
              

City, University of London Institutional Repository

Citation: Pothos, E. M. & Busemeyer, J. R. (2009). A quantum probability explanation for 

violations of "rational" decision theory. Proceedings of the Royal Society B: Biological 
Sciences, 276(1665), pp. 2171-2178. doi: 10.1098/rspb.2009.0121 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/1979/

Link to published version: https://doi.org/10.1098/rspb.2009.0121

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


quantum probability  1 
 

 

 

 

A quantum probability explanation for violations of 

'rational' decision theory 

  

 

 

 

 

Emmanuel M. Pothos
1 
and Jerome R. Busemeyer

2
 
 

 

 

 

 

1. Department of Psychology, Swansea University, Swansea SA2 8PP, UK. Email: 

e.m.pothos@swansea.ac.uk .  

2. Department of Psychology, Indiana University, 10
th

 St., Bloomington, IN 47405, USA. Email:  

jbusemey@indiana.edu.  

 

Word count: 4,555 

The work was carried out equally between the two institutions.  

in press: Proceedings of the Royal Society B 

 

 

mailto:e.m.pothos@swansea.ac.uk
mailto:jbusemey@indiana.edu


quantum probability  2 
 

 

 

Summary 

Two experimental tasks in psychology, the two stage gambling game and the prisoner’s dilemma 

game, show that people violate the sure thing principle of decision theory. These paradoxical 

findings have resisted explanation by classic decision theory for over a decade. A quantum 

probability model, based on a Hilbert space representation and Schrödinger’s equation, provides 

a simple and elegant explanation for this behaviour. The quantum model is compared to an 

equivalent Markov model and it is shown that the latter is unable to account for violations of the 

sure thing principle. Accordingly, it is argued that quantum probability provides a better 

framework for modelling human decision making.  

 

Key words: prisoner’s dilemma, quantum probability, decision making, cognitive science  
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 Cognitive science is concerned with providing formal, computational descriptions for 

various aspects of cognition. Over the last few decades, several frameworks have been 

thoroughly examined, such as formal logic (e.g., Evans, Newstead, & Byrne, 1991), information 

theory (e.g., Chater, 1999), classical (Bayesian) probability (e.g., Tenenbaum & Griffiths, 2001), 

neural networks (Rumelhart & McClelland, 1986), and a range of formal, symbolic systems 

(e.g., Anderson, Matessa, & Lebiere, 1997). Being able to establish an advantage of one 

computational approach over another is clearly a fundamental issue for cognitive scientists. Two 

criteria are needed to achieve this goal: one is to establish a striking empirical finding  that 

provides a strong theoretical challenge, and the second is to provide a rigorous mathematical 

argument that a theoretical class fails to meet this challenge. This article reviews findings that 

challenge the classical (Bayesian) probability approach to cognition, and proposes to exchange 

this with a more generalized (quantum) probability approach. 

 The empirical challenge is provided by  two experimental tasks in decision making, the 

prisoner’s dilemma and the two-stage gambling task, which have had an enormous influence in 

cognitive psychology (and economics—there are over 31,000 citations to Tversky’s work, one of 

the researchers who first studied these tasks; e.g., Shafir & Tversky, 1992; Tversky & 

Kahneman, 1983; Tversky & Shafir, 1992). These experimental tasks are important because they 

show a violation of a fundamental law of classic (Bayesian) probability theory which, when 

applied to human decision making, is called the ‘sure thing’ principle (Savage, 1954).  

The sure thing principle (Savage, 1954) is fundamental to classic decision theory: If you 

prefer action A over B under state of the world X, and you also prefer A over B under the 

complementary state ~X, then you should prefer A over B when the state is unknown. This 
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principle was tested by Tversky and Shafir (1992) in a simple two-stage gambling experiment: 

participants were told that they had just played a gamble (even chance to win $200 or lose $100), 

and then they were asked to choose whether to play the same gamble a second time. In one 

condition, they knew they won the first play; in a second condition, they knew they lost the first 

play; and in a third condition, they did not know the outcome. Surprisingly, the results violated 

the sure thing principle: following a win/ loss, participants chose to play again on 69% / 59% 

respectively of the trials; but when the outcome was unknown, they only chose to play again on 

36% of the trials. This preference reversal was observed at the individual level of analysis with 

real money at stake.  

Similar results were obtained using a two person prisoner’s dilemma game with payoffs 

defined for each player as in Table 1.The Nash equilibrium in standard game theory is for both 

parties to defect. Three conditions are used to test the sure thing principle: In an ‘unknown’ 

condition, you act without knowing your opponent’s action; in the ‘known defect’ condition, you 

know your opponent will defect before you act; and in the ‘known cooperate’ condition, you 

know your opponent will cooperate before you act. According to the sure thing principle, if you 

prefer to defect, regardless of whether you know your opponent will defect or cooperate, then 

you should prefer to defect even when your opponent’s action is unknown.  

-----------------------  Table 1 ---------------------- 

Once again, people frequently violate the sure thing principle (Shafir & Tversky, 1992) – 

many players defected knowing the opponent defected and knowing the opponent cooperated, 

but they switched and decided to cooperate when they didn’t know the opponent’s action.  This 

preference reversal by many players caused the proportion of defections for the unknown 

condition to fall below the proportions observed under the known conditions.  This key finding 
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of Shafir and Tversky (1992) has been replicated in several subsequent studies (Busemeyer, 

Matthew, & Wang, 2006; Croson, 1999; Li & Taplin, 2002, Table 2).  

