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Abstract 

The increase in the use of mobile devices has made them target for attackers, through the 

use of sophisticated malware. One of the most significant types of such malware is mobile 

botnets. Due to their continually evolving nature, botnets are difficult to tackle through 

signature and traditional anomaly based detection methods. Machine learning techniques have 

also been used for this purpose. However, the study of their effectiveness has shown 

methodological weaknesses that have prevented the emergence of conclusive and thorough 

evidence about their merit.  

To address this problem, in this thesis we propose a mobile botnet detection system, called 

MBotCS and report the outcomes of a comprehensive experimental study of mobile botnet 

detection using supervised machine learning techniques to analyse network traffic and system 

calls on Android mobile devices.  

The research covers a range of botnet detection scenarios that is wider from what explored 

so far, explores atomic and box learning algorithms, and investigates thoroughly the sensitivity 

of the algorithm performance on different factors (algorithms, features of network traffic, 

system call data aggregation periods, and botnets vs normal applications and so on). These 

experiments have been evaluated using real mobile device traffic, and system call captured 

from Android mobile devices, running normal apps and mobile botnets.  

The experiments study has several superiorities comparing with existing research. Firstly, 

experiments use not only atomic but also box ML classifiers. Secondly, a comprehensive set 

of Android mobile botnets, which had not been considered previously, without relying on any 

form of synthetic training data. Thirdly, experiments contain a wider set of detection scenarios 

including unknown botnets and normal applications. Finally, experiments include the statistical 

significance of differences in detection performance measures with respect to different factors. 

The study resulted in positive evidence about the effectiveness of the supervised learning 

approach, as a solution to the mobile botnet detection problem.   
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Chapter 1 Introduction 

1.1 Research background 

Botnets malware has become one of the most serious threats to networks which can be 

defined as “A network of remotely controlled systems used to coordinate attacks and distribute 

malware, spam, and phishing scams” [1]. Unlike traditional malware, botnets spread easily and 

have a wider range impact. Although there is significant research on detecting and defending 

botnets, most of the defence systems still stay at a primary stage. In 2007, experts give an 

estimation that approximately 100 to 150 million computers which comprise about 16–25% of 

all current 600 million computers which connected to the Internet were already controlled by 

botnets [2, 3].  Since the appearance of botnets, there has been a continuous stream of news 

regarding damages caused by different botnets. An IRC-based botnet which infected 10,000 

machines to perform a DDOS attack and spread junk email was discovered in 2004 [4]. In June 

2008, the Shadow Server Foundation gave an estimation that the number of botnets had 

exceeded 450,000 machines [5]. In 2009, the Carbon Footprint of e-mail Spam report estimated 

that 62 trillion spam emails are sent globally every year, and the majority of these spam emails 

are sent via botnets [6]. Troj.MDK botnet malware on Android platform which was discovered 

in 2012 is estimated to have been hidden in more than 11,000 malicious apps and infected more 

than 1 million mobile devices in China [7]. In June 2013, Microsoft and the FBI launched a 

joint strike for breaking up the Citadel botnet which has stolen more than $500 million (£323 

million) from bank accounts and infected more than 5 million computers [8]. In 2016, DDoS 

attacks make their mark on all the digital internet threats around the world. ATLAS tracked 

nearly 124,000 DDoS attack events each week in 6 months from January 2015 to June 2016. 

Apart from the increment of frequency, the peak attack size also growth 73% compared with 

2015 from 354Gbps to 579Gbps [9]. The most five significant DDoS attacks make use of 
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Internet of Things(IoT) botnet and leverage insecure devices to conduct the attack [10]. Unlike 

other types of Botnet depend on computing devices such as computer and smartphone, IoT 

botnet can be largely made up of IoT devices such as digital cameras and digital video recorder 

(DVR) player [11]. Mirai Botnet is one of most famous IoT botnet with significate growth pace 

because the source code is published on Github [12]. According to the report of Level 3 Threat 

Research Labs, the Mirai bots has been reached to 493,000[13]. In October 2016, the  Dyn 

suffered a DDoS attack regarding as the most severe one in 2016 which performed by Mirai 

Botnet including approximately 100,000 bots. Packet flow reached to nearly 50 times higher 

than its normal volume during the attack and the attack peak size reach almost 1.2 Terabytes 

Per Second (Tbps). The attack leads to several high-profile websites suffered service 

interruptions and went offline [14, 15]. In November 2016, A botnet which consisted of at least 

24,000 bots located in more than 30 countries made a DDoS attack for at least 5 Russian major 

banks [16]. It is no doubt that botnets have become one of the most serious security problems 

to the Internet. 

With the popularisation of mobile phone and development of the wireless mobile internet, 

the mobile devices are becoming the target of the botnets. According to Cisco, 497 million new 

mobile devices and connections were sold in 2014 [17]. Another recent report has published 

that the global mobile devices and connections have grown to 8.0 billion in 2016, up from 7.6 

billion in 2015. It also forecasts that mobile-cellular subscriptions will grow to 11.6 billion by 

2021 [18]. Market reports also show that since 2012 Google’s Android operating system has 

overtaken other smartphone operating systems and is currently the market leading mobile OS 

and is expected to get more than 80% market share until 2019 [19]. Along with the growth in 

the use of mobile devices, there has also been a growing number of mobile malware systems, 

often in the form of mobile botnets. According to KASPERSKY [20], a mobile botnet is 

defined as a collection of applications, which are connected through a network and 

communicate with each other and a remote server (known as the “botmaster”) in order to 

perform orchestrated attacks (e.g., remotely executed commands, information stealing, SMS 

dispatching). Nowadays, the performance of the smartphone and tablet is similar to the PC. 

Along with the enormous potential benefits of the mobile network, many mobile botnets have 

appeared in the real network. The simplification of the mobile devices and the lack of the 
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network safety consciousness of most of the common users of such devices make botnet a 

serious problem. According to [20], 148,778 mobile malware applications had been detected 

at the end of 2013, and nearly 62% of them were part of mobile botnets. In 2016, the number 

of malicious installation packages grew considerably, amounting to more than 8.5 million 

which is three times more than 2015 [21]. The first mobile botnet was an iPhone botnet, known 

as iKee.B [22], which was traced back in 2009. iKee.B was not a particularly dangerous botnet 

because iOS is a closed system. Unlike it, Android, which is an open system, has become a 

major target for mobile botnet creators. Geinimi was the first Android botnet that was 

discovered in 2010 [23]. Other Android botnets include Android.Troj.Mdk, i.e., a Trojan found 

in more than 7,000 apps that have infected more than 1m mobile users in China, and 

NotCompatible.C, i.e., a Trojan targeting protected enterprise networks [24]. Research on 

mobile botnets (see [25] for detailed surveys) has looked at device specific botnet detection 

[26] as well as mobile botnet implementation principles and architectures for creating mobile 

botnets [27, 28]. 

The current situation of botnets research is still staying the initial stage. Although a lot of 

the solution has proposed by some researchers, there is hardly any mature botnets detection 

and defence system which is used in the real environment. Most of the methods for confronting 

with botnets malware still rely on the signature-based antimalware software. There is a 

bottleneck for the conventional platform botnets detection which is the evaluation measurement 

according to analyses most of the detection techniques. Because of the bottleneck, it is hard to 

evaluate the various kinds of detection technologies. In our research, we will give an as far as 

possible objective evaluation for several conventional detection approaches based on several 

criteria. 

Research on the detection of mobile botnets has intensified over the last few years. The 

techniques developed for this purpose range from static analysis of application code [26, 29, 

30], analysis of application fingerprints [31],  signature-based detection [32-34], anomaly 

based detection [35-38] and detection based on machine learning techniques [39-41]. In 

addition to the detection techniques, some research focuses on mobile botnet implementation 

principles [25, 42, 43] and new mobile botnets architectures [22, 27, 28, 44-59]. The purpose 

of these research is to make a prediction of new types of mobile botnets that may occur in 
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future. Currently, mobile users can only use software that detects the malware based on 

signatures of known mobile botnets. However, as in botnets, the botmaster can update the 

malicious code of the bots continuously. So more dynamic detection approaches that are 

capable of detecting unknown future mobile botnets are required. 

Through a literature review, we find several surveys and reports are giving an overview of 

botnets in different aspects. However, most of them just concentrate on the conventional 

platforms such as traditional computers, routers, switches and so on. Because of large scale 

compromise of the mobile botnet and the increase of mobile botnet research, we will give a 

more detailed state of the art of mobile botnets. 

McCarty [60] provide a brief description of botnet including the structure and principal 

illegitimate purposes based on Honeynet Project which can be regarded as the earlier research. 

Puri [61] presented a comprehensive overview of the botnet based on IRC including the 

mechanism, attack, target and the possible defending methods of an IRC-based botnet. The 

survey even gives a list of some known bots (The link in the list is invalid now). Rajab et al. 

[62] deploy multifaceted distributed data collection infrastructure which can capture the 

activities of botnets to demonstrate the botnets phenomenon. Through their measurement 

methodology, they perform a comprehensive measurement analysis that reflects the 

prevalence, spreading and growth patterns, structure, lifetime and efficient size of the botnets. 

The survey in [63] offers a brief overview of botnet based on the existing research on every 

aspect. It not only makes an anatomy of Bot but also discusses the techniques of botnet 

detection and defence. It divides the detection into two main approaches, one is Honeynet based 

method, and the other relies on passive traffic monitoring. This survey also found the rare 

research on the defence technologies against botnet which only concentrate on the spam 

detection and enterprise solutions. Liu et al. [64] make a summary for the most of the direction 

of botnet research. They discuss primary concepts of botnet including structure, exploitation, 

lifecycle and topology and introduce several relevant attacks, detection, tracing, and 

countermeasures. The short survey [65] plain introduction of the related research directions, 

addressing infection mechanisms, malicious behaviour, command and control models, 

communication protocols, botnets detection and defence against botnets. They also present a 



1.1 Research background 5

 

simple case study of early IRC-based botnet worm – SpyBot [66]. Shin and Im [67] present a 

description of botnet basic knowledge and botnet defence method. The emphasis of this survey 

is topologies and consequences of botnets. Zhang et al. [68] introduce the principle and 

mechanism of fluxing in botnet which includes fast fluxing and domain fluxing. Moreover, 

they also make an investigation of research on fluxing botnet detection. Silva et al. [69] present 

a comprehensive review that broadly discusses the botnet problem. The survey gives a 

presentation of a comprehensive tutorial-like study addressing the botnet problem in general 

firstly and lists the timeline of some important bots from 1993 to 2011 and their main features. 

It also makes a summary of detection and defence techniques which contain nearly all the 

existing research. 

Further research on the subject includes works which provide taxonomy according to a 

particular aspect of botnets. Dagon et al. [70] present a taxonomy of botnets based on a 

topological structure which divides into three categories(centralised, peer-to-peer, and 

random). They even measure their utilisation by using four metrics: effectiveness, efficiency, 

robustness and average available bandwidth. Zeidanloo et al. [71] provides a classification of 

botnets C&C channels which are divided into three models (centralised, decentralised and 

hybrid) and evaluate well-known protocols (e.g. IRC, HTTP, and P2P) which are being used 

in each of them. They also give a taxonomy of botnet detection techniques which classify into 

two approaches [72]: Honeynet and IDS(Intrusion Detection System). Czosseck et al. [73] 

propose a comparatively overall botnet taxonomy based on usage which consists of four 

features: users of botnets, motivations of botnet usage, functionality applied and way of 

infection. The literature even examines some instances according to their taxonomy. Hachem 

et al. [74][51] present a classification that reflects the life cycle and current resilience 

techniques of botnets, distinguishing the propagation, the injection, the control and the attack 

phases. 

Although the challenges of botnet detection are discussed as the last part of majority surveys, 

there is also some literature which pays attention to the challenges separately. Rajab et al. [52] 

draw a conclusion that it remains some challenges to estimate the size of botnet through 

presenting different metrics for counting botnet membership and show different size estimates 

for a large number of botnets they traced. Aviv and Haeberlen [53] outline several current 
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challenges when evaluating botnet detection systems. The survey analyses the evaluation 

methods for existing botnet detection system and finds that it is hard to find appropriate test 

traces for botnet detection system because of some issue such as realism, sensitive information 

and so on. Brezo et al. [54] sets out the main lines of current research in botnet detection and 

presents the limitation of the existing botnet detection. The recent literature [55] shed light on 

some of the challenges for establishing botnet Emulation systems. Moreover, they discuss 

various techniques used to address or alleviate these problems. 

Through a large number of literature reviews, we divided these researches of botnet into 

four main categories based on the research direction. 

 Botnet survey and mechanism research 

 Botnet detection on conventional platform  

 Design and detection of mobile botnet and malware 

In our research, we will make an in-depth discussion about state of the art for the botnet 

according to these research directions. 

1.2 Motivation 

In this research, the main target is to design a high-efficiency detection system to detect the 

attack of known and unknown mobile botnet. Some reasons are listed as follows: 

 Mobile botnets have posed a severe threat to the property and individual privacy. With 

the increasing of the number and the performance of mobile devices, more and more 

important transactions are allocated to the mobile devices. Such as almost all bank 

transactions can be finished by the mobile application and most of the personal 

information can be stored on the mobile device even for the business and government 

confidential information. In contract, the measure of protection and the safety 

awareness for mobile devices are still weak at present. Especially in the developing 

country and regions, mobile device users prefer to install applications obtained from 

non-trustworthy sources to save money, which is likely to carry malicious codes that 

can infect the device. Therefore, hackers try to infect a large number of mobile devices 
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and establish botnet that will be capable of performing attacks, causing severe damage 

and loss [7, 75]. 

 Limited measurement to detect unknown mobile botnets. Currently, the only 

protective measures for mobile devices is anti-malware software. Most of the anti-

malware software is signature-based detection technique which can only detect the 

known botnet malware. However, the botnet malware is frequently upgraded, and new 

botnet malware appears continuously. Therefore, the detection of unknown botnet 

malware is an important issue that needs to be solved. 

 The use of ML techniques for botnet detection has been applied before. However, 

existing research has not: (a) provided a comprehensive coverage of mobile botnets 

and range of system calls, (b) considered systematically different detection scenarios 

arising from combination of known and unknown normal applications and botnets, 

and (c) conducted any systematic analysis of the sensitivity of the performance of ML 

classifiers against some key dimensions for the practical applications of detection as 

for example the statistical significance of performance differences observed across 

different ML classifiers and types of botnets. Also, existing research has been 

restricted by arbitrary and not experimentally tested assumptions about the range of 

system calls that should be taken into account in botnet detection. 

1.3 Overview of approach 

In this thesis, we propose a proactive approach for detecting unknown mobile botnets that 

we have implemented for Android devices. Our approach is based on the analysis of traffic 

data and system call of Android mobile devices using machine learning (ML) techniques and 

can be realised through an architecture involving traffic monitors and controllers installed on 

them. 

In the first stage, we perform the classification experiments on the server side. First of all, a 

large amount of data including network traffic and system call captured from mobile botnet 

malware applications and normal applications. Then some features are generated for machine 

learning classification according to the analysis of the captured network traffic data. After 
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labelling data, we choose some atomic machine learning algorithms and develop some 

aggregate machine learning algorithms to classify the data based on the selected features.  

In the second stage, we focus on the implementation of the mobile botnet detection system 

on the client side which is the Android platform. Firstly, we implement the network traffic and 

system call capture component which can monitor all the traffic pass through the mobile device 

and system call invoked by specified applications. The component can also pre-process these 

data to a standard format for the machine learning classifiers. Then a machine learning analyser 

is deployed to classify the traffic data by using the training dataset that generated at the first 

stage. At last the detection system shows the warning for the suspicious traffic.  

The experimental study that we report in this thesis has been aimed to overcome the above 

limitations and investigate a number of additional factors, notably: (a) the merit of aggregate 

ML classifiers, (b) the sensitivity of the detection capability of ML detectors on different types 

of botnet families, and (c) the actual cost of using ML detectors on mobile devices in terms of 

execution efficiency and battery consumption. Furthermore, our study has been based on a 

mobile botnet detection system that we implemented and deployed on a mobile device. 

1.4 Research hypothesis and objectives 

The research objectives of this thesis have been as follows: 

 Objective 1: To undertake and produce a comprehensive survey of the botnet and 

mobile botnet research. 

 Objective 2: To design a botnet detection system that can operate on mobile devices, 

to detect unknown mobile botnet with network traffic and system call based on the 

use of machine learning techniques. 

 Objective 3: To implement the new mobile botnet detection system on Android 

devices, addressing the open issues identified in Section 1.2 

 Objective 4: To provide an experimental evaluation of the approach. 

To achieve our research target, some of the research hypotheses are presented as follows: 
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 Research Hypotheses I: It will be possible to detect mobile botnets using machine 

learning with the feature generated by the captured network traffic of the botnet and 

normal applications on Android devices. Because there are existing several 

researches about using machine learning with network traffic to detect malware on 

the desktop. 

 Research Hypotheses II: It will be possible to detect mobile botnets using machine 

learning with the feature generated by the invoked system call of the botnet and 

normal applications on Android devices. Because there are existing several 

researches about using machine learning with Linux system call to detect malware 

on the desktop. 

 Research Hypotheses III: It will be possible to detect mobile botnets using machine 

learning method with the feature of the frequency of system calls in the different 

time interval. Because there are existing several researches about using pattern of 

Linux system call to detect malware on the desktop. 

 Research Hypotheses IV: Using aggregated machine learning algorithm to detect 

mobile botnets will improve detection accuracy over competing for the atomic 

algorithm. Because there are existing several scenarios for using aggregated machine 

learning algorithms to improve the performance. 

 Research Hypotheses V: The mobile botnet detector utilising the ML approach can 

be built for and deployed on a mobile phone to detect botnets without depleting the 

energy of it and without affecting the performance of other mobile applications 

(benign) on the phone. Because the performance of the mobile device is increased 

rapidly in recent several years and is close to the desktop. 

1.5 Contribution 

For our research, we can summarise our contributions on mobile botnet detection as follows: 

 We present the results of an experimental study on the use of ML algorithms for the 

detection of mobile botnets operating on Android devices, based on the network 

traffic data captured on the mobile devices. Our experiments have shown that 
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algorithm J48 and Box-Half+ have the best performance distinguish the botnet and 

normal by using the network traffic data. 

 We present the results of an experimental study on the use of ML algorithms for the 

detection of mobile botnets operating on Android devices, based on the analysis of 

system (i.e., Android OS) calls, whose aim has been to address the above limitations. 

This experimental study not only atomic but also box ML classifiers using 

supervised learning. The performance of ML classifiers a wider set of detection 

scenarios than existing work, namely detection of known botnets and known normal 

applications (KBKN scenario), unknown botnets and known normal applications 

(UBKN scenario), and unknown botnets and normal applications (UNUB scenario). 

A comprehensive set of Android mobile botnets, which had not been considered 

previously, without relying on any form of synthetic training data. The statistical 

significance of differences in detection performance measures with respect to ML 

algorithms, system call aggregation periods, normal and botnet applications, and 

different types of botnet families. We have also implemented botnet detection 

system running on the mobile device by using the classifier trained in previous 

experiments and evaluated the effect of our approach with respect to its effect on the 

overall performance and battery consumption of mobile devices. The system has a 

low energy effect on the battery consumption of the device with only 0.5% of the 

total battery during the period of the experiment. Moreover, the J48 algorithm has 

fast average execution time with only 1.216 seconds. 

 We proposed and developed a network-based mobile botnet detection system named 

MBotCS. The design and implementation of every component in the system were 

described in detail. Meanwhile, we also provided several solutions for solving the 

security issue of the intercomponent communication and the privacy of the 

application which is deployed on the end client. 

1.6 Thesis outline 

The rest of this thesis is organised as follows. 
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Chapter 2 reviews recent studies about the botnet detection including the background 

knowledge, conventional botnet, the anomaly detection techniques and machine learning. 

Mobile botnet researches are also reviewed at last 

Chapter 3 present the architecture of MBotCS and solutions for security issues.  

Chapter 4 presents the design of our experiments and the analysis of the results obtained 

from them. Moreover, the chapter reports on the results of the experiments that we conducted 

to evaluate the merit of different ML algorithms for the botnet detection by mining system calls 

captured on Android OS. 

Finally, Chapter 5 reviews the objectives and outlines conclusions and plans for future work.
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Chapter 2 Literature Review 

2.1 Background of botnet 

2.1.1 Definition 

According to [76], botnets is defined as “A collection of Internet-connected programs 

communicating with other similar programs to perform tasks”. It divides botnets into 

legal botnets and illegal botnets. The botnets were derived from IRC in 1993, and the 

early bots can perform much beneficial and even vital functions for managing the IRC 

automatically. Unfortunately, more and more botnets have been developed for malicious 

purposes. Our research focuses on the illegal botnets. 

Except the [76], there are many papers or articles give a definition for illegal botnets. 

The report [1] describe botnets as “A network of remotely controlled systems used to 

coordinate attacks and distribute malware, spam, and phishing scams”. The report [77] 

define botnets as “A networks of Internet-connected end-user computing devices infected 

with bot malware, which is remotely controlled by third parties for nefarious purposes”. 

The paper [78] regards botnets as “A collections of computers infected with malicious 

code that can be controlled remotely through a command and control infrastructure”. The 

paper [79] define botnets as “A network of compromised computers that are remotely 

controlled by malicious agents”. The report [80] define botnets as “A group of malware 
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infected computers also called “zombies” or bots that can be used remotely to carry out 

attacks against other computer systems”.  

According to these definitions of botnets, the similarity of different description is that 

botnets consist of three key components including the compromised computers in the 

network, the attacker who control these computers and the remote control channel. 

Although the current botnet is more complex than the first known IRC botnet-Eggdrop, 

the basic components of botnets never change. In our context of work, the Botnet can be 

defined as collections of computers infected with malicious code (Bots) that can be 

controlled remotely by the attacker (Botmaster) through a command and control 

infrastructure (C&C). The following terms to describe the three basic components of a 

botnet.   

• Bots: The definition of a bot varies within the literature. Some researchers regard 

the devices where malicious programs run as bots (the term “bot” is derived from “robot”) 

[61, 62, 68, 81]. Others regard the malicious programs themselves as bots [63, 69, 76, 

82]. Regardless of such differences, however, bots can be defined as the computational 

entities of the botnet that have malicious behaviour causing some harm and which exhibit 

this behaviour under control by the owner of the botnet. 

• Botmaster: Botmaster is usually defined as the human operator of botnets which 

can control the bots to execute commands [28, 62]. The extra responsibilities include 

keeping the bot online, maintaining the errors in bots and updating the malicious code for 

new features [69]. 

