coefficient c reflects the ambiguity involved in subtracting the divergent terms. Its

value is scheme dependent and should be fixed by some renormalization prescription. We

choose the value c = 4 for later convenience. This arbitrariness was discussed in [8, 9]. The

integrals over the zero-modes in eq. (4.5) give a 26-dimensional δ-function so that

−Z(1)(k) = KT (k)εk
2−1 (4.8)

and we can identify

TR(k) ≡ T (k)εk
2−1 = −Z

(1)(k)

K
. (4.9)

This equation provides the renormalized coupling TR in terms of the bare coupling T to

the lowest order in perturbation theory. 1− k2 is the anomalous dimension of the tachyon

field. The second order term in T is given by

Z(2)(k) = K

∫ 2π

0

dτ1
4π

dτ2
2π

∫

dk1dk2T (k1)T (k2)
〈

eik1X(τ1)eik2X(τ2)e−ikX̂
〉

. (4.10)

Again in (4.10) the integral over the zero modes X̂µ gives just a 26-dimensional δ-function,

δ (k − k1 − k2), and we can perform the integral over the non-zero modes of X(τ) to get

Z(2)(k) = K

∫ 2π

0

dτ1
4π

dτ2
2π

∫

dk1dk2(2π)
Dδ (k − k1 − k2) T (k1)T (k2)×

× exp

[

−1

2

(

k21 + k22
)

G(0) − k1k2G (τ1 − τ2)

]

. (4.11)
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The integral in (4.11) becomes

Z(2)(k) = K

∫

dk1dk2(2π)
Dδ (k − k1 − k2) ε

k2
1+k2

2−2T (k1)T (k2)×

×
∫ 2π

0

dτ1
4π

dτ2
2π

[

4 sin2
(

τ1 − τ2
2

)]k1k2

. (4.12)

The integral over the relative variable x = (τ1 − τ2)/2 does not need regularization, it

converges when 1 + 2k1k2 > 0, providing the result

Z(2)(k) =
K

2

∫

dk1dk2(2π)
Dδ(k − k1 − k2)ε

k2
1+k2

2−2T (k1)T (k2)
Γ(1 + 2k1k2)

Γ2(1 + k1k2)
. (4.13)

The integrand in (4.13) can be analytically continued also to the region where 1+2k1k2 < 0,

so that the integral can be performed.

To the second order in perturbation theory the renormalized coupling in terms of the

bare coupling reads

TR(k) = −Z
(1)(k) + Z(2)(k)

K

= εk
2−1

[

T (k)− 1

2

∫

dk1dk2(2π)
Dδ (k − k1 − k2)×

× T (k1)T (k2)ε
−(1+2k1k2)Γ (1 + 2k1k2)

Γ2 (1 + k1k2)

]

. (4.14)

The third order contribution to the partition function is given by

Z(3)(k) = −K
3!

∫

dk1dk2dk3(2π)
Dδ

(

k −
3
∑

i=1

ki

)

ε
∑3

i=1 k2
i−3T (k1)T (k2)T (k3)I(k1, k2, k3) ,

(4.15)

where I(k1, k2, k3) is the integral

I(k1, k2, k3) =
22k1k2+2k2k3+2k1k3

(2π)3

∫ 2π

0
dτ1dτ2dτ3

[

sin2
(

τ1 − τ2
2

)]k1k2

×

×
[

sin2
(

τ2 − τ3
2

)]k2k3
[

sin2
(

τ1 − τ3
2

)]k1k3

. (4.16)

The complete computation of I(k1, k2, k3) will be given in appendix A. The result is given

by the completely symmetric formula

I(a1, a2, a3) =
Γ(1 + a1 + a2 + a3)Γ(1 + 2a1)Γ(1 + 2a2)Γ(1 + 2a3)

Γ(1 + a1)Γ(1 + a2)Γ(1 + a3)Γ(1 + a1 + a2)Γ(1 + a2 + a3)Γ(1 + a1 + a3)
,

(4.17)

where we have set a1 = k1k2, a2 = k2k3 and a3 = k1k3. The integral (4.16) converges

when 1 + a1 + a2 + a3 > 0, but its result (4.17) can be analytically continued also outside

this convergence region. The result (4.17) is in agreement with the one obtained, with a

different procedure, in [24] but does not coincide with the one provided in the appendix of
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ref. [7]. Up to the third order in powers of T and to all orders in ki the relation between

the bare and the renormalized couplings reads

TR(k) = −Z
(1)(k) + Z(2)(k) + Z(3)(k)

K

= εk
2−1

[

T (k)− 1

2

∫

dk1dk2(2π)
Dδ

(

k −
3
∑

i=1

ki

)

T (k1)T (k2)ε
−(1+2k1k2) ×

× Γ (1 + 2k1k2)

Γ2 (1 + k1k2)
+

∫

dk1dk2dk3
(2π)D

3!
δ

(

k −
3
∑

i=1

ki

)

×

× T (k1)T (k2)T (k3)ε
−2(1+

∑

i<j kikj)I(k1, k2, k3)

]

. (4.18)

In section 6 we shall use this expression to construct the non-linear β-function.

The renormalized tachyon field can be constructed to all powers of the bare tachyon

field in the case in which the tachyon profile appearing in (4.2) is a slowly varying function

of Xµ. In this case one can consider an expansion of (4.2) in powers of derivatives of T . To

this purpose consider the n-th term in the expansion of (4.2) in powers of T (X(τ)), Z (n)(k).

Taking the Fourier transform of the tachyon field and performing all the contractions of

the X(τi) fields, for Z
(n)(k) we get

Z(n)(k) = K
(−1)n
n!

ε−n
∫ n
∏

i=1

dkiT (ki)

∫ 2π

0

n
∏

i=1

(

dτi
2π

)

×

×e−
∑n

i=1

k2
i
2
G(0)−

∑

i<j kikjG(τi−τj)δ

(

k −
n
∑

i=1

ki

)

. (4.19)

Note that with our regularization prescription the dependence on the cut-off in (4.19) comes

only from the zero distance propagator G(0) and from the explicit scale dependence of the

tachyon field. If the tachyon profile is a slowly varying function of X µ we can expand inside

the integrand of (4.19) in powers of the momenta ki. The leading and next to leading terms

in this expansion read

Z(n)(k) = K
(−1)n
n!

n
∏

i=1

∫

dkiδ

(

k −
n
∑

i=1

ki

)

ε−n
n
∏

i=1

T (ki)×

×



1 +

n
∑

i=1

k2i log ε+
∑

i<j

kikj log
c

4



 , (4.20)

where the last term comes from the integral over a couple of τ variables of the propagator

G (τi − τj), the other integrations over τk k 6= i, j being trivial. Here we have kept explicit

the ambiguity c appearing in the propagator (4.7) to show that the result greatly simplifies

with the choice c = 4. Unless otherwise stated, we shall adopt this choice throughout

the paper. As before, the renormalized tachyon field TR(k) can be obtained from (4.20)

by summing over n from 1 to ∞, changing sign and dividing by K. Taking the Fourier
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transform of TR(k) with c = 4, to all orders in the bare tachyon field and to the leading

order in derivatives, we get the renormalized tachyon field TR(X)

TR(X) = 1− exp

{

−1

ε
[T (X)−4T (X) log ε]

}

(4.21)

where 4 is the laplacian. Again in section 6 we shall use this expression to compute the

non-linear tachyon β-function.

