
              

City, University of London Institutional Repository

Citation: Apostolopoulou, D., Dominguez-Garcia, A. D. & Sauer, P. W. (2016). An 

Assessment of the Impact of Uncertainty on Automatic Generation Control Systems. IEEE 
Transactions on Power Systems, 31(4), pp. 2657-2665. doi: 10.1109/tpwrs.2015.2475415 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/19823/

Link to published version: https://doi.org/10.1109/tpwrs.2015.2475415

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


1

An Assessment of the Impact of Uncertainty on
Automatic Generation Control Systems

Dimitra Apostolopoulou, Student Member, IEEE, Alejandro D. Domı́nguez-Garcı́a,
Member, IEEE, and Peter W. Sauer, Fellow Member, IEEE

Abstract—This paper proposes a framework to quantify
the impact of uncertainty that arises from load variations,
renewable-based generation, and noise in communication chan-
nels on the automatic generation control (AGC) system. To this
end, we rely on a model of the power system that includes the
synchronous generator dynamics, the network, and the AGC
system dynamics, as well as the effect of various sources of
uncertainty. Then, we develop a method to analytically propagate
the uncertainty from the aforementioned sources to the system
frequency and area control error (ACE), and obtain expressions
that approximate their probability distribution functions. We
make use of this framework to obtain probabilistic expressions
for the frequency performance criteria developed by the North
American Electric Reliability Corporation (NERC); such expres-
sions may be used to determine the limiting values of uncertainty
that the system may withstand. The proposed ideas are illustrated
through the Western Electricity Coordination Council (WECC)
9-bus 3-machine system and a 140-bus 48-machine system.

I. INTRODUCTION

To ensure the reliable operation of a power system, gener-

ation needs to meet demand and the system frequency needs

to be kept as close as possible to the nominal value at all

times. These tasks are met via load frequency control (LFC),

which includes several control systems that are implemented

across different time scales. One such system is the automatic

generation control (AGC), the role of which is to maintain

system frequency and the real power interchange between

balancing authority (BA) areas to desired values. Most BA

areas implement tie-line bias control, and the AGC command

is driven by the value of the area control error (ACE), which

includes the deviation of the sum of the tie line flows between

BA areas, and their obligation to support frequency.

At the same time, power systems are undergoing radi-

cal transformations, which are enabled by the integration

of new technologies, such as advanced communication, and

renewable-based generation. However, it is not clear if current

AGC system implementations are suitable for handling the

challenges that may arise due to these transformations [1].
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For example, it is not obvious whether or not current AGC

systems will be able to deal with increased uncertainty arising

from sources other than just load variations, e.g., renewable-

based generation mandated by several policies (see, e.g., [2]).

Furthermore, the AGC system accepts measurements of the

real power interchange between BA areas, the area frequency,

and generator output as inputs from field devices and processes

them to obtain the generator control commands. In this regard,

increased noise in the communication channels that the AGC

system relies on might affect its performance [3].

In North America, the performance of the AGC system

is evaluated by three performance criteria, CPS1, CPS2, and

BAAL, defined by the North American Electric Reliability

Corporation (NERC). More specifically, CPS1 and CPS2,

respectively, are statistical measures of the ACE variability

and magnitude [4]. The BAAL criterion is designed to replace

CPS2 since the latter often gives the BA area the indication

to move its ACE opposite to what helps keeping frequency

at its nominal value. This problem is overcome in the BAAL

criterion by establishing frequency-dependent ACE limits [5].

Given these additional sources of uncertainty from load

variations, renewable-based generation, and noise in commu-

nication channels, there is a need to investigate if present

AGC system implementations are sufficient for meeting NERC

performance standards, and to determine their limitations. To

this end, this paper proposes a framework to evaluate the

effects of the aforementioned sources of uncertainty, and to

assess the AGC system behavior. The adopted modeling frame-

work includes synchronous generator dynamics, the AGC

system dynamic behavior, and the effect of the aforementioned

uncertainty sources. We use the framework to approximate the

probability distribution functions (pdfs) of system variables

of interest, which in turn will be used to obtain probabilistic

expressions of the three aforementioned performance criteria.

In this context, we may explore if reliability criteria are

met under different scenarios for each of the uncertainty

sources. For example, we may investigate whether or not the

functionality provided by current AGC systems is appropriate

for dealing with high levels of renewable-based generation

combined with noise in communication channels. In this paper,

we numerically verified that the solutions provided by the

proposed framework, as well as, the probabilistic expressions

for frequency performance criteria, are sufficiently accurate.

