

City, University of London Institutional Repository

Citation: Hunt, S. & Clark, D. (2008). Non-interference for deterministic interactive

programs. Paper presented at the 5th International Workshop on Formal Aspects in Security
and Trust (FAST2008), Oct 2008, Malaga, Spain.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/198/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Non-Interference for Deterministic Interactive Programs

David Clark1 and Sebastian Hunt2

1 King’s College London
david.j.clark@kcl.ac.uk

2 City University, London
seb@soi.city.ac.uk

Abstract. We consider the problem of defining an appropriate notion of non-interference (NI) for
deterministic interactive programs. Previous work on the security of interactive programs by O’Neill,
Clarkson and Chong (CSFW 2006) builds on earlier ideas due to Wittbold and Johnson (Symposium on
Security and Privacy 1990), and argues for a notion of NI defined in terms of strategies modelling the
behaviour of users. We show that, for deterministic interactive programs, it is not necessary to consider
strategies and that a simple stream model of the users’ behaviour is sufficient. The key technical result
is that, for deterministic programs, stream-based NI implies the apparently more general strategy-based
NI (in fact we consider a wider class of strategies than those of O’Neill et al). We give our results in
terms of a simple notion of Input-Output Labelled Transition System, thus allowing application of the
results to a large class of deterministic interactive programming languages.

1 Introduction

We consider the problem of defining an appropriate notion of non-interference (NI) [8] for deterministic
interactive programs. By interactive programs we mean programs which perform channel-based IO, reading
and writing primitive values on named channels over time, as the system executes, in contrast to the simple
“batch-processing” style of computation assumed by much of the work in language-based security. Moving
away from the simple batch-processing model introduces a number of complications and subtleties. Even
so, in this paper we show that a relatively simple stream-based model of interaction may be adequate for
the special (but common) case of deterministic programs.

Previous work on the security of interactive programs by O’Neill, Clarkson and Chong [14] builds on
earlier ideas due to Wittbold and Johnson [16], and argues for a notion of NI defined in terms of strategies
modelling the behaviour of users. We show that, for deterministic interactive programs, it is not necessary
to consider strategies and that a simple stream model of the users’ behaviour is sufficient. The key technical
result is that, for deterministic programs, stream-based NI implies the apparently more general strategy-
based NI (in fact we consider a wider class of strategies than those of O’Neill et al). We give our results
in terms of a simple notion of Input-Output Labelled Transition System, thus allowing application of the
results to a large class of deterministic interactive programming languages.

2 Overview

We start by considering some motivating examples. These examples show that interactive programs may
enable quite subtle covert channels, in which attackers can exploit information gained from previous out-
puts in order to leak information via later outputs. Moreover the examples show that a simple stream-based
model of user behaviour may not suffice to reveal the presence of such channels. We also argue that such
channels are significant even outside the typical “military” scenario in which an insider collaborates to
send secrets to an outsider, by showing how a trusted user may be duped into sending information on such
channels without knowing it.

Following [16] and [14] we then show how such channels can be guarded against by requiring a more
sophisticated notion of NI, one defined in terms of user strategies rather than input streams.

It is striking that the example covert channels mentioned above all involve the combination of interac-
tion and internal nondeterminism. The main result of this paper is to show that this is not accidental: for
purely deterministic systems, such covert channels do not arise. We formalise this by showing how input

streams can be represented as a special class of strategy and then showing that defining NI over this re-
stricted class of strategies is equivalent to the more general notion when the system (though not necessarily
the environment) behaves deterministically. Rather than tie our results to a specific programming language,
we define a simple notion of Input-Output Labelled Transition System (IOLTS) and sate our definitions
and results for any IOLTS. To illustrate how programming languages can be modelled in such a setting, we
give an IOLTS semantics for a simple deterministic interactive language.

We conclude with a discussion of the scope and limitations of the chosen definition of NI and, more
generally, of the use of strategies to model a program’s environment.

3 Information flow in interactive programs

We start with two simple examples of interactive programs illustrating ways in which such programs may
be insecure.

The first program is insecure because there is a direct flow from High input to Low output:

x := 0;
input y from H;
output (x XOR y) to L;

The second program is an example of indirect flow from High to Low. If we consider that Low and
High are feeding a stream of inputs to the program, information about the High stream can be deduced
from the way in which the program is consuming Low’s inputs:

input x from H;
if (x = 0) then input y from L;
input z from L;
output z to L;

For example, suppose the Low input stream starts 01. Then the Low output will be 1 if High inputs 0,
otherwise the Low output will be 0.

3.1 Two approaches to defining security

Users interact with the programs via input and output on named channels each of which is associated with
a security level in a Denning-style multi-level security classification system, whereby security levels form
a lattice, 〈L,v〉, L = {a, b, c, . . .} [6]. For simplicity’s sake we identify a channel’s name with its security
level. We write ↓a for the set of channels visible to users at level a, ie ↓a = {a′ ∈ L|a′ v a}.