From eqs. (4.9), (4.14), (4.18), (4.21) it is clear that the general relation between the

renormalized tachyon field TR(X) and the partition function Z ≡ Z(k = 0) is simply

Z = K

∫

d26X [1− TR(X)] . (4.22)

This expression is true also when other couplings are present. TR in this case would be

a non linear function also of the other bare couplings but its relation with the partition

function of the theory would always be given by (4.22). We shall prove eq. (4.22) in the

next section.

5. Background-field method

The partition function of the boundary theory on the disk in general is given by

Z = K

∫

[dXµ]e
−(S0[X]+

∫ 2π
0

dτ
2π
V [X(τ)]) , (5.1)

where S0 =
∫

dτXµ|i∂τ |Xµ and V[X(τ)] is given in (2.2). Our goal is to determine the

relationship between the renormalized and the bare couplings of the one-dimensional field

theory. To this purpose we shall make use of the background field method [23]. We expand

the fields Xµ around a classical background Xµ
0 which satisfies the equations of motion

and which varies slowly compared to the cut-off scale,

Xµ = Xµ
0 + Y µ .

The effective action is Seff [X0] = − logZ[X0] and the aim of the renormalization process

is to rewrite the local terms of Seff [X0] in terms of renormalized couplings in such a way

that Seff [X0] has the same form of the original action

Seff [X0]

∣

∣

∣

∣

local

= S0[X0] +

∫ 2π

0

dτ

2π
VR[X0(τ)] . (5.2)

Z[X0] can be conveniently calculated in powers of the boundary interaction V. The first

order for example reads, up to the multiplicative constant K,

−
∫ 2π

0

dτ

2π

∫

dkeikX0〈[T (k) + iAµ(k)∂τ (X
µ
0 + Y µ) +Bµν(k)∂τ (X

µ
0 + Y µ)∂τ (X

ν
0 + Y ν) +

+ Cµ(k)∂
2
τ (X

µ
0 + Y µ) + · · ·]eikY 〉 . (5.3)
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The renormalized couplings TR(k) will be given by the opposite of the coefficient of the

term in (5.3) that does not contain X0 derivatives. Analogously, the renormalized AR
µ (k)

will be determined by the coefficient of ∂τX
µ
0 , B

R
µν(k) by the coefficient of ∂τX

µ
0 ∂τX

ν
0 and

so on. The second order term in the expansion of Z[X0] is

∫ 2π

0

dτ1
2π

∫ 2π

0

dτ2
4π

∫

dk1dk2e
ik1X0(τ1)+ik2X0(τ2) ×

×〈eik1Y (τ1)+ik2Y (τ2)[T (k1) + iAµ(k1)∂τ1(X
µ
0 + Y µ) + . . .]×

× [T (k2) + iAν(k2)∂τ2(X
ν
0 + Y ν) + . . .]〉 . (5.4)

An expansion of the background fieldX0 in powers of its derivatives is required to determine

the coefficients of 1, ∂τX
µ
0 , ∂τX

µ
0 ∂τX

ν
0 , . . . ,

X0(τ2) = X0(τ1) + (τ2 − τ1)∂τ1X0(τ1) + · · · . (5.5)

If we are interested in renormalization of couplings of the form exp[ikX0], namely in the

renormalized tachyon field TR(k), we can disregard the terms in (5.5), (5.4) involving

derivatives acting on X0. For example, at the second order, the only non-vanishing terms

in T and Aµ contributing to TR are

TR(k) = −
∫

dk1

∫

dk2δ(k − k1 − k2)

∫ 2π

0

dτ2
4π

×

×〈eik1Y (τ1)+ik2Y (τ2)[T (k1)T (k2) +Aµ(k1)Aν(k2)∂τ1Y
µ∂τ2Y

ν + · · ·]〉 , (5.6)

where the correlator does not depend on τ1 since the propagator (4.7) of X(τ) and its

derivatives are periodic functions on the unit circle. It is not difficult to see that TR(k)

in (5.6) coincides with the opposite of the second order term in the expansion of the

partition function

Z(k) =

∫

[dYµ]e
−(S0[Y ]+

∫ 2π
0

dτ
2π
V [Y (τ)])−ikŶ (5.7)

in powers of the couplings. Here k is a constant source for the zero mode of the Y µ field,

Ŷ µ (4.3). Such a constant source will just provide the δ-function in (5.6) that imposes

the energy-momentum conservation. This will be true at any order in the expansion in

powers of the coupling fields. Therefore, to all orders in whatever coupling, the expression

for the renormalized tachyon field TR(X) is related to the partition function Z = Z(k = 0)

precisely by (4.22), which is the relation that we wanted to prove. Note that TR depends

not only on the bare tachyon field but also on the other coupling fields (in particular TR

will exists also if one starts from a boundary interaction that does not contain the bare

tachyon). As a consequence, the tachyon β function will contain for example also the gauge

field [30], and this is as it should be, since the solution of the equation βT = 0 will then

describe the scattering of a tachyon by other excitations (e.g. from (5.6) by two vector

fields).
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6. β-function

In this section we shall perform a calculation of the non-linear tachyon β-function. The

resulting expression will then be used to derive the Witten-Shatashvili action (1.4), (4.1).

Following [23], the most general RG equations for a set of couplings g i can be written as

βi ≡ dgi

dt
= λig

i + αi
jkg

jgk + γijklg
jgkgl + · · · , (6.1)

where the scale t is t = − log ε, λi are the anomalous dimensions corresponding to the

couplings gi and there is no summation in the first term on the right-hand side. This

equation has the solution

gi(t) = eλitgi(0) +
[

e(λj+λk)t − eλit
] αi

jk

λj + λk − λi
gj(0)gk(0) + bijkl(t)g

j(0)gk(0)gl(0) + · · · ,
(6.2)

where gi(0) are the bare couplings and

bijkl(t)g
j(0)gk(0)gl(0) =

[

(

2αi
jmα

m
kl

λj + λm − λi
− γi

jkl

)

eλit

λj + λk + λl − λi
+

+

(

2αi
jmα

m
kl

λk + λl − λm
+ γijkl

)

e(λj+λk+λl)t

λj + λk + λl − λi
−

−
2αi

jmα
m
kl

(λj + λm − λi) (λk + λl − λm)
e(λj+λk)t

]

gj(0)gk(0)gl(0) . (6.3)

Let us now consider the case of interest for this paper: open strings propagating in a tachyon

background. In this case the coupling gi is the tachyon field T (k). Then λi = 1 − k2 and

λj = 1 − k2j . Comparing the general solution (6.2) with eq. (4.18) derived in the previous

section, we will be able to identify the renormalized tachyon field in terms of the bare field

up to the third order in powers of the field and to all orders in its derivatives. In the second

order term of (4.18) the coefficient proportional to eλit = ε1−k
2
appearing in (6.1) is absent.