Next, we discuss some relevant works in the literature which

have also looked at the effects that new technologies being

introduced in the grid may have on frequency regulation. The

analysis of the impact that small wind turbines might have
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on load frequency control, and in particular AGC systems, is

studied in [6]. A robust controller that copes with communica-

tion delays and other problems in the communication network

and ensures good performance of load frequency control is

given in [7]. The analysis of the system behavior in the case an

attacker gains access to the AGC signal and injects undesirable

inputs to the system is studied in [8]; in this work the authors

propose the design of an optimal control strategy to destabilize

a two-area power system in the case such a cyber attack

occurs. In [9], the authors propose a stochastic optimal relaxed

AGC system, which takes into account NERC’s frequency

performance standards, and reduces control cost by tuning

the relaxation factors online. In [10], the authors formulate

the frequency regulation problem by viewing future electric

power networks as a general dynamical system driven by

disturbances, and propose a modified AGC system that better

responds to fast disturbances. A method to determine the

impact of random load perturbations on system stability by

calculating the evolution of the probability density function

of system states with the Fokker-Planck equation is presented

in [11]. In [12], the authors motivate the need for stochastic

models in power system analysis and propose a systematic

approach that describes power system behavior as continuous

stochastic differential-algebraic equations. In [13], the authors

propose a framework to study the impact of stochastic power

injections (e.g., arising from renewable-based generation) on

power system dynamics. In [14], a study that investigates how

individual wind turbines affect the wind farm performance

under the AGC set-point operation is presented.

The remainder of the paper is organized as follows. In

Section II, we describe the power system model that we adopt

to develop our analysis framework. In Section III, we demon-

strate how uncertainty arising from load variations, renewable-

based generation, and noise in communication channels can be

handled, and derive the proposed framework. In Section IV, we

make use of the framework to obtain probabilistic expressions

of the frequency performance criteria. In Section V, we

illustrate the methodology through the Western Electricity

Coordination Council (WECC) 9-bus 3-machine system and

a 140-bus 48-machine system. In Section VI, we summarize

the results and make some concluding remarks.

II. POWER SYSTEM MODEL

In this section, we introduce the non-linear and linearized

power system dynamic models that we utilize to develop our

framework. More specifically, we introduce dynamic models

for synchronous generators, wind-based generators, and the

AGC system; and the network model.

A. Non-Linear Model

1) Synchronous generators: For the timescales of interest

in this paper, we choose a 9-state model (see, e.g., [15]).

The state vector for generator i is denoted by xi, whereas

PCi
denotes the AGC command signal this generator receives

from the system operator when participating in frequency

regulation. We also denote by Idi
(Iqi ) the d-axis (q-axis)

component of the stator current, θi the voltage angle, and Vi

the voltage magnitude at bus i. Consider a network with n

buses and I generators, and define x = [xT1 , . . . , x
T
I ]

T and

u = [PC1
, . . . , PCI

]T . In addition, we define the vector of

machine algebraic variables as ỹ = [ỹT1 , . . . , ỹ
T
I ]

T , where

ỹi = [Idi
, Iqi ]

T ; and we define the vector of network variables

y = [yT1 , . . . , y
T
n ]

T , where yi = [θi, Vi]
T . Then, the dynamic

behavior of the synchronous generators can be described by

ẋ = f(x, y, ỹ, u), (1)

0 = g1(x, y, ỹ); (2)

a detailed description of this model and the precise form that

f and g1 take may be found in [15, p. 140].

2) Wind-based generation: We assume a first order dynam-

ical model, which has been shown to provide an accurate

relationship between the wind speed and the real power

generated by a collection of wind turbines (see, e.g., [16]).

Such a model is derived from a 7-state two-axis model of

a WECC of type III, i.e., a doubly-fed induction generator.

The derivation is accomplished via selective modal analysis,

and the resulting model only maintains one mode, which is

sufficient for studying the phenomena of interest in the paper.

We denote by PWi
(QWi

) the wind-based active (reactive)

generation at bus i. We assume that QWi
= 0 for all wind-

based generation. Then, the dynamic behavior of the wind-

based generation at bus i is given by

ṖWi
= ̺1i PWi

+ ̺2i vi + ̺3i , (3)

where vi is some average wind speed at bus i, and ̺1i , ̺2i
and ̺3i are parameters that depend on characteristics of the

wind-based generators. We denote the vector of wind-based

generation by PW = [PW1
, . . . , PWn

]T and the vector of wind

speeds by v = [v1, . . . , vn]
T . Then, we have

ṖW = q(PW , v). (4)

3) AGC system: We assume that there are m = 1, 2, . . . ,M
BA areas within an interconnected system, and denote by Gm

the set that indexes the generators in BA area m. Then, we

take the frequency of BA area m to be

fm =
1

2π

∑

i∈Gm

γiωi =
1

2π

∑

i∈Gm
Hiωi

∑

i∈Gm
Hi

, (5)

where Hi is the inertia constant for generator i. We denote by

Am the set of BA areas that have transmission lines connected

to BA area m. Then, the ACE for BA area m is given by

ACEm =
∑

m′∈Am

(Pmm′ − Pmm′
sch

)− bm(fm − fnom), (6)

where bm < 0 is the frequency bias factor for BA area m, fnom

is the nominal frequency, Pmm′ is the power transfer from BA

area m to BA area m′, which is positive for exporting, and

Pmm′

sch
is the scheduled power transfer from BA area m to

BA area m′.