• Command and Control (C&C): C&C signifies the commands that the botmaster 

sends to bots to instruct them to perform malicious tasks. C&C may be transmitted using 

different network communication protocols such as IRC [83], HTTP [84] and SMS [85] 

and so on. 
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2.1.2 Taxonomy 

Botnets can be classified according to different criteria. Much literature tries to 

summarise their taxonomy. The literature [61, 86] use the set of commands, the topology 

of C&C, the propagation mechanism, and the exploitation strategy utilised by the attacker 

to classify the botnet. The literature [87] made a contribution to botnet taxonomy by 

listing three topologies of Command and Control Models(centralised, peer-to-peer, and 

random). The survey [69] further generalise C&C architecture into four types including 

Centralized C&C, Decentralized C&C, Hybrid model C&C and Random model C&C 

which is considered relatively integrated taxonomy for C&C. The literature [74] give a 

fine-grained taxonomy based on the different phases of the botnet lifecycle. It divided the 

C&C into four dimensions including Model &Topology, Application &Protocol, 

Communication initiation and Communication direction and gave a taxonomy based on 

every dimension.  

Even though the current literature has contained nearly all possible taxonomy of botnet, 

there is few papers try to combine these and give a comprehensive taxonomy. We just list 

the criteria and the taxonomy in existing literature and provide a description and 

explanation in detail. 

2.1.2.1 Communication structure of botnet 

This criterion is concerned with the topology of the command & communications 

within a botnet. According to it, botnets can be distinguished into a Centralised Model 

botnet, Decentralised Model botnet, Hybrid Model botnet [88] and Random Model botnet 

[69] based on the topology of botnet [72, 89]. We also present the four type of 

communication structure in Figure 2-1.
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Figure 2-1 - Four types of communication structure of botnet [69]
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 Centralised Model botnet: The centralised model is the older type of topology 

which has one central point being responsible for exchanging commands and data 

between the botmaster and bots.  

 Decentralised Model botnet: In the decentralised model botnet, there is no 

centralised point for communication, and each Bot makes some connections with 

the other bots so that the botmaster has multiple accesses for bots.  

 Hybrid Model botnet: The hybrid model divides the bots into servant bots and 

client bots which construct local centralised and global decentralised structure [88]. 

The servant bots group contains bots that have static, non-private IP addresses and 

are accessible from the global Internet. Moreover, the client bots group contains 

the bots with dynamically allocated IP addresses, private IP addresses and behind 

firewalls disconnected from the global Internet. The client bots cannot accept 

incoming connections. 

 Random Model botnet: This model is first introduced by Cooke et al. [87] as the 

“botnet model of tomorrow”. The connection between botmaster and bots in this 

communication structure is not fixed. So if the controller of the botnet wants to 

perform an attack, the botmaster operates by scanning the Internet randomly and 

sending a command to every host in the network. Once botmaster receives the 

specify reply, it means that a bot is found. The design of such a system would be 

relatively simple, and the detection of a single bot would never compromise the 

full botnet. 

2.1.2.2 Communication protocol 

This criterion is concerned with the communication protocol which is used in the 

command&control between botmaster and bots [63, 65]. In most of the literature, botnets 

are assumed to communicate through just three protocols, namely IRC, HTTP and P2P. 
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However, additional communication protocols have also been used in transmitting 

command&control in botnets. So botnets can be distinguished into IRC Protocol, HTTP 

Protocol, P2P Protocol, SMS Protocol and Push notification services. 

 IRC protocol: This is the most common and oldest protocol used by botmaster to 

communicate with their bots. The IRC protocol is mainly used to support simple 

text–based chatting environments and has been designed to support not only one-

to-many conversations but also one-to-one conversations. This feature of IRC 

allows botmaster to deploy command&control simply. However, with the 

enhancement of network security awareness, more and more businesses or 

individuals start to greater use of network firewall and anti-malware software. 

Default TCP service port for IRC is 6667, and it can be easily blocked and filtered 

by security software or device. So IRC botnets are dying off [90].  

 HTTP protocol: The use of HTTP as a botnet C&C communication protocol has 

increased in recent years. HTTP has the advantage of being the primary protocol 

for web browsing, which means that botnet traffic may be harder to detect and 

block. Hence, with the use of the HTTP protocol, which is the most popular 

Internet traffic, botnet usually bypass security devices. Such as Andbot [28] can 

bypass the warning of traffic monitoring software to access background Internet. 

 P2P protocol: the P2P network is a distributed and decentralised network 

architecture.The individual nodes in the network act as both suppliers and 

consumers of resources. Recently, more advanced botnets have used P2P protocols 

for their communications. The main advantage of P2P protocols is that they can 

avoid single-failure of centralised botnets [91]. 

 SMS protocol: The SMS protocols is one of the ideal C&C protocol for 

communication in mobile botnets. It is because SMS is supported nearly by all the 

mobile phones and is quite simple and reliable [49]. 
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 Push notification services: This protocol establishes a style of Internet-based 

communication where the request for a given transaction is initiated by a publisher 

or a central server [92]. Moreover, the clients are designed to receive the message 

passively. It is contrasted with pull notification service and the clients initiate the 

request for transmission of information from the server. This technology has been 

used in different smartphones platform widely, such as Apple’s Push Notification 

Service (APNS) [93] for iOS, Blackberry’s Push Service (BPS) [94], Google 

Cloud Messaging (GCM) [95] service for Android, Microsoft’s Push Notification 

Service (MPNS) [96] for Windows Mobile Phone, and Nokia’s Notifications API 

(NNA) [97] for Symbian devices. Shuang et al. [49] proposed the use of this 

protocol for mobile botnets using C2DM [98] which is an Android push 

notification service. 

2.1.2.3 Infected target platform 

Mobile botnets have already received much attention as a branch of botnets because 

of the widespread use of smartphones in social, business, and military [69]. So we can 

divide the botnet into conventional platform botnet and mobile botnet. Moreover, we will 

discuss mobile botnet in Section 2.5 in detail. 

 

2.1.3 Lifecycle of botnet 

Most of the surveys of botnets have given a description of a life cycle of botnets [69, 

74, 81, 99]. Most phases in these life cycle models are common but there also some 

differences. However, within the ten years of botnet development history, the mechanism 

of current botnets has become more complex. So we want to divide the phases in the life 

cycle of botnet into two parts: basic phrases and enhance phrases. Moreover, we present 
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an adapted version of botnet life cycle in Figure 2-2 based on the literature [69, 74, 81, 

99]. 

Basic phrases are the phrases that must be set up by botnets for performing an attack 

to bots or other targets. Different names have identified such phases. For this survey, the 

basic phrases of the botnet lifecycle are the Infection phase, Connection phase, Control 

phase and Attack phase. These phases are shown as in Figure 2-2 with a solid block.  

Additional phases, which we call “enhance” phases, are phases which can be included 

optionally for increasing the performance of a botnet. These phases are the Second 

Injection, Propagation, Maintenance and Updating phase and are shown in Figure 2-2 

with dotted blocks. 

Firstly, botmaster should develop specific botnets malware programs to infect the hosts 

so that these hosts become bots (1: Infection phase). There are many approaches to infect 

the vulnerable hosts. Some botmasters inject the malware code into attractive software 

and publish them to wait for downloading and running. This method usually used in 

mobile botnet malware [58]. However, the majority of botnet infect vulnerable hosts 

actively through what we call “Second Infection phase” (2: Second infection phase). More 

specifically, during the initial infection phase, the botmaster just searches for some target 

hosts for known vulnerability and, if it identifies any, it infects them with a script, which, 

in the secondary infection phase, is executed by the infected hosts to fetch the actual 

botnet malware programs from the malware server [69, 81]. Because of the diversity of 

protocol in secondary infection, this type of infection is more difficult to detect.  

In addition to direct infection, botmasters may also take advantage of propagation 

mechanisms to expand the number of bots in botnets (3: Propagation phase). At this 

phase, once hosts are infected by botnet malware, they continue to try to spread the 
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malware thus saving the time and reducing the workload of botmaster in enlarging the 

botnet [46, 64]. 

Although there are different types of implementations for botnets, they all must realise 

the connection between bots and botmaster. It is designated as the Connection Phase in 

[81], or Rallying Phase in [100] (4: Connection phase). Once the connection is established 

between them, bots can get commands and updates from botmaster. Also, the botmaster 

can receive reports from bots through the connection channel (5: Control phase). When 

the botmaster wants to attack the infected bots, it sends commands to these bots 

performing the Attack phase (6: Attack phase). The last phase of the enhanced life cycle 

is the maintenance and updating phase. This phase is necessary if the botmaster wants to 

keep control of the infected bots with continuous system update for a long time. For 

example, they may need to upgrade the binary of botnets malware to evade constantly 

updated detection techniques and to change new, different C&C server for concealing 

themselves [81]. The connection and control phases in Botnet life cycle are unique to 

other malware, so our detection system focuses on these two phases.  

BotMaster

Bots

Zombie

TargetsOther Bots

3.Propagation phase

2.Second Infection phase

1.Infection phase 6.Attack phase

4.Connection phase

5.Control phase

7.Maintenance
and updating phase

 

Figure 2-2 - Adapted version of botnet lifecycle 
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2.1.4 Comparison different type of malware 

There are various types of malware that have different ways of propagating and 

infecting. Several of the more commonly known types of malware are worms, Trojans, 

bots and so on. We will compare these types of malware in this section. 

Worms: Worm has the ability to replicate functional copies of themselves to perform 

the similar type of damage. Meanwhile, worms are standalone software and do not require 

a host program or human help to propagate. The propagating methods include exploiting 

a vulnerability on the target system and using social engineering to trick users to execute 

them [101]. PrettyPark is one of typical worm which spread by email and tries to send 

itself to the email addresses in registered address book periodically [102]. 

Trojans: A trojan is one type of malware that looks legitimate. The main difference 

between Trojans and worm is that Trojan does not have replication ability generally. They 

usually spread through user interaction such as opening an email attachment or running 

an infected file. The major task of a Trojan is to provide backdoors for other malicious 

programs to enter host system then destroy or steal valuable data without permission 

[103]. JS.Debeski is one of typical trojan which can delete several important system files 

[104]. 

Bots: Bots or robots are automated processes that interact with other network services 

without the need for human interaction. The general usage of bots includes gathering 

information, stealing passwords, relaying spam and launching DDoS attacks. Bots can be 

used for either good or malicious intent. A malicious bot is designed with the self-

propagating feature to infect a host and can communicate with the control server. 

Depending on the remote control, their infection rate and the tactic is more effective than 

that of worms [105]. Zeus is one of the typical bots which is used to harvest banking 

credentials and financial information from users of infected devices [106]. 
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2.2 Conventional botnet detection techniques 

In this section, we focus on traditional botnets, discussing firstly known 

incidents/attacks of conventional botnet malware in the last ten years, and then presenting 

botnet creation and detection approaches. We also present a taxonomy of conventional 

botnet detection techniques and give a comparison of such techniques based on different 

criteria. 

2.2.1 Incidents 

A conventional botnet is originated from the IRC-based botnet, and the first recorded 

botnet is Eggdrop which was published in 1993 and last updated at 2011 with 

Eggdrop1.6.21 [107]. The early botnet is designed based on IRC channel on account of 

the featured protocol as well as the unencrypted and span long time periods connection 

between client and server. Agobot [108] and SDBot [109] are two typical IRC botnet 

which has drawn much attention. Agobot, also known as Gaobot, is a family of computer 

worms whose first version was written by Axel Ago Gembe in 2002. After that, the 

number of versions rapidly increased to around 1200 in two-year which leads to makes 

Agobot a challenge to examine [110]. SDBot botnet appeared around as early as 2004, 

but it continues to make waves still now [111]. Kharouni et al. [109] carried out some 

researches special for the variant of SDBot - BKDR_SDBOT.COD and gave a detail of 

the botnet mechanism. 

2.2 Conventional botnet detection technique 
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Table 2-1 - The accidents of conventional botnet 

Year  Name 
Estimated 

Size 
Brief Introduction Reference 

2004 Bagle 230,000 
Bagle is a mass-mailing computer worm affecting all versions 
of Microsoft Windows.

[112, 113]  

2006 
Rustoc
k 

150,000 
Rustock is a multi-component family of rootkit-enabled 
backdoor Trojans, which were historically developed to aid in 
the distribution of 'spam' e-mail.

[114, 115]  

2007 Srizbi 450,000 
Srizbi was the world's largest or second-largest botnet 
depending on expert reports before November 2008.

[116, 117]  

2007 Akbot 1,300,000 
Akbot is an IRC controlled backdoor, which provides an 
attacker with unauthorised remote access to the compromised 
computer.

[118, 119]  

2007 
Cutwa
il 

1,500,000 
The Cutwail botnet is a botnet mostly involved in sending 
spam e-mails which founded around 2007.

[120-122]  

2007 Zeus 13 million 
The primary target of Zeus is stealing banking information. It 
spreads mainly through drive-by downloads and phishing 
schemes.

[123-127]  

2007 Storm 160,000 

The name comes from the subject line about a recent weather 
disaster in an e-mail with this spam.  At its height in September 
2007, it could be as large as 50 million computers. However, 
it began to decline in late 2007.

[128-131]  

2008 
Waled
ac 

80,000 

The Waledac is a P2P-based botnet and was detected in 
December 2008. It takes advantage of real-world events and 
occasions and uses them to trick users into performing specific 
actions as social engineering.

[132-134]  

2008 Sality 1,000,000 
Sality is a P2P-based file infector that spreads by infecting 
executable files and by replicating itself across network shares. 
Sality was first discovered in 2003.

[135, 136]  

2008 
Confic
ker 

10.5 million 
Conficker was first detected in November 2008.It is robust and 
secure distribution utility for disseminating malicious software 
and has significant evolution from versions A to E.

[137-142] 

2008 
Aspro
x 

15,000 
The Asprox botnet was discovered around 2008; It was 
initially used exclusively for sending phishing emails and 
performing SQL Injections into websites to spread Malware. 

[143-146] 

2009 Festi 250,000 
The Festi botnet is involved in email spam and denial of 
service attacks which first discovered around Autumn 2009.  

[147-150] 

2009 Grum 560,000 

Grum is traced back to as early as 2008 and shut down in July 
2012. It was reportedly responsible for 18% of worldwide 
spam traffic and capable of blasting 18 billion spam emails per 
day.   

[121, 151, 
152] 

2010 TDL4 4,500,000 

TDL-4 is the fourth generation of P2P-based TDL botnet. The 
new features of TDL-4 ensure the assessment to infected 
computers even in cases the botnet control centres are shut 
down. 

[153-155] 

2010 
Keliho
s 

300,000+ 
The Kelihos botnet is a P2P-based botnet mainly involved in 
the theft of Bitcoins and spamming which is discovered around 
December 2010.

[154, 156, 
157] 

2013 
Chame
leon 

120,000 

The Chameleon botnet is notable for the size of its financial 
impact: at a cost to advertisers of over 6 million dollars per 
month. It is also the first botnet found to be impacting display 
advertisers at scale.

[158-160] 
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Except for the IRC-based botnet, new generation botnet later emerged with different 

communication protocols such as HTTP and P2P protocol. The Zeus and Conficker are 

recognised as the largest scale of botnets in last ten years. Zeus [127] is an HTTP-based 

botnet which is estimated to infect millions of compromised computers (estimated 13 

million publish by Microsoft at 2012 [126] and approximately 3.6 million only in the 

United States [125]). Conficker, also known as Downup, is a P2P-base botnet [142]. 

Because of the advanced malware techniques, it is difficult to estimate the size of the 

botnet. However, it is regarded as one of the largest known botnets which infected around 

10.5 million until July 2009 [141] and could potentially infect 300 million [140]. Table 

2-1 shows the majority of the most threatening conventional botnet in recent ten years. 

2.2.2 Botnet creation techniques 

One of the main reasons that make network security more vulnerable is the continuous 

update of the malware software and the appearance of new invasion technologies. 

Consequently, prediction of new means of attack is one of the keys and open research 

direction in network security.  

In the research of botnet, there is also some literature which concentrates on the 

creation of designation of the new type of botnet or botnet architecture. To be well 

prepared for future attacks, it is not enough to study how to detect and defend against the 

botnets that have appeared in the past [88]. The research of botnet creation is very 

meaningful, and it can not only make some predictions of the possible botnet in future 

but also increase our understanding of the mechanism of botnets. From an operator’s 

perspective, understanding the deployment strategy of a botnet is critical for defending 

against malicious attacks on an operational network. Certainly, it is also possible that this 

research may be used by some hackers to deploy a more stealthy and robust botnet and 

enhance their control of botnet [58]. 
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Wang et al. [88] present a design of an advanced hybrid P2P botnet which was aimed 

to construct a botnet which is harder to be shut down, monitored, and hijacked and 

perform more harmful attacks. Considering some problems faced by current botmaster 

and many network related issues, they provide a summary the six features should be 

realised in the next generation botnet. The hybrid P2P botnet contains two groups of bots: 

the server bots which can be accessed from the global Internet and the client bots which 

do not accept incoming connections. Based on this structure, they design a complete set 

of botnet components including Command & Control Architecture, initial construction 

and advanced construction. The robustness and the possible defending strategies are 

discussed at the end of the paper.  

Starnberger et al. [161] have designed and implemented a P2P based botnet named 

Overbot to address the weakness of current botnet designs. The stealth control and 

command channel and the encryption of this channel are the main focus of their work. 

Botmaster does not reveal any information when capturing about other nodes of the botnet. 

The message sent by each bot should be encrypted by a public-private key pair owned by 

the botmaster so the botmaster can only identify them. Even though they present a more 

stealth botnet protocol, they also discuss possible countermeasures with this type of 

botnet. One of the methods is a statistical analysis of the requests and the nodes in botnet 

will issue more requests than normal nodes. The other one is probing the connected nodes 

by the captured nodes. 

Liu et al. [162] introduce a recoverable hybrid C&C botnet named CoolBot. CoolBot 

combines the decentralised hybrid P2P C&C (HPCC) and the centralised URL Flux-

based C&C (UFCC) to enhance and coordinate C&C mechanisms dynamically. The URL 

Flux-based C&C is established on Web 2.0 services, such as microblogs and social 

network sites and depends on the Username Generation Algorithm (UGA) to get the 

actual command published by the botmaster. They have also analysed the recoverability 

of the two C&C architectures. Through the simulation evaluation for the botnet, they draw 
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a conclusion that CoolBot is not only defending against some popular attacks but also 

could recover the C&C channel even if the majority of critical resources are destroyed 

within a tolerable delay. 

2.2.3 Taxonomy of detection techniques 

With the expansion of botnets and new types of then, botnet detection has become a 

major research thread in the last ten years. Botnet detection is regarded as the first and 

primary action to combat with this network security threat. Numerous botnet detection 

architectures and methods have been proposed by researchers in around the world.  

Several botnet detection taxonomies have proposed in the literature [63, 64, 69, 71, 81, 

163]. The survey in [63] divided botnet detection and tracking methods into two main 

approaches. The first approach is based on Honeynet. The second is based on passive 

traffic monitoring by observing data traffic in the network to look for suspicious 

communications that may be provided by bots or C&C servers. Tyagi et al. [163] describe 

a similar taxonomy, but they refine the second approach with three more specific 

categories which are Behaviours-based detection, DNS-based detection and Data-mining 

based detection. They even divided the behaviour-based detection into signature-based 

and anomaly-based. The work in [64] proposed a taxonomy including Honeynet, 

IRC(Internet Relay Chat)-based Detection, DNS Tracking Detection which contains 

traffic analysis and anomaly activities analysis. 

Feily et al. [81] consider although Honeynet is mostly used to understand the 

mechanism and technology characteristics of botnets, it is not enough to detect bot 

infection. Therefore, they just focus on passive network traffic monitoring and analysis 

and classify these techniques into signature-based detection, anomaly-based detection, 

DNS-based detection and mining-based detection. 
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Zeidanloo et al. [71] proposed a relatively improved taxonomy of botnet detection 

techniques which give a hierarchical classification structure. Then the survey [69] present 

a refinement for the taxonomy of [71]. Both of [69] and [71] propose the whole botnet 

detection technique can be classified into Honeynet-Based and Intrusion Detection 

System (IDS). The second one can be further divided into two categories: signature-based 

detection and anomaly-based detection which consists Host-based and network-based 

detection techniques. The survey in [69] has made a further distinction between active 

and passive monitoring in network-based detection techniques. The active monitoring 

relies on the dynamically injecting test packets into the network or sends data packets to 

servers for analysis. On the contrary, the passive monitoring just uses monitor devices to 

watch and analyse the traffic as it passes by [164]. For passive monitoring, there are 

numerous protocols for analysis which contain P2P, SMTP, IRC, and DNS. The 

hierarchical classification should be present as Figure 2-3 [69]. 

 

Figure 2-3 - The hierarchical classification of botnet detection techniques 

According to existing study about the taxonomy of botnet detection techniques, we 

can present a taxonomy which contains Honeynet and Instruction Detection System (IDS). 

Then we introduce two primary dimensions for categorising IDS: the content of detection, 



2.2 Conventional botnet detection techniques 29

 

the range of detection. The content of detection is the data source which is used in 

detection techniques for analysis such as the traffic on the router, the log file and so on. 

The content of detection can be further divided into signature-based detection and 

anomaly-based detection. Moreover, the range of detection is used to distinguish the 

location of deployment of detection techniques which can be classified into host-based 

detection and network-based detection. 

Table 2-2 presents a taxonomy of botnet detection techniques based on our additional 

dimensions. We will give an explanation for each class or dimensionalities in the allowing 

content of this section. Moreover, the specific detection techniques will be introduced at 

next section conforming to this taxonomy.  

Table 2-2 - Taxonomy of botnet detection techniques 

Honeynet 
[60, 62, 86, 87, 165]

Instruction Detection System(IDS) 
                        Range 

Content 
Host-based Network-based 

Signature-base [166] [167-169]  
Anomaly-base [1, 170-172] [173-179]  

2.2.3.1 Honeynet 

The honeynet is a very old technique which appeared in [180][157] initially. It is a 

technique for collecting information for botnets. A Honeynet is a network which contains 

several honey pots with intentional vulnerabilities; whose purpose is to invite attacks and 

analyse them. The ultimate goal of Honeynet is to understand the mechanism of attacker's 

activities and methods thus providing information to help increase network security. The 

administrator of Honeynet can open some ports or install botnet malware software on 

devices in Honeynet with specific monitor tools to trigger botmasters to attack the 

Honeynet. After a period and enough information is collected, the owners of Honeynets 

may be able to learn and understand the mechanism of the attack of different botnets. The 
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honeynet is the only type of tool for collecting information of botnet. Thus, they need to 

collaborate with some other techniques enabling botnet detection. McCarty [60] first 

proposed the method to detect botnet with Honeypot in 2003. They aimed at designing a 

firewall for honeypot to prevent inbound attacks without raising suspicions of the 

attacker. They also give an analysis for the IRC botnets monitored by the honeypot 

detection system. Then there is some literature discussed how to use Honeynet to realise 

botnet tracking and detecting [62, 86, 87, 165]. Rajab et al. [62] present infrastructure of 

honeypot to analyse botnets, and give a description of the inherent diversity of botnet 

activities. Barford et al. [86] analyse four widely-used Internet Relay Chat (IRC) botnet 

codebases by using honeypot. Their study reveals the complexity of botnet software 

which is the base for the defence strategies. Cooke et al. [87] set up an experiment to 

measure botnets on a real network and show the serious of botnet problem today.Vrable 

et al. [165] presented Potemkin, a scalable virtual honeynet system for botnet detection, 

which is inappropriate for long-term botnet tracking.Although Honeynet is useful in 

understanding botnets, it has some limitations for botnet detection [69].  