Note that prisoner’s dilemma is a task that has attracted widespread attention not just 

from decision making scientists. For example, it has been intensely studied in the context of how 

altruistic and cooperative behaviour can arise in both humans and animals (e.g., Axelrod & 

Hamilton, 1981; Kefi et al., 2007; Stephens et al., 2002). Violations of the sure thing principle 

specifically have not been demonstrated in animal cognition. However, both Waite (2001) and 

Shafir (2001) showed that transitivity, another fundamental aspect of classical probability theory, 

can be violated in animal preference choice (with gray jays and bees, respectively). Also, it turns 

out that a core element of our model for human decision making in prisoner’s dilemma has an 

analogue in animal cognition, raising the possibility that such a model may be applicable to 

animal cognition as well.  

-----------------------  Table 2 ---------------------- 

We present an alternative probabilistic framework for modelling decision making, based 

on quantum probability. Why consider a quantum probability model for decision making? The 

original motivation for the development of quantum mechanics in physics was to explain 

findings that seemed paradoxical from a classical point of view. Similarly, paradoxical findings 

in psychology have made a growing number of researchers seek explanations that make use of 

the quantum formalism in cognitive situations. For example, Aerts and Aerts (1994; see also 

Khrennikov, 2004; La Mura, in press; Mogiliansky et al., in press) modelled incompatibility and 

interference effects that arise in human preference judgements. Gabora and Aerts (2002; see also 

Aerts & Gabora, 2005a, 2005b; Aerts, Broekaert & Gabora, in press) modelled puzzling findings 

found in human reasoning with conceptual combinations. Bordley (1998; see also Franco, in 
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press) modelled paradoxical results obtained with human probability judgments. Van Rijsbergen 

(2004; see also Bruza, Widdows, & Wood, 2006; Widdows, 2006) showed that classical logic 

does not appear the right type of logic when dealing with classes of objects and a more 

appropriate representation for classes is possible with mathematical tools from quantum theory. 

Such approaches can be labelled ‘geometric’ (cf. Aerts & Aerts, 1994) in that they utilize the 

geometric properties of Hilbert space representations and the measurement principles of quantum 

theory, but not the dynamical aspects of quantum theory (time evolution with Schrödinger’s 

equation).  

A much smaller number of applications have attempted to apply quantum dynamics to 

cognition. For example, Atmanspacher, Romer, and Walach (2002) modelled oscillations in 

human perception of impossible figures. Aerts, Broekaerst and Smets (2004) modelled how a 

human observer alternates between perceiving the statements in a liar’s paradox situation as false 

and true. Busemeyer, Wang, and Townsend (2006) presented a quantum model for signal 

detection type of human decision processes. Our proposal builds on this latter work (and 

particularly that of Busemeyer et al., 2006). We were interested in a model which would have 

implications for the time course of a decision, as well as accurately predicting choice 

probabilities in the prisoner’s dilemma and two-stage gambling task. A novel aspect of our 

proposal is that we attempt to derive a relevant Hamiltonian a priori, on the basis of the 

psychological parameters of the decision making situation.  

Finally, note that the goal of models such as the above is to formulate a mathematical 

framework for understanding the behavioural findings from cognition and decision making. This 

objective must be distinguished from related ones, such as constructing new game strategies 

using quantum game theory (Eisert, Wilkens & Lewenstein, 1999), modelling the biology of the 
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brain using quantum mechanics (Hameroff & Penrose, 1996; Pribram, 1993), or developing new 

algorithms for quantum computation (Nielsen & Chuang, 2000).   

 The violation of the sure thing principle readily suggests that a classic probability model 

for Tversky and Shafir’s results will fail. We go beyond intuition and develop a standard Markov 

model for the two-stage gambling task and prisoner’s dilemma, to prove that this model can 

never account for the empirical findings. In this way we motivate a more general model, based 

on quantum probability. Researchers have recently successfully explored applications of the 

quantum mechanics formalism outside physics (for example, notably computer science. e.g., 

Grover, 1997). Explorations of how the quantum principles could apply in psychology have been 

slow, partly because of a confusion of whether such attempts implicate a statement that the 

operation of the brain is quantum mechanical (e.g., Hameroff & Penrose, 1996). This could be 

the case or not (cf. Marr, 1982), but it is not the issue at stake: Rather, we are asking whether 

quantum probability could provide an appropriate mathematical framework for understanding/ 

modelling certain behavioural aspects of cognition. Key problems in such an endeavour are (a) 

what is an appropriate Hilbert space representation of the task, (b) what is the psychological 

motivation for the corresponding Hamiltonian, and (c) what is the meaning of time evolution in 

this context? We address all these problems in our quantum probability model of decision 

making in the prisoner’s dilemma task and the two-stage gambling task. The model is described 

with respect to prisoner’s dilemma task, but extension to the two-stage gambling task is 

straightforward.  