Let zm denote the sum of the AGC commands sent to

generators in BA aream, i.e.,
∑

i∈Gm
PCi

; then, following [17,

p. 352-355], we have that

żm = −zm −ACEm +
∑

i∈Gm

PGi
, (7)
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where PGi
is the real power generated by the synchronous

generator connected to bus i. Each generator i ∈ Gm par-

ticipates in AGC with PCi
= κmi

zm, where the κmi
’s are

the so-called participation factors, and satisfy the relation
∑

i∈Gm
κmi

= 1 [18], [19]. We denote the vector of AGC

states by z = [z1, . . . , zM ]. Thus, the dynamic behavior of the

AGC system is given by

ż = h(x, y, ỹ, z), (8)

u = k(z). (9)

4) Network: Unlike traditional AGC models (see, e.g.,

[17]), in this work, we explicitly consider the network model;

this way, we are capturing the effect that the network has

on the overall closed-loop system dynamic behavior. Let PLi

(QLi
) represent the active (reactive) power load at bus i and

the vector of loads is denoted by PL = [PL1
, . . . , PLn

]T and

QL = [QL1
, . . . , QLn

]T ; then we have that

0 = g2(x, y, ỹ, PL, QL, PW ). (10)

The overall system dynamic behavior, including the AGC

system, is described by the differential algebraic equation

(DAE) system given by (1)-(2), (4), and (8)-(10). The functions

f , h, q, k, g1, and g2 are assumed to be continuously

differentiable with respect to their arguments.

B. Linearized Model

For the timescales of interest, we assume that distur-

bances introduce a small error to the nominal system tra-

jectory (x⋆, y⋆, ỹ⋆, u⋆, z⋆, P ⋆
W , v⋆, P ⋆

L, Q
⋆
L). Thus, the actual

system dynamic behavior can be approximated by lineariz-

ing the DAE model in (1)-(2), (4), and (8)-(10) along

(x⋆, y⋆, ỹ⋆, u⋆, z⋆, P ⋆
W , v⋆, P ⋆

L, Q
⋆
L). Then, sufficiently small

deviations around the system nominal trajectory may be ap-

proximated by

∆ẋ = A1(t)∆x +A2(t)∆y +A3(t)∆ỹ +B1(t)∆u, (11)

∆ṖW = ̺1(t)∆PW + ̺2(t)∆v, (12)

∆ż = A4(t)∆x +A5(t)∆y +A6(t)∆ỹ +A7(t)∆z, (13)

∆u = B2(t)∆z, (14)

0 = C1(t)∆x + C2(t)∆y + C3(t)∆ỹ, (15)

0 = C4(t)∆x + C5(t)∆y + C6(t)∆ỹ

+D1(t)∆PL +D2(t)∆QL +D3(t)∆PW , (16)

where the matrices A1(t), A2(t), A3(t), A4(t), A5(t), A6(t),
A7(t), B1(t), B2(t), C1(t), C2(t), C3(t), C4(t), C5(t), C6(t),
D1(t), D2(t) and D3(t), and the vectors ̺1(t), ̺2(t) are

defined as the partial derivatives of the functions f , h, q, k, g1,

and g2 in (1)-(2), (4), (8)-(10), evaluated along the nominal

trajectory (see [15], [20] for the details on the procedure).
In our formulation, we consider ∆QL = 0, so we ignore the

term D2(t)∆QL in (16). We assume the nominal trajectory is

well behaved; therefore C3(t) and C6(t)C
−1
3 (t)C2(t)−C5(t)

are invertible.
The suitability of the use of a 9-state linearized model to

capture the effects of uncertainty on system dynamic behavior

is shown in [21], where convincing simulations for large

deviations in power injections that show that the linearized

dynamics is indeed very accurate are presented.

III. POWER SYSTEM DYNAMICS STOCHASTIC MODEL

In the linear model described in (11)-(16), we consider three

sources of uncertainty arising from (i) load variations, (ii)

wind-based generation, and (iii) noise in communication chan-

nels. In this section, we develop a stochastic model describing

the power system dynamics that captures the impact of the

aforementioned uncertainty sources on the system dynamic

behavior. In addition, we use the infinitesimal generator model

to obtain expressions for moments of system characteristics.

A. Stochastic Differential Equation (SDE) Model

Noise in communication channels introduces uncertainty in

the measurements of ∆Pmm′ ,∆fm and ∆PGi
, which are used

as feedback inputs by the AGC system. Let Γ be the vector

containing all the ∆Pmm′ ,∆fm, and ∆PGi
. We denote the

measurements of Γ as Γ̂; then we have that

Γ̂ = Γ + η, (17)

where η is a vector of Gaussian white noise processes. The

ACE, as well as the AGC system, are affected by η as one can

see in (6) and (7). After including this source of uncertainty

in (13), we have that

∆ż = A4(t)∆x+A5(t)∆y +A6(t)∆ỹ (18)

+A7(t)∆z +A8(t)η.

Following [22] and [23], we model load and wind speed

variations as stochastic differential equations. Then, we have

that

d∆PLi
= ν1i∆PLi

dt+ ν2idW
2
t , (19)

d∆vi = ai ∆vi dt+ bi dW
3
t , (20)

where W 2
t and W 3

t are Wiener processes, and ai, bi are pa-

rameters constructed based on a priori knowledge of the wind

speed pdf. The drift and diffusion parameters in the aforemen-

tioned stochastic differential equations are determined with the

use of historical data and estimation techniques [24], [25].
In (2) and (10), since C3(t) and C6(t)C

−1
3 (t)C2(t)−C5(t)

are assumed to be invertible, we can solve for ∆y and ∆ỹ.

