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Abstract 

A quantum probability model is introduced and used to explain human probability judgment 

errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, 

and order effects on inference. On the one hand, quantum theory is similar to other 

categorization and memory models of cognition in that it relies on vector spaces defined by 

features, and similarities between vectors to determine probability judgments. On the other hand, 

quantum probability theory is a generalization of Bayesian probability theory because it is based 

on a set of (von Neumann) axioms that relax some of the classic (Kolmogorov) axioms. The 

quantum model is compared and contrasted with other competing explanations for these 

judgment errors including the anchoring and adjustment model for probability judgments. The 

quantum model introduces a new fundamental concept to cognition -- the compatibility versus 

incompatibility of questions and the effect this can have on the sequential order of judgments. 

We conclude that quantum information processing principles provide a viable and promising 

new way to understand human judgment and reasoning.  
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  Over 30 years ago, Kahneman and Tversky (1982) began their influential program of 

research to discover the heuristics and biases that form the basis of human probability judgments. 

Since that time, a great deal of new and challenging empirical phenomena have been discovered 

including conjunction and disjunction fallacies, unpacking effects, and order effects on inference 

(Gilovich, Griffin, & Kahneman, 2002). Although heuristic concepts (such as representativeness, 

availability, anchor-adjustment) initially served as a guide to researchers in this area, there is a 

growing need to move beyond these intuitions, and develop more coherent, comprehensive, and 

deductive theoretical explanations (Shah & Oppenheimer, 2008). The purpose of this article is to 

propose a new way of understanding human probability judgment using quantum probability 

principles (Gudder, 1988).   

     At first, it might seem odd to apply quantum theory to human judgments. Before we 

address this general issue, we point out that we are not claiming the brain to be a quantum 

computer; rather we only use quantum principles to derive cognitive models and leave the neural 

basis for later research.
 
That is, we use the mathematical principles of quantum probability 

detached from the physical meaning associated with quantum mechanics. This approach is 

similar to the application of complexity theory or stochastic processes to domains outside of 

physics.
 1

  

There are at least five reasons for doing so: (1) judgment is not a simple read out from a 

pre-existing or recorded state, instead it is constructed from the question and the cognitive state 

created by the current context; from this first point it then follows that (2) drawing a conclusion 

from one judgment changes the context which disturbs the state of the cognitive system; and the 

second point implies (3) changes in context and state produced by the first judgment affects the 

next judgment producing order effects, so that (4) human judgments do not obey the 

commutative rule of Boolean logic, and finally (5) these violations of the commutative rule lead 

to various types of judgment errors according to classic probability theory. If we replace `human 

                                                           
1
 There is another line of research that uses quantum physical models of the brain to understand consciousness 

(Hammeroff, 1998) and human memory (Pribram, 1993). We are not following this line, and instead we are using 

quantum models at a more abstract level analogous to Bayesian models of cognition. 
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judgment' with 'physical measurement' and replace `cognitive system' with `physical system', 

then these are the same points faced by physicists in the 1920's that forced them to develop 

quantum theory. In other words, quantum theory was initially invented to explain non-

commutative findings in physics that seemed paradoxical from a classical point of view. 

Similarly, non-commutative findings in cognitive psychology, such as order effects on human 

judgments, suggest that classical probability theory is too limited to fully explain all aspects of 

human cognition. So while it is true that quantum probability has rarely been applied outside of 

physics, a growing number of researchers are exploring its use to explain human cognition 

including perception (Atmanspacher, Filk, & Romer, 2004), conceptual structure (Aerts & 

Gabora, 2005), information retrieval (Van Rijsbergen, 2004), decision making (Franco, 2009; 

Pothos & Busemeyer, 2009), and other human judgments  (Khrennikov, 2010).
2
   

 Thus this article has two major goals. An immediate goal is to use quantum probability 

theory to explain some paradoxical findings on probability judgment errors. But a larger goal is 

to blaze a new trail that can guide future applications of quantum probability theory to other 

fields of judgment research.  The remainder of this article is organized as follows. First we 

develop a psychological interpretation of quantum probability theory and compare it side by side 

with classic probability theory.  Second we use the quantum model to derive qualitative 

predictions for conjunction errors and disjunction errors and other closely related findings.  Third 

we examine the quantitative predictions of the quantum model for a probabilistic inference task 

and compare these predictions to a heuristic anchor-adjustment model previously used to 

describe order effects. Fourth, we briefly summarize other applications of quantum theory to 

cognition. Finally we discuss the main new ideas it contributes and issues about rationality that it 

raises. 

I. Quantum Judgment Model. 

The same quantum judgment model is applied to two different types of probability 

judgment problems. Both types involve probability judgments about two or more events. The 

first type of problem is a single judgment about a combination of events such as the conjunction 

or disjunction of events. According to our quantum theory, judgments about event combinations 

                                                           
2
 Also see the special issue on quantum cognition (Bruza, Busemeyer, & Gabora, 2009). 
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require an implicit sequential evaluation of each component event. The second type of problem 

requires an explicit sequence of judgments about a hypothesis based on evaluation of a series of 

events. We argue that judgment errors arise in both tasks from the sequential evaluation of 

events, because conclusions from earlier judgments change the context for later judgments. 

 Quantum theory requires the introduction of a number of new concepts to cognitive 

psychologists. First we present these concepts in an intuitive manner that directly relates the 

ideas to psychological judgments. Later we summarize the basic axioms of quantum probability 

more formally and compare these side by side with classic probability used in Bayesian models.  

 To introduce the new ideas, let us consider the famous ‘Linda’ problem which has been 

used to demonstrate the conjunction fallacy.  (Many different types of stories have been used in 

past research to study conjunction effects, but this story is the most famous of all). Judges are 

provided a brief story about a woman named Linda, who used to be a philosophy student at a 

liberal university and who used to be active in an anti-nuclear movement. Then the judge is 

asked to rank the likelihood of the following events:  that Linda is now (a) active in the feminist 

movement, (b) a bank teller, and (c) active in the feminist movement and a bank teller, (d) active 

in the feminist movement and not a bank teller, (e) active in the feminist movement or a bank 

teller.  The conjunction fallacy occurs when option c is judged to be more likely than option b 

(even though the latter contains the former), and the disjunction fallacy occurs when option a is 

judged to be more likely than option e (again the latter contains the former). 

1. State representation. To apply quantum probability to this problem, our first postulate 

is that the Linda story generates a state of belief represented by a unit length state vector that can 

be described by a high dimensional vector space. Each dimension of the vector space 

corresponds to a basis vector. Formally, a basis for a vector space is a set of mutually orthogonal 

and unit length vectors that span the vector space.  That is, any point in the space can be reached 

from a linear combination of the basis vectors.  Psychologically, each basis vector represents a 

unique combination of properties or feature values, called a feature pattern, which is used to 

describe the situation under question.  The state vector is a working memory state (Baddeley, 

1992) that represents the judge’s beliefs about Linda regarding the feature patterns. On the one 

hand, our use of feature vectors to represent cognitive states follows other related cognitive 

research (e.g., memory, categorization) whereby information is represented as vectors in high-



                    Quantum Probability 5 
 

dimensional spaces.  On the other hand, our basis vectors and state vector are analogous to the 

elementary events and the probability function, respectively, used in classic probability theory. 

In general the feature space used to form the basis for describing the state is constructed 

from long term memory in response to both the story that is presented and the question that is 

being asked. To make this concrete, let us consider a very simple toy example. Initially focus on 

the Linda story and the question about whether or not Linda is a feminist, and suppose this 

question calls to mind three binary features which are used to describe the judge’s beliefs about 

Linda for this event: she may or may not be a feminist, she can be young or old, and she can be 

gay or straight.    Then the vector space would have eight dimensions, and one basis vector 

would correspond to the feature pattern (feminist, young, gay), a second would correspond to the 

feature pattern (not feminist, young, straight), a third would correspond to the feature pattern 

(feminist, old, straight), etc.  In classic probability theory, these eight feature patterns would 

represent the eight elementary events formed by the eight conjunctions of three binary events.  

In actuality, there may be many more features, and each feature may have many values, 

all generated by the story and the question. In particular, if there are n individual features (n = 3 

features in our example) that take on m different values (m = 2 in our example), then the 

dimension of the feature space is N = n
m
.  The problem of defining all the relevant features is not 

unique to quantum theory, and also arises in the specification of a sample space for a Bayesian 

model.  Experimentally, one could devise artificial worlds in which the features are carefully 

controlled by instruction or training. For problems involving real world knowledge, there is less 

control, and instead, one could ask judges to list all of the relevant features. For our toy example, 

we restrict our discussion to the above three binary features for simplicity. But our general theory 

does not require us to specify this a priori. In fact, one great advantage of the quantum model is 

that many qualitative predictions can be derived without imposing these additional assumptions. 

However, later on when we present a quantitative test of the quantum model, we fully specify the 

feature space and its dependence on the story and the question. 

To evaluate the question about feminism, the judge uses knowledge about the features 

based on the Linda story and other related past experience. The state vector represents the 

judge’s beliefs about Linda by assigning a belief value, called an amplitude, to each basis vector 

(feature pattern or combination of features), and the squared magnitudes of the amplitudes sum 
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to one. In general, amplitudes can be complex numbers, but they can always be transformed to 

square roots of probabilities prior to a judgment, and only the latter is used to represent a belief 

that is available for reporting (see Appendix A).  In our toy example, the amplitude assigned to 

the (feminist, young, gay) basis vector represents the judge’s belief about this feature pattern.  

Usually the belief state has some amplitude assigned to each basis vector, in other words the 

belief state is a linear combination of the basis vectors (called a superposition state). But a 

special case is one in which a belief state exactly equals a basis vector.  In this special case, the 

belief state has an amplitude with magnitude equal to one assigned to a single basis vector and 

zeros everywhere else. This corresponds to the special case in which a person is certain about the 

presence of a specific feature pattern.  In the section on qualitative tests, we derive predictions 

without assuming specific values for the amplitudes. However, the section on quantitative tests 

describes a specific way to assign these amplitudes 

2. Event Representation.  An event refers to a possible answer to a question about 

features chosen from a common basis. For example, the answer ‘yes’ to the feminism question is 

one event, and the answer ‘no’ to the feminism question is the complementary event.  Our 

second postulate is that each event is represented by a subspace of the vector space, and each 

subspace has a projector that is used to evaluate the event. 

Consider once again our toy example with eight basis vectors.  The event ‘yes’ to the 

specific question ‘is Linda is a feminist, young, gay person’ corresponds to the subspace spanned 

by the basis vector (feminist, young, gay), which is a single ray in the vector space.  To evaluate 

this event, the judge maps (more formally projects) the belief state vector down onto this ray. 

This is analogous to fitting the belief state to this basis vector (feminist, young, gay) using simple 

linear regression. This fitting process is performed by a cognitive operator called the projector 

that evaluates the fit of the feature pattern (feminist, young, gay). Thus the event ‘yes’ to the 

question ‘is Linda a feminist young gay person’ corresponds to a ray, and this ray has a projector 

which is used to evaluate its fit to the belief state. 

Now consider a more general event such as saying ‘yes’ to the question ‘is Linda a 

feminist.’ Note that the question about feminism concerns only one of the many possible features 

that are being considered. In our toy example, a yes answer to the feminism question is 

consistent with only four of the basis vectors: (yes feminist, young, gay), (yes feminist, young, 
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straight), (yes feminist, old, gay), (yes feminist, old, straight). The span of these four basis 

vectors forms a four dimensional subspace within the eight dimensional space, which represents 

the event ‘yes’ to the feminist question.  This is comparable to a union of these four elementary 

events in classic probability. To evaluate this event, the judge maps (more formally projects) the 

belief state down onto this four dimensional subspace. This is analogous to fitting the belief state 

to the four basis vectors using multiple regression. Once again, the cognitive operator that 

performs this mapping is called the projector for the ‘yes’ to the feminism question.  In the event 

of answering no to the feminism question, the complementary subspace is used, which is the 

subspace spanned by the remaining four basis vectors (not feminist, young, gay), (not feminist, 

young, straight), (not feminist, old, gay), (not feminist, old, straight).    

3. Projective Probability. Quantum theory provides a geometric way to compute 

probabilities. Our third postulate is that the judged probability of concluding yes to a question 

equals the squared length of the projection of the state vector onto the subspace representing the 

question. 

To make this clear, first let us consider the judged probability of concluding that a 

specific feature pattern, say (feminist, young, gay) from our toy example, is true of Linda. To 

evaluate this event, the judge projects the belief state vector down onto the ray representing 

(feminist, young, gay), and the result of this fit is called the projection. In our toy example, the 

projection has zeros assigned to all basis vectors except the (feminist, young, gay) basis vector, 

and the basis vector (feminist, young, gay) is assigned a value equal to its original amplitude. 

Finally the judged probability for yes to this elementary event equals the squared length of this 

projection (the squared magnitude of the amplitude, which is analogous to the squared 

correlation).  Psychologically speaking, the person evaluates how well each feature pattern fits 

the belief state, and the judged probability for that feature pattern equals the proportion of the 

belief state reproduced by the feature pattern.   

Now consider the judged probability of a more general event. The judge evaluates the 

event ‘yes’ to the feminism question by judging how well his or her beliefs about Linda are fit by 

the feminism feature patterns used to describe this event. The projection for the yes response to 

the feminism question is made by mapping (projecting) the belief state vector down onto the 

subspace representing the ‘yes to the feminism question.’  In our toy example, this projection is 
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obtained by setting to zero the amplitudes corresponding to (not feminist, young, gay), (not 

feminist, young, straight), (not feminist, old, gay), (not feminist, old, straight), and retaining only 

the remaining amplitudes previously assigned to (yes feminist, young, gay), (yes feminist, 

young, straight), (yes feminist, old, gay), (yes feminist, old, straight).  To continue with our 

example, the judged probability for ‘yes’ to the feminism question equals the square length of the 

projection onto the subspace corresponding to this event.  This is analogous to the R
2
 produced 

by fitting the person’s beliefs to the feminist basis vectors using multiple regression. In our toy 

example, the judged probability for saying yes to the feminism question equals the sum of the 

squared magnitudes of the amplitudes assigned to the four basis vectors (yes feminist, young, 

gay), (yes feminist, young, straight), (yes feminist, old, gay), (yes feminist, old, straight).  In 

classic probability, this is computed by summing the probabilities of elementary events that form 

the union. 

The residual difference (between the original state vector and the projection on the yes 

answer to feminism) equals the projection on the complementary subspace corresponding to a no 

answer on the feminism question.  Thus the projection on the yes answer is orthogonal (i.e. 

uncorrelated) to the projection on the no answer to the feminism question. The judged 

probability for concluding no to the feminism question is determined from the projection on the 

no subspace, so that the no probability equals one minus the probability of saying yes.  If the 

vector lies entirely in a subspace, then the squared projection of the vector onto the subspace will 

be 1, if the vector is perpendicular to the subspace, then the squared projection will be 0. Note 

that two subspaces are orthogonal if they correspond to mutually exclusive states of affairs.  

This scheme provides a precise way to express Tversky and Kahneman’s 

representativeness proposal in judgment. Tversky and Kahneman suggested that the conjunction 

fallacy arises because participants consider Linda to be a representative case of feminists. 

However, previously, representativeness has been interpreted as an intuition of how much the 

belief about Linda based on the story matched the prototype of feminists in the question. Now 

we can interpret representativeness as the projection or fit of a belief state vector about Linda to 

the subspace corresponding to knowledge about feminists. The squared length of the projection 

corresponds to the proportion of the belief state reproduced by the subspace. This generalization 

of the concept of representativeness makes a critical difference in its application. 
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4. State revision. Suppose the person concludes that an event is a true fact. Our fourth 

postulate is that the original state vector changes to a new conditional state vector, which is the 

projection onto the subspace representing the event that is concluded to be true, but now 

normalized to have unit length. This is called Lüder’s rule (Niestegge, 2008) and it is analogous 

to computing a conditional probability in classic theory.  Now we need to expand on what it 

means for a person to conclude that an event is true. 

First, suppose that the judge is simply informed that the answer to the feminism question 

is yes. Based on this information, the amplitudes corresponding to (not feminist, young, gay), 

(not feminist, young, straight), (not feminist, old, gay), (not feminist, old, straight) are set to zero, 

and the remaining amplitudes previously assigned to (yes feminist, young, gay), (yes feminist, 

young, straight), (yes feminist, old, gay), (yes feminist, old, straight) are now divided by the 

length of this projection. Thus the new conditional state vector has unit length so that the squared 

magnitudes of the new amplitudes assigned by the conditional state vector sum to one.  This 

corresponds to the normalization used to form conditional probabilities in classic probability 

theory. 

Second, consider an example related to an inference problem used in section III for the 

second application of quantum theory presented in this article. Suppose a juror is evaluating guilt 

or innocence, which depends on whether positive or negative evidence is present. Before the 

evidence the belief state has amplitudes assigned to four different patterns (guilty, positive), 

(guilty, negative), (not guilty, positive), (not guilty, negative). Now suppose the prosecutor 

presents positive evidence. Based on this information, the amplitudes corresponding to (guilty, 

negative) and (not guilty, negative) are set to zero, and the remaining amplitudes are now divided 

by the length of the resulting vector so that the squared magnitude of the amplitudes of the 

revised state sum to one. Again this is analogous to how conditional probabilities are revised by 

evidence according to Bayes’ rule. 