 

Step 1:  Representation of beliefs and actions. 
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 The prisoner’s dilemma game involves a set of four mutually exclusive and exhaustive 

outcomes  ={BDAD, BDAC, BCAD, BCAC}, where BiAj represents your belief that your 

opponent will take the i-th action, but you intend to take the j-th action (D=Defect; 

C=Cooperate). For both the Markov and quantum models, we assume that the probabilities of the 

four outcomes can be computed from a 4  1 state vector    

   

   

   

   

 . For the Markov model, 

    = Pr[observe belief i and action j], with          . For the quantum model,     is an 

amplitude, so that      
 
 = Pr[observe belief i and action j], with        

 
    .  For both 

models, we assume the individual begins the decision process in an uninformed state:     

 

 
 

 
 
 
 

   for the Markov model and     

 
 

 
 
 
 

  for the quantum model, . 

Step 2: Inferences based on prior information.  

Information about the opponent’s action changes the initial state 0 into a new state 1. 

If the opponent is known to defect, the state changes to    
 

 
 

 
 
 
 

  for the Markov model, and  

   
 

  
 

 
 
 
 

  for the quantum model; similarly, if the opponent is known to cooperate, the state 

changes to    
 

 
 

 
 
 
 

  for the Markov model and    
 

  
 

 
 
 
 

  for the quantum model. If no 

information is provided then the state remains unchanged so that 1 =0 
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Step 3: Strategies based on payoffs. 

The decision maker must evaluate the payoffs in order to select an action, which changes 

the previous state    into a final state      We assume that the time evolution of the initial state 

to the final state corresponds to the thought process leading to a decision.  

For the Markov model, we can model this change using a Kolmogorov forward equation  

  

  
     , which has a  solution               .  The matrix            is a transition 

matrix, with        = Pr[transiting to state i from state j during time period t]. The transition 

matrix satisfies         to guarantee that    sums to unity. Initially, we assume  

    
    
    

  ,  where      
    

    
 .    (1a) 

The intensity matrix    transforms the state probabilities to favour either defection or 

cooperation, depending on the parameters d  or c, which correspond to your gain if you defect, 

depending on whether you believe the opponent will defect or cooperate, respectively; these 

parameters depend on the payoffs associated with different actions, and will be considered 

shortly. The intensity matrix requires Kij > 0 for ij and         to guarantee that       is a 

transition matrix. 

For the quantum model, the time evolution is determined by Schrödinger’s equation  

  
  

  
      with solution                  .  The matrix               is unitary with 

        
 
 =  Pr[transiting to state i from state j during time period t]. This matrix must satisfy 

      (identity matrix) to guarantee that    retains unit length. Initially, we assume that  

    
    
    

  ,  where      

     
 
 
   
    

 ,    (1b) 
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The Hamiltonian    rotates the state to favor either defection or cooperation, depending on the 

parameters d  or c, which (as before) correspond to your gain if you defect, depending on 

whether you believe the opponent will defect or cooperate, respectively. The Hamiltonian must 

be Hermitian (  
     ) to guarantee that U is unitary. 

For both models, the parameter i is assumed to be a monotonically increasing utility 

function of the differences in the payoffs for each of your actions, depending on the opponent’s 

action: d =u(xDDxDC) and c=u(xCDxCC), where xij is the payoff you receive if your opponent 

takes action i and you take action j. For example, given the payoffs in Table 1, uDD = x(10,10), 

uDC = x(25,5), uCD = x(5,25), and uCC = x(20,20). Assuming that utility is determined solely by 

your own payoffs, then d = u(xDDxDC) = u(5) =   = u(xCDxCC) = c. In other words, typically, 

i can be set equal to the difference in the payoffs (possibly multiplied by a constant, scaling 

factor), although more complex utility functions can be assumed.  

For both models, a decision corresponds to a measurement of the state      . For the 

Markov model, Pr[you defect] = Pr[D] = (DD  + CD); similarly, for the quantum model, Pr[you 

defect ] = Pr[D] = (|DD |
2
 + |CD|

2
).   

Inserting Equation 1a into the Kolmogorov equation and solving for       yields the 

following probability when the opponent’s action is known:  

        

   
                

         

 
. 

This probability gradually grows monotonically from  
 

 
  at t=0 to   

   
  as t  . The 

behaviour of the quantum model is more complex. Inserting Equation 1b into the Schrödinger 

equation and solving for       yields:   

         
 

 
 

  

             

 
     .  
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For 1 <  < +1, this probability increases across time from  
 

 
  at t=0 to  

 

 
 

 

     
  at t=1, and 

subsequently it oscillates between the minimum and maximum values.  Empirically, choice 

probabilities in laboratory-based, decision making tasks monotonically increase across time (for 

short decision times, see Diederich & Busemeyer, 2006), and so a reasonable approach for fitting 

the model is to assume that a decision is reached within the interval (0 < t < 1) for the quantum 

model (t=1 would correspond to around 2s for such tasks). 

Equations 1a, 1b produce reasonable choice models when the action of the opponent is 

known. However, when the opponent’s action is unknown, both models predict that the 

probability of defection is the average of the two known cases, which fails to explain the 

violations of the sure thing principle. The KA and HA components of each model can be 

understood as the ‘rational’ components of each model, whereby the decision maker is simply 

assumed to try to maximize utility. In the next section we introduce a component in each model 

for describing an additional influence in the decision making process, which can lead to 

decisions which do not maximize expected utility (and so could lead to violations of the sure 

thing principle). These two components in each model have to be separate since in many cases 

the behaviour of decision makers can be explained (just) by an urge to maximize expected utility. 

The difference between the Markov model and the quantum one relates to how the two 

components are combined with each other. Importantly, we prove that the Markov model still 

cannot produce the violations of the sure thing principle even when this second, non-rational 

component is added. Only the quantum model explains the result. 