This is due to the fact that the convergence condition for the integral (4.12), 1+2k1k2 > 0,

implies that λj+λk > λi so that in the limit t→∞ the dominant contribution comes from

e(λj+λk)t. From similar arguments, the first and the second terms of the right-hand side

of (6.3) are negligible compared to the second term, due to the convergence conditions for

the integral I(k1, k2, k3) computed in the previous section. This is a general feature of our

renormalization procedure. At the n-th order in the bare coupling in the expansion (6.2),

the renormalized coupling will contain only the term of the form

et
∑n

k=1 λk . (6.4)

This is due to the fact that the integrals over the τ ’s do not need an explicit regulator,

rather they can be evaluated in a specific region of the ki variables and then analytically

continued. Therefore the only dependence on the cut-off does not come from such integrals

but from the propagators (4.7) evaluated at zero distance.
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Comparing our result for the renormalized tachyon field (4.18) with the general ex-

pressions (6.2), (6.3), for the coefficients in the expansion (6.1) we find

αi
jk = −1

2

Γ(2 + 2kjkk)

Γ2(1 + kjkk)
δ(k − kj − kk)

γijkl =
1

3!

∫

dkjdkkdklδ(k − kj − kk − kl)

×
[

2(1 + kjkk + kjkl + kkkl)I(kj , kk, kl)−

−
(

Γ(2 + 2kjkk + 2kjkl)Γ(1 + 2kkkl)

Γ2(1 + kjkk + kjkl)Γ2(1 + kkkl)
+ cycl.

)]

, (6.5)

where I(kj , kk, kl) is given in equation (4.17). The perturbative expression for the β-

function up to the third order in the tachyon field obtained using this procedure therefore is

βT (k) = (1− k2)TR(k) −
1

2

∫

dk1dk2(2π)
Dδ(k − k1 − k2)TR(k1)TR(k2)

Γ(2 + 2k1k2)

Γ2(1 + k1k2)
+

+
1

3!

∫

dk1dk2dk3(2π)
Dδ(k − k1 − k2 − k3)TR(k1)TR(k2)TR(k3)×

×
[

2(1 + k1k2 + k1k3 + k2k3)I(k1, k2, k3)−

−
(

Γ(2 + 2k1k2 + 2k1k3)Γ(1 + 2k2k3)

Γ2(1 + k1k2 + k1k3)Γ2(1 + k2k3)
+ cycl.

)]

. (6.6)

We have thus succeeded in deriving a β-function for tachyon backgrounds which do not

satisfy the linearized on-shell condition. Exactly the same result can be obtained by taking

the derivative of (4.18) (or of the opposite of Z(k)) with respect to the logarithm of the

cut-off − log ε. The result obtained in this way must then be expressed in terms of the

renormalized field by inverting (4.18) and it coincides with (6.6).

It is interesting to note that all the known conformal tachyon profiles, like eiX
0
or

cosX i where i is a space index, are solutions of the equation βT (X) = 0, where βT (X) is

the Fourier transform of (6.6). These solutions and perturbations around them have been

recently used to construct tachyon effective actions around the on-shellness [31, 18, 19, 20,

22] and to study the problem of the rolling tachyon [13, 14, 15, 16, 17, 32, 21].

That the non-linear β-function (6.6) is the correct one can be shown by solving the

βT (k) = 0 equation perturbatively. The solution of this equation will generate the correct

scattering amplitudes of open string theory [23]. This in turn will show the validity of the

general formula (4.22). To the lowest order the equation is (1 − k2)T0(k) = 0, so that the

solution T0(k) satisfies the linearized on-shell condition. By writing T (k) = T0(k) + T1(k)

and substituting into the equation βT (k) = 0, to the next order we find

T1(k) =
1

2

∫

dk1dk2(2π)
Dδ(k − k1 − k2)T0(k1)T0(k2)

Γ(k2)

(1− k2) Γ2 (k2/2)
. (6.7)

The presence of the couplings T0 in (6.7) sets two of the three ki on-shell. To pick out

the propagator pole corresponding to the third k we set it on-shell too. The scattering

amplitude for three on-shell tachyons is given by the residue of the pole and is 1/2π with

our normalization.
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The calculation at the next order proceed in a similar fashion. One sets T (k) =

T0(k) + T1(k) + T2(k) and finds

T2(k) = − (2π)D

3!(1− k2)

∫

dk1dk2dk3δ(k − k1 − k2 − k3)T0(k1)T0(k2)T0(k3)I(k1, k2, k3)×

×
{

2

(

1 +
∑

i<j

kikj

)

I(k1, k2, k3)−
[

Γ(2 + 2k1k2 + 2k1k3)Γ(1 + 2k2k3)

Γ2(1 + k1k2 + k1k3)Γ2(1 + k2k3)
+ cycl.

]

−

−
[

Γ(2 + 2k1k2 + 2k1k3)Γ(2 + 2k2k3)

Γ2(1 + k1k2 + k1k3)Γ2(1 + k2k3)[1− (k2 + k3)2]
+ cycl.

]

}

. (6.8)

When all the tachyons are on-shell, the last two terms on eq. (6.8) cancel and, as it should

be for consistency, the residue of the pole in k is the scattering amplitude of four on-shell

tachyons. It is given by

Γ(1 + 2k1k2)Γ(1 + 2k2k3)Γ(1 + 2k1k3)

Γ(1+k1k2)Γ(1+k2k3)Γ(1+k1k3)Γ(1+k1k2+k2k3)Γ(1+k2k3+k1k3)Γ(1+k1k2+k1k3)
,

(6.9)

where the on-shell condition is 1 + k1k2 + k2k3 + k1k3 = 0. By means of the on-shell

condition, from the above expression, we recover, up to a normalization constant, the

Veneziano amplitude, the scattering amplitude of four on-shell tachyons. Eq. (6.9) in fact

becomes

1

π3
Γ(1 + 2k1k2)Γ(1 + 2k2k3)Γ(1 + 2k1k3) sin(πk1k2) sin(πk2k3) sin(πk1k3) =

=
1

(2π)2
[B (1 + 2k1k2, 1 + 2k2k3) + cycl.] , (6.10)

where B(x, y) is the Euler beta function. The expression between square brackets is just

the Veneziano amplitude. The ambiguity c appearing in the propagator (4.7) could be kept

undetermined throughout the calculations of the scattering amplitudes. It is not difficult to

see that this would just consistently change the normalization of the on-shell amplitudes.