 The Honeynet can only track limited scale of exploited activities. After the bot 

infected by malicious code, the botmaster can change their attack strategy at 

any time with new command control and even to update the malicious code 

injected to the bot to change the behaviours. 

 The Honeynet cannot detect bots without using propagation methods other than 

those based on scanning, spam and web-driven downloads. More and more 

Botnet use the more diversified method to affect and communicate with bots.  

 The Honeynet can only report information about the infected machines. The 

major function of Honeynet is monitoring and collecting information for 

analysis. 

Therefore, we will not discuss the detail of the method in next section. 
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2.2.3.2 Signature-based 

Signature-based botnet detection is the most widely used and mature detection 

technique at present. Nearly all the anti-malware software takes advantage of signature-

based techniques to detect botnet malware. Just as its name implies, this technique detects 

botnets malware by the signature of the code or the data which is used in the botnet 

components.  There are several kinds of literature have found some signature of specific 

botnet [167-169].  Goebel et al. [167] present a botnet detection technique mainly based 

on the signature of suspicious IRC nicknames, IRC servers, and uncommon server ports. 

Kugisaki et al. [168] confirmed that signature of connection between bots and IRC server 

when the server refused the connection from the Bot. Wurzinger et al. [169] make use of 

the signature of the response of bots after receiving commands from botmaster according 

to the same family of botnets. 

Snort is a free and open source network intrusion prevention system (NIPS) and 

network intrusion detection system (NIDS) [166]. Through customization by 

configuration, the program can be widely used to detect a variety of probes or attacks. As 

a consequence, it also can be configured for recognising some special flow characteristic 

to achieve botnet detection. 

The thesis [181] give a typical signature-based detection case for IRC botnet whose 

name is Rxbot [182]. Firstly, the features of data packet should be known before detection 

procedure. To obtain the feature of the Rxbot, we can run Rxbot.exe in the virtual machine 

as the bots and execute the instruction “.pencmd” to communicate with the server. 

Meanwhile, the traffic of IRC should be monitored at the host, and the feature of the Rxbot 

data packet is shown in  

The features can be summarised in the following items: 

1. The first 6 bytes is fixed: channel name to connect  

3a 72 42 6f 74 7c (:r Bot) 
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2. The first 6 bytes is fixed: channel name to connect  

3a 72 42 6f 74 7c (:r Bot) 

3. The last 29 bytes is fixed: the response of the command 

3a5b434d445d3a2052656d6f7465207368656e6e2072656164792e0d0a 

(:[CMD]: Remote shell ready) 

So after mastering the feature of the data packet, the detection system just need to 

apply some regular expression to filter the traffic of the host. Once matching successfully, 

the system can determine Rxbot has infected the host. 

 

Figure 2-4 - The feature of Rxbot data packet 

Goebel et al. [167] propose detection method named Rishi which is regarded as 

representative of signature-based techniques citing by many surveys of botnet detection. 

Rishi identifies whether the hosts are contaminated or not by the evaluation of IRC 

nickname. The IRC-based botnet is the earliest of botnets, and the mechanism was first 

revealed by [61]. This method can be divided into three steps. Firstly, the detection system 

collects traffic from the router and statistic the IRC channel. Secondly, connection objects 

should be created for each IRC channel to store relative information. This information 

includes the time of suspicious connection, IP address and port of suspected source host, 

IP address and port of destination IRC server, channels joined and utilised nickname. At 
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last, the nickname gathered by the system is passed to an analysis function that realises a 

scoring function to estimate whether malware infects suspicious input host or not. The 

higher the score a nickname evaluates, the more likely it is an infected bot malware trying 

to contact its C&C server. 

Kugisaki et al. [168] aimed to observe new features of IRC-based bots. After 

monitoring the port which used by IRC channel, they discovered some different 

communication flow between the clients with specific IP address and other clients. 

Further, they conclude that the bots usually repeat transmitting "NICK" and "USER" until 

the IRC connection succeeds. Based on this characteristic, the detection system records 

the ratio of communication interval to IRC server to evaluate the risk of infection for the 

devices. 

The literature [169] present a detection system that relies on the signature of detection 

models. The fact of botnets establishes the detection model that after bots receive 

commands from the botmaster, which will respond some message in a specific way. They 

divided the automatic model generation into three parts which contain command model 

generation, response model generation and mapping models into Bro signatures (Bro is a 

network intrusion detection system for monitoring suspicious or irregular events of 

network activity [183]). Through the analysis of 446 network traces, a total of 70 

detection models are produced by the detection system which controlled by 18 different 

bot families (IRC1-IRC16, HTTP and P2P). 

2.2.3.3 Anomaly-based 

Anomaly-based detection is regarded as the most extensively studied research 

direction of botnet detection techniques and most efficient for detecting unknown botnet. 

The core idea of this approach is to compare the current status of devices or network with 

the normal situation, and if there is some difference between these situations, the 

anomaly-based detection system needs to judge whether there is a botnet infection or not 
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based on some procedure. For example, the paper [184] regard the log file of Windows 

Application Programming Interface (API) functions calls which are made by 

communication applications as the criterion to detect the botnet. They monitor the 

activities of bots by analysing the size of the log file generated by every bot. The normal 

situation is that different hosts have diverse changing curve. However, a high correlation 

between the hosts represents an abnormal situation. 

The distinction between normal and abnormal situations is an actual thread of research 

efforts in this detection category. There are several techniques that advocate anomaly-

based detection ([173-179]), and most of them consider network traffic anomalies. This 

is plausible, since the necessary communication between the botmaster and bots in a 

botnet creates some inevitable anomalies in the network traffic, such as abnormally high 

traffic volume and/or network latency in a period, network traffic channelled through 

special ports, network packages generated by some unusual system behaviour [61] and 

so on.  

Other approaches are based on a different abnormal situation related to the correlation 

of bots (e.g.[184-189]). More specifically, there are possibly some similarities amongst 

the bots which belong to the same botnet. For example, bots perform similar 

communication pattern with same botmaster [189]. To analyse the correlation of each bot, 

they insert some statistical information into the traffic for monitoring. Once the similarity 

statistical information is detected in the traffic from different bots, the detection system 

will give some warning for the suspicious malware behaviours. 

Owing to the acceleration of botnet update frequency and more and more new type of 

botnet, finding some methods to detect the unknown botnet is urgent. Therefore, 

abnormal-based detection techniques have become a promising research field in botnet 

detection. 
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Binkley et al. [190] present anomaly-based detection algorithm for IRC-based botnet 

mesh relatively early. The algorithm is based on the fact that botmaster needs scan the 

IRC-based botnet frequently to keep the contract with the bots. Therefore, the frequency 

of TCP connection establishment can reflect the probability of infected botnet. The paper 

proposes an index named TCP work weight which means the ratio of the auxiliary 

information in TCP connection. The Equation 2-1can compute it. The larger the TCP 

work weight, the higher the probability of infection by botnets. 

Equation 2-1 TCP work weight equation 

 𝜔 ൌ ሺ𝑆௦ ൅ 𝐹௦ ൅ 𝑅௥ሻ/𝑇௦௥ (2-1) 

The TCP synchronised data packet tuple contains (IP source address, SYNS, 

SYNACKS, FINSSENT, FINSBACK, RESETS, PKTSSENT, PKTSBACK). The ω donate 

the TCP work weight, the Ss denote the count of SYNC and SYNACKS, Fs denote the 

count of FINSSENT, Rr denotes the count of RESETS and Tsr denote the total count of 

TCP data packet.  

Choi et al. [191] take advantage of the difference of group activities of DNS traffic 

between botnet network DNS and legitimate DNS. The group activity is the average 

proportion of same IP address in two IP lists which are requested at two different times 

with same domain name query. The similarity can be quantified through the Equation 2-2. 

Moreover, the more similar it is the more probability of infected by botnet malware. 

Equation 2-2 Similarity between DNS traffic 

 𝑠 ൌ 1/2 ൈ ሺ𝐶/𝐴 ൅ 𝐶/𝐵ሻሺ𝐴 ് 0, 𝐵 ് 0ሻ (2-2) 

In another anomaly-base detection method in [184, 185], the log file is regarded as the 

main monitor objective. The log file comes from the API socket function calls that are 

used by communication programs, and the detection system records the size of the log 

file. Through the comparison between the normal user behaviour and the botnet 

behaviour, there is a remarkable difference of the fluctuation curve of log file size. The 

paper also gives two cases to evaluate their method. First one is to compare the behaviour 
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of Internet Explorer and SDBot and the second one is monitoring the mIRC clients and 

the SDBot. 

Gu et al. [175, 179, 192, 193] proposed a series of the abnormal-based detection system. 

The paper [192] proposes the BotHunter which detects the botnet by IDS-Driven 

Dialogue Correlation. Through tracking the two-way communication flow between 

internal assets and external entities by Snort, the detection system realises an evidence 

trail approach for recognising successful bot infections. The basic principle of the system 

is based on understanding Bot infection sequences and concluding the sequences into 

several independent dialogues. Then BotHunter can construct the model of infection 

dialogues process and assert a minimum of required conditions for bots infection. They 

even evaluate capabilities of the detection system in a virtual network and a live Honeynet 

and validate low false positive rates in two operational production networks. Based on 

the BotHunter, Gu et al. proposed two detection systems whose name are BotSniffer and 

BotMiner respectively [175, 179]. BotSniffer focuses on the analysis the correlation of 

activities and message in bots belonging to the same network. There are two core 

algorithms to evaluate the correlation: Response-Crowd-Density-Check Algorithm for 

message response and Response-Crowd-Homogeneity-Check for activity response. If the 

similarity of the different bots exceeds the threshold, the network will be regarded as 

infection with botnet by the system. They evaluate the BotSniffer on multiple network 

traces captured from campus network with only a total of 11 false positives (FPs) on four 

of the IRC traces and no FPs resulted from group analysis. 

BotMiner [179] is a detection system which contains clustering analysis of network 

traffic for the protocol. There are two clustering processes in the system which can 

accurately and efficiently group similar C&C traffic patterns. A-plane clustering is 

designed for activity traffic, and C-plane clustering is designed for C&C communication 

traffic. Once the clustering results are obtained, the cross-plane correlation will be 
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performed to cross-check clusters in the two planes to find out intersections that reinforce 

evidence of a host being part of a botnet. 

2.2.3.4 Host-based 

Host-based detection techniques are techniques where the detection system collects 

information only from the host device without any communication with other devices in 

the same network. Early detection systems and anti-malware software are based on this 

technique (e.g., [1, 170-172]). Although there are some limitations, it is more convention 

and flexible to deploy the host-based detection system in real projects and more efficient 

against some specific types of attack such as download attack and onset infection [194]. 

Along with the enhancement of connection and diversity of the behaviour in the 

modern botnet malware, the host-based detection technique is no longer appropriate for 

comprehensive botnet detection system.  

2.2.3.5 Network-based 

Network-based detection techniques are the main trend of botnet detection system  

[173]. This technique concentrates on the traffic and communication on the network. 

Silva et al. [69] have classified the network-based techniques according to the 

communication protocol that they are based on IRC, DNS, SMTP, P2P and multiple 

protocol techniques. Several works focus on how to analyse the information of every 

protocol or data package in the network for botnet detection. 

2.2.4 Comparison  

2.2.4.1 Criteria of comparison 

To compare the botnet detection approaches, we use some criteria for comparison. 

Because of some challenges for botnet evaluating, there is hardly any literature discussing 
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the comparison of the current botnet detection systems. The literature [170] enumerates 

some challenges for experiment with botnet detection systems. The different of data set 

and experiment environment is the biggest obstacle for comparing and evaluating current 

botnet detection system. Also, considering of the privacy of institutions, the experiment 

data cannot be shared with other organisations or persons. 

However, we can make a summary of the evaluation criteria from the literature which 

propose the detection system with evaluation data. Because if the literature wants to prove 

their detection system is more effective or more efficient than others, they must present 

some result of the comparison in theory or experiment.  

From the current botnet detection methods, there are three criteria which are widely 

used in detection techniques literature for comparison. The first one is crossover error 

rate (COER), the second one is Detection Rate and False Positive (FP), and the last one 

is Receiver operating characteristics (ROC) curve. 

After explaining every criterion of comparison in botnet detection, we give a summary 

of these criteria in Table 2-3 with the detail of the criteria in every detection approaches.
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Table 2-3 - The summary of the criteria for botnet detection  

                                  Criteria   
 
Detection approaches 

ROC curve1 
Crossover 
Error Rate

False 
Positives 

(Rate) 

Detectio
n Rate FPR TPR 

Youden 
Index

Log Correlation Based [184]  0.000% 79.000% 0.79    

BotTrack 
[174] 

BotTrack-Kademlia 0.300% 97.000% 0.97    
BotTrack-Chord 6.000% 100.000% 0.94    
BotTrack-Koorde 6.000% 75.000% 0.69    

Disclosure 
[195] 

(N1, MinFlows=20) 6.000% 86.027% 0.80    
(N1, MinFlows=50) 9.000% 94.521% 0.86    
(N2, MinFlows=20) 8.000% 82.740% 0.75    
(N2, MinFlows=50) 8.000% 84.000% 0.76    

BotHunter 
[192] 

BotHunter-SLADE 1.999% 99.200% 0.97    
BotHunter-PAYL 0.927% 72.200% 0.71   

BotMosaic 
[176] 

SdBot-500ms    2.8 ∗ 10−3   
SdBot-2000ms    3.52 ∗ 10−13   
SpyBot-500ms    2.32 ∗ 10−8   
SpyBot-2000ms    7.55 ∗ 10−11   

BotMiner 
[179] 

IRC-rbot     0.003(Rate) 100% 
IRC-sdbot     0.003(Rate) 100% 
IRC-spybot     0.003(Rate) 75% 
IRC-N     0(Rate) 99.6% 
HTTP-1     0.003(Rate) 100% 
HTTP-2     0.003(Rate) 100% 
P2P-Storm     0(Rate) 100% 
P2P-Nugache     0(Rate) 100% 

Rishi[167] 5 78.43%
Automatically Generating 

Models[169]
    11 88% 

BotSniffer[175] 0.0016 (Rate) 100%

 Crossover Error Rate 

Crossover error rate (COER) [176] is a comparison criterion for different biometric 

devices and technologies. The COER is based on two rates which are the false acceptance 

rate (FAR) and the false rejection rate (FRR). The FAR of the system typically means the 

                                                 

1 We use the Youden Index [238] to select the best performance point on the ROC curve. 
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ratio of the number of false acceptances which should be rejected. Moreover, the FRR is 

contradictory metric with FAR which measures the ratio of the number of false rejections 

which should be accepted. When the two ratios are equal and cross over, the point is 

COER (It is also called as CER [196]). 

In botnet detection, the FAR express the ratio of detection system makes a faulty 

judgment to recognise normal hosts as bots. On the contrary, the FRR express the ratio to 

make a mistaken identity for bots as normal hosts. So, the botnet detection techniques 

should lower the two metrics as much as possible and the lower COER of the detection 

system, the better detection effect. 

 True Positive Rate, False Positive Rate and Precision 

The True Positive Rate (TPR), the False Positive Rate (FPR) and Precision. These 

measures are used typically for the evaluation of ML based classification [39, 174, 178, 

179, 186, 192, 197-199]. If we regard normal as positive and infect as negative 

respectively: True positive (TP) is the number of normal data that were correctly 

classified by an algorithm. True negative (TN) is the number of infect data that were 

correctly classified. False positive (FP) is the number of normal data that were incorrectly 

classified by an algorithm. False negative (FN), is the number of infect data classified as 

normal. 

Based on these measures TPR, FPR and Precision are calculated as follows:  

Equation 2-3 Equation True Positive Rate 

 𝑇𝑃𝑅 ൌ  𝑇𝑃/ሺ𝑇𝑃 ൅ 𝐹𝑁ሻ ሺ𝑎𝑘𝑎 𝑅𝑒𝑐𝑎𝑙𝑙ሻ (2-3) 

Equation 2-4 False Positive Rate 

 𝐹𝑃𝑅 ൌ 𝐹𝑃/ሺ𝑇𝑁 ൅ 𝐹𝑃ሻ (2-4) 

Equation 2-5 Precision 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  𝑇𝑃/ሺ𝑇𝑃 ൅ 𝐹𝑃ሻ (2-5) 

The total number of bots within the wild network is hard to estimate. Therefore, the 

ratio of detected bots within the complete network is difficult measured. Some literature 
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gives some other evaluations methods to verify their system. The paper [113] gives a 

comparison result with the detection method Blast-o-Mat [147] and gives the better 

performance to it. 

 Receiver Operating Characteristics 

Receiver Operating Characteristics (ROC) is a more comprehensive evaluation 

criterion for botnet detection system. The ROC was first used for signal system and then 

widely used in medicine, radiology and social sciences. It is also proved useful for the 

evaluation in computer science. The ROC is based on two important concepts: true 

positive rate (TPR) and false positive rate (FPR). The true positive rate reveals the number 

or the ratio of successful detection samples which is also called hit rate or sensitivity 

[200].  

 The ROC curve is the graph whose horizontal axis is false positive rate and vertical 

axis if true positive rate (TPR). With the variation of the threshold setting, the detection 

system will get a different pair of TPR and FPR. Ideally, FPR is lowest, and the TPR is 

highest. However, the threshold at the point of tangency on the ROC curve is the best 

configuration. The area under the ROC curve is also regarded as a criterion for detection 

effect.  

2.2.4.2 The result of comparison 

Because this is not a uniform criterion in botnet detection techniques and these is no 

organisation or institution proposing some standard for evaluation and comparison of the 

botnet detection techniques, we just summary the comparison based on the evaluation of 

the various botnet detection literature as far as possible. 

The papers [174, 184, 192, 195, 201] evaluated their detection system based on ROC 

curve or give enough experimental data for ROC analysis. Al-Hammadi et al. [184] set 
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different percentage of log file size as a threshold from 0 to 100(%) to get ROC curve for 

their Log Correlation based Detection system.  

Bilge et al. [195] evaluate their detection system Disclosure at two networks: Inter-

University Network (N1)  and Tier 1 ISP (N2). There are two types of the threshold for 

ROC curve. The one is ClassThresh which is the boundary separating benign scores from 

malicious scores and the other on is the MinFlows which is the minimum number of 

observed flows to a particular server to provide accurate results. Their set the MinFlows 

at two values: 20 and 50 to get 4 ROC curve graphics.  

François et al. [174] evaluate BotTrack, a P2P botnet detection system, on three types 

of P2P network (Kademlia, Chord, Koorde). Moreover, the number of the bots known is 

also a factor to affect the ROC curve. They just only summary the situation of 0% bots 

known.  

Despite Gu et al. [192] did not give a ROC curve to evaluate their detection system 

BotHunter, they present the performance of the system with PAYL (a payload-based 

anomaly detector [202]) and SLADE (Statistical Payload Anomaly Detection Engine) 

based on the difference of desired false positive rate. So we transfer these two 

performances into ROC curves to make a comparison with other detection systems. 



1.1  43

 

2.3 Network traffic anomaly detection technique 

According to Section 2.2.3, there are two types of detection techniques for botnet 

detection based on the network traffic, i.e., signature and anomaly based detection 

techniques. Because of the rapid update of the malicious code on the mobile device and 

the unstable of the mobile network, the anomaly-based detection technique is better than 

signature-based detection techniques in research and application. This section will 

introduce the network traffic anomaly detection techniques that can be used for mobile 

devices and network.  

2.3.1 Introduction of anomaly detection and intrusion detection 

The first uniform architecture of intrusion and intrusion detection was proposed in 

1980 by a report on Computer Security Threat Monitoring and Surveillance [203]. The 

intrusion detection system can detect the malicious behaviour by the unauthorised access 

through monitoring the configuration of the host. If the host is under attack, the system 

can raise the alarm for the users of the host to take corresponding measures to protect the 

host.  

The intrusion detection system can be classified into Signature-based detection and 

Anomaly-based detection. The signature-based detection technique can only detect the 

harmful behaviours comparing with predefined black or white behaviour feature library. 

However, the anomaly-based detection technology is focusing on identifying the anomaly 

behaviours which are not consistent with the normal behaviours of the host. Apparently, 

the signature-based detection techniques rely on the completeness of the feature library, 

which can only detect the known attack. The anomaly-based detection can identify the 

unknown abnormal behaviours independently of the specific information for the malware. 

2.3 Network traffic anomaly detection technique 
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For mobile botnet detection, the malicious code can be updated by the controller 

frequently. Moreover, the malware feature library on the mobile devices cannot be 

updated in time with the unstable cellular network. So, signature base detection will lose 

effectiveness when the remote update changes the feature of the detection target. 

Furthermore, most of the malware tend to change their feature to evade the detection of 

anti-virus software. Therefore, the anomaly base detection is suitable for the mobile 

botnet detection system. Even the malware is upgraded, the well-designed anomaly based 

detection system can distinguish them with normal behaviours.  

Anomalies are patterns in collected data that are consistent with a well-defined 

database of normal behaviour that can be divided into the following categories [204]: 

 
Figure 2-5 - The example of point anomalies 

1. Point Anomalies 

This type of anomaly cares about the individual data instance. If a single data instance 

can be regarded as different on the rest of data, then this instance can be termed as a point 

anomaly. The example can be seen from the Figure 2-5 and P1 to P4 are point anomalies 

hence they lie outside of the boundary of N1 and N2 which are considered as the normal 
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range. Point Anomalies is the simplest type of anomaly and is the focus of the majority 

of research on anomaly detection. 

2. Contextual Anomalies 

If a data instance represents unusually in a particular context (but not other contexts), 

then it is termed as a contextual anomaly or conditional anomaly. The notion of a context 

is based on the structure of the data set in specified scenario. The Figure 2-6 provides an 

example of contextual anomaly which illustrates the variation of traffic flow over time. 