 

 Step 4: Strategies based on evaluations of both beliefs and payoffs. 
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To explain violations of the sure thing principle, we introduce the idea of cognitive 

dissonance (Festinger, 1957). People tend to change their beliefs to be consistent with their 

actions. In the case of the prisoner dilemma game, this motivates a change of beliefs about what 

the opponent will do in a direction that is consistent with the person’s intended action. In other 

words, if a player chooses to cooperate he/ she would tend to think that the other player will 

cooperate as well. The reduction of cognitive dissonance is an intriguing, and extensively 

supported, cognitive process. It has been shown with monkeys (Egan, Santos, & Bloom, 2007), 

suggesting that the applicability of our model might extend to such animals. Shafir and Tversky 

(1992) explained it in terms of a personal bias for ‘wishful thinking’ and Chater, Vlaev, and 

Grinberg (2008) by considering a statistical approach based on Simpson’s paradox (specifically, 

Chater et al. showed that, in a prisoner’s dilemma game, the propensity to cooperate or defect 

would depend on assumptions about what the opponent would do, given whether the parameters 

of the game would encourage cooperation or defection). Such approaches may not be 

incompatible (for example, wishful thinking may have an underlying statistical explanation).  

Although cognitive dissonance tendencies can be implemented in both the Markov and 

the quantum model, we shall see that it does not help the Markov model, and only the quantum 

model explains the sure thing principle violations. 

For the Markov model, an intensity matrix that produces a change of ‘wishful thinking’ is 

       

   
  

   
  

   
  

   
  

   

  
   

  
   

  
   

  
   

  .    (2a) 

The first/second matrix changes beliefs about the opponent toward defection/cooperation when 

you plan to defect/cooperate, respectively.  

Note that 
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 . 

If >1, then the rate of increase for first and last rows is greater than the middle rows, leading to 

an increase in the probabilities that beliefs and actions agree.  For example, setting =10 at t=1 

produces           

   
   
   
   

 , where it can be seen that beliefs tend to match actions, achieving a 

reduction of cognitive dissonance. For the quantum model, a Hamiltonian that produces this 

change is   

   
  

  
   

   
  

   
  

   
  

   
  

   

  
   

  
   

  
   

  
   

  .     (2b) 

The first/second matrix rotates beliefs about the opponent toward defection/cooperation when 

you plan to defect/cooperate, respectively. Note that 

 

  
  

   

   

   

   

     
  

  
  

   
   

   
   

   
   

   
   

   

   

   

   

   

    
 

  
  

       

         

       

       

 . 

If >0, then the rate of increase for the first and last rows is greater than the middle rows, so that, 

as before, there is an increase in the amplitudes for the states in which beliefs and actions agree. 

For example, setting =1 at t=/2 produces             which results in a vector of squared 

magnitudes equal to  

   
   
   
   

 . In both the Markov and the quantum model, we can see that the 

above intensity matrix/ Hamiltonian respectively, makes beliefs and actions correlated. 
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By itself, Equation 2 is an inadequate description of behaviour in prisoner’s dilemma, 

because it cannot explain how preferences vary with payoffs. We need to combine Equations 1 

and 2 to produce an intensity matrix KC = KA+KB or a Hamiltonian HC = HA+HB so that the time 

evolution of the initial state to the final state reflects the influences of both the payoffs and the 

process of wishful thinking. Note that in this combined model, both beliefs and actions are 

evolving simultaneously and in parallel. 

Accordingly, we suggest that the final state is determined by             for the 

Markov model and               for the quantum model. Each model has two free 

parameters: one changes the actions using Equation 1 and depends on payoffs (i.e., ), and 

another which corresponds to a psychological bias to assume the opponent will act as we do with 

Equation 2 (i.e., ). 

 

Model Predictions. 

 For the Markov model, probabilities for the unknown state can be related to probabilities 

for the known states by expressing the initial unknown state as a probability mixture of the two 

initial known states:  

          

 
 

 
 
 
 

        
 

 
  

 
 

 
 
 
 

   

 
 

 
 
 
 

   
 

 
        

 
 

 
 
 
 

         

 
 

 
 
 
 

  . 

We see that the state probabilities in the unknown case must equal the average of the state 

probabilities for the two known cases. Therefore, the Markov model fails to reproduce the 

violations of the sure thing principle, regardless of what parameters, time point, initial state, or 

intensity matrix we use. This conclusion reflects the fundamental fact that the Markov model 
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obeys the law of total probability, which mathematically restricts the unknown state to remain a 

weighted average of the two known states. Note that this failure of the Markov model occurs 

even when we include the cognitive dissonance tendencies in the model. 

For the quantum model, the amplitudes for the unknown state can also be related to the 

amplitudes for the two known states:  

             

 
 

 
 
 
 

           
 

  
  

  
 

 
 
 
 

   

  
 

 
 
 
 

   
 

  
          

  
 

 
 
 
 

            

  
 

 
 
 
 

 . 

We see that the amplitudes in the unknown case equal the superposition of the amplitudes for the 

two known cases. However, here is precisely where the quantum model departs from the Markov 

model: probabilities are obtained from the squared magnitudes of the amplitudes. This last 

computation produces interference effects that can cause the unknown probabilities to deviate 

from the average of the known probabilities. 