For tachyon profiles TR(k) supported over near on-shell momentum k2 ' 1, the equa-

tion of motion βT = 0 with βT given in (6.6) becomes

βT (k) = (1− k2)TR(k)−
(2π)D

2π

∫

dk1dk2δ(k − k1 − k2)TR(k1)TR(k2)+

+
(2π)D

3!(2π)2

∫

dk1dk2dk3δ(k − k1 − k2 − k3)TR(k1)TR(k2)TR(k3)× (6.11)

×{[B(1 + 2k1k2, 1 + 2k2k3) + cycl.] + 2π tan(πk1k2) tan(πk1k3) tan(πk2k3)} = 0 .

The coefficients of the quadratic and cubic terms in (6.11) are symmetric with respect

to all the ki and k when these are on the mass-shell. Thus (6.11) can be derived as the

equation of motion of an effective action. Such effective action for near on-shell tachyons

up to the fourth order in powers of the tachyon fields can be derived from the results of the

cubic string field theory. In [33] it was shown that the cubic SFT reproduces the Veneziano
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amplitude with great accuracy already at level L = 50. The tachyon effective action arising

from the cubic string field theory for near on shell tachyon profiles Φ(k) therefore reads2

SC = 2π2T25(2π)
D

{

− 1

2

∫

dkΦ(k)Φ(−k)(1 − k2) +
1

3

∫ 3
∏

i=1

dkiΦ(ki)δ

( 3
∑

i=1

ki

)

+

+
1

4!

∫ 4
∏

i=1

dkiΦ(ki)δ

(

4
∑

i=1

ki

)

[B(1+2k1k2, 1+2k2k3) + cycl.]

}

, (6.12)

where the tachyon momenta in the fourth order term satisfy

k1 = (0, 1, 0, 0, . . . , 0) k2 = (0, sin θ, cos θ, 0, . . . , 0) (6.13)

k3 = (0,−1, 0, 0, . . . , 0) k4 = (0,− sin θ,− cos θ, 0, . . . , 0) . (6.14)

Since the Veneziano amplitude is completely symmetric in the four momenta ki, it is not

difficult to see that the equation of motion deriving from (6.12) becomes precisely (6.11)

once the simple field rescaling T = 2πΦ is performed. Thus the cubic string field theory

for almost on-shell tachyons reproduces the non-linear βT = 0 equation of motion.

In section 4 we also derived the renormalized tachyon field for the case of a slowly

varying tachyon profile, to all orders in the bare field and to the leading order in derivatives,

eq. (4.21). From this we can easily compute the corresponding β function. The task in

this case is much simpler, as we just need to take the derivative of (4.21) with respect to

− log ε

β(X) =
∂TR(X)

∂(− log ε)
=

1

ε
exp

(

−T (X)

ε

){

T (X) +4T (X)

[

1−
(

1− T (X)

ε

)

log ε

]}

.

(6.15)

Then we have to invert the relation (4.21) between TR and T . To the leading order in

derivatives one has

T (X) = −ε {[1 + (log ε)4] log(1− TR(X))} , (6.16)

from which it is clear that the admissible range for TR is −∞ ≤ TR ≤ 1. Plugging (6.16)

into (6.15) we get the non-linear tachyon β-function to all powers of the renormalized

tachyon and to the leading order in its derivatives

βT (X) = (1− TR(X)) [− log (1− TR(X)) −4 log (1− TR(X))] . (6.17)

βT (X) = 0 is the tachyon equation of motion for a slowly varying tachyon profile.

Since in our calculations of the non-linear β-function we have always used the same

coordinates in the space of string fields, the two results (6.17) and (6.6) should coincide

when expanded up to the third power of the field and to the leading order in derivatives,

respectively. This is indeed the case and the result in both cases reads

βT (X) = 4TR + ∂µTR∂µTR + TR∂µTR∂µTR . (6.18)

2Here we include also the contribution due to the tachyon field in the quartic term so that this on-shell

effective action reproduces exactly the Veneziano amplitude and the correct equation of motion.
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It is interesting to compute the β-function also in the case in which the ambiguity

constant c appearing in (4.7) is kept undetermined. TR(k) can be easily obtained as before

from (4.20) without fixing c = 4. By taking the Fourier transform and by differentiating

with respect to − log ε, the β-function expressed in terms of the renormalized tachyon field

TR(X) turns out to be

βT (X) = (1− TR)

[

− log (1− TR) +
4TR

1− TR
+

(

1 +
1

2
log

c

4

)

∂µTR∂µTR

(1− TR)2

]

. (6.19)

In the next section we shall use also this form of the β-function to construct the Witten-

Shatashvili action.

7. Witten-Shatashvili action

In this section we shall compute the Witten-Shatashvili action. From the simple expression

that relates the partition function to the renormalized tachyon (4.22) it is easy to deduce

a simple and universal form for the WS action of the open bosonic string theory

S =

(

1−
∫

βT δ

δTR

)

Z[TR] = K

∫

dDX
[

1− TR(X) + βT (X)
]

. (7.1)

This can now be computed in both the cases analyzed in the previous sections. We shall

show that the expressions for S that we will obtain are consistent both with the known

results on the tachyon potential [7] and with the expected on-shell behavior. Thus a choice

of coordinates in the space of couplings in which the tachyon β-function is non-linear allows

one to find not only a simple general formula for the WS action, but provides also a space-

time tachyon effective action that describes tachyon physics from the far-off shell to the

near on-shell regions.

Let us start with the evaluation of (7.1) up to the third order in the expansion of

the tachyon field using the non-linear β-function (6.6). A similar computation was done

in [7, 24] by means of the linear β-function, β(k) =
(

1− k2
)

T (k). We shall later compare

the two results. From the renormalized field (4.18) and the β-function (6.6) we arrive at

the following expression for the Witten action

S = K

{

1− 1

2

∫

dk(2π)DTR(k)TR(−k)
Γ(2 − 2k2)

Γ2(1− k2)
+

+
1

3!

∫

dk1dk2dk3(2π)
DTR(k1)TR(k2)TR(k3)δ(k1 + k2 + k3)× (7.2)

×
[

2

(

1+
∑

i<j

kikj

)

I(k1, k2, k3)−
(

Γ(1 + 2k2k3)Γ(2 + 2k1k2 + 2k1k3)

Γ2(1 + k2k3)Γ2(1 + k1k2 + k1k3)
+cycl.

)

]}

.

