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Abstract

Power system is the one of the most critical parts of the whole energy utilization
around the world. Recently people pay more attention to the energy utilization, new
types of generations, storages and power utilization need to increase energy efficiency
and reduce carbon emission. Due to the power grid currently is still mainly under the
old-designed approach, it is increasingly exposed limitation on efficiency
enhancement, security and reliability improvement, new technologies compatibility
and meeting larger power capacity requirements.
Thus, Smart Grid is ‘born’ to improve power grid for these requirements. It is an
overlapping area between power system and digital technology, intelligent technology,
communication technology and so on. Smart Grid can provide updates for nearly all
sections of traditional power grid. It is a systematic framework that new technologies
integration, system development strategy and planning, customers’ awareness
improvemcnis and supports from all relevant areas. The areas must be operated in
coordination and parallel.
Firstly, this thesis introduces Smart Grid and Smart Metering on its definition,
characteristics and deployment.
Secondly, this thesis describes a load forecasting system for macro-grid. Artificial
Neural Network (ANN) was introduced to achieve this work for its excellent mapping
approximation ability.
In the third section, thesis focuses on' load forecasting for micro-grid. Back-

" Propagation method is used to traiﬁ the Multi-layer Perceptron (MLP) ANN and its
results were compared to that from Radial Basis Function (RBF) ANN. Analysis was
focused not only on the two networks but also ANN generalization problems and

differences between micro-grid ‘load and macro-grid load prediction.
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Chapter 1

Introduction

Power system is the one of the most critical parts of the whole energy utilization
around the world. Recently people pay more attention to the energy utilization, new
types of generations, storages and power utilization need to increase energy efficiency
and reduce carbon emission. Due to the power grid currently is still mainly under the
old-designed approach, it is increasingly exposed limitation on efficiency
enhancement, security and reliability improvement, new technologies compatibility
and meeting larger power capacity requirements. '

Thus, Smart Grid is ‘born’ to improve power grid for these requirements. It is an
overlapping area between power system and digital technology, intelligent technology,
communication technology and so on. Smart Grid can provide updates for nearly all
sections of traditional power grid, including renewable energy generation and new
storage integration, Demand Response (DR) and Demand Side Management (DSM),
Transmission & Distribution Automation, Electric Vehicle (EV) integration,
Advanced Metering Infrastructure (AMI) and so on. It is a systematic framework that
new technologies integration, system development strategy and planning, customers’
awareness improvements and supports from all relevant areas. The areas must be
operated in coordination and parallel [1] - [6].

In current status, Smart Grid developments still stay at the initial points. Various
works are placed at Smart Grid definition, characteristics summarization,
standardization and Smart Grid test bedding. But seldom people have organized the
above work in a reasonable development procedure. This thesis aims to establish one
systematic procedure framework that formalizes the design of Smart Grid scope.
Works will be constituted with plain sequences in this procedure framework.

Power load, as a main requirement for power system, affects the power flow in every
electricity cable. A prediction of power load influences not only planning for all
stakeholders but also the reliability and security. Smart Grid introduce new feature to
power system like micro-grid, which lead to new requirement to microgrid load
forecast for Distributed Generation and other micro-grid management. This thesis

aims to achieve macro-gird load forecast and micro-grid load forecast by Artificial
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Neural Network. Moreover, through analysis and compare, this thesis figures out the
feature differences between macro-grid load forecast and micro-grid load forecast,
Smart Meter pléys an important role in demand response. It is more than a measurer
but also a platform for demand response and dynamic pricing. In demand response,
customers receive the latest load information from Smart Meter before their
consumption. The utilities will provide a predicted price for customer to manage their
consumptions, which the predicted price is based on the predicted load. Due to the
huge contribution from Smart Meter to load forecast applications, this thesis also

concerns about the Smart Metering development.

1.1 Thesis Organization

This thesis mainly focuses on Smart Grid and Power System load forecasting. It

consists of 6 Chapters.
Chapter 1 is the main Introduction and describes the layout the whole thesis.

Chapter 2 introduces Smart Grid on its definition, characteristics and constructions.
Furthermore, the competitive Smart Grid standardizations is also revealed. Smart Grid
demonstration projects worldwide are included to summarize the countries’ behaviour

toward this new concept.

As the earliest application, Smart Metering system is introduced in Chapter 3. This
Chapter provides analysis on policy and standards of Smart Metering worldwide.

Case study for each country of their Smart Metering application is included.

Chapter 4 describes a load forecasting system for Macro-grid. Artificial Neural
Network (ANN) is introduced to achieve this work for its excellent mapping
approximation ability. Back-Propagation training and its improvements are introduced

with analysis.
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Chapter S focuses on load forecasting for Micro-grid. Back-Propagation trained MLP
ANN and Radial Basis Function (RBF) ANN are applied for comparison. Analysis is
placed not only on the two networks but also ANN generalization problems and

differences between Micro-grid load and Macfo-grid load prediction.

Chapter 6 summarizes the work done in the study. Based on the current work,
direction on future study is pointed out, such as load forecasting system for a mixed

load Micro-grid, which integrated with the framework of Demand Side Management -
(DSM).

1.2 Original Contribution

1. Comparison, analysis and summary of Smart Metering Standards and Policies.
This work summarizes the advantages and week points of various Smart Metering
projects with their development procedure. It provides a good reference for future
Smart Grid development. (Chapter 3) |

2. Analysis on Smart Grid design, functionalities and standards. This work organizes
Smart Grid’s characteristics, functibnalities, necessary technologies into a scope
design procedure. Comparison is also applied to Smart Grid standards worldwide,
which provide a good tutorial for areas aiming to develop Smart Grid system.
(Chapter 2)

3. Smart Grid load forecasting system framework design for Macro-grid in Ontario,

- Canada. This work introduces a Smart Grid load forecast design procedure with
considering general influencing factors and Ontario local factors. (Chapter 4)

4. An Artificial Neural Network based load forecasting system design for Ontario,
Canada. This work compare§ results from different ANN training algorithms and
provides a novel explanation for the differences. (Chapter 4)

5. Micro - Grid load forecasting system framework design for City University of
Hong Kong. This work compares the differences between macro-grid and micro-
grid load forecast problems so as to figure out the traditional method has

limitation in Micro-grid load forecast (Chapter 5)
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6. MLP network based and RBF network based load forecasting system design. This
work introduces a real-time hourly load forecasting for City University of Hong

Kong by comparing two different ANNs. (Chapter 5)
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Chapter 2
Smart Grid

2.1 Introduction

The Smart Grid vision presents a new power system with more automatics, more
intelligence, more decentralization, more options and consumer participation, and
better resilience and management. It is an upgrade from the traditional power grid in
all levels, including not only the technologies and management but also the value and

the characteristics.

This Chapter proposed a construction of Smart Grid in multi-level with an entire
scope framework design procedure. An orbicular Smart Grid description including

characteristics, metrics, standards and technologies will be unfurled.

2.2 Smart Grid Definiﬁon

Smart Grid is a large and complicated concept which is still holding debate on its
definition because of the expected emphasis addressed by each participant.
Various definition of Smart Grid is raised, such as:
e “The infrastructure to transmit renewably generated electricity from a variety of
small and large generation sites scattered over wide areas with the ability to

manage both fluctuating supply and loads” by European Climate Forum (ECF) [7].

e “A smart grid is an electricity network that uses digital and other advanced
technologies to monitor and manage the transport of electricity from all
generation sources to meet the varying electricity demands of end-users” by

International Energy Agency [8].

e “The "smart grid" has come to describe a next-generation electrical power system

that is typified by the increased use of communications and information
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technology in the generation, delivery and consumption of electrical energy.” by

IEEE [9].

Other Smart Grid definitions are shown in Table 2.1:

Definition provider

Smart Grid Definition

EU Functionalities of Smart

Grids and smart meters

A Smart Grid is an electricity network that can cost
efficiently integrate the behaviour and actions of all
users connected to it — generators, consumers and
those that do both — in order to ensure economically
efficient, sustainable power system with low losses
and high levels of quality and security of supply and
safety [10].

DOE Smart Grid book: The
smart grid: An Introduction

A smarter grid provides chances to make the
transformation from a centralized, producer-
controlled network to one that is less centralized and
more consumer-interactive, by bringing the
philosophies, concepts and technologies that enabled
the internet to the utility and the electric grid. More
importantly, it enables the industry’s best ideas for

grid modernization to achieve their full potential [6].

European Regulators’ Group
for Electricity and Gas

A Smart Grid is an electricity network that can cost
efficiently integrate the behaviour and actions of all
users connected to it — generators, consumers and
those that do both — in order to ensure economically
efficient, sustainable power system with low losses
and high levels of quality and security of supply and
safety is [11].

Table 2.1: Smart Grid Definition

But whatever definitions are used, Smart Grid will always be focused when facing the

following problems:

e High proportion of high-carbon centralized generation.

e Monotonous market.

e Few options to power quality, services and consumption types.

¢ Low efficiency in asset management.
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e  Vulnerable to attack and disasters

Due to face similar problems, most of the Smart Grid definitions will include the

following sections:

e To use new technical methods to improve the efficiency, security and power
reliability of each part and the whole electricity grid.

e To provide new services, new customer options and to enable the grid
compatibility for new products and new services.

e Toset up an entire communicating system and the associated assets that improve

the interpretability among related devices for better effect.

2.3 Drive of Smart Grid

New thing is splendid as born with promotion and requirement. Smart Grid, a new set
of new value, new characteristics and new technologies, is raised as facing several
requirements other than from whimsy.

In 21st century, electric systems in several major economic entities are going to suffer
serious bottlenecks, which are mainly placed in persisting supplying clean, reliable
and affordable energy services. According to the requirement, the general drivers for
Smart Grid are [6]:

* Reliability: Blackouts and brownouts are happen frequently as lacking of
automated analytics, slow response times of mechanical switches and lacking
of situational awareness on the part of grid operators.

e Efficiency: Based on the large scale of power system, only a small
impfovement of efficiency representing not only a large consumption
reduction but also a significant carbon emitting decrease.

e National Economy: In 2005, extreme weather causing extensive damage of
overhead lines in Southern Sweden, burning 400 million € with 70 million m®
wood damaged [12]. The traditional grid not only fails to meet the requirement
of economic development but also fails in providing enough protection to
current economic status.

o Affordability: As the requirement of economy grow and new electricity

consumption, traditional grid can no longer afford the development.
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e Security: The traditional grid’s centralized structure leaves all the society into
the risk of attack. A too much dependency on grid could bring national
banking, communications, and traffic and security systems among others to a
complete standstill when attack occurs.

¢ Environment/climate change: Over half of the electricity worldwide is
burning by coal, producing pollution and green house gas.

¢ Global competitiveness: Facing the development of Smart Grid, countries
and organization worldwide are rapidly raising their solutions to the above
problems, trying to capture a leading chance for development and business [6].

The above drives plus several local drives specified for local countries or local areas

promote the research and deployment of the Smart Grid.

2.4 Smart Grid Scope Design Procedure.

Different Smart Grid scopes or landscapes are published by various organizations. E.g.
[17] introduces scope from Department of Energy (DOE) in US while [18] introduces
a scheme for UK Smart Grid development. In the scope reports it is easy to find out
description of multiple types of technologies and standards. But it is difficult to find
out a systematic reflection from technolo gies to the national development aims. For
other nations or organizations that prefer to form up a scope of their own, it is better
to organize all the researches together into a procedure revealing the way to sketch the
scope other than just show up what the scope is. This section selects Smart Grid scope
from DOE as example to introduce a scope procedure.

Fig 2.1 reveals the procedures. One nation should use their national development
object to guide its Smart Grid scope. From the national developments, summarize
characteristics on what power system should look like. Then based on these
characteristics, finding out what technologies and standards could satisfy them.
Finally the scope is formed. National developments relate to power system are list

below:

Aim 1: less carbon emit and pollution to protect global environment.

Aim 2: Spend less for every energy unit generation.

Aim 3: Increase energy consumption security and reliability,

.Aim 4: Promote economic developments
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Fig 2.1: Smart Grid Scope Design Procedure [14]

2.4.1 Smart Grid Characteristics

To better understand the objects and classification for new technologies and services
in Smart Grid, a classification of characteristics of Smart Grid is a fundamental
support. One should summarize out their own Smart Grid Characteristics basing on
their development object and the current situation. These characteristics are further
description of smart grid definition and they provide guidance for the smart grid new
technologies.

Set US as an example. In US, Department of Energy publishes a report in reference
[15], describing smart grid in 6 characteristics. The Fig 2.2 reveals these Smart Grid

characteristics.
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Fig 2.2: Smart Grid Characteristics by NELT [14]

From Fig.2.2, each characteristic are based on their national development aims:

¢ Enable Informed Participation by Customers (C 1): This characteristic
introduces bi-directional information flow and energy flow between utilities and
consumer. This two-way flow not only saves cost of utilities through appliances
like Metering Automation, but also suggests a greener consumption style to
customers by dynamic pricing. Therefore, this characteristic reflects incentive from
Aim 1 and Aim 2.

¢ Accommodate All Generation and Storage Options (C2): This characteristic
introduces new types of generations, like renewable bulk generation and
distributed generation, which may reduce carbon emit and the traditional

* generation cost. Moreover, requirement of new types of generations may create

new market and provide new motivation for economic development. So this |
characteristic reflects incentive from Aim 1, Aim 2 and Aim 4.

¢ Enable New Products, Service and Markets (C3): This characteristic covers new
consumption like EV, new service like dynamic pricing. All these new products
and service brings new markets and change traditional market feature. It does not
only promote greener consumption but also produce new incentives for economic
grow. So this characteristic reflects incentive from Aim 1, Aim 4.

¢ Provide Power Quality for Range of Needs (C4): This characteristic covers
solutions to Power Quality disturbance which may increase the cost from reliability.

So this characteristic reflects incentive from Aim 2 and Aim 3.

10
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e Optimize Asset Utilization and Operation Efficiency (CS): This characteristic
stands for the efficiency increasing and asset optimal utilization by the real-time
information communication in all section of power system. It directly leads to
lower cost and higher reliability. So this characteristic reflects incentive from Aim
2 and Aim 3.

¢ Operates Resiliently to Disturbances, Attacks, and Natural Disasters (C6):
This characteristic covers the Smart Grid solutions that reduce the harms from
disturbances, attacks and natural disasters. In other words, enhance the security and
reliability so as to save cost from the harms. This characteristic reflects incentive
from Aim 2 and Aim 3.

Though nations may have similar development, but their Smart Grid Scope should be

based on their own situations. Comparing to DOE’s Smart Grid characteristics,

Electric Network Strategy Group (ENSG) has summarized their own characteristics

for UK Smart Grid development in Fig 2.3.

Facilitate connection and operation of generators
of all sizes and technologies

) Enéble the demand side to play a part in optimising k‘
the operation of the system

—0 Extend system balancing into distribution and the home

Smart Grid — , - e
I _.i Provide consumers with greater information
and choice of supply
. Significantly reduce the environmental impact of
 the total electricity supply system
Deliver required levels of reliabiliiy, ﬂekibility,

quality and security of supply

Fig 2.3: Smart Grid Characteristics by ENSG [18]
The six charactéristics in Fig 2.3 reflect the 4 national development aims as well.
While the characteristics from DOE mentioned the reliability and security in 3 items,
the one from UK _only mentioned this in one item. This is because US suffer much

more serious reliability and security problem than UK. Various materials reveal that

11
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in the largest blackout worldwide which affecting more than 30 millions people, there
are 2 from US but non from UK. In these blackouts which affect at least 1 million
person*hour in the passed 5 years, US suffered more than 25 but UK only takes 10.
The different situation suffered by US and UK influence their characteristics making
of Smart Grid.

2.4.2 Smart Grid Technologies Metrics

With the characteristics, the next step in procedure is to find out technologies and
standards that satisfy all the characteristics. So technologies in Smart Grid should
reflect the Smart Grid characteristics. '

Set US as example. U.S. Department of Energy (DOE) established a workshop for
identifying metrics of measuring progress toward implementation of smart-grid
technologies, practices, and services with 140 experts on June 20, 2008. At last over
50 metrics was hand in for smart-grid progress, in which 20 are for smart grid
deployment [15]. Table 2.2 shows these 20 metrics.

Metric Title Characteristic
Reflection
Area, Regional, and National Coordination Regime
1 | Dynamic Pricing CLC3
2 | Real-time System Operations Data Sharing C5C6
3 | Distributed-Resource Interconnection Policy C2,Cs
4 | Policy/Regulatory Progress CltoC6
Distributed-Energy-Resource Technology
5 | Load Participation Based on Grid Conditions: |C1,
6 | Load Served by Microgrid C1,C5
7 | Grid-Connected Distributed Generation C2
(renewable and non-renewable) and Storage
8 | EVsand PHEVs C3
9 | Grid-Responsive Non-Generating Demand- ~|C5s
Side Equipment
Delivery (T&D) Infrastructure

12
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10 | T&D System Reliability C4,C5,C6

11 | T&D Automation C4,C5,Cé6

12 | Advanced Meters CL,Cs

13 | Advanced System Measurement C5,Ceé6

14 | Capacity Factors Cs

15 | Generation and T&D Efficiencies Cs

16 | Dynamic Line Ratings C4,C5S

17 | Power Quality C4
Information Networks and Finance

18 | Cyber Security Cé6

19 | Open Architecture/Standards CltoCé6

20 | Venture Capital CltoC6

Table 2.2: Smart Grid Metrics
Each metric is corresponding to one or more characteristics in Table 2.2. Column

‘Characteristics Reflection’ introduce the characteristics relate to the metrics. -

2.5 Smart Grid Scope

With the analysis on characteristics and metrics, following the scope design procedure,
the Smart Grid Scope could be revealed. Various new technologies and standards
satisfying the characteristics make the Smart Grid advanced and obviously different
from traditional power grid. The following section introduces one scope sample from
NIST of DOE, revealing the new component of Smart Grid.

The Conceptual Smart Grid framework mode! from NIST is mainly focused in this
thesis for its wide compatibility and integration of various possible new technologies,

new power consumptions and necessary element of traditional power grid.