Consider two users with access to channels a and b respectively where a 6v b, i.e. the security policy
specifies that no information should flow from channel a to channel b. We might reasonably try to capture
this requirement in two alternative ways:

All outputs on channel b are consistent with all possible inputs on channel a. (1)

Users of channel a cannot send messages to the users of channel b. (2)

These both seem reasonable, but are they equivalent? First, observe that 2⇒ 1: if some outputs seen by Bob
are inconsistent with some possible inputs from Alice, then Bob can deduce something about the values
input by Alice so Alice clearly can send messages to Bob, hence (by contraposition) 2 implies 1. At first
sight it seems as though 1 ⇒ 2 should also hold. After all, if what Bob sees tells him nothing about what
Alice has input, surely she cannot send him a message. In fact, as Wittbold and Johnson show in [16], this
reasoning is unsound: some systems which satisfy property 1 allow Alice to send Bob messages.

Let L v H and suppose that the only values which may be sent on these channels are 0 and 1. Consider
Program 1a:

while (true) do
x := 0 | 1;
input y from H;
output x to H;
output (x XOR y) to L;

Here | is a non-deterministic choice operator, so 0 | 1 evaluates to either 0 or 1, with the choice being
made in a way which is unpredictable to any observer of the running program. Writing output of value v
on channel a as a!v and input as a?v, the possible traces for the first iteration of the loop are:

H?0 H!0 L!0
H?0 H!1 L!1
H?1 H!0 L!1
H?1 H!1 L!0

Observation of the first L-output thus reveals nothing to L-users about the value of the first H-input: L-
users cannot observe the H-outputs and hence, whether L-users see 0 or 1, both 0 and 1 are possible values
for the input on H . This clearly holds for longer traces as well: no matter how much of the stream of L-
outputs is observed, nothing is learned about which values have been input on H . Program 1a thus satisfies
property 1 and, indeed, would seem to be a secure program.

Now consider the variant Program 1b:

while (true) do
x := 0 | 1;
output x to H;
input y from H;
output (x XOR y) to L;

In this example, the value of x is output before the H-input is demanded. The possible traces for the first
iteration of this variant are:

H!0 H?0 L!0
H!0 H?1 L!1
H!1 H?0 L!1
H!1 H?1 L!0

It clearly remains the case that, in ignorance of the value of x, any observation of an output on channel
L is consistent with both possible inputs on H , and thus property 1 holds also for Program 1b. Crucially,
though, with Program 1b, H-users can exploit their knowledge of x to control what is output on L. This
allows H-users to send messages to L-users, thus violating property 2. For example, if an H-user wants to
send a particular message to L, say x1 . . . xn, behaving as follows will suffice:

for (i = 1 to n) do
input k from H;
output (k XOR xi) to H;

When composed with Program 1b, this behaviour results in the message x1 . . . xn being delivered on L
without error.

Program 1b first appears in this form in O’Neill, Clarkson and Chong’s paper [14]. This was an adap-
tation of a synchronous nondeterministic state machine used by Wittbold and Johnson [16] to illustrate
the same phenomenon. (It is interesting to note that, in state machine form, the example actually appears

much earlier in a paper by Shannon [15]. In this paper Shannon showed how, in certain cases, making “side
information” available at the transmitting point may increase the capacity of a communication channel.)

Using Program 1b, an H-user is able deliberately to communicate secrets to L-users. But, even when
a user does not intend to leak a secret, such covert channels can still pose a security risk, since one user’s
“cooperation” with another may be unwitting. Suppose we have two users, Alice and Bob, at incomparable
security levels A and B, respectively. The following example is originally due to David Sands [11].

Alice is interacting with a web site. Alice is assured by the site that her credit card details are never
sent to Bob, and this assurance is backed up by a proof of property 1. The web site requests Alice to input
her credit card and then offers her a “special offer” code, inviting her to input this code at a later time to
obtain a discount or free gift. Unbeknownst to Alice, this code is actually her own credit card number in
encrypted form. If Alice does enter the code when requested, the system simply decrypts it and sends it to
Bob. In simplified form (a boolean credit card number!), this may be coded as Program 2:

input x from A;
k := 0 | 1;
output (k XOR x) on A;
.
.
.
input y from A;
output (k XOR y) on B;

The possible traces for this system are:

A?0 A!0 A?0 B!0 (*)
A?0 A!0 A?1 B!1
A?0 A!1 A?0 B!1
A?0 A!1 A?1 B!0 (*)
A?1 A!0 A?0 B!1 (*)
A?1 A!0 A?1 B!0
A?1 A!1 A?0 B!0
A?1 A!1 A?1 B!1 (*)

Now, since Bob cannot see channel A, both outputs 0 and 1 are consistent with all four possible input
sequences by Alice, hence property 1 is satisfied. Clearly, though, if Alice behaves as expected - the traces
marked (*) - her credit card number is leaked to Bob.