The propagator coming from the quadratic term in (7.2) exhibits the required pole at

k2 = 1. There are however also an infinite number of other zeroes and poles. We shall
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show that these are due to the metric in the coupling space appearing in (1.3). The

equations of motion derived from the action (7.2) are

δS

δTR(−k)
= −K Γ(2− 2k2)

Γ2(1− k2)
(2π)DT (k) +

K

2

∫

dk1dk
′(2π)Dδ(k1 + k′ − k)TR(k1)TR(k

′)×

×
{

2(1 − k1k + k1k
′ − kk′)I(−k, k1, k′)−

Γ(1− 2kk1)Γ(2− 2kk′ + 2k1k
′)

Γ2(1− kk1)Γ2(1− kk′ + k′k1)
−

− Γ(1− 2kk′)Γ(2− 2kk1 + 2k′k1)

Γ2(1− kk′)Γ2(1− kk1 + k′k1)
− Γ(1 + 2k′k1)Γ(2− 2kk′ − 2kk1)

Γ2(1 + k′k1)Γ2(1− kk′ − kk1)

}

.

(7.3)

As we did for the equation βT = 0 in the previous section, by solving these equations

perturbatively it is possible to recover the scattering amplitudes for three on-shell tachyons.

To the lowest order the equation is

Γ(2− 2k2)

Γ2(1− k2)
T0(k) = 0 . (7.4)

At variance with the lowest order solution of βT = 0, there are infinite possible solutions

of (7.4). We choose the solution for which the tachyon field T0(k) is on the mass-shell,

which corresponds to a consistent string theory background. This choice is also a solution

of βT = 0 to the lowest order. As we shall show, the other possible zeroes of (7.4) could be

interpreted as zeroes of the metric in the space of couplings through eq. (1.3). With such

a choice of T0(k), to the next order we recover the scattering amplitudes for three on-shell

tachyons. By writing T (k) = T0(k) + T1(k) and substituting it into (7.3) we find

T1(k) =
Γ2(1− k2)

2Γ(2− 2k2)

∫

dk1dk
′(2π)Dδ(k − k1 − k′)T0(k1)T0(k

′)×

×
{

2(1− k1k + k1k
′ − kk′)I(−k, k1, k′)−

Γ(1− 2kk1)Γ(2− 2kk′ + 2k1k
′)

Γ2(1− kk1)Γ2(1− kk′ + k′k1)
−

− Γ(1− 2kk′)Γ(2− 2kk1 + 2k′k1)

Γ2(1− kk′)Γ2(1− kk1 + k′k1)
− Γ(1 + 2k′k1)Γ(2− 2kk′ − 2kk1)

Γ2(1 + k′k1)Γ2(1− kk′ − kk1)

}

. (7.5)

Since the two couplings T0 satisfy the on-shell condition, k1 and k
′ are on-shell. To pick out

the propagator pole corresponding to the third k we set it on-shell too. The scattering am-

plitude for three on-shell tachyons is given again by the residue of the pole and with our nor-

malization is (2π)−1, in precise agreement with the result obtained in the previous section.

The equations (7.3) must be related to the equation βT = 0 through a metric GT (k)T (k′)

as in (1.3), which in this case becomes

δS

δTR(k)
= −

∫

dk′GT (k)T (k′)β
T (k′) . (7.6)

The Witten-Shatashvili formulation of string field theory provides a prescription for the

metric GT (k)T (k′) which can then be computed explicitly. To the first two orders in powers

of TR, it is given by

GT (k)T (k′) = K
(2π)DΓ(2− 2k2)

(1− k2)Γ2(1− k2)
δ(k + k′)− K

2

∫

dk1(2π)
Dδ(k + k′ + k1)

TR(k1)

1 − k′2
×
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×
{

2(1 + k1k + k1k
′ + kk′)I(k1, k, k

′)− Γ(1 + 2kk1)Γ(2 + 2kk′ + 2k1k
′)

Γ2(1 + kk1)Γ2(1 + kk′ + k′k1)
−

− Γ(1 + 2kk′)Γ(2 + 2kk1 + 2k′k1)

Γ2(1 + kk′)Γ2(1 + kk1 + k′k1)
− Γ(1 + 2k′k1)Γ(2 + 2kk′ + 2kk1)

Γ2(1 + k′k1)Γ2(1 + kk′ + kk1)
−

− Γ(2 + 2k′k1)Γ(2 + 2kk′ + 2kk1)

Γ2(1 + k′k1)Γ2(1 + kk′ + kk1)(1 + kk′ + kk1)

}

. (7.7)

The first term in this metric coincides with (2.9) for a conformal primary given by the

tachyon vertex. From (7.7) it is possible to see that the infinite number of zeroes and poles

that the second order term in eq. (7.2) exhibits at k2 = 1+n and k2 = 3/2+n, respectively,

is in fact due to the metric. This is true except for the zero corresponding to the tachyon

mass-shell k2 = 1. In fact the metric (7.7) is regular for k2 = 1. This indicates that

the kinetic term in eq. (7.2) exhibits the required zero at the tachyon mass-shell and the

metric (7.7) can be made responsible for the other extra zeroes and poles. If these zeroes and

poles are just an artifact of the expansion in powers of T , it is an open question. It would

be interesting to consider for example an expansion around k2 = 1+n to all orders in T and

check if in this case one would still find that the kinetic term exhibits a zero at k2 = 1+n.

Let us turn now to the cubic term in eq. (7.2). If one or two tachyons are on-shell,

then the cubic term vanishes. This means that any exchange diagram involving the cubic

term vanishes [24]. When all the three tachyons are on-shell, the scattering amplitude for

three on-shell tachyons should arise directly as the coefficient of the cubic term. However,

the cubic term in (7.2) is ill-defined on shell. Nonetheless, with the most obvious regular-

ization (i.e. by going on-shell symmetrically by giving to the three tachyons an identical

small mass m, k2i = 1 +m2 and then by taking the m → 0 limit) one gets a finite result

for the scattering amplitude [24]. Recalling the first of eqs. (6.5) we conclude that this

scattering amplitude is (2π)−1 with our normalization. Also the cubic term in (7.2) has

a sequence of poles at finite distances from the tachyon mass-shell. This is related to the

fact that the set of couplings that we have taken into account is not complete. If we get

far enough from the tachyon mass-shell, we run into the poles due to all the other string

states which have not been subtracted.

In the next section we shall compare (7.2) with the corresponding action derived from

the cubic string field theory. Here we would like to show that, by means of a field re-

definition, (7.2) can be rewritten in the form of the WS action obtained from a linear

β-function [24], but that this field redefinition becomes singular on-shell. The partition

function up to the third order in the bare tachyon field is again given by

Z(k) = Kδ(k) −Kεk
2−1 ×

×
[

T (k)−1

2

∫

dk1dk2(2π)
Dδ

(

k − k1 − k2

)

ε−(1+2k1k2)T (k1)T (k2)
Γ (1 + 2k1k2)

Γ2 (1 + k1k2)
+

+
1

3!