13



SMART GRID FRAMEWORK ANALYSIS AND ARTIFICIAL NEURAL NETWORK IN LOAD FORECAST

N SR
Fig 2.4: NIST Smart Grid Conceptual Framework Model [17]
“The National Institute of Standards and Technology (NIST) Smart Grid Conceptual
Model provides a high-level framework for the smart grid that defines seven
important domains: Bulk Generation, Transmission, Distribution, Customers,
Operations, Markets and Service Providers [16]. All the 7 domains construct a sub-
system of their own, though not completely separated. A communication and

monitoring network are established covering all the above domains, aiming to provide

a bi-directional information flow between related domains.

2.5.1 Bulk Generation

Smart Grid accommodates all generations and storage options. As centralized
generations still plays a critical role, this domain mainly integrates all kinds of
centralized power generation, storage types and specified monitoring and
management for each generation and the whole generation systems. Traditional
generations, e.g. Coal and large hydro, are definitely included. Renewable energy,
including intermittent renewable energy, like solar and wind, and un-intermittent
renewable energy, like wave energy and biomass, are also covered in this domain for
they are the optimal choice in taking place of high polluted and carbon-emitted
generations.

Comparing to tradition power system, the advanced areas are placed at:

e New types of generation seize larger percentage to traditional generation.

¢ New generations, Storage and their associate device create new market chances.
e Communication between components improves the asset utilization and

operational efficiency.

14
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Fig 2.5 reveals the Bulk Generation structure:

E’
AN

“‘ Markets

hex Renawabl 00‘
Non-Vanable Non-Renewable.
\ Non-Vamhle ,

Fig 2.5: Bulk Generation of NIST Smart Grid Conceptual Model [17]

2.5.2 Transmission

To transport the energy from Bulk Generation to load centre, power transmission grid

is still the necessary consideration of Smart Grid. In traditional case, large

transmission grid swallows more than 10% energy of generation. Smart Grid aims to

apply new technologies and management, e.g. HVDC, FACTS, Transmission

Dispatch Automation, Communication Network, to reduce the consumption and

enhance the efficiency and stability in this domain.

Comparing to tradition power system, the advanced areas are placed at:

e New types power delivery technologies reduce the line lost.

e Wide Area Communication platform encourage data transmission and sections
communication that helps in better power dispatch and problems diagnosis.

o Substation Automation improves the operational efficiency and asset utilization.

Fig 2.6 reveals the Transmission of NIST Smart Grid Conceptual Model.

15
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Fig 2.6: of NIST Smart Grid Conceptual Model [17]

2.5.3 Distribution

Smart Grid Distribution not only achieves the ability in traditional power grid but also
integrate several new technologies including:
e Distributed Generation: Another generation type other than Bulk Generation.
* Real time monitoring, data analysis and management.
¢ Optimization and automation on power dispatch and grid protection.
e Various Power Quality selections.

Fig 2.7 reveals the Distribution domain of NIST Smart Grid Conceptual Model.

Fig 2.7: of NIST Smart Grid Conceptual Model [17]
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2.5.4 Customer

The Customer domain represents a new structure of load status in Smart Grid other
than traditional power grid. The end-user of electricity, including
home/industry/commercial building, connects to power distribution grid with the
following new functional systems:
e Smart Metering (Advanced Metering Infrastructure) that promote demand
response.
e Demand Side Management through bi-directional information flow and power
flow.
e  Micro-grid that promotes DG and grid resilient.
e Communication Network for home area network promotes new consumption
style and creates new service & markets.

Fig 2.8 reveals the Customers domain of NIST Smart Grid Conceptual Model
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Fig 2.8: Customers of NIST Smart Grid Conceptual Model [17]
2.5.5 Operations

The Operations domain is constructed by most of controls, analysis and management
of all other domains based on the bi-directional communication network in the Smart
Grid. This domain deals not only the monitoring and management problem but also
provide intelligent support for decision making.

Comparing to traditional power system:

17
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e New types of equipment and services, like renewable generation, distributed
generation, HVDC and dynamic pricing, require specified operations.

e Communication platform establishment has brought larger information sharing,
so as have change the operation towards traditional sections in power system.

Fig 2.9 reveals Operation domains of NIST Conceptual Model.
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Fig 2.9: Operation of NIST Conceptual Model [19]

2.5.6 Markets

As described in [20]. the Markets domain operates and coordinates all the participants
in electricity markets within the Smart Grid. This domain covers all type of market
behaviours, such as wholesaling, retailing, energy services trading and market
management. It also relates to other relevant market to Smart Grid, like Electric
Vehicles. What’s more, it deals with most relevant information to Smart Grid [20].
The description to this domain also includes “the Markets domain interfaces with all
other domains and make sure they are coordinated in a competitive market
environment”, This will be the ability of a power grid with permitting competition.
Some monopolized or market-unopened power grid should establish their own rules
to maintain a health market operations other than this Conceptual Model introduced.
Comparing traditional power market, new types of consumption like EV and DG
require new market behaviours to maximize their contribution to Smart Grid. Fig 2.10

reveals the Market domain of NIST Smart Grid Conceptual Model.

18
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Fig 2.10: Market domain of NIST Smart Grid Conceptual Model [20]

2.5.7 Service Provider

The Service Provider domain of the Smart Grid handles all third-party operations

among the domains. This section covers all requirements for establishment and

maintenance for other sections. Fig 2.11 reveals the structure of Service Provider of

NIST Smart Grid Conceptual Model [21].

Fig 2.11: Service Provider of NIST Smart Grid Conceptual Model [21]
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2.6 Smart Grid Related Organization and Standards

As Smart Grid is promoted, organizations and companies worldwide gradually place - |
their attention into this area, including several technical organizations and industrial
alliances.

International academic and industrial organizations, usually non-profit and non-
governmental, are merged by experts and engineers from one or more areas. Through
communication, analysis, cooperation and coordination, these organizations formulate
compatible area standards; manage conformity assessment system; promote
conferences and other activities and provide several authority publications. Facing
smart grid, numerous international organizations assign resources to this new coming
deployment with enormous investment and complicated technologies.

Smart Grid development is driven by various requirements from market and
technology fields. For a few requirements, more than one solution could be
discovered. To avoid the standards chaos from casual selection, companies and other
relevant organizations start to unite together for supportihg one possible optimal
choice, promoting the nativity of alliance. The standards and policies supported by a

large alliance are usually standing for widely accepted and influencing,

2.6.1 Institute of Electrical and Electronics Engineers (IEEE) and Its
Smart Grid |

Through the Smart Grid Working Group and other relevant societies, IEEE promotes
activities on Smart Grid research, education, popularization and communications in
various types, including a specific Smart Grid Website, Smart Grid journal and Smart

Grid conferences. Table 2.3 provides a sample of the mentioned activities.

IEEE Smart Grid Promotion
Smart Grid Website -| http://smartgrid.ieee.org/
Smart Grid Journal | IEEE Transactions on Smart Grid [24]

Smart Grid IEEE International Conference on Smart Grid
Conference Communications

Table 2.3: Sample of IEEE Smart Grid Promotion

IEEE is a technical organization with various standards publications. In the standards

approved and approving, there are nearly 100 standards and standards relevant to

20



SMART GRID FRAMEWORK ANALYSIS AND ARTIFICIAL NEURAL NETWORK IN LOAD FORECAST

smart grid, including the over 20 IEEE standards named in NIST Framework and

Roadmap for Smart Grid Interoperability Standards, Release 1.0. Facing the

interoperability brought by Smart Grid, IEEE raise a standards series, 2030 Smart

Grid Interoperability Series of Standards, as compensation for interoperability support.

The approving standards from 2030 share the common goal of interoperability

supported by interrelated and complementary technologies [26]
Samples of IEEE Smart Grid Standards are list in Table 2.4 [25].

Series

No.

Working
Group
Approving

Title

Status

1547.3-
2007

SCC21

Guide For Monitoring, Information Exchange, and
Control of Distributed Resources Interconnected
With Electric Power Systems.

Approved

802.11-
2007

IEEE 802

IEEE Standard for Information Technology -
Telecommunications and Information Exchange
Between Systems - Local and Metropolitan Area
Networks - Specific Requirements - Part 11:
Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications

Approved

P2030

SCC21

Guide for Smart Grid Interoperability of Energy
Technology and Information Technology Operation
with the Electric Power System (EPS), and End-
Use Applications and Loads

Approving

P802.11

IEEE 802

IEEE Standard for Information Technology -
Telecommunications and Information Exchange
Between Systems - Local and Metropolitan Area
Networks - Specific Requirements - Part 11:
Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications

Approving

Table 2.4: Samples of IEEE Smart Grid Standards

2.6.2 International Electrotechnical Commission (IEC) and Its Smart Grid

In June 2010, IEC SG3 published a document, “IEC Smart Grid Standardization

Roadmap” edition 1.0, for describing the present situation of standards and regulating

the future standardization planning. The whole Smart Grid standardization is divided
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into several clauses for specific areas. For each clause, the document describes
systematically in the following structure:
> Area Description.
Requirements.
Existing Standards.

Gaps between the existing standards and the requirements.

vV V.V V

Recommendations.

Basing on the describing structure mentioned above, IEC specifies a catalogue
with about 20 items including 3 general items highly related to others. Table 2.5
selects some of the catalogues in IEC Smart Grid Roadmap [28].

Title Content

1 | Smart transmission Including description of FACTS, HVDC, Cable
systems, Transmission Transmission and Long-distance transmission.
Level Application

2 | Distributed Energy Including description of Energy Management
Resources System (EMS), forecasting system.

3 | Advanced Metering for Including Advanced Meter Infrastructure and
Billing and Network the bidirectional communication network
Management between the smart grid and metering devices

and business systems.

Table 2.5: Samples of catalogues in IEC Smart Grid Roadmap
Based on the Smart Grid Roadmap, IEC has established more than 100 standards
relevant to Smart Grid. By classification, they can be put into 13 categories as Table
2.6 reveals [29]. Unlike IEEE Smart Grid standardization, IEC does not satisfy with
only a standard compensation. The standards in roadmap form up a well organized

standard framework that specified for Smart Grid.

Communication Distribution Distributed Energy
Automation (DA) Resources (DER)
Distributed Demand Response Energy Management
Management (DR) System (tech.) (EMS)
System (DMS)
Electric Vehicle Flexible Alternating High Voltage Direct
- (EV) Current Transmission Current (HVDC)
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System (FACTS)

Substation

Automation (SA)

Storage Smart home

Table 2.6: IEC established standards classification

Under these categories, examples of IEC Smart Grid standards are list in Table 2.7.

Reference Topic Title

IEC 61970-2 | Common Energy management system application program
Information interface (EMS-API) - Part 2: Glossary.
Model

ISO/IEC Information Information technology - Home electronic system

14543-3-3 Technology — | (HES) architecture - Part 3-3: User process for
HES network based control of HES Class 1.

IEC 60633 | HVDC - High | Terminology for high-voltage direct current
Voltage (HVDC) transmission.
Direct Current

IEC 61400- | Wind Wind turbines - Part 24: Lightning protection.

24 Turbines

Table 2.7: Examples of IEC Smart Grid standards

2.6.3 ZigBee Alliance and Its ZigBee Communication Tech for Smart

Grid

ZigBee is a standard-based wireless technology for the requirement of low-cost, low-

power wireless sensor and control networks, which is interested by Smart Grid

communication platform establishment. The communication platform from Smart

Grid requires a communication technology that covers large network size, long

battery life but do not necessary a too high data rate. ZigBee will be one of the best

choice compare to Bluetooth and Wi-Fi as shown in Table 2.8,

Basing on IEEE 802.15.4 for Wireless Personal Area Networks (WPAN), ZigBee

establishes an easy-used mesh network which mainly works around 2.4 GHz radio

frequencies. The possible application areas are listed below [30]:

> Commercial building management.

Energy management.

>
> Health care and fitness.
»

Telecommunications.
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> Residential management.

> Retail management.

ZigBee delivers unprocessed metadata at the rate of 250Kbs at 2.4 GHz (16 channels)
for global utilizations, 40Kbs at 915 MHz (10 channels) for Americas and 20Kbs at
868 MHz (10 Channel) for Europe. Its low-power solution ranging from 10 to 1600
meters are used for transmission with dependence on the environmental conditions
and the power output. A low-power feature could be seen in Table 2.8, a technical

compare between ZigBee and other wireless communication techniques [31].

Market Name ZigBee GSM/GPRS | Wi-FiTM Bluetooth
Standard 802.15.4 CDMA/1*RTT | 802.11b ™
802.15.1
Application Monitoring Wide Area Web, Cable
Focus & Control | Voice & Data Email, Replacement
Video
System 4KB - 32KB 16MB+ IMB+ 250KB+
Resource |
Battery Life | 100 - 1000+ 1-7 0.5-5 1-7
(days)
Network Size | Approximate 1 32 7
to Unlimited
(64K)
Maximum 20-250 64— 128+ 11,000+ 720
Data Rate
Transmission 1-100+ 1000+ 1-100 1-10+
Range (meters) .
Success ‘ Reliability, | Reach, Quality Speed, Cost,
Metrics Power, Cost Flexibility | Convenience

Table 2.8: Technical compare between ZigBee and other techniques

2.6.4 HomePlug Powerline Alliance and Its HomePlug Powerline Tech
for Smart Grid

The HomePlug Powerline technology enables the power lines to transmit signals for

communications as well as electrical power. This double-duty role for power line has
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been attempted for several decades and is achieved with a complex amalgam of signal

processing technologies and new modulation techniques.

Network using powerlines in your home

---_@----

Up to 200 Mbps!
{million-bits-per-second)

Broadband Internet
modern / router

im ages counesy of devolo AG (www.devolo.cle)

Fig 2.12: Powerline Network Diagram [34]
The popularization of technology also comes from the ubiquitous power outlets. The
maturing area power wiring system provides a ready-made platform for powerline
communication which leads to convenient installation. HomePlug powerline networks
can also be used to extend wireless coverage by plugging access points into the
powerline network at optimum points. A large number of applications by this

technology are reveals in Table 2.9 [33].

Areas

1 | Whole-home broadband internet

HDTV Networking

Gaming

2
3
4 | Smart Grid / Smart Energy
5 | Whole-Home Audio

Table 2.9: HomePlug Powerline Technology Application [33]
After founded in 2000, the HomePlug Powerline Alliance keeps providing
specification for Powerline networking standardization. Table 2.10 has shown a

compare between different specifications from HomePlug Powerline Alliance.

25



SMART GRID FRAMEWORK ANALYSIS AND ARTIFICIAL NEURAL NETWORK IN LOAD FORECAST

Title

Time
Published

Peak Speed

Description

HomePlug
1.0

2001

14 Mbit/s

In 2008 Telecommunication
Industry Association (TIA)
announced the new TIA-1113
International Standard has deeply
considered the HomePlug 1.0
Technology

HomePlug
AV

2005

200 Mbit/s (PHY)

80 Mbit/s (MAC)

Provides solution for high quality
video distribution with secure
connectivity and build-in Quality-
of-Service. It is fully interoperable
with other HomePlug
specifications and IEEE 1901
except HomePlug 1.0.

HomePlug
AV2

Scheduled
2011

Gigabit level
(PHY)

+600 Mbit/s
(MAC)

HomePlug AV2 is designed to
reliably deliver multiple streams of
HD video throughout the home as
well as next generation low
latency content such as 3D and 4K
HD video.

HomePlug
Green PHY

2010

3.8 Mbit/s (PHY)

1 Mbit/s (MAC)

Developed as Smart Grid
Communications protocol for

connecting home appliances like
HVAC and Smart Meters.

Table 2.10: HomePlug Specifications compare [33] [35]

Other than a splendid communication solution for entertainment distribution,

HomePlug Powerline network will also allow Home Area Network (HAN) to

communicate with smart meters and provide energy management for consumers, By

working with ZigBee Alliance, HomePlug Powerline Alliance is helping to set up

HAN ecosystem that enables intelligent energy management and efficiency in local

area [36].

Fig 2.13: Smart Grid Home Area Network by Power Line Communications [36]
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Smart Grid considers Home Plug Power Line as one of its communication
technologies candidates as it utilize the existing network instead of invest to build a
new one. This feature will reduce the initial investment but the network access is
limited to the existing network sockets, which has less flexibility than the choice of

wireless network.

2.7 Smart Grid Benefit

Power grid smartening and modernization, like any investment, does not come for
free. But the benefits go far beyond the costs. Almost all the new techﬂologies are
born for new requirements with compatibility of new developments. So Smart Grid
development covers the following benefits [37]:
¢ Improvements in Reliability.

» Major Reduction in Outage Duration and Frequency.

> Far Fewer Power Quality Disturbances.

» Virtual Elimination of Regional Blackouts
¢ Improvements in Security and Safety.

> Significantly Reduced Vulnerability to Terrorist Attack And Natural Disasters.

> Improved Public and Worker Safety.
¢ Improved Economics.

» Reduction or Mitigation of Prices.

» New Options for Market Participants.
e Improved Efficiency. _

» More Efficient Operation and Improved Asset Management at Substantially

Lower Costs.

® More environmentally friendly.

» Much Wider Deployment of Environmentally Friendly Resources.

» Electrical Losses Reduced.
If targeting on stakeholder angle, Smart Grid contributes its advantages as follow
items reveals [38]:
* Residential and Small Commercial Customers: Smart Grid provides assessment

and tool for customers to manage their energy consumptions with dynamic pricing.
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Moreover, the enhanced reliability will help to reduce the risk and price by limit
the risk of outage for specially needed people.

e Large Customers: Smart Grid provides more informatics and reliable power
supply with multi Power Quality (PQ) Options.

e Local Governments: Including the consumer benefits, local governments could
also gain advantages on the reduction of accidents or disaster. The more
informatics ability from Smart Grid will help to provide a faster and more
accurate decision making and action enforced.

e Utility/Grid Operators: A more efficient communication platform and data
anaiysis system could increase the automation and the operation efficiency of the
utility, so as to reduce the cost. ‘

e State and Local Economies: The Smart Grid affordability ensures the power
supply for economic development. Moreover, Smart Grid exploits the traditional
market and introduces new markets, providing business chances and jobs. In

| power utilization angle, Smart Grid integrates much more renewable energy,

supporting a sustainable economic development.

2.8 Smart Grid Demonstration Projects

Though Smart Grid appears to contain significant advantages, in specific environment,
how excellent each Smart Grid advantage will be become an urgent question to

answer before deployment. There is still requirement on proves and evidences for
Smart Grid abilities. So demonstration projects or test-beds are applied for examining
the Smart Grid abilities and working status.