These examples illustrate that a simple security property based on consistency of one user’s observed
outputs with another user’s possible inputs may not be adequate to provide desirable security guarantees. In
particular, it seems that the problem with property 1 is that it fails to take account of the interactive nature
of such systems, whereby a user’s inputs may depend on previously seen outputs. Wittbold and Johnson
[16] proposed instead a property stated in terms of consistency of observed outputs with user’s behaviours,
modelling behaviours as the strategies by which users provide inputs based on their observations of the
system so far.

This use of a strategy-based security property is very elegant and is successful in accepting Program 1a
while rejecting Program 1b and Program 2. On the other hand, it is also technically less straightforward
than a security property based simply on the input and output streams of a program. It is striking that the
examples above involve the combination of interactivity and non-determinism. In this paper we consider
the (very common) sub-class of deterministic interactive systems and show that for this sub-class, stream-
based and strategy-based security properties are actually equivalent. The intuition is that, for a deterministic
program, a sufficiently high security user can, in principle, choose inputs and predict all outputs statically.
Thus there should be no need to model dynamic behaviours of users in order to verify the security property.

3.2 Input-Output Labelled Transition Systems (IOLTS)

As illustrated by the examples above, we are interested in security properties of programs written in lan-
guages with input and output primitives. However, our treatment is not specific to a given language. Instead
we express security properties at the level of input/output traces.

Definition 1. An Input-Output Labelled Transition System (IOLTS) is an input-neutral labelled transition
system with a set of labels given by

A ::= τ | a?v | a!v

where a ∈ L and v ∈ V (where V is some unspecified non-empty set of possible values). By input-neutral
we mean that branching on inputs is never restricted for a state in which input is possible, i.e. for a state s
of the LTS: if ∃v.s a?v→ then ∀v.s a?v→ .

Let s range over the states of IOLTSs. Let Tr denote the set of all possible IOLTS traces: Tr = A∗. Let t, u

range over Tr. For t = `1 · · · `n ∈ Tr we write s
t

� s′ to mean that there exist states s1, . . . , sn such that

s
`1→ s1 · · ·

`n→ sn = s′. We write s
t

� to mean that there exists s′ such that s
t

� s′.

Definition 2. An IOLTS is deterministic iff:

1. If s `1→ s1 and s `2→ s2 and `1 6= `2 then `1 = a?v1 and `2 = a?v2, for some channel a and values
v1, v2.

2. If s `→ s1 and s `→ s2 then s1 = s2.

3.3 IOLTS example: a simple interactive imperative language

The simple interactive imperative language used for the examples above is essentially the same language
defined in [14]. To demonstrate one possible instantiation of an IOLTS at the language level, we present
a semantics for this language and observe that it does indeed define an IOLTS (see Figure 1). Note that
the IOLTS for this particular language will be deterministic iff the expression evaluation relation is single
valued (which will not be the case if the | operator is admitted).

4 Strategies and Non-Interference

We assume that a user at level a can only observe input/output events on channels b v a and that no user
can see τ actions (modelling internal state transitions), making this a timing insensitive model. Different
traces may thus appear the same to a given user. We write t =a t

′ to mean that two traces look the same
to a user at level a. More generally, for a subset of security levels A ⊆ L, we write t =A t′ to mean that
t�A = t′�A, where t�A is t with all τ events removed and with all IO events b?v and b!v removed except
those for which b ∈ A. Each such =A is clearly an equivalence relation on traces. Note that, since users at
level a can see events at level a and below, =a is shorthand for =↓a rather than ={a} (wherever we actually
intend ={a} we will write this explicitly).

4.1 Strategies

Each user provides inputs on the channel corresponding to his or her security level and is aware of the
history of usage (both inputs and outputs) on all channels at or below that level. The behaviour of a user
in choosing inputs on a channel may be influenced by this knowledge of the history (as when High uses
Program 1 as a covert channel) and is modeled as a channel strategy: a function from what the user knows
to the user’s choice of the next input on the channel. We allow strategies to be nondeterministic, thus we
define them to be functions from traces to non-empty sets of values:

Definition 3. An a-strategy is a function ωa : Tr → (℘(V)− ∅) such that t1 =a t2 ⇒ ωa(t1) = ωa(t2).

[Skip] 〈skip, σ〉 τ−→ 〈skip, σ〉

[Seq1] 〈skip; c2, σ〉
τ−→ 〈c2, σ〉

[Seq2]
〈c1; c2, σ〉

l−→ 〈c′
1; c2, σ

′〉

〈c1; c2, σ〉
l−→ 〈c′

1; c2, σ
′〉

l ∈ A

[Assign]
σ ` e → v

〈x := e, σ〉 τ−→ 〈skip, σ[x := v]〉

[If1]
σ ` e → v 6= 0

〈if e then c1 else c2, σ〉
τ−→ 〈c1, σ〉

[If2]
σ ` e → 0

〈if e then c1 else c2, σ〉
τ−→ 〈c2, σ〉

[While] 〈while e do c, σ〉 τ−→ 〈if e then (c; while e do c) else skip, σ〉

[In] 〈input x from a, σ〉 a?v−→ 〈skip, σ[x := v]〉

[Out]
σ ` e → v

〈output e to a, σ〉 a!v−→ 〈skip, σ〉

Fig. 1. IOLTS semantics for a simple language

In the special case that ωa is deterministic, we will write ωa(t) = v as shorthand for ωa(t) = {v}. We use
ω for arbitrary (ie possibly nondeterministic) strategies and δ for deterministic strategies.