We substitute ∆y, ∆ỹ, and ∆u in (11) and (19), and obtain

the following stochastic differential equation (SDE) model:

dXt = AXtdt+BdWt, (21)

where Xt = [∆x,∆z,∆PL,∆PW ,∆v]T , A, B as defined in

the Appendix, and dWt = [dW 1
t , dW

2
t , dW

3
t ]

T . We assume

that the initial system state is steady; thus, we have X0 = 0.
There are cases in which we wish to represent the deepening

penetration of wind generation and the increased level of

variability in the output. To this end, we use (3) and assume

that the wind penetration at bus i is now P ′
Wi

= ξiPWi
. Then,

we model the variation in the wind generation as

∆ṖWi
= ̺1i∆PWi

+ ξi̺2i∆vi. (22)

We have that P ′
Wi

= ξiPWi
→ ∆P ′

Wi
= ξi∆PWi

, since

the nominal point around which we linearize is now P ′⋆
Wi

=
ξiP

⋆
Wi

. Thus, we only need to modify a few entries in the B

matrix to represent the deepening penetration of renewable-

based generation.
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B. SDE Infinitesimal Generator

The overall model, as described by the SDE in (21),

is used to study the impact of the uncertainty on system

dynamic performance. To this end, we use the generator of the

process Xt to calculate the statistics of the states of interest.

Specifically, given a twice continuously differentiable function

ψ, the generator of the process Xt is defined as (see, e.g.,

[26]):

(Lψ)(x, t) :=
∂ψ(x, t)

∂t
+
∂ψ(x, t)

∂x
Ax (23)

+
1

2
Tr

(

B
∂2ψ(x)

∂x2
BT

)

.

The evolution of the expected value of ψ(x) is governed by

Dynkin’s formula (see, e.g., [26]):

dE[ψ(X((t))]

dt
= E[(Lψ)(X(t))], (24)

where E[·] denotes the expectation operator. By properly

choosing ψ, we may obtain a set of ordinary differential

equations (ODEs) the evolution of which describes the desired

moments of the dynamic/algebraic states. Therefore, we may

study the impact of uncertainty in wind-based generation, load

variations and noise in communication channels on the area

frequency and the area control error, which in turn are utilized

in the computation of the frequency performance criteria.

IV. IMPACTS ON FREQUENCY PERFORMANCE CRITERIA

In this section, we introduce the frequency performance

metrics developed by NERC, and use the proposed framework

in Section III to develop probabilistic expressions of these

metrics.

A. Frequency Performance Criteria

NERC has established the CPS1, CPS2, and BAAL perfor-

mance criteria to quantify whether or not system frequency

is maintained within certain limits [4], [5]; next, we provide

their definitions

For BA area m, CPS1 is given by
∑

i∈T1
〈ACE〉1mi

〈∆f〉1mi

|T1|
≤ −bmǫ

2
1m , (25)

where 〈·〉1mi
denotes the ith average over a 1-minute period

for BA area m of each variable respectively, T1 is the set

of time instants for which we have measurements for the 1-

minute averages of the frequency deviation from the nominal

value, denoted by ∆fm, and the area control error of BA area

m, denoted by ACEm, over a one year period, |T1| is the

cardinality of the set T1, and ǫ1m is a constant unique for

each BA area m.

The CPS2 is designed to limit the BA area unscheduled

power flows. To this end, CPS2 is given by

|〈ACE〉10mi
| ≤ L10m , (26)

1−
number of violations of (26)

|T2|
≥ 0.9, (27)

where 〈·〉10mi
denotes the ith average over a 10-minute period

for BA area m of ACE, T2 is the set of time instants for which

we have measurements for the 10-minute averages of ACEm

over a one month period, |T2| is the cardinality of the set T2,

and L10m a constant specific for each BA area m.

The BAAL criterion, which will replace the CPS2 crite-

rion [5], may be formulated as follows

BAALlow(fm) = −bm
(flow − fnom)

2

fm − fnom
, (28)

BAALhigh(fm) = −bm
(fhigh − fnom)

2

fm − fnom
. (29)

For each violation, the BAAL standard allows a BA area to

have its ACE outside the BAAL limits for a certain time, which

is 30 min.

B. Probabilistic Expression of Frequency Metrics

We use the framework developed in Section III to derive

probabilistic expressions for the three frequency performance

criteria given in (25)-(29). To this end, we express the ACE of

BA area m, ACEm, and the deviation of the area frequency

from the nominal value, ∆fm, as functions of the system states

Xt. We linearize (5) and (6) along the nominal trajectory, and

obtain

∆fm = Φ1mXt, (30)

ACEm = Φ2mXt. (31)

We wish to obtain the pdfs of ACEm and ∆fm. Since the

overall model given in (21) is driven by a Wiener process,

then the system state, Xt, follows a Gaussian distribution [27].