∫

dk1dk2dk3(2π)
Dδ

(

k −
3
∑

i=1

ki

)

×

× ε−2(1+
∑

i<j kikj)T (k1)T (k2)T (k3)I(k1, k2, k3)

]

, (7.8)
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where we have used (4.18). If instead of following the general procedure of ref. [23] one

renormalizes the theory simply by normal ordering, the β-function turns out to be linear.

Thus the renormalized field to all orders in the bare field would just be

φR(k) = T (k)εk
2−1 , (7.9)

so that β(k) = (1 − k2)φR(k). The WS action with a linear β-function up to the third

order in the tachyon field then reads

SL = K

{

1− 1

2

∫

dk(2π)DφR(k)φR(−k)
Γ(2 − 2k2)

Γ2(1− k2)
+

+
1

3!

∫

dk1dk2dk3(2π)
DφR(k1)φR(k2)φR(k3)δ

(

3
∑

i=1

ki

)

2

(

1 +

3
∑

i<j=2

kikj

)

×

× I(k1, k2, k3)

}

(7.10)

in agreement with what found in [24]. If we assume that the fields φR and TR are related

as follows

φR(k) = TR(k) +

∫

dk1f(k, k1)TR(k1)TR(k − k1) + · · · , (7.11)

by comparing the cubic terms in (7.2) and (7.10) one finds

[

f(k2 + k3, k2)
Γ(2 + 2k1k2 + 2k1k3)

Γ2(1 + k1k2 + k1k3)
+ cycl.

]

=

=
1

2

[

Γ(1 + 2k2k3)

Γ2(1 + k2k3)

Γ(2 + 2k1k2 + 2k1k3)

Γ2(1 + k1k2 + k1k3)
+ cycl.

]

, (7.12)

so that the solution for f is f(k1 + k2, k1) = Γ(1 + 2k1k2)/(2Γ
2(1 + k1k2)) and the field

redefinition becomes

φR(k) = TR(k) +

∫

dk1dk2
Γ(1 + 2k1k2)

2Γ2(1 + k1k2)
TR(k1)TR(k2)δ(k − k1 − k2) . (7.13)

It is not difficult to see that if we evaluate this relation when the three tachyon fields

are on-shell it becomes singular since f(k, k1) has a pole. This is in agreement with the

Poincaré-Dulac theorem [25] used in [5] to prove that when the resonant condition (2.11)

holds, namely near the on-shellness, the β-function has to be non-linear. We showed in

fact that the field redefinition that gives from S the WS action constructed in terms of a

linear β-function, SL, becomes singular on-shell.

Let us now turn to the WS action computed in an expansion to the leading order in

derivatives and to all orders in the powers of the tachyon fields. If we keep the renormal-

ization ambiguity c undetermined, the β-function is given in (6.19). Using (1.4), S then

reads

S = K

∫

dX (1− TR)

[

1− log (1− TR) +

(

1 +
1

2
log

c

4

)

∂µTR∂µTR

(1− TR)2

]

, (7.14)
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where −∞ ≤ TR ≤ 1. With the field redefinition

1− TR = e−T̃ (7.15)

S becomes

S = K

∫

dXe−T̃
[(

1 +
1

2
log

c

4

)

∂µT̃ ∂µT̃ + 1 + T̃

]

, (7.16)

which for c = 4 coincides with the space-time tachyon action found in [6, 7]. In particular

we shall show in the next section that K coincides with the tension of the D25-brane,

K = T25, in agreement with the results of ref. [7]. It is not difficult to show that (7.16)

can be rewritten, by means of a field redefinition, in the form found in [8] where the

renormalization ambiguity was also discussed.

Note that (7.15) is the coordinate transformation in the coupling space that leads, for

c = 4, from the non-linear β-function (6.17) to the linear beta function βT = (1 +4)T .

The β-function in fact is a covariant vector in the coupling space and as such it transforms.

We have left the ambiguity c in (7.16) undetermined because we want to show that it

is possible to fix c in such a way that the equation of motion deriving from (7.16) coincides

with the equation βT = 0 with βT given in (6.19). In fact, in terms of the coordinates (7.15),

this equation reads

βT̃ = T̃ +4T̃ +
1

2
log

c

4
∂µT̃ ∂µT̃ = 0 . (7.17)

where we have kept into account that β T̃ transforms like a covariant vector in the space of

worldsheet theories. Choosing log(c/4) = −1, eq. (7.17) becomes the equation of motion

of the action (7.16). This is important because if we find finite action solutions of the

equation (7.17), these would be at the same time solutions of the renormalization group

equations and solitons of the tachyon effective action (7.16). These could then be inter-

preted as lower dimensional branes. Being solutions of the renormalization group equations

they are interpreted as background consistent with the string dynamics, being solitons they

must describe branes. The finite action solutions of eq. (7.17) are easy to find

T̃ (X) = −n+
1

2

n
∑

i=1

(Xi)2 . (7.18)

These codimension n solitons can be interpreted as D(25 − n)-branes. 26 − n are in fact

the number of coordinates on which the profile T̃ (X) does not depend. Substituting the

solution (7.18) into the action (7.16) with log(c/4) = −1 we get

S = T25(e
√
2π)nV26−n . (7.19)

Comparing this with the expected result T25−nV26−n we derive the following ratio between

the brane tensions

Rn =
T25−n
T25

=

(

e√
2π

2π

)n

. (7.20)
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With our notation, α′ = 1, the exact tension ratio should be Rn = (2π)n. Thus Rn

differs from the one given in (7.20) by a factor e/
√
2π = 1.084. It is remarkable that a

small derivatives expansion of the WS action truncated just to the second order provides

a result with the 93% of accuracy. In particular the result (7.20) is much closer to the

exact tension ratio then the one found in [7] with analogous procedure. The solutions of

the equations of motion of the WS action considered in [7] were not in fact solutions of the

equation βT = 0, so that they could not be interpreted as consistent string backgrounds

(this was already noticed by the authors of [7] and for this reason the exact tension ratio

was obtained with a different procedure). The equations of motion deriving from the

WS action are in fact related to the β-function through (1.3) where the metric should in

principle be non-degenerate. However, if the metric is computed in some approximation,

it could be singular and present solutions that introduce physics beyond that contained in

the β-functions. The action (7.16) with log(c/4) = −1 gives an equation of the form (1.3)

with the non-degenerate metric e−T̃ . The solution of this equation can be at the same time

a soliton and a conformal RG fixed point.

In conclusion the general formula (1.4) reproduces all the expected results on tachyon

effective actions both in the far off-shell and in the near on-shell regions.