The quantity of traffic between 10:00 AM to 2:00 PM reach 160 which is higher than 

normal level in the other period. This abnormal situation can be regarded as a contextual 

anomaly. 

 
Figure 2-6 - The example of contextual anomaly 

3. Collective Anomalies 

If a collection of related data instances is abnormal with respect to the entire data set, 

it is termed as a collective anomaly. The individual data instances in a collective anomaly 

may not be anomalies by themselves, but their occurrence together as a collection is 

anomalous [204]. For example, if the situation of high traffic in the period from10:00 AM 
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to 2:00 PM occurs every day in one month (Figure 2-6), then it could be regarded as a 

collective anomaly. 

The general procedure of anomaly detection techniques contains three steps: (1) 

Establish normal behaviours library. (2) Capture the data. (3) Comparing the captured 

data with the normal behaviours library to find the anomaly instances. Although this 

general procedure for realising anomaly based detection of misbehaviour seems to be 

simple, it is complicated by the following key factors: 

1. It is difficult for defining a normal pattern or region with all possible normal 

behaviour. Hence, the boundary between normal and anomalous behaviour is often 

not very clear. 

2. Updates of malicious code may change what constitutes abnormal behaviour and 

make normal patterns no longer apply for the updated malware. 

3. The very concept of an anomaly is different in different application domains. Thus, 

applying a technique developed for one domain to another is not straightforward. 

4. There is a major issue that whether the labelled data is available for validation or 

training of models used by anomaly detection techniques.  

5. There may be noise contained in the training data for building the behaviour pattern 

which is similar to the actual anomalies. 

2.3.2 Classification of anomaly-based detection technique 

2.3.2.1 Classification based 

There are two sets of data training and testing datasets for classification based anomaly 

detection method. According to analyse the training data by some algorithms, the 

classification can generate a model which also known as classifiers. Then the classifier is 

used to classify the testing datasets into different classes [205, 206]. Therefore, the 



2.3 Network traffic anomaly detection technique 47

 

classification based anomaly detection can be processed by two phases: training phase 

and testing phase. The theoretical basis of classification based anomaly detection 

techniques is assuming that the classifier can distinguish the benign and malicious classes 

with the features extracted from the dataset [204]. 

The classification based anomaly detection techniques can be classified as one-class 

and multi-class. The difference between the two categories is the number of the class in 

the training dataset. For one-class anomaly detection, there is only one normal class for 

all training data. So any instance in testing dataset fall out of the outlier of classification 

of the training dataset is an anomaly. As for multi-class anomaly detection, the training 

dataset can be labelled as more than one normal class. So the testing instance needs to be 

compared with by any of the normal class patterns to determine whether the instance is 

abnormal or normal. 

The key issue for the classification-base anomaly detection technique is how to build 

a suitable classifier from training dataset to classify the testing dataset into different class 

accurately. In general, the machine learning technique is usually used for classification to 

increase the accuracy of the classifier that will be introduced in next section.  

2.3.2.2 Nearest neighbour based 

The theoretical basis of nearest neighbour based anomaly detection techniques is 

assuming that the when we map some features of observation data to the coordinate 

system, the normal instances will occur neighbouring location.  Meanwhile, the anomalies 

instances will occur in the other neighbouring location far from the normal instance set. 

The key issue for the nearest neighbour based anomaly detection technique is how to 

compute the distance between the different instance in the dataset. In general, there are 

several methods to calculate this distance as follows: 
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1. If the features are continuous, Euclidean distance [207] is usually used than others 

[206]. The Equation 2-6 can compute the Euclidean distance of point p and q. 

Equation 2-6 Euclidean distance between two points 

 𝐷𝑖𝑠ா௨௟௜ௗሺ𝑝, 𝑞ሻ ൌ ඥ∑ ሺ𝑞௜ െ 𝑝௜ሻଶ௡
௜ୀଵ  (2-6) 

2. If the features are categories, the simple matching coefficient (SMC) is often used. 

SMC is a statistic for comparing the similarity and diversity of datasets which is 

computed by the following Equation 2-7 [208]. Sometimes, the more complex 

distance measures can be used [209]. 

Equation 2-7 Simple matching coefficient equation 

 𝑆𝑀𝐶 ൌ
௡௨௠௕௘௥ ௢௙௠௔௧௖௛௜௡௚ ௔௧௧௥௜௕௨௧௘௦

௡௨௠௕௘௥ ௢௙ ௔௧௧௥௜௕௨௧௘௦
ൌ  

௙భభା௙బబ

௙భబା௙బభା௙భభା௙బబ
 (2-7) 

where: 

𝑓଴଴ ൌ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 0 𝑎𝑛𝑑 𝑦 𝑖𝑠 0 

𝑓଴ଵ ൌ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 0 𝑎𝑛𝑑 𝑦 𝑖𝑠 1 

𝑓ଵ଴ ൌ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 1 𝑎𝑛𝑑 𝑦 𝑖𝑠 0 

𝑓ଵଵ ൌ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 1 𝑎𝑛𝑑 𝑦 𝑖𝑠 1 

3. If there is more than one feature for the dataset, we usually compute the distance 

of single feature and then compute the combined distance. 

Broadly speaking, the nearest neighbour based anomaly detection techniques can be 

divided into two groups: K-nearest neighbour (KNN) and Relative Density (RD). The 

KNN algorithms are one of instance-based machine learning which will be introduced in 

next section. Moreover, the RD is the ratio of the density of a substance to the density of 

a given reference material [210]. So the RD based anomaly detection technique estimate 

the density of the neighbourhood of each data instance. An instance that locates in a 

neighbourhood with low density is declared to be anomalous while an instance that lies 

in a dense neighbourhood is declared to be normal. The Literature [211] proposed the 

Local Outlier Factor (LOF) which is a method to detect the anomaly using the relative 
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density. For a normal instance, its local density will be similar to the local density of its 

neighbours. While for an abnormal instance, its local density will be lower than that of 

its nearest neighbours. Tang et al. [212] proposed an improvement LOF method that is 

called Connectivity-based Outlier Factor (COF), whose the selection of K neighbours is 

different with LOF. The selection process is as follows: we first add one instance to the 

neighbourhood set. Then we add the instance whose distance to the existing 

neighbourhood set is minimum among all the other instances of the neighbourhood set. 

The rest can be done in the same manner, and the number of the neighbourhood will reach 

size k. The research of [213] enhances the LOF to detect the spatial anomalies in climate 

data. Moreover, Ye et al. [214] improve the LOF to support the anomaly detection with 

category attribute. 

The advantages of nearest neighbour based techniques are as follows: (1) The most of 

the advantage of nearest neighbour based techniques is that they do not make any 

assumptions regarding the generative distribution for the data. Instead, they are purely 

data driven. (2) When the training dataset is very small, using semi-supervised techniques, 

perform better than unsupervised techniques. (3) The method can be used for adapting to 

the other different data type, and it is the only required definition of an appropriate 

distance measure for the given data. 

The disadvantages of nearest neighbour based techniques are as follows: (1) If some 

of the normal instances do not have enough close neighbours, the technique cannot label 

them correctly based on the unsupervised learning algorithm. (2) If some of the normal 

instances do not have enough similar close neighbours, the false positive rate is very high 

based on the semi-supervised learning algorithm. (3) The calculations of the distances 

between each instance and other instances have a high time complexity. (4) Definition of 

distance measures between instances is a challenge when the training data is complex. 

However, the performance of the technique greatly depends on the distance measure. 
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2.3.2.3 Clustering based 

Clustering based technique is used to converge similar instances into same clusters. 

Two different approaches can be used for clustering-based anomaly detection. They are 

unsupervised clustering and semi-supervised clustering. Clustering based anomaly 

detection techniques can be divided into three categories. 

1. The first category is based on the assumption: Normal data instances can form a 

cluster in the data, on the contrary, abnormal instances do not belong to any cluster. 

This technique trains dataset by the clustering algorithms and determines the 

instances that do not belong to any cluster as an abnormal instance. The literature 

of [215-217] use the clustering algorithms that do not force all instances to be part 

of one cluster.  

2. The second category is based on the assumption: Normal data instances are near 

the centre of the cluster, on the contrary, abnormal instances are far from the centre 

of the cluster. This technique first uses the clustering algorithms to achieve 

clustering and then compute the distance to the centre of the closest cluster for 

every instance as discrimination index. The literature [218] use Self-Organizing 

Maps, K-means Clustering and Expectation Maximization to cluster the training 

dataset and detect the anomaly by computing the distance to the centre point of the 

cluster. 

3. The third category is based on the assumption: Normal data instances can form 

dense and large clusters, on the contrary, abnormal instances can only form 

sparsely small clusters. The anomaly instances probably constitute some small 

clusters. Therefore, the anomaly cluster can be detected through defining the 

threefold of size and dense of the cluster. The literature [219] proposed the cluster-

based local outlier factor (CBLOF) to detect the anomaly by comparing the size of 

the cluster and the distance to the centre point of the cluster.  
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The advantages of clustering based techniques are as follows: (1) Clustering-based 

techniques can operate in an unsupervised mode. (2) Clustering-based techniques can be 

adapted to other complex data types through replacing the clustering algorithm to process 

the particular data types easily. (3) The time complexity of the testing phase is very low 

because the test instances only need to compare a small number of cluster. 

The disadvantages of clustering based techniques are as follows: (1) Performance of 

clustering based techniques depends on the effectiveness of clustering algorithm heavily 

in recognising the cluster structure of normal instances. (2) Some clustering algorithms 

force every instance to be assigned to one of the clusters that might result in anomalies 

setting assigned to a large cluster. (3) Some clustering based techniques are practical only 

when the anomalies do not form significant clusters among themselves. (5) The 

computational complexity is high which is usually O(N2) because of the clustering 

algorithms. 

2.3.2.4 Statistical based 

The theory of statistical-based anomaly detection technique is based on the assumption: 

normal data instances occur with relatively high probability by the stochastic model, on 

the contrary, abnormal instances occur with relatively low probability. In general, the 

technique constructs the statistical model of the normal instance and then apply the model 

to the testing instances to find whether the instance has low probability occurring in the 

model that is regarded as abnormal. There are two types of statistical techniques: 

parametric techniques and non-parametric techniques. 

 Parametric statistics are statistics which assumes that the normal dataset has come 

from a type of probability distribution with parameters Θ and probability density function 

f(x, Θ) (x is an observation). The parameters Θ are estimated from the training dataset. 

Then we assign an anomaly score for every test instance using the function above.  There 
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are three models for the distribution of the training dataset: Gaussian Model-Based, 

Regression Model Based and Mixture of Parametric Distributions Based. 

Non-parametric statistics are statistics not based on parameterized probability 

distributions. Unlike parametric statistics, non-parametric statistics make no assumptions 

about the probability distributions do not have fixed number of parameters. There two 

specific statistical techniques can be used to detect the anomaly: Histogram Based and 

Kernel Function Based. 

The advantages of statistical techniques are: (1) Performance of statistical techniques 

is high when the training dataset follow a certain distribution. (2) The anomaly score 

calculated by statistical technique can be used as additional information to make decision. 

(3) Statistical techniques can use unsupervised setting without any label information of 

data set if the distribution is robust for the training and testing dataset.  

The disadvantages of statistical techniques are: (1) One of the most disadvantages of 

statistical techniques is that they depend on the assumption that the dataset follows a 

particular distribution.  (2) How to choose the best statistic is hard work [220], after 

confirming that the dataset is followed a certain distribution. (3) The different feature may 

follow a different distribution. Therefore individual feature of the anomaly instance 

maybe is very frequent, but the combination these feature is very infrequent.   

2.3.3 The future trend of anomaly detection technique 

There are several promising trends for anomaly detection technique: 

1. The number of research of contextual and collective anomaly detection technique 

will increase. 

2. More distributed anomaly detection technique will occur because of the across 

localisation data. 
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3. The real-time requirement of the detection will increase because the detection 

techniques will be used for the wireless network and mobile devices. 

4. The anomaly detection techniques will be a requirement to think about the data 

privacy.  

 

2.4 Machine Learning 

Machine Learning is widely used in the anomaly detection. This technique is also the 

theoretical basis of our mobile botnet detection system. So we will introduce the machine 

learning technique in detail in this section. 

2.4.1 Introduction of machine learning algorithm 

The earliest definition of Machine Learning (ML) can be tracked back to 1959, Arthur 

Samuel defined it as a “Field of study that gives computers the ability to learn without 

being explicitly programmed” [221]. A widely more formal definition is provided in [222] 

as “A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E”.  

Machine Learning is a multidisciplinary cross-discipline, involves the theory of 

probability, statistics, approximation theory, convex analysis, algorithm complexity 

theory and so on different subjects. It studies how to use computer simulation or human 

learning behaviour, to gain new knowledge or skills, reorganise the existing knowledge 

structure to improve its performance. 
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Machine learning has been more widely adopted in many areas such as medicine, 

chemistry, bioinformatics, business and computing. It is the core of artificial intelligence 

and the basic way to achieve the computing intelligence. In the present information age, 

the application of machine learning has penetrated into every field of computer science. 

It can make the search engine more accurate and intelligent. The computer can recognise 

the speech and handwriting precisely by using the machine learning. It also can be used 

for control the robot locomotion. The anomaly detection is one of the most machine 

learning application. Moreover, compared with traditional detection algorithms, the novel 

ML algorithms can significantly increase the accuracy of detection without reducing the 

processing speed.  

In general, the machine learning can be classified into four broad categories depending 

on whether the learning signal is available for the algorithm: Supervised learning, 

unsupervised learning, semi-supervised learning and reinforcement learning [223]. 

1. Supervised learning: In supervised learning, the input data in each group which 

are referred to as “training data” has a clear identity or label, such as “spam” and 

“not spam” in the anti-spam system and digital value of picture in the number 

handwriting recognition system. The supervised learning is to establish a learning 

process that comparing the predicted value with the actual identity of training data 

continually to adjust the prediction model constantly until the model prediction 

results reach the desired accuracy. The most common application scenarios of 

supervised learning are classification problems and regression problems. The 

representative algorithms of supervised learning have Logistic Regression [224] 

and Back Propagation Neural Network [225]. 

2. Unsupervised learning: In unsupervised learning, the input data is not specially 

labelled by clear identity. The learning model is to deduce the internal structure 

and hidden patterns in the data. The most common application scenarios of 
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unsupervised learning include the study of association rules and clustering. The 

representative algorithms of unsupervised learning have Apriori algorithm [226] 

and k-mean algorithm [227]. 

3. Semi-supervised learning: Under this learning method, the input data is partly 

labelled. The learning model can be used to predict, but, first of all, learning the 

inner structure of data model is necessary to organise data reasonably for the 

forecast. The most common application scenarios of semi-supervised learning 

include classification and regression that extend the supervised learning. These 

algorithms usually try to perform modelling on the unlabelled data and then 

prediction on the labelled data. The representative algorithms of unsupervised 

learning have Graph Inference [228] or Laplacian SVM [229].) 

4. Reinforcement learning: In reinforcement learning, the labelled input data is not 

only for checking whether the modelling is right or not (supervised learning), but 

also feedback to the modelling to adjust the model at once such as regulating 

threshold for decision. The most common application scenarios of reinforcement 

learning include dynamic statistic and robot locomotion. The representative 

algorithms have Q-Learning [230] and Temporal difference Learning [231]. 

5. Deep learning: The Deep learning is a form of machine learning that enables 

computers to learn from experience and understand the world in terms of a 

hierarchy of concepts [232]. There are two key features, one is the composition of 

models which includes multiple stages or layers of non-linear information 

processing. The other one is the representation of learning method which focuses 

on successively higher and more abstract layer [233].  

2.4.2 Machine learning algorithms 

This section we will introduce the common algorithms that have been used for mobile 

botnet detection and discuss the advantages and disadvantages of each of them. 
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2.4.2.1 Naïve Bayes Classification 

The general Bayesian classification is one kind of classification algorithms that are 

based on the Bayes’ theorem. This classification algorithm will assign the label expressed 

by the value of a feature to the testing instances, and the labels belong to the finite set. 

All the Bayesian classification algorithms are based on one assumption that the value of 

a particular feature used in the classifier is independent with any other feature. Naïve 

Bayes classifier is the simplest one of the Bayes classification algorithms. The Bayes’ 

theorem will be introduced firstly, and then we will discuss the procedure of Naïve Bayes 

classification algorithm.  

Bayes' theorem defines the probability of an event, based on the conditions probability 

that might be related to the event in probability theory and statistics. Bayes' theorem can 

be stated mathematically as the following Equation 2-8: 

Equation 2-8 Bayes’s theorem 

 𝑃ሺ𝐴|𝐵ሻ ൌ
௉ሺ஺ሻ௉ሺ஻|஺ሻ

௉ሺ஻ሻ
 (2-8) 

Where A and B are events. 

P (A) and P (B) denote the probabilities of A and B without regarding to each other. 

P (A | B) denotes conditional probability, is the probability of A given that B is true. 

P (B | A), is the probability of B given that A is true. 

The key idea of Naïve Bayes classification algorithm is very simple: For the testing 

instances and existing classes, we compute the conditional probability of every class 

given the value of the instance and then compare them. The class with the max of the 

conditional probability will be the class that the instance belongs to. The procedure of this 

classification is shown as follows:  
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1. Set 1 2 3{ , , ... }mx a a a a , x  is an instance to be classified and a  is one of the features 

used for the classifier. 

2. Set 1 2{ , ,..., }nC y y y  is category set that contains n categories.  

3. Compute the conditional probability of every category given the value of the 

instance x . 1 2 3( | ), ( | ), ( | ),..., ( | )nP y x P y x P y x P y x   

4. If 1 2 3( | ) max{ ( | ), ( | ), ( | ),..., ( | )}k nP y x P y x P y x P y x P y x  then we classify the instance 

x  to the category k 

So now the key is how to calculate the conditional probability of step 3. It is based 

on Bayes’ theorem as follows:  

1. First to prepare a training dataset including instances with known category. 

2. The statistic the conditional probability of every feature given the category based 

on the training dataset:  

Equation 2-9 Bayes’s theorem: conditional probability of features I 
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 
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 
 
    (2-9) 

3. According to the Bayes’ theorem, we can get: 

Equation 2-10 Bayes’s theorem: conditional probability of features II 

 

( | ) ( )
( | )

( )
i i

i

P x y P y
P y x

P x


 (2-10) 

Because the denominators for all classes are constant, we can maximise numerator. 

Meanwhile, as the feature attributes are conditional independence, so there are: 
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Equation 2-11 Bayes’s theorem: conditional probability of features III 

 
1 2

1

( | ) ( ) ( | ) ( | )... ( | ) ( ) ( ) ( | )
m

i i i i m i i i j i
j

P x y P y P a y P a y P a y P y P y P a y


  
 (2-11) 

According to the analysis mentioned above, the Naïve Bayes classification is divided 

into three phases: 

1. Preparation Phase: In this stage, a training dataset that has labelled different 

category need be prepared. Moreover, then the appropriate attributes should be 

extracted from the training data. 

2. Classifier Training Phase: In this stage, the classifier is trained by statistical 

analysing the frequency of every category in the training dataset and the 

conditional probability of every feature. 

3. Application Phase: The task of this stage is using a classifier to classify the testing 

instances.  

There are some advantages and disadvantages for Naïve Bayes classification algorithm 

[234]. 

Advantages: 

1. Fast to train (single scan). Fast to classify. 

2. Not sensitive to irrelevant features. 

3. The algorithm can handle real and discrete data. 

Disadvantages: 

1. Assumes independence of features. 

2. Practically, dependencies existing among variables cannot be modelled. 
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2.4.2.2 Decision Trees 

A decision tree is a flowchart-like structure (binary tree or non-binary tree). Each 

branch represents the outcome of the test, and each leaf node represents a category label 

(a decision made after analysing all the attributes). The procedure of making a decision 

using decision tree is to test the attributes of test instance from the root node. According 

to the value of attributes belonging to test instance and the constraint of the tree, the right 

branch will be chosen. Traversing the entire feature from top to bottom of the tree and 

reaching the leaf node that is last decision to make. There are three types of nodes in the 

decision tree: (1) Decision nodes (2) Chance nodes (3) End nodes. The process of the 

decision tree is intuitive and easy to be understood. The primary problem to use decision 

tree for learning is the construction of decision tree based on the training dataset [235]. 

Different from the Bayes’ classification algorithms, the construction of decision tree 

does not depend on domain knowledge. The process of constructing decision tree is to 

build a topology structure of the relationship among all the attributes of attribute selection 

measure on the training dataset. The primary step of building decision tree is the split of 

the attribute. The attribute split is constructing different branches according to the 

difference of feature attributes at one of the node. The goal is ensuring the instances under 

the branch belong to the same category as far as possible. There are three situations for 

splitting attributes: 

1. If the attribute is discrete and no requirement for a binary tree: Every attribute 

is regarded as one branch. 

2. If the attribute is discrete and the request for a binary tree: Defining a subset 

of attributes and dividing two branches as “belong to the subset” and “not 

belong to the subset”. 
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3. If the attribute is continuous: Defining a value as split point (split_point) and 

dividing two branches as “greater than split_point” and “less and equal than 

split_point”. 

A fundamental issue in decision tree learning is the attribute selection measure that is 

an attribute splitting rule to divide the training dataset into different branches. The 

algorithms ID3 and C4.5 are the common algorithms for attribute selection measure. 

ID3 Algorithm 

The main ideas behind the ID3 algorithm is a feature is chosen as the next level of the 

tree if its splitting produces the most information gain [236]. 

In the decision tree, each non-leaf node represents an input attribute, and each arc 

between two nodes represents a possible value of that attribute. A leaf node represents 

the expected value of the output attribute when the path from the root node to that leaf 

node describes the input attributes. In an idealised decision tree, the input attribute to each 

non-leaf node has a requirement: amongst all the input attributes, the input attribute is the 

most informative about the corresponding output attribute. It is because the output 

attribute can be predicted by using the fewest possible questions on average. Moreover, 

the degree of how informative a particular input attribute can be represented by entropy 

which is utilised in communication systems to describe the measure of uncertainty [237]. 

It is fundamental in modern information theory. The detail of the procedure of ID3 

algorithms is shown as follows [235]: 

Algorithm goal: Select the attribute with the highest information gain for splitting. 

1. Let ip  denote the probability that an arbitrary tuple in D belongs to the category 

iC, estimated by: 
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i DC

D  

2. The entropy (expected information) needed to classify a tuple in D which can 

be denoted by: 

 Equation 2-12 ID3 algorithm: entropy equation 

 
( )

m

i 2 i
i=1

Info D = - p log (p )
  (2-12) 

3. Information required to classify D by using A to split D into v partitions, and the 

expected information can be denoted by: 

 Equation 2-13 ID3 algorithm: information after attributes split 

  1

| |
( ) ( )

| |

v
j

A j
j

D
Info D info D

D

 
 (2-13) 

4. At last the information gained by branching on attribute A can be denoted by: 

 Equation 2-14 ID3 algorithm: information gain equation 

 Again(A)=info(D)-info (D)
  (2-14) 

5. After computing the information gain of all the attributes, we select attribute 

with the max information gain for splitting different branches after the current 

node. Then applying the procedure above for the child notes recursively until all 

the attributes are used. 