Thus, only the first and second moments are needed to obtain

the pdf of Xt. Both ACEm and ∆fm are linear combinations

of Xt, so they also follow a Gaussian distribution. We use (24)

to obtain the first and second moments of ACEm and ∆fm
by appropriately selecting the function ψ(·). For example,

with ψ(Xt) = Φ2mXt we may obtain the first moment of

ACEm(t), which is zero, since ψ(Xt) is time invariant and

linear with respect to Xt. For ψ(Xt) = Φ2mXtX
T
t Φ

T
2m , we

may obtain the second moment of ACEm(t), which we denote

by σ2
ACE . Then, ACEm follows a Gaussian distribution with

zero mean and variance σ2
ACE .

We note that the variables included in (25)-(27) are time

averages of either ACEm or ∆fm, so we need to determine

the pdfs of these variables, given that we have the pdfs of

ACEm and ∆fm. We show the derivation for Xt, since

both ACEm and ∆fm are linear combinations of Xt. The

vector Xt follows a Gaussian distribution with zero mean

and covariance matrix ΣX , which can be obtained using

Dynkin’s formula, as given in (24). Consider a time interval

[ts, te], we choose a window of length L and define the

subinterval T i = [ts+(i−1)L, ts+ iL], i = 1, . . . , N , where

N = te−ts
L

. For each subinterval, we define the measurement

subset M i = {tj, j = 1, . . . , J}. For the 1-minute average,

with L = 1 min, we have the average 〈X〉1i , and for the 10-

minute average, with L = 10 min, we have 〈X〉10i . We now

have that
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Fig. 1: One-line diagram of the 3-machine 9-bus power system.

〈X〉Li
=

1

J

∑

tj∈M i

X(tj), i = 1, . . . , N. (32)

In order to determine the pdf of the L-minute averages

of Xt, we use the central limit theorem for dependent vari-

ables [28]. The cardinality J of each M i is sufficiently large

so as to allow the application of the central limit theorem.

Thus, we have that 〈X〉Li
follows a Gaussian distribution

with zero mean and covariance matrix ΣL, the elements of

which consist of combinations of the elements of the matrices

E[X(ti)X
T (ti)] and E[X(ti)X

T (tj)], for i, j = 1, . . . , J .

We know that the value of E[X(ti)X
T (ti)] is ΣX ; then,

in order to determine the values of E[X(ti)X
T (tj)], for

i, j = 1, . . . , J with i 6= j, we use the fact that Xt is

a wide-sense stationary process (see, e.g., [29]). Therefore,

we have that E[X(ti)X
T (tj)] = E[X(ti − tj)X

T (ti − tj)],
and we use the fact that E[X(ti − tj)X

T (ti − tj)] =
eA(tj−ti)E[X(ti)X

T (ti)] = eA(tj−ti)ΣX , for ti < tj [27].

We use this procedure and obtain the pdfs of 〈ACE〉1mi
,

〈∆f〉1mi
, and 〈ACE〉10mi

. For example, 〈ACE〉1mi
follows

a Gaussian distribution with zero mean and variance σ2
〈ACE〉1

,

which is equal to Φ2mΣ1Φ
T
2m (Σ1 is the covariance matrix of

〈X〉1i).

Furthermore, we assume that the elements of the discrete-

time stochastic process {〈X〉Li
, i = 1, . . . , N} are indepen-

dent and identically distributed random variables, thus ergodic.

So its statistical properties (such as mean and variance) may

be deduced from a single, sufficiently long realization. Thus,

CPS1 is equivalent to

Φ2mE[〈X〉1〈X〉T1 ]Φ
T
1m < −bmǫ

2
1m , (33)

where E[〈X〉1〈X〉T1 ] = Σ1. As for CPS2 we define the

variable

Υi =

{

1, |〈ACE〉10mi
| < L10m

0, otherwise
, for i = 1, . . . , N,

(34)

So CPS2 may be written as: E[Υi] = Pr{|〈ACE〉10mi
| <

L10m} = Pr{〈ACE〉10mi
< L10m} − Pr{〈ACE〉10mi

<

−L10m} ≥ 0.9, which may be easily calculated since

〈ACE〉10mi
follows a Gaussian distribution with known mean

and variance.

From (28)-(29), we may rewrite the BAAL criterion as

−bm(flow − fnom)
2 ≤

∑
t∈T3

ACEm(t)∆fm(t)

|T3|
≤ −bm(fhigh −

fnom)
2, where T3 is the set of time instants for which we

have measurements for ACEm(t) and ∆fm(t) for a 30-minute

period; however, we may express ACEm(t) and ∆fm(t) as a

function of Xt. We assume that the statistical properties (such

as its mean and variance) of the process may be deduced

from a single, sufficiently long realization. So equivalently,

we have that

∑
t∈T3

ACEm(t)∆fm(t)

|T3|
= E[ACEm(t)∆fm(t)] =

Φ2mE[XtX
T
t ]Φ

T
1m . Then, the BAAL may be expressed as

b2m(flow − fnom)
2 ≤ Φ2mE[XtX

T
t ]Φ

T
1m (35)

≤ b2m(fhigh − fnom)
2.