The conditional state vector is then used to answer subsequent questions. For example, if 

the person concludes that Linda is a feminist, then the state conditioned on this conclusion is 

used to judge the probability that she is also a bank teller. Following the earlier principles, the 

judged probability for yes to this next question is determined by projecting the conditional state 

vector onto the bank teller subspace and squaring this projection.  In other words, the judged 
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conditional probability for yes to the bank teller question, given that Linda is a feminist, equals 

the squared length of the projection of the conditional state (given yes to feminism) on the bank 

teller subspace. Alternatively, the judged probability that Linda is a bank teller, before making 

any conclusions about feminism, is simply determined by the original belief state that was 

initially generated by the Linda story. 

5. Compatibility. At this point, we have not yet defined the basis vectors used to describe 

the bank teller question. In our toy example, we started by considering the feminism question, 

which we assumed called to mind, in addition to the feminism feature,  other related features 

such as age, and sexual orientation (and other related features not included for simplicity). 

However, when answering this question, we didn’t rely on any features about bank tellers or 

other professional occupations. In other words, in considering the feminism question, we 

deliberately chose not to include these features, because we are assuming that the person never 

thought much about these unusual combinations of questions (feminism and bank teller) before. 

Thus, these have to be treated as two separate questions answered one at a time. The person may 

have thought about professions and their relations to salaries and other occupational features, but 

more likely than not, (s)he never thought enough about feminism and professions together to 

form precise beliefs about these particular combinations. Therefore, in order to answer the 

question about the profession of Linda, (s)he needs to view the problem from a different 

perspective and evaluate this question using knowledge about the combinations of a different set 

of features relating to professions. To continue with the toy example, suppose the person 

considers four professions (e.g., bank teller, doctor, insurance agent, computer programmer) 

along with two levels of salary (low, high) forming eight feature patterns (each combination of 

four professions and two salary levels), and the eight basis vectors corresponding to these feature 

patterns span an eight dimensional vector space.
3
 The key idea is that the set of feature patterns 

used to evaluate profession is inconsistent with the set used to think about feminism, in which 

case we say the two questions are incompatible, and they must be answered sequentially. 

In this toy example, only eight dimensions (e.g. four professions combined with two 

levels of salary) are used for simplicity. A more realistic model could use a much larger 

dimensional space. For example, suppose we use N = 100 dimensions to represent the space. 

                                                           
3
 It is possible that some features, say gender or college major, are compatible with both feminism and bank teller.  
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Then to answer the question about feminism, age could be represented by say 25 age levels 

(young versus old now represents only two coarse categories of these 25 age levels) combined 

with 2 levels of feminism and 2 levels of sexual orientation. To answer the question about 

professions, we could use say 10 professions combined with 10 salary levels (low versus high 

now represents two coarse categories of the 10 salary levels). By increasing the dimensionality 

of the space, we can allow for more refined levels of the features, which can then be categorized 

in various ways. 

The concept of incompatibility is formalized by using a vector space representation of 

knowledge -- the same vector space can be represented by many different sets of basis vectors 

(corresponding to different sets of feature patterns),  and the same exact state (vector) can be 

defined by different sets of basis vectors. Each (orthonormal) set of basis vectors corresponds to 

a description of the situation using a particular set of features and their combinations.  But 

different sets of basis vectors correspond to different descriptions, using different sets of features 

and combinations, representing complementary ways of thinking about events. Formally, we can 

apply a unitary operator to transform one set of basis vectors to another. This is analogous to 

rotating the axes in multidimensional scaling (Carrol & Chang, 1970; Shepard, 1962) or 

multivariate signal detection theory (Lu & Dosher, 2008; Rotello, Macmillan, & Reeder, 2004). 

Psychologically this corresponds to considering different perspectives or different points of view 

for answering questions. For example, in the second application to inference, we argue that a 

juror has to view evidence from a prosecutor’s point of view and then view the evidence from a 

defense point of view, and it is not possible to hold these two incompatible views in mind at the 

same time. Later on when we present our quantitative test of the quantum model, we provide a 

detailed description of this rotation process.  However, qualitative tests of the quantum model 

can be derived without making these specific assumptions. So first we examine these qualitative 

properties of the theory, and later we examine a more specific model. 

The above ideas lead us to an important fifth postulate about compatibility. If two 

questions can be answered using a common basis (i.e. the same basis vectors corresponding to a 

common set of feature patterns), then the questions are said to be compatible. If two questions 

must be answered using a different basis (i.e. using different sets of basis vectors corresponding 

to a different set of feature patterns), then the two questions are said to be incompatible.  To 
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continue with our toy example, a question about age is compatible with a question about 

feminism, and a question about salary is compatible with a question about profession, but a 

question about feminism is incompatible with a question about profession. In order to make 

questions about feminism, age, and sexual orientation compatible with questions about 

profession and salary, a person would need to utilize a (222)(42) =64 dimensional space, with 

each basis vector representing one of the feature patterns produced by a unique combination of 

these 5 features. This is also the number of elementary events that would be required to represent 

the sample space in classic probability theory. Instead the person could utilize a lower 8 

dimensional space by representing questions about feminism, age, and sexual orientation in a 

way that is incompatible with questions about occupation and salary.  Thus compatibility 

requires using a higher dimensional space to form all combinations, whereas incompatibility can 

make use of a lower dimensional representation by changing perspectives.  Incompatibility 

provides an efficient and practical means for a cognitive system to deal with all sorts and 

varieties of questions. But a person must answer incompatible questions sequentially. 

Suppose the question about feminism is incompatible with the question about bank teller 

(e.g., the basis vectors are related by a rotation). Then the basis vectors used to represent the 

feminism question are not orthogonal to the basis vectors used to represent the bank teller 

question. For example, the inner product (analogous to correlation) between the (feminist, old, 

straight) basis vector and the (bank teller, low salary) basis vector could be positive. More 

generally, the subspace for feminism lies at oblique angles with respect to the subspace for bank 

teller. To see the implications of using incompatible events, consider again the feminist bank 

teller problem again. Initially, based on the details of the Linda story, it is very difficult to 

imagine Linda as a bank teller; but once the person concludes that Linda is a feminist, the state is 

projected on to the feminism subspace, which eliminates many specific details about Linda story. 

(Projecting onto the feminism subspace will retain only those elements of the original Linda 

story which are consistent with feminism). From this more abstract projection on the feminism 

subspace, the person can imagine all sorts of professions for feminists (e.g., some feminists that 

are bank tellers). Clearly, some professions remain more probable than others given the original 

story, but when thinking about the more general category of feminists, the person can entertain 

possibilities which were extremely unlikely for Linda herself. For example, if the projection of 

Linda on the feminism subspace produces a state corresponding to (old, straight, feminist), then 
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he or she may have some past experiences associating this type of feminist with low salary bank 

clerks. The associations do not have to be strong, but they make it easier to imagine Linda as a 

feminist and a feminist as a bank teller, even though it was initially (before the ‘feminist’ 

question) very difficult to imagine Linda as a bank teller. In this way, quantum probability also 

incorporates ideas related to the popular availability heuristic (Kahneman, et al., 1982). The 

answer to the first question can increase the availability of events related to a second question. 

Order effects. Incompatibility is a source of order effects on judgments, and it is critically 

here that quantum probabilities deviate from classic probabilities. To see how order effects can 

happen, consider the special simple case in which the judged probability of feminist given bank 

teller equals the judged probability of bank teller given feminist (a simple geometric example is 

shown in Appendix A). One order is to judge if Linda is a bank teller, and given that she is a 

bank teller, if she is also a feminist; this probability is obtained by the product of the probability 

that Linda is a bank teller and the conditional probability that she is a feminist given that she is a 

bank teller.  On the basis of the Linda story, the judged probability for yes to bank teller is close 

to zero, and when this is multiplied by the probability of feminist given bank teller, it is even 

closer to zero. The other order is to judge if Linda is a feminist, and given that she is a feminist, 

if she is also is a bank teller; this probability is obtained by the product of the probability that 

Linda is a feminist and the conditional probability that she is a bank teller given that she is a 

feminist.  On the basis of the Linda story, the judged probability that Linda is feminist is very 

high, and when this is multiplied by the same (as assumed) conditional probability of bank teller 

given feminist, then the product produced by the feminist – bank teller order must be greater than 

the product produced by the bank teller – feminist order.  This order effect cannot happen with 

classic probability theory (because these two orders produce the same joint probability), but 

Appendix A provides a very simple geometric and numerical example of this order effect using 

quantum theory.  In sum, the indirect path of thought from Linda to feminism to bank teller is a 

fair possibility even though the direct path from Linda to bank teller is almost impossible. In 

other words, asking first about feminism increases the availability of later thoughts about bank 

tellers.  

What is the evidence for order effects and is there any reason to think that quantum 

theory provides a good explanation for them?  It is well established that presentation order 
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affects human probability judgments (Hogarth & Einhorn, 1992). In section II on qualitative 

tests, we present evidence for question order effects on conjunction fallacies (Stolarz-Fantino, 

Fantino, Zizzo, & Wen, 2003), and we account for them with the quantum model. In section III 

on quantitative tests, we successfully fit the quantum model to the results of a new study 

examining order effects on inference (Trueblood & Busemeyer, 2010b). In section IV on other 

applications and extensions, we report some surprisingly accurate predictions of the quantum 

model for question order effects in attitude questionnaire research (Moore, 2002).   

Theoretical Postulates. Below we summarize the five quantum postulates (Von Neumann, 

1932) more formally, and we compare them to the corresponding postulates of classic probability 

(Kolmogorov, 1933).
4
 At a conceptual level, a key difference is that classic theory relies on a set 

theoretic representation whereas quantum theory uses a geometric representation. 

1. Classic theory begins with the concept of a sample space, which is a set that contains all 

the events. Suppose (for simplicity) the cardinality of this sample space is N so that the 

sample space is comprised of N elementary events or points. Classic theory defines the 

state of a system (e.g. all of a person’s beliefs) by a probability function p that assigns a 

probability (a real number between zero and one inclusive) to each elementary event, and 

the probabilities assigned by p sum to one.  If Ei is an elementary event, then p(Ei) is the 

probability assigned to this event. 

 

Quantum theory uses an N dimensional vector space to contain all the events. The vector 

space is described by a set of N (orthonormal) basis vectors, and each basis vector 

corresponds to an elementary event. Quantum theory defines the state of a system (e.g., a 

person’s belief state) by a state vector, denoted |, which assigns an amplitude to each 

basis vector, and the state vector has unit length. The amplitude assigned to a basis 

vector, such as the basis vector |Ei, equals the inner product between the basis vector and 

state vector, denoted Ei|. 

 

2. Classic theory defines a general event as a subset of the sample space.  The event A is 

defined by the union of the elementary events that it contains:  A = i A Ei. 

                                                           
4
 Both theories are applicable to the continuum but for simplicity we will limit this presentation to the finite case. 
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Quantum theory defines a general event as a subspace of the vector space, and each 

subspace corresponds to a projector.   

 

The projection of a state onto a ray spanned by basis vector |Ei equals Pi| =|EiEi|, 

where Ei| is an inner product.  The projector for this ray equals Pi =|EiEi|, which is an 

outer product.  The projector for event A spanned by a subset {|E1, …,|Ek} of 

orthonormal basis vectors  equals PA =  iA Pi .    

 

3. In classic theory, the probability of an event equals the sum of the probabilities assigned 

to the elementary events contained in the subset. If A is an event, then p(A) =  i  A p(Ei), 

where Ei is an elementary event.  

 

In quantum theory, the probability of event A equals the squared length of the projection 

of the state onto the corresponding subspace. If PA is the projector for subspace A, then 

PA| is the projection, and the probability of event A equals ||PA|||
2
 =   i  A |Ei||

2
. 

 

4. Suppose that event A is concluded to be a true. Given this fact, classic theory changes the 

original probability function p into a new conditional probability function pA by the 

classic rule pA(B) = p(AB)/p(A), This conditional probability is more commonly written 

as p(B|A).   

 

Quantum theory changes the original state | into a new conditional state |A  by what 

is known as Lüder’s rule:  |A = PA|/||PA|||.  The probability of event B given event 

A is known to be true equals ||PB|A||
2
 = ||PBPA|||

2
 / ||PA|||

2
.   

 

5. Classic probability assumes a single common sample space from which all events are 

defined. In other words, all events are compatible. Two events from the sample space can 

always be intersected to form a single event in the sample space. 
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According to quantum theory, the same exact state can be represented by more than one 

basis.  This allows for two kinds of events: compatible versus incompatible. If two events 

A and B can be described by a common basis, then they are compatible and the projectors 

commute (PBPA = PAPB). When two events are compatible, the two subspaces can be 

combined to form a single event represented by a single projector. If these two events 

cannot be described by a common basis, then they are incompatible and the projectors do 

not commute (PBPA ≠ PAPB).  Formally, the basis vectors used to describe event A are a 

unitary transformation of the basis vectors used to describe event B. If event A is 

incompatible with event B, then the pair of events cannot be represented by a single 

projector and they have to be evaluated sequentially. 

 

If all events are compatible, then quantum theory is equivalent to classic theory (See p. 

20 in Gudder, 1979).  Thus incompatibility is a key new idea that distinguishes quantum 

and classic theories. 

A short and simple tutorial of the quantum postulates appears in Appendix A. These same five 

quantum postulates are consistently used in both of applications presented in this article. 

Implications. From these postulates we can also derive new implications for both classic 

and quantum theory. First, classic theory defines the negated event , ~A, as the complement of 

the subset for A, and its probability equals p(~A) = 1 – p(A). Quantum theory defines the 

negation of an event as the subspace orthogonal to the event A, represented by the projector P~A 

= I –PA, where I is the identity operator (I| =| ). Then the probability of ~ A equals 

||P~A|||
2
 = 1 –||PA|||

2
.  

Classic theory defines the probability of the conjunction ‘A and B’ as the probability 

p(A)p(B|A) = p(AB); but because p(AB) = p(BA), this is also equal to p(BA) = p(B)p(A|B) 

which equals the probability of ‘B and A.’ Thus order does not matter, and it makes sense to 

consider this a conjunction of events ‘A and B’ without regard to order.  In quantum theory, order 

does matter and the events in question have to be evaluated as a sequence (Franco, 2009): Using 

Lüder’s rule, the probability of event A and then event B equals ||PA|||
2
||PB|A||

2
 = ||PBPA|||

2
.  

If the questions are compatible, so that the projectors commute, then ||PBPA|||
2
 = ||PAPB|||

2
, 
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order does not matter, and the conjunction can be interpreted in the same way as in classic 

theory. But if the events are incompatible, then the projectors do not commute, and ||PBPA|||
2
 ≠ 

||PAPB|||
2
. In other words, asking a sequence of two incompatible questions corresponds to the 

person starting from their initial belief state, projecting onto the subspace corresponding to the 

answer to the first question, and then projecting the resulting state onto the subspace 

corresponding to the answer to the second question. Reversing the order of these projections can 

lead to different results. Psychologically, such order effects can be interpreted in the sense that 

the first statement changes a person’s viewpoint for evaluating the second statement. Given the 

prevalence of order effects on human probability judgments (Hogarth & Einhorn, 1992), this is 

an important advantage for quantum theory. 

The classic probability for the disjunction of two events ‘A or B’ is the probability 

assigned to the union of the two subsets representing the two events, which equals  

p(AB) =  p(AB) + p(A ~B) + p(~AB)  = p(A) + p(~AB)  = 1  p(~A~B). 

The last form, 1  p(~A~B) , is commonly used because it extends most easily to disjunctions 

involving more than two events. It is clear that p(AB) = p(B A) so that the order does not 

matter for classic theory, and so it makes sense to define this as a disjunction of events ‘A or B.’ 

Quantum theory assigns a probability to the sequence ‘A or then B’ equal to   

||PBPA|||
2
 +||P~BPA|||

2
 +||PBP~A|||

2
 = ||PA|||

2
 +||PBP~A|||

2
 = 1 ||P~BP~A|||

2
. 

Again we use the form 1 ||P~BP~A|||
2
 because this extends most easily to disjunctions 

involving more than two events. This form also makes it is clear that order does matter for 

quantum theory when the events are incompatible. 

 The classic probability rule for inferring a hypothesis on the basis of new evidence is 

Bayes rule, which is essentially derived from the definition of a conditional probability. A 

quantum analogue of Bayes rule is obtained from postulate 4, which is known as Lüder’s rule.  