2.8.1 Pacific Northwest Smart Grid Demonstration Project

The Pacific Northwest Smart Grid Demonstration Project is a regional project funded
through a competitive process by the DOE under the American Recovery and
reinvestment Act of 2009 (ARRA) across five Pacific Northwest states: Idaho,
Montana, Oregon, Washington, and Wyoming, which involve more than 60,000
metered customers, and will engage, using smart grid technologies, system electricity
assets exceeding 112 megawatts. The intent of the project is to verify the viability of

smart grid technology and quantify smart grid costs and benefits which can be used to
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validate new smart grid business models at a scale that can readily be adapted and

replicated nationally [39].

a .-r(r,n;.:gih. )
T Al I :
71 j“i; bs-4 E’ 5.

Fig 2.14: Key Smart Grid Locations of Pacific Northwest Demonstration Project [39]
The primary objectives of this $178M cost project are listed as follows [39]:

> Develop and validate an interoperable distributed communication and control

infrastructure using incentive signals.

» Measure and validate smart grid costs and benefits for end-users, utilities,
regulators, and others thereby laying the foundations of business cases for future
smart grid investments.

> Contribute to the development of standards and control methodologies.

Apply smart grid capabilities to support the integration of renewable resources.

This five-year project formally started on February 1, 2010. With its influence, up to

1,500 jobs created or retained at the peak of the project. New technology helps to

update the aging electricity delivery system infrastructure and enhance reliability. The

cost-benefit analysis will guide utility decisions on their future investments. The
distributed energy source and the interoperability of the network will help to optimise
the system efficiency and reduce the greenhouse gas emission. Customers will have

more information about their own energy consumption so that they can become more

aware have more choices [39] [40].
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This project is one of the largest Smart Grid projects focusing on demand side issues.

It provides a comparatively framework test to:

> General Distributed Generation, like wind apd solar.

> New appliances, like smart appliances and EV.

» Reliability

» Demand Side Management Issues, including metering, communications, data
analysis and control.

This project is mainly related to customer side and distribution in power system. Test

bed for Smart Grid appearance when deploying general DG, Smart Metering, new

consumption like EV and bi-directional information flow are the main concern of this

project. Though it is difficult to evaluate this project with details as it is still in

process, it is still doubtable to deploy a large project before several small

experimental test as the impact is huge once fail. Moreover, the reliability and ‘

security of Smart Grid is inter-influencing among each sections of power system. It is

in doubt that if a major work in customer side could reflect the entire Smart Grid

ability on solution to Power Quality and disasters. Also, local feature may promote

special DG type. Focusing on general DG type may miss the optimal generation plan.

2.8.2 EPRI Smart Grid Demonstration Initiative

“The EPRI Smart- Grid Demonstration Initiative is a multi-year international
collaborative initiative demonstrating the integration of Distributed Energy Resources
(DER) in large scale demonstration projects. DERs integrated include demand
response, storage, distributed generation, and renewable generation to advance
Widespread, efficient, and cost-effective deployment of utility and customer-side
technologies in the distribution system and to enhance overall power system
operations [41].

This Demonstration Initiative contains several Host-Site Demonstration Projects, with
new structures of DER and several control & management methods. This Host-Site
Demonstration Projeéts include: [41] ‘

¢ American Electric Power (AEP) Smart Grid Demonstration Project.

e Consolidated Edison Smart Grid Demonstration Project.

¢ Duke Energy Smart Grid Demonstration Project

¢ Electricité de France (EDF) Smart Grid Demonstration Project.
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e ESB Networks Smart Grid Demonstration Project

e Exelon Smart Grid Demonstration Project. '

. The FirstEnergy Smart Grid Demonstration Project.

¢ KCP&L Smart Grid Demonstration Project

e PNM Resources Smart Grid Demonstration Project

e Southern California Edison (SCE) Smart Grid Demonstration Project

e Southern Company smart Grid Demonstration Project.

The EPRI Smart Grid Demonstration Initiative is a large Smart Grid project

promoting plan:

» Technologies Promotion: Projects from EPRI Smart Grid Demonstration
Initiative cover most areas in DER, including DG, EV, DR, Pricing, and
Communications and so on. They provide inspections on DER framework
integration and each project focuses on one core task of Smart Grid.

» Market Promotion: Most of projects are supported by one or more Smart Grid
relevant utilities. The cooperation with industry not only relieves the pressure of
government but also increases the industrial lﬁarticipation. Prepare of Smaﬁ Grid
deployment is on the way.

> International Cooperation Promotion: Some of the projects do not locate in the
U.S. only. Like ‘Electricité de France (EDF) Smart Grid Demonstration Project’
is a French project by EDF. '

All the projects in EPRI Demonstration Initiative have placed their target or a part of

target into customer side. So Smart Grid development in consumers section is a

general point of all the projects. E.g. all projects contain Demand Response

Technology. But due to the aim difference, different projects may contain distinct task.

For example, project with EDF is targeting to optimize the integration of distributed

generation, storage and energy efficiency measure for providing load relief and reduce

carbon emission. So this project includes Distributed Generation as it is a main
content but do not include AMI. Comparatively, project ESB prefer to research on
maximize the existing grid ability, connection with large wind farms and the customer
response with real-time demand and consumption management. So AMI is certain
content for it is the base for real-time demand and consumption management. And

DG will not be included as unlike EDF, this project only interest in bulk generation

like wind farm.
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2.9 Conclusion

Smart Grid is a framework of multi-types of technologies and various stakeholders.
This chapter is written aiming to introduce a generally Smart Grid scope design
procedure which reveals the way of organizing various research work into scope
establishment. It also attached Smart Grid details information on Standardization and |
demonstration worldwide. The procedure is introduced as follows.
1) Summarize the aims of national development to form an object for Smart Grid.
2) Based on the object, find out the new contributions to these aims from new
power system, then the contribution forms up the characteristics. So each
characteristic could reflect the aims.
3) With the characteristics, find out what technologies and standards could help
to achieve these characteristics.
4) With the above three steps, a scope design finished.
Considering the necessity of compatibility among segments in Smart Grid, Section
2.6 introduces the current Smart Grid standardization situation worldwide. A variety
of demonstration projects for Smart Grid are revealed as well in Section 2.8.

More Smart Grid reports and papers may refer to [43] - [52].
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Chapter 3

Smart Metering Infrastructure

3.1 Smart Metering Introduction

AS high speed development of fcchnologies today, more and more problems occur in
power utilizations, such as:

® High cost energy consumption.

® Lack of equitable collocation of multi-energy-resources.

® [ow fault detecting speed.

® Pollution and green house gas emit.
Facing these problems, smart grid, a topic recently attracted much attention, is one of
the best choice to improve the situation. And Smart Metering, which is an important
part of Smart Grid, is the closest wéy for energy user to be affected by the advantage
of smart grid technology.
Considering the local requirement, functionalities classification and some other
factors, the definition of Smart Metering Infrastructure, which short as Smart
Metering, appear to be tiny different between countries. In United States, the Smart
Metering Infrastructure, which named as Advanced Metering Infrastructure (AMI), is
given an definition by United States Federal Regulatory Commission (FERC):
“Advanced Metering is a system that records customer consumption (and possibly
other parameters) hourly or more frequently and that provides for daily or more
frequent transmittal of measurements over a central collection point.” [53].
European Smart Metering Alliance provides a structure to describe the Smart

‘Metering definition, which shown in Fig 3.1:
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Customer Service J
Settlement
and Billing
Energy
Servi
Meter reading and ervices
Asset /
Management management Energy
Retail
Power Quality
Management ) g | Telee >mmuniclstjqn e 5
etc.
Distribution Management | Meter End customer possibly with
Distribution Automation Energy Management S.
Energy distribution network ]——{ Energy end use or DER

Fig 3.1: Structure of Smart Metering Infrastructure from ESMA [54]
But whatever definitions, Smart Metering Infrastructure should cover the following
sections:;
e Metering Automation.
¢ Data Analysis.
¢ Communication Platform.
¢ Monitoring and Management
The above 4 sections highlight the advantages between Smart Meter and traditional

meter: bi-directional information flow and platform for new services.

3.2 Smart Metering Infrastructure Benefits

As a kemnel segment of Smart Grid for demand side, Smart Metering Infrastructure
was born for urgent requirement from multi-factors. By classification, drives are
classified by stakeholders: |

Consumers.

Utilities.
® Social and Environment Benefits.
® Other Benefits

3.2.1 Consumer Benefits

Smart Metering Infrastructure provide chances for more options, more informed

services and better optimized control meeting the requirement of higher reliability,
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better power quality and more accurate billing [55]. Examples of consumer benefits
are list below [54] [56] [57]:

More accurate and timely billing.

Improved access to the electricity market via accurate consumption history and
possibilities to benefit from demand flexibility.

Customer access various informed services.

Improved safety of humans and equipment through better power quality and fault

" management.

Ability to manage consumption by allowing customers devices remote control

and communicate with meters.

3.2.2 Utilities Benefits

The Smart Metering Infrastructure helps utilities mainly in billing and operations

improvement. [55]

>

For billing, Smart Metering Infrastructure provide automatic meter reading for
decreasing the cost of manual meter reading. Moreover, the bi-directional
communication with consumers in new billing system helps the utilities in better
decision making,

For operations, Smart Metering Infrastructure provides a real-time optimized grid
and assets mdnitoring and management for improvement of reliability, power

quality and energy efficiency.

Examples of benefits for utilities are listed below: [55]

Assess equipment health.,

Maximize asset utilization and life.

Optimize maintenance, capital and O&M spending.
Pinpoint grid problems.

Improve grid planning

Locate/identify power quality issues.

Detect/reduce energy theft.

3.2.3 Social and Environment Benefits

The world is facing problems in shortage of energy supply, pollution and green house

gas over emit. As a critical section of Smart Grid, Smart Metering Infrastructure

improve energy consumption efficiency through demand response and other
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applications, which not only reduce the direct cost and cost from fault but also
enhance customers awareness of low carbon lifestyle. Clean energy production is also

encouraged for promotion of Renewable Energy from Smart Metering Infrastructure.

324 Other Benefits

The traditional meters deployed are continually over their life-period. New smart
meters’ deployment has just fit to this status by replacing new meters [57]. 4
When recognizing Smart Metering Infrastructure as a platform of Smart Grid,
communication infrastructure and other applications from Smart Metering
Infrastructure could benefit other segments of Smart Grid, such as distribution,
transmission and assets management. Also, Smart Metering Infrastructure promotes
relevant development of technologies and industries such as the following areas [57]:
Integrated Communications.

Sensing and Measurement.

® Advanced Control Methods.
® Advanced Grid Components.
@

Improved Interfaces & Decision Support.

3.3 Smart Metering Technologies

Once the requirement and definition of Smart Metering is clear, its necessary related
technologies are obvious. The new metering system not only suffer the data reading
ability from traditional system but also achieves communication, analysis and
providing management of relevant segment of power grid.

European Smart Metering Alliance summarizes the Smart Metering technology
options in Table 3.1 [58];

Technologies Relevant ‘ Description

Classifications | Consideration

Meter Design Measured Measure data of electricity, gas, heat/cooling,

Options quantities’ and water and so on.

Time interval | Multi-time-scale; short from millisecond to

long as monthly or yearly.

Disaggregated | Data classification for further analysis

36



SMART GRID FRAMEWORK ANALYSIS AND ARTIFICIAL NEURAL NETWORK IN LOAD FORECAST

Data
Switch/valve | For requirement of limits, payment service and
remote meter management.
Multiple and | Multi-pricing services
dynamic tariffs
Wide area data | Considerations | Universality, reliability availability and

systems and

processing and

communication | for wide area | transfer time of WAN, security, relevant
networks Support, data accuracy and consistency,
(WAN) bandwidth, speed of response, public/private
communications networks, interoperability,
multi-utility
Software Data collection,

data stores storage.
Customer feed Customer Several feedback data assessment such as
back and local | feedback route | mobile text, internet and so on. '
area / options
communication | LAN and final | Considering: Security, multi-utility and smart
customer homes, demand response and embedded
feedback design | generation, data transfer rate, installation cost,
considerations. | meter battery life and disposal, meter and
display energy usage.
Feedback and | Display services and technologies selection
display to final
| customer
consideration

Table 3.1: Samples of Smart Metering technology options from ESMA

Other than the above European description, the United States National Energy

Technology Laboratory (NETL) summarizes another Smart Metering technologies

classification in NETL Modern Grid Strategy. It collects the relevant technologies

into the following five classes [55]:

e Smart Meters

e Wide-area communications infrastructure.
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e Home (local) area networks (HANs).

e Meter Data Management Systems (MDMS)

e Operational Gateways

Compare to the Smart Metering from ESMA, NETL describes Smart Metering in an

application framework other than in technical side.

3.4 Smart Metering Standards

Smart Metering Standardization is essential for industrial and market promotion while
preventing redundancies and chaos. Several standardizations for Smart Metering are
being processed or born already such as:

e The United States National Institute of Standards and Technology (NIST) have
promoted a Smart Grid Interoperability Standards, covering Smart Metering
intcroperability [59].

e The Commission to the European Standardization Organization (ESOs) has
promoted a specific mandate (M/441), which is “To create European Standards
that will enable interoperability of utility meters (water, gas, electricity, heat )
which can then improve the means by which customers’ awareness of actual
consumption can be raised in order to allow timely adaptation in their demands”
[10].

As the Chapter 2 describe, IEC has published its “IEC Smart Grid Standardization

Roadmap” for the whole Smart Grid planning and deployment. Smart Metering, as the

core section of Smart Grid, is described systematically in this roadmap. Examples of

IEC Smart Metering Standards are revealed in Table 3.2:

1IEC 1EC Standards ' Description
Standards '
Types
Product IEC 62054 parts | Electricity metering (a.c.) — Tariff and load
standards 11 and 21 control specify type test requirements and

test methods for tariff and load control

equipments.

Payment IEC 62055 series | Payment systems specify a framework for
systems Electricity standardization.

standard Metering
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Reliability IEC 62059 series | Dependability specifies reliability prediction
standards Electricity and assessment methods.
metering

equipment

Standards for | IEC 62056 series | Data exchange for meter reading, tariff and

data exchange load control specifies meter data exchange.

Table 3.2: Samples of IEC Smart Metering Standards [29]

3.5 Smart Metering Worldwide

Smart Metering Infrastructure is focused around the whole world as Smart Grid
development in all countries. Different countries perform different procedures. Fig 3.2

reveals parts of the Smart Metering progress worldwide:
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Fig 3.2: Smart Metering Projects Worldwide [60]

3.5.1 Smart Metering in UK

In 2009, following other EU countries’ application, UK government had announced
that the smart metering program was paved and First Utility was chosen to be the first

provider of smart meters.
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The upgrade of smart meters cost each household 340 GBP, which is believed to be
saved back from the high bills in the future. Compare to the bills of old style meters,
£800 for gas and £445 for electricity annually, new smart meters could help people
save more than £28 every year, which is 2% to 3% on estimation.

This smart metering program is supposed to be finished by 2020. UK government
place strong wishes on this meter upgrading, hoping it could change the power
consumption habit of people. Also, on estimated, after the finishing of this program
UK could reduce CO2 emissions by 2.6 tones, which contributes to improvement of

climate situations [61].

3.5.2 Smart Metering fn Italy

When talking about smart metering industrial program, Italy is an unavoidable
topic. With the largest and earliest development of smart metering, Italy, cooperated
with ENEL, becomes a star in smart grid application worldwide and Italian achieved
to be the first group of people to share to benefit from smart metering technology.

Before meters upgraded from 2001, probably due to that the material for energy
generation is hydrocarbons, Italian suffered a higher energy bills than other European
countries, which using nuclear power and other cheaper resources instead. The high
demand of reduction in energy bills, with some other factors, made the midwifery of
smart metering application.

Until 2001, the third-largest energy provider in EU, ENEL, had depicted a plan for
5 years, covering 40 million homes and business. New meters in used are based on
power line technology from Echelon Corporation. All the new functions other than
old meter were own designed.

As the result of early deploy of smart metering, Italy is the first country, probably the
only country, enjoying the rich benefit from energy savings. The harvest is up to $750
million annually. Italy has provided a good experiment and example to the world.
After its deployment, countries all over the world started their own smart mcteﬁng

program one after another [13] [62].

3.5.3 Smart Metering in United States

Holding the largest economy and nearly the highest electricity consumption in the
world, the United State requires a better effective in power system as well as China.

California is a typical example. As a result of its climate, a summer peak demand
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for near 50-100 hours every year appears to this state. Hot weather leads to more
usage of air-conditioner, then influencing the electricity usage deeply. In this
situation, the state’s three largest investor-owned utilities, Pacific Gas & Electric Co.,
Southern California Edison and San Diego Gas & Electric, started their projects on
deploying new meters of two-way communicating to their customers.

Set PE&G as an example. On July 20, 2006, PE&G received a project of meters
updating from California’s energy agency on near 9 million household customers in
* Northern California. New meters have the ability on recording and reporting the
consumed gas and electricity and the price hourly. Users could shift their energy
usage to a cheaper time, e.g. off-peak time, to save their bills [13] [62].

According to the California Public Utilities Commission, the savings from new
meters will cover about 70% of smart meter investment.

Other states in US are following. Los Angeles Department of Water and Power
(LADWP), which is the largest municipal utility in the USA, decided to apply the
AMI (Automatic Metering Infrastructure) to their own customers. Austin Energy also
begun to deploy a two-way RF mesh network and around 260,000 residential smart
meters from 2008, and more than 165,000 smart meters have been installed by
2009{13].

An interesting phenomenon in USA is that IT giants like Google, Microsoft and Cisco
have also entered this area providing their products. Google and Microsoft have Web-
based software, which offer chances for them to popularize in partnerships with
utilities and smart meter makers, and Cisco has plans to make home energy

management hardware as part of a broad-ranging set of smart grid efforts [13].

3.5.4 Smart Metering in Oceania

In Australia, states have already taken actions on smart metering deployment, like
Victoria State. The so-call Advanced Metering Infrastructure (AMI) program is
started, trying to reduce their energy consumption and the carbon emission. The
influence will spread up to 2.2 million homes and 300,000 businesses. The new
meters include most of new abilities of smart meters, such as accurate electricity
pricing system for every 30 minutes and a two-way communication between power
companies and customers. A study made by National Cost Benefit Analysis reveals
near $700 million benefit coming from the coming two decades.