V. NUMERICAL EXAMPLES

We present several numerical examples to demonstrate

the capabilities of the proposed framework. We use a small

system, the WECC three-machine nine-bus system, to provide

insights into the results presented. We demonstrate that the

pdfs calculated by using Dynkin’s formula as well as the pdfs

for the 1-minute and for 10-minute average of the system vari-

ables match the results we obtain via Monte Carlo simulations

of the DAE system given in (1)-(2), (4), (8)-(10). Additionally,

the probabilistic expression of the frequency performance

criteria provides a good approximation of the actual frequency

performance metrics. Furthermore, we include a larger system,

with 48 machines and 140 buses, to illustrate the scalability

of the proposed method.

A. Three-Machine Nine-Bus Power System

Consider the WECC three-machine nine-bus power system

model, which is depicted in Fig. 1; this model contains three

synchronous generating units in buses 1, 2 and 3, and load

in buses 5, 6 and 8. Additionally, we introduce wind-based

generation at bus 6. Unless otherwise noted, all quantities in
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(a) Mean value of ACE.
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(b) Second moment of ACE.

Fig. 2: First and second moment of ACE.
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Fig. 3: Cumulative distribution function of ACE(t),
P (ACE(t) ≤ x) ≡ FACE(t)(x).

this section are expressed in per unit (pu) with respect to 100
MVA as base power. The machine, network and load parameter

values may be found in [15, pp. 170-172]. We consider one

BA area for the system and choose the frequency bias factor

to be b = −1.152 pu/Hz. The AGC participation factors are

κ1 = 0.28, κ2 = 0.47 and κ3 = 0.25.

We solve the power flow equations and the machine al-

gebraic equations such that the wind generation in bus 6 is

PW6
= 0.298, the load in bus 5 is PL5

+jQL5
= 1.25+j0.50,

in bus 6 is PL6
+ jQL6

= 0.90 + j0.30 and in bus 8 is

PL8
+ jQL8

= 1.50+ j0.35. We consider the generator in bus

1 as the slack bus. We linearize the DAE system around the

nominal point determined by solving the algebraic equations.

Noise in communication channels is modeled as a Gaussian

distribution with zero mean and variance 0.01. The load

variation is given by

d∆PLi
= −2 · 10−6∆PLi

dt (36)

+5 · 10−3dW 2
t , for i = 5, 6, 8.

The variation of the wind generation output in bus 6 is ∆PW6

and its evolution is described by

∆ṖW6
= −0.1585∆PW6

+ 0.0118∆v6, (37)

where the variation in the wind speed ∆v6 is described by

the stochastic process d∆v6 = −2.65 · 10−4∆v6dt + 1.62 ·
10−2dW 3

t . We use the Euler-Maruyama method to obtain

paths of the stochastic differential equations (see, e.g., [30]).

1) SDE infinitesimal generator: We use Dynkin’s formula

as given in (24), with ψ(Xt) = Φ2Xt and ψ(Xt) =
Φ2XtX

T
t Φ

T
2 , to calculate the mean value and the second

moment of ACE, respectively; the results are depicted in

Fig. 2. The results obtained with the proposed framework are

superimposed to those calculated by averaging the results of

1000 Monte Carlo simulations at each time instant. The results

ξ
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Fig. 4: Deepening wind penetration.
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Fig. 5: Correlation of ACE.

provided by the analytical method, i.e., Dynkin’s formula,

provide a good approximation compared to those obtained by

averaging the results of repeated simulations. We notice that in

this case, the AGC system meets its objective, since the mean

value of ACE, E[ACE], converges to zero and its second

uncentered moment, E[ACE2], converges to 4.211 · 10−4.

Since ACE follows a Gaussian distribution, and we know its

first and second moments, we may determine its pdf.

We use the data from repetitive Monte Carlo simulations,

to derive an empirical cumulative distribution function (cdf)

of ACE(t) and compare it with the cdf from the analytical

approach; the results are depicted in Fig. 3. We notice that

the analytical method provides a larger standard deviation

for ACE than that obtained via Monte Carlo simulations.

In the proposed framework, the linearized model, given in

(11)-(16), is used, whereas, in the Monte Carlo simulations

the DAE model, given in (1)-(2), (4), (8)-(10), is used; that

is the reason for the discrepancy in the results, as shown

in Fig. 3. As a result, the effects of uncertainty sources

on the system are magnified with the analytical approach,

which may lead to more conservative actions from the system

operators. However, the analytical method provides a good

approximation, and results in faster computations.

We now investigate the effects on ACE of deepening

renewable-based generation, as described in (22). More specif-

ically, we increase the wind penetration from the initial value

PW6
= 0.298 to P ′

W6
= ξPW6

, where the parameter ξ belongs

in [1, 6] and is modified in increments of 0.5. We observe

that the second moment of ACE is higher as we increase the

wind penetration levels, as shown in Fig. 4; renewable-based

generation introduces variability and uncertainty to the system,

which is reflected in ACE.