In the section on quantitative tests we provide a more detailed description of the quantum model 

applied to inference problems. 
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Clearly, the sequential order that questions are considered is a major aspect of the 

application of quantum probability to human judgments. Any application of quantum theory 

must specify this order.  In the section on quantitative tests we present an experiment in which 

we directly manipulate this order.  However, in other problems the order of processing is not 

controlled, and the individual is free to choose an order. Sometimes there is a causal order 

implied by the questions that are being asked. For example, when asked to judge the likelihood 

that ‘the cigarette tax will increase and a decrease in teenage smoking occurs’ is it natural to 

assume that the causal event ‘increase in cigarette tax’ is processed first. But for questions with 

no causal order, such as ‘feminist and bank teller’, we assume that individuals tend to consider 

the more likely of the two events first.  Note that a person can easily rank order the likelihood of 

individual events (feminism versus bank teller) before going through the more extensive process 

of  estimating the probability of a sequence of events (feminism and then bank teller conditioned 

on the answer to the question about feminism). There are several ways to justify the assumption 

that the more likely event is processed first. One is that the more likely event matches the story 

better and so these features are more quickly retrieved and available for consideration. A second 

reason is that individuals sometimes conform to a confirmation bias (Wason, 1960) and seek 

questions that are likely to be confirmed first. Finally, our assumption of considering the more 

likely event first is analogous to the assumption that most important cues are considered first in 

probability inferences (Gerd Gigerenzer & Goldstein, 1996).  For more than two events, the 

same principle applies and the events are processed in rank order of likelihood. 

Summary of the Quantum Judgment Model. When given a story, the judge forms a belief 

state that is represented by a state vector in a possibly high dimensional (feature) vector space. 

An answer to a question about an event is represented by a subspace of this vector space. The 

judged probability of an answer to a question equals the squared projection of the belief state 

onto the subspace representing the question. Two questions are incompatible if the two 

subspaces require the use of different sets of basis vectors. If the events involved in conjunction 

and disjunction questions are incompatible, then they must be processed sequentially, and the 

more likely of the two questions is processed first. In the latter case, the conclusion from the first 

question changes the state, and affects the second question, producing order effects which in turn 

cause conjunction and disjunction errors.  Judgments about hypotheses are revised according to 

Lüder’s rule, which uses the normalized projection to update the state based on the observed 
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evidence. If the sequence of evidence involves incompatible events, then the inference judgments 

exhibit order effects. 

Now we are prepared to apply the quantum judgment model to conjunction and 

disjunction errors and related phenomena. Later we present a quantitative test for order effects on 

inference.  The qualitative tests are important because they do not require making specific 

assumptions regarding the dimension of the feature space, or the amplitudes assigned to the 

initial state, or the relations between the incompatible features.  The quantitative test is important 

to describe how to make these specifications as well as to examine the capability of the model to 

make precise predictions in comparison with previous models.   

II. Qualitative predictions for conjunction and disjunction questions 

Conjunction and Disjunction Fallacies. There is now a large empirical literature 

establishing the findings of both conjunction fallacies (Gavanski & Roskos-Ewoldsen, 1991; 

Sides, Osherson, Bonini, & Viale, 2002; Stolarz-Fantino, et al., 2003; Tversky & Kahneman, 

1983; Wedell & Moro, 2008) and disjunction fallacies (Bar-Hillel & Neter, 1993; Carlson & 

Yates, 1989; Fisk, 2002). These findings are very robust and occur with various types of stories 

(e.g., female philosophy students who are now feminist bank tellers, high pressure business men 

who are over 50 and have heart disease, Norwegian students with blue eyes and blond hair, state 

legislatures that increase cigarette taxes and reducing teenage smoking), and various types of 

response measures (e.g., choice, ranking, probability ratings, monetary bids) (Sides, et al., 2002; 

Wedell & Moro, 2008). These fallacies are not simply the result of misunderstanding the 

meaning of probability, because they even occur with bets in which the word ‘probability’ never 

appears. For example, Sides et al. (2002) found that participants preferred to bet on the future 

event ‘cigarette tax will increase and teenage smoking will decrease’ over betting on the single 

event ‘teenage smoking will decrease.’ 

Moreover, both fallacies have been observed to occur at the same time (Morier & 

Borgida, 1984). For example, Morier and Borgida (1984) used the Linda story and found that the 

mean probability judgments were ordered as follows (where J(A) denotes the mean judgment for 

event A):  J(feminist) =.83 > J(feminist or bank teller) = .60 > J(feminist and bank teller) = .36 > 

J(bank teller) = .26 (N = 64 observations per mean, and all pair wise differences are statistically 
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significant).  These results violate classic probability theory which is the reason why they are 

called fallacies. 

The quantum model starts with a state vector | that represents the belief state after 

reading the Linda story; the event ‘yes to the feminist question’ is represented by a subspace 

corresponding to the projector PF;  the event ‘yes to the bank teller question’ is represented by an 

incompatible subspace corresponding to the projector  PB; and finally, the event ‘no to the 

feminist question’ is represented by an orthogonal subspace corresponding to the P~F so that  

PF+P~F = I. Our key assumption is that the projector PF does not commute with the projector PB 

(Franco, 2009). When considering a conjunction, the more likely event is considered first, and 

because ‘yes to feminist’ is more likely than ‘yes to bank teller’, the judged probability of the 

event ‘feminist and bank teller’ equals ||PF|||
2
||PB|F||

2
 = ||PBPF|||

2
. 

For the conjunction fallacy, we need to compare the probability for the single event 

||PB|||
2
 with the probability for the conjunction ||PBPF|||

2
, and a conjunction fallacy is 

predicted when ||PBPF|||
2
 > ||PB|||

2
.  To do this comparison, we decompose the quantum 

probability of the bank teller event by expanding this event as follows:   

||PB|||
2
 = ||PBI|||

2
 = ||PB(PF + P~F)|||2 = ||PBPF| + PBP~F|||

2
  

   = ||PBPF|||
2
 + ||PBP~F|||

2
 + B,~F|B,F + B,F|B,~F,    (1) 

where |B,F  = PBPF| and|B,~F  = PBP~F|. The last term on the right hand side of Equation 

1, denoted  B = B,~F|B,F + B,F|B,~F, is called the interference term for the bank teller 

event.
5
  There is another interference, ~B, corresponding to the probability ||P~B|||

2
, but the two 

interferences must sum to zero so that (B + ~B) = 0 (see Appendix B). Thus one of these 

interference terms must be negative, and we argue that B < 0, because this makes it less likely to 

judge that Linda is a bank teller. Also the story suggests that the probability ||PBP~F|||
2
 of Linda 

‘not to be a feminist and to be a bank teller’ is small. Under these conditions, the interference can 

be sufficiently negative so that B  < ||PBP~F|||
2
, and consequently (||PBP~F| ||

2
 + B) < 0, 

                                                           
5
 The interference equals an inner product plus its conjugate, and so it is a real number. Cross product interference 

terms also arise in other applications of decision theory (Luce, Ng, Marley, & Aczel, 2008). 
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which implies ||PBPF|||
2
 > ||PB|||

2
 = ||PB PF|||

2
 | (||PBP~F|||

2
 + B) | as required to explain 

the conjunction fallacy. 

The interference, B, is determined by the inner product of two projections: One is the 

projection, |B,F, of the initial state first on the ‘she is a feminist’ subspace and then onto ‘she is 

a bank teller’ subspace; the second is the projection,|B,~F, of the initial state first onto ‘she is 

not a feminist’ subspace and then on to ‘she is a bank teller’ subspace.  Recall that the inner 

product is analogous to the correlation between two vectors. For many judges, the features 

matching ‘feminist bank teller’ may be negatively correlated (pointing in a dissimilar direction) 

with the features matching ‘not feminist bank teller’, thus producing negative interference.  

 Next consider the disjunction probability, in which the person judges the probability of 

saying no to ‘Linda is neither a bank teller nor a feminist.’ First note that when processing the 

two events ‘Linda is not a bank teller’ versus ‘Linda is not a feminist’ the former is more likely 

than the latter, and so the former is processed first. In this case, we need to compare the single 

event ||PF|||
2
 = 1 ||P~F|||

2
 with the probability for the disjunction 1||P~F P~B|||

2
, and 

disjunction fallacy is predicted when ||PF|||
2
 = 1||P~F|||

2
 > 1||P~FP~B|||

2
, or equivalently 

when ||P~FP~B|||
2
 > ||P~F|||

2
.  To do this, we mathematically decompose the quantum 

probability that Linda is not a feminist as follows:  

   ||P~F|||
2
 = ||P~FP~B|||

2
 + ||P~FPB|||

2
 + ~F, B|~F,~B + ~F,~B|~F,B.   (2) 

In this case, the interference is ~F = ~F,B|~F,~B + ~F,~B|~F,B.  Once again there is a 

corresponding interference F for ||PF|||
2
, and these two interferences must sum to zero (F 

+~F ) = 0 (see Appendix B). Thus one of these two interference terms must be negative, and we 

argue that F > 0, because this makes it more likely that Linda is a feminist. If the interference 

for ~F is sufficiently negative so that (|P~FPB||
2
 +

 
~F ) < 0,  then ||P~FP~B|||

2
  > ||P~F|||

2
 = 

||P~FP~B|||
2
  | (||P~FPB|||

2
 +

 
~F ) | as required to explain the disjunction fallacy.  

The interference, ~F, is determined by the inner product of two projections: One is the 

projection, |~F, ~B, of the initial state first on the ‘she is a not a bank teller’ subspace and then 

onto ‘she is a not a feminist’ subspace; the second is the projection,|~F, B, of the initial state 

first onto ‘she is a bank teller’ subspace and then on to ‘she is not a feminist’ subspace.  For 
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many judges, the features matching ‘not a bank teller and not a feminist’ may be negatively 

correlated (pointing in a dissimilar direction) with the features matching ‘bank teller and not a 

feminist’, thus producing negative interference.  

To complete the analysis of conjunction and disjunction fallacies, we must check to see 

what the quantum model predicts for the remaining ordinal relations reported by Morier and 

Borgida (1984). The quantity ||PB|F||
2
 is a probability so that 1 ≥||PB|F||

2
 ≥ 0, and it 

mathematically follows that  

||PF|||
2
 1 ≥||PF|||

2
||PB|F||

2 
=||PBPF|||

2
.      (3) 

Therefore, the quantum model must predict that the event ‘Linda is a feminist’ is judged at least 

as likely as the conjunction.   

Now consider the order of the conjunction versus disjunction. The Linda story is 

designed so that the probability ||P~B PF|||
2
 corresponding to the ‘Linda is a feminist and she is 

not a bank teller’ conjunction is more likely than the probability ||P~FP~B|||
2
 corresponding to 

‘Linda is not a bank teller and she is not a feminist’ conjunction.
6
  This design implies that  

||P~FP~B|||
2
 < ||P~B PF|||

2
 +||P~F|||

2
 , 

but it is also true that  

||P~B PF|||
2
 +||P~F|||

2
 = 1 ||PBPF|||

2
   

 ||PBPF|||
2
 < 1 ||P~FP~B|||

2
,        (4) 

and Equation 4 implies that the conjunction is less likely than the disjunction. This last prediction 

is important because, even though human judgments tend to satisfy this constraint, there is no 

requirement for them to do so. Therefore, if both the conjunction and disjunction fallacies occur, 

then the quantum model must produce the order reported by Morier and Borgida (1984).  This is 

not true of theoretical explanations that we present later, which are free to produce consistent or 

inconsistent orderings of disjunction and conjunction events depending on free parameters.   

                                                           
6
 In fact, the empirical results are that ||P~BPF|||

2
 = .47 > ||P~F~B|||

2
 = .40. 
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Now the quantum model is forced to make another strong qualitative prediction.  Both 

conjunction and disjunction effects require the events to be incompatible; for if the events are 

compatible, then there is no interference (see Appendix B).  But incompatible events produce 

order effects. To simultaneously explain both the conjunction and disjunction fallacies, the 

model requires the following order constraint (see Appendix B):  ||PFPB|||
2
 < ||PBPF|||

2
.  This 

constraint exactly fits our psychological explanation of order effects that we presented earlier -- 

the first likely event increases availability of the second unlikely event.  In other words, 

processing the likely event first facilitates retrieving relevant thoughts for the second event, 

which then increases the likelihood of the conjunction. By contrast, if the unlikely event is 

processed first, it is hard to imagine any thoughts at all in favor of this unlikely event from the 

very beginning, which lowers the probability of the conjunction. 

Order Effects.  The quantum explanation for conjunction and disjunction errors must 

predict that order of processing is a critical factor for determining whether or not the fallacy will 

occur. One effective way to manipulate this order is to ask people to judge the conjunction first 

or last when judging the likelihood of events.  For example, after hearing a story, a person could 

be asked to judge the unlikely event U first, and then judge the conjunction ‘U and L’; or they 

could be asked these questions in the opposite order.  The quantum model predicts smaller 

effects when the conjunction is presented last, because in this case, the person evaluates the 

probability, ||PU|||
2
, for the unlikely event first, and so is encouraged to use this probability 

estimate to determine the conjunction probability for ‘U and L’. But in the latter case we must 

predict that ||PU|||
2
||PL|U||

2
 = ||PLPU|||

2
, and mathematically it follows that ||PU|||

2
1 ≥ 

||PU|||
2
||PL|U||

2
; therefore no conjunction error can occur. This reduction does not happen in 

the reverse order when the conjunction is evaluated first, because in this case, the `start with the 

higher probability event first' rule applies and the conjunction is always computed from the 

opposite order ||PL|||
2
||PU|L||

2
 =||PUPL|||

2
, which produces conjunction errors as given by 

Equation 1.  

In fact, conjunction errors are significantly larger when the conjunction is rated first as 

opposed to being rated last (Gavanski & Roskos-Ewoldsen, 1991; Stolarz-Fantino, et al., 2003). 

In the study by Stolarz-Fantino et al. (2003), when the single judgment for the unlikely event was 

made first, the mean judgment for the unlikely event was J(U) = .14 compared to J(U and L) = 
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.17 for the conjunction (N = 105, not significantly different); but when the conjunction was rated 

first, the mean judgment for the conjunction was J(U and L) = .26 compared to J(U) = .18 for the 

unlikely event (N = 102, significantly different). Similar robust and large effects of order were 

reported by Gavanski and Roskos-Ewoldsen (1991). This order effect also explains why ratings 

produce fewer errors than rank orders (Wedell & Moro, 2008) -- the latter procedure does not 

require any estimates of the constituent events ahead of time. 

 Averaging Type Errors.  One of the earliest explanations for conjunction and disjunction 

fallacies is that these judgments are based on the average of the likelihoods of the individual 

events (Abelson, Leddo, & Gross, 1987; Fantino, Kulik, & Stolarz-Fantino, 1997; Nilsson, 2008; 

Wyer, 1976). For example, if one averages the likely event L with an unlikely event U, then the 

average must lie in between these two likelihoods. If one assumes that more weight is placed on 

the unlikely event for the conjunctive question, and that more weight is placed on the likely 

event for the disjunction question, then this model can accommodate both fallacies at the same 

time.  

An important source of support for the averaging model is another fallacy called the 

averaging error (Fantino, et al., 1997). This finding involves a story followed by questions that 

are unlikely (U), moderately likely (M), and very likely (L) to be true based on the story. These 

questions produce the following reversal in the order for the mean judgments: J(U) < J(U and M) 

but J(M and L) < J(L), which again violates classic probability theory.  

This finding also rules out an additive model which assumes that judgments are made by 

adding (rather than averaging) the signed evidence of individual events (Yates & Carlson, 1986).  

According to an additive model, if J(M and L) < J(L) then signed evidence for M is negative, but 

if this is true then we should also observe J(U) > J(U and M), but the opposite occurs. 

For these unlikely (U), moderately likely (M), and very likely (L) type of questions, the 

quantum model must always predict the order ||PL|||
2
 >||PL|||

2
||PU|L||

2 
=||PUPL|||

2
, which 

satisfies the second inequality that forms the averaging error. The first inequality in the 

averaging error is simply a conjunction fallacy, ||PUPM|||
2
 > ||PU|||

2
, which we have already 

explained using negative interference (see Equation 1). Thus the quantum model also explains 

this averaging error.  
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Event Likelihoods. In general, the interference term, , will depend on both the story and 

the question.  For the Linda story, the event ‘Linda is a feminist’ was designed to seem likely 

(producing a large projection for the likely event L, denoted ||PL|||
2
) whereas the event ‘Linda 

is a bank teller’ was designed to be unlikely (producing a small projection for the unlikely event 

U, denoted ||PU|||
2
). From Equation 3, it follows that the size of the conjunction error is 

bounded by  

||PL|||
2
 ≥ ||PUPL|||

2
 ≥ ||PU|||

2
 ,       (5) 

and it shrinks to zero if ||PL|||
2
 = ||PU|||

2
.  In fact, researchers find that both fallacies depend 

on the difference between the likelihoods of the two events (Gavanski & Roskos-Ewoldsen, 

1991; Wells, 1985; Yates & Carlson, 1986). For example, the mean estimates reported by 

Gavanski and Roskos-Ewoldsen (1991) were J(A)=.28, J(B)=.19, J(A and B)=.18 when both 

events (A,B) were unlikely; J(A)=.77, J(B)=.23, J(A and B)=.38 when event A was unlikely and 

event B was likely; and J(A)=.76, J(B)=.69, J(A and B)=.67 when both events (A,B) were likely.  

The mean estimates reported by Fisk (2002) were J(A)=.36, J(B)=.14, J(A or B)=.27 when both 

events (A,B) were unlikely; J(A)=.23, J(B)=.73, J(A or B)=.59 when event A was unlikely and 

event B was likely; and J(A)=.80, J(B)=.62, J(A or B)=.75 when  both events (A,B) were likely.  