In another country of Oceania, New Zealand started its smart metering program at
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2006. But the effects of the new technologies are not as good as expected. The New
Zealand Parliament was presented a report in June 2009; bring the installed smart
meters to account. This report reveals that new meters have problems in real-time-
monitoring functions. What’s more, the new meters cannot communicate with other
devices for lacking a device at initial installation. Problems also occur in lacking of
other basic functions and compatibility as the result of no an agreed standard for -
corporations. These make the deployment of smart metering in New Zealand an

example of opposite side [13] [62].

3.6' Conclusion

As a core section of Smart Grid, Smart Metering becomes a base for a lot of
technologies integration. As Section 3.1 introduces, Smart Metering is not only a
better automatic digital measurer but also helps in data analysis and management. It
has a wide beneficial range (Section 3.2) and needs a verity of technologies support
(Section 3.3). It also appears to be one of the Smart Grid segments which achieve
deepest development. Various standards and deployment procedures are born (Section

3.4 and 3.5). More Smart Metering reports and papers may refer to [63] to [67].
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Chapter 4

Artificial Neural Network in Load Forecasting of

Smart Grid

4.1 Introduction to load forecasting

The load being forecasted in Smart Grid is the power utilized by a specific group of
customers at a time point of a period of time. It is a multi-factor-related nonlinear
problem including the time factors, the weather factors and other influencing factors.
It is widely applied in all power system segments facing different specific
requirements from commercial, industrial and residential situations.

Separated from the range of time, power system load forecasting could be classified
into three categories: short-term load forecasting which focus from minutes to one
week; medium forecasting which focus from one week to a year and the long-term
load forecasting which focus from one year to more than decades. The nature of load
variation between different time horizons is different. Generally speaking the larger
the time range is, the more influencing factors will appear and the more complexity
the problem will be. For example, if talking about short term load of a city in a day, it
could be influenced by weather, time, and customer behaviours. But when the time
range expanded to decades, the economic variation should be considered as it may
manipulate the power consumption. Due 'to this reason, short-term load forecasting
could achieve accuracy as less than 8% for next day load but the long-term load
forecasting could not. Load forecasting for longer time range usually focuses on more
general power load, like the next year peak load forecasting. Figure 4.1 reveals an

example of load forecasting.
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Ontario Demand (M) Projected Actual
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Fig 4.1: Load forecasting on August 30, 2011 for Canadian Ontario Demand by ieso
[79]

LLoad forecasting helps decision making for electric utilities in electric power
generation, load switching and infrastructure development. Base on weather
information, utilities could approximate load flow situation and prevent overloading
by short-term load forecasting data. It also helps in decreasing the failure and
blackouts. In Smart Grid demand response, customers will receive the predicted price
from utilities at smart meters that help users to manage their consumption. The
predicted price is based on load forecast with the latest load information. So load
forecast is a basic element for demand response in Smart Grid.

Various short term load forecast methods have already developed. [103] introduce an
exponential smoothing algorithm for weekdays’ load forecast. It provides a smooth
enough result but only recognize the load curve shape instead. Large error may occur
if the model does not focus on the influencing pattern but only the curve shape. [104]
suggested a Similar Day method based on searching historical days. This method
mainly based on the similarity of the historical data and will achieve a good result if
the load repeating regularly. However, it is not sufficient enough to capture complex
pattern. [105] provides a wavelet based neural networks for short term load
forecasting. It successfully achieves a pattern recognized forecaster with smooth
output. But in actual situation it is difficult to say if some of harmonics are belongs to
real demand. So the prediction of wavelet neural network will have better
generalization ability but to a degree will ignore some practical situation. [106] has
introduce load forecast by Artificial Neural Network with weather data, but the
weather influence is not all exact but contains fuzzy concept. This factor may lead to

large error in some special case. More materials for load forecasting are introduced in
[68] to [78].
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In this chapter the load forecasting target will be the load forecasting problem in
Ontario power consumption, Canada. The historical data will be from 2007 to 2009.
An Artificial Neural Network based exact — fuzzy forecasting framework is designed
with multi-influencing factors, including exact data and fuzzy data of weather

condition as well as other influencing factors.

4.2 Introduction to Artificial Neural Network (ANN)

4.2.1 Artificial Neural Network Model

Human’s biological brain can be recognized as a biology-based information
processing system. It receives signal from sensors, like eyes, skin, ears, to collect
information outside, forming an inside recognizable model and guide the decision
making, including pattern recognition and forecasting.

Neurons are the chief components of the brain. The connections between neurons
shape various highly coupled serial or parallel networks. Generally the human brain
palliums contain over 10 billion neurons [80]. There are multi-types of specific
neurons in our brain. A neuron from each type could connect by signal to other
hundreds or thousands neurons [81]. Though a single neurons take time to process a
single event in milliseconds level, which far longer than 10 second in silicon chips.
But the human brain’s each action per second only takes energy at level 107 J,
comparing to the best computer today at 10 J [80]. Moreover, the information

collected and stored in human brain is quite larger than the best technology today.

Dendrite \

Fig 4.2 reveals the structure of a biological neuron that the brain works with. There 3

core segments:
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» Dendrite: short branch stretching out from the neuron cell body. It collects
signals from outside or other neurons with weights.
> Axon: a long branch stretching out from the neuron cell body. It passes the
signals from the neuron cell body.
» Neuron cell body: It collects the signal from dendrites and process the sum of
the signal. The result is passed to Axon.
So by extracting the signal processing procedure from a single neuron’s operation

statué, the result will be as shown in Fig 4.3.

Dendrite Neuron Axon’
Body Cell

(= /e Y

' Fig 4.3: Neuron working procedure
From Fig.4.3, signals x are passed from Dendrite with weights w to Neuron Cell Body.
After a summarization and a processing function, the neuron gives out an output y.
This is the basic model of Artificial Neural Network. In 1940s McCulloch-Pitts
mentioned a neuron model with threshold [83]. The threshold is equal to add a bias to
the summarization, which can be recognized as another input with weight 1. This will

 be discussed in the following content.

4.2.2 History of Artificial Neural Network Development

The Artificial Neural Network development generally experiences 3 stages.

» Starting Stage: from the beginning of 20™ century to 1969

> Silent Stage: from 1969 to 1982.

» Prospefous Stage: from 1982 till now.
The development of math, biology and computing technology are the three main
promotions to ANN development, influencing the developing limit as well. Table 4.1

reveals some important events of ANN development history.
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Time Events

1943 McCulloch and Pitts summarized basic neuron model, MP model,
which is said to be the creation of Artificial Intelligence. [83]
1949 D.O. Hebb promote Hebb Learning Rules in his book “The

Organization of Behaviour” for weight learning in ANN

1957 Rosenblatt promoted a new concept: Perceptron, which suggesting a

new supervising learning method for pattern recognition.

1960 Widrow and Hoff introduce Least Mean-Square, LMS, for Adaptive

Linear Element.

1980 Grossberg established Adaptive Resonance Theory for self-

organizing theory,

1984 Hopfield design his ANN model electric circuits.

1986 Rumelhart, Hinton and Williams develop the Back-Propagation
algorithm in their book “Parallel Distributed Processing:

Explorations in the Microstructures of Cognition”

Table 4.1: Important Events of ANN Development
The ability of non-linear and parallel learning and memory attracts attention in
various areas as modelling, time series analysis, pattem recognition, signal processing
and control, especially facing problems that lack of physical understanding or non-

linear varying data.

4.3 Theory of Perceptron

4.3.1 Perceptron Basic

Perceptron was first introduced by Rosenblatt in 1957 as a typical model of supervise
learning. It is a basic feed forward network that achieves approximation to specific

mapping. Fig 4.4 introduces the model of a single layer Perceptron.
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Input Perceptron Neuron

Fig 4.4: Perceptron neuron model
The model accepts n inputs with corresponding n weights. Neuron sums up all the
input with weights then passes to a function f, which named activation function. b in
Fig4.4isa bias,'which standing for the threshold value mentioned in 4.2.1. Equation

4.1 expresses the relation in Perceptron model.

y= (0.5 +b)

(4.1)

The activation function plays a core segment in ANN information processing. It is a
function with the following features:
» Non-linear: Achieves non-linear mapping between function input and output,
making it possible for non-linear mapping between Perceptron input and
output.

» Continuous and differentiate: The differentiable and continuous feature

support the weight variation in Back-Propagation training, which will be
‘mentioned in 4.5.

> Between a range limited by an upper value and bottom value: Limits the
output value.

Normally activation function has three types: Step function and sigmoid functions.
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Step function
The Step function is firstly introduced when single layer perceptron was created. It
simulates the working mode of biological neuron. Table 4.2 introduces the step

function.

Step Function
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Table 4.2: Step function for activation function
Sigmoid function
Sigmoid function stands for all the function whose shape similar to letter S. It is the
most widely used function, including series of logarithm functions and series of

hyperbolic tangent functions. Sample is selected in Table 4.3.

Step Function
Y 1+e™
i i ] [} ]
] ] ] ] ]
mm e o o -—— - bommm oo
1 t 1 t ]
| ] t 1
08k = - = == L e - LR R 7 aliad - L
] t ' ] ]
' ] ] ] ]
08 ~ = = = = =~ L L LY SR $mm—————- L
1 i ) ] i
i { t 1
04l = = =~ ~ [ [ U 4 - b mm——— -]
] 1 1 ] t
1 ( ] t I
02 = = = = = b~ - - — L N - L ) P ——
t ] ] ]
] ] ] I ]
() e e e e bmm = bmme oo b e
] 1 1 ] t
] | 1 ] t
1 1 1 . N
.026 -4 2 0 2 4 [ ]

Table 4.3: Sigmoid function for activation function

4.3.2 Multi-layer Perceptron (MLP)

Multi-layer Perceptron is an expansion of Perceptron neuron model. As Fig 4.5
reveals, there are three types of layers in the MLP’s architecture, which are input layer,

hidden layers and output layer. Input layer accepts network input from outside while
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hidden layers and output layer contains the perceptron neurons. Number of neurons in
input layer is the dimension of input vector while dimension of output vector
determines the number of neurons in output layer. The number of hidden layers and
the number of neurons in each hidden layer are controllable by users. It deeply
influences the complexity and the performance of MLP. Between each two layers, the
output from one neuron is passed to neurons in the next layer with weights. These
weights are the core members for neural network training. In other words, Artificial
Neural Network is processed by architecture selection and weights selection to

achieve a preferred mapping between input and output.

Input Hidden Hidden Output
Layeri Layer]j Layerm Layer p

Fig 4.5: Simplified Model of Multi-Layer Perceptron ‘

In 1989, G.Cybenkot provide a demonstration in Reference [84], revealing that any
continuous function can be uniformly approximated by a continuous neural network
having only one internal hidden layer and with an arbitrary continuous sigmoidal
nonlinearity in the unit hypercube. In the same year KEN-ICHI FUNAHASHI proved
the approximation realization ability of a k (=3) - layers ANN in Reference [85]. The

similar demonstration provides a mathematic insurance of the model possibility.

4.4 Back-Propagation Training of Multi-layer Perceptron

Models are born without any realization of the target problem before learning or
training. The Process of training is the procedure of looking for best parameters set to

approximate the mapping.
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4.4.1 Supervised Learning and Unsupervised Learning

For machine learning, there are two general learning style, unsupervised learning and
supervised learning. Unsupervised learning is a learning style operating without
influence from outside. It usually provides output by competition. Supervised leaming.
brings a target for each set of input to guide the system learning. System refers to the

target and tries to fit itself closer to the preferred output.

4.4.2 Delta rule and Gradient Descent with Batch Learmning

Gradient descent is an optimization algorithm with first-order differentiation targeting
on the local minimum of a function. It is a widely applied optimization method. If
there is a continuous function f(x), Equation 4.2 introduces this method for local

. minimum in a general case with this function. As it is shown, at the point X, the
searching direction for new point X4 is the négative of the gradient. 1 is a small

positive value that controls the step length.

Xn+1=Xn+AX,,=X,.—nM (4.2)
dXx

Delta rule, or so-call Widrow-Hoff mlé, is the Gradient Descent application in
Artificial Neural Network weights learning. The function whose minimum is
interested is the least mean square error between real network output and the térgcts.
The whole training process with Delta rule will be described in the following section.
There are two training styles in ANN training, serial learning and batch learning.
When using a training set, serial learning means that the error is calculated as every
training element pass through the model. Compare to serial leaming, batch learning
groups all the training vectors into one epoch to calculate the average error. Though
the serial learning cost less spacé and could achieve higher speed, it could not assure
converging to the minimum. Batch learning operates with larger data amount, but it is

easier to converge.

4.4.3 Back-Propagation (BP) Training Theory

Back-Propagation training is an expansion of Delta rule. With utilizing the negative
gradient direction, the weights in ANN update from output side gradually to input side,

so as to improve the system closer to the specific mapping. This method is held by
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Werbos firstly in [86] and developed by Rumelhart in his book “Parallel Distributed
Processing: Explorations in the Microstructures of Cognition” [86].
Each step of BP training is generally divided into two segments as Fig 4.6 shows:

e Forward Calculation: With the present weights and input, calculate the
present output. \

e Error Propagation: Error signal is generated by the differences between
present output and target. With this signal, procedure is taken gradually from
output side to input side. Following this procedure, weights are gradually
adjusted by the error signal.

Side Side

>
>

v

——0

Forward —_——
Calculation

Error - S,
Propagation

Fig 4.6: Forward Calculation and Error Propagation in BP

* An ANN model with one input layer with input number I, one hidden layer with J
neurons, and one output layer with 6utput number P is selected to reveal details of
Back—Propagation Training in the following section. Fig 4.7 reveals the selected

model. Batch learning is selected for a better model converges.

Input Hidden Output
Layer| Layer) Layer p
X C

Ny C
@,

Fig 4.7: Typical 3 layers ANN
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Back-Propagation Training Calculation Prepare

Assume the training set X =[X,,X,,-:-,X ] contains N groups of input vectors. In
each input vector X, =[x,,,x,;,"* x,,] (k=12,---,N), there are I elements, which is
the same as neurons’ number in input layer i. The actual output corresponding to the
ka input vector X, =[x,1,%5," Xy 18 Y, =[¥41, Ysp»*** Vie ], the same as the model’s
output number. The expcctéd output corresponding to the‘ka, input vector,l so-éall
target, ist, =[t,,,¢,,,"**1,»]. Assume the training process is at the ny, epoch.

The function that wished to be achieved minimum is batch average error E,, in

equation 4.3.

B (=3 ()

hd

1 P 5 .
E(n)==) e‘nn
k( ) 2; kp( ) 43)
ekp(n) =l "ykp(n)

o

Equation 4.3 description: for the ky, input vector from training input set:
® ¢, (n): It is the error between target and actual output at the p, element in
the output vector at the n" iteration.

e E,(n):Itis the Least Mean Square error between the whole target vector and

the output vector corresponding to the ky, input vector at the n™ iteration.
e E_(n): It is the target function whose minimum is interested. It is the batch
learning error considering the errors corresponding to all the training input
vectors at the n” iteration.
Due to the Delta rule, the weights learning obey relationship in Equation 4.4.
0E,,(n) ]
dw, |
dE_, (n) (4.4)
0w

0, (n+1) =0;(n)+Aw,(n)=0,(n)-€

®,(n+) =0, (n)+Ao, (") =0,(n)-¢

p )
Equation 4.4 description:

* It is the weight between the i,y input element and the jy, neuron in the

hidden layer.
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° W, It is the weight between the j, neuron in hidden layer and the p,, neuron

in the output layer.
* The whole Equation 4.4 reveals that the variation direction of the weights is
towards the negative gradient and the step length is controlled by a parameter

E.

Forward Calculation :

For batch learning, the whole training input set is passed to the ANN in every epoch.
At the ny, epoch, when the ky, input vector arrives at the input layer, forward
calculation of the ANN model is shown in Equation 4.5 |

I I
uy(n)= ;wy(n)xk, vy ()= f(uy () = [, 0, (m)x,)

=]

uy (n) = Zw,p (W5 (1) Vo ()= 7, G () = 1, (30, (nV ()

J=l

)

4.5)
Vi (n) =V, (n)

J
Equation (4.5) description: this is the forward calculation corresponding to the ki,
input vector at the ny, epoch.

® x,:1Itisthe iy element in the input vector.
* o, (n)is the weight between the i\, neuron in input layer i and the j, neuron in
hidden layer j; ®,(n) is the weight between the j neuron in hidden layer j

and the py, neuron in output layer p.

® u,(n): Itis the input of the ji, neuron in hidden layer j, which is achieved by
the sum of all the output in the previous layer multiplied with their weights;

u,,(n) is the input of the py, neuron in output layer p.
* Vv (n): It is the output of the ji, neuron in hidden layer j; v ,(n) is the output
of the pw neuron in output layer p; y,,(n)is the ps element in the output

vector.

* f;0: It is the activation Sunction in the hidden layer j; f » O is the activation

JSunction in the output layer p.
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Error Propagation

To look backward from the output side in Fig 4.7, weights between the hidden layer j
and the output layer p are firstly updated. Considering Equation (4.4), the variation of
weights is determined by the negative gradient and a small length step controlling

variable € as Delta-rule revealed in Equation (4.6).

Aw,, (n) =-€ g—g—”a—)(—n)- 4 (4.6)
Note Equation (4.3):
oE_ (n) _ _l_i oE,(n) \
80)].1, =1 a(Djp ,
OE,(n) _ 0E,(n) 9¢y,(n) 9y, (n) duy(n) @.7)
0w i de,, W duy, 0w, |

Consider Equation (4.7) with (4.3) and (4.5), the second equation in Equation (4.7)
could be solved in Equation (4.8).

3E, () dep(n) | dyy(n) Up () _
dey, W, b ouy, =l )), ® v U

=e,,(n);

In(4.8), f, () is the differentiation of f| » 0 in Equation (4.5). With Equation (4.7) and

(4.8), the vanatlon Aw ,(n) could be calculated:

afmf:) =~y (1)1, )V ()
0, (n)= B (n)-f, @, ()
oE oL,,(n) (n 1 >
20, = “Z{% (n) v 4 ()] 4.9)
___9E,(n)
Aw,, (n)=-¢ ———amjp |

- When weights between output layer p and hidden layer j finish their updates,
propagation procedure move to the weights between hidden layer j and input layer i.