Even though ID3 algorithm can search complete hypothesis space and the resulting 

search is much less sensitive to the error in individual training instances. There are still 

some disadvantages for the algorithm. ID3 algorithms maintain only a single current 

hypothesis as it searches through the space of decision trees, so it loses the capabilities 

that follow explicitly representing all consistent hypothesis. Meanwhile, ID3 perform 

without backtracking in its search. Therefore there is some probability of converging to 

locally optimal solutions that are not globally optimal. Moreover, if there is only one label 
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for the attribute, the ID3 will choose it as spitting attribute that is helpless for 

classification. The C4.5 algorithm is one of improved decision tree algorithm from the 

ID3 algorithm. 

C4.5 Algorithm 

The C4.5 algorithm is regarded as an extension of an earlier ID3 algorithm developed 

by Quinlan (known in Weka as J48 for Java). C4.5 is often regarded as a statistical 

classifier because the decision trees generated by C4.5 can be used for classification 

[238].  

For C4.5 algorithm use the gain ratio to select the attribute for splitting. Based on the 

ID3 algorithm, it defines the split information as follows: 

Equation 2-15 C4.5 algorithm: split information 

 

v
j j

A 2
j=1

| D | | D |
split_info (D)= - log ( )

| D| | D|
 (2-15) 

Moreover, then the gain ratio is defined as: 

Equation 2-16 C4.5 algorithm: information gain ratio 

 

gain(A)
gain_ratio(A)=

split_info(A)  (2-16) 

The last step that is same with the ID3 algorithm is to select an attribute with the max 

information gain ratio for splitting different branches after the current node. Then 

applying the procedure above for the child notes recursively until all the attributes are 

used. 

Decision tree algorithms have advantages and disadvantages, which can be 

summarised as follows [239]: 

Advantages: 
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1. Decision tree algorithms are easy to understand and interpret. 

2. Decision tree algorithms can get a relatively better result even with a little dataset. 

3. Decision tree algorithms can be combined with other decision techniques. 

4. Decision tree algorithms can search entire hypothesis space, and the resulting 

search is much less sensitive to errors in individual training instances. 

Disadvantages: 

1. The information gain from constructing the decision tree is biased for those multi-

value attributes, because of data including categorical variables with a different 

number of levels [240]. 

2. The algorithm has high space complexity with a large number of sample. Moreover, 

the run-time complexity matches to the depth of decision tree, which is relative to 

tree size and thereby to the amount of the sample [241]. 

2.4.2.3 K-Nearest Neighbours 

K-Nearest Neighbours (K-NN for short) is one type of instance-based learning (also 

called lazy learning). Instead of performing explicit generalisation, the K-NN algorithm 

compares testing instances with training instances stored in memory to make a decision 

which category the testing instance should be allocated to [242]. 

There are two phases for K-NN classification algorithm: (1) Determination of the K 

nearest neighbours for the test instance. (2) Determination of the common category 

among the K nearest neighbours. The general procedure of K-NN algorithms is described 

as follows [243]: 

1. Assuming that there is a training dataset D whose size is |D| and the instances in 

the dataset are denoted as 𝑥௜ሺ𝑥 ∈ ሾ1, |𝐷|ሿሻ. These instances are described by the 

feature set F whose values have been normalised to the range [0, 1]. The category 
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set is denoted as Y. Every instance is labelled with the corresponding category

( )i iy y Y . 

2. When a testing instance q is given as input to the algorithm, we first calculate the 

distance between q and all ( [1,| |])ix x D based on the features in set F. The 

method to compute the distance has been introduced in Section 2.3.2.2. We use the 

generic form as follows: 

Equation 2-17 KNN algorithm: distance compute equation 

 
( , ) ( , )i f f i f

f F

d q x w q x


 
 (2-17) 

3. After the K nearest neighbours are selected, the most straightforward approach to 

determining the class of q is to assign the majority category among the nearest 

neighbours to the testing distance. A general technique to achieve this is to get to 

vote on the class of the testing instance with votes weighted by the inverse of their 

distances, which is as follows: 

Equation 2-18 KNN algorithm: vote equation 

 1

1
( ) ( , )

( , )

k

i j cn
c c

Vote y l y y
d q x


 (2-18) 

Thus, the vote assigned to a class jy  by neighbour jx is 1 divided by the distance 

to that neighbour. The function ( , )j cl y y  will return 1 if the categories of jy  and 

cy  are matched and return 0 otherwise. 

The K-NN algorithm has the following advantages and disadvantages:  

Advantages: 



2.4 Machine Learning 65

 

1. Because it is an instance-based algorithm, the cost of the learning process is zero. 

Meanwhile, the algorithm can be understood and implemented easily.  

2. The KNN algorithm has a probability of error that is less than twice of Bayes based 

on certain reasonable assumptions [244].  

3. The KNN algorithm is particularly suitable for the training data that has multiple 

class labels. For example, for the assignment of functions to genes based on 

expression profiles [245]. 

Disadvantage: 

1. The number of K should be determined when using this algorithm. Changing K 

can change the predicted results. 

2. The algorithm must compute the distance and sort all the training dataset at each 

prediction [246]. It is a time-consuming process if there are a large number of 

training instances. 

2.4.2.4 Neural Networks 

Neural networks (NNs) are a group of statistical learning models derived from 

biological neural networks of the animal brain and are used to approximate functions that 

can depend on a large number input dataset [247].  

Neural networks are mathematic model containing a large number of nodes (also called 

“neurones” or “units”) which connected each other. There is a particular output function, 

which is called activation function. Each connection between two nodes represents a 

weighted value for the signal through the connection, which is corresponding to the 

memory of artificial neural network. The output of the neural network is by the network 

connection mode, the different weights and activation function. 
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Figure 2-7 - The unit of neural network 

We first introduce the unit node of the neural network that can be shown in Figure 2-7. 

The a1 to an are inputs for the unit and w1 to wn is the weight for each, f is the activation 

function. To avoid this dilemma, a third input typically referred to as a bias input is 

required for the unit. A bias input should have the value of one always and is also 

weighted with value b. The unit can be denoted as: ( ' b)t f W A 


. 

 

Figure 2-8 - Simple neural network model 

The key of the neural network is the construction of the model based on the training 

dataset. For example, the Figure 2-8 is one of the simple neural networks. A common 

form of multilayer feedforward network consists of three parts: Input layer (Layer L1), 
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output layer (Layer L3) and hidden layer (Layer L2). The input of labelled “+1” in layer 

L1 are bias units and correspond to the intercept term. This example neural network also 

has three input units, three hidden units, and one output unit. We use 
( )l

i jW  to denote the 

weight associated with the connection between unit j in layer l, and unit i in layer l+1. 
( )l
ib  is the bias associated with unit i in layer l+1. We use ( )l

ia  to denote the output value 

of unit i in layer l. Given a fixed parameter weight (W) and bias (b), the hypothesis 

, ( )W bh x  can be defined to output a real number for the neural network. We first introduce 

the forward propagation [248] process as follows: 

1. Compute the output Layer L2: 

Equation 2-19 Three layers NN algorithm: output of layer 2 

 

(2) (1) (1) (1) (1)
1 11 1 12 2 13 3 1

(2) (1) (1) (1) (1)
2 21 1 22 2 23 3 2

(2) (1) (1) (1) (1)
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( )

( )
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a f W x W x W x b

a f W x W x W x b

   





 





   (2-19) 

2. Compute the output Layer L3: 

Equation 2-20 Three layers NN algorithm: output of layer 3 

 
(3) (2) (2) (2) (2) (2) (2) (2)

, 1 11 1 12 2 13 3 1( ) ( )W bh x a f W a W a W a b    
 (2-20) 

Then we can use backpropagation algorithm [225] to learn with training dataset. We 

suppose that the training data set denoted as (1) (1) ( ) ( ){( , ), ,( , )}m mx y x y , x is the input data, 

and the y is the output as the category. The overall cost function can be defined as follows: 

Equation 2-21 Three layers NN algorithm: overall cost function 
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 (2-21) 
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The first term in the definition is an average sum-of-squares error term. The second 

term is a regularisation term that tends to decrease the magnitude of the weights and helps 

prevent overfitting. 

This cost function can be used both for classification and regression problems. For 

classification, let y=0 or 1 represent the two class labels. For regression problems, scale 

the outputs to ensure that they lie in the [0, 1] range. The goal of the artificial neural 

network is to minimise ( , )J W b  as a function of W and b. To achieve this objective, the 

algorithm first initializes these two parameters with small random value and then apply 

optimisation algorithms. The gradient descent is one type of optimisation algorithms 

which can be described as follows: 

Equation 2-22 Gradient descent 
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


 

  (2-22) 

Where α is the learning rate 

Finally, we use the function below to compute the partial derivatives of the cost 

function: 

Equation 2-23 Neural network algorithm: cost function 

 

( ) ( ) ( )
( ) ( )

1

1
( , ) ( , ; , )

m
i i l

ijl l
iij ij

J W b J W b x y W
W m W




  
  

   


 (2-23) 

The Neural Network (NN) algorithm has several advantages and disadvantages that 

can be summarised as follows [249]: 

Advantages: 
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1. The neural network algorithm can be used for general application and can generate 

a variety of patterns with high accuracy. 

2. The neural network algorithm uses a static and non-linear function to fit the 

parameters of a particular function based on the training dataset. Meanwhile, there 

are some multiple functions to choose. 

3. It is possible to detect nearly all complex nonlinear relationships between input 

data and outputs data based on the training dataset. 

Disadvantages: 

1. The neural networks algorithm cannot determine the optimal number of nodes, 

hidden layers, functions and so on. Because the process of neural networks is a 

black box, it is difficult to find the errors in the process of learning. Therefore this 

algorithm is a lack of ability to reason about their output in a way that can be 

effectively communicated [250].  

2. Training time for the neural network is usually much longer than other machine 

learning algorithm such as decision trees [251]. 

2.4.2.5 Support Vector Machines  

Support vector machines (SVMs) are one of supervised learning models that can be 

used for classification and regression. The SVM algorithm depends on the concept of 

decision boundary of the different categories in the training dataset. The decision 

boundary is a hypersurface that partitions the underlying vector space into two sets and 

one for each class. There are several types of SVM algorithms. In the following, we 

present the basic two-class support vector machine [252]. 

We suppose the training dataset 1 1 2 2{( , ), ( , ), , ( , )}n nx y x y x y   , and the instances 

𝑥௜ ∈ 𝑅௡ and 𝑦௜ ∈ ሼെ1,1ሽ  in a space where ix  and iy  is the ith
 input and output. The 



70  Literature Review 

 

hyperplane of function ϕ is assumed which can create a non-linear decision boundary 

between two categories. The function can be denoted as 0Tw x b  , with w F  and

b R . There is only one category of training instances in any one side of the hyperplane. 

The distance between the closest points from each category and the hyperplane is equal. 

The variables i  are introduced to keep some instances lying within the margin as 

penalizes. Moreover, the constant variable C is also introduced to determine the trade-off 

between a large margin and a small error penalty. Therefore, the objective function of the 

SVM algorithms can be described as follows: 

Equation 2-24 Support vector machine: objective function 
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 (2-24) 

Now we can use Lagrange multipliers to solve this minimization problem and the 

decision function for one instance can be denoted as follows ( i  are the Lagrange 

multipliers): 

Equation 2-25 Support vector machine: decision function 

 1

( ) sgn( ( , ) )
n

i i i
i

f x y K x x b

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 (2-25) 

Next, let us introduce the Sequential minimal optimisation (SMO) which is one of the 

simple versions of SVM and it is widely used in many machine learning toolkits such as 

WEKA [253]. The target of the SMO is to find a function to divide the training instances 

into different categories. To maximise the decision boundary in SMV, we need to 

minimise the value of: 
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Equation 2-26 decision boundary of SVM 
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w w C 
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 
 (2-26) 

w  is the parameter and the greater the value, the more obvious for a boundary. C is 

behalf of the penalty factor. If one instance has a deviation to the category that it is should 

belong to, the greater of the value of factor C, the more degree to rectify this situation. i

is the slack variable. According to Karush–Kuhn–Tucker conditions, we can convert the 

problem of minimising the value the function above to find the optimal solution that 

conforms to these conditions [254]: 

Equation 2-27 to Karush–Kuhn–Tucker conditions 
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 i  are the Lagrange multipliers  

1. For condition (a), the i  is normal classification. 

2. For condition (b), the i  is support vector which is on the boundary. 

3. For condition (c), the i  is between two boundaries. 

Therefore, the following conditions will be not satisfied: 

1. 1i iy u   but i C  . It should be i C   

2. 1i iy u   but i C  . It should be 0i   

3. 1i iy u   but i C  or 0i  . It should be 0 i C   
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The next step is to search all the unsatisfied situation and update i . Because of another 

constraint condition
1

0
l

i i
i

y


 , the i  and i  will be updated simultaneously by the 

function: 

new new old old
i i j j i i j jy y y y constant        

According to the convex quadratic programming, we can get  
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
 

 
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Base on the constraint of  0 j C  , we can get the analytical solution of j : 

,
j i j i i j

j i j i i j

L = max(0,a a ),H = max(C,C +a - a ) if  y y

L = max(0,a a C),H = max(C a - a ) if  y = y

 
  

 

,( )new new clipped
i i i j j jy y a      

i  can be found according to the KTT, and j  can be found according to the 

condition of i jmax E E , then we define: 
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Then we update b according to  
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Finally, we update all the i , y and b  to finish the SMO model to learning on the 

training dataset. 

2.4.3 Evaluation criteria for machine learning 

In Section 2.2.4, we have given a short introduction for how to compare the different 

botnet detection techniques. We will make a detailed analysis of the methodology of the 

evaluation of machine learning. For evaluating the machine learning algorithm, we first 

to discuss the measurement for performance and the statistical test. Moreover, then the 

sampling techniques and the choice of the appropriate dataset will be introduced at the 

end. 

2.4.3.1 Performance Measurement 

1. Confusion Matrix 

The confusion matrix is a particular table layout allowing visualisation of the 

performance of machine learning algorithms. In general, the columns of the matrix 

represent the predicted class value, and the rows of the matrix represent the actual class 

value for the instances. The confusion matrix can be described in Table 2-4. According 

to the figure, there are four types of the classification [255]: 

True positive (TP): The instances are predicted as positive. Meanwhile, the actual class 

value of these instances is positive. It is also called hit. 
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False positive (FP): The instances are predicted as negative. Meanwhile, the actual 

class value of these instances is positive. It is also called false alarm or Type I error. 

False negative (FN): The instances are predicted as positive. Meanwhile, the actual 

class value of these instances is negative. It is also called miss and Type II error. 

True negative (TN): The instances are predicted as negative. Meanwhile, the actual 

class value of these instances is negative. It is also called correct rejection.  

Table 2-4 - Confusion matrix 

For the machine learning algorithm, we want to high TP and TN and low FP and FN 

intuitively. There are also important performance measures that are generated from the 

confusion matrix [255]. 

True positive rate (TPR): TPR = TP/ (TP+FN), It is also called Recall and Sensitivity. 

False positive rate (FPR): FPR = FP/ (FP+TN), It is also called Fallout. 

False negative rate (FNR): FNR = FN/ TP+FN), It is also called Miss Rate. 

True negative rate (TNR): TNR = TN/ (FP+TN), It is also called Specificity (SPC). 

Positive predictive value (PPV): PPV = TP/ (TP+FP), It is also called Precision. 

False omission rate (FOR): FOR = FN/ (FN+TN). 

False discovery rate (FDR): FDR = FP/ (TP+FP). 

Confusion Matrix 
Predicted class value 

Positive Negative 

Actual 
class value 

Positive True positive(TP) False positive(FP) 

Negative False negative(FN) True negative(TN) 
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Negative predictive value (NPV): NPV = TN/ (FN+TN). 

Accuracy (ACC): ACC = (TP + TN)/ (TP + TN + FP + FN). 

Positive likelihood ratio (LR+): LR+ = TPR/FPR. 

Negative likelihood ratio (LR−): LR− = FNR/TNR. 

Diagnostic odds ratio (DOR): DOR = LR+/LR−. 

Receiver Operating Characteristics (ROC): ROC is a more comprehensive evaluation 

criterion for machine learning. It is based on two important concepts: TPR and FPR.  The 

ROC curve is the graph whose horizontal axis is FPR, and the vertical axis is TPR. With 

the variation of the threshold setting, the detection system will get a different pair of TPR 

and FPR. Ideally, FPR is lowest, and the TPR is highest. However, the threshold at the 

point of tangency on the ROC curve is the best configuration.  

The area under ROC curve (AUC): The area under the ROC curve is also regarded as 

a criterion for detection effect that is called AUC.  

2. Cohen’s Kappa Measure 

Cohen's kappa coefficient measurement is a statistic that measures the degree of 

agreement among raters for categorical items. It can solve the problem of classification 

could be a result of coincidental concordance between the classifier’s output and the label 

generation process is not taken into account. The formula of Cohen’s Kappa is as follows 

[256]: 

Equation 2-28 Cohen’s Kappa formula 

 
   o – 1/C C

e eP P P  
 (2-28) 
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oP  denotes the probability of overall agreement across the label assignments between 

the classifier and the actual process, and 
C

eP  denotes the chance agreement across the 

labels and is defined as the sum of the proportion of examples assigned to a class times 

the percentage of true labels of this category in the data set. 

3. Cost Curves 

Cost curves are more practical than ROC curves because it can show what class 

probabilities one classifier is preferable over the other. The cost curve is a graph of the 

costs of production as a function of total quantity produced which is derived from 

economy [257]. 

It is based on two concepts: Error rate and Probability of an example being from the 

positive class that can be denoted as  P  .  The Cost-curves is the graph whose horizontal 

axis is  P   , and the vertical axis is an Error rate. To know the meaning of  P  , we 

need to introduce three sets of instances that have a different proportion of positive 

instances.  trainP   is the percentage of positive instances in the training dataset used to 

learn the algorithm.  testP  is the proportion of positive instances in the dataset used to 

build the classifier’s confusion matrix.  deployP +  is the percentage of positive instances 

when the classifier is deployed for the testing dataset. For the cost curves, the  P   

should use  deployP + . 

4. The Root-Mean-Squared Error (RMSE) 

The Root-Mean-Squared Error (RMSE) is usually used for regression, but can also be 

used with probabilistic classifiers. The formula for the RMSE is as formula [258]: 
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Equation 2-29 Root-mean-squared error formula 
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Where m is the number of test examples, f is the classifier’s probabilistic output on xi 

and yi the actual label. 

2.4.3.2 Statistical Testing 

According to the number of the algorithms and domain included in the test, we can 

divide the statistical test into three types:  The comparison of 2 algorithms on a single 

domain, the comparison of 2 algorithms on multiple domains and the comparison of 

multiple algorithms on multiple domains. 

Analysis of variance (ANOVA): The analysis of variance (ANOVA) is a collection 

of statistical models that used to analyse the differences between group means and their 

associated procedures [259]. In the ANOVA setting, the observed variance in a specified 

variable is divided into components attributable to different sources of variation. For the 

simple form, ANOVA provides a statistical test of whether or not the means of several 

groups are equal, and therefore generalises the t-test to more than two groups. As doing 

multiple two-sample t-tests would result in an increased chance of committing statistical 

type I errors, ANOVAs are beneficial for comparing (testing) more than three means 

(groups or variables) for statistical significance. The F value in ANOVA which is 

generated by F-test can be used to analyse whether the means between two groups of data 

are significantly different. If the calculated F value is larger than the F critical value (F 

statistic which can be found in F table), the null hypothesis can be rejected which means 

the two set of data are significantly different. 
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2.5 Mobile botnet 

The overflow of mobile malware follows the development of the smart mobile devices. 

However, because of the isolation and immature of the traditional mobile malware, their 

harm is limited, and they are easy to be detected by general anti-virus mobile software 

with the signature of the existing malware sample. 

The mobile devices in using such as smartphones and tablets have increased 

impressively recently. According to the Cisco’s report, more than 0.5bn (526 million) 

mobile devices were activated and connected to networks in 2013 [260]. The global 

mobile devices and connections have grown to 8.0 billion in 2016, up from 7.6 billion in 

2015. It also forecasts this number will grow to 11.6 billion by 2021 [18]. Recent figures 

also show that Google’s Android operating system has overtaken other platforms 

platform since 2012 and is currently the market leading mobile OS and is expected to get 

more than 80% market share until 2019 [19]. 

Along with the growth in the use of the high speed of mobile network (2.3 billion 

active mobile-broadband subscriptions worldwide in 2013 according to [261]), there has 

also been a growing number of mobile malware, often in the form of mobile botnets. The 

mobile botnets can be defined as a collection of network connected applications on mobile 

devices communicating with other similar applications and a remote server to perform 

tasks. The controllable features of botnet enable more effective and sophisticated attacks 

on mobile devices (e.g., dynamically execute a remote command, long-term information 

stealing) making mobile botnet a prominent form of new generation of mobile malware. 

According to KASPERSKY [20], 148,778 mobile malware apps had been detected at the 

end of 2013, and nearly 62% of them are elements of mobile botnets. In 2016, the number 

of malicious installation packages grew considerably, amounting to more than 8.5 million 

which is three times more than 2015 [21]. The first mobile botnet, i.e., the iKee.B iPhone 
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botnet [22], was traced back in 2009. However, due to iOS being a closed system, it did 

not prove to be a particularly harmful mobile malware. In the case of Android, however, 

its open source nature gave an ample opportunity for developing mobile botnets. Geinimi, 

a piggybacks game app, became the first discovered Android botnet in 2010 [23], and 

since then more and more hackers have started producing mobile botnets for Android 

devices. The Android.Troj.Mdk Trojan, for instance, has been found in more than 7,000 

apps and infected more than a million mobile users in China in 2013 [7]. 

NotCompatible.C is another example of new Trojan threatening protected enterprise 

networks [24]. 

The current state of mobile botnet incidents in real networks is reviewed in the next 

section. It is followed by a summary of the existing research on mobile botnets in Section 

2.5.2 and 2.5.3 which contain two aspects: mobile botnet creation and mobile botnet 

detection. A comparison of current machine learning based mobile botnet detection 

techniques are discussed in Section 2.5.4. We also discuss the specificities of mobile 

botnets with other mobile malware and traditional botnets in Section 2.5.5. Lastly, we 

analyse trend in mobile botnet techniques and the open issues in correspondent detection 

techniques in Section 2.5.6. 