The constraint on the judgments imposed by Equation 5 implies another strong prediction 

of the quantum model. Only a single conjunction error can occur – that is when the conjunction 

is judged more likely than the lower likelihood event. When examining the mean or median of 

probability estimates, this prediction is generally supported (Gavanski & Roskos-Ewoldsen, 

1991).  Furthermore, it is also generally found that single conjunction errors are overwhelmingly 

most frequent (Yates & Carlson, 1986). Double conjunction errors are infrequent, but they 

occasionally occur with two highly likely events, and the latter could be easily caused by 

judgments errors when all the events are rated almost equally high (Costello, 2009). 

An averaging model also predicts that conjunction and disjunction errors are larger for 

the (unlikely, likely) combination of events and that only single conjunction errors can occur. 

But the quantum and averaging models make distinct predictions for the extreme case of 

complementary events A and not A.  For complementary events, the quantum model must predict 

that the probability of the conjunction is zero (||P~APA|||
2
 = 0) and the probability of the 
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disjunction is one (1 ||P~APA|||
2
  = 1  0). Thus the quantum model must predict no 

conjunction or disjunction errors for this extreme case, except those produced accidently by 

random error (Costello, 2009). However, an averaging model must predict that these effects 

remain as large as ever for this extreme condition because the average must always fall between 

the likelihood of A and the likelihood of not A. For example if A is highly likely to be true, then 

~A is highly likely to be false, and the averaging model predicts that the conjunction will fall in 

between these two mutually exclusive events. In fact, conjunction and disjunction errors are 

greatly reduced when the events are mutually exclusive (Wolfe & Reyna, 2009). 

 Event Dependencies.   The quantum model makes another strong prediction concerning 

the effect of dependencies between events on the conjunction fallacy.  In classic theory, if pL(U) 

> P(U) so that knowledge of event L increases the probability of event U, then there is a positive 

dependency of event L on event U. According to the quantum model, an event L has a positive 

dependency on an event U if ||PU|L||
2
 > ||PU|||

2
. To produce a conjunction fallacy, the 

quantum model requires  

||PUPL|||
2
 = ||PL|||

2
||PU|L||

2
 ≥ ||PU|||

2
       (6) 

 ||PU|L||
2
 ≥ ||PU|||

2
/||PL|||

2
 > ||PU|||

2
.  

Thus the quantum model is forced to predict that conjunction errors occur only when there is a 

positive dependency of the unlikely event on the likely event. For example, according to the 

quantum model, knowing that Linda is a feminist increases the likelihood that she is a bank 

teller. In fact, the presence of dependencies between events A and B has been shown to affect the 

rate of conjunction fallacies -- a positive conditional dependency generally increases the 

frequency of conjunction errors (Fisk, 2002).    

  Both classic and quantum theories predict that dependencies between events strongly 

influence the probability judgment for a sequence of events.  This property is important because 

the averaging model, which simply averages the likelihoods of the individual events, fails to 

consider event dependencies.  Not surprisingly, human judgments are strongly influenced by 

event dependencies, as cleverly shown by Miyamoto, Gonzalez, and Tu (1995). In their design, 

judges evaluated four conjunctions of events including ‘A and X’, ‘A and Y’, ‘B and X’, ‘B and 
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Y’.  Contrary to an averaging model, violations of independence were observed: J(A and X) > J(B 

and X) but J(A and Y) < J(B and Y). According to the averaging model, the common event (X) in 

the first comparison cancels out and so the first inequality implies that event A is more likely 

than event B; similarly, the common event (Y) in the second comparison cancels out and so the 

order established by the first comparison should be maintained for the second comparison (but it 

is not).  According to both the classic and quantum models, the probability of event A 

conditioned on the state X is larger than B, but the opposite occurs conditioned on the state Y.   

  Event Relationships.  One of the major criticisms of the representativeness heuristic 

concerns the effect of manipulating the relatedness between the two events.  Suppose two stories 

are told, one about the liberal college student named Linda, and another about an intellectual but 

somewhat boring man named Bill. After hearing both stories, the judge could be asked two 

related questions concerning the same person such as ‘is Linda a feminist and is Linda a bank 

teller’, or alternatively the judge could be asked two unrelated questions such as ‘is Linda a 

feminist and does Bill play jazz for a hobby.’  It turns out that the conjunction fallacy is almost 

equally strong for related and unrelated questions(Gavanski & Roskos-Ewoldsen, 1991; Yates & 

Carlson, 1986). This finding has been interpreted as evidence against the representativeness 

heuristic and evidence for a simple averaging rule. But this is not a problem for the quantum 

interpretation of the representativeness heuristic.  

 The quantum model predicts that conjunction errors only occur when there is 

interference, and interference can only occur when the two projectors do not commute. Thus the 

key question is whether or not the projectors commute, that is, whether or not the subspaces are 

based on a compatible set of basis vectors representing a common set of features. 

 Having already considered the case of related questions, let us now consider the case of 

unrelated questions (e.g. is Linda a feminist and does Bill play jazz for a hobby?). According to 

the quantum model, the knowledge obtained from the two stories is represented by a state vector 

| that now must contain knowledge about features of both Linda and Bill.  The projector PLF 

represents the question ‘is Linda a feminist’ and another projector PBJ represents the question 

‘does Bill play jazz for a hobby.’ The key question is whether or not these two projectors 

commute. Given that the judge never heard of these two people before, and given that the judge 

is unlikely to know anything about the co-occurrences of women who are feminists and men who 
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are jazz players, the judge cannot form a compatible representation that combines all these 

features in a consistent representation. Instead, the judge must fall back on a simpler 

incompatible representation that uses one set of features to evaluate the Linda question, and a 

different set of features to evaluate the Bill question. Thus we expect these two projectors to be 

non-commutative. This is exactly the property required to produce the conjunction error.   

Given that that the projectors for the two unrelated questions are incompatible, then the 

probability for the conjunction is obtained by first projecting the belief state on the ‘Linda is a 

feminist’ subspace followed by the projection on the ‘Bill plays jazz for a hobby’ subspace. The 

interference effect produced by this incompatible representation depends on the particular stories 

and questions. In this particular example, negative interference implies that thoughts evoked by 

thinking about a woman who is not a feminist are negatively correlated with thoughts about a 

man who plays jazz for a hobby. 

Further support for the idea that the unrelated questions are answered by incompatible 

subspaces comes from the finding of order effects found in the same studies by Gavansky and 

Roskos-Ewoldsen (1991). Conjunction errors were found to be more frequent and significantly 

larger when the conjunction question (e.g. Linda is a feminist and Bill plays jazz for a hobby) 

was presented first as opposed to being presented last.  

 Unpacking Effects.  A finding that is closely related to the disjunction error is the implicit 

unpacking effect (Rottenstreich & Tversky, 1997; Sloman, Rottenstreich, Wisniewski, 

Hadjichristidis, & Fox, 2004)
7
. In this case, a person is asked to rank order the likelihood of the 

same logical event when it is described in the ‘packed’ form B versus in the ‘unpacked’ form (B 

and A or B and ~A). When an event (e.g., death by murder) is unpacked into a likely cause 

(murder by a stranger) and an unlikely cause (murder by an acquaintance) then the unpacked 

event is judged to be more likely than the packed event, which is called subadditivity 

(Rottenstreich & Tversky, 1997). But if an event (e.g. death by disease) is unpacked into an 

unlikely cause and a residual (death from pneumonia or other diseases), then the packed event is 

judged to be more likely than the unpacked event (Sloman, et al., 2004).  Support theory 

                                                           
7
 The unpacking effect refers to a comparison between the sum of judgments of individual events versus the 

judgment of the union of these events. However, these findings are affected by the response scale used to make 

judgments, as well as judgment errors produced by judging individual events. We focus on the implicit unpacking 

effect which simply asks a person to order the likelihood of two events. 
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(Tversky & Koehler, 1994) was designed to explain the first (subadditivity), but it cannot explain 

the second (superadditivity). 

This effect is especially interesting because it provides an example where both positive 

and negative interference is required to explain the opposing results.  According to the quantum 

model, the probability for the unpacked event B can be decomposed as follows  

||PB|||
2
 = ||PB (PA +P~A)|||

2
 = ||PBPA|||

2
 +||PBP~A|||

2
 + ,    (7) 

where  is the interference term.
8
 The probabilities for the two unpacked events sum to  

 ||PBPA|||
2
 +||PBP~A|||

2
. 

In general the interference, , can be positive or negative, depending on the inner product 

between the projection PBPA|  and PBP~A|.  In all of the previous examples, we assumed that 

this inner product was negative, producing negative interference, resulting in a conjunction and 

disjunction effect.  To account for subadditivity we again need the interference to be negative, 

but to account for the opposite superadditive effect, the interference must become positive. The 

quantum model agrees with the intuition provided by Sloman et al. (2004) that when unpacking 

an event into an unlikely event and a residual, the indirect retrieval paths produced by unpacking 

make it difficult to reach the conclusion, and now it is easier to reach the conclusion directly 

from the packed event. The positive interference implies that the projection of the initial state 

first onto pneumonia and then on to death is positively correlated (pointing in a similar direction) 

with the projection of the initial state first on to the residual (diabetes, cirrhosis, etc.) and then 

onto death.  

Conditional versus Conjunction Probabilities.  Both classic and quantum probability 

models make a strong prediction concerning the comparison of the probability of a conjunction 

with the conditional probability involving the same events.  According to classic probability 

theory, pL (U) ≥ p(L)pL(U) = p(LU) and similarly the quantum model must obey  

||PU|L||
2 

≥ ||PL|||
2
||PU|L||

2 
= ||PUPL|||

2
.       (8) 

                                                           
8
 Bordely (1998) first pointed out that quantum theory provides an alternative explanation for unpacking effects. 
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A conditional fallacy occurs when the probability of a conjunction strictly exceeds the 

conditional probability. 

The evidence regarding this fallacy is mixed. Tversky and Kahneman (1983) reported a 

study involving an unlikely (U) event ‘die from heart attack’ and a likely (L) causal event ‘age 

over 50.’ The mean judgment for the conditional probability equaled J(U given L) = .59; the 

mean judgment for the conjunction probability equaled J(U and L) = .30 ; and the mean 

judgment for the unlikely event equaled J(U) = .18. Thus the conditional event exceeded the 

conjunction event, but the conjunction exceeded the single event.  Hertwig, Bjorn, and Krauss 

(2008) found no differences between the conditional and conjunction probabilities, and used this 

to argue that people confuse or misinterpret these two types of questions.  Miyamoto, Lundell, 

and Tu (1988) investigated the conditional fallacy using four different stories. In one of the 

stories, the conditional exceeded the conjunction, in another the conditional equaled the 

conjunction, and in two other stories the conjunction exceeded the conditional. The largest 

fallacy occurred with a story based on rain and temperature in Seattle, which produced the results 

(N = 150): J(L)=.71 > J( L and U) =.61 >J(U) =.49 > J(U given L) = .47 (the difference between 

the means for the conjunction and the conditional was statistically significant). However, there 

was little difference between the conditional probability J(U given L) and the single event 

probability J(U), and so it is possible that the participants ignored the conditioning event L when 

judging the conditional ‘U given L.’ More research is needed on this important question. 

Conjunction of Three Events.  The quantum model also makes clear predictions for 

conjunctions involving two and three constituent events.  According to the quantum model, the 

judgment for the conjunction of unlikely (U), medium (M), and likely (L) events must be lower 

than the conjunction for a medium (M) and likely (L) event. This follows from the fact that 

||PL|||
2
  ||PM|L||

2
 ≥ ||PL|||

2
  ||PM|L||

2
  ||PU|M,L||

2
.   (9a) 

The quantum model predicts a higher judgment for a conjunction of an unlikely (U), likely (L1), 

and another likely (L2) event as compared to an unlikely (U) and likely (L2) event  under the 

following condition (for simplicity, suppose L2 is more likely than L1): 

     ||PL2|||
2
  ||PU|L2||

2
    ||PL2|||

2
   ||PUPL1|L2||

2
    ||PU|L2||

2
   ||PUPL1|L2||

2
.  
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Expanding the left hand term (as we did in Equation 1) produces the expression  

  ||PU |L2||
2
   = ||PU (PL1 +P~L1)|L2||

2
  = ||PUPL1|L2||

2
  + ||PUP~L1|L2||

2
  + .  (9b) 

It follows that the required inequality, ||PU|L2||
2
   ||PUPL1|L2||

2
, will hold if the interference is 

sufficiently negative so that  < ||PUP~L1|L2 ||
2
.  In this case, the judgment for a conjunction of 

three events is judged more likely than a conjunction of two events. 

 In fact, both of these predicted results have been experimentally obtained.  Judgments for 

the conjunction of an unlikely, moderate, and likely event were found to be lower than 

judgments for the conjunction of the same moderate and likely event (Stolarz-Fantino, et al., 

2003; Winman, Nilsson, Juslin, & Hansson, 2010). Furthermore, judgments for an unlikely, 

likely, and second likely event were found to be higher than judgments for the conjunction of the 

same unlikely and likely event (Winman, et al., 2010). Previously, these results were explained 

by an averaging model, but they are also consistent with the quantum model. 

Comparison of Explanations. The classic (Kolmogorov) probability model fails to 

explain conjunction and disjunction fallacies because, when given a story S and two uncertain 

events U and L, it requires p(UL| S)  p(U|S) and p(UL| S)  p(L| S ).  However, it is possible 

that people evaluate the conditional in the wrong direction (G. Gigerenzer & Hoffrage, 1995). 

Classic probability theory does allow p(S|UL) > p(S|U) and p(S|UL) < p(S|L).  This 

explanation fails to predict any ordering for p(S|UL) versus p(S|L), nor does it predict any 

ordering for p(S|U L) versus p(S|UL).  A more serious problem is that this idea cannot 

explain why the fallacy occurs for a conjunction of future events that entail the current state. For 

example, given the current cigarette tax and teenage smoking rate, people prefer to bet on the 

event that ‘an increase in cigarette tax from the current rate and a decrease in teenage smoking 

from the current rate’ rather than the event ‘a decrease in teenage smoking from the current rate’ 

(Sides, et al., 2002). In this case, if we let S represent the current state of the world, then we are 

asked to compare p(SUL|S) = p(UL|S) versus p(SU|S) = p(U|S). If the conditional is 

reversed, then we have p(S|SUL) = p(S) = p(S|SU) which fails to explain the findings. 

Support theory (Tversky & Kohler, 1994) proposes that unpacking an event into its 

component parts increases the availability of the components, and thus the unpacked event is 
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judged to be more likely than the logically identical packed event. This theory provides an 

account of unpacking effects when they are subadditive, but not when they are superadditive. 

Tversky and Kohler (1994) also mentioned that support theory can explain conjunction errors as 

an effect of unpacking an unlikely event (e.g., bank teller). However, support theory fails to 

explain disjunction errors, because a packed event (such as feminism) is judged greater than the 

union of this same event with another separate event.  

 The most popular models for both conjunction and disjunction fallacies are the averaging 

model (Wyer, 1976) and adding (Yates & Carlson, 1986) models. These models seem especially 

plausible when conjunction errors are obtained without presenting any story, and judges are 

simply given numerical likelihoods on which to base their judgments (Gavanski & Roskos-

Ewoldsen, 1991).  In the latter case, it is hard to see how one could use a representativeness type 

heuristic that relies on feature descriptions when there are no features to use. The averaging 

model assumes that each item is assigned a likelihood value (zero to one), and the judgment for a 

conjunction or disjunction question equals the weighted average of these likelihoods. The adding 

model assumes each item is assigned a signed value of evidence (negative one to positive one), 

and the judgment for a conjunction or disjunction question equals the weighted sum of evidence. 

Different weights must be assigned to the unlikely and likely events to explain both the 

conjunction and disjunction errors.  The averaging model turns out to be superior to the adding 

model, because the latter is ruled out by averaging type errors.  But the averaging model also has 

some serious deficiencies. One of the most important is that it fails to account for 

interdependence among events. An item is assigned a likelihood value independent of the other 

items with which it is paired. This independence assumption is falsified by empirical violations 

of independence.  Also this model fails to account for the effect of event dependencies on the 

size and rate of conjunction errors, and it fails to explain the reduction in conjunction and 

disjunction errors when using mutually exclusive events. Finally, the averaging model cannot 

account for double conjunction errors and the conditional fallacy, but these findings are still open 

to question.  

 A probability judgment model based on memory retrieval has also been used to explain 

conjunction errors (Dougherty, Gettys, & Odgen, 1999). Two specific types of models were 

proposed, one for judgments based on stories (vignettes), and the other for judgments based on 
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training examples, but all of the studies in our review are based stories (vignettes), and so we 

limit our discussion to the first model. According to the vignette memory model, information 

about the story is stored in a memory trace (column) vector.  A single question is represented by 

a probe vector of the same length with values assigned to features related to both the question 

and the story, and zeros otherwise. A conjunctive question is represented by a single conjunctive 

probe, which is the direct sum of the two vectors, one vector representing each separate item.  

Retrieval strength (echo intensity) to a question is determined by the inner product between the 

memory trace vector and the question probe vector, and relative frequency judgments are 

proportional to echo intensity.  In Appendix C, we show that the vignette memory predicts the 

same order as an averaging model and thus it shares many of the same advantages and 

disadvantages of the averaging model.  Like the averaging model, the vignette memory model 

has no explicit mechanism for explaining event dependencies on conjunction errors. The latter 

problem arises from the fact that the conjunctive probe is simply the direct sum of the separate 

item probes.   