The variation of weights is still from Equation (4.4)
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oE_(n)
Aw;(n)=-¢ —5?0—”— (4.10)

Note Equation (4.10) with (4.3) and (4.5):

0E,(n) _ 1 <~ 0E(n)
0w, N kz:‘ dw, }
aE () _ 9E,(n) 9vy(m) u, (n) _ aE (1) . (4.11)
o, - v, Ou 0o,  ov, D

y y J

kp

Consider Equations (4.3) and (4.11)

dE,(n) _ Z”: (n)- 222 aekp (n) i[ ). ae,q, (n) aukp (n)]
=26 € (4.12)

aV kp p=1 p=l p : av kp

From Equation (4.5), the two partial differentiations in Equation (4.12) could be

transformed into (4.13):
dep(n) _
au "
du,, (n)
v ki

With Equations (4.11), (4.12), (4.13) and (4.9), the variation Aw, (n)could be

-/, (uy, (n))

(4.13)
= (ij (n)

4

calculated in Equation (4.14).

aEk (n)
am,.,
84 (m) = f;(uy (7)) D8, ()0, (n)) |
=1 | (4.14)
Amij (n) =—£ ?_Eﬂ_(_’z).
om

Batch Training Steps summary

=61g'(n)'xki ‘

g

j J
With the weights update methods introduced above, training steps of BP batch

training is summarized as below [81]:

Step 1. Initialize all the weights into non-zero random value,
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Step 2. Use Forward Calculation to calculate the E_ (r)in Equation (4.3). Compare
E_,(n) and the error acceptable limit, goal. If E_ (n)is iarger than the goal,
turn to Step 3. Otherwise turn to Step 5. -

Step 3. Compare the iteration number n to its limit. If n is larger, turn to Step 5.
Otherwise turn to Step 4.

Step 4. Use Error Propagation to calculate all o,(n+1)and @, (n +1) to update

weights. Then turn to Step 2.
Step 5. Output the trained network and finish training.

Fig 4.8 summarize the above five steps.

Initialize
Weights

Forward "
Calculation

n > Limit?

, No
Error
Training Propagation
Finished and Weights
Update

Fig 4.8: ANN Batch Training Step

4.4.4 Back-Propagation Trained ANN for Power Grid Load Forecasting

As previous sections mentioning, the hourly short-term load forecast problem in this
chapter is the power demand forecast of Ontario province in Canada from Nov 11%,
2008 to Oct 31%, 2009. The ANN training data is from Nov 11", 2005 to Oct 31%,
2008, which is 3 years data before the target period. 15% of training data is picked out
as validation set for early stopping against over-fitting. The over-fitting problem will

be discussed in section 4.6.4.
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All the calculation will be performed in Matlab 7.11.0 (R2010b), with computer
details listed in Table 4.2. Matlab is a programming environment for algorithm
development, data analysis and numerical computation. With similar grammar as C++,
Matlab has an affluent base function for various mathematical applications. Matlab
will also integrate multiple toolboxes for specified area applications. Neural Network
toolbox is the one used for load forecast in this thesis. It provides several typical
neural networks including Multi-layer Perceptron. The toolbox provides a user
friendly interface with easy-parameter-setting panel. The establishment and updates
for ANN model is convenient. Moreover, once there is a requirement for a new ANN
which is not included in the toolbox, the powerful mathematical based functions will
help the user to build the model with coding easily. So though the Matlab may require
more skill in programming, it is a good tool for ANNSs in load forecast. For Multi-- |
layer Perceptron, Chapter 4 deploys the ANN training with Multi-layer Perceptron
Section in Matlab 7.11.0 (R2010b) Neural Network Toolbox.

Computer Type
Hard Ware
CPU Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz 2.99 GHz
Installed | 4.00 GB
Memory

Operating | Windows 7 Ultimate Service Pack 1
System

Hard Disk | 465 GB
Table 4.4: Computer details for ANN training

Architecture of Load Forecast System

In power system short-term load forecast, ANN achieves mapping between power

demand and its influencing factors. The model assumption is listed below:
® Assume the influencing factors considered in Fig 4.9 are all the main factors
affecting load pattern in the historical data for training and in the future forecast
period.
® Assume the difference in data quality due to load change is acceptable
between the past and in future forecast period

The above assumptions are necessary for ANN prediction as they promised the

mapping stability between input and output space. Under these assumptions, the
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mapping learned by ANN from historical data could reflect the mapping in the future

forecast period. But once the influencing factors changed or the mapping between

influencing factors and the load changed, there will be unpredictable impacts occurred

in the forecast accuracy.

Fig 4.9 reveals relevant influencing factors for power demand. As shown, the

following factors are considered:

> Weather Condition: Weather status has a great impact on human comfort so

that to impact on power devices selection and their utilization amount and time

length.

Day Style: People perform different lifestyle between in working days and in
holidays.

Demand of the Previous Point: Provide a reference for forecast.

Time Points Index: Power consumption appears to be different at each

specific hour in a day.

Influencing Factors <{———— Mapping [————» Target

Weather

o e
Condition

Day Style =~ ———>

ANN Model ————> Demand

Demand of the
¢ o _é
Previous Point

Time Point Index ——————

Fig 4.9: Influencing factors for power demand

In Weather Condition from Fig 4.9, human comfort is the main reason that leads to

various demand requirements. There are 7 factors stimulus the human comfort [88]:

Temperature

Dew Point Temperature
Relative Humidity
Wind Speed

Visibility
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e Atmosphere Pressure
- o Weather Status

In the 7 factors above, the first 6 factors are exact value variables directly related to
human comfort. The last factor is a fuzzy data that influencing human’s life style,
which contains the following 6 indices:

» Clear Index: (0, 0.5, 1)

> Cloudy Index: (0, 0.5, 1)

> Fogy Index: (0, 0.5, 1)

> Rain Index: (0, 0.25, 0.5, 0.75, 1)

» Thunderstorms Index: (0, 0.5, 1)

> Snow Index: (00.30.61)
Each index is one of the values. in the brackets above. They are value between 0 and l;
which describing how heavy the situation is.
Specific in Ontario Province, population and power consumption are mainly
centralized in south and the south east, as shown in Fig 4.10. Due to weather in
different cities may vary; multi-points of weather condition will be selected at load
centres. The weather data in Thunder Bay, Timmins and Toronto are selected for
ANN training.
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Fig 4.10: Canadian Population Distribution Map [88]
All the weather data is from [89].

Performance Measurement
Once networks are trained, indices reflecting the mapping approximation ability
should be applied for performance measurement.
e Root Mean Squared Error (RMSE): Index quantifying difference between
the prediction and the real demand by Equation (4.15). It has the same unit as

the prediction output.

2 z:"(Out, = Tart)z
m

RMSE =

(4.15)

In Equation (4.15), m stands for total number of prediction outputs. Out; and
Tar; are the network output and the corresponding target to the i" testing data.
® Mean Absolute Percentage Error (MAPE): Index quantifying difference
between the prediction and the real demand with reference percentage to the
real demand. It is a percentage indicating how much percentage the difference

is compare to the real demand. Equation (4.16) introduces the MAPE:
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mapE=L%

m=;

Tar, = Out,
Tar,

mean

(4.16)

In Equation (4.16), the variables have the same meaning as the ones in

Equation (4.15).
ANN Training

Performance of ANN by Back-Propagation training is effected by:

e ANN architecture: For a 3-layer ANN, the architecture is determined by

neurons number in the hidden layer.

o Learning step length: ¢ in Equation (4.4), is learning rate.

¢ Error acceptable limit: An index in training used to reflect aéceptable

~ solution.

¢ Limit of batch training iteration: » in Equation (4.4), is epoch used to

prevent from an unlimited training.

For the best approximation, the goal is set to 0.0001 for accuracy level. The best

epoch limit and leaming rate are different between networks with different

architecture. The ANN architecture and the learning step length should be optimized

for the most suitable network selection. Table 4.5 reveals a process for ANN

architecture selection.

Network Architecture

(neurons in hidden layer)

Network Training

Parameter

Training Performance

5 Goal: 0.0001; Ave Train MSE: 0.0109
Epoch Limit: 300 Ave CPU Time: 200.1066s
Best Learning Rate: 0.05 | Ave MAPE: 16.36%

10 Goal: 0.0001; Ave Train MSE:0.0080
Epoch Limit: 300 Ave CPU Time:261.4057s
Best Learning Rate: Ave MAPE: 13.99%
0.055

20 Goal: 0.0001; Ave Train MSE:0.0059
Epoch Limit: 300 Ave CPU Time:284.7701s
Best Learning Rate: 1 Ave MAPE: 11.18%

50 Goal: 0.0001; Ave Train MSE:0.0093
Epoch Limit: 300 Ave CPU Time:420.6352s

Best Learning Rate: 0.35

Ave MAPE: 11.97%
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100 Goal: 0.0001; Ave Train MSE:0.0091
Epoch Limit: 300 Ave CPU Time:447.6930
Best Learning Rate: 0.35 | Ave MAPE: 11.15%

Table 4.5: ANN selection for BP training in load forecasting
Table 4.5 introduces 5 types of candidate networks whose differences are placed on
the neurons’ number in hidden layer. For each network, compare to the given goal and
epoch limit, 10s of networks is investigated to looking for the best learning rate. After
the best learning rate fixed, 10s of networks in the same type with different initial
weights are trained by BP algorithm. The measurement is provided in the following
three indices in the table:
® Ave Train MSE: The average value of all the Mean Squared Error
performances of the same type networks corresponding to training data set.
e Ave CPU Time: The average CPU time spent by a certain type of networks.
e Ave MAPE: The average Mean Absolute Percentage Error achieved by a
certain type of networks, corresponding to testing data set.

Fig 4.11 is another view on ANN selection of Table 4.5.
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Fig 4.11: Measurement indices for ANN selection «
In Fig 4.11, network performance, MSE and MAPE, decrease as increasing the
neurons in hidden layer. As the neuron number is over 13, the performance appears to
decrease not obviously. But the CPU time keeps increasing as more neurons in hidden
layer increase the amount of calculation data. For achieving the best performance with
less time, 20 neurons in hidden layer is selected. Table 4.6 provides result from an

ANN load prediction by a network with 20 hidden neurons.
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Network Network Training Parameter Training Performance
Architecture
20 Goal: 0.0001; Train MSE: 0.00081077
Training Epoch: 2000 CPU Time: 1695.3s
Best Learning Rate: 1 MAPE: 5.47%
Sample 0.02 . . . , , : ‘
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1.3
Feb 8th 2009 Feb 10th 2008 Feb 11th 2000

Table 4.6: Load forecasting by an ANN with 20 neurons in hidden layer
Table 4.6 reveals the training converging procedure. Back-propagation with delta-rule
indeed figures out a way for ANN error minimization. Deploying with testing data,
the predicted load mainly follows the trend of actual load in an MAPE 5.47%. But the

CPU time is as long as 28.25 minutes.

4.5 Back-Propagation Training Improvement

Back-Propagation trained ANN has the capability to approximate the mapping
between input space and output space by a long-enough training process. In some

proBlems, there is requirement on training speed. A long training may lead to delay
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operation, so that decrease the response time and increase cost. Facing this situation,

improvement on training speed appears.

4.5.1 Quasi-Newton Algorithm

Quasi-Newton algorithm is a method for function minimum or maximum based on
stationary point of a function in optimization area. It is firstly introduced by W.C.
Davidon at Argonne National Laboratory in 1959. The widespread modification of
Quasi-Newton method is proposed independently by Broyden, Fletcher, Goldfarb, and
Shannon in 1970, which is named BFGS method [90].

Consider an ANN network in Fig 4.7. Target function for the ANN is the error

function E_ (n)in Equation (4.3). For Quasi-Newton Algorithm, its expression could
be re-write into Equation (4.17).
E,W,)=E, (@} ol ol of of ok (4.17)
Note from Equation (4.3) and (4.5), the target function is the function of all the
weights between layers. So E_,(n) could be rewrite into Equation (4.17). W, is a
vector whose elements are all the weights in ANN model. For each element of W,

e.g O}, stands for the weight between the first neuron in the i layer and the first
neuron in the j" layer at the n™ iteration. ‘
Expressed by Taylor Series, the target error is given in Equation (4.18):
Woa =W, +AW,
E,(W,+AW,)~E,(W,)+VE,W,) - AW, +%AW,,T ‘H, AW, (4.18)
In equation 4.18,
® H, is the Hessian matrix of the target function.
o VE,(W,): Itis the error gradient, which contains all the partial differentiation
of each weight.

* AW,: It is weights variation vector.
Take the gradient of Equation (4.18). For achieving stationary point
atW,, =W, +AW,, the gradient of stationary point. E, (W,+AW,) is zero, the
weights variation vector could be revealed in Equation (4.19) [91].
0= VEW(W,, +AW )=VE, W)+ H, -AW,

. AW,=-H,'.VE,(,) } @)
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The Quasi-Newton Algorithm in the ANN is trying to find the weights variance by the
Hessian matrix and the target function gradient satisfying Equation (4.19).
As compared to the typical BP method introduced in section 4.4, the weights variation
expression contains one more Hessian matrix. When complex calculation is processed
for Hessian matrix, BFGS method offers an approximation calculation to the Hessian
matrix, which is recognized a modification of Quasi-Newton Algorithm. Equation
(4.20) introduces the Hessian matrix approximation by BFGS method [91].

7, =VE,(¥,,) = VE,(,)
z,AW,” H,AW,(H AW, (4.20)
zTAW, AW, -H_ -AW,
By Quasi-Newton Algorithm with BFGS modification in Equation (4.9) (4.14) (4.19)

Hn+l =Hn+

(4.20), the weights variance at each epochs could be calculated for training,

4.5.2 Levenberg-Marquardt (LM) Algorithm

The Levenberg-Marquardt Algorithm is firstly introduced by K. Levenberg in 1944
[92] and modified by D. Marquardt in 1963. It is a modification of Gauss-Newton
method.

N P
As required that the target function in Equation (4.3), £, (W,) = ElﬁZZ(e;’p w.))?,

k=) p=i
is the sum of squares, LM method proposes another expression of gradient in
Equation (4.21) [93].

3E, (%,)

amij __ZZ kp(W ) ——

k=1 p= . Dy 4.21)

VE, (W)="sJ.
W) =TI e

ae,,p W, )

In Equation (4.21):
* e, (W,): Itis the re-write form of e,,(n) in Equation (4.3). k, p, n have the
same meaning as in Equation (4.3).

® e ltis the error vector whose elements are all the e;,(W,).

® J]:ltis the Jacobean matrix for the error vectore, with respect to the

weights vector W, at the n™ iteration.
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Fop 2Ea(.)

P

o , the expression only uses ®,, to take the place of ®;.

New approximation of Hessian matrix is also given in Equation (4.22) by ignoring

second order partial derivative and adding a non-negative damping factor p [91].

1 n n
Hﬁﬁ(t’er'-’e + ) 4.22)

In Equation (4.22), p is the damping factor influencing the converging speed deeply.
It changes until the step is a decrease step for target function.

Note Equations (4.19) (4.21) and (4.22), the weights variance of ANN by LM
algorithm is given by Equation (4.23).

AW, == Jr+pD)-J7 e (423)

4.5.3 Load Forecasting by Improvéd BP Trained ANN

Quasi-Newton (BFGS) Training
Facing the same load forecasting problem in section 4.4, Quasi-Newton provides
ANN architecture selection results in Table 4.7.

Network Architecture Average Training Performance

(neurons in hidden layer)

5 Ave Training MSE: Ave Training CPU Time:
Goal: 1x107° 1.23x107* 626.43s
Ave MAPE: 1.55%
10 Ave Training MSE: Ave Training CPU Time;
Goal: 1x10* 1.03x10™ 805.07
Ave MAPE:1.53%
20 Ave Training MSE: Ave Training CPU Time:
Goal: 1x107° 0.87x10™ 3056s
Ave MAPE: 1.52%
50 Ave Training MSE: Ave Training CPU Time:
Goal: 1x107* 0.55x10™* 66775s

Ave MAPE:1.39%

Table 4.7: ANN architecture selection for load forecast with Quasi-Newton (BFGS)
Method
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Titles in Table 4.7 are the same as that in Table 4.5. As networks’ architecture
increase, networks’ MAPE and MSE decrease slowly, as compared to rapidly
increasing calculation time. The network user should deeply consider the selection
with their accuracy requirement, calculation time limit and the hardware limits. If the
network could be trained less frequently than every 3 days or a high enough computer
can be applied, the network with 50 neurons in hidden layer would be the best choice
in this algorithm. If the network is trained hourly, then networks with 10 or 20
neurons in hidden layer would be the best choice. Table 4.8 provides results from a
sample of network with 20 neurons in hidden layer by Quasi-Newton (BFGS)
algorithm. Obviously from Table 4.8, performance of Quasi-Newton (BFGS) trained
ANN is entirely better than delta-rule trained one. The higher accuracy is attracting

but the only weak point is placed at the longer training time.

Network Network Training Parameter Training Performance
Architecture
20 Goal: 1x107%; Train MSE: 7.74x107
Training Epoch: 591 CPU Time: 4716.3s
Ave MAPE: 1.25%
Sample 002
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Table 4.8: Load forecast by ANN with 20 neurons in hidden layer with Quasi-Newton

(BFGS) Algorithm

Levenberg-Marquardt Training
Facing the same load forecasting problem in Section 4.4, Levenberg-Marquardt

method provides ANN architecture selection results in Table 4.9.

Network Architecture Average Training Performance

(neurons in hidden layer)

5 Ave Training MSE: Ave Training CPU Time:
Goal: 1x10™ 0.549x 10 362.71s
Ave MAPE: 1.08%
10 Ave Training MSE: Ave Training CPU Time:
Goal: 1x10™* 0.403x107* 595.12s
Ave MAPE:1.05%
20 Ave Training MSE: Ave Training CPU Time:
Goal: 1x107° ©0.352x107 646.12s
Ave MAPE: 1.07%
30 Ave Training MSE: Ave Training CPU Time:
Goal: 1x107* 0.294x10™ 1153.48s

Ave MAPE:1.09%
Table 4.9: ANN architecture selection for load forecast with LM Method

Table 4.9 reveals that Levenberg-Marquardt method is the best training algorithm in
the three algorithms. It generally achieves the best performance with a not too long

calculation time. Table 4.10 provides results from a sample of network with 10
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neurons in hidden layer by Levenberg-Marquardt methods. From Table 4.10, LM
trained ANN not only improves the accuracy but also less training epoch and training

time comparing to Delta-rule training and Quasi-Newton (BFGS) training.