8. Cubic vs. Witten-Shatashvili tachyon effective actions

In this section we shall compare the result (7.2), which gives the WS action up to the third

order in the powers of the renormalized tachyon field TR(k), with the tachyon effective

action SC computed with the cubic open string field theory of [1]. Like (7.2), SC is known

exactly up to the third power in the tachyon field. A similar comparison was already done

in [7] where, however, the WS action constructed in terms of the linear tachyon β-function

βT (k) = (1− k2)TR(k) was used. With such a choice of coordinates in the space of string

fields, the relation between the tachyon fields of the cubic and the WS string field theory

becomes singular on-shell [7]. The cubic string field theory parametrization of worldsheet

RG is regular on-shell and it very well reproduces the tachyon scattering amplitudes [26],

thus indicating that to it should correspond a non-linear β-function. We shall show that,

comparing the result (7.2) for theWS action with the corresponding cubic string field theory

action, a field redefinition between the tachyon fields in the two formulations can be found

which is non-singular on-shell. In particular, by requiring the regularity of the coordinate

transformation that links the cubic tachyon effective action to the WS action (7.2) we

find that the overall normalization constant K in the WS action (7.2) is precisely the

tension of the D25-brane. This is in agreement with all the conjectures involving tachyon

condensation and with the result K = T25 derived from the tachyon potential.

For a tachyon field Φ(k), the cubic string field theory action can be written as [34, 35]

SC = 2π2T25

[

− 1

2

∫

dk(2π)DΦ(k)Φ(−k)(1 − k2) +
1

3

∫

dk1dk2dk3(2π)
D ×

× δ(k1 + k2 + k3)Φ(k1)Φ(k2)Φ(k3)

(

3
√
3

4

)3−k2
1−k

2
2−k

2
3

]

. (8.1)
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The normalization factor 2π2T25 was derived in [27] and will be important for our analysis.

Let us assume that the relation between the fields Φ(k) and TR(k) of the two theories is of

the form

Φ(k) = f1(k)TR(k) +

∫

dk1dk2f2(k, k1)TR(k1)TR(k2)δ(k − k1 − k2) + · · · , (8.2)

where f1(k) = f1(−k) from the reality of the tachyon field. The cubic string field theory

action (8.1) becomes

SC = 2π2T25

{

− 1

2

∫

dk(2π)DTR(k)TR(−k)(1− k2)(f1(k))
2 −

∫

dk1dk2dk3(2π)
D ×

× δ(k1 + k2 + k3)TR(k1)TR(k2)TR(k3)×

×
[

(1 + k1k2 + k1k3)f1(k1)f2(k2 + k3, k3)−

− 1

3
f1(k1)f1(k2)f1(k3)

(

3
√
3

4

)3−
∑

i k
2
i

]}

. (8.3)

By comparing the second order term of eq. (8.1) with the corresponding term of eq. (7.2)

we find

(f1(k))
2 =

K

2π2T25

Γ(2− 2k2)

(1− k2)Γ2(1− k2)
. (8.4)

When the tachyon field is on the mass-shell, f1(k) is regular and takes the value

f1 =
1

2π

√

K

T25
. (8.5)

From the comparison of the cubic terms in (8.3) and in (7.2) we get

[1−(k2+k3)2]f2(k2+k3, k3) =
f1(k2)f1(k3)

3

(

3
√
3

4

)3−
∑

i k
2
i

− K

3!2π2T25f1(k2 + k3)
×

×
[

2(1− k2k3 − k22 − k23)I(−k2 − k3, k2, k3)−

−
(

Γ(1 + 2k2k3)Γ(2 − 2(k2 + k3)
2)

Γ2(1 + k2k3)Γ2(1− (k2 + k3)2)
+ cycl.

)]

. (8.6)

We can fix the value of the normalization constant K by requiring the regularity of the

function f2(k2 + k3, k3) when the three tachyons are on-shell. The on-shell condition is

2(k1k2 + k2k3 + k1k3) + 3 = 0 ,

and the factor between square brackets in (8.6) is, on-shell, (2π)−1. Consequently, requiring

the regularity of the function f2 when the three tachyons are on-shell, eq. (8.6) simply

becomes

K = T25 . (8.7)
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When (8.7) is satisfied, the field redefinition that links the boundary and the cubic string

field theory tachyon effective actions is regular on-shell. This result shows that the tachyon

dynamics described by the WS string field theory reproduces the conjectured relations in-

volving tachyon condensation. With analogous procedure, it is not difficult to show that the

coordinate transformation between the WS tachyon effective action constructed in terms

of the linear β-function (7.10), with K = T25, and (8.1) is, as expected, singular on-shell.

9. Conclusions

In this paper we have derived some exact results for the non-linear tachyon β-function of

the open bosonic string theory. We have shown its relevance in the construction of the

Witten-Shatashvili bosonic string field theory. When a non-linear renormalization of the

tachyon field is considered [23], the WS action in fact is simply given by (1.4). This formula

has a wide range of validity. It can be applied to the case in which the tachyon profile is

a slowly varying function of the embedding coordinates of the string to derive the exact

tachyon potential and the first derivative terms of the effective action. Eq. (1.4) holds also

when the tachyon coupling T (k) is small and has support near the mass-shell. For such

tachyon profiles we showed that perturbative solutions of the equation βT = 0 provide the

expected scattering amplitudes of on-shell tachyons.

The explicit form of the WS action constructed from the tachyon non-linear β-function

is in precise agreement with all the conjectures involving tachyon condensation. In par-

ticular its normalization can be fixed either by studying the exact tachyon potential or

by finding the field redefinition that maps the WS action into the effective tachyon action

coming from the cubic string field theory. This field redefinition is non-singular on-shell

only if the normalization constant coincides with the tension of the D25-brane.

The knowledge of the non-linear tachyon β-function is very important also for another

reason. The solutions of the equation βT = 0 give the conformal fixed points, the back-

grounds that are consistent with the string dynamics. In the case of slowly varying tachyon

profiles, we showed that the equations of motion for the WS action can be made identical

to the RG fixed point equation βT = 0. This can be done for a particular choice of the

renormalization prescription ambiguity. We have found soliton solutions of this equation

to which correspond a finite value of the WS action. Being solutions of the RG equations

these solitons are lower dimensional D-branes for which the finite value of S provides a

very accurate estimate of the D-brane tension.

When other excited string modes are present, say modes of the vector field Aµ, the

form of the WS action should still be given by (1.4) where the renormalized tachyon field

depends also on the other string couplings. In particular it would be interesting to apply

our renormalization procedure to the other renormalizable case in which the boundary

perturbation contains also a vector field [36]. Whether our approach would help in treating

also non-renormalizable interactions it is yet not clear.