A strategy modeling the behaviour of the program’s whole environment is a collection of individual
channel strategies indexed by the security lattice. We say two strategies are equivalent with respect to a
given security level if the channel strategies at and below that level are identical.

Definition 4. A strategy ω is an L-indexed family such that each ωa is an a-strategy.

Let Strat denote the set of all strategies. We write ω =a ω
′ to mean ωb = ω′

b for all b v a.
The interaction between a program and its environment is modelled by playing a strategy against a state

of an IOLTS to produce a trace of input and output events. Let s be a state of an IOLTS. Playing strategy

ω against state s may produce trace t, written ω |= s
t

�, if t is a possible trace for s and, for every input
event a?v in t, v is a value which may be chosen by ωa when applied to the sequence of events leading up
to the input event. Formally:

Definition 5. ω |= s
t

� iff s
t

� and v ∈ ωa(t′) for all t′.a?v ≤ t, where ≤ is the prefix ordering on traces.

We define three interesting sub-classes of strategy:

DS The deterministic strategies.
NS The “narrow” strategies. This is the class of strategies considered in [14] (the term “narrow” is ours; in

[14] they are simply called strategies). These are deterministic strategies such that the user’s choice is
influenced only by events on that particular channel, not by events on channels at lower security levels.
The formal definition is as follows:

Definition 6 (Narrow Strategy). A strategy ω is narrow iff it is deterministic and, for all a, if t ={a} t
′

then ωa(t) = ωa(t′).

Strat

Narrow Strategies

Deterministic Strategies

Stream Strategies

SS

NS

DS

Fig. 2. An inclusion hierarchy of strategies

SS The “stream” strategies. A stream strategy is just a family of streams (one for each channel) presented
as a strategy. Concretely, each time a stream strategy is asked for an input on a channel it simply returns
the next item in the stream for that channel. Each channel strategy in such a strategy returns a value
which depends only on the number of inputs which have been requested on that channel so far, since
this number is precisely the position in the stream which has been reached. For a channel a we say that
traces t, t′ are a-stream-pointer equivalent, written t ./a t′, iff t and t′ contain the same number of
a-input events. A stream strategy is thus a family of channel strategies each of which respects stream-
pointer equivalence:

Definition 7 (Stream Strategy). A strategy ω is a stream strategy iff it is deterministic and, for all a,
if t ./a t

′ then ωa(t) = ωa(t′)

Figure 2 illustrates how these sub-classes form an inclusion hierarchy. It is straightforward to verify that
the inclusions shown do indeed hold and are, in fact, strict: SS ⊂ NS ⊂ DS ⊂ Strat.

4.2 Non-Interference

Our definition of non-interference [8] is framed in terms of strategies and traces. It is a generalisation of
Definition 1 from [14]. The definition says that a state s of an IOLTS is non-interfering for a given set of
strategies if, for each user, any two strategies drawn from the set which look the same, also produce sets of
traces which look the same, when played against s.

Definition 8. Let W be a set of strategies. A state s of an IOLTS is non-interfering for W (or W -NI for
short) iff

∀ ω1, ω2 ∈W . (ω1 =a ω2 ∧ ω1 |= s
t1
�) ⇒ (∃ t2 . t2 =a t1 ∧ ω2 |= s

t2
�)

We say that s is simply non-interfering (or NI for short) if it is non-interfering for the set of all strategies.

We now explore the relationship between the NI properties corresponding to the sub-classes of strategy
shown in Figure 2. We start with the obvious fact that inclusion of sub-classes of strategy implies reverse-
inclusion of the corresponding NI properties:

Lemma 1. Let W1,W2 ⊆ Strat. If W1 ⊆W2 then W2-NI ⇒W1-NI.

We thus immediately have a sequence of inclusions of NI properties which mirrors the inclusions shown in
Figure 2:

Proposition 1. NI ⇒ DS-NI ⇒ NS-NI ⇒ SS-NI.

In Section 4.3, we establish that DS-NI and NI are actually equivalent. We conjecture that NS-NI is also
equivalent to NI but verifying this is left for future work.

Note that SS-NI is essentially “property 1” from Section 3.1. By considering the sets of possible traces
for the various programs in Section 3.1 it can be established, for example, that Program 1a is NI, whereas
Program 1b is SS-NI but not NI. It is clear, therefore, that SS-NI is, in general, a strictly weaker property
than NI. Nonetheless, we are able to show (Section 4.4) that for deterministic IOLTS, SS-NI and NI are
equivalent.