Network Network Training Parameter Training Performance
Architecture
20 Goal: 1x107%; Train MSE: 3.815%x10°*
Training Epoch: 88 CPU Time: 398.5s
Ave MAPE: 1%
Sample 002 : ' ' : : : : .
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1.3 1
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Table 4.10: Load forecast by ANN with 20 neurons in hidden layer with Levenberg-
Marquardt Algorithm ‘

4.6 Simulation Analysis
4.6.1 ANN Training Analysis

A sample ANN with 10 neurons in hidden layer is selected for compare the training

effect between typical BP algorithm, Quasi-Newton (BFGS) algorithm and
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Levenberg-Marquardt algorithm. Fig 4.12 shows the first 50 step of their training
procedure.
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Fig 4.12: The first 50 steps of training with 3 different methods on a sample ANN
The Quasi-Newton algorithm converges faster than the pure Delta-rule in typical BP
algorithm.

The converging ability could also be revealed by examination plot, which similar to
regression plot, between actual demand and prediction demand. Fig 4.13 (a) (b) (¢)

has separately shown the plots of a 5-hidden neurons sample network trained by BP,
Quasi-Newton (BFGS) and LM.
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Fig 4.13 (a) (b) (c): Examination plot of actual demand and prediction demand
The examination plot reveals the similarity between the prediction and the actual
situation. In each plot, the red line is the Perfect Approximation Line. Each blue point
is a prediction point refers to its corresponding actual data. If a blue point is on the
Perfect Approximation Line, it means that at this point the prediction is exactly the
same as the actual situation. So the more the blue points converge to the red line, the
better the network performance is. Fig 4.13 reveals that the LM algorithm achieves
the best converging ability for its blue points are generally closer to the red line than

the other two. This situation is caused by the converging force difference.

72



SMART GRID FRAMEWORK ANALYSIS AND ARTIFICIAL NEURAL NETWORK IN LOAD FORECAST

From the principle of Delta-rule in BP algorithm, the converging force is from the
idea ‘following the negative gradient will anyway reach a minimum at last’. This |
force only assures the arrival to the minimum without directing any converging path,
But Quasi-Newton algorithm is derived from Taylor series with stationary point. The
converging force always targets to the stationary point, which provides a converging
path direction to ANN. The converging force differences place an impact that training
with Delta-rule generally converges in a detour like path than Quasi-Newton
algorithm.

Though Quasi-Newtc;n generally selects a straighter path towards minimum than
Delta-rule, it sometime still selects a direction with large angle than the correct one.
This situation is because of the instability of inversed hessian matrix [90]. Suppose
the target function is the blue line in Fig 4.14. Target function input is Wn. At the
point shown in Fig 4.14, the gradient of function is negative but the Hessian matrix,
which has similar meaning as partial derivative in one dimension, is negative, too.

From Equation (4.19), the Wn change is positive, which is not in the correct direction
[81].
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Fig 4.14: Example of instability of Quasi-Newton algorithm [81]
The Levenberg-Marquardt algorithm has solved this situation. The selection of
damping factor has ensured all the steps to be downward steps. So it has the best

converging ability in the three methods.

4.6.2 Performance Analysis

Mean Absolute Percentage Error (MAPE) is one of the indices to measure the
network; which is shown in all the previous training result. It summarizes how far the

prediction is from real power demand averagely by percentage. But the utilities may

73



SMART GRID FRAMEWORK ANALYSIS AND ARTIFICIAL NEURAL NETWORK IN LOAD FORECAST

also prefer to have a smooth error distribution, for one thing, over-large error may

cause huge lost and even damage.

ANN Hidden Layer Performance Indices
Neurons (BFGS)

05 Ave MAPE (%): 1.55 Ave Largest (%): 11.34
Ave APE STD (%): 1.21 Ave Largest (MW): 1470

10 Ave MAPE (%):1.53 Ave Largest (%): 12.49
Ave APE STD (%):1.28 Ave Largest (MW): 1450

20 Ave MAPE (%):1.52 Ave Largest (%): 14.61
Ave APE STD (%):1.32 Ave Largest (MW): 1665

50 Ave MAPE (%):1.39 Ave Largest (%): 15.23
Ave APE STD (%):1.34 Ave Largest (MW): 1784

Table 4.11: Quasi-Newton (BFGS) trained ANN performances compare
Table 4.11 provides a performance of different ANN architecture by Quasi-Newton
(BFGS) algorithm as example for performance analysis. In each type of architecture,
5 ANNGs are selected to calculate the average performance. Titles description in Table
4.11 is following:

® Ave MAPE: The average Mean Absolute Percentage Error. It is the mean
value of all the MAPE from the 5 ANNSs, which indicate the performance of a
certain network type.

e Ave Largest (%): The average largest pércentage error. It is the mean value

- of all the largest percentage error from the 5 ANNs, which indicate the largest
percentage error of a certain network type.

e Ave Largest (MW): The average largest absolute error. It is the mean value of
all the largest absolute error from the 5 ANNs, which indicate the largest
absolute error of a certain network type.

e Ave APE STD: Standard deviation for absolute percentage error (APE) is an
index for measure the variation degree of the APE. The Ave APE STD is the
mean value of all the APE standard deviation from the 5 ANNs, which

_ indicate the error variation of a certain network type.
From Table 4.11, as the complexity of ANN architecture increases, MAPE decreases
for the ability of ANN’s approximation increases. But the other three indices for error

variation increase, this indicates the increase of ANN complexity will also increase
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the instability of performance. This is because the higher complexity is the more
capability for ANN to store redundancy. The redundancy is produced by that the

training set does not perfectly represent the total set sufficiently and uniformly.

4.6.3 Calculation Time Analysis

Time limit for system calculation is a general requirement for short-term load
forecasting. A over time consumed system will decrease the time in other coming
work, e.g. planning. , ,

For a 3 layers ANN whose hidden layer contains less than 100 neurons, each forward
calculation consumes less than 0.1 second by the computer states in Table 4.4. So the

main issue is placed at time limit on ANN training.

Training CPU Time Analysis
ANN training is basically constructed by two components:

e Epoch Calculation Period: Time cost in each epoch calculations. In Equation

(424)isT,,,,,.
e Training Epoch Quantity: Numbers of the epochs that required by training.
In Equation (4.24) is Q. -
T CPUT = epoch X eroch (424)

For Training Epoch Quantity, Fig 4.12 reveals that LM consumes the least epochs to a
certain accuracy target. Quasi-Newton (BFGS) is the second and Delta-rule by BP
training cost the most epochs for a target as it converge in a detour path mentioned in
Section 4.6.1.

For Epoch Calculation Period, Table 4.12 offers a summary of Epoch Calculation

Period by time consumption per epoch.

Hidden Layer Hidden Layer Hidden Layer
Neurons: § ‘Neurons: 10 Neurons: 20
Delta-Rule . .0.6670s 0.8714s 0.9492s
Quasi-Newton 1.8562s ' 2.6648s 8.0742s
LM 2.4238s 4.5312s 10.3068s

Table 4.12: Summary of ANN time consumption per epoch
From Table 4.12, as the complexity of ANN increases, the time consumption per

epoch increase for more neurons in hidden layer will introduce more weights. To
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compare result by different methods, LM and Quasi-Newton algorithm have to
calculate the approximation of hessian matrix, and make their time consumption per
epoch much longer than that of Delta-rule. Delta-rule only needs to calculate the

gradient. In LM, the Jacobean matrix calculation needs more time at each epoch.

Training Time Limit of Different Learning Structure

System of Pattern Recognition highly depends on the training set. On power system
load forecasting, weather condition is one of the main training parameters. Due to
weather may change as the time goes by, an off-line learning ANN system will
anyway become invalid some day. A system that keeps trained by newest practicél
data could extent the working lifestyle. But once on-line learning is selected, there is a
limit that the training time should not longer than the given period between two time-
points that system updates. And it will influence the final ANN selection for load
forecasting,.

If the on-line learning plan is to train the system daily or even longer, the system will
have enough time for training and planning, In this situation, system tends to find out
a single ANN with the best performance. Table 4.13 shows the best trained ANN

found in this load forecasting project.

Network Network Training Parameter Training Performance
Architecture
05 Largest Error: 9.2%; Train MSE: 5.20x107*
Training Epoch: 128 CPU Time: 303.95
‘ MAPE: 0.96%
Sample 002 T T x T T T T T T
- . [T rw
Trammg 0.016 - - - - e - AR o iy by RS T
Process o.oul-—---':-----i ..... R oo e o e e B RRET TS g
00z - - - - e R .- - - AREEE A R RECEETERES
P NN SO U SR BN A M SO
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Table 4.13: Best performance ANN found in this load forecasting
If on-line training is hourly, it requires not only the time for training is less than 30
minutes but also tend to select networks by their general training effect for there is not
enough time to create a large enough candidate ANN set. This situation will be more
focus on the general training effect, as shown in Table 4.9. In the load forecasting
problem considered in this thesis, a network type that contains 10 hidden layer

neurons ANN with training algorithm Levenberg-Marquardt algorithm is selected.

4.7 Conclusion

Artificial Neural Network performs an excellent mapping between input space and
output space. This chapter has applied this model into short-term load forecasting
with an ANN based load forecasting framework.
® Section 4.3 introduces the principle theory of ANN and its training algorithm.
® Section 4.4 sketches the macro-grid load forecast problem on Canada Ontario
province. Figure 4.9 reveals a black-box model for problem solving. The
black-box input includes Weather Conditions, Day Style, Demand of the
previous point and Time Point Index. The black-box is approximated by
Delta-rule trained ANN. The best MAPE is 5.47%.
¢ Section 4.5 introduces two other training methods for ANN: Quasi-Newton
method and Levemberg-Marquadt algorithm. These two methods achieve
better performance than Delta-rule training. The best accuracy form Quasi-

Newton method is 1.25% while LM achieves 0.96%.
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e Section 4.6 deploys various analyses on ANN architecture, performance and
training speed based on these three algorithms. The final selection for hour-
ahead short-term load forecast in Canada Ontario province is feed forward
network trained by Levemberg-Marquadt algorithms.

Artificial Neural Network is a good mathemaﬁcal tool for approximation in macro-
grid load forecasting problem. Its approximating ability appears to be sufficient for
the load forecast problem introduced in this chapter. But it is a model that learns the
mapping appearance other than the principle inside. So once a pattern out of training
data set occurs, the accuracy may decrease. For problems that have difficulty in
figuring out exact principles, like load forecast, ANN will be a good choice. But for
problems which described well in maths or with high price for risk, ANN selection

should be considered.

78



SMART GRID FRAMEWORK ANALYSIS AND ARTIFICIAL NEURAL NETWORK IN LOAD FORECAST

Chapter 5

Artificial Neural Network in Load Forecasting of
Micro-grid

3.1 Micro-grid Load Forecasting

5.1.1 Micro-grid

Micro-grid is bom for the new development of Distributed Generation and the Self-
sufficient Concepts in Smart Grid. There is still not a standard definition for Micro-
grid. Generally compare to traditional power grid, micro-grid is a localized and small-
scale power system that integrate multi electricity generation types, eﬁergy storage
types, several specific loads and a specific designed control & management system
[94]. |

Micro-grid achieves a high potential in future development for the coming decade for
several reasons. Distributed Generations, including wind energy, fuel cells,
hydropower, biomass energy, is promoted strongly for their advantages on relieving
transmission load in traditional power grid with lower carbon emission [95]. Micro-
grid as the best platform for integrating and managing Distributed Generation is
attracting attention from public and governments worldwide. Reliability is another
reason as reliability of the centralized traditional power supply may be no longer .
suitable for future applications. Micro-grid possesses the function to disconnect from
large grid when disturbances occur, so as to protect the reliability and security of
power grid [96]. Moreover, compatibility of new applications promotes micro-grid
development as well. E.g. the application of Electric Vehicle has raised the burden of
traditional power transmission and distribution as the application brings energy from
grid to vehicle instead of from fuel to vehicle. Micro-grid and its Distributed
Generation helps traditional grid to handle this application so as preventing the heavy
work in transmission conjunction management. Fig 5.1 introduces an example of

micro-grid.
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- MlLITARY SURETY MICROGRID™ -

{Indefinite Autonomous Power System)

In the event power
is severed from
commercial sources...

Fig 5.1: Sample of Mlcrognd [97]

5.1.2 Micro-grid Load Forecasting

To achieve an optimal generation planning and the best utilization of multi-types
applications, it is necessary to find out the micro-grid demand. Short-term load
forecasting is basic information for micro-grid management and the trade of electric
energy with the grid [96]. Accurate load information may help the micro-grid
manager to arrange their assets utilization and mainfenance. Moreover, utilities may
benefit from better reliability and support in decision making from micro-grid load
forecast. However, as compared to the demand in large grid, micro-grid demand

~ appears to be volatile and high variations. This is because the localization of micro-
grid brings local consﬁmption feature. Randomly occurring incidents may influence
the demand of micro-grid. In this Chapter, a demand of a Micro-grid chiller-system is
predicted with a new designed Micro-grid load forecast framework. The chillers
system is installed as a core section of building energy management system in a
typical University in Hong Kong, providing air conditioning for the whole university
usage. The requirement is to achieve a chiller demand forecasting every half hour. All
the calculation will be performed in Matlab 7.11.0 (R2010b), with a computer details

same as that in chapter 4.

80



SMART GRID FRAMEWORK ANALYSIS AND ARTIFICIAL NEURAL NETWORK IN LOAD FORECAST

5.2 Back-Propagation Trained ANN for Micro-grid Load

Forecasting

5.2.1 System Design

Main assumptions are listed below:

® Assume the influencing factors considered in Fig 5.2 are the main factors

affecting load pattern in the historical data for training and in the future forecast

period.

® Assume the difference in data quality due to load change is acceptable

between the past and in future forecast period

Same as macro-grid load forecast, the above assumptions are necessary for ANN
prediction in micro-grid load forecast as ANN needs the promise of the mapping
stability between input space and output spaée. Under these assumptions, the mapping
learned by ANN from historical data could reflect the mapping in the future forecast
period. But in micro-grid, some unpredictable randomly factors take more proportion
than in macro-grid, though they are still not the main influencing factors. The impact
of these factors will be revealed in section 5.4.4.

The demand of chillers is highly depended on humans’ behaviour and feelings. The
main influencing factors following:

e Weather conditions: The variation of weather conditions is the original

- promotion to the utilization of chillers system. So different weather conditions
definitely influence the system demand.

¢ Human lifestyle in one day: Human tends to work in the daytime and rest at
night. At each hour time pofnt of a day, people target at different work, so as
mé.nipulating the demand.

¢ Day style: Demand in working days and in weekend is totally different, due to
the lifestyle.

e Calendar périod: This is a university specialized factors as university
organizes their staffs and studénts into different activities in diverse calendar
period.

e Load of Previous Time Point: Provide a reference for forecast.

With the factors the prediction system is designed in Fig 5.2 .
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Influencing Factors C::l Mapping ::> Target

Weather
Condition

Day Style —

Load of the

————————3 ANNModel —mm> Load
Previous Point

Time Point Index ———————>

Calendar Index —m—mnH ——>

Fig 5.2: Chillers system demand prediction structure

In Weather Condition from Fig 5.2, human comfort is the main reason that leads to
various demand requirements. There are 9 factors stimulus the human comfort [88];

e Temperature

® Dew Point Temperature

e Relative Humidity

e  Wind Speed

e Visibility

e Atmosphere Pressure

e Weather Status
Same as chapter 4, Weather Status is fuzzy indices with the same structure.

University lifestyle is deeply related to its calendar. The specified university has 4

periods in one term [98]:
e Teaching Period.
¢ Student Revision Period.
* Examination Period.
® Semester Break Period.

Table 5.1 introduce its calendar of 2008-2009:
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Semester A Start Dates End Dates
Teaching Period 2008 /Sep/ 1 2008 /Nov /29
Student Revision Period 2008 /Dec/ 1 2008 / Dec/ 6
Examination Period 2008/ Dec/ 8 2008 / Dec /20
Semester Break 2008/ Dec /22 2009 /Jan/ 10
Semester B
Teaching Period 2009 /Jan/1 2009/ Apr/ 25
Student Revision Period 2009/ Apr/27 2009 /May /2
Examination Period 2009 /May /4 2009/ May/ 16
Semester Break 2009 /May/ 18 2009 /Jun/ 6
Summer Term
Teaching Period 2009 /Jun/ 8 2009 / July /25
Student Revision Period 2009 / July / 27 2009/ Aug/1
Examination Period 2009/ Aug/3 2009/ Aug/8
Semester Break 2009/ Aug/ 10 2009/ Aug /29

Table 5.1: 2008-2009 Academic Calendars [98]

Each period will be identified by a logic variable, which 1 represent the calendar

period status and 0 for opposite.

5.2.2 BP Trained ANN Training and Performance

Back-Propagation trained ANN and the training improvement is introduced in
Chapter 4 with its theory and application in power grid load forecasting, In this micro-
grid demand prediction case, the Back-Propagation trained feed-forward network is

still selected for prediction.
Typichl BP Training

To achieve the best performance, network architecture selection is necessary. Table

5.2 reveals the performance of different ANN architecture.
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Network Architecture

(neurons in hidden layer)

Network Training

Parameter

Training Performance

5 Goal: 0.0001; Ave Train MSE: 0.0042
Ave Epoch: 1000 Ave CPU Time: 501.73s
Best Learning Rate: 0.8 Ave MAPE: 43.04%

10 Goal: 0.0001; Ave Train MSE:0.0041
Ave Epoch: 1000 Ave CPU Time:572.38s
Best Learning Rate: 0.8 Ave MAPE: 48.27%

20 Goal: 0.0001; Ave Train MSE:0.0040

Ave Epoch: 1000

Ave CPU Time:903.34s

Best Leaming Rate: 1

Ave MAPE: 44.70%

Table 5.2: Network architecture selection for BP training

Table 5.2 introduces 3 types of candidate networks whose differences are placed on

the neurons’ number in hidden layer. For each network, compare to the given goal and

epoch limit, 10s of networks is investigated. After the best learning rate fixed, 10s of

networks in the same type with different initial weights are trained by BP algorithm.