The decay of unstable systems of D-branes, pictured as a tachyon field rolling down a

potential toward a stable minimum, can also be addressed in the context of the boundary

string field theory. It involves deforming the world sheet conformal field theory of the
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unstable D-brane by a conformal, time dependent tachyon profile. It is useful then to

construct β-functions which are valid away from the RG fixed point to demonstrate that

the renormalization flow exists, to draw the RG-trajectories and to understand where the

endpoints of the RG flux are. Thus our approach should reveal important in studying

the physics around a conformal fixed points and in particular about the time dependent

solutions describing rolling tachyons.

Acknowledgments

E.C. and G.G. would like to thank R. Jackiw for an helpful discussion and the Bruno Rossi

MIT-INFN fellowship for financial support. E.C. thanks I. Sigalov and W. Taylor for useful

discussions. G.G. acknowledges the M.I.T. Center for Theoretical Physics for hospitality

during the preparation of this work.

A. Computation of I(k1, k2, k3)

In this appendix we shall compute the integral I(k1, k2, k3) appearing in eq. (4.15)

I(k1, k2, k3) =
22k1k2+2k2k3+2k1k3

(2π)3

∫ 2π

0
dτ1dτ2dτ3

[

sin2
(

τ1 − τ2
2

)]k1k2

×

×
[

sin2
(

τ2 − τ3
2

)]k2k3
[

sin2
(

τ1 − τ3
2

)]k1k3

. (A.1)

Introducing the variables

x =
τ1 − τ2

2
, y =

τ3 − τ1
2

the integral over τ1, τ2 and τ3 can be written as

I = −4k1k2+k2k3+k1k3+1

2π3

∫ 2π

0
dτ1

∫
τ1
2
−π

τ1
2

dx

∫ π−
τ1
2

−
τ1
2

dy[sin2 x]k1k2 [sin2 y]k1k3 [sin2(x+ y)]k2k3 .

With a suitable shift of the integration variables we obtain

I =
4k1k2+k2k3+k1k3

π2

∫ π

0
dx

∫ π

0
dy [sinx]2k1k2 [sin y]2k1k3

[

sin2(x+ y)
]k2k3

=
4k1k2+k2k3

π2

∫ π

0
dx

∫ π

0
dy [sinx]2k1k2 [sin y]2k1k3

[

1− e2i(x+y)
]k1k3

[

1− e−2i(x+y)
]k2k3

=
4k1k2+k1k3

π2

∫ π

0
dx

∫ π

0
dy [sinx]2k1k2 [sin y]2k1k3 ×

×
∞
∑

n,m=0

Γ(n− k2k3)Γ(m− k2k3)

n!m!Γ2(−k2k3)
e2i(x+y)(n−m) . (A.2)

Integrating over x and y we have

I =

∞
∑

n,m=0

Γ(n− a3)Γ(m− a3)

n!m!Γ(1+a1+n−m)Γ(1+a1−n+m)Γ(1+a2+n−m)Γ(1+a2−n+m)
×
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×Γ(1 + 2a1)Γ(1 + 2a2)

Γ2(−a3)
(A.3)

where a1 = k1k2, a2 = k2k3 and a3 = k1k3. Shifting m → m − n in the sum over m we

have

I =

∞
∑

n,m=0

Γ(n− a2)Γ(n+m+ a2)Γ(1 + 2a1)Γ(1 + 2a3)

n!(n+m)!Γ2(−a2)Γ(1 + a1 +m)Γ(1 + a1 −m)Γ(1 + a3 +m)Γ(1 + a3 −m)
+

+

∞
∑

n=0

0
∑

m=−n

Γ(n− a2)Γ(n+m+ a2)Γ(1 + 2a1)Γ(1 + 2a3)

n!(n+m)!Γ2(−a2)Γ(1+a1+m)Γ(1+a1−m)Γ(1+a3+m)Γ(1+a3−m)
−

−Γ(1 + 2a1)Γ(1 + 2a3)

Γ2(1 + a1)Γ2(1 + a3)
2F1(−a2,−a2; 1; 1) (A.4)

where 2F1(α, β; γ; z) is the Hypergeometric function. Changing the sign of the integer m

in the second term of the previous equation and noting that

∞
∑

n=0

n
∑

m=0

=
∞
∑

n=m

∞
∑

m=0

we find

I = 2

∞
∑

m=0

Γ(m− a2)Γ(1 + 2a1)Γ(1 + 2a3)

Γ(−a2)Γ(1 + a1 +m)Γ(1 + a1 −m)Γ(1 + a3 +m)Γ(1 + a3 −m)
×

×2F1(m− a2,−a2;m+ 1; 1) − Γ(1 + 2a1)Γ(1 + 2a3)

Γ2(1 + a1)Γ2(1 + a3)
2F1(−a2,−a2; 1; 1) . (A.5)

It is not difficult to show that the sum over m can be extended to negative values so that

we find

I = − Γ(1 + 2a1)Γ(1 + 2a2)Γ(1 + 2a3)

Γ(1− a1)Γ(a1)Γ(1− a2)Γ(a2)Γ(1− a3)Γ(a3)
×

×
∞
∑

m=−∞

Γ(m− a1)Γ(m− a2)Γ(m− a3)

Γ(1 +m+ a1)Γ(1 +m+ a2)Γ(1 +m+ a3)
. (A.6)

The series in the second line of the right-hand side of (A.6) is convergent for 1+a1+a2+a3 >

0. To sum over m we use a standard procedure. Consider the path in figure 1. Defining

S =

∞
∑

m=−∞

Γ(m− a1)Γ(m− a2)Γ(m− a3)

Γ(1 +m+ a1)Γ(1 +m+ a2)Γ(1 +m+ a3)
≡

∞
∑

m=−∞

f(m) (A.7)

we can write
∮

C

πcotgπzf(z)dz =
N
∑

m=−N

f(m) + S̃ (A.8)

where S̃ is the sum of the residues of πcotgπzf(z) evaluated in the poles of f(z). In the

limit N →∞ the left-hand side of the previous equation vanishes reducing S to

S = − Γ(1 + a1 + a2 + a3)

Γ(1 + a1)Γ(1 + a2)Γ(1 + a3)Γ(1 + a1 + a2)Γ(1 + a1 + a3)Γ(1 + a2 + a3)
×
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N+1/2

i(N+1/2)

γ

−i(N+1/2)

−N−1/2

Figure 1: Contour C.

×
[

π3 cos2 πa1
sinπa1 sinπ(a1 − a2) sinπ(a1 − a3)

+ cycl.

]

. (A.9)

So that I becomes

I =
Γ(1 + a1 + a2 + a3)Γ(1 + 2a1)Γ(1 + 2a2)Γ(1 + 2a3)

Γ(1 + a1)Γ(1 + a2)Γ(1 + a3)Γ(1 + a1 + a2)Γ(1 + a2 + a3)Γ(1 + a1 + a3)
. (A.10)
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