4.3 Non-Interference for Deterministic Strategies

The following theorem says that, to establish non-interference, it is only necessary to consider deterministic
strategies.

Theorem 1. DS-NI ⇐⇒ NI.

By Proposition 1, to prove the theorem it is sufficient to show that if s is DS-NI then s is NI. We prove the
contrapositive.

Let s be a state of an IOLTS and suppose that s does not have the NI property. Thus there must be two
(possibly nondeterministic) strategies w,w′, level b and trace t such that w =b w′ and:

1. w |= s
t
�

2. For all t′, if w′ |= s
t′

� then t′ 6=b t.

The key proof idea is to construct two b-equivalent deterministic strategies which, when played against s,
result in the same NI-violating behaviours as w,w′.

First, we derive a deterministic strategy θ(w) from w, as follows. Let χ : (℘(V) − ∅) → V be some
function such that χ(X) ∈ X . Then:

θ(w)a(u) =
{
v if ∃u′ =a u. u

′a?v ≤ t
χ(wa(u)) otherwise

It is necessary to show that θ(w) is well-defined. In particular, we must show:

a) if u′ =a u and u′′ =a u and u′a?v ≤ t and u′′a?v′ ≤ t, then v = v′;
b) if u =a u

′ then θ(w)a(u) = θ(w)a(u′).

First we need the following technical lemma:

Lemma 2. Let t1a?v ≤ t2` be such that t1 ./a t2. Then t2 = t1 and ` = a?v.

Proof. Let ni be the number of a-input events in ti. Since t1 ./a t2, we have n1 = n2. Now suppose
towards a contradiction that t1a?v 6= t2`, hence t1a?v ≤ t2. But then we would have n1 + 1 ≤ n2, which
contradicts n1 = n2. ut

Now we can established well-definedness of θ(w).

Proposition 2. θ(w) is a well defined deterministic strategy.

Proof.

a) By assumption of u′ =a u and u′′ =a u we have u′ =a u′′. Clearly u′ =a u′′ implies that u′, u′′

have the same number of a-input events. Furthermore, by assumption that u′a?v and u′′a?v′ are both
prefixes of t, one must be a prefix of the other. Thus, by Lemma 2, a?v = a?v′, hence v = v′.

b) Suppose u =a u
′. If the first case in the definition of θ(w)a applies to u then, by essentially the same

argument as in a), it must also apply to u′ and give the same result. If the second case applies, then,
since wa is an a-strategy, wa(u) = wa(u′), hence χ(wa(u)) = χ(wa(u′)).

ut

Next we derive a deterministic strategy λ(w′) from w′. In this case we must ensure that λ(w′)a =
θ(w)a for all a v b, since we want θ(w) =b λ(w′). We define:

λ(w′)a(u) =
{
θ(w)a(u) if a v b
χ(w′

a(u)) otherwise

The proof that λ(w′) is a well-defined deterministic strategy is essentially as for θ(w) and is omitted. It is
immediate from the definition of λ(w′) that θ(w) =b λ(w′).

It remains to show that this pair of strategies constitute a counterexample to DS-NI and, for this, it
suffices to show that:

1. θ(w) produces t when played against s.
2. The set of traces produced by λ(w′) is a subset of those produced by w′.

For the first of these, it is given that s
t
�, so we need only show that θ(w)a(u) = v whenever ua?v ≤ t,

and this is clear from the definition of θ(w)a, since u =a u. For the second, say that strategy ω′ refines
strategy ω iff ω′

a(u) ⊆ ωa(u), for all a, u. It is then immediate from Definition 5 that the refining strategy
produces a subset of the traces of the original when played against the same state. Formally:

Lemma 3. If ω′ refines ω and ω′ |= s
u
� then ω |= s

u
�.

It is straightforward to verify that θ(w) refines w and hence that λ(w′) refines w′. This completes the
proof that DS-NI ⇒ NI.

4.4 Non-Interference for Deterministic IOLTS

Here we establish our main result. That, for deterministic IOLTS, to establish NI it is only necessary to
consider stream strategies. Thus, for deterministic systems, when reasoning about information flow it can
suffice to work with a simple stream-based semantic model of the environment and a corresponding stream-
based definition of NI, rather than strategies.

Theorem 2. A state s of a deterministic IOLTS is NI iff it is SS-NI.

Corollary 1. For deterministic IOLTS: NI, DS-NI, NS-NI and SS-NI are all equivalent.

Given Proposition 1 and Theorem 1, to prove Theorem 2 it suffices to show that, for any state s of a
deterministic IOLTS, if s is SS-NI then s is DS-NI. Again, we prove the contrapositive.