The quantum judgment model provides a common simple explanation for both 

conjunction and disjunction errors as well as unpacking effects and averaging errors. More 

importantly, it also makes a number of strong, testable, a priori predictions that are supported by 

the empirical results. This includes (a) the ordering of the most likely event compared to either 

disjunction or disjunction events (Equation 3), (b) the ordering of judgments for conjunction and 

disjunction events (Equation 4), (c) the effect of event dependency on the conjunction fallacy 

(Equation 5), (d) the effect of event likelihood on conjunction fallacy (Equation 6), (e) the order 

of a conditional versus a conjunction (Equation 8), (f) the effect of event order on the 

conjunction fallacy, (g) the occurrence of conjunction fallacies for three events (Equation 9), and 

(h) conjunction errors for unrelated events.  Overall, the predictions of the quantum judgment 

model agree with all of the well established empirical findings. The quantum model has some 

difficulty with double conjunction errors and the conditional fallacy, but the empirical status of 

these latter two findings remains weak. So far we have relied on evidence based on qualitative 

properties which provide tests of general principles. Next we turn to a more specific quantitative 

comparison of the averaging model and the quantum model.  
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III. Quantitative predictions for order effects on inference 

 Inference tasks provide an ideal paradigm for testing the quantum model. The hypotheses 

and different types of evidence can be controlled to manipulate the feature space, and the order 

that evidence is presented is easy to manipulate. Also, one of the oldest and most reliable 

findings regarding human inference is that the order in which evidence is presented affects the 

final inference (Hogarth & Einhorn, 1992).  Consider the following example from a medical 

inference task (Bergus, Chapman, Levy, Ely, & Oppliger, 1998). Physicians (N = 315) were 

initially informed about a particular women’s health complaint, and they were asked to estimate 

the likelihood that she had an infection on the basis of (a) the patient’s history and physical exam 

and (b) laboratory tests, presented in different orders.  For one order, the initial estimate started 

out at .67; after seeing the history/physical it increased to .78, and then after also seeing the lab 

test it decreased to .51. For the other order, the initial estimate again started at .67; after seeing 

the lab test it decreased to .44; and then after also seeing the history/physical it increased to .59. 

This is called a recency effect, because the same evidence had a larger effect when it appeared at 

the end as opposed to the beginning of a sequence. Recency effects are commonly observed in 

inference tasks whenever a sequence of judgments is made, one after each new piece of evidence 

(Hogarth & Einhorn, 1992).  One might suspect that these order effects arise from memory recall 

failures, but it turns out that memory recall is uncorrelated with order effects in sequential 

judgment tasks (Hastie & Park, 1988).   

Order effects are problematic for a Bayesian model for the following reason. Suppose we 

have two abstract events {A, B} and a hypothesis H; then  

                
        

      
        

        

      
         , 

and the order used to evaluated these two events does not matter because the events commute 

AB =  BA. To account for order effects, a Bayesian model needs to introduce presentation 

order (e.g. event O1 that  A is presented before B, and event O2 that B is presented before A) as 

another piece of information, so that we obtain p(H|ABO1) > p(H|ABO2). But without 

specifying p(H)p(Oi|H)p(A|HOi)p(B|HOiA), this approach simply re-describes the 

empirical result, and such a specification is not known at present.  One difficulty that arises for 
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this approach is that presentation order is randomly determined, and order information is 

irrelevant. 

To explain order effects, Hogarth and Einhorn (1992) proposed an anchor-adjust model 

in which order is not simply another piece of information, but rather evidence is accumulated one 

step at a time with a weight that depends on serial position. Recently, Trueblood and Busemeyer 

(2010b) developed a quantum inference model in which order is an intrinsic part of the process 

of sequentially evaluating information represented by incompatible perspectives.  However, the 

previous studies provided too few data points to provide a sufficiently strong test of the two 

competing models. Therefore Trueblood and Busemeyer (2010a) conducted a larger study of 

order effects to compare these two models. First we summarize this study and its basic findings. 

Then we describe the details of fitting both the anchor-adjust model and the quantum model to 

the results. Finally, we summarize the comparison of fits produced by the two competing 

models. 

Order Effects on Criminal Inference. The Trueblood and Busemeyer (2010a) study 

included total of 291 undergraduates from Indiana University.  Each one participated in a 

computer controlled experiment in which they read fictitious criminal cases (robbery, larceny, or 

burglary) and made judgments of guilt or innocence on a zero to one probability scale. A 

sequence of three judgments was made for each case: one before any presenting any evidence, 

and two more judgments after presentations of evidence by a prosecutor and a defense. For a 

random half of the cases, the prosecution was presented before the defense, and for the other half 

the defense was presented first. For example, in one case, participants read a short story (one 

short paragraph) about a burglarized warehouse, made an initial judgment based on no 

information, read a strong prosecution (described by three sentences), made a second judgment 

based only on this prosecution, read a weak defense (described by one sentence), and made a 

third judgment based on both the prosecution and the defense.  Altogether, each person was 

presented with eight cases based on the experimental design shown in Table 1. Each case was 

different for each person, and the assignment of cases to orders was counterbalanced across 

participants, which produce approximately 38 participants per order condition (See Trueblood & 

Busemeyer, 2010a for details). Note that different groups of participants are needed to produce 

different orders of evidence, and as far as we know, 12 order conditions is the largest existing 
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study of order effects on inference.   The main results are shown in Table 1, which shows the 

mean judgment, averaged over participants and across the eight cases.  

Table 1: Estimation of guilt following evidence (initial value equals .46) 

After First 

Evidence  

After Second 

Evidence 

Averaging version of      Anchor-

Adjust Model 

Quantum Inference Model 

WP = .651 WP,WD = .516 .578 .552 .647 .502 

 WP,SD = .398  .436  .407 

SP = .805 SP,WD = .687 .748 .587 .870 .689 

 SP,SD = .54  .4373  .527 

WD = .390 WD,WP = .619 .499 .589 .390 .639 

 WD,SP = .779  .747  .758 

SD = .278 SD,WP = .495 .401 .568 .275 .487 

 SD,SP = .69  .756  .702 

W = weak evidence, S = strong evidence, P = Prosecution, D = Defense 

Trueblood and Busemeyer, 2010b, provide more detailed results separately for each of 

the eight separate cases, but the results were consistent across cases, and so here we only present 

a summary. The initial judgment (prior to any information) produced a mean probability equal to 

.459 (this is not shown in the table). This small bias against guilt reflects the instruction to 

assume innocence at the beginning. The first column of Table 1 shows the effect of the first piece 

of information, which demonstrates a clear effect produced by manipulating the evidence. The 

second column shows the judgment after both pieces of evidence, which provide four tests for 

order effects. The strongest example is SP,SD = .54 < SD,SP =.69, which is a recency effect 

equal to .15; the other three recency effects were approximately equal to .10.  All four tests for 

order effects produced strong and statistically significant recency effects (all with p < .001, see 

Trueblood & Busemeyer, 2010b for details).  
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 Anchor - Adjust Inference Model.  Hogarth and Einhorn (1992) proposed a heuristic 

model of inference in which a new state of belief equals the previous (anchor) state plus an 

adjustment: 

 Cn = Cn1 + wn[s(En) Rn],       (10) 

where Cn is the new belief state after observing n pieces of information, Cn1 is the previous 

belief state after observing n1 pieces of information, s(En) is the evidence provided by the n
th

 

piece of information, wn is a weight and Rn is a reference point for this serial position. 

Furthermore, Hogarth and Einhorn (1992) proposed the following principle for setting the serial 

position weight:  if [s(En)Rn] > 0 then wn = (1Cn1) and if [s(En)Rn] < 0 then wn = Cn1.   

Different versions of the model can be formed by imposing assumptions on the evidence, 

s(En), and the reference point, Rn.  One important variation is the averaging model, which is 

formed by assuming that 0  s(En)  1,  and setting Rn = Cn1.
9
 Hogarth and Einhorn (1992) 

prove that the averaging model is guaranteed to produce recency effects, which is found in all 

tests shown in Table 1. Another important version is the adding model, which is formed by 

assuming 1  s(En)  1 and setting Rn = 0.  As pointed out by Hogarth and Einhorn (1992), the 

adding model is not guaranteed to produce recency effects.   

Recall that the averaging model provides a better explanation than the additive model for 

conjunction and disjunction errors. In fact, the adding model was ruled out by the averaging type 

errors discussed earlier. We think it is important for a model to be consistent across both 

probability judgment paradigms, the conjunction/disjunction and inference paradigms. Therefore 

we focus here on the averaging model. Of course this is only one version of the anchor and 

adjust model, and more complex versions can always be constructed by relaxing the assumptions 

about the serial position weight and the reference point.  But the averaging model is one of the 

primary models proposed by Hogarth and Einhorn (1992) for recency effects, and it is also one 

of the primary models for explaining conjunction and disjunction fallacies. Trueblood and 

Busemeyer, 2010a,b present more model comparisons including averaging, adding models, and 

even more complex anchor-adjust models, but the conclusions we reach remain the same. 

                                                           
9
 In this case Cn = Cn1 + wn[s(En) Cn1]  = (1-wn)Cn1 + wns(En) and for n=2  

C2 = (1-wn-2)(1-wn-1)C0 + wn-2(1-wn)s(E1) + wns(En). 
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The averaging model cannot make any predictions for the first judgment (before 

presenting any evidence), and so this mean (.459) was used to initiate the averaging process, C0 

= .459, and then the model was fit to the remaining 12 conditions based on the second and third 

judgments. The averaging model requires estimating four parameters to fit the 12 conditions in 

Table 1. These four parameters represent the four values of s(E) corresponding to the four types 

of evidence WD, SD, WP, SP.  We fit the four parameters by minimizing the sum of squared 

errors (SSE) between the predicted and observed mean probability judgments for each of the 12 

conditions, which produced a SSE = .0704 (standard deviation of the error = .0766, R
2
 = .9833).  

The predicted values are shown under the two columns labeled Anchor-Adjust in Table 1.  The 

model correctly predicts the recency effects, but despite the high R
2
, the model fit is only fair. 

For example, the model severely overestimates the recency effect for the SDSP vs. SPSD 

comparison (predicted effect equals .319, observed effect equals .15). Also, the model fails to 

reproduce the correct ordering across all the conditions. For example, the averaging model 

predicts that SDSP = .756 > WDSP = .747 when in fact SDSP  = .69 < WDSP = .779. There are 

many other substantial quantitative prediction errors, which illustrate that even when the model 

is designed to produce recency effects, it still remains a challenge to fit these order effects. 

Quantum Inference Model. Before introducing the quantum model proposed by 

Trueblood and Busemeyer (2010a), let us first think about how a classic Bayesian model would 

be set up for this task. A simple classic probability model would be based on a sample space 

containing eight elementary events formed by combining 2 types of prosecutor evidence with 

two types of defense evidence and 2 hypotheses. A quantum model could be set up in the same 

manner by using a single basis formed by eight basis vectors, one corresponding to each of these 

eight elementary events. Then the events would all be compatible and the quantum model would 

make the same predictions as the classic Bayesian model. But this model would not produce any 

order effects. Instead, Trueblood and Busemeyer (2010b) proposed a quantum model that was 

designed to be as simple as possible for application to this criminal inference task.
10

 The basic 

idea is that the judge evaluates two types of evidence (positive vs. negative) regarding two 

hypotheses (guilty vs. innocent) from three points of view: a naïve point of view, the 

prosecutor’s point of view, and the defense point of view.  Using this basic idea, only a four 

                                                           
10

 Trueblood and Busemeyer (2010b) used this same quantum inference model to fit the results from the Bergus et al 

(1998) medical inference study and a criminal inference study by McKenzie, Lee, and Cheng (2002).   
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dimensional vector space is required. (In the following presentation, a superscript 
T
  is used to 

represent a transpose of a matrix, and a superscript 
†
 dagger is used represent a conjugate 

transpose of a matrix. In particular, [row vector]
T
  is a column vector.) 

The judgment process begins by describing this four dimensional space in terms of four 

basis vectors used to make a judgment from the naïve point of view: {|NG+ , |NG, |NI+ , |NI}, 

representing (guilty, positive), (guilty, negative), (innocent, positive), (innocent, negative), 

respectively.  The initial state equals  

| = nG+ |NG+ + nG  |NG + nI+  |NI+ + nI   |NI.  

For example, the third coordinate, nI+ represents the amplitude NI+|  initially assigned to the 

basis vector |NI+.  To be concrete, we represent |NG+ by the column vector [1,0,0,0]
T
, represent 

|NG by the column vector [0,1,0,0]
T
, represent |NI+ by the column vector [0,0,1,0]

T
, and 

represent |NI by the column vector [0,0,0,1]
T
. Thus the initial state vector | assigns a column 

vector of amplitudes n = [ nG+, nG, nI+, nI ]
T
 to the four basis vectors. We start with nG+ = nG = 

(1/2)(.459) and nI+ = nI = (1/2)(.541).  The positive or negative sign of the evidence has no 

meaning at this point because the judge has no idea what the evidence is about (we label it 

positive or negative for convenience, but at this stage, it only represents two possible types of 

evidence). Equating the amplitudes for the two types of unknown evidence is analogous to using 

a uniform prior in a Bayesian model when nothing is known.  The amplitude for guilt is lower 

because the instructions inform the person to assume innocent until proven guilty, and the .459 is 

chosen to reproduce the observed value of the first judgment (before any evidence is presented). 

This is also the same initial state used for averaging model.  The probability of guilt from this 

naïve perspective is obtained by first projecting this initial state onto the subspace for guilt. The 

projector for guilty equals PG = |NG+NG+| + |NGNG| which is represented by a 4 4 diagonal 

matrix with ones in the diagonals of the first two rows, and zeros elsewhere. The projection 

equals PG n = [(1/2)(.459), (1/2)(.459), 0, 0]
T
, and so the probability of guilt from the naïve 

judgment point of view equals ||PG n||
2
 = .459.  This initial state was chosen to reproduce the 

observed mean judgment of guilt equal to .459, slightly favoring not guilty, before any 

information is provided. 
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Next, suppose the prosecutor presents positive evidence favoring guilt followed by a 

likelihood judgment.  This requires an evaluation according to a different set of basis vectors, 

{|PG+, |PG, |PI+, |PI}, again representing (guilty, positive), (guilty, negative), (innocent, 

positive), (innocent, negative), but now representing the prosecutor’s viewpoint.  The initial state 

can be expressed in this basis as    

| = pG+  |PG+ + pG   |PG + pI+  |PI+ + pI   |PI. 

For example, the first coordinate, pG+ represents the amplitude PG+|  initially assigned to the 

basis vector |PG+.  Note that the amplitudes assigned according to the naïve perspective are 

different than those assigned according to the prosecutor’s perspective because the latter reflect 

the prosecutor’s arguments for guilt. The four prosecutor basis vectors can be represented by a 

44 unitary matrix denoted Unp, with the first column representing |PG+, the second column 

representing |PG, the third column representing |PI+ and the fourth column representing |PI.  

Later we will show exactly how we compute the unitary matrix, Unp, but at this point we will 

assume it is known, and continue with the evaluation of the prosecutor’s evidence.  First we 

consider how to revise the initial state based on the prosecutor’s positive evidence. The projector 

for the ‘positive evidence’ is denoted P+ and it is spanned by {|PG+ , |PI+}. According to 

principle 4, |+  = P+| /|| P+| ||, and 

P+| = |PG+PG+| + |PI+PI+| 

         = pG+ |PG+ + 0|PG  + pI+ |PI+  + 0|PI, 

and therefore 

       
   

                 
                 

   

                 
                .  

The revised state |+ is now represented in the prosecutor basis by the column vector of 

amplitudes p+ = [pG+, 0, pI+, 0]
T
 / (|pG+|

2
 + |pI+|

2
)
.5

.  

Next consider how to determine the probability of guilt after being presented with the 

prosecutor’s positive evidence. The projector for ‘guilty’ is denoted PG and it is spanned by 
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{|PG+ , |PG }.   According to principle 3, || PG|+||
2
 = || (PG+ + PG) |+ ||

2
, and because PG+  

and PG are orthogonal projections, it follows that  

 || PG+ |+ + PG|+ ||
2
 = || PG+|+ ||

2
 + || PG|+ ||

2
, 

and because the evidence is positive we have || PG|+ ||
2
 = 0 so that  

|| PG|+||
2
 = |PG+|+|

2
 = |pG+|

2
 / ( |pG+|

2
 + |pI+|

2
).     (11) 

Equation 11 provides a simple formula for computing the probability of guilt following the 

positive evidence by the prosecutor. All that is needed to use it is the column vector of 

amplitudes p = [pG+, pG, pI+, pI ]
T
 assigned to the four prosecutor basis vectors. These are 

related to amplitudes for the naïve basis by the unitary transformation,   

p = Unp
†
n = Upnn , 

which is described later. At this point we will continue with the evaluation of the defense 

evidence. 

Finally, suppose the defense presents negative evidence after the positive evidence given 

by the prosecutor. Now the judge needs to view the two hypotheses and two types of evidence 

from the defense perspective. This entails a change of perspective to the defense basis, which 

requires an evaluation according to the four basis vectors |DG+ , |DG, |DI+ , |DI. The revised 

state can be re-expressed in terms of this basis as   

|+ = dG+  |DG+ + dG   |DG + dI+  |DI+ + dI   |DI. 