We initially fit the parameters of the quantum model at t=1(/2), which is the time when 

the choice probabilities produced by Equation 1b first reach their maximum. Note that the 

quantum model predicts that choice probabilities will oscillate with time. However, in modelling 

results from the prisoner’s dilemma task, one needs to consider, first, that such tasks are very 

simple and, second, that respondents in such experiments are typically paid for their participation 

so that they are motivated (and indeed sometimes requested) to respond quickly. Both these 

considerations suggest that a decision will be made (the state vector collapses) as early as one 

course of action emerges as advantageous (Diederich & Busemeyer, 2006). Regarding the two-

stage gambling task, setting  = .59 and  = 1.74 produces probabilities for choosing to gamble 

equal to (.68, .58, .37) for the (known win, known loss, unknown) conditions, respectively. 
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These predictions closely match the observed results (.69, .59, .36, from Tversky & Shafir, 

1992). For the prisoner’s dilemma game, setting  =.51 and  =2.09. produces probabilities for 

defection equal to (.81, .65, .57) for the (known defect, known cooperate, unknown) conditions, 

respectively. Again, model predictions closely reproduce the average pattern (.84, .66, .55) in 

Table 2. Figure 1 shows that model predictions are fairly robust as parameter values vary. An 

interference effect appears after t=.75 (/2) and is evident across a large section of the parameter 

space. Finally, note that we can relax the assumption that participants will make a decision at the 

same time point (we thank a reviewer for this observation). To allow for this possibility, we 

assumed a gamma distribution of decision times with a range from t = .50(/2) to t=2(/2) and a 

mode at t=1(/2). We refitted the model using the mean choice probability averaged over this 

distribution, and this produced very similar predicted results: (.77, .64, .58) for the known defect, 

known cooperate, and unknown conditions, respectively, in prisoner’s dilemma (with  = .47, 

and  = 2.10).   

-------------Figure 1------------- 

Classic probability theory has been widely applied in understanding human choice 

behaviour. Accordingly, one can naturally wonder whether it is possible to salvage the Markov 

model. First recall that the classic Markov model fails even when we allow for cognitive 

dissonance effects in this model. Second, the analyses above hold for any initial state, 0, and 

any intensity matrix, K (not just the ones used above to motivate the model), but they are based 

on two main assumptions: The same initial state and the same intensity matrix are used across 

both known and unknown conditions. However, we can relax even these assumptions. Even if 

the initial state is not the same across conditions, the Markov model must predict that the 
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marginal probability of defecting in the unknown condition (whatever mixture is used) is a 

convex combination of the two probabilities conditioned on the known action of the opponent. 

This prediction is violated in the data of Table 2. Furthermore, even if we change intensity 

matrices across conditions (using the KA intensity matrix for known conditions and using the KC 

matrix for the unknown condition), the Markov model continues to satisfy the law of total 

probability because this change has absolutely no effect on the predicted probability of defection 

(the KB matrix does not change the defection rate). Thus our tests of the Markov model are very 

robust. 

 

Concluding Comments 

In this work we considered empirical results which have  been a focal point in the 

controversy over whether classic probability theory is an appropriate framework for modelling 

cognition or not. Tversky, Shafir, Kahneman and colleagues have argued that the cognitive 

system is generally sensitive to environmental statistics, but is also routinely influenced by 

heuristics and biases which can violate the prescription from probability theory (Tversky & 

Kahneman, 1983; Tversky & Shafir, 1992; cf. Gigerenzer, 1996). This position has had a 

massive influence not only in psychology, but also in management sciences and economics, 

collimating to a Nobel Prize award to Kahneman. Moreover, findings such as the violation of the 

sure thing principle in Prisoner’s Dilemma has led researchers to raise fundamental questions 

about the nature of human cognition (for example, what does it mean to be rational? Oaksford & 

Chater, 1994).  

 In this work, we adopted a different approach from the heuristics and biases one 

advocated by Tversky, Kahneman, and Shafir. We propose that human cognition can and should 
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be modelled within a probabilistic framework, but classic probability theory is too restrictive to 

fully describe human cognition. Accordingly, we explored a model based on quantum 

probability, which can subsume classic probability, as a special case. The main problems in 

developing a convincing cognitive quantum probability model are to determine an appropriate 

Hilbert space and Hamiltonian. We attempted to present a satisfactory prescriptive approach to 

dealing with these problems and so encourage the development of other quantum probability 

models in cognitive science. For example, the Hamiltonian is derived directly from the 

parameters of the problem (e.g., the payoffs associated with different actions) and known general 

principles of cognition (e.g., reducing cognitive dissonance). Importantly, our model works: it is 

able to account for violations of the sure thing principle in prisoner’s dilemma and the two-stage 

gambling task and leads to close fits to empirical data.   

Quantum probability provides a promising framework for modelling human decision 

making. First, we can think of the set of basis states as a set of preference orders over actions. 