2.5.1 Mobile botnet accidents 

One of the important aspects of the analysis of mobile botnet malware is the harm and 

the general mode of attack. The analysis of harmful behaviours and the general attack 

means of mobile botnet malware are meaningful to detect and defence the corresponding 

malware. Through summarising the accidents of the mobile botnet, we list the potential 

attacks which can be performed by these types of mobile botnet malware in Table 2-5. 
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Table 2-5 - List of potentially harmful behaviours of mobile botnet 

Index The potential harmful behaviours 

A Capable of rooting the vulnerable Android phones. 

B Evade the detection from mobile anti-virus software. 

C 
Collect information and phoning home. (IMEI number, phone model, Android OS 

version) 

D Elevate its privilege to root. 

E Capability to install or remove any packages without users' awareness. 

F Send SMS to the premium-rate telephone number to get profit. 

G Remove messages related to the premium-rated telephone number. 

H Thoroughly remove evidence of their activities. 

I Steal user's accounts and other credential information. 

J Built-in promotion mechanism to install other instances of malware. 

K 
Automatically confirm the subscription of premium-rate SMS services without users' 

awareness. 

L Capability to dynamically load and execute remotely downloaded code from Blog. 

M 
Detect the existence of anti-virus software and attempt to shut down the security 

software. 

N Encrypt information bypass detection. 

O Install itself as a device administration app. 

P Abusive use of notification bar. 

 

Basing on this harmful behaviour of mobile botnets, we make a summary of the major 

mobile botnet accidents in recent years. Every accident includes the year first detected, 

the infected platform, the way of spread and the harmful effect. We also give some 

impacts of some more serious mobile botnet malware according to reference. The 

complete accidents of mobile botnets are shown in Table 2-6.  
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Table 2-6 - The accidents of mobile botnet
Ref. Incidents name Y Device The way of spread Effect Impact 

[262] iKee.B  2009 iOS  Scan the iOS devices by SSH C T-Mobile’s Dutch IP infected.

[23, 263] Geinimi 2010 Android Piggybacks on apps  C E 
Infect significant number of 
Android devices 

[264, 265] DroidDream 2011 Android Piggybacks on apps C E O 
There over 50 applications 
were infected with it. 

[266-268] DroidKungFu1,2,3 2011 Android Piggybacks on apps 
A B C
D E

 

[269] YZHCSMS Trojan 2011 Android Piggybacks on apps F G H 
[270, 271] Plankton 2011 Android Piggybacks on apps C I  
[272, 273] GoldDream 2011 Android Piggybacks on apps C E F 
[274, 275] HippoSMS 2011 Android Piggybacks on apps F S G 
[276, 277] SndApps 2011 Android Piggybacks on apps C J B
[278] NickiBot 2011 Android Piggybacks on apps C 
[279, 280] RogueSPPush 2011 Android Piggybacks on apps K G

[281, 282] GingerMaster 2011 Android  Piggybacks on apps A C E 
the first one that utilises a root 
exploit against Android 2.3

[263, 283] DroidDeluxe 2011 Android Rogue App or Fake malware2 A C I

[284, 285] AnserverBot 2011 Android  Piggybacks on apps L M  
Being injected into some (20+) 
legitimate apps 

[286] DroidCoupon 2011 Android Standalone or Fake malware A C E 
[287, 288] BeanBot 2011 Android Piggybacks on apps C F

[289, 290] 
SMS Android 
Trojan DroidLive 

2011 Android  Piggybacks on apps C F O  
It infects more than ten distinct 
Android apps. 

[291, 292] Android. Master 2012 Android Piggybacks on apps C I E  
11,000/$547,500 to 
$3,285,000 per year 

[293, 294] RootSmart 2012 Android  Piggybacks on apps A E  
affect between 10,000 and 
30,000 devices per day.

[295] PushBot 2012 Android Piggybacks on apps E P

[296] DKFBootKit 2012 Android  Piggybacks on apps E  
Infect 1,657 devices in the past 
two weeks. 100 malicious apps 

[297, 298] TigerBot 2012 Android Piggybacks on apps C F

[299, 300] UpdtKiller 2012 Android  Piggybacks on apps 
B C F
G  

  

[301] ZitMo  2012 
Android 
Blackberry

Standalone or Fake malware  C    

[7] Android.Troj.mdk 2012 Android  Piggybacks on apps C E N 
Infects 100,000 Chinese 
smartphones and 11,000 
malicious apps samples

[302] 
Eurograbber 
(variant of ZitMo) 

2012 
Android 
BlackBerry

Fake software security 
upgrade3. 

C  
infected more than 30,000 
users Stolen an estimated 36 
million Euros 

                                                 
2 Rogue App or Fake malware:  It’s mean that some malware disguise themselves as some legitimate 
applications with some attractive function, such as password recovery and so on. 

3 Phishing message leading downloads the Trojan onto their PC. Trojan hijacks security upgrade to send 
SMS with fake upgrade URL to install software on mobile device. 
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2.5.2 Mobile botnet creation 

Because the mobile botnet is relatively new threaten for the current mobile network 

environment, there are not so many typical mobile botnet samples detected in the wild. 

So many literature do research for proposing new mobile botnet as preventive measures 

for the future detection system. Some creations of mobile botnet concentrate on the 

feature of the mobile network to strengthen one or more procedures in the botnet. 

Mulliner et al. [53] propose a cellular botnet relatively early that describe what it takes 

to build a mobile botnet in detail. The paper first discusses the critical procedures that 

contain infection pathway, Command and Control (C&C) protocol and communication 

strategies. C&C channel is the most important part of a botnet as well as for mobile botnet. 

There are two major modes of transmission of C&C command. The first one is a P2P-

based approach and the second one is an SMS-based approach that is much harder to 

observe, analyse and disrupt by security software. To transfer a large meaningful volume 

data, the paper first proposes the SMS-HTTP hybrid C&C channel. The basic idea for the 

hybrid structure is dividing the communication into SMS and HTTP. The encrypted files 

are stored on some websites as a command, and their URLs are encoded into the SMS 

which should be sent to the random bots. This method can decrease the size of controlled 

SMS and conceal the real commands. They even give an implement of necessary parts of 

the botnet and evaluate it in Wi-Fi connection and mobile data connection. 

Xiang et al. [28] design another mobile botnet named Andbot. They first analyse the 

challenges of the constructing mobile botnet and propose the corresponding solutions for 

these challenges including stealthy and resilient of C&C channel, low-cost in charges, 

traffic, and battery. The paper describes a control mechanism called URL Flux. The basic 

principle is that the bots try to connect the Web 2.0 servers (such as blog and microblog) 

with a sequence of generated usernames until the connection is established successfully 

and get the information from the new feed on the servers. A particular C&C architecture 
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and process of Andbot are presented. The botmaster in Andbot binds the encrypted and 

signed commands into a JPG picture and divides the URL of the picture and the picture 

into different Web2.0 servers which improve the concealment of the C&C channel.  

The SMS is usually applied to the C&C channel in mobile botnet as one of the 

important unique features in mobile devices. The literature [46, 47] propose an improved 

SMS based heterogeneous mobile botnet. They design a heterogeneous structure SMS 

communication for the botnet which contains botmaster, collection node, Bot server, 

region Bot server and bots. Collection nodes are the response for receiving the valuable 

information from all the nodes of the botnet. The Bot servers, as well as the region Bot 

servers, are key nodes in the structure which undertake the tasks of searching and 

forwarding the nodes in next layer. They also make an evaluation of nodes capacity and 

connectivity for the structure in mathematic. Hamandi et al. [44] demonstrate a type of 

botnet application with two levels of topology structure that targets Android devices 

specifically. They give more detail of how to build an SMS-based botnet in Android OS, 

focusing on the components: main activity, listening service and permissions in the 

application. The SMS payload is designed to contain verifier to verify the message 

originated from the Botmaster and all the information of the command. 

Hua et al. [49] proposed an SMS-based mobile botnet using Flooding Algorithm. The 

structure of the botnet is P2P, and after the botmaster first sends out the command to any 

other node, the process will not stop. Whenever any node receives the command, they 

will continually transmit the command to their other neighbour nodes until the forwarding 

count reaches preconfigure threshold. The key problem of the simple flooding algorithm 

is how to choose neighbourhood nodes to propagate the command. A helper server is 

introduced in the paper to support the selection of neighbour with a certain probability. 

The social network applications such as Facebook, Twitter and MySpace have had 

become one of the general applications installed in the smart mobile phone. So there is 
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some literature taking advantage of the feature of the social network to establish the 

mobile botnet. Faghani et al. [45] present a new cellular botnet named SoCellBot that 

makes use of social networks to infect the mobile devices as bots and uses social networks 

messaging systems as communication channels between bots. The paper discusses three 

parts of the botnet which contain the propagation mechanism, C&C channel and topology. 

There are two main methods to recruit the mobile devices into the botnet: one is to exploit 

vulnerabilities of the operating systems, and the other is using social engineering 

techniques to trick users to install the application. The topology is based on the knit 

groups and friendship on the social network that stabilise the connection between 

botmaster and bots. They simulate their model in two set experiments with four scenarios 

to evaluate the propagation efficiency and the communication efficiency.  Yue et al. [52] 

put forward a mobile botnet based on the Twitter and SMS control. They also propose 

two common algorithms for constructing the network communication topology which 

synthesises the Twitter message and SMS. 

As the functions of mobile devices are continuously enhanced, the services on the 

mobile devices are gradually diversifying. Meanwhile, some specific services can be 

exploited for designing mobile botnet. The literature [58] present a new mobile botnet 

called cloud-based push-styled mobile botnets based on one of the important services 

provided by Google on Android OS devices named Cloud to Device Message Service 

(C2DM)4. C2DM is a service that helps developers send data from servers to their 

applications on Android devices [98]. So the paper proposes an architecture for pushing 

the command for application server as the botmaster to the mobile devices. Considering 

the single C2DM mechanism is easy to be detected by the system, they design an 

enhanced architecture using two sets of C2DM registrations to move the botmaster for 

                                                 
4 C2DM has been officially deprecated as of June 26, 2012.And it has been replaced by the new version of C2DM, 

called Google Cloud Messaging for Android (GCM) 
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application server into another mobile device. They even give a discussion of large-scale 

botnet building solution dividing the bots into several groups by using the same username 

in the same group. At last, they evaluate the botnet at three aspects containing stealthiness 

in control and data plane, efficiency in resource consumption and controllability. 

The advancements of the mobile device hardware are not only the performance 

improvement but also the hardware with new features continuously is added into the 

mobile devices. For example, more abundant sensors are placed into the mobile devices 

such as light sensor, gravity sensor, near-field communication (NFC) and so on. These 

new features of hardware can also be used as the communication channel in the botnet. 

Hasan et al. [48] propose a new idea for the mobile botnet that is based on the sensors on 

the mobile. Thinking of the popularity of sensor in the mobile device, the paper supposes 

that the sensors can also be used for communication between the mobile devices as botnet 

command and control channel. The out-of-band C&C can be divided into steganographic 

channels and non-steganographic channel. The difference between the two type channels 

is whether the trigger signal is hidden inside another signal or not. Then they give a detail 

description of how to use the audio, light, magnetic and vibrational sensor channel to 

transmit the command to bots. The communication through the sensor is hard detected by 

monitoring the cellular or wireless communication networks. However, the stability is 

one of the most difficult problems to be solved. 

2.5.3 Detection techniques 

The traditional mobile malware detection systems have been deeply studying in the 

past few years, and some of these systems can partially be used for mobile detection. So, 

we will also discuss two types of detection techniques in the following part. One is the 

detection method designing specially for the mobile botnet. The other one is general 
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mobile malware detection system designing for all mobile malware. At last, we also do a 

review for the detection techniques by using machine learning algorithms. 

2.5.3.1 Special mobile botnet detection techniques 

Mobile botnet detection has been studied by Vural et al. [35, 303]. In [303], the authors 

propose a detection technique based on network forensics and give a list of the metrics 

for building an SMS behaviour profiles to use in detection. Based on these profiles the 

compare information gathered from some network forensics tool to establish if it is 

normal. Autocorrelation is used to calculate the value of every metric in the list, and a 

fuzzy function is used for comparison with normal behaviour. In [35], they improved the 

accuracy of their approach by introducing an artificial immune system based detection. 

Although it is an anomaly-based detection technique, their approach still relies on 

network forensics. 

Seo et al. [26] propose a static analysis tool, called DroidAnalyser, to identify potential 

vulnerabilities of Android apps and root exploits. Their tool is signature-based. More 

specifically, they define some suspicion signatures as Dalvik Executable file (i.e., a .dex 

file in Android install package .apk). Their analysis tool processes mobile behaviour in 

two stages: (a) a signature matching state and (b) a search of app code using pre-fixed 

keywords. Using the outcomes (a) and (b), DroidAnalyser generates a measurement of 

the suspicious level of the detected application. DroidAnalyser gives suggestions before 

installing an application on a mobile device but cannot detect infection by malware at 

runtime. 

Another system, called Copper-Droid that can perform dynamic behavioural analysis 

of Android malware automatically is presented in [304]. There is also some online file 

analysis system which can detect suspicious application install files such as Andrototal 

[305], SandDroid [306], App360Scan [307], MobileSandbox [308] and so on. 
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2.5.3.2 General mobile malware detection techniques 

Some of the methods generated for the detection of general mobile malware can detect 

some mobile botnets. 

In [37], the authors show a monitor of Symbian OS and Windows Mobile smartphone 

that extracts features for anomaly detection. Based on ML they analyse the monitoring 

log to detect features of normal/infected situations. Due to mobile hardware limitations, 

their ML based complex intrusion detection system runs on a remote server. 

The approach in [29] makes two contributions: (1) it includes a static analysis system 

for analysing Android Market applications and providing detailed and readable reports to 

the user, and (2) it uses automated reverse-engineering and refactoring of binary 

application packages to mitigate security and privacy threats driven by users’ security 

preferences. Their approach is based on a novel probabilistic diffusion scheme for 

detecting anomalies that may indicate malware using device usage patterns. The Android 

Application Sandbox (AASandbox) [309] has also been used to perform both static and 

dynamic analysis on Android programs to automatically detect suspicious applications, 

based on the idea that the detection result of neighbours is important in evaluating 

indicators of malware. 

Zhou et al. [31] propose a fast and scalable approach to detect “piggybacked” Android 

applications, i.e., apps that attach some destructive payloads or malware code. Two 

techniques are used for this purpose: (a) a module decoupling technique that partitions 

source code of an application into primary and non-primary modules and (b) a feature 

fingerprint technique that extracts various semantic features (from primary modules) and 

converts them into feature vectors. Using this approach, the authors have collected more 

than 1,200 malware samples cover the majority of Android malware families from August 

2010 to October 2011, and have systematically characterised them from various aspects. 
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Shabtai et al. [34] proposed a knowledge-based approach for detecting known classes 

of Android mobile malware based on temporal behaviour patterns. The basic idea is to 

train a classifier to detect different types of applications based on application features. 

This approach has been implemented in Andromaly [310] and was subsequently 

improved with Knowledge-based Temporal Abstractions (KBTA) [311]. KBTAs were 

used to derive context-specific interpretations of applications from timed behaviour data. 

2.5.4 ML based botnet detection techniques comparison 

In the following, we review techniques developed to detect mobile botnets on Android 

mobile platforms. Our review focuses on techniques, which use machine-learning 

algorithms for this purpose, as this approach has been the driver of the experimental 

investigation discussed in the paper. Table 2-7 provides an overview of such techniques, 

which are known to us. 

Each of these techniques in the table is described by: 

 The normal applications (Normal Apps (N)) that it has been applied to. N apps are 

distinguished into the apps used to train, and the apps used to test the ML algorithms. 

 The botnet (or other malware) applications that it has been applied to Botnets (B). B 

apps are also distinguished into the apps used to train, and the apps used to test the 

ML algorithms. 

 The features used to classify an app as N or B and whether some pre-filtering of 

them was applied by the technique prior to the ML training phase.   

 The ML algorithms applied and tested by it. 

 The method/source of classification of the feature sets as N or B features, which was 

used to train the algorithms (not applicable in techniques using unsupervised 

learning). 
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 The set up of the experimental evaluation of the technique including the use of user 

interactions in forming the training data set and the evaluation scenarios used in the 

testing phase. The latter are distinguished by whether known or unknown N and B 

apps were used in testing. This distinction results in four scenarios: known Bs & 

known Ns (KBKN), unknown Bs & known Ns (UBKN), known Bs & unknown Ns 

(KBUN), and unknown Bs & unknown Ns (UBUN). 

 The performance measures reported for the technique, i.e., the true (botnet) positive 

rate (TPR), false (botnet) positive rate (FPR) and precision (PRC) (see Section 

2.4.3.1 for definitions of these measures). 

 Whether any sensitivity analysis has been carried out by a technique to explore 

whether its performance varies across different ML algorithms (Alg), the feature data 

aggregation period (Agp), normal apps (N ap), botnets (B ap), features (Fet), and if 

the statistical significance of any observed differences have been validated (Val). 

As it can be seen from Table 2-7, the features that have been used for mobile botnet 

detection are related to OS system calls [312-315], the permissions that different apps 

declare for Android devices ([316, 317]) and which are used to grant them access to 

certain device actions, device usage by the apps (e.g., SMS dispatches, use of device’s 

camera through calls to the API of the device) [315, 316], device usage by the user (e.g., 

SMS dispatches, use of device’s camera) [315, 316, 318], and external communication 

activities [39, 40, 179, 315]. 

Of the techniques focusing on system calls (as we do in the study of this paper), only 

two, i.e., Crowdroid [313] and MADAM [315], specify their experimental set up the 

insufficient level of detail for forming an assessment of the merit of the approach. 

Crowdroid uses unsupervised learning (k-means), and MADAM uses supervised learning 

but only one algorithm (KNN). However, none of them considers the full spectrum of 

scenarios, i.e., KBKN, UBKN and UNUB, and has carried out a validated sensitivity 
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analysis of performance as that we do in this study. More specifically, MADAM has only 

tested known botnet scenarios (KB**), and Crowdroid has considered only UBUN 

scenarios. Furthermore, both these techniques considered a more limited set of botnets 

than we did. Two botnets in these sets were also considered in our study (i.e., 

PJApps/Crowdroid and DroidDream/MADAM). It should also be noted that neither 

Crowdroid nor MADAM used real botnet data in their training phase: Crowdroid used 

data from a botnet developed by its producers for this purpose and MADAM used system 

call vectors from Trojanised malware and synthetic “botnet” call vectors with high 

numbers of system calls, as this appeared to distinguish botnets from normal apps in their 

preliminary experiments. The latter was created from the Trojanised malware vectors by 

interpolation.  

For the remaining two techniques, which analysed OS system calls but not with a 

clearly specified experimental set up (e.g., unclear scenarios, not clear which botnets they 

used for testing), it should be noted that both of them used supervised learning, i.e., [312] 

and [314] and carry out pre-filtering of OS calls before training the ML classifiers. Also, 

none of them carried out any thorough and validated sensitive analysis, which is important 

in the light of the variance of the reported performance measures.
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 Table 2-7 - ML based botnet detection approaches 
Technique	/	
Platform	

Normal	Apps	
(N)	

Botnets	(B)	 Features1/		
Pre‐filtering	

ML	
Algorithms	

Classification	 Set	Up	
	

Performance	
	

Sensitivity	
analysis	

Amda[312] 
(Android 
emulator) 

Training: 126 
(Src: Google Play 
+ other) 
Test: as above 

Training: 250, not 
clear  
Test:  not clear 

Features: OS 
calls2 
Pre-filtering: Yes 

NB, J48, RF, 
MLR 

Virus Total 
 

User Inter: 
simulated; 
Scenarios: not 
clear 

TPR: 0.74; FPR: n/a 
PRC: n/a; 

No 

Aung & Zaw 
[317] 
(Offline) 

Training: 500 
Test: not clear 

Training/Test: not 
clear 

Features: 
permissions3 
Pre-filtering: Yes, 
info gain  

K-means 
clustering, 
J48, RF, 
CART 

Not clear 
 

User Inter: 
simulated; 
Scenarios: Not 
clear, KBKN 
likely (WEKA) 

TRP: 0.85 – 0.98 
FPR: 0.08 – 0.16 
PRC: 0.85 – 0.92 
 

No 

Crowdroid 
[313]  
(Android) 

Training: 
SteamyWindow, 
Monkey Jump 2 
Test: as above 

Training: self-
written malware 
(Trojan); 
Test: PJApps 
HongTouTou 

Features: OS 
calls (all) 
Pre-filtering: Yes, 
info gain  

k-means 
clustering 
(k=2) 

Known N and 
B/M apps 

User Inter: real, 
per N and 10 
per B; 
Scenarios: 
UBUN 

TRR: n/a; FPR: n/a 
PRC: 0.85 

No

STREAM [316] 
(Android) 

Training: 408 
Test: 244 
 

Training: 1330 
Test: 235 
 

Features: 
Permissions and 
device usage (37 
features) 
Pre-filtering: Yes, 
not clear 

RF, NB, 
NN(MLP, 
Bayes, MLR 

Known N and 
B/M apps 

User Inter: 
simulated 
(10000 for 
each N)  
Scenarios: 
KBKN, UBUN 

KBKN: TPR: 0.87 – 0.97; 
FPR: 0.14 – 0.44; PRC: 
n/a;  
UBUN: TPR: 0.48 – 0.95; 
FPR: 0.16 – 0.33; PRC: n/a

Alg: Yes; 
Agp: No; 
N ap: PRC; 
B ap: PRC;  
Fet: No; 
Val: No 

Masud et al. 
[314] 
(Android 
tablet) 

Training/Test: 
Not specified 

Training/Test: Not 
specified 

Features: 5 
different sets; 
not clear (one set 
with OS calls 
Pre-filtering: info 
gain, x2 

NB,  
KNN, J48,  
MLP, RF 

Not clear User Inter: 
real, 2 hrs 
Scenarios: 
Not clear, 
KBKN likely 

TPR: 0.17 – 0.90; 
FPR: 0.03 – 0.67; 
PRC: n/a; 
 

Alg: No; 
Agp: No; 
N ap: No; 
B ap: No; 
Fet: Yes; 
Val: No 

SCREDENT 
[318] 
(Android, 
logging) 

Training: 
Not specified 
Test: Not 
specified 

Training/Test: Not 
specified 

Features: User 
triggered device 
activities7 
Pre-filtering: No 

SVM Users and 
SVM (not 
clear) 

User Inter: not 
clear; 
Scenarios: 
Not clear 

No data No 

Feizollah et 
al.[39](Android, 
offline) 