For example, the second coordinate, dG, represents the amplitude DG|+ assigned to the basis 

vector |DG at this point. Note that the amplitudes for the defense differ from the amplitudes for 

the prosecutor because the defense tries to persuade the judge to view the evidence from a 

different perspective, which weakens the prosecution and strengthens the defense. The four 

defense basis vectors can be represented by a 44 unitary matrix, denoted Und, with the first 

column representing |DG+, the second column representing |DG, the third column representing 

|DI+ and the fourth column representing |DI.  Later we will show exactly how we compute the 
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unitary matrix, Und, but at this point we will assume it is known, and continue with the evaluation 

of the defense evidence. Now consider how to revise the state based on the defense negative 

evidence. The projector for the ‘negative evidence’ is denoted P and it is spanned by {|DG , 

|DI}. According to principle 4, |+,  = P|+ /|| P|+ ||, and  

 P|+ = PG |+ + PI|+ = |DGDG|+ + |DIDI|+ 

         = 0|DG+ + dG|DG  + 0 |DI+  + dI  |DI. 

Finally, consider how to determine the probability of guilt after being presented with the 

prosecutor’s positive evidence and the defense’s negative evidence. The projector for ‘guilty’ is 

denoted PG and it is spanned by {|DG+ , |DG }.   According to principle 3, we obtain  

|| PG|+,||
2
 =  |dG|

2
 / ( |dG|

2
 + |dI|

2
).      (12) 

In sum, Equation 12 provides a simple formula for computing the probability of guilt following 

the positive evidence by the prosecutor and then negative evidence by the defense. All that is 

needed for this formula is the vector of amplitudes d+ = [dG+, dG, dI+, dI ] assigned to the four 

defense basis vectors. These amplitudes are related to amplitudes for the prosecutor basis by the 

unitary transformation,   

d+ = Und
†
Unp p+ =  UdnUnpp+ , 

which is described next.  

It is time to return to the question about how to specify the unitary matrices. A unitary 

matrix is one that satisfies UU
†
 = I = U 

†
U, and this is necessary for the quantum model in order 

to preserve lengths and inner products of the basis vectors (Nielsen & Chuang, 2000). The model 

uses three different bases: one for the naïve point of view, one for the prosecution point of view, 

and one for the defense point of view.  This in turn implies three unitary matrices that relate the 

amplitudes of the three bases: Upn that transforms amplitudes of the naïve basis into amplitudes 

of the prosecutor basis; Udn that transforms amplitudes of the naïve basis into amplitudes of the 

defense; and Udp which transforms amplitudes of the prosecutor into amplitudes of the defense. 

However, the last one is derived from the first two by the relation Udp = UdnUnp, with Unp = Upn
†
, 
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and furthermore Upd  = Udp
†
 and so we only need to describe how to construct Udn and Upn and all 

the rest are determined from just these two.
11

 Note that these unitary transformations are used 

independently of the particular belief state, and the same transformation from one set of 

coordinates to another is used for initial belief states as well as revised belief states.  In short, the 

transformations are only used to change the coordinate system used to represent the current 

belief state.  

Any unitary matrix can be constructed from a Hermitian matrix, H = H
†
, by the complex 

matrix exponential transformation U  = exp(ixH) (see Nielsen & Chuang, 2000 p. 84 ), where 

x is a parameter.
12

 Trueblood and Busemeyer (2010b) used a Hermitian matrix that was 

previously developed for two earlier psychological applications involving four dimensional 

vector spaces (see Pothos & Busemeyer, 2009, and Busemeyer, Wang, & Mogilianksy, 2009).  

In these previous applications, the Hermitian matrix H is constructed from two components, H = 

H1 + H2 , defined by 

    

  
   

  
  

  
  

  
   

 ,     

  
   

  
  

  
  

   
  

 .  (13) 

The purpose of H1 is to rotate amplitudes to favor either the presence of positive evidence or 

negative evidence; and the purpose of the second of H2 is to rotate beliefs toward guilt when 

positive evidence is present and to rotate beliefs toward innocence when negative evidence is 

present. Together these two matrices coordinate beliefs about evidence and hypotheses. The 

parameter x determines the degree of rotation and this is a free parameter in the model. We allow 

a different parameter value of x for Upn versus Udn. We also allow a different parameter value of 

x for strong and weak evidence. Altogether this produces four free parameter values for x, one 

for each combination of the four types of evidence WP, SP, WD, SD. This way of constructing 

the unitary matrices was chosen because it was the same as used in previous applications, and it 

is as simple as we can make it. Just as with the anchor-adjust model, more complex models are 

possible. (See Trueblood and Busemeyer, 2010b, for more details on this topic). 

                                                           
11

  The relation between Udp = UdnUnp follows from the fact that Und d =  n = Unpp and so d = UdnUnp p. 
12

 This matrix exponential is the solution to the Schrödinger equation. It is a function that is commonly available in 

matrix programming languages. 
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 To summarize, start with the naïve initial state n = .5[.459 .459 .541 .541]
T
, and 

compute the two unitary matrices Upn = exp(ixpH) and Udn = exp(ixdH) with H defined by 

Equation 13. First consider the prosecutor – defense order.  Transform p = Upnn, set p+ =  [pG+, 

0, pI+, 0]
T
 / (|pG+|

2
 + |pI+|

2
)
.5

, and then take the squared magnitude of  the first coordinate of p+ to 

obtain the probability of guilt following the first positive evidence. Next transform to d+ = 

UdnUnpp+, set d+, = [0, dG , 0, dI ]
T
/(|dG|

2
 + |dI|

2
)
.5

, and take the squared magnitude of the 

second coordinate of d+, to obtain the probability of guilt following the second negative 

evidence. Next consider the defense – prosecutor order. Transform d = Udnn, set d =  [0, dG, 0, 

dI]
T
 / (|dG|

2
 + |dI|

2
)
.5

, and then take the squared magnitude of the second coordinate of d to 

obtain the probability of guilt following the first negative evidence. Next transform to p = 

UpnUndd, set p,+ = [pG+, 0, pI+, 0]
T
 / (|pG+|

2
 + |pI+|

2
)
.5

, and take the squared magnitude of the first 

coordinate of p,+ to obtain the probability of guilt following the second positive evidence. 

Recency effects occur because the two operations of (1) unitary transformation used to change 

the point of view followed by (2) projection on type of evidence, do not commute. This causes 

the judgments after each piece of evidence to be order dependent, and the last point of view has 

the greatest impact.  

The quantum model requires fitting four parameters, a pair (xp,s , xd,s) for strong evidence 

and another pair (xp,w , xd,w) for weak evidence, to the 12 conditions in Table 2.  We fit the four 

parameters by minimizing the sum of squared errors (SSE) between the predicted and observed 

mean probability judgments for each of the 12 conditions plus the initial judgment, which 

produced a SSE = .0058 (standard deviation of the error = .022, R
2
 = .9986).  The predicted 

values are displayed in the last two columns of Table 1. This quantum model provides a very 

accurate fit, and it is a clearly better fit than the averaging model. Note that the quantum model 

correctly predicts all of the recency effects and it also correctly reproduces ordering of the 

probabilities across all conditions. The only place where the model makes a noticeable error is 

for the SP condition where it overestimates the strength of this evidence. 

Summary of the Quantitative Test. There were three purposes for this quantitative test of 

the quantum model. One was to extend the quantum model from the conjunction/disjunction 

paradigm to the inference paradigm. The second was to provide a detailed example showing how 
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to construct a vector space and unitary transformations relating different incompatible bases. The 

third was to provide a quantitative test that compares the quantum model with another heuristic 

model, the averaging model, for explaining order effects on inference. The averaging model was 

chosen for comparison because it was the strongest candidate for explaining conjunction-

disjunction errors, and it was also designed specifically to explain recency effects observed in 

inference tasks. 

Both the quantum model and the averaging model used the same initial belief, and both 

models were allowed to fit a separate parameter to the SP, WP, SD, and WD types of evidence. 

Thus both models had the same number of parameters (although the relative complexity of these 

models remains unknown). The models were fit to 12 different conditions in Table 1, which 

provides a challenging data set with strong recency effects. It is not so easy to fit these 12 

conditions, because the averaging model did not even succeed in reproducing the correct 

ordering across all the conditions. The quantum succeeded in producing a very accurate fit to all 

12 conditions.   

The quantitative test reported here is based on the average across eight individual 

criminal cases presented to the participants. Trueblood and Busemeyer (2010a,b) provide a more 

thorough analysis of each of the eight cases, and they show that the quantum model continues to 

fit better than the averaging model for all eight cases. Trueblood and Busemeyer (2010a,b) also 

compared the quantum model to the additive model (again with both using four parameters), and 

the quantum continues to fit better than the additive model. More importantly, Trueblood and 

Busemeyer (2010a,b) derived an important qualitative prediction from the quantum model that 

distinguishes the quantum model from the additive model. This property is based on the fact that 

the additive model is insensitive to the interdependence of evidence, whereas the quantum model 

is sensitive to this interdependence.  Trueblood and Busemeyer (2010a,b) report the results of a 

second experiment designed to test this property, and the predictions strongly supported the 

quantum model over the additive model. Finally, Trueblood and Busemeyer (2010b) compared 

the quantum model to a more complex version of the anchor – adjust model (one that allowed the 

reference R to be a free parameter, and used a logistic response function, which entailed more 

parameters than the quantum model). The two models were compared by using a challenging set 
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of order effects on inference reported by McKenzie, Lee, and Chen  (2002), and the quantum 

model continued to produce a better fit than the anchor – adjust model. 

We do not claim that we have proven the quantum model to be the correct explanation for 

recency effects on inference.  Nor have we proven the quantum model is always better than the 

anchor – adjust model. Much more research is needed to establish these facts. What we conclude 

is that this quantitative test makes a convincing case for considering the quantum model to be a 

viable new candidate for modeling human inference and it deserves to enter the model testing 

fray.  

IV. Other applications and extensions.  

 The quantum model presented here has been successfully applied to several other 

interesting areas, which demonstrates the generality of the theory. Below we briefly summarize 

three of these other applications.  We also point out third area that needs further theoretical and 

experimental research. 

Attitude questions. Question order effects are ubiquitous in survey research (Moore, 

2002), and quantum theory provides a natural explanation for these effects. In one example of a 

Gallup poll (N = 1002) reported in Moore (2002), half the participants were asked the pair of 

questions ‘is Clinton honest and trustworthy’ and then ‘is Gore honest and trustworthy‘, and half 

were asked the same pair of questions in the opposite order.  Clinton received 50% agreement 

when asked first and 57% when asked second; Gore received 68% when asked first and 60% 

when asked second. (This is called an assimilation effect, because the candidates become more 

similar after the first question). In another example Gallup poll (N = 1015) presented by Moore 

(2002), half the participants were asked `is Gingrich honest and trustworthy' and then `is Dole 

honest and trustworthy', and the other half were asked the same in the opposite order. Gingrich 

received 41% agreement when asked first and 33% when asked second; Dole received 60% 

agreement when asked first and 64% when asked second (which is called a contrast effect 

because the candidates become more different on the second question).  Two other kinds of order 

effects are also found called additive effects and subtractive effects (Moore, 2002).  In all of the 

studies reviewed by Moore (2002), order effects were found so that p(AyBn)   p(BnAy) and 
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p(AnBy)  p(ByAn) was observed, where for example p(AyBn) is the probability of yes to 

question A followed by no to question B. 

Wang and Busemeyer (2010) assumed that answers to back to back questions such as 

those reviewed in Moore (2002) are made using a sequence of projectors. For example, p(AyBy) 

= ||PBPA |||
2
 and p(ByAy) = ||PAPB |||

2
. If the projectors are non-commuting, then the 

sequence of projections produces order effects. This is the same assumption that we use to 

predict conjunction and disjunction errors. Wang and Busemeyer (2009) were able to derive all 

of the order effects reported in Moore (2002) from this simple model; but more importantly, they 

derived the following parameter free prediction from the model: If questions are answered back 

to back and no new information is presented in between questions then  

q = [p(AyBn) + p(AnBy)]  – [p(ByAn) + p(BnAy) ] = 0,  

Surprisingly, for the three data sets that satisfied the test requirement, the observed results 

produced an average q = .008 (average z test statistic = .44, N1000), which is a highly accurate 

prediction.
13

  These results provide strong evidence that the quantum model can make precise 

and accurate predictions regarding order effects on judgment. 

Decision making. The more specific quantum model described in section III also has 

been used in two of our earlier applications in decision making. Pothos and Busemeyer (2009) 

used this model to explain a phenomenon called the disjunction effect (Shafir & Tversky, 1992). 

This has been studied most frequently using the prisoner dilemma paradigm, which is a two 

player game and each player can choose to defect or cooperate. The phenomena refers to the 

surprising fact that the probability of defecting when the move of the opponent is unknown turns 

out to be less than the probability of defecting when either of the opponent’s move is known. The 

quantum model used a four dimensional vector space to represent the four combinations of 

beliefs about the opponent’s move (opponent defects or not), and actions by the player (player 

defect or not). This quantum model was compared to a Markov model which used the same four 

states, and while the quantum model provided a highly accurate description of the disjunction 

effect, the Markov model failed to do so. 

                                                           
13

 If new information is inserted in between questions, thus violating a key assumption used to derive the prediction, 

then we find strong and statistically significant deviations (see Wang and Busemeyer, 2009). 
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Busemeyer et al. (2009) used the same quantum model to explain a phenomenon called 

the interference of categorization on decision making. This phenomenon has been studied in a 

categorization –decision task in which participants are shown a face, and then they are asked to 

either (a) categorize the face as good or bad, or (b) make a decision to act friendly or defensive 

or (c) categorize the face and decide on an action. The interference effect refers to the surprising 

fact that the probability of attacking was higher when no categorization was made as compared 

to when the action was preceded by a categorization. Once again the quantum model used a four 

dimensional vector space to represent the combinations of categorizations (good, bad) and 

actions (friendly, defensive).  As before, the quantum model was compared to a Markov model 

which used the same four states, and while the quantum model provided an accurate description 

of the results, the Markov model failed to so. 

One limitation of the quantum probability model presented here is that it fails to describe 

the dynamic process that produces a judgment. Consequently we cannot predict the distribution 

of judgments or the time needed to make a judgment. However, some preliminary progress along 

this line has made (Busemeyer, Wang, & Townsend, 2006; Fuss & Navarro, 2008). 

Quantum judgment process.  This article presents a theory of probability judgments, 

where the judged probabilities are based on the postulates described in section I. There are at 

least two important questions that we still need to address. How are these judgments made and 

how does one judgment affect a later judgment?   

The first question is what cognitive mechanism is used to produce a probability 

judgment? In physics, it is not possible to ask an electron to judge the probability that it’s in an 

excited as opposed to ground state. The physicist can only force the particle by a measurement 

interaction to resolve into a definite yes or no answer. Humans, however, are capable of making 

judgments. As in the case with many Bayesian judgment models, we remain agnostic about the 

exact mechanism used to generate these judgments. But if forced to speculate, then one idea is 

that beliefs in a quantum judgment model are assessed in the same way as familiarity in a 

memory recognition model. With regard to this idea, it is useful to compare the quantum model 

with a memory process model for probability judgments (MinervaDM, Dougherty et al., 1999). 

According to the memory model, probability judgments are determined by an ‘echo intensity,’ 

which equals the sum of the cubed inner products between vectors representing the memory for 
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the story and a vector representing the question. According to the quantum model, probability 

judgments are determined by a ‘squared projection,’ which equals the sum of the squared inner 

products between each basis vector entailed by a question and a belief state based on the story. In 

short, the ‘squared projection’ from quantum theory is analogous to the ‘echo intensity’ from 

MinveraDM. 

The second question is how does one judgment affect a later judgment? According to our 

postulate 4, the belief state is updated when the judge concludes that a new event has occurred or 

a new fact is true. This is the same principle that is used to update conditional probabilities in 

classic probability theory. The two probability theories only differ when incompatible events are 

involved in the judgment. Below we examine the two types of judgment problems reviewed in 

section II and III. 

Let us start with the juror inference task in which evidence is presented followed by a 

probability judgment of guilt. The presentation of new evidence causes the state to be revised by 

projecting the state onto the subspace consistent with the evidence. This is the same assumption 

that would be used in a Bayesian updating model or the averaging model. After this update, the 

person judges the probability of guilt. The belief state used to make this judgment contains the 

square roots of the judged probabilities for guilt and innocence. This judgment does not require 

the juror to resolve his or her uncertainty about guilt (i.e., the juror does not have to conclude 

whether the defendant is definitely guilty or not). Therefore the judgment about guilt leaves the 

juror in the same indefinite and uncertain state regarding guilt as before judgment. If instead we 

ask the juror to resolve all uncertainty and make a firm decision (definitely decide guilty versus 

not guilty), then the conclusion that the juror finally reaches about guilt could change the juror’s 

state of belief from an indefinite to a definite state (and affect later punishment judgments).   