Let s be a state of a deterministic IOLTS and suppose that s does not have the DS-NI property. Thus
there must be two deterministic strategies d,d′, level b and trace t such that d =b d′ and:

1. d |= s
t
�

2. For all t′, if d′ |= s
t′

� then t′ 6=b t.

The proof mimics the one above for DS-NI ⇒ NI, but this time we derive stream strategies from determin-
istic strategies. We derive the stream strategy φ(d) from d as follows:

φ(d)a(u) =

{
v if ∃u′ ./a u. d |= s

u′a?v
�

k otherwise

where k is some (arbitrary) constant in V.
We must show that φ(d) is a well-defined stream strategy. In particular, we must show:

a) If u′ ./a u and u′′ ./a u and d |= s
u′a?v
� and d |= s

u′′a?v′

� , then v = v′.
b) If u ./a u

′ then φ(d)a(u) = φ(d)a(u′).

Part b) follows immediately from the definition of φ(d) once we have shown a).
To show a) we make use of a lemma which states an expected consequence of determinism: if we play

a deterministic strategy against any state of a deterministic IOLTS, there will be no branching in the set of
traces produced.

Lemma 4. Let s be a state of a deterministic IOLTS and let δ be a deterministic strategy. If δ |= s
t1
� and

δ |= s
t2
� then either t1 ≤ t2 or t2 ≤ t1.

Proof. Suppose, without loss of generality, that length(t1) ≤ length(t2). Proceed by induction on length(t1)
to show that t1 ≤ t2.

If length(t1) = 0 then t1 = ε ≤ t2.

If length(t1) > 0 then t1 has the form t′1`1 and s
t′1
� s′1

`1→ s′′1 . Then length(t′1) < length(t2) and by

IH t′1 ≤ t2, hence t′1 < t2. Thus, for some `2, t′1`2 ≤ t2 and s
t′1
� s′2

`2→ s′′2 . Part 2 of the definition of
deterministic IOLTS (Definition 1) entails (by a simple induction on the length of t′1) that s′2 = s′1. It thus
remains to show that `1 = `2. Suppose towards a contradiction that `1 6= `2. By part 1 of Definition 1 we

must have `1 = a?v1 and `2 = a?v2. Then, since δ |= s
t′1a?v1
� and δ |= s

t′1a?v2
� , we have v1 ∈ δa(t′1) and

v2 ∈ δa(t′1). But then, since δ is deterministic, v1 = v2, a contradiction. ut

Well-definedness of φ(d) then follows:

Proposition 3. φ(d) is a well-defined stream strategy.

Proof. It remains to show that condition a) holds. That is, if u′ ./a u and u′′ ./a u and d |= s
u′a?v
� and

d |= s
u′′a?v′

� then v = v′. Now s is a state of deterministic IOLTS and d is deterministic, so, by Lemma 4,
either u′a?v ≤ u′′a?v′ or u′′a?v′ ≤ u′a?v. From u′ ./a u and u′′ ./a u we also have u′ ./a u

′′. Hence by
Lemma 2, v = v′. ut

Next we derive a stream strategy ψ(d′) from d′. For a v b we define ψ(d′)a = φ(d)a and for a 6v b
we derive ψ(d′) from d′ exactly as we derived φ(d) from d:

ψ(d′)a =
{
φ(d)a if a v b
φ(d′)a if a 6v b

The proof that ψ(d′) is a well-defined stream strategy is essentially as for φ(d) and is omitted. It is imme-
diate from the definition of ψ(d′) that φ(d) =b ψ(d′).

For the final step in the proof that SS-NI ⇒ DS-NI we introduce the notion of a-prefix:

Definition 9. Trace u is an a-prefix of u′, written u �a u
′, iff u =a u

′′ for some u′′ ≤ u′.

We state without proof some obvious properties of �a:

– If a1 v a2 then �a2 ⊆ �a1 .
– If u ≤ u′ �a u

′′ then u �a u
′′.

– If u =a u
′ then u �a u

′.

We will use these freely in the remainder of the proof.
The proof is now essentially completed by the following lemma, which says that, when played against

s, φ(d) and d produce exactly the same sets of traces (including, in particular, t), whereas every trace
produced by ψ(d′) is either also produced by d′ or is not a b-prefix of t.

Lemma 5. 1. φ(d) |= s
u
� iff d |= s

u
�.

2. If ψ(d′) |= s
u
� and u �b t then d′ |= s

u
�.

Proof. The lemma holds vacuously if u is not a trace of s, so we need only show that it holds for all u such
that s

u
�. Let #I(u) denote the number of input events in u. We proceed by induction on #I(u). Take the

two parts in turn:

1. For #I(u) = 0 we have both φ(d) |= s
u
� and d |= s

u
� by assumption that s

u
�.