According to a Markov process, an individual is committed to exactly one preference order at 

any moment in time, although it can change from time to time. According to a quantum process, 

an individual experiences a superposition of all these orders, and at any moment the person 

remains uncommitted to any specific order. This is an intriguing perspective on human 

cognition, which may shed light on the functional role of different modes of memory and 

learning (cf. Atallah, Frank, & O’Reilly, 2004). Second, Schrödinger’s equation predicts a 

periodic oscillation of the propensity to perform one action (assuming that the decision maker 

can be persuaded to extend the decision time beyond the first cycle of the process), which is 

broadly analogous to the electroencephalography (EEG) signals recorded from participants 

engaged in choice tasks (cf. Haggard & Eimer, 1999). Only after preferences are revealed does 
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the process collapse onto exactly one preference order. This contrasts with time development in 

the Markov model, whereby the system monotonically converges to its final state. Third, 

quantum probability models allow interference effects which can make the probability of the 

disjunction of two events to be lower than the probability of either event individually (see also 

Khrennikov, 2004). Such interference effects are ubiquitous in psychology, but incompatible 

with Markov models, which are constrained by classic probability laws. Fourth, ‘back to back’ 

measurements on the same decision will produce the same result in a quantum system (because 

of state reduction), which agrees with what people do (Atmanspacher, Filk, & Romer, 2004).  

However, ‘back to back’ choices remain probabilistic in classic random utility models, which is 

not what people do. Finally, recent results in computer science show quantum computation to be 

fundamentally faster compared to classic computation, for certain problems (Nielsen & Chuang, 

2000). Perhaps the success of human cognition can be partly explained by its use of quantum 

principles.  
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Electronic supplementary material. Additional proofs. 

1. Rational for choice of compatible (commuting observable) over incompatible (non commuting 

observable) representation of measurements. . 

The prisoner dilemma experiment involves two different types of measurements: one is a 

measure of the belief about what an opponent will do (the opponent will defect or cooperate); the 

second is a measure of the preference for an action to take (decide to defect or cooperate). 

According to quantum theory, two measurements can be compatible (commuting observables) or 

incompatible (non commuting observables). We chose not to treat them as compatible for the 

following empirical reason. If the two measures are incompatible, then the transition matrix  

   
                                                                     

                                                                       
  

must be doubly stochastic (Peres, 1995, p. 33 ). This implies that Pr[Defect Action | Cooperate 

Belief] = Pr[Cooperate action | Defect Belief] = 1  Pr[ Defect action | Defect Belief] which is 

strongly violated in Table 2. The above transition matrix does not have to be doubly stochastic 

for the compatible representation.  

 The fact that the two observables (my belief of the opponent’s action, my intended 

action) in our model are compatible implies that they can be measured simultaneously, which is 

intuitively reasonable. Note that interference effects in our model arise from the way the initial 

state vector evolves in time (through Schrödinger’s equation). In cases in which two observables 

are incompatible, interference effects can arise from the order in which they are measured 

against a given state vector (Mogiliansky et al., in press, describe an example related to the 
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noncommutativity in preferences and Franco, in press, explains the conjunction fallacy in a 

similar way). 

 

2. Application of the quantum model to the two stage gambling paradigm. 

In this application, we define the four basis states as {|BWAP, |BWAN, |BLAP, |BLAN} where 

|BiAj represents the state where you believe that outcome i (W = win, L = lose) occurred on the 

previous round, and you choose action j (P = play or N = not play) on the next round. The 

parameter  represents the difference between the expected utility of the gamble and the utility 

of the sure amount. The parameter  rotates the beliefs so that if you plan to play again, then your 

beliefs rotate toward winning; if you do not plan to play again, then your beliefs rotate toward 

losing. 

 

 

3. Proof that the Markov and quantum models predict that the probabilities for the unknown case 

are equal to the average of  the probabilities for the known cases when only Equations 1a and 1b 

are used to generate the final probabilities. 

We prove this for the quantum model. The same argument applies for the Markov model. The 

state after step 3 for the unknown case equals 

                
      

    
    

 
      

         
          

     

   
         

          
  

  
  
  
  

 



quantum probability  22 
 

 

 

   
         

          
    

 
  
  

 

 
 
 
 

   
 
 
 
 

 
  
  

 
   

  
          

  
  

 

 
 
 
 

   
 
 
 
 

          
  
  

 
  

     
 

              
  

   
   

 

   
              

  

   
       

  

 
   

 
  

    . 

Note that the tensor product separation of the state vector involves a part of what I believe the 

opponent will do   what I intend to do myself. Also, observe that  
  

 
  is the state after step 3 

given that the opponent is known to defect, and  
 

  
  is the state after step 3 given that the 

opponent is known to cooperate.  

 

In order to compute the probability of me defecting from this state vector, we need to apply the 

operator    
  
  

 . This operator leaves unchanged the part of the state vector corresponding 

to my belief of what the opponent does and collapses the part of the state vector corresponding to 

my intended action along the eigenstate for defecting. Accordingly, the probability of defecting 

for the unknown state equals 

              
  
  

     
  

 
   

 
  

   
 

 

          
  
  

    
  

 
      

  
  

    
 

  
  

 

. 

Note that     
  
  

    
  

 
   

   

 
 
 

 and     
  
  

    
 

  
   

 
 

   

 

 . 
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These two vectors are orthogonal and so     

              
  
  

     
  

 
   

 

          
  
  

     
 

  
   

 

 

                      . 

The last expression equals the equal weight average of the probability of defecting given the 

opponent is known to defect (       ) and the probability of defecting given the opponent is 

known to cooperate (      ). 

  

4. Proof that the Markov model always fails to explain the violations of the sure thing principle,  

no matter what initial state is used for the unknown case and for any intensity matrix.  