The measurement is provided in the following three indices in the table:

® Ave Train MSE: The average value of all the Mean Squared Error

performances of the same type networks corresponding to training data set.

e Ave CPU Time: The average CPU time spent by the certain type of networks.

e Ave MAPE: The average Mean Absolute Percentage Error achieved by the

certain type of networks corresponding to testing data set.

Fig 5.3 reveals the performance of different architecture network.
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Fig 5.3: Performance of different architecture network

From Fig 5.3, as there are more neurons in hidden layer, it leads to larger data set for
calculation. So the CPU time increases with the addition of hidden layer neurons. And
the more complex the architecture is, the more ability for the network to approximate
to the training set, so the Mean Square Error decreases. But the Mean Absolute
Percentage Error (MAPE) of the testing data is not definitely decrease. This is due to
the generalization problem and noise of micro-grid. This situation will be discussed in
the analysis section. Table 5.3 introduces result from ANN load prediction by a

network with 20 hidden neurons.

Network Network Training Parameter Training Performance
Architecture
20 Goal: 0.0001; Train MSE: 0.0047
Training Epoch: 1000 CPU Time: 903 .4s
Best Learning Rate: 1 MAPE: 42.26%
Sample ' T } { ; ,
Thaininig " |- ST G SR S
Process G ket e ,* ------- *: -------- : """"" r ------ T ---------
| FSl o i i el il
e
e = e
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Table 5.3: Load forecasting by a sample BP trained ANN with 20 neurons in hidden
layer
Quasi-Newton (BFGS) Training
Details of Quasi-Newton (BFGS) algorithm is introduced in Section 4.5.1. The

architecture selection of Quasi-Newton (BFGS) training is in Table 5.4:

Network Architecture Average Training Performance
(neurons in hidden layer)
5 Ave Training MSE: Ave Training CPU Time:
(Ave Epochs: 164) 0.0028 294.53s
Ave MAPE: 14.01%
10 Ave Training MSE: Ave Training CPU Time:
(Ave Epochs: 148) 0.0028 386.57
Ave MAPE:13.96%
20 Ave Training MSE: Ave Training CPU Time:
(Ave Epochs: 147) 0.0028 1225.6s
Ave MAPE: 14.25%

Table 5.4: ANN architecture selection of Quasi-Newton (BFGS) training
From Table 5.4, as the architecture complexity increases, the training CPU time
increases for larger amount of calculation. The Ave Training MSE keeps constant as
complexity increases as the network with 10 neurons has enough ability for the
approximation. In this situation, the increase of hidden layer neurons no longer
improves the performance but contains more redundancy. So the performance of
testing data will not definitely increase when there are more hidden layer neurons; in

fact, it could even decrease as shown in Table 5.4. Table 5.5 introduces result from
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Quasi-Newton (BFGS) trained ANN load prediction by a network with 10 hidden

neurons.

Network
Arch

Network Training Parameter

Training Performance

10

Goal: 0.0001;

Train MSE: 0.0028

Training Epoch: 192

CPU Time: 499.8s

MAPE:

13.29%

Sample
Training

Process

e i Lol e i bl

§
73__

Sample
Compare
Between

Target and
Prediction
of
Test Data

Table 5.5: Load forecasting by a sample Quasi-Newton (BFGS) trained ANN with 10

neurons in hidden layer

Levenberg Marquardt Training

Details of Levenberg Marquardt algorithm is introduced in Section 4.5.2. The

architecture selection is shown in Table 5.6:
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Network Architecture Average Training Performance
(neurons in hidden layer)
5 Ave Training MSE: Ave Training CPU Time:
(Ave Epochs: 86) 0.0027 176.64s
Ave MAPE: 13.23%
10 Ave Training MSE: Ave Training CPU Time:
(Ave Epochs: 22) 0.0024 101.14s
Ave MAPE:12.88%
20 Ave Training MSE: Ave Training CPU Time:
(Ave Epochs: 18) 0.0024 _ 194.45s
Ave MAPE: 13.01%

Table 5.6: ANN architecture selection of Levenberg-Marquardt training
Compare with the performance of Quasi-Newton (BFGS), Levenberg-Marquardt
algorithm express its enhanced ability of converging. The general MAPE from
Levenberg-Marquardt training ANN performs at least 1% better from Quasi-Newton
(BFGS) methods in Table 5.4. Though it cost more time for LM method in calculating
each epoch than Quasi-Newton method, the LM method achieves less total CPU time
for it use less epochs to converge. Table 5.7 introduces result from Levenberg-

Marquardt trained ANN load prediction by a network with 10 hidden neurons.

Network Network Training Parameter Training Performance
Arch
10 Goal: 0.0001; Train MSE: 0.0024
Training Epoch: 29 CPU Time: 132.6s
MAPE: 12.62%
Sampleil| A S ki | Fecd L e b
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Table 5.7: Load forecasting by a sample Levenberg-Marquardt trained ANN with 10
neurons in hidden layer
By summarising load prediction by BP trained ANN, the simulation needs more than
200 seconds. It means that in the 10 minutes limit, it only allows 3 candidate ANNs
for training. The small sample set cannot provide enough space for optimization. In
all the BP training algorithms, Levenberg-Marquardt algorithm has the best
performance and the least training time, still over 100 seconds. To meet the

requirement of time limit with an enough large network candidate set, new method

should be applied.

5.3 Radial Basis Function Network for Micro-grid Load

Forecasting

5.3.1 Radial Basis Function (RBF) Network

Radial Basis Function is a traditional interpolation technique in hyperspace. In 1988,
based on that biological neurons comprise local response, Broomhead and Lowe has
transfer RBF into Artificial Neural Network [99]. In the following, Tomaso Poggio
and Federico Girosi have demonstrated RBF network has good approximation ability
in non-linear approximation [100]. RBF network attracts attentions as a result of his
ability on function approximation, interpolation, pattern recognition and other
intelligent applications.

A radial basis function is a function whose output is determined by the distance
between the input and the centre point. It is a sensor recognizing that how far the

input is from the centre. Usual functions that could be select for RBF is introduced in
Table 5.8:
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Table 5.8: Candidate functions for Radial Basis Function selection
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 Radial Basis Function network is a 3-layer feed-forward ANN. Comparing to typical
BP trained network, the only difference is that the hidden layer neurons are RBF
neurons and all the weights between input layer and hidden layer is 1. Output layer is

the same as BP network. Fig 5.4 introduces the model of RBF neuron [101].

C

AN\

O————/ iy -
X input b |- e 11' A Y

b

7 Fig 5.4: Model of RBF neuron
The RBF neuron calculates the similarity between input vector and centre vector. If
the distance between input and centre become smaller, then the neuron output

becomes larger. With RBF neurons, RBF network is established in Fig 5.5:

Input Hidden - Output
Layeri Layerj Layerp

Fig 5.5: Typical RBF network structure
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Tomaso Poggio and Federico Girosi have demonstrated RBF network has good
approximation ability in non-linear approximation [100]. As they introduced, the main
principle of RBF network is to use the similarity between inputs and centres as basis
to projéct to the output space. The Radial Function is actually the sensitivity function
that measures the similarity degree between inputs and centres, as Fig 5.6 introduces.
When a specific point is set as input, all the centres contribute their similarity degree

for this point to map to a corresponding point in output space.

Cenfr'.e 4

Fig 0.6: RBF network sense the input point in hyper panel by distance combination
If there are K input vectors in training set X =[X,,X,,"-*,X},--*, Xx]". Each input
vector contains I elements X e =X X0 -y-,x,“.,---,xu]r . Then forward calculation

from input side to output side in Fig 5.6 could be revealed in Equation (5.1) [101].

vy =G(-[x,-Cp]
g
Vip = -i,mjp vy, (5.1)
J= J

In Equation (5.1):
® There are J RBF neurons in hidden layer. Each neuron contains a centre

vector C,. The centre space isC =[C,,Cp,++,C 5+, C, ].
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e Function G(X) is the Radial Basis Function in RBF neurons. b is the bias.

® Vv, Itis the output of the 7™ neuron in hidden layer corresponding to the k"

input in the training set.

* W, Itis the weight between the ™ neuron in hidden layer and the p" output

element.

* Yy, tisthe p" output element corresponding to the K" input in the training

set.

5.3.2 Radial Basis Function (RBF) Network Training

RBF network can perfectly fit into the training set data. This case occurs when

number of RBF neurons equals to the number of training set input vectors, which all

input vectors are used as centres as well. This centres setting promotes input pattern

recognition by ensuring all the training input will be sensed by at least one RBF

neurons. In this case, the weights between hidden layer and output layer are unique

determined in Equation (5.2). Rewrite Equation (5.1) in matrix form into Equation

(5.2).
W
Vi Vi
\Y
p='n
Vx1 Vi o
In Equation (5.2):

w=v7Y
@, @, -
0)21 ..
0, @y -
Vi

A%

T Y=
Vs

* W: It is weights matrix.
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It is the weight between the j" neuron in hidden layer and the p™ output

element in W.
e V.1t is RBF neuron output matrix.

o v, Itis the output of the 7™ neuron in hidden layer corresponding to the k™

input in the training set in V.
o Y: It is network output matrix.

* y,:1tisthe p" output element corresponding to the K" input in the training

setinY.
The training set perfect fit method can 100% output the exact target by passing
through any training input. But when training set or the system parameter appear to be
large, this method not only seize large space but also have problems in low speed and
over-fitting,
Facing this case, an architecture-based training algorithm for achieving a network
with less complexity is selected. This method increases one RBF neuron once a time
instead of putting all the input space into thé centres concurrently. The training

method flow chart is shown in Fig 5.7.

Network
Initialization
Forward e Weights
Calculation Optimization
E,, < Goal Network
? Neuron Add

|

Optimal Neuron
Selection

Training
Stop

h 4

'Fig 5.7: Flow chart of RBF network training
In the training method introduced by Fig 5.7, when a new neuron is added, the
weights dimension will be altered. There is more than one solution for weights matrix

when network architecture variation occurs. The optimal weights matrix should be
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selected as follow. Assume the target set from training data setisT =[T},T,,--+, T, ],

eachT, =[t,,,t,,,"**,t,»]. The error expression is in Equation (5.3).

1 & )
Eav "—‘EZEk
__Zekp

p—l

n's

(5.3)
o =lp — Vip

7

Equation 5.3 description: for the ky, input vector from training input set:

* e, Itis the error between target and actual output at the pn element in the

output vector.

e E,:ltisthe Least Mean Square error between the whole target vector and the

* output vector corresponding to the ky, input vector.

e E, :Itis the target function whose minimum is interested. It is the batch

learning error which considers the errors corresponding to all the training
input vectors.

Noting Equations (5.1) and (5.3), gradient of E,, by weights is expressed in Equation
(54).
3
0E, 1 9E,

ay

00, Ki7dw,

=_ZaE de,, aykp
) 80)

\
1 .
—E;e@ Dy (5.4
1 K
= Ekzz(ykp —tkp) Vi
=] J
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At the stationary point, gradient is zero. Equation (5.4) turns into Equation (5.5) [102].

1 & . W
—Z(ykp —1,)Vy =0
Ko
K K
=D Vi Vy =Dty Vy
k=1 k=1
T _pyT.
=] -¥,=V] T, |
Vy; - Yip bp 59
V,; y t '
— J |72 —|2r
V= : Y, = : L=l
_VKJ'_le RLAP® _tKP_leJ
Equation (5.6) expands Equation (5.5) into the whole network in matrix form.
vi.y=v'.T
V:[I/I’I/'Z,...VJ] >
Y =[1,Y,, Y] (5.6)
I'= [T;,];’...,TP]J
Noted from Equation (5.1), relation between matrix Y and V is:
Y'=w*.pT
Y=V.-W | | | 6.7

Consider Equations (5.6) and (5.7) together, the optimized weights W is shown in
Equation (5.8):

vi.v.w=v".T
— W:(VT .V)‘1 yr.T (5.8)
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5.3.3 Radial Basis Function Network for Micro-grid Load Forecasting

For RBF Network training, this chapter selects Radial Basis Network Section in
Matlab 7.11.0 (R2010b) Neural Network Toolbox. It is a specified tool for RBF
network training in Neural Network Toolbox. l

Use RBF to train the network with same data set as BP training in Section 5.2.2.

Samples of results are shown in Table 5.9.

Goal 0.001 Goal 0.002 Goal 0.004 Goal: 0.006
Sensitivity [ Ave MAPE Ave MAPE Ave MAPE Ave MAPE
1.6651 0.3645 0.3607 0.3647 0.3836
0.5) Ave CPU Time { Ave CPU Time | Ave CPU Time | Ave CPU Time
1162.9s 799.27s 465.32s 303.58s
Ave Epochs Ave Epochs Ave Epochs Ave Epochs
690 534 385 285
Sensitivity | Ave MAPE Ave MAPE Ave MAPE Ave MAPE
0.8326 - 0.2172 0.2064 0.2173 0.2444
t)) Ave CPU Time | Ave CPU Time | Ave CPU Time | Ave CPU Time
528.16s 218.38s 44.49s 19.12s
Ave Epochs Ave Epochs Ave Epochs Ave Epochs
392 208 64 33
Sensitivity | Ave MAPE Ave MAPE Ave MAPE Ave MAPE
0.4163 0.2237 0.1765 0.1495 0.2160
) Ave CPU Time | Ave CPU Time | Ave CPU Time | Ave CPU Time
500.93s 140.6s 6.57s 3.20s
Ave Epochs Ave Epochs Ave Epochs Ave Epochs
404 153 11 ‘ 6
Sensitivity | Ave MAPE Ave MAPE Ave MAPE Ave MAPE
0.2775 0.2483 0.1717 0.1336 0.1336
- (3) Ave CPU Time | Ave CPU Time | Ave CPU Time | Ave CPU Time
666.58s 155.88s 7.14s 6.88s
Ave Epochs Ave Epochs Ave Epochs Ave Epochs
487 170 11 11
Sensitivity | Ave MAPE Ave MAPE Ave MAPE Ave MAPE
- 0.1665 0.2637 0.1789 0.1717 0.2039
)] Ave CPU Time | Ave CPU Time | Ave CPU Time | Ave CPU Time
758.04 207.25s 10.65s 8.17s
Ave Epochs Ave Epochs Ave Epochs Ave Epochs
491 209 16 13
Sensitivity | Ave MAPE Ave MAPE Ave MAPE Ave MAPE
0.1189 0.2583 0.1880 . 0.1637 0.2420
@) Ave CPU Time | Ave CPU Time | Ave CPU Time | Ave CPU Time
834.73s 406.133s 14.65s 10.86s
Ave Epochs Ave Epochs Ave Epochs Ave Epochs
531 334 25 17
Sensitivity | Ave MAPE Ave MAPE Ave MAPE Ave MAPE
0.0925 0.2791 0.1835 0.1476 0.2436
® Ave CPU Time | Ave CPU Time | Ave CPU Time | Ave CPU Time
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769.00s 213s 12.4s 11.18s
Ave Epochs Ave Epochs Ave Epochs Ave Epochs
585 216 21 17

In Table 5.9, titles descriptions are listed below:

Table 5.9: Samples of RBF network training results.

e Ave MAPE: The average value of all the Mean Absolute Percentage Error

performances of the same type networks corresponding to training data set.

e Ave CPU Time: The average CPU time spent by a certain type of networks.

E;(ample of a RBF network for Micro-grid load forecast is introduced in Table 5.10.

200 R — 1
Sep 9th 2009 00:00  Sep 9th 2009 05:00  Sep 9th 200910:00  Sep 9th 2009 15:00  Sep 9th 2009 20:00

Network Network Training Parameter Training Performance
Architecture
11 Goal: 0.004; Train MSE: 0.0039
Training Epoch: 11 CPU Time: 7.14s
MAPE: 13.36%
Sample o A R e e o S
Training e i l 2% . . E e a1 g
Process Q.02 s *: ' :
§ 0.018F - -~ é i
0,01~~~ ~ir E
0,008} B 4 it IR SRl DI S R
00
Sample e ]
Compare e R
Between el g T
Target and ;6“‘““‘%““
Prediction i : |
o) S ) |
ST o o BT S k5 el

Date

Table 5.10: Example of RBF network for Micro-grid load forecast
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5.4 Micro-grid Load Forecasting Analysis

5.4.1 Analysis on Prediction with RBF Networks

There are two main influencing factors for RBF training:

e Network Architecture: Number of RBF neurons in hidden layer.

¢ Radial Basis Function Sensitivity: the coefficient b in Equation (5.1).
In the process of RBF network training, as the epochs increase, the number of RBF
neurons increase. The network will have stronger ability in approximation and is more
and more similar to the network set by perfect fit method. In this case the network
error of training data set is decreasing. So if the accuracy goal is set to lower, the
trained network will have higher accuracy for training data set and will have more
RBF neurons. Fig 5.8 introduces a sample case of network result variation when
training accuracy goal is changing with sensitivity 0.1665.

2 [ : :

18 o e S L Ty | SRR T SR W S e L e ——— Training MSE * 100 1
CPU Time / 100
1.6 O\ G o R e i 0 g ks Epoch Number/ 100 | 7]

1.4 L

1:2

1
0.8
0.6

Accuracy Goal

Fig 5.8: a sample case of network result variation as goal change with sensitivity
0.1665
The sensitivity coefficient controls the shape of Radial Basis Function. Large
sensitivity RBF can sense wider range of its input space. Table 5.11 compares RBF

with different sensitivities.
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Table 5.11: Radial Basis Functions with different sensitivities
In RBF network, the sensitivity should be small enough that each neuron could
response wider area that more points could be detected. But a too wide sensing area
will lead to fewer differences between outputs from each neuron. So as in Table 5.10,

an optimal sensitivity should be selected.