Finally, consider the probability judgment for the conjunction task. If the person is asked 

to judge the probability that Linda is a feminist bank teller, then first the person judges the 

probability that feminism is true of Linda; second, the person projects the state onto the subspace 

for the feminism event in order to judge the conditional probability of bank teller given that 

feminism is true. The person only judges the probability of bank teller at this point, and is not 

required to reach any firm conclusions. Therefore the state remains indefinite about the bank 

teller question after the probability judgment about bank teller, and the final state immediately 
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after this sequence equals the projection on the feminism event.  Now suppose another question 

about Linda is asked afterwards. One hypothesis is that the person remains passively in the state 

left over from the previous judgment (the normalized projection of Linda on feminism).  

However, people are not passive entities like particles in physics, and instead they are capable of 

actively changing their own state (by reading information or retrieving new thoughts). A more 

plausible hypothesis is that the person refers back to the Linda story before another judgment is 

made, and thereby resets the state to one based on the original Linda story.
14

  

Contribution of quantum ideas to psychology and rationality 

 Quantum probability theory introduces a new concept to the field of psychology – that is 

the concept of compatibility between events.  More accurately, we should say `re-introduce' this 

distinction, because Niels Bohr (one of the founding fathers of quantum theory) actually 

borrowed the idea of complementarity (Bohr’s term for incompatibility) from William James 

(one of the founding fathers of psychology). Quantum theory also raises some questions about 

the rationality of human judgments.  Is this probability system rational, and if not, then why 

would people use this system? These two issues are addressed below. 

 Compatibility.  The key new principle that distinguishes classic and quantum 

probabilities is the concept of compatibility.  According to classic probability, all events are 

subsets of a common sample space, S, that is, all events are based on a common set of 

elementary events. Questions about different events, A, and B, must refer to this same common 

space S, which makes the two questions compatible. In the present application, each of the 

elementary events represents a combination of feature values, and so a classic representation 

requires one to assign probabilities to all of the combinations for all of the features. If there are a 

lot of features, then this involves a large number of elementary events, resulting in a very 

complex probability function. To simplify this probability function, Bayesian theorists often 

impose strong conditional independence assumptions, which may or may not be empirically 

valid. 

                                                           
14

 One can go on asking how this is done using quantum computing and information principles, and one answer is to 

use if-then types of control U gates (see Nielsen and Chuang, 2000), but this is getting too far into the realm of 

speculation with respect to the data at hand. 
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Quantum theory allows a person to use an incompatible representation. In other words, a 

person is not required to use a single (but very large) common set of features and their 

combinations. Instead, one set of features and their combinations could be used to answer a 

question A, and another set of features and their combinations could be used to answer another 

question, B. The features can be selected to answer a specific question. The person does not have 

to assign probabilities to all the combinations from both questions A and B. Moreover, forming 

all combinations for answering all possible questions could easily exceed a person’s knowledge 

capabilities. This is especially true if one considers all the various sorts of questions that a person 

might be asked. It is a lot more practical and efficient for a person to use an incompatible 

representation, because one only needs to assign probability amplitudes to the set of feature 

patterns needed to answer a specific question. Quantum theory achieves this efficiency by using 

different basis vectors to represent different questions within the same vector space. Quantum 

theory retains coherence among these different incompatible questions by relating them through 

a (unitary) rotation of the basis vectors. In other words, one question might require viewing the 

problem from a first perspective, but then a second question might require viewing the problem 

from a different perspective. The two perspectives are complementary in the sense that they are 

systematically related by a rotational transformation.  

An important question for any quantum model of cognition is the following: when will 

two questions rely on a compatible versus an incompatible representation?  We argue that a 

compatible representation may be formed under two circumstances. The first is when the judge 

has received a sufficiently extensive amount of experience with the combinations of feature 

values to form a belief state over all of these combinations. If an unusual or novel combination of 

events is presented, and the person has little or no experience with such combinations, then they 

may not have formed a compatible representation, and they must rely on incompatible 

representations of events that use the same small vector space but require taking different 

perspectives. In fact, conjunction errors disappear when individuals are given direct training 

experience with pairs of events (Nilsson, 2008), and order effects on abductive inference also 

decrease with training experience (H. Wang, Todd, & Zhang, 2006). A second way to facilitate 

the formation of a compatible representation is to present the required joint frequency 

information in a tabular format (Wolfe, 1995; Wolfe & Reyna, 2009; Yamagishi, 2003). 

Instructions to use a joint frequency table format would encourage a person to form and make 
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use of a compatible representation that assigns amplitudes to the cells of the joint frequency 

tables. 

 Quantum rationality.   Both classic (Kolmogorov) and quantum (von Neumann) 

probability theories are based on a coherent set of principles. In fact, classic probability theory is 

a special case of quantum probability theory in which all the events are compatible.  So why do 

we need to use incompatible events, and isn't this irrational? In fact, the physical world obeys 

quantum principles and incompatible events are an essential part of nature. Nevertheless, there 

are clear circumstances where everyone agrees that the events should be treated classically (such 

as random selection of balls from urns or dice throwing). Perhaps in these circumstances a 

person uses a quantum representation because he or she is willing to trade some accuracy for a 

simpler (lower dimensional) representation of uncertainty. Furthermore, it remains an empirical 

question whether quantum or Bayesian methods are more useful for modeling probabilities of 

very complex sequences when the joint probabilities are largely unknown.
15

 Also, incompatible 

events may be essential for understanding our commonly occurring but nevertheless very 

complex human interactions. For instance, when trying to judge something as uncertain as 

winning an argument with another person, the likelihood of success may depend on using 

incompatible representations that allows viewing the same facts from different perspectives.  As 

another example, judges or jurors in a courtroom setting must adopt both prosecution and 

defense perspectives for viewing the same facts (Trueblood & Busemeyer, 2010b).  

Human judges may be capable of using either compatible or incompatible 

representations, and they are not constrained or forced to use just one. The use of compatible 

representations produces judgments that agree with the classic laws of probability, whereas the 

use of incompatible representations produces violations. But the latter may be necessary to deal 

with deeply uncertain situations (involving unknown joint probabilities), where one needs to rely 

on simple incompatible representations to construct sequential probabilities coherently from 

quantum principles. In fact, both types of representations, compatible and incompatible, may be 

available to the judge, and the context of a problem may trigger the use of one or the other 

(Reyna & Brainerd, 1995). More advanced versions of quantum probability theory (using a Fock 
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 In this case, a Bayesian model must approximate by using conditional independence assumptions that could be 
false. 
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space, which is analogous to a hierarchical Bayesian type model) provide principles for 

combining both types of representations (Aerts, 2009). 

 Concluding Comments.  During the 19
th

 century, it was hard for scientists to imagine that 

there could be any geometry other than Euclidean geometry; but non Euclidean geometries 

eventually became essential for many important scientific applications. During the 20
th

 century, 

it was equally hard for scientists to imagine that there could be any probability theory other than 

classic probability; but quantum probability became essential to physics. It’s importance for 

psychology is beginning to be recognized as well (Shiffrin, 2010).  

Quantum theory is one of the most elegant and internally consistent creations of the 

human mind. It was developed by several ingenious physicists as a way to assign probabilities to 

physical events.  This article explores its potential for assigning probabilities to psychological 

events, specifically in the context of human judgment. In fact, we have utilized the basic axioms 

of quantum probability theory and simply augmented them with an additional postulate, 

regarding the order in which multiple questions are evaluated. On the basis of uncontentious 

assumptions regarding the relatedness of different pieces of information and the similarity 

between different instances, we showed how it is possible to account for many of the basic 

findings in human probabilistic judgment. The main aspect of quantum theory which makes it 

successful relates to order effects in probability computations. Order effects arise in quantum 

theory because it is a geometric theory of probabilities: probabilities are computed from 

projections to different subspaces. But, as we have shown, it is typically the case that the order 

with which these projections occur can affect the eventual outcome. Empirical findings on 

human judgment indicate strong order effects as well and it is for this reason that quantum theory 

appears to provide an intuitive and parsimonious explanation for such findings. We conclude that 

quantum information processing principles provide a viable and promising new way to 

understand human judgment and reasoning.



                    Quantum Probability 54 
 

  

 

References 

Abelson, R. P., Leddo, J., & Gross, P. H. (1987). The strength of conjunctive explanations. Personality and 
Social Psychology Bulletin, 13, 141-155. 

Acacio de Barros, J., & Suppes, P. (2009). Quantum mechanics, interference, and the brain. Journal of 
Mathematical Psychology, 53(5), 306-313. 

Aerts, D. (2009). Quantum structure in cognition. Journal of Mathematical Psychology, 53(5), 314-348. 
Aerts, D., & Gabora, L. (2005). A theory of concepts and their combinations II: A Hilbert space 

representation. Kybernetes, 34, 192-221. 
Atmanspacher, H., Filk, T., & Romer, H. (2004). Quantum zero features of bistable perception. Biological 

Cybernetics, 90, 33-40. 
Baddeley, A. D. (1992). Working memory. Science, 255, 556-559. 
Bar-Hillel, M., & Neter, E. (1993). How alike is it versus how likely is it: A disjunction fallacy in probability 

judgments. Journal of Personality and Social Psychology, 65, 1119-1131. 
Bergus, G. R., Chapman, G. B., Levy, G. T., Ely, J. W., & Oppliger, R. A. (1998). Clinical diagnosis and order 

of information. Medical Decision Making, 18, 412-417. 
Bordley, R. F. (1998). Quantum mechanical and human violations of compound probability principles: 

Toward a generalized Heisenberg uncertainty principle. Operations Research, 46, 923-926. 
Bruza, P., Busemeyer, J. R., & Gabora, L. (2009). Introduction to the special issue on quantum cognition. 

Journal of Mathematical Psychology, 53(5), 303-305. 
Busemeyer, J. R., Wang, Z., & Lambert-Mogiliansky, A. (2009). Empirical comparison of Markov and 

quantum models of decision making. Journal of Mathematical Psychology, 53(5), 423-433. 
Busemeyer, J. R., Wang, Z., & Townsend, J. T. (2006). Quantum dynamics of human decision making. 

Journal of Mathematical Psychology, 50, 220-241. 
Carlson, B. W., & Yates, J. F. (1989). Disjunction errors in qualitative likelihood judgment. Organizational 

Behavior and Human Decision Processes, 44, 368-379. 
Carrol, J., & Chang, J. (1970). Analysis of individual differences in multidimensional scaling via an n-way 

generalization of the 'Eckhard-Young' composition. Psychometrika, 35, 283-319. 
Costello, F. J. (2009). How probability theory explains the conjunction fallacy. Journal of Behavioral 

Decision Making, 22, 213-234. 
Dougherty, M. R. P., Gettys, C. F., & Odgen, E. E. (1999). MINVERVA-DM: A memory processes model for 

judgments of likelihood. Psychological Review, 106 (1), 180-209. 
Fantino, E., Kulik, J., & Stolarz-Fantino, S. (1997). The conjuntion fallacy: A test of averaging hypotheses. 

Psychonomic Bulletin and Review, 1, 96-101. 
Fisk, J. E. (2002). Judgments under uncertainty: Representativeness or potential surprise? British Journal 

of Psychology, 93, 431-449. 
Franco, R. (2009). The conjunctive fallacy and interference effects. Journal of Mathematical Psychology, 

53(5), 415-422. 
Fuss, I., & Navarro, D. (2008). Partially Coherent Quantum Models for Human Two-Choice Decisions. QI-

2008 (2nd: 2008: Oxford, UK). 
Gavanski, I., & Roskos-Ewoldsen, D. R. (1991). Representativeness and conjoint probability. Journal of 

Personality and Social Psychology, 61, 181-194. 



                    Quantum Probability 55 
 

Gigerenzer, G., & Goldstein, D. (1996). Reasoning the fast and frugal way: models of bounded rationality. 
Psychological Review, 103(4), 650-669. 

Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: 
frequency formats. Psychological Review, 102, 684-704. 

Gilovich, T., Griffin, D., & Kahneman, D. (2002). Heuristics and biases: the psychology of intuitive 
judgment: Cambridge University Press. 

Gudder, S. P. (1979). Stochastic Methods in Quantum Mechanics. Mineola, N. Y.: Dover. 
Gudder, S. P. (1988). Quantum Probability: Academic Press. 
Hammeroff, S. R. (1998). Quantum computation in brain microtubles? The Penrose - Hameroff "Orch 

OR" model of consiousness. Philosophical Transactions Royal Society London (A), 356, 1869-
1896. 

Hastie, R., & Park, B. (1988). The relationship between memory and judgment depends on whether the 
judgment is memory - based or on-line. Psychological Review, 93, 258-268. 

Hertwig, R., Bjorn, B., & Krauss, S. (2008). The conjunction fallacy and the many meanings of 'and'. 
Cognition, 108, 740-753. 

Hogarth, R., & Einhorn, H. J. (1992). Order effects in belief updating: The belief adjustment modeling. 
Cognitive Pschology, 24, 1-55. 

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases: 
Cambridge University Press. 

Khrennikov, A. Y. (2010). Ubiquitous quantum structure: From Psychology to Finance: Springer. 
Kolmogorov, A. N. (1933). Foundations of the theory of probability: N.Y.: Chelsea Publishing Co. 
Lu, Z.-L., & Dosher, B. (2008). Characterizing observers using external noise and observer models: 

Assessing internal representations with external noise. . Psychological Review, 115(1), 44-82. 
Luce, R. D., Ng, C. T., Marley, A. A. J., & Aczel, J. (2008). Utility of gambling I: Entropy-modified linear 

weighted utility. Economic Theory, 36, 1-33. 
McKenzie, C., Lee, S. M., & Chen, K. K. (2002). When negative evidence increases confidence: Change in 

belief after hearing two sides of a dispute. Journal of Behavioral Decision Making, 15, 1-18. 
McKenzie, C. R., Lee, S. M., & Chen, K. K. (2002). When negative evidence increases confidence: change 

in belief afer hearing two sides of a dispute. Journal of Behavioral Decision Making, 15, 1-18. 
Miyamoto, J. M., Gonzalez, R., & Tu, S. (1995). Compositional anomalies in the semantics of evidence. In 

J. R. Busemeyer, D. L. Medin & R. Hastie (Eds.), Decision making from a cognitive perspecitve 
(pp. 1-50): NY: Academic Press. 

Miyamoto, J. M., Lundell, J. W., & Tu, S. (1988). Conditional fallacies in probability judgment. Bulletin of 
the Psychonomic Society, 26. 

Moore, D. W. (2002). Measuring New Types of Question-Order Effects. Public Opinion Quarterly, 66, 80-
91. 

Morier, D. M., & Borgida, E. (1984). The conjuction fallacy: A task specific phenomena? Personality and 
Social Psychology Bulletin, 10, 243-252. 

Nielsen, M. A., & Chuang, I. L. (2000). Quantum computation and quantum information: Cambridge 
University Press. 

Niestegge, G. (2008). An approach to quantum mechanics via conditional probablities. Foundations of 
Physics, 38, 241-256. 

Nilsson, H. (2008). Exploring the conjuction fallacy within a category learning framework. Journal of 
Behavioral Decision Making, 21, 471-490. 

Pothos, E. M., & Busemeyer, J. R. (2009). A quantum probability model explanation for violations of 
`rational' decision making. Proceedings of the Royal Society, B., 276 (1665), 2171-2178. 

Pribram, K. H. (1993). Rethinking neural networks: Quantum fields and biological data: Erlbaum. 



                    Quantum Probability 56 
 

Reyna, V., & Brainerd, C. J. (1995). Fuzzy - Trace theory: An interim synthesis. Learning and Individual 
Differences, 7, 1-75. 

Rotello, C. M., Macmillan, N. A., & Reeder, J. A. (2004). Sum-difference theory of remembering and 
knowing: A two-dimensional signal-detection model. Psychological Review, 111(3), 588-616. 

Rottenstreich, Y., & Tversky, A. (1997). Unpacking, repacking, and anchoring: Advances in support 
theory. Psychological Review, 104, 406-415. 

Shafir, E., & Tversky, A. (1992). Thinking through uncertainty:  Nonconsequential reasoning and choice. 
Cognitive Psychology, 24, 449-474. 

Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: An effort - reduction framework. 
Psychological Bulletin, 134 (2), 207-222. 

Shepard, R. N. (1962). The analysis of proximities: Multidimensional scaling with an unknown distance 
function. I. Psychometrika, 27, 125-140. 

Shiffrin, R. S. (2010). Perspectives on modeling in cognitive science. Topics in Cognitive Science, x, 1-15. 
Sides, A., Osherson, D., Bonini, N., & Viale, R. (2002). On the reality of the conjunction fallacy. Memory 

and Cognition, 30, 191-198. 
Sloman, S., Rottenstreich, Y., Wisniewski, E., Hadjichristidis, C., & Fox, C. R. (2004). Typical versus 

atypical unpacking and superadditive probability judgment. Journal of Experimental Psychology: 
Learning, Memory and Cognition, 30 (3), 573-582. 

Stolarz-Fantino, S., Fantino, E., Zizzo, D. J., & Wen, J. (2003). The conjunction effect: New evidence for 
robustness. American Journal of Psychology, 116 (1), 15-34. 

Trueblood, J., & Busemeyer, J. R. (2010a). A comparison of the belief adjustment model and the quantum 
inference model as explanations of order effects in human inference. Paper presented at the 
Proceedings of the Cognitive Science Society. 