Define       for the Markov model, where K is an arbitrary intensity matrix.  Define 

    

  

  

  

  

     
 
 
            

 
 
       to be an arbitrary initial state where   

        and               and    
 

     
  

  

  
  and    

 

     
  

  

  
 .  In the 

unknown case, the final state equals               
 
 
             

 
 
       

     
 
 
               

 
 
    . The two parts,    

 
 
     and    

 
 
     , 

determine the probabilities of defection when you know the opponent’s decision.  Thus the 

probability of defection in the unknown case is a weighted average or convex combination of the 

two known cases with weights equal to p and (1-p).  

 

5. Proof that the quantum model produces interference that violates the law of total probability. 



quantum probability  24 
 

 

 

On the one hand, if the opponent is known to defect, then the state after step 3 equals 

                

  
 

 
 
 
 

 ;  

on the other hand, if the opponent is known to cooperate, then the state after step 3 equals 

                

  
 

 
 
 
 

 .  

Then for the unknown case, the state after step 3 equals  

                

  
  
  
  

                 

   

   
 
 

   

 
 

   

   

   

               

   

   
 
 

               

 
 

   

   

   =                  .  

The probability of defecting in the two known cases equal 

                           
  
  

        
 

       

                              
  
  

        
 

       

 

The probability of defecting in the unknown case equals  

                      
  
  

            
  
  

        
 

 

                                    
      

     , 
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where the last term in soft brackets is the interference term, which is non zero because the two 

vectors are not orthogonal.  

 

6. Proof that if we use KA for the two known conditions, and we use KC only for the unknown 

condition, then the Markov model still obeys the law of total probability and fails to explain the 

violations of the sure thing principle. 

According to the Markov model, the probability of choosing defection is determined by 

adding the first and third row of  (t) as follows:                          , 

where J = [1 0 1 0].  For the unknown condition, this probability changes across time according 

to the differential equation 

 

  
      

 

  
                     

                        , 

because JKB = 0 (this is obvious in the expression immediately below Eq 2a).  Thus KB has no 

effect on this probability. This implies that the probability of defection in the unknown case 

equals 

                 
 

  
 

 

 
    

 

  
 

 

 
        

 

 
           .  

Now we can always define        
 
 
            

 
 
       by setting    

        and               and    
 

     
  

  

  
  and    

 

     
  

  

  
 . Thus  
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      , 

            
 
 
                    

 
 
      

                                                  . 

Thus if we use only the KA intensity matrix for the known cases, and we use the combined KC 

intensity for the unknown case, then this does not change the probabilities of defection and the 

law of total probability must be maintained. The belief intensity matrix KB only changes the 

beliefs but does not affect the total probability of defection.   
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Figure captions.  

 

Figure 1. The probability of defection under the unknown condition minus the average for the 

two known conditions, at six time points (note that time incorporates a factor of pi/2). Negative 

values (blue) typically indicate an interference effect in the predicted direction. 

 

Running head: Quantum probability   
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Table 1.  Example payoff matrix for prisoner’s dilemma game. 

 

 

 You Defect You Cooperate 

Other Defects 

Other: 10 

You: 10 

Other: 25 

You: 5 

Other Cooperates 

Other: 5 

You: 25 

Other: 20 

You: 20 
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Table 2. Empirically observed proportion of defections different conditions in the prisoner’s 

dilemma game 

 

  

Study Known to 

Defect 

Known to 

Cooperate 

Unknown 

Shafir & Tversky, 1992 97 84 63 

Croson, 1999 (Avg. of first two experiments) 67 32 30 

Li, Taplan, 2002
 

83 66 60 

Busemeyer, Matthew, Wang, 2005
 

91 84 66 

Average 84 66 55 

Q  Model 81 65 57 
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Figure 1 
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SUPPLEMENTARY MATERIAL – ALTERNATIVE PROOFS 

 

3. Proof that the Markov and quantum models predict that the probabilities for the unknown case 

are equal to the average of  the probabilities for the known cases when only Equations 1a and 1b 

are used to generate the final probabilities. 

We prove this for the quantum model. The same argument applies for the Markov model. The 

state after step 3 for the unknown case equals 

                
      

    
    

 
      

         
          

     

   
         

          
   

  
  
  
  

  

   
         

          
    

 
  
  

 

 
 
 
 

   
 
 
 
 

 
  
  

 
   

 
 
The above is a direct sum decomposition of the full state space into the state space for Knowing 
Other D and the state space for Knowing Other C (under all circumstances, this is possible 
before time evolution).  
 
Ignoring cognitive dissonance, the unitary operator corresponding to the thought process is 
completely reducible and can be written as a direct sum of its restriction to the subspaces 
Knowing Other D and Knowing Other C.  
 
So, basically, we have: 

                                                                               
 
 
if you set psi = [sqrt(.5) sqrt(.5)]’ then   psi tensor  psi equals psy0 = [.5 .5 . 5  .5].  But our  U  
(above) cannot  be written as a tensor product. 
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    . 

 
Note that the initial state vector could be written as                                 
In fact, this formulation is implied in the above equations (highlighted green, from the paper), 
since the overall state is expressed as a tensor product in this sense: 
                                
 
What is slightly confusing is that, even through the overall state can be written as a tensor 
product, the operator U *cannot* be written as a tensor product (even in the simple case in 
which there is no cognitive dissonance). By contrast, the U can be written as a direct sum.   
 