2) Frequency performance metrics: We have shown that

the proposed framework provides a good approximation of

the system behavior, as validated via extensive Monte Carlo
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Fig. 6: Cumulative distribution function of 〈ACE(t)〉1,

P (〈ACE(t)〉1 ≤ x) ≡ F〈ACE(t)〉1(x).
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Fig. 7: Cumulative distribution function of 〈ACE(t)〉10,

P (〈ACE(t)〉10 ≤ x) ≡ F〈ACE(t)〉10(x).

simulations of the non-linear system dynamics. In order to

calculate the values for the frequency performance criteria,

we need to determine the pdfs of the 1-minute and 10-minute

averages of the system variables.

In this case study, we consider only one BA area, thus

the frequency deviation and ACE are proportional to each

other, i.e., ACE = −b∆f ; therefore, the vectors Φ1 and

Φ2, are related as follows: Φ1 = 1
−b

Φ2. The frequency

criteria may be expressed as a function of the characteristics

of ACE, 1-minute average of ACE, denoted by 〈ACE〉1,

and 10-minute average of ACE, denoted by 〈ACE〉10,

if we substitute Φ1 in the equations of Section IV with

Φ1 = 1
−b

Φ2. We first need to calculate the correlation of

ACE(ti) and ACE(tj) for some i, j with tj > ti, i.e.,

E[ACE(ti)ACE(tj)] = Φ2E[XtiX
T
ti
]eA(tj−ti)ΦT

2 . We depict

the correlation for ACE(t0 = 0) with ACE(t), t > 0
in Fig. 5. We notice that the correlation of ACE(t1) and

ACE(tk) drops significantly for |t1 − tk| > 300s. The

negative correlation between the random variables is due to

the eigenvectors of matrix A, which is negative definite; thus,

the correlation values converge to zero. We use the central limit

theorem for dependent variables and find that 〈ACE(t)〉1, the

1-minute average of ACE, follows a Gaussian distribution with

zero mean and variance 8.27 ·10−6, and that 〈ACE(t)〉10, the

10-minute average of ACE, follows a Gaussian distribution

with zero mean and variance 1.15 · 10−6.

We use the data from Monte Carlo simulations, calculate the

1-minute and 10-minute averages, and derive empirical cdfs of

〈ACE(t)〉1 and 〈ACE(t)〉10, which we compare to the cdfs

of the Gaussian distributions from the analytical approach, as

shown in Figs. 6 and 7. As in the case for ACE, the standard

deviations for the 1-minute and 10-minute averages are higher

with the analytical approach. This is due to the fact that the

error introduced in ACE(t) is propagated to 〈ACE(t)〉1 and

〈ACE(t)〉10.
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×10

-3

1.4 1.5 1.6 1.7 1.8 1.9 2

C
P
S
2

0.6

0.7

0.8

0.9

1

1.1
Monte Carlo
Analytical

Fig. 8: Sensitivity of CPS2 with respect to changes in L10.
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Fig. 9: BAAL criterion:

∑
t∈T3

ACEm(t)∆fm(t)

|T3|
.

Based on the analysis in Section IV, we calculate the values

of the frequency performance criteria. CPS1 criterion is equal

to 1
−b

E[〈ACE〉21(t)] =
1

1.1528.27 · 10
−6 = 7.179 · 10−6. We

use Monte Carlo simulations and calculate CPS1 based on

(25); thus, we have that CPS1 is 6.799 · 10−6. As for CPS2,

we modify the value of L10, i.e., how restrictive CPS2 is,

and show the sensitivity of the proposed method with respect

to L10, as depicted in Fig. 8. We notice that the proposed

framework shows that CPS2 is violated, i.e., is less than 0.9,

in cases where Monte Carlo simulations indicated otherwise.

However, the values of L10 corresponding to such cases were

very small, i.e., CPS2 is very restrictive, and for larger values

of L10, which are more realistic values for this particular

system, the results from the analytical approach and the Monte

Carlo simulations are close and agree that no violations are

present. For the BAAL criterion, we need to calculate the

values of E[ACE∆f ]. We know that ACE = −b∆f , thus

E[ACE∆f ] = E[ACE2]
−b

. We compare the value obtained from

the analytical method with the results from the Monte Carlo

simulations for

∑
t∈T3

ACEm(t)∆fm(t)

|T3|
, where T3 corresponds

to a 30-minute period. We depict the results in Fig. 9.

The probabilistic expressions of the frequency performance

criteria provide a good approximation to those calculated

via simulations of the DAE model. The analytical method

magnifies the effects of the sources of uncertainty consid-

ered; however its advantage is computational efficiency, which

makes the introduced error acceptable. In order to quantify the

effects of uncertainty sources on the system performance based

on historical data we need to run simulations for an entire

year in the case of CPS1. In contrast, by using the proposed

framework and the probabilistic expression of the frequency

performance criteria, we only need to solve a system of ODEs.
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Fig. 10: Cumulative distribution function of ACE(t),
P (ACE(t) ≤ x) ≡ FACE(t)(x).
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B. 140-Bus System

Next, we demonstrate the scalability of the proposed

methodology for large power systems. In particular, we utilize

the IEEE 48-machine test system, which consists of 140 buses

and 233 lines [31]. To implement our analysis method, we

use the MATLAB-based Power Systems Toolbox (PST) [32],

and add the AGC system model described in (8)-(9) to it. We

use the proposed framework to calculate the values for the

frequency performance criteria and compare them with the

results obtained via Monte Carlo simulations.