In the inductive case, #I(u) = n + 1, hence u′a?v ≤ u for some u′ with #I(u′) = n. By IH

φ(d) |= s
u′

� iff d |= s
u′

�. Note that, since a?v is the last input event in u, we have:

(i) d |= s
u
� iff (d |= s

u′

�) ∧ (da(u′) = v)

(ii) φ(d) |= s
u
� iff (φ(d) |= s

u′

�) ∧ (φ(d)a(u′) = v)

Thus it suffices to show that, if d |= s
u′

� then da(u′) = φ(d)a(u′). Let da(u′) = w. Then, since

s
u′a?v
� and the IOLTS is input-neutral, we have s

u′a?w
� . Hence, since u′ ./a u

′, by definition of φ(d)a

we have φ(d)a(u′) = w.

2. Assume ψ(d′) |= s
u
� and u �b t. The base case is as for part 1. In the inductive case, again we have

#I(u) = n + 1, hence u′a?v ≤ u for some u′ with #I(u′) = n. By assumption of u �b t we have

u′ �b t, hence by IH d′ |= s
u′

�. Thus it suffices to show d′
a(u′) = v. We proceed by cases according

to whether a v b.

If a 6v b, letw = d′
a(u′). Then, since s

u′a?v
� and the IOLTS is input-neutral, we have s

u′a?w
� . Thus, by

definition of ψ(d′), ψ(d′)a(u′) = w. But, by assumption of ψ(d′) |= s
u
�, we have ψ(d′)a(u′) = v,

hence w = v.
If a v b then, from u �b t, we have u′a?v �a t. Thus u′′a?v ≤ t and u′′ =a u

′, for some u′′. Thus
da(u′′) = da(u′) = v. But, since d =b d′ and a v b, we have d′

a = da, hence d′
a(u′) = v.

ut

Proposition 4. φ(d), ψ(d′) are a counterexample to SS-NI.

Proof. By part 1 of Lemma 5, φ(d) |= s
t
�. Now suppose ψ(d′) |= s

t′

� and t′ =b t. But then t′ �b t

and hence, by part 2 of Lemma 5, d′ |= s
t′

�, contradicting the original assumption that d,d′ are a
counterexample to NI. ut

This concludes the proof of Theorem 2.

5 Conclusions

We have defined a notion of Input-Output Labelled Transition System (IOLTS) suitable for modelling
interactive programming languages. Following previous work by Wittbold and Johnson [16] and O’Neill,
Clarkson and Chong [14] we have defined a notion of non-interference (NI) for IOLTS, modelling the
users’ input behaviours as strategies. Our main result has been to show that, for deterministic IOLTS, a
simpler definition of NI, based on a stream model of user input, is equivalent.

5.1 Non-interference and Nondeterminism

The definition of NI we use in this paper is (essentially) the one used for deterministic programs in [14].
However, although the definition can also be applied to nondeterministic programs (as our use of it illus-
trates) it is interesting to note that the authors of [14] actually modify the definition when they add non-
determinism to the language. (Unfortunately, in modifying it, they render it unable to distinguish between
the insecure Program 1b and its secure variant Program 1a). The modification is motivated by the desire to
avoid so-called refinement attacks, in which refining a secure program (removing some nondeterminism)
renders it insecure. We chose not to follow this route since it identifies two uses of nondeterminism which

we prefer to differentiate: the use of nondeterminism to allow under-specification, and the use of nonde-
terminism as a programming construct, essentially as a source of deliberate “noise” intended to disrupt
information flows. It is this latter use which is relevant in the covert channel examples described above.

But there is a possible weakness in the security delivered by our version of NI for nondeterministic
programs. Consider the following example:

input x from H
if (1 | x) then

output 0 to L
else

while (true) do skip

(Recall that | here is nondeterministic choice.) This program is NI by our definition. Whether it should be
regarded as secure depends on our assumptions about the observability of non-termination in the presence
of nondeterminism. If we wish to make the definition of NI sensitive to the possibility of non-termination
in this example, we might use a more sophisticated definition based, for example, on a form of bisimu-
lation rather than trace-equivalence. This approach would suggest transposing the problem into a process
algebraic setting, as explored in [7] (see Section 5.2 for further discussion on this point). Alternatively, we
might consider weakening the definition of NI to make it, more generally, termination insensitive. In the
latter case it would be interesting to try to adapt the work of [5] to establish computational bounds on the
rate at which information could be leaked.

5.2 Future work

Our longer term goal is to be able to reason about the security properties of programs in interaction with
their environments in a compositional way. Ideally we do not want to treat these two actors differently. One
stumbling block we face in achieving this is that a very common environment for a program is another
program or even a set of programs. What is the relationship between programs and strategies?

A strategy is defined in Wittbold and Johnson [16] as a map from the history of inputs and outputs on
a given channel to the next input on that channel. There is no computational content in that definition and,
in general, a strategy could be non-computable (and clearly not representable by a program). On the other
hand, not every program has a semantics which can be characterised as providing an appropriate input
to another program whenever it is required. In fact the setting in which Wittbold and Johnson introduce
strategies is a purely synchronous one in which inputs are always supplied to the program. So, in particular,
a program written in the interactive core imperative language defined in this paper will not in general define
a strategy for another program written in the same language, or even define a strategy at all. Consider for
example a program which only updates its internal state and never engages with input or output at all.