Training: 6 see11  
Test: as above 

Training: 
see Table 1 
Test:  see Table 1 

Features: Ext. 
comms 
Pre-filtering: No 

J48, KNN, 
SVM, NB, 
MLP 

Known N and 
B/M apps 

User Inter: not 
clear; 
Scenarios: 
KBKN 

TPR (B): 0.93 – 0.99; 
FPR(B): 0.006 – 0.07; PRC 
(B): n/a 

Alg:Yes; 
Agp: No; 
N ap: No; 
B ap: No; 
Fet: No; 
Val:No 

MBotCS [40] 
(Android) 

Training: 12, See 
Appendix 
Test: 12, See 
Appendix 

Training: see 
Table 1 
Test: see Table 1 

Features:  Ext. 
comms 
Pre-filtering: No 

J48, KNN, 
SVM, NB, 
MLP, Box 
algs 

Known N and 
B/M apps 

User Inter: 
simulated; 
Scenarios: 
KBKN, UBKN 
 

KBKN: TPR (B): 0.06– 
0.99; FPR(B): 0.002 – 
0.96; PRC (B): 0.62– 0.91; 
UBKN: TPR (B): 0.08 – 
0.98; FPR(B):0.03 –0.95; 
PRC (B):0.52–0.66 

Alg: Yes; 
Agp: No; 
N ap: Yes; 
B ap: Yes; 
Fet : No; 
Val:No 

MADAM [319] 
(Android 
4.0.1) 

Training: 56 
apps 
not specified 
Test: None 

Training: 
Troanised 
malware9 
(Src: Contagio): 
Test: As in training 

Features: OS 
calls10; SMS 
number; device 
idleness 
Pre-filtering: No 

KNN   User Inter: 
Synthetic B 
data in 
training;  
Scenarios:KB 

TPR (B): 0.66 – 1.0 
FPR (B): n/a 
PRC (B): n/a 
 

No 

Zhao et al. 
[315] 
(non mobile) 

Training: real 
traffic data, 
Warcraft 
Gamingpackets, 
Azureus  
Test: as above 

Training: Storm, 
Waledac 
Test: Storm, 
Waledac Weasel 
(self-written), 
BlackEnergy 

Features: Ext. 
comms8 
Pre-filtering: No 

J48; 
 

Known 
malware and 
normal apps 

User Inter: 
Replayed N 
traffic mixed 
with B traffic;  
Scenarios: 
KBKN, UBKN 

KBKN: TPR (B): 0.983 – 
0.99; FPR(B): 0.01 – 
0.017; PRC (B): n/a 
UBKN: TPR (B): 0975 – 
0.9975; FPR(B):0.0025–
0.0225; PRC (B): n/a 

Alg:No;  
Agp : Yes 
N ap: No; 
B ap: Yes 
Fet:Yes; 
Val: No 

BotMiner 
[179]  
(non mobile) 

Training: 
Multiple 
(network traffic 
capture) 
Test: as above 
 

Training:  
rbot, sdbot, 
spybot, IRC-N, 
HTTP-1, HTTP-2, 
Storm, Nugache 
Test: as above 

Features: 
External comms 
stats, device 
activities6 
Pre-filtering: int. 
comms, 1-way 
traffic 

X-means 
clustering; 
Cross-plane 
correlation 

Traffic of 
separate 
execution of 
Bs 

User Inter: 
real (10-days 
logs;  
Scenarios: 
Not clear, 
KBKN likely 

TPR (B): 0.75 – 1.0 
FPR (B): 0.0 – 0.03 
PRC: n/a 

Alg: No;  
Agp: No; 
N ap: No; 
B ap: No; 
Fet No; 
Val:No 

1. Feature types: OS calls, permissions on device, ext. comms/network flows (network APIs), intent features, use of device hardware components (e.g., device camera), 
device activities (scanning, downloading, exploit attempts) – see for a categorization of possible botnet features [320] 

2. Read, write, Brk, getpid, Sigprocmask,  Recv, lseek, Open, Msgget, Close, Semget, Semop, Clone, System_224, Dup, Fork, Ioctl, mprotect 
3. Internet, change cnf, write_sms, send_sms, call_phone 
4. quiz.companies.game, battery.free, android.reader, papajohns, androidPlayer, pregnancytracker, stylem.wallpapers, templerun, airpushdetector, unveil, mahjong, 

songkick, bbc.mobile.news.ww, mycalendarmobile, imdb, pinterest, craigslistfree, hydra,  bfs.ninjump, tumblr, OMatic, box, gtask 
5. Beauty.Girl, XrayScanner, mymovies, CallOfDuty, DWBeta, android.installer, txthej, bowlingtime, barcode, luckjesusblessings, topGear, Ipad2App, ad.notify1, 

gone60, skyscanner, antimosquitos, sipphone, rommanager, paintpro, zanti, youLoveLiveWallpaper, fingerprint 
6. scanning, downloading, exploit attempts 
7. Accept call, Change battery status, Uninstall App, Set time zone, Receive SMS, Activate 3G, Change wallpaper, Turn on GP;  Install APKs Sensor: Accelerometer, Turn 

off GPS; Change clock; Turn on  Airplane mode; Set ringer; Sensor: Gyroscope; Turn off Airplane mode Cancel Call / Hang up; Turn on screen, Set volume; Sensor: 
Rotation/Pitch; Turn of Terminal Connect AC; Send SMS; Get location, Go Home, Lock Terminal, Turn off 3G; Bright auto, Set bright auto, View SMS 

8. TCP & UDP flow data and aggregated metadata: SrcIp, SrcPort, DstIp, DstPort, Protocol, AvePayloadPacketLength (AvePL), VarPL, NumPackets (NP),  NP/sec, 
FirstPacketSize, TimeBetweenPackets(TBP), Number of reconnects, Address flow ratio 

9. Lena.B, Moghava, TGLoader, OpFakeA, NickySpyB, Gone in 60 sec, KMin, Lotoor, DroidDream, Droid Kung Fu 
10. open,  ioctl,  brk, read,  write,  exit,  close,  sendto,  sendmsg,  recvfrom,  recvmsg 
11. Facebook, Twitter, Chrome, Google R, Flipboard, YouTube 
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2.5.5 Mobile botnet detection specificity 

Even though several mobile botnets break out in recent years and the mechanism has 

been unveiled through tracking and analysing, how to detect the mobile botnet malware 

before they perform the attack to cause a loss is still a severe problem. So, different 

between the mobile malware detection techniques and the conventional botnet detection 

techniques are the important reference material for designing mobile botnet detection 

system. We will compare these techniques with the requirement of mobile botnet 

detection and make the perspective of future mobile botnet detection techniques. 

2.5.5.1 Mobile botnet and conventional mobile malware 

Although the mobile botnet malware is one of the mobile malware, the several new 

features of mobile botnet make it more threatening than the other malware. We just list 

the three features and give a detail discussion of the insufficient of current mobile 

malware detection techniques and systems. 

 Communication 

The main characteristic of mobile botnet malware is the ability of communication with 

botmaster and other bots. The communication channel between the bots and botmaster is 

called C&C channel. From current mobile botnet incidents and the researches about the 

creation mobile botnet, we can find that there are a diversity of communication channels 

including SMS-based, HTTP-based, Hybrid-based (SMS and HTTP), Push Service-based, 

Social Network Message based and even Sensor-based. 

Though the extra communication with the botmaster and other bots increase the risk 

of was detected, there are some techniques designing to hide these communication 

messages as far as possible such as URL flux techniques [33]. However, the 

communication which is based on the C&C channel enhances the mobile malware with 
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several features. For example, the mobile malware on the bots can change the type and 

target of attack according to the different command from the botmaster. The botmaster 

can adjust their attack strategy based on the current situation through the communication. 

Consequently, if we want to build a mobile botnet malware detection system, how to 

unveil the communication of the mobile botnet is the highest priority issue to solve. 

 Upgrade  

As the mobile malware problem is serious, there are more and more organisations, and 

companies give some concentration on the mobile anti-malware software. According to 

the analysis of the suspicious application in the real network, the malware databases 

constantly update.  

So for the controller of the malware or the attacker, they need to continuously upgrade 

their mobile malware to evade the new means of detection. The general mobile malware 

without the communication with the attacker cannot actively upgrade. They can only 

spread the new version of the malware to the network and wait for the mobile devices to 

be infected again. However, the botnet mobile malware can actively get the update 

package according to the command that sent by the botmaster. This mechanism is the 

enhance phrase in the botnet lifecycle which has discussed in Section 2.1.3. 

 Latency of malware 

Once infected by the most of the conventional mobile malware, the harmful behaviour 

will be performed at regular intervals. However, the activities of botnet malware are 

controlled by the remote server. So, without the attack command from the botmaster, the 

botnet malware can hide in the mobile device without any harmful features. It can make 

the botnet malware escape the active scanning by some anti-malware software. 
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2.5.5.2 Mobile botnet and conventional botnet 

Because of the accumulation of the conventional platform botnet detection research, 

the ideal solution for mobile botnet detection approach is making a transplant of the 

current conventional platform botnet detection method. However, there are some gaps 

between the mobile botnet and conventional platform botnet detection. We give several 

important factors which should be separated discussed in the mobile botnet detection. 

 The C&C Channel.  

C&C channel is the most important part of the botnet malware. Through the discussion 

of the taxonomy of the convention platform botnet and mobile botnet, we can find that 

there is a more diverse C&C channel for the mobile botnet. The special channels for C&C 

give some trouble for detection system, but they can also be regarded as new detected 

objective in mobile botnet detection approach. 

SMS as the special characteristic on the mobile phone has been used in most of the 

mobile botnet creation [44, 47, 49, 50, 52, 53]. The SMS is text-based and system-

independent which supported nearly by all the existing phones. The other feature of SMS 

is the simple and reliable. Literature [35] defines a measurement based on the feature of 

the SMS to reveal the abnormal behaviour on the mobile devices.   

There is also some mobile botnet combining multiple communication channels to 

realise the C&C channel, such as the paper [49] combine the SMS and HTTP to transfer 

the commands. The Andbot [28] combines the SMS with the microblog feed as the C&C 

channel to transfer information between botmaster and bots. 

 Data Source for Detection 

According to the review of the conventional platform botnet detection system, we can 

know that considerable part of the approaches monitors the traffic on the router of the 

traditional network to detect the botnet of the network. However, it is difficult to get the 
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data source like that on the mobile network. Except for the Wi-Fi network, most of the 

mobile devices are connected to the mobile network such as GPRS, 3G and 4G.  

Consequently, the detection data source for mobile botnet detection may be limited to 

the mobile device itself in the current situation. Moreover, digging more information on 

the mobile device to detect is the work of the future mobile detection approaches. 

 The Damage 

Though the function between the mobile device and the conventional platform is more 

and more similar, the mobile handset as a part of the daily life has more important 

additional responsibility than the conventional platform. So, we can find that there is more 

damage in the mobile botnet and the attacker can also get more profit from the mobile 

botnet. 

The potential harmful behaviours of a mobile botnet which lists in the Table 2-5 show 

the attack method of the current mobile botnet. Except the attackers can get the interest 

directly through the premium-rate telephone number, they can also control the botnet to 

spread spam email, SMS and junk mobile application to earn a profit. The other 

characteristic of the mobile botnet is that the period of the damage is shorter than 

conventional platform botnet. Once some mobile devices infected the malware, the 

botmaster can control the Bot to perform a harmful attack to get money as soon as 

possible. 

2.5.6 Open issues 

Though some mobile botnet detection systems have been proposed in recent years, 

most of them are signature-based, and host-based detection approaches. There are some 

limitations for these detection methods: 
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1. Only apply to the known mobile botnet; Most of existing mobile botnet 

detection techniques do not discuss how to detect the unknown botnet. 

Meanwhile, the update of the botnet is very frequency. So, the current detection 

method is hard to keep up with the pace of change of botnet. 

2. Not fully consider the limitation of mobile device performance; Though the 

mobile had grown more capable, compare with the desktop the resource of 

mobile is still limited. So, the detection on the mobile device should concern 

about the performance such as CPU usage and battery consumption. 

3. The individual mobile device is hard to collect enough information for 

analysing; The mechanism of botnet decides that whether the infected script is 

active or not is controlled remotely. Meanwhile, anti-detection techniques are 

widely used in new generation botnet. It is hard to unveil the whole pattern of a 

botnet in single mobile. 

By contrast, most of the conventional platform botnet detection systems are network-

based and anomaly-base detection methods that can take full advantage of the 

collaboration of different hosts in the network and the clustering phenomenon of the 

botnet malware.  

So how to design a network-based and anomaly-based botnet detection system for 

mobile platform is an open issue.
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Chapter 3 The MBotCS Detection System 

3.1 Overall framework  

Our mobile botnet detection approach, called MBotCS, has been implemented as a 

system that has the architecture shown in Figure 3-1. This system has six main types of 

components. These are the mobile verification components (MVC), the data broker, the 

notification broker, the feedback broker, the data analysers and the feedback processor.  

MVCs are components which are deployed on the individual mobile devices. Each 

mobile device has its own MVC. After it is deployed, an MVC captures the traffic and 

system call of specified applications on the device at run-time, pre-process the packets 

and calls in it and prepare them for transfer to the data analyser for the detection of 

suspicious behaviour. This transfer takes place through the data broker. MVC also 

receives control signals indicating suspicious behaviour from the data analyser and acts 

according to them and a local user policy. Control signals block all packets and calls that 

have the characteristics that made the data analyser to detect them as “infected”. 

The two components of data broker and a notification broker are responsible for 

transmitting the traffic and system calls collected by the MVCs of different mobiles to a 

data analyser and transmitting notifications (control signals) produced by the data 

analyser in the opposite direction. The two brokers transmit information based on a 

publish-subscribe event reporting infrastructure. It enables keeping the analysis and 
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detection capabilities separate from the actual mobile devices, which is important for 

ensuring the scalability of the implementation in the presence of large numbers of mobile 

devices and traffic analysers. The publish-subscribe architecture is appropriate for real 

mobile device networks in which mobile devices may come and go quickly and 

unpredictably. It is because it does not overload the mobile communication infrastructure 

with message transmissions required for monitoring [321]. The brokers maintain 

subscriptions to the “channels” between publishers of messages and their respective 

subscribers. 

When the system enrols a new mobile device, the mobile device will send an 

advertisement message to the data broker to notify that they will publish captured data to 

the analyser. Following this, the data broker will subscribe the mobile device to receive 

the captured data and forward to the data analyser. In parallel, the mobile device will 

subscribe the notification broker to receive the notifications message generated by the 

analyser. 

The data analyser is the core component of the detection system. It analyses the mobile 

traffic and system calls that it receives from the MVCs installed on the mobile devices 

through the data brokers, at runtime based on training that has been carried out using the 

machine learning algorithms discussed in Chapter 2, and the data sets held in the training 

database of MBotCS. MBotCS might deploy more than one data analysers depending on 

the number of the mobile devices and the volume of their captured data. All data 

analysers, however, are trained using the same training dataset, i.e., the Training 

Database in Figure 3-1. 

The feedback processor in MBotCS is a component that has been introduced to expand 

and optimise the training data. More specifically, when the data analyser finds some 

malicious traffic or system calls, it sends a warning notification signal to the mobile 

device. The mobile users are given the opportunity to provide feedback for the warning 
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manually. This feedback is passed on the feedback processor component, which may 

decide to add the traffic or system calls sample into the training database. 

 

Figure 3-1 - The overall architecture of MBotCS 
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3.2 Introduction of components 

3.2.1 Mobile Verification Component 

The Mobile Verification Component (MVC) is deployed on the end client mobile 

device in MBotCS system. Firstly, the MVC has the ability to collect the traffic and 

system call on the mobile device. The Android VpnService API [322] provides the 

possibility to monitor the traffic easily on the mobile and tPacketCapture [323] 

application is used to capture and save the traffic data as a file with PCAP format. The 

mobile system call data is captured by Strace [324]. And we develop a bash shell script 

to make use of Strace to intercept the required system call with proper format for analysis. 

The detail of how to use the tPacketCapture and strace bash shell script to collect the 

traffic and system call can be found in Section 4.3. 

Apart from the data collectors, there is a data pre-processor module in the MVC. 

Before passing data to machine learning classifier, we need to convert the data to the 

acceptable format for the classifier. The pre-processing includes data clean, feature 

selection, data statistical analysis etc. The specific data process workflows for traffic and 

system call are described with the corresponding experiments in Section 4.1. 

Finally, the MVC has a user interface to notify the user the malicious behaviours with 

useful information and help the user to block suspicious processes. 

3.2.2 Data Broker 

The data broker is the component that is responsible for receiving the data from the 

MVC. We use the Cloud Firestore [325] which is a real-time database to receive the data 

in real-time. A real-time database is a database system which uses real-time processing 

to handle workloads whose state is constantly changing [326]. Every MVC has a unique 
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real-time database entry path on the Data Broker, and the MVC uses server-sent events 

HTTP request [327] to subscribe the corresponding database entry. When there is new 

data collected and pre-processed on MVC, the data will be pushed to the database entry 

immediately. Meanwhile, the MVC can receive the status receipt to confirm the data is 

received by Data Broker successfully. 

3.2.3 Notification Broker 

The Notification Broker also uses the real-time database technique as a data publisher 

whose role is different with the Data Broker (which is data subscriber). When data 

analyser detects the malicious behaviour for the submitted data, it will push an alert 

notification to the corresponding MVC database entry in Notification Broker. Then the 

Notification Broker publishes the information automatically without waiting for the 

connection with the MVCs. The MVCs that observe the specific database entry will 

receive the alert notification in real-time.  

Benefited from the publish/subscribe pattern architecture, the notification broker can 

be subscribed by multiple MVC and other services such as warning centre which can 

make a better strategy to block or prevent the specific malicious activity based on the 

entire system. 

3.2.4 Feedback Broker and Processor 

The feedbacks include positive feedback and negative feedback. When the MVC 

receive the notification about the malicious warning for the specific application installed 

on the mobile device. The MVC will suggest the user block or uninstall the application 

based on the warning information. However, there's still some probability that some 

normal applications produce several behaviour patterns which are similar to malicious. 

So, if the warning is false positive, the user still has the opportunity to ignore it and send 
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feedback to the analyser to improve the classifier. In Feedback Processor, the customised 

policy can be configured to the analyser for separate MVC. Taking advantage of user-

specific feedback, the warning notification could be more personalize and intelligent. 

Certainly, the positive feedback can be used to update the training dataset to improve the 

performance of analyser. 

Feedback Broke and Processor are also based on the real-time database. MVC push 

user feedback to the specific Feedback Broker. Then the Feedback Processor monitors 

the change of Feedback Broker database entry to get the content of feedback and 

generates a policy registry for the specific MVC in the data analyser. 

3.2.5 Data Analyser 

The Data Analyser is responsible for processing collected data and generate the 

classification result. It has two modes: cloud mode and offline mode. If the MVC is 

available to access the network, the cloud mode will be enabled. However, if the mobile 

device cannot access the network or the MVC has no permission to access the network 

on mobile, the offline mode will be activated alternatively. Cloud mode has higher 

priority because of the relatively higher system resource consumption for machine 

learning analysis.  

The core of the data analyser is a Java machine learning engine which is based on open 

source machine learning analyser. Apart from making use of the atomic algorithms 

providing by WEKA [253] directly, we also make several aggregated algorithms that 

extend the Vote [328] class. Meanwhile, an enhanced version of Evaluation [329] class 

is developed to support more analyser result output for research analysis. The detail of 

data analyser information can be found in Section 4.1 experiments introduction. 
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3.3 System Security 

Because the overall architecture of the system is cloud-based, meanwhile the mobile 

device is based on Android which is open source system. So there are several security 

issues need to be considered.  

3.3.1 Communication Security 

All the network connections between the components use the transport layer security 

(TLS) [330]. Transport Layer Security whose predecessor is Secure Sockets Layer (SSL) 

is a family of cryptographic protocols that utilize X.509 certificates [331] and asymmetric 

encryption to secure the HTTP connection. The TLS can verify the identity and prevent 

the man-in-the-middle attacks. 

In order to prevent the data leaking and data tampering, A custom private/public key 

encryption and signature process to protect the communication thoroughly. For every 

component, a pair of private/public keys is generated during the deployment. Meanwhile, 

every component maintains a public key list of existing components in the system and 

keep the list up to date. Assume we transfer a set of data D from component A to 

component B (the component could be MVC, broker, etc). The private and public keys of 

A and B are denoted as ሺ𝑃𝑟௔, 𝑃𝑢௔ሻ; ሺ𝑃𝑟௕, 𝑃𝑢௕ሻ. Then we will give a solution to use these 

resources to make the transferred data secure and tamper-resistant. The sending and 

receiving processes are described separately and both have two phases: 

 Sending process (on component A): 

 Phase1 (encrypt data): During this phase, the plaintext data will be encrypted 

by using the asymmetric encryption algorithm such as RSA [332] with the 

public key 𝑃𝑢௕ of component B (receiver party). Then the data will be change 

to 𝐷௘௡௖௥௬௣௧ ൌ 𝐸𝑛𝑐𝑟𝑦𝑝𝑡ሺ𝐷, 𝑃𝑢௕ሻ . 
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 Phase2 (sign data): The encrypted data will be signed with the private key of 

component A. Then the final data is ready to send over the network. The final 

data could be denoted as 

𝐷௙௜௡௔௟ ൌ 𝐷௘௡௖௥௬௣௧ ൅ 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 

𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ൌ  𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒ሺ𝐷𝑖𝑔𝑒𝑠𝑡ሺ𝐷௘௡௖௥௬௣௧ሻ, 𝑃𝑟௔ሻ 

The digest algorithm such as MD5 [333] is used to improve the performance 

of the asymmetric signature algorithm. 

 Receiving process (on component B): 

 Phase1(verify signature data): The component B will receive the final data 

which is generated by Phase2 of Sending process. Firstly, the component B 

need to verify the signature of in the final data with the public key of 

component A: 𝐷𝑖𝑔𝑒𝑠𝑡 ൌ 𝑉𝑒𝑟𝑖𝑓𝑦ሺSignature, 𝑃𝑢௔ሻ. If the digest is matched 

with received data, the component B will trust that the received data is not 

tampered by mid man. 

 Phase2(decrypt data): After making sure the data is the original data sent from 

the component A, the component B start to decrypt the data to plaintext by 

using the same asymmetric encryption algorithm in Sending process with the 

private key of component B: D ൌ 𝐷𝑒𝑐𝑟𝑦𝑝𝑡ሺ𝐷௘௡௖௥௬௣௧, 𝑃𝑟௕ሻ . Finally, the 

component B get the plaintext data send from component A. 

Now let us analyse why this solution can make sure the data cannot be stolen or be 

tampered. Firstly, because the transferred data is encrypted by the receiver public key, so 

the only parties who hold the corresponding private key can decrypt the data in theory. 