So, this is more a presentation point rather than anything else. Basically, starting from:  
 

    
         

          
    

 
  
  

 

 
 
 
 

   
 
 
 
 

 
  
  

 
   

We want to reach:  
 

      
  

 
   

 
  

    

 

 

So, as to show that the final (time-evolved) state in the Unknown (general) situation is a convex 
combination of the final states when the Other D or the Other C.  
(When there is no cognitive dissonance.) 
 
My point is that if we recognize that the equation in yellow can be decomposed into a direct 

sum                                        , then it follows **immediately** that the final, 

time-evolved state, can also be written as a direct sum                                      .  
 
That is, the additional steps involving the tensor product expression (equation in green) are 
*not* needed (and have led to some confusion...) 
 
Do you agree with all this?  
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Now, in trying to express the model in more abstract form, we know:  
 

1) Without cognitive dissonance, time evolution can be written as: 

                                       . This implies that in the Unknown case, the 
amplitudes relating to knowledge that the Other D evolve independently from the 
amplitudes relating to knowledge that the Other C.  

2) Now, with cognitive dissonance we have that                                    

(this is how we constructed   ).  
3) We also know that with cognitive dissonance the time-evolved state can no longer be 

written as a direct sum decomposition. 
 

The question is whether we can express these other terms in a more abstract form, although it 
is not immediately obvious how this can be possible.  
 
 
 
 

Note that the tensor product separation of the state vector involves a part of what I believe the 

opponent will do   what I intend to do myself. Also, observe that  
  

 
  is the state after step 3 

given that the opponent is known to defect, and  
 

  
  is the state after step 3 given that the 

opponent is known to cooperate.  

 

In order to compute the probability of me defecting from this state vector, we need to apply the 

operator    
  
  

 .  

Here we write the state vector as                                 noting that both components 
are normalized. Then we have:  
 
                                                                         
 
The amplitude of this vector is the probability of me D:  
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But in terms of the computations we make, we can’t separate out the state vector like this: 
                                
 

So, what we do is compute                                                          

 
 
 
 

This operator leaves unchanged the part of the state vector corresponding to my belief of what 

the opponent does and collapses the part of the state vector corresponding to my intended action 

along the eigenstate for defecting. Accordingly, the probability of defecting for the unknown 

state equals 

              
  
  

     
  

 
   

 
  

   
 

 

The reason why this is slightly confusing is that you are employing a tensor product operator of 
the form      to a direct sum decomposition of the state vector of the form: 
                  ) 

 

          
  
  

    
  

 
      

  
  

    
 

  
  

 

. 

Note that     
  
  

    
  

 
   

   

 
 
 

 and     
  
  

    
 

  
   

 
 

   

 

 . 

These two vectors are orthogonal and so     

              
  
  

     
  

 
   

 

          
  
  

     
 

  
   

 

 

                      . 

An alternative way to express this is by taking advantage of the possible direct sum 
decomposition of the time-evolved state, without cognitive dissonance, which is:  
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Then, if I am interested in me D, I need to pick out the relevant state in both subspaces, so that 
I have to apply the operator       (which in itself can be written as a direct sum).  
 
Then, 

                                                              

                                             

                                                                                      

                                          
       

                                          
       

             

 
(where any coefficients are implied in the vectors).  
 
As before, the whole point of avoiding the tensor products is that the general state vector is 
naturally written as a direct sum of the subspaces for the Other D and the Other C, and the U 
time evolution operator can be written as a direct sum of its restriction to these subspaces.  
 
  

 
 
 

The last expression equals the equal weight average of the probability of defecting given the 

opponent is known to defect (       ) and the probability of defecting given the opponent is 

known to cooperate (      ). 

 

 

 

5. Proof that the quantum model produces interference that violates the law of total probability. 

On the one hand, if the opponent is known to defect, then the state after step 3 equals 

                

  
 

 
 
 
 

 ;  

on the other hand, if the opponent is known to cooperate, then the state after step 3 equals 

                

  
 

 
 
 
 

 .  



quantum probability  41 
 

 

 

Then for the unknown case, the state after step 3 equals  

                

  
  
  
  

                 

   

   
 
 

   

 
 

   

   

   

               

   

   
 
 

               

 
 

   

   

   =                  .  

The probability of defecting in the two known cases equal 

                           
  
  

        
 

       

                              
  
  

        
 

       

 

This demonstration hinges on the fact that       and       are no longer orthogonal if we 
allow for cognitive dissonance. As before, I wanted to express this without the tensor product 
and see whether the resulting formulation might be simpler:  
 
So, *with* cognitive dissonance, we have: 

                                                      

 
The above can be written as  
                              
noting that while the initial state vector could be written as a direct sum, this is *not* the case 
for the time-evolved state vector and, relatedly, that        would in general not be 
orthogonal. That is,                will have non-zero components for all possible 
projections. 
 
Then, the probability of me D in the unknown case is given by              , which leads to 
the same result that you obtained. [This will lead to cross terms.] 
 
As before, the only *possible* advantage of expressing things in the above way is that we 
employ the natural (for our problem) direct sum decomposition of the state vector into the 
subspaces corresponding to Other D and Other C.  
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(Note that without cognitive dissonance the cross terms are of the form:  

                           , whereby                           and *we know* that 

                             , by virtue of fact that these projections exist in different 

subspaces.) 
 
 

The probability of defecting in the unknown case equals  

                      
  
  

            
  
  

        
 

 

                                    
      

     , 

where the last term in soft brackets is the interference term, which is non zero because the two 

vectors are not orthogonal.  

 

 

 

 

 