If we assume the programs are interacting in an asynchronous fashion, a program which expects input
on a given channel may never get it from the other programs in its environment. Even supposing a pro-
gram is structured correctly so that it acts as a strategy for another program (and presumably vice versa)
termination problems may mean that it never produces an expected output. For example:

P1:
input x from H;
input z from L;
output (z XOR x) on H;

P2:
output y on H;
while(x < 0) x--;
output x on L;
input w from H;

Program P2 will provide input for Program P1 on L only some of the time. It could be described as
a partial strategy. Any reasoning about environments formed from programs would have to take partiality
into account.

There are two directions in which we could take this work.
We could continue to model environments as strategies and ask what kinds of systems could be strate-

gies for each other and ask what kinds of constraints on the systems would that require. We have discussed
some of the issues above but an interesting enquiry along these lines is the possibility of modelling the
interaction using game semantics [1, 2, 9].

On the other hand, why constrain the model of the environment to be a strategy? Our use of IOLTS
suggests some more general formal process model might be a suitable setting for extending our results,
building on the foundational work of [7]. A potential issue to be addressed in this case would be that se-
quentiality seems to be an essential characteristic of the deterministic programs on which we have focused.
It may be that security properties such as NDC and BNDC as defined in [7] are so strong as to effectively
rule out many sequential systems of interest.

Orthogonal to these two lines of enquiry is the question of probabilistic models of the the behaviour of
the environment. With respect to strategies, for example, Jürjens has shown [13] that Gray’s security prop-
erty Probabilistic Noninterference (PNI) [12] is a generalisation of Wittbold and Johnson’s nondeducibility
on strategies [16] while Aldini, Bravetti and Gorrieri have analysed probabilistic noninterference using a
probabilistic process algebra [3, 4].

Acknowledgments

This work was supported by EPSRC research grant EP/C545605/1 & EP/C009746/1 (Quantitative Infor-
mation Flow). Thanks to Aslan Askarov, Catuscia Palamidessi, Andrei Sabelfeld and David Sands for their
encouragement and comments on early versions of this work. We also thank the anonymous reviewers for
their very helpful criticisms and suggestions for improvement.

References

1. S. Abramksy and G. McCusker. Game semantics. In U. Berger and H. Schwichtenberg, editors, Logic and
Computation: Proc. 1997 Marktoberdorf Summer School, NATO Science Series. Springer-Verlag, 1998.

2. Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for pcf. Information and Com-
putation, pages 409–470, December 2000.

3. A. Aldini. Probabilistic information flow in a process algebra. In Proc. CONCUR’01, volume 2154 of LNCS,
pages 152–168. Springer-Verlag, August 2001.

4. Alessandro Aldini, Mario Bravetti, and Roberto Gorrieri. A process-algebraic approach for the analysis of proba-
bilistic noninterference. J. Comput. Secur., 12(2):191–245, 2004.

5. Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-insensitive noninterference leaks
more than just a bit. In Proc. European Symp. on Research in Computer Security, 2008. to appear.

6. D. E. Denning. A lattice model of secure information flow. Comm. of the ACM, 19(5):236–243, May 1976.
7. R. Focardi and R. Gorrieri. A classification of security properties for process algebras. J. Computer Security,

3(1):5–33, 1995.
8. J. A. Goguen and J. Meseguer. Security policies and security models. In Symposium on Security and Privacy,

pages 11–20, April 1982.
9. Russell Harmer and Guy Mccusker. A fully abstract game semantics for finite nondeterminism. In In Proceedings

of the Fourteenth Annual Symposium on Logic in Computer Science, LICS 99. IEEE Computer, pages 422–430.
Society Press, 1999.

10. K. Honda, N. Yoshida, and Marco Carbone. Multiparty asynchronous session types. In Principles Of Programming
Languages, January 2008.

11. Sebastian Hunt and David Sands. Just forget it: The semantics and enforcement of information erasure. In
Proc. 17th European Symposium on Programming (ESOP’08), Budapest, Hungary, March 2008. Springer-Verlag
(LNCS).

12. James W. Gray III. Toward a mathematical foundation for information flow security. sp, 00:21, 1991.
13. Jan Jürjens. Secure information flow for concurrent processes. In CONCUR ’00: Proceedings of the 11th Inter-

national Conference on Concurrency Theory, pages 395–409, London, UK, 2000. Springer-Verlag.

14. Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. Information-flow security for interactive programs.
In CSFW, pages 190–201. IEEE Computer Society, 2006.

15. C. E. Shannon. Channels with side information at the transmitter. IBM journal of Research and Development,
2(4):289–293, 1958.

16. J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic systems. In IEEE Symposium on
Security and Privacy, pages 144–161, 1990.