We consider three sources of uncertainty, namely, load vari-

ation, renewable-based generation, and noise in communica-

tion channels. Load variation and renewable-based generation

are modeled as Wiener processes without scaling and drift, and

noise in communication channels as white noise. Wind-based

generation is placed at load bus 1. We consider the entire

system as one BA area, and we set the frequency bias factor

for the AGC system at −1 pu. The AGC participation factors

are set proportional to the inertia constants of the generators.

We obtain the linear model with the help of the PST, and

determine the matrices A and B in (21). We use Dynkin’s

formula to obtain the first and second moment of ACE

and approximate its cdf. In Fig. 10, we compare the cdf

obtained with Dynkin’s formula, with the empirical cdf of

ACE determined by numerous Monte Carlo simulations of

the DAE model. The value of CPS1 is 0.751 ·10−8 calculated

with the proposed framework and 1.711·10−8 with simulations

of the non-linear system, respectively. We notice that the

proposed framework provides a good approximation as also

established in the smaller test system.

VI. CONCLUDING REMARKS

In this paper, we developed a framework for studying

the impact on AGC system performance of uncertainty that

arises from load variations, renewable-based power generation

and noise in communication channels. Through the numerical

examples, we showed that Dynkin’s formula provides a good

approximation of the system actual state, as validated with

repetitive Monte Carlo simulations.

In order to find the limiting values of uncertainty that the

system may withstand and maintain the desired reliability

levels, we used the proposed framework to obtain probabilis-

tic expressions of the frequency performance criteria. These

expressions may be utilized to investigate the needs for new

designs in AGC systems due to the changes in the electric

grid.

There are natural extensions of the work presented here.

For instance, there are other communication problems, besides

noise, in the communication channels, such as communication

delay, bit error and communication interruption. In our future

studies, we plan on studying the impacts of the aforementioned

communication problems on AGC systems. In addition, we

will investigate the possibility of using the non-linear system to

propagate uncertainty from the input sources to system states,

in order to avoid the errors introduced due to the use of the

linear system. We will report on these developments in future

papers.

APPENDIX

The vectors for the uncertainty models in (3), (19), and (20),

the matrices for the SDE in (21) are defined as

̺1 = [̺11 , . . . , ̺1n ]
T , ̺2 = [̺21 , . . . , ̺2n ]

T ,

a = [a1, . . . , an]
T , b = [b1, . . . , bn]

T ,

ν1 = [ν11 , . . . , ν1n ]
T , ν2 = [ν21 , . . . , ν2n ]

T ,

A =













A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55













,

B =













B11 B12 B13

B21 B22 B23

B31 B32 B33

B41 B42 B43

B51 B52 B53













,

with

A11 = A1 +A2(C6C
−1
3 C2 − C5)

−1(C4 − C6C
−1
3 C1)

−A3{C
−1
3 C1

+ C−1
3 C2(C6C

−1
3 C2 − C5)

−1(C4 − C6C
−1
3 C1)},

A12 = B1B2,

A13 = A2(C6C
−1
3 C2 − C5)

−1D1

−A3C
−1
3 C2(C6C

−1
3 C2 − C5)

−1D1,

A14 = A2(C6C
−1
3 C2 − C5)

−1D3

−A3C
−1
3 C2(C6C

−1
3 C2 − C5)

−1D3,

A15 = 09I−1×n,

A21 = A4 −A6(C
−1
3 C2(C6C

−1
3 C2 − C5)

−1(C4 − C6C
−1
3 C1)

+ C−1
3 C1) +A5(C6C

−1
3 C2 − C5)

−1(C4 − C6C
−1
3 C1),

A22 = A7,

A23 = A5(C6C
−1
3 C2 − C5)

−1D1

−A6C
−1
3 C2(C6C

−1
3 C2 − C5)

−1D1,

A24 = A5(C6C
−1
3 C2 − C5)

−1D3

−A6C
−1
3 C2(C6C

−1
3 C2 − C5)

−1D3,

A25 = 0M×n,

A31 = 0n×9I−1, A32 = 0n×M , A33 = diag(ν1),

A34 = 0n×n, A35 = 0n×n, A41 = 0n×9I−1,

A42 = 0n×M , A43 = 0n×n, A44 = diag(̺1),

A45 = diag(̺2), A51 = 0n×9I−1, A52 = 0n×M ,

A53 = 0n×n, A54 = 0n×n, A55 = diag(a),

B11 = B12 = B13 = 09I−1×1, B21 = A8,

B22 = B23 = 0M×1, B31 = B33 = 0n×1, B23 = ν2,

B41 = B42 = B43 = 0n×1, B51 = B52 = 0n×1,

B53 = diag(b).
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