5.4.2 Analysis on ANN Generalization

In training of Artificial Neural Network, there will be a problem on over training,
which also named as over-fitting. The training data set is always supposed to be
perfect and averagely representing the whole set. But the actual situation is that the

training set more or less may be lacking of certain patterns or bias to certain patterns
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involuntary or voluntary, even contains error. These unpredictable noisy factors will
be amplified by over-concerning into training data set. So in ANN training, a too-long
training on a training set for a specified network will force the network to remember
those training set noise strongly and lead to amplification of these noise when work
back to the whole set. The phenomenon appears to be that the over-trained network
has a good approximation with training set data but has an inferior-quality output w1th
other data set from the whole set. This problem is called over-fitting problem. Facing
this problem, two following methods are introduced:

e Early Stopping

e Architecture Reduction

Early Stopping

To prevent an ANN over concerning on training set, a direct option is to prevent
overlong training. Once over-fitting happens, a feasible way is trying to retrain the
network with lower stopping conditions. E.g. decrease the epoch limit or increase the
goal. Early stopping is a method trying to shorten the training process for over-fitting
case, 5o as to improve ANN’s performance on the whole set and reduces the local
noise. All the ANN trainings in this thesis has already considered the over-fitting case
and trained with optimized epoch number. Table 5.12 and Table 5.13 introduce a
comparison between networks Back-Propagation LM training with early stopping and

without early stopping.
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Table 5.12: Training comparison between early stopping and over-fitting

From Table 5.12, the same network is trained with different iteration. The more

trained case though achieve better performance in MSE with more CPU time, when

test with data set other than training data, the MAPE emerges rising up. The

comparison of Prediction and Actual Demand reveals that the over - fitting case do

not fit to data set from the whole set other than training data.
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Examination Plot of Prediction — Actual Load
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Table 5.13: Examination plot compare the differences between early stopping and
over-fitting case.
Table 5.13 uses examination plot to find out the performance difference between early
stopping and over-fitting. The point on the red line represents that prediction at this
point is exactly the same as the actual load. So in examination plot, the more blue
points converge to the red line, the better the prediction is. Obviously carly stopping

helps the network to achieve a better converging to the perfect line, so as a better

prediction.

103



SMART GRID FRAMEWORK ANALYSIS AND ARTIFICIAL NEURAL NETWORK IN LOAD FORECAST

Architecture Reduction

Another method for rejecting local noise is by reducing the architecture of networks.
The architecture mainly refers to the neuron number in hidden layer. As the
complexity of the network’s architecture increases, the learning ability increases too..
Reducing the network architecture aims to decreases its ability of learning as well as
the noise learning.

Table 5.14 and Table 5.15 introduce a comparison between networks RBF training

with different architectures.

Network Network Training Parameter Training Performance
Architecture
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Table 5.14: Training comparison between different architecture
From Table 5.14, networks with different architecture are compared. The network
with too much RBF neurons appears to have not only more training CPU time but
also an over-fitting case. The compare graph of Prediction and Actual Demand also
reveals that the over — fitting case caused by too much RBF neurons do not fit to data

set from the whole set other than training data.

Examination Plot of Prediction — Actual Load
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Table 5.15: Examination plot compare between networks in different architectures
Table 5.15 uses examination plot to find out the performance difference between
networks with different architecture. The point on the red line represents that
prediction at this point is exactly the same as the actual load. So in examination plot,

the more blue points converge to the red line, the better the prediction is. Obviously a
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network with too much RBF neurons contains more noise than the one with less

neuron.

5.4.3 Analysis on BP Trained ANN and RBF Trained ANN for Micro-
grid Load forecast

. For Micro-grid load forecasting problem, two types of networks are applied. One is
feed-forward network whose hidden-layer neurons have sigmoid activation function,
This type of network is trained by Back-Propagation methods and its improved
algorithms. The other is still feed-forward network with RBF hidden neurons.
Selection of these two models should not be only based on application requirement

but also their own features.

Approximation Ability Comparison

A RBF network and a BP network in the same architecture have different
approximation ability. For a RBF network with I elements in input layer, J neurons in
hidden layer and P elements in output layer, variables joining approximation is all the
centres and weights between hidden layer and output layer. Equation (5.9) calculates

the number of variables joining approximation with RBF network.
NO. ;. =J+J X P (5.9)

In a BP network with the same architecture, variables joining approximation are
weights between input layer and hidden layer, as well as weights between hidden
layer and output layer. Equation (5.10) calculates the number of variables joining

approximation with BP network.
NO.,, =IxJ+JxP (5.10)

Due to that ‘I’ will always be integer larger or eqﬁal to 1, so the number of variables
expressing the mapping from BP network will always be larger or equal to the one in
RBF network. This reason determines that in the same architecture BP network will
have better approximation ability than RBF network. Table 5.16 introduces compared
results on a network with 10 hidden neurons from BP training and RBF training. Both
networks are trained with — fitting rejection. Though the difference in examination

plot is not obvious, the MAPE proves that BP achieves a better approximation.
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Examination Plot of Prediction — Actual Load
RBF
11 Neus | 3
(13.36%) | &
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a 500.
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Table 5.16: Approximation Ability compare between RBF network and BP network

Training Speed Comparison

Though BP network can achieve better performance, it also spends quite a lot of time
in network training. Due to the variables revised in training in BP network is more
than the ones in RBF training, RBF usually achieve a faster training procedure. One
example is that BP training usually requires a fix architecture fixed network but RBF
does not. This is because the training for one architecture of RBF network is quite fast
that the system could integrate the architecture selection in the training as well. In
Table 4.16, the BP network spends 83.3 seconds for training, comparing to 7.14

seconds from RBF training.

Application Framework for BP Network and RBF network

Load forecasting system requires trained ANN. But as the time goes by, load pattern
of the Micro-grid load may be varying slowly or rapidly. Working with network
trained by antiquated data may leads to large error. So network should be re-trained
by updated training set.

One re-training plan is to replace the old network by a new trained network every
certain period. When the network is working with the whole system, no training
occurs. This plan is named off-line learning. Fig 5.9 introduces the off-line learning.

The time cost for off-line learning system is only the forward calculation time.
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Off-Line Learning

Load Load Load
Forecast —> Forecast ——> Forecast

Input ANN Output

Fig 5.9: Off-line learning for load forecast.
Another re-training plan is to update the training data set when every new data
appears. After that the ANN is re-trained before use. This plan is called on-line
learning. Fig 5.10 reveals the on-line learning. The on-line learning can guarantee an
always fresh system. But the time cost includes not only the forward calculation but

also the time for training.

On-Line Learning

Load Load Load
Forecast ——> Forecast ——> Forecast

Input - ANN Output

A R S

Re-Train ”
ANN

Fig 5.10: On-line leaming for load forecast
ANN’s forward calculation usually cost small time period. So for off-line learning,
both BP networks and RBF networks are suitable. The competition is only placed on

their performance. In this case, due to BP networks achieves a better performance in
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this Micro-grid load forecasting than RBF networks, the optimal BP trained network
is selected.

For on-line learning, as mentioned in Section 5.1.2, the time for load forecast is only
10 minutes. Refer to the best‘performance case of BP network in Table 5.6, the
average CPU time is 101 second. So for BP network, 10 minutes only allows training
of 6 candidate networks, without considering training failure. The performance cannot
be guaranteed. But the RBF network in Table 5.9 only spends 7 seconds for training,
providing enough time margins for training a large networks set. Moreover, the
performance for RBF network does not differ far from the one of BP networks. So in

this case, RBF network is selected.

5.4.4 Analysis on Compare between Micro-grid and Macro-grid Load

Forecast

Load Forecast is critical for grid management and planning in power grid with
whatever scale. But the differences of load features between Micro-grid (small scale)
and Macro-grid (large scale) produce significant impact on their load forecasting
work. ,

Macro-grid usually covers large customers, e.g. a city, a province or a country. In
Macro-grid the load generally reach a high value that a temporary load pattern
variation from individual will not significantly influence the total load. As a result,
load of Macro-grid appears to be stable, as demanded in Chapter 4.

Comparing to Macro-grid, Micro-grid load has much more random influencing noise
on its load. Set the chiller system as an example, once maintenance work is operated,
the load of demand will suddenly drop to zero without any indication. Another
example, when an important officer from government visits the Micro-grid for a small
while, the load will have another alteration differing from their original working plan.
So when looking into Micro-grid load feature, there could be mahy unpredictable
random variations different from the normal pattern. Table 5.17 shows the

comparison for Micro-grid load between normal pattern and noise-influenced pattern.
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Table 5.17: Comparison between normal pattern load and load influenced by noise

Table 5.17 held a one-day load comparison between two days whose weather

condition is similar. The normal case, as people start working in the morning, the load

of chiller increases to a peak value. It decreases in the evening as people gradually

leave the university. But in the noise case, the chillers’ load decreases into 0 between

18:00 to 19:00 on Nov 26™ 2009, and then rises up again. It may be a serious chiller

system faults, or a maintenance plan, or even heavy disaster that all the people had

left the university. Relevant information of that time point was lost with only the load

data left. When load forecasting system comes to this time point, as the input does not

vary much as usual, the output error will be very large. And this factor is the main

reason that the accuracy of prediction in Micro-grid tends to be larger than prediction

in Macro-grid in most cases. The examination plot also reveals this factor in Fig 5.11.
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Fig 5.11: Noise case in examination plot
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The data provider has verified that actual load never touch zero in the chiller system
normally. But in Fig 5.11 there are some points in the circle whose actual load is zero
but the prediction is far more. These unpredictable noises distort the prediction not
only at the time point of noise, but also the time point next to it for the actual load
with noise will be passed as one of the input for prediction on the next time point.

A general idea is to reject the data looks as if noise. But due to the unclear reasons for
these tough data points, rejection algorithm may eliminate a segment of normal
pattern and do not contribute to the error reduction when practically face these
situations.

Though the loss of historical information produces difficulty in prediction
improvement, one method could still help in performance improvement by making the
prediction curve smooth. Noticing that the actual load with noise will be passed as
one of the input for prediction on the next time point as reference, increase the
dimension of reference. E.g. take the previous 2, 3 or even 4 time points as reference
instead of only 1 time point as Fig. 5.12 shows. This multi-reference method is
selected when error occurs on one reference, the impact of this error will be relaxed
by other normal references.

LOtherinprits o fir————>"

Load of the Lo oeiemnni i i e et it
Previous Point 1 —_—
. OtherlInputs
ANN Model ——> Load

Load of the { Ao
;‘ preriO‘{’J'S~ pPif!t1 % —_> T —

Load of the
Previous Point2

Load of the
Previous Point N

Fig 5.12: Multi-reference system structure.
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Multi-reference input does not mean that improvement can be achieved by unlimited

addition of reference point. As in normal case in Table 5.17, the variation of load at 6

o’clock to 10 o’clock belongs to normal load pattern as people are gradually come to

university for study or work. A system with too many references will relax these

normal cases as well as the noise. Table 5.18 introduces the results compare example

among different multi-reference system with 10 hidden- neuron ANN trained by LM.

Reference | Ave MAPE Ave CPU Time Ave Epoch
Quantity

1 12.88% 101.14s 22

2 11.87% 156.53s 24

3 11.68% 129.71s 20

4 11.87% 185.34s 33

5 11.89% 155.84s 31

Table 5.18: Result compare between different multi-reference systems
When more references are added into input space, though improve the performance, it
also increases the training CPU time. User should consider selection of reference
quantity deeply with the requirement. Fig 5.13 compares the results between a sample
network trained with 1 reference and with 3 references. Networks are trained by LM
algorithm with 10 hidden layer neurons. A 3 references trained network performs

better at the noisy points.

600 e
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Actual
400 S==T=TR======
g 1
™ 4
200

0 soed
Nov 26th 2009 01:00 Nov 26th 2009 11:00 Nov 26th 2009 16:00  Nov 26th 2009 21:00

1 Reference

0 s b A )
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3 References

Fig 5.13: result compare of networks trained with different reference quantity.
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A better average performance should be based on input space inclusion of the bad

data point patterns.

5.5 Conclusion

Feature of Micro-grid load is not completely the same as load in Macro-grid. The

lower capability of noise from random incidences determines that Micro-grid load is

born with unpredictable distortion. This Chapter mainly focuses on micro-grid load

forecast in the following sections:

Section 5.2 sketches the micro-grid load forecast problem on a chiller system
in City University of Hong Kong. Figure 5.2 reveals a black-box model for |
problem solving which similar to Figure 4.9 in macro-grid load forecast. The
black-box input includes Weather Conditions, Day Style, Demand of the
previous point and Time Point Index. One more factor that different from
macro-grid load forecast in chapter 4 is the model for micro-grid consider the
university calendar as a typical influencing factor. The black-box is
approximated by multi-layer perceptron trained in the three algorithms
introduced in chapter 4. The best MAPE is 12.62% with CPU time 132s.
Section 5.3 introduces a new type of ANN, Radial Basis Function Network,
for micro-grid load forecast. It is trained in an algorithm shown in Figure 5.7.
The performance of RBF networks on chiller system load forecast 'is 13.36%

with CPU time only 7 seconds.

Section 5.4 deploys various analyses on micro-grid load forecast with two

types of ANNs. Including analyses on network self-characteristics, the ANN

generalization in training is also introduced. What’s more, due to different

requirement of on-line learning and off-line learning, BP MLP could achieve
better performance but fail to deploy in on-line learning as the training
procedure take long CPU time for one candidate network training, RBF
network though with a bit worse performance, but the hi gh training speed
satisfy the on-line learning requirement.

Section 5.4 also investigates on the more obvious noise in load pattern of
micro-grid comparing to macro-grid. A new model type with more references

points is introduced for accuracy improvement. But the micro-grid load
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forecast accuracy is still worse than macro-grid load forecast for difficulties in

significantly decreasing impact from random incidences.
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Chapter 6

Conclusion and Future Work

6.1 Thesis Conclusion

Facing the serious climate change and energy terrain, Smart Grid is the trend for
sustainable development worldwide. Providing various solutions to the traditional
problems, Smart Grid not only integrates new applications like multi-types
generations, storage, electric vehicle, but also provides new services like metering
automation, dynamic pricing, Demand Side Management, as well as promotion for a
greener consuming way. Various works are placed at Smart Grid definition,
characteristics summarization, standardization and Smart Grid test bedding. But
seldom people have organized the above work in a reasonable scope of developing a
procedure. This thesis has organized the scope design into a four-step procedure as
follows:

1) Summarizing the aims of national development to form an object for Smart
Grid. _

2) Based on the object, find out the new contributions to these aims from new
power system. The contribution develops the characteristics so each
characteristic could reflect the aims.

3) -With the characteristics, find out what technologies and standards that could
help achieving these characteristics.

4) With the above three steps, a scope design will be completed.

The procedure has successfully integrated most research and application works 6f
Smart Grid into a framework system during project development. This procedure will
be a suggestive reference for those districts that prefer to establish their Smart Grid in
a practical way.

As Smart Grid develops, new services and technologies deployment will need an
optimal planning and coordination. Load forecast is one of the necessary technologies
for providing information as all deployments are based on demand load. . In Smart
Grid demand response, customers will receive the predicted price from utilities at

smart meters that help users to manage their consumption. The predicted price is
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based on load forecast with the latest load information. So load forecast is a basic
element for demand response in Smart Grid.

. Targeting to this point, this thesis introduces smart metering as the platform for load
forecast in Smart Grid, and the ANN based load forecast technology in macro-grid
and micro-grid.

Smart metering has attracted more and more attentions worldwide and its deployment
gradually covers more districts. So it provides a platform for customers’ access to
load forecasting information.

~ With the possibility to have service of load forecast, technology for load forecast is a
need. This thesis has figured out ANN-based models for macro-grid load forecast and
micro-grid load forecast. Macro-grid has more stability in mapping between main
influencing factors and load for unpredictable factors are ignorable under large
requirement. So the thesis applies several training algorithms for Multi-layer
Perceptron Neural Network, like Delta-rule, Quasi-Newton (BFGS) and Levemberg-
Marquadt, and use load forecast problem of Canada Ontario province as macro-grid
forecast. The final error for macro-grid load forecast problem in Canada is 0.96%.
Micro-grid is one of the new concepts introduced by Smart Grid. It constructs a
significant segment of demand response integrated with load forecast techniques. Due
to that micro-grid contains local feature and unpredictable influencing factors, the
prediction is more complex than macro-grid. This thesis selected a chiller system load
forecast in City University of Hong Kong as micro-grid load forecast problem. Based
on the input-output model, MLP and RBF networks are selected for the mapping
approximation. Analyses are applied on ANNSs accuracy, speed, training algorithms
and generalization. MLP is found to be more suitable for off-line learning as its
training speed is low but higher accurécy. RBF network is better for on-line training
as it has a significant small training time. Research is also placed on the more obvious
noise problem in load pattern of micro-grid as compared to macro-grid. A new model
type with more references points was introduced for accuracy improvement. But the
micro-grid load forecast accuracy is still worse than macro-grid load forecast as there

are difficulties in significantly decreasing impact due to random incidences.

Generally speaking, Artificial Neural Network is a good approximator for macro-grid
load forecasting problem. Its approximating ability appears to be sufficient for the

load forecast problem introduced in this chapter. But it is a model that learns the
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mapping appearance other than the principle inside. So once a pattern is outside the
training data set occurs, the accuracy may decrease significantly. For problems that
have difficulty in figuring out exact principles, like load forecast, ANN will be a good
choice. But for problems which described not well with mathematics, ANN selection

should be considered..

6.2 Future Work

Smart Grid is a large concept covering various areas and organizations. So Smart Grid
scope design procedure may have differences due to different views. Chapter 2
introduces a general procedure with a general national development aims. But more
work should be done to research on that when the aims are bias to a specific country,
what direction will the characteristics and technologies change on and how much they
will change. This future work is much more than a concept model of scope design but
trying to find out an optimal scope design way.

Smart Grid also introduces new services and markets. Dynamic pricing will be one of
the critical. In the environment of real-time price, macro-grid will face different load
pattern as customers will be influenced by the price, which traditional power system
do not contain. It is a pity that real-time pricing is only deployed in few countries and
for specific customers like some industrial users. A large area deployment of dynamic
pricing covering all type of users still does not exist. So the macro-grid load forecast
for real-time price environment could only be studied at the end of Smart Grid pricing
system deployments. It will be an essential future task.

For micro-grid load forecast, the significant impact from localized feature and random
incidents are the main factors for low accuracy. It is difficult to apply bad data |
rejection as no evidence on that the abnormal data is not a section of normal pattern.
To enhance the accuracy of micro-grid load forecast, possible ways are introduced as
follows:

a. More data and information support on the incidents happened are needed at
the abnormal points. With the new information, pattern of incidents may be
selected as new input to improve the accuracy. Also the information could
provide evidence for bad data rejection.

b. New problem solving model could be applied for micro-grid load forecast.
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