Trueblood, J., & Busemeyer, J. R. (2010b). A Quantum Probability Explanation for Order Effects on 
Inference. Cognitive Science, under review. 

Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjuctive fallacy in 
probability judgment. Psychological Review, 90, 293-315. 

Tversky, A., & Koehler, D. J. (1994). Support theory: A nonextensional representation of subjective 
probability. Psychological Review, 101, 547-567. 

Van Rijsbergen, K. (2004). The geometry of infomation retrieval: Cambridge University Press. 
Von Neumann, J. (1932). Mathematical Foundations of Quantum Theory: Princeton University Press. 
Wang, H., Todd, R. J., & Zhang, J. (2006). The order effect in human abductive reasoning: an empirical 

and computational study. Journal of Experimental and Theoretical Artificial Intelligence, 18 (2), 
215-247. 

Wang, Z., & Busemeyer, J. R. (2009). Explaining and Predicting Question Order Effects using a Quantum 
Model. Public Opinion Quarterly, under review. 

Wason, P. C. (1960). On the failure to elmininate hypotheses in a conceptual task. Quarterly Journal of 
Experimental Psychology, 12, 129-140. 

Wedell, D. H., & Moro, R. (2008). Testing boundary conditions for the conjuction fallacy: Effects of 
response mode, conceptual focus, and problem type. Cognition, 107, 105-136. 

Wells, G. L. (1985). The conjuction error and the reprentative heuristic. Social Cognition, 3, 266-279. 
Winman, A., Nilsson, H., Juslin, P., & Hansson, G. (2010). Linda is not a bearded lady: Weighting and 

adding as a cause of extension errors. 
Wolfe, C. R. (1995). Information seeking on Bayesian conditional probability problems: A fuzzy-trace 

theory account. Journal of Behavioral Decision Making, 8, 85-108. 
Wolfe, C. R., & Reyna, V. F. (2009). Semantic coherence and fallacies in estimating joint probabilities. 

Journal of Behavioral Decision Making, x, xx-xx. 



                    Quantum Probability 57 
 

Wyer, R. S. (1976). An investigation of the relations among probability estimates. Organizational 
Behavior and Human Performance, 15, 1-18. 

Yamagishi, K. (2003). Facilitating normative judgments of conditional probability: Frequency or nested 
sets? Experimental Psychology, 50 (2), 97-106. 

Yates, J. F., & Carlson, B. W. (1986). Conjunction errors: Evidence for multiple judgment procedures, 
including 'signed summation'. Organizational Behavior and Human Decision Processes, 37, 230-
253. 

 

 

  



                    Quantum Probability 58 
 

 

 

Appendix A 

The first part of this appendix provides a simple geometric and numerical example of an 

order effect based on the vectors shown in Figure 1 below (visual display limits this to three 

dimensions).  Our example expresses all the vectors in terms of coordinates with respect to the 

standard X, Y, Z basis in Figure 1. In this figure, one basis is generated by the X = [1, 0, 0], Y = 

[0, 1, 0], and Z = [0, 0, 1] basis vectors. The blue X,Y,Z basis could represent three mutually 

exclusive and exhaustive answers to an XorYorZ question. A second basis is generated by the U 

= [1/2, 1/2, 0], V = [1/2, 1/2, 1/2], and W = [1/2, 1/2, 1/2] basis vectors. The orange 

U,V,W basis could represent three mutually exclusive and exhaustive answers to another 

incompatible UorVorW question. The initial state is represented by the black vector S = [.6963, 

.6963, .1741] in the figure.  

Figure 1 

f 

To become familiar with the quantum method of calculating probabilities, let us first 

compute the probabilities for saying yes to question X (squared length of the projection of S onto 
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the ray spanned by X), as well as the probability of saying yes to question W (squared length of 

the projection of S on the ray spanned by W).  In general, the projection of a state onto a ray is 

determined by the inner product of the state and the basis vector that spans the ray.  The inner 

product between a vector T with coordinates [t1,…,tN] and another vector S with coordinates 

[s1,…,sN] is defined (using Dirac bracket notation) as T|S =  (ti*  si). (Here ti* is the conjugate 

of ti, but in this example, all of the coordinates are real and so ti* = ti). First, consider the 

probability of choosing X when asked question XorYorZ from state S. The event ‘yes’ to X is 

represented by a ray spanned by the basis vector X. The inner product between X and S, equals 

X|S =(1)(.69631) + (0) (.69630) + 0(.17410) = .6963, the projection of S onto X equals the 

point labeled A = (.6963)X in the figure, and the probability of choosing this answer equals 

||.6963X||
2
 =|.6963|

2
||X||

2
 = (.6963)

2
1 = .4848. Note that it is arbitrary whether we use the 

basis vector X or X* = (X) to span the ray representing question X, because they both span the 

same ray. In the latter case, the inner product equals X*|S = +.6963, yet the projection is exactly 

the same A = (+.6963)X* = (.6963)X. In other words, the question is represented by a ray, and 

the ray spanned by the basis vector X does not have a positive or negative direction.  Next 

consider the probability of choosing W when asked question UorVorW from state S. The 

projection of S on the basis vector W is determined by the inner product W|S = (1/2)(.6963) 

+ (1/2)(.6963) + (1/2)(1741) = .8194, the projection equals the point labeled B = (.8194)W, 

and the probability of choosing this answer equals ||.8194W||
2
 =|.8194|

2
||W||

2
 = (.8194)

2
1 = 

.6714.  

To examine the order effect, compare (a) asking U first and then X with (b) asking X first 

and then U.  (Consider U the bank teller event, and consider X the feminist event.) Note that in 

the figure, the probability of X given U equals |X|U|
2
 = .50 = |U|X|

2
 which also equals the 

probability of U given X. In this example the inner product between the initial state S and the 

basis vector U  is zero, S|U = 0, so these two vectors are orthogonal. (We made these two 

vectors orthogonal so that it is easy to visualize the relation in the figure. We could easily adjust 

all the vectors slightly so that the probabilities are small but non zero and make the same point 

below.)  The fact that S and U are orthogonal implies that the probability of saying yes to 

question U directly from the initial state S is zero. But, if we first ask whether X is true, then 

there is a probability (.4848) of answering yes; and if the answer is yes to X, then the projection 
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of X on U equals (1/2)U, and so now there is a probability (1/2)
2
 = .50 of saying yes to U 

given yes to X. Thus the probability from the direct path S  U equals zero, but the probability 

of the indirect path S  X  U equals .4848  .50 =.2424. Therefore, this is an example in 

which the joint probability of first saying yes to X and then yes to U exceeds the single 

probability of saying yes to U when it is asked first.  

The second part of this appendix explains why we can always choose a basis using basis 

vectors that produce amplitudes which are square roots of probabilities. The reason being that at 

the time of judgment, the phase of an amplitude is not meaningful, because it is not unique, and 

so it can be ignored, and we only need to consider the magnitude.  

Consider a basis {|E1,…,|EN} for describing a state | in an N dimensional space. The 

state vector | can be represented in the |Ej basis by expressing it as a linear combination  

| =   |EjEj|.  

The amplitude Ej| assigned to the basis vector |Ej equals the inner product between the state 

vector and the basis vector. In general, this inner product can be a complex number expressed as 

Ej| = Rje
ij

, with 0  Rj  1, and Rj
2
 equals the probability for the ray spanned by the basis 

vector |Ej. Note that e
ij
e
ij

 = 1 so that 

  | =   |EjEj| =  |Ej(e
ij
e
ij

)Ej|   

=  e
ij

  |Ej  (e
ij 

Ej|) =  |FjFj|. 

What we have done here is change from the |Ej basis to the |Fj basis for describing the state 

vector |. But |Fj = e
ij

  |Ej spans the same ray as |Ej, and the squared magnitude of the 

amplitude |Fj||
2
 = |e

ij
Ej||

2
 = Rj

2
 produces the same probabilities as |Ej||

2
 = Rj

2
. Suppose 

a question about an event corresponds to a subspace spanned by {|Ej, j X, where X is the set of 

basis vectors that define the event in question}. This subspace corresponds to the projector PX = 

 |EjEj| for j X.  Then the matrix representation of PX with respect to the |Ej basis is the NN 

matrix PX  with Ej|PX|Ej = 1 in rows j  X and Ei|PX|Ej = 0 otherwise; the matrix 

representation of  PX with respect to the |Fj basis is exactly the same matrix PX  with the value 

Fj|PX|Fj =  e
ij

Ej|PX|Eje
ij

 =Ej|PX|Ej = 1 in row i  X and zero otherwise.  Finally, the 
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probability of the event in question equals ||PX|||
2
 =  ||PX E||

2
 = ||PX  F||

2
   Therefore we can 

represent the state using either basis. To make the state more meaningful for cognition, we can 

choose to orientate the basis vectors so that they represent the state vector by using the square 

roots of probabilities. Then why do we need the phases?  

The phases of the amplitudes are critical when a unitary transformation is used to change 

from one basis to another basis. Suppose A is an N1 unit length column vector with complex 

coordinates [a1,…,aN] = [|a1|e
i1

,…,|aN|e
iN

]; for this vector, we can define a unitary matrix UA  

= diag[e
i1

,…,e

 
iN

] so that (UA A) is now a positive real unit length vector containing 

coordinates [|a1|,…,|aN|] in this new basis. Suppose B is another N1 unit length column vector 

with coordinates [b1,…,bN] = [|b1|e
i1

, …, |bN|e
iN

]; again for this vector we can define a unitary 

matrix UB  = diag[e
i1

,…,e
iN

] so that (UB B) is also a positive real unit length vector with 

coordinates [|b1|,…, |bN|]. Finally, suppose the original complex vectors A and B are related by an 

NN complex valued unitary transformation matrix UBA so that B = UBAA.  Then we have the 

following relations 

  B =UBA A   (UBB) = (UB UBA  UA
1

)(UAA). 

The positive real vector (UAA) produces the same probabilities for events as the complex vector 

A, and the positive real vector (UBB) produces the same probabilities for events as the complex 

vector B, and the matrix (UB UBA  UA
1

) is the unitary matrix that transforms (UAA) into (UBB).  

So we get the same exact answers using {A , B , UBA} or {(UAA),(UBB),(UBUBAUB
1

)}, and the 

latter only uses the square roots of probabilities. However, the phases remain important for the 

unitary transformation because |bj| = |  uijaj |  |  |uij|| aj | ,and this is exactly where the 

interference enters the theory.  

The unitary transformation can be interpreted as a fully interconnected hidden unit neural 

network:  input (UAA)  associative network (UB UBA  UA
1

)  (UBB) output.   Instead of 

using logistic hidden units as in a standard connectionist model, the unitary transformation uses 

sine-cosine units. We only require that the output amplitude (UBB) be explicitly available for 

awareness or reporting, and the phase captures implicit memory interference effects produced by 
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the wave mechanical oscillations of the underlying neural based retrieval system represented by 

the unitary operator (Acacio de Barros & Suppes, 2009).   
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Appendix B 

The purpose of this appendix is to prove the following two propositions: 

1.  The conjunction and disjunction fallacies occur only if the events are incompatible. 

2.  The simultaneously explanation of both the conjunction and disjunction fallacies requires the 

following order constraint:  ||PF PB|||
2
 < ||PB PF|||

2
.   

But before we begin, recall that | is a vector within a finite dimensional vector space defined 

on a field of complex numbers (technically, a finite dimensional Hilbert space).  PA denotes a 

projector on the subspace A which is a Hermitian matrix that satisfies PA PA = PA.  

Proposition 1:  The conjunction and disjunction fallacies occur only if the events are 

incompatible. 

Proof: 

If the events are compatible, then the projectors commute, PB PF  = PF PB, and the interference 

term equals  

B,~F|B,F =|PBP~FPB PF| =|PBP~FPF PB| = 0 because P~FPF = 0.  

If the interference term is zero then the probability of the single event, shown on the left hand 

side of Equation 1, is simply the sum of the two conjunction probabilities, and so the left hand 

side must be greater than or equal to each individual conjunction probability on the right hand 

side. QED. 

We need prove two lemmas before proving the second proposition.  

Lemma 1:  The interference term for event ~F is the negative of the interference term for event F. 

Proof: 

1 = ||PF|||
2
 +||P~F|||

2
 

=  [ ||PFPB|||
2
 + ||PFP~B|||

2
 + F ] +[ ||P~FPB|||

2
 + ||P~FP~B|||

2
 + ~F ] 
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=   [ ||PFPB|||
2
 +||P~FPB|||

2
 ] +  [ ||PFP~B|||

2
 + ||P~FP~B|||

2
 ] + [ F + ~F ] 

=    [||PB|||
2
||PF|B||

2
 +||PB|||

2
||P~F|B||

2
 ]   

   + [ ||P~B|||
2
 ||PF|~B||

2
 + ||P~B|||

2
 ||P~F|~B||

2
 ]  

   + [ F + ~F] 

=    ||PB|||
2
 [||PF|B||

2
 +||P~F|B||

2
 ]  

   + ||P~B|||
2
 [||PF|~B||

2
 +||P~F|~B||

2
 ]  

   +  [ F + ~F] 

 = ||PB|||
2
 1 + ||P~B|||

2
 1 + [ F + ~F] 

 =    1 + [ F + ~F]   [ F + ~F]  = 0.  QED. 

Lemma 2: The following two expressions for the interference terms are equivalent:  

B = B,~F|B,F + B,F|B,~F = 2{ Re[|PB PF|]  ||PBPF|||
2
 } 

F = F,~B|F,B + F,B|F,~B = 2{ Re[|PF PB|]  ||PFPB|||
2
 } 

Proof:    

Note that B,F|B,~F = B,~F|B,F* (where * indicates the conjugate) so that  

B = B,~F|B,F + B,F|B,~F = 2Re[B,~F|B,F]  

F = F,~B|F,B + F,B|F,~B = 2Re[F,~B|F,B], 

 where Re(x) is the real part of the complex number x.  It then follows that  

B = 2Re[B,~F|B,F] = 2Re[|P~F PBPB PF|] = 2Re[|P~F PB PF|] 

=2Re[|(I  PF)PB PF|] =2{ Re[|PB PF|]  ||PBPF|||
2
 }. 

A similar argument applies to produce the alternative expression for F. QED. 
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Proposition 2:  The simultaneously explanation of both the conjunction and disjunction fallacies 

requires the following order constraint:  ||PF PB|||
2
 < ||PB PF|||

2
.   

Proof: 

Recall from Equation 1 the interference term from bank teller event equals B = B,~F|B,F + 

B,F|B,~F, and the conjunction error requires B  < ||PBP~F|||
2
. Recall from Equation 2 that 

the interference term from the not feminist event equals ~F = ~F,B|~F,~B + ~F,~B|~F,B, and 

the disjunction error requires ~F < ||P~FPB|||
2
.  Also note from Lemma 1 that ~F = F. From 

this last expression it follows that F < ||P~FPB|||
2
 which then implies that F > ||P~FPB|||

2
.  

Using the new expression for the interference based on Lemma 2, we see that the two 

inequalities require that 

 F = 2{ Re[|PF PB|]  ||PFPB|||
2
 } > ||P~FPB|||

2
  

                    >    ||PBP~F|||
2
 > 2{ Re[|PB PF|]  ||PBPF|||

2
 } = B.  

But Re[|PF PB|] = Re[|PB PF|], which implies that  ||PFPB|||
2
  >  ||PBPF|||

2
 and 

therefore we require ||PFPB|||
2
  <  ||PBPF|||

2
.   QED. 
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Appendix C 

According to the vignette version of the memory model, information about the story is 

stored in a memory trace (column) vector denoted T. A single question A is represented by a 

probe (column) vector of the same length, PA, with values assigned to features related to both the 

question and the story, and zeros otherwise. Retrieval strength (echo intensity) to a question is 

determined by the inner product between the memory trace vector and the question probe vector, 

IA = [PA|T/NA]³. Note that the inner product is normalized by dividing it by a number, NA, that 

depends on the number of nonzero elements in the question probe vector.  Frequency or relative 

frequency judgments are assumed to be proportional to echo intensity (which requires the 

intensity to be non-negative). A conjunctive question ‘L and U’ is represented by a single 

conjunctive probe, which is the direct sum (concatenation) of two minivectors (this is the same 

as summing two non-overlapping vectors). If PL is a row minivector for L with length NL, and PU 

is a row minivector for U with length NU, and 0N is a row vector of N zeros, then PL&U =  

[PL|PU]=[PL|0NL]+[0NU|PU] = PL + PU.  The echo intensity of this conjunction probe produces 

something akin to an average, 

 (IL&U)
1/3

 = PL&U|T)/NL&U =  PL +PU |T/NL&U  

  = PL|T/NL&U + PU|T)/NL&U 

  = (NL/(NL+NU)⋅(IL)
1/3

 +(NU/(NL + NU)⋅ (IU)
1/3

 

which is a weighted average 

 = wL⋅(IL)
1/3

 + wU⋅(IU)
1/3

,   

with weights wL = NL/(NL+NU) and wU = NU/(NL+NU).  The intensity is the cube [(IL&U)
1/3

]
3
 = Il&U 

and the cubic function is monotonically increasing, so the intensity is ordered the same as 

(IL&U)
1/3

. 
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