So even the hackers get the data by some methods such as sniffing, they cannot get the 

plaintext data without the private key. Secondly, because we add the signature of the 

sender to the data and the signature can be verified by the sender public key. This 

signature can only be generated by the parties who hold the corresponding private key. 

So even the hackers tamper the data, they cannot make a new signature which can be 
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verified successfully with sender public key. Certainly, the validity of this solution is 

based two points: one is the private key should be kept in the component safely. The other 

one is the public keys list should be protected by a certificate authority to make sure all 

the public keys should be matched with the corresponding private key of components. 

3.3.2 MVC Application Security 

The other security issue is the protection of MVC. Because the MVC is deployed on 

the Android mobile device and the MVC is Java-based Android application, so there are 

a lot of methods to decompile the android installer file (APK). If the application is 

decompiled by the attackers, they will understand the mechanism of detection and 

analysis which help them to prevent the detection. So, the anti-decompile techniques 

should be applied to the MVC development. 

There are several techniques can be used to prevent malicious decompile behaviour. 

The most general one is the Proguard [334] which is a tool to obfuscate Android 

application source code. After shrinking the source code of the application by Proguard, 

the stack trace will be difficult to read because the method names are obfuscated. So even 

the hackers decompile the installer file, they will get obfuscated code that is hard to 

analyse. 

The other one is programming the part of the application with Android Native Develop 

Kit (NDK) which is more advanced technique. The Android NDK is a toolset that lets 

you implement parts of your app in native code by using languages such as C and C++ 

[335]. The original intention is helping reuse code libraries written in other languages for 

certain types of apps. However, this method can also help to protect the source code from 

decompiling. During the development of MVC, the sensitive and important parts of code 

such as feature selection process are programmed by C++ language and build a library. 
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Then the Java-based code use the NDK to load the library and execute the corresponding 

functions that are exposed in the library. 

Through these protection methods, the MVC which is deployed on the end client will 

be hard to be decompiled and statically analysed.
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Chapter 4 Experimental Evaluation of Mobile 

Botnet Detection 

4.1 Overview 

The prototype implementation of MBotCS that was described in Chapter 3 has been 

used in a set of experiments that were carried out to evaluate our approach. The purpose 

of these experiments was to evaluate:  

(1) The accuracy of the classifications of mobile applications (as "normal" or 

"infected" applications participating in botnets) produced by it. 

(2) The performance in terms of energy consumption and execution time on Android 

devices. These two criteria were selected as they constitute key performance 

indicators for our approach.  

The ML algorithms that we used in the experiments were the five supervised machine 

learning algorithms and the group of machine learning box algorithms, which we 

discussed in Section 2.4. More specifically, we used the following atomic ML algorithms 

 Naïve Bayes [336]. 

 Decision Tree (J48) [241]. 

 K-nearest neighbour (KNN) [242].  

4.1 Overview 



108  Experimental Evaluation of Mobile Botnet Detection 

 

 Neural Network (NN) Perceptron [247]. 

 Support Vector Machine (SVM) [337]. 

These atomic ML algorithms we chose are used widely in current research based on 

the information in Table 2-7 (Naïve Bayes [used in 5 approaches], Decision Tree J48 

[used in 5 approaches], K-nearest neighbour [used in 4 approaches], Neural Network 

[used in 4 approaches]; Support Vector Machine [used in 3 approaches]). 

In addition to atomic algorithms, we used ML boxing, a technique where classifications 

of the individual ML algorithms are aggregated in order to improve the accuracy of 

results. For this purpose, we used three different aggregation methods: 

 ML-BOX (AND): In this aggregate classifier, an instance of the dataset was classified 

as infected if ALL the individual classifiers indicated it as infected. Otherwise, the 

instance was classified as normal. 

 ML-BOX (OR): In this aggregate classifier, an instance of the dataset was classified 

as infected if AT LEAST ONE the individual classifiers indicated it as infected. 

Otherwise, the instance was classified as normal. 

ML-BOX (HALF): In this aggregate classifier, an instance of the dataset was classified 

as infected if MORE THAN HALF of the individual classifiers indicated it as infected. 

Otherwise, the instance was classified as normal. 

ML boxing was used to aggregate: (a) the results of all individual classifiers and (b) 

the results of only J48 and KNN as these algorithms outperformed the rest in the single 

algorithm based classifications (see Section 4.5.2). In the following, we will refer to the 

outcomes of (a) as “ML-BOX (.)” and the results of (b) as “ML-BOX+ (.)”. In the case 

of ML-BOX+(HALF), if the J48 and KNN algorithms classified the instance of the 

dataset in the same class, ML-BOX+(HALF) generated the same common classification. 
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When J48 and KNN were in disagreement, ML-BOX+ (HALF) generated a classification 

based on the outcome of the three remaining classifiers only. 

The experiments were based on capturing and analysing network traffic and system 

calls from both malware botnet and normal applications. The analysis of network traffic 

was the focus of the first set of experiments. The analysis of system calls was the focus 

of the second set of experiments. Before demonstrating the results of these sets of 

experiments, we introduce the experimental methodology that was used to set up and 

carry out the experiments. This includes the selection of the mobile botnet and normal 

applications that we used in the experiments; the overall workflow for carrying them out; 

the ways of capturing the data sets used for analysis; and the ways of measuring the 

performance of different algorithms. 

To evaluate and compare the results arising in the different experiments, we used the 

following performance measures which have been introduced in Section 2.4.3.1:  

 True Positive Ratio (TPR) also called Recall 

 False Positive Ratio (FPR) 

 Precision (Prec) 

 Area Under Curve (AUC) 

Beyond the point measures provided above, we also used value range (VR) criteria to 

characterise the performance of an algorithm as “very good” or “weak” with respect to 

the individual measures based on value ranges. The VRCs used for this purpose were: 

 TPR:  VERY GOOD if TPR ≥ .9, WEAK if TPR < .8 

 FPR:  VERY GOOD if FPR ≤ .05, WEAK if FPR > .1 

 PRC: VERY GOOD if PRC ≥ .9, WEAK if PRC < .8 
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4.2 MVC of MBotCS System on mobile device 

The architecture of the MVC components in MBotCS system, which are deployed on 

mobile devices, is shown in Figure 4-1. There are four main components of this type: the 

data pre-processor, machine learning analyser (ML analyser), user interface and the 

training dataset. The architecture also uses tPacketCapture [323] and strace to capture 

mobile traffic and system call, respectively. Gsam Battery Monitor application is used for 

monitoring the mobile battery consumption. The mobile device with deploying these 

components is called monitoring-enabled mobile (MEM). 

All the traffic passing through the mobile device is captured by tPacketCapture and 

stored in the pcap file. Moreover, the system call that invoked by specified applications 

is captured by strace and stored in log file. Both of two files will be persisted on the SD 

card of the mobile device. The data pre-processor reads the pcap file periodically and 

converts any incremental (new) data that it finds in it into the standard structure file for 

the ML analyser. Meanwhile, read the system call log file and generate the required 

formatted data entry for ML analyser. The ML analyser trains the classifiers by the 

training dataset and classifies the captured traffic and system call in real-time as infected 

or normal. Traffic and system call classifications are shown on the user interface, warning 

the users to block suspicious applications (i.e., applications that generated traffic 

classified as infected). 

During the stage of infection detection, the captured traffic and system calls will be 

analyzed continuously. When the infection is detected, users get warnings through a GUI 

is shown in Figure 4-2. The malicious data analysis result will be highlighted with red 

colour relative to the grey colour. Meanwhile, the corresponding log will be recorded with 

the detail information for the detected infection which can help the user to locate the 

malicious application or process on the device. 
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Figure 4-1 - Architecture of MVC on mobile devices 
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Figure 4-2 - The GUI of MBotCS 

4.3 Implementation of MVC Component 

4.3.1 Network traffic capture 

We use tPacketCapture for capturing the network traffic and pre-configure training 

dataset with the application. For the advanced user, we also designed a button for 
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selecting the specific training dataset file which is shown in Figure 4-2. In the scenario, 

we select the monitor target PCAP file as: 

/storage/sdcard0/Android/data/jp.co.taosoftware.android.packetcapture/files/2015_0

6_02_160103.pcap 

When we launch the application of tPacketCapture, it will create one pcap file named 

with the current date and time (2015_06_02_160103.pcap) for collecting network traffic. 

4.3.2 Pcap parse and pre-processor 

One of the most important for MBotCS is the PCAP file parser component. Our 

implementation is based on the JNetPcap [338], an open source Java library for network 

analysis. This library contains a Java wrapper for nearly all libpcap library native calls 

and provides a large library of network protocols. 

We also use JFlowMap to parse the PCAP file which is one of data structure in the 

JNetPcap. This structure can filter the flow information, called stream, in the PCAP file. 

The code for converting PCAP to the stream data using the JFlowMap is as follows: 

        JFlowMap superFlowMap = new JFlowMap(); 
        pcap.loop(Pcap.LOOP_INFINITE, superFlowMap, null); 
        Iterator iterator = superFlowMap.entrySet().iterator(); 
 

To improve the effectiveness of parsing the PCAP file, we also studied the structure 

of the file and tried to read it incrementally. The PCAP file is read at regular intervals and 

incrementally. For this, we need to remember the last visit point and next time to read 

from the last visit point. Meanwhile, according to the PCAP file structure, we need to 

construct the new temporary PCAP from the monitored file. The code that supports this 

is shown in APPENDIX A.1. In the code, TimerTask is used for reading the PCAP file 
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repeatedly. For every time read the file, the context information such as the current line 

will be stored and used for next reading action.  

4.3.3 WEKA based machine learning analyser 

To realise the Machine Learning Analyser, we used Weka-for-Android, i.e., a Java 

library modified from the WEKA for adapting Android platform. The used library 

implements the atomic machine learning algorithms that we discussed in Section 2.4:  

import weka.classifiers.bayes.NaiveBayes; 
import weka.classifiers.functions.MultilayerPerceptron; 
import weka.classifiers.functions.SMO; 
import weka.classifiers.lazy.IBk; 
import weka.classifiers.trees.J48; 

 

In addition, we implement six aggregate algorithms, which combine the results of the 

atomic machine learning algorithms. These algorithms are BOX-AND, BOX-AND+, 

BOX-OR, BOX OR+, BOX HALF and BOX HALF+, which will be discussed in Section 

4.1. The code of this component is shown in APPENDIX A.2. 

4.3.4 User interface 

The user interface of the MVC is not very complex; the user needs to choose the storage 

location for capturing traffic and system call in real-time and advance user can custom 

the training dataset. The two buttons: Monitor and Stop can be applied to launch and 

terminate real-time detection. The detection result will be displayed at the bottom of 

the screen. The UI design XML document (for Android) is shown in APPENDIX A.4. 
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4.4 Analysed normal and botnet applications 

To collect data for our experiments (both the first and second set), we deployed 12 

normal applications and 163 mobile botnet malware applications. 

The botnet malware applications that we used in the experiments were grouped in 12 

families, which are shown in Table 4-1. These applications were selected from the 

MalGenome project [339], according to their level of pandemic risk (according to the 

number of captured infected samples when these malware families were discovered). 

MalGenome has collected more than 1200 Android malware applications, the vast 

majority of which (i.e., more than 90%) are botnets.  

The normal applications that we used were: Chrome, Gmail, Maps, Facebook, Twitter, 

Feedly, YouTube, Messenger, Skype, PlayNewsstand, Flipboard, and MailDroid. These 

applications were selected due to their popularity. Also, to be certain about their 

genuineness, all of them were downloaded from the Android Official APP Store (Google 

Play). The normal applications that we used are shown in Table 4-2. 

Based on the dataset we used for training and testing in ML algorithm, we define three 

types of scenarios:  

 Known botnets and known normal applications (KBKN scenario): The training 

dataset includes data in testing dataset both of botnets and normal application. 

 Unknown botnets and known normal applications (UBKN scenario): The training 

dataset only includes data in a testing dataset of a normal application. The data of 

botnet in the testing dataset is totally different with the data in training dataset. 

 Unknown botnets and normal applications (UNUB scenario): Both of botnets and 

normal application data are totally different between training and testing dataset. 
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Table 4-1 - Botnet malware families 
Malware 
Family 

No Description 
pandemic 
risk 

1. 
AnserverBot 

20 

This a Trojan botnet that aims to remote control users' cell phones. 
The infected host app has two hidden apps with names anservera.db 
and anserverb.db. Moreover, when host app runs, it will pop up fake 
upgrade window to mislead user install anservera.db. At runtime, 
anservera.db and host app can dynamically execute the command 
in anserverb.db.[285]

187 
samples 
captured 

2. 
BaseBridge 

20 

This a Trojan botnet that attempts to send premium-rate SMS 

messages. When the infected app is installed, the malware will run 
some malicious (BridgeProvider, AdSmsService, PhoneService, 
ZlPhoneService) in silence [340]. 

122 
samples 
captured 

3. 
DroidDream 

12 

This botnet hijacks applications, steal the phone information such 
as IMEI, IMSI number and forwards them to botmaster. Meanwhile, 
it can also download and install other apps then tracked them in the 
background [264, 265, 341]. 

62 
samples 
captured 

4. 
DroidKung 
Fu3 

20 

This botnet forwards information to the remote server and 
downloads additional payload. This malware makes use of 
encryption for the remote server URL and exploited code to evaded 
static code analyser. [342]. 

309 
samples 
captured 

5. 
DroidKung 
Fu4 

20 

This botnet is a more sophisticated version of DroidKungFu which 
equipped with a new mechanism to protect from anti-virus software 
detection by obfuscating remote control URLs and masquerading 
an embedded app as the official Google Update [343] [344].  

96 
samples 
captured 

6. Geinimi 20 
It is a Trojan botnet that opens a backdoor to perform several 
functions such as sending SMS message and stealing sensitive 
information to the remote server [345]. 

69 
samples 
captured 

7. 
GoldDream 

20 

It is a Trojan botnet that monitors incoming and outgoing SMS 
message, phone calls and sends the detail to log back to the remote 
server. Meanwhile, it also collects other sensitive data such as 
subscriber ID and SIM card’s serial number [346]. 

48 
samples 
captured 

8. KMin 2 
It is a Trojan botnet that attempts to send user sensitive information 
such as device ID, subscriber ID and the current time to a remote 
server [347]. 

53 
samples 
captured 

9. Pjapps 20 

It is a Trojan botnet that opens a backdoor and retrieves commands 
from servers such as push(<smscontent>,<smsurl>,<tel>), 
blacklisting, response blocking and so on. By using these 
commands, the botmaster can control infected device to send a 
premium-rate message and steal sensitive information [348]. 

59 
samples 
captured 

10. Plankton 9 
It is a botnet that forwards user sensitive information to a server such 
as a device ID and IMEI number and collects the browser history 
and modifies the browser’s bookmarks [349]. 

20 
samples 
captured 



4.4 Analysed normal and botnet applications 117

 

Table 4-2 - Normal applications 

Name Description 

Chrome Chrome is a popular free web browser developed by Google. 

Gmail Gmail is a free advertising-supported email service provided by Google 

Maps Maps is a mobile web mapping service application provided by Google 

YouTube YouTube is a video-sharing website owned by Google since late 2006. 

Play Newsstand Play Newsstand is a digital newsstand and news aggregator application. 

Facebook Facebook is a famous online social networking service. 

Twitter Twitter is an online micro social networking service 

Messenger Messenger is an application providing instant messaging service. 

Flipboard Flipboard is a social-network aggregation mobile app. 

Feedly Feedly is a mobile application that can subscribe news. 

Skype 
Skype is a telecommunications application providing video chat and 

voice calls. 

MailDroid 
MailDroid is a WebDAV/POP3/IMAP Idle Push mail client on Android 

device 
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4.5 Experiments for network traffic analysis 

4.5.1 Workflow of experiments 

 

Figure 4-3 - Workflow of experimental training
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Figure 4-3 shows the workflow that was used to set up the experiments. This workflow 

consisted of 3 main steps: (1) the capture of mobile device traffic for further analysis 

(traffic capture), (2) the generation of the data set for the experiments (dataset generation), 

and (3) the experimental use of different ML classifier algorithms as the basis for training 

the traffic analyser (classifier analysis). These steps are discussed in detail in the 

following. 

The mobile device that we used in the experiments was a Samsung Note 1st generation 

(GT-I9228) running Android version 4.1.2 (i.e., Jelly Bean). Jelly Bean was the most 

frequently used version of Android with more 50% of installations in November 2014 

[350], when the execution of these experiments started. To avoid interference with other 

applications, the mobile device used for the experiment was reset to the default Android 

OS settings before the experiments started. 

4.5.1.1 Network traffic dataset generation (first set of experiments) 

To generate the experimental traffic data, we created two different set ups of the mobile 

device. The first set up (set up A) contained only normal applications. The second set up 

(set up B) contained both normal applications and malware. A device with each of these 

two set-ups was used to generate traffic, over a 24-hour trial period. Over the 24-hour 

period, in the case of set up A, we carried out 120 transactions using only the normal 

applications of the set up. The same transactions were also executed at exactly the same 

time in the trial period of set up B, which also lasted 24 hours. Our assumption behind 

this experimental design was that, whilst using the normal applications of set up B to carry 

out the 120 transactions, the mobile botnet malware families that were part of the set up 

would also be activated by themselves or by their botmaster and would generate infected 

traffic. This assumption was correct as we discuss below. 
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To capture raw traffic data from the mobile device, we used tPacketCapture and stored 

it in the pcap file. The captured pcap file was processed to generate a structured dataset 

for further analysis. In particular, the traffic data in the pcap file were processed to extract 

features that we considered important for the classifier analysis phase, namely the Source 

IP Address, Destination IP Address, Protocol, Frame Duration, UDP Packet Size, TCP 

Packet Size, Stream Index5 [351] and the HTTP Request URL. To extract these features 

from the raw packet lines within the pcap traffic file, we used Tshark [352], i.e., a 

command line pcap file analysis application integrated into Wireshark. The command 

Tshark batch file used to extract the above features is shown in Figure 4-4. 

 

Figure 4-4 - Tshark command for extracting features 

The packet traffic data that were obtained from this step were further processed in 

order to label them as “normal” or “infected”. This step was performed by a script that 

we developed to compare the mixed traffic file generated by set up B with normal traffic 

file generated by set up A. More specifically, to label the different packets in the traffic 

of set up A and set up B, we considered three features of the packets: the Source IP 

Address, the Destination IP Address and the used Protocol. The set of legitimate (i.e., 

                                                 
5  Stream index is a number applied to each TCP conversation seen in the traffic file. 

setlocal enabledelayedexpansion 

set outputFormat=.txt 

for %%f in (*.pcap) do ( 

tshark –r %%f ‐o tcp.calculate_timestamps:true ‐n ‐T fields ‐e 

ip.src ‐e ip.dst ‐e ip.proto ‐e frame.time_delta ‐e udp.length ‐e 

udp.stream ‐e tcp.len ‐e tcp.stream ‐e http.request.uri 

>%%f%outputFormat% 



4.5 Experiments for network traffic analysis 121

 

non-infected) combinations of values of these features was established by analysing the 

normal traffic data generated from set up A first. These combinations were subsequently 

expanded further through combinations with legitimate public IP addresses taken from 

Google Public IP address [353]. Based on this, we generated a three feature pattern-

matching library, an extract of which is shown in Table 4-3. Subsequently, every packet 

in the mixed traffic generated by set up B was compared with the patterns in the library. 

If the packet had a combination of values for Source IP Address, Destination IP Address, 

and Protocol matching a pattern in the library, it was labelled as “normal”. Otherwise, it 

was labelled as “infected”. 

Table 4-3 - Pattern-matching library 

Normal Pattern Public IP Address Pattern 

Source IP Destination IP Protocol Source IP Destination IP Protocol 

10.8.0.1 74.125.71.100 6   216.239.32.0   

74.125.71.100 10.8.0.1 6   216.239.32.1   

10.8.0.1 74.125.71.95 6   2.14.192.0         

….. ….. …..   …..         

Subsequently, we combined the packets with the labels and exported them in CSV 

format (a universal dataset format). Furthermore, as TCP traffic is a stream-oriented 

protocol (i.e., TCP packets are part of instances of integrated communication between a 

client and a server, known as streams), we also grouped the individual packets into 

streams, following TCP. This process yielded two separate data sets: (a) the packet 

dataset and (b) the stream dataset. The grouping of packets into streams was based on a 

flag in TCP packets called Stream Index, which indicates the communication stream that 

each packet belongs to. Thus, an element in the stream dataset was formed by assembling 

all the packets, which had the same stream index. Streams were labelled as “infected” if 

they had at least one packet within them that had been labelled as “infected”, and 

“normal” otherwise. 
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A preliminary analysis of the datasets generated by the two set ups indicated that all 

domain name system (DNS) packets, which used the user datagram protocol (UDP) had 

been labelled as normal. Hence, UDP traffic was excluded from further analysis and the 

training phase focused on TCP traffic only. This was plausible as botnets involve a series 

of communications between the botmaster and the mobile botnets that are based on TCP 

traffic [354]. Following the packets and stream labelling, the features used for training 

were: Packets/Stream Frame Duration, Packets/Stream Packet Size, and Arguments 

Number in HTTP Request URL (Table G-1). Overall, the traffic capture and labelling 

process produced two datasets for the 3rd phase of our experiments (i.e., the classifier 

analysis phase): (1) the TCP packets dataset, which included 13652 infected packets and 

20715 normal packets; and (2) TCP stream dataset, which included 1043 infected streams 

and 563 normal streams. 

Before carrying out the classifier analysis phase, we also performed a single factor 

Analysis of Variance (ANOVA) statistical analysis on the datasets. This was in order to 

obtain an initial (and crude view) of possible indicators of packets and streams that could 

have an effect on their classification. This analysis showed that the frame duration, the 

TCP packet size and the arguments number of HTTP requests were three potentially 

important differentiators to take into account in the traffic analysis training phase. 

Table 4-4 shows the results of this analysis for these three features. According to it, 

frame duration was found to have different average values in infect and normal datasets 

(i.e., data from the mobile botnet and normal applications, respectively). However only 

in the case of the packet data set this difference was statistically significant. This is shown 

by the F-test: the F-value from the data set (172.9) was larger than the F-critical value (F-

value: 172.9 > F-crit: 3.842). The average values of frame duration were different 

between infect and normal traffic in the case of the stream dataset, but the relevant 

difference was not statistically significant (F-value: 1.44 < F-crit: 3.842).
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Table 4-4 - AVONA analysis results 

SUMMARY
Groups Count Sum Average Variance

Normal 7997 77812.4 9.7302 2602.083
 Infect 11750 28858.6 2.45605 676.1407
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 251785 1 251785 172.9199 2.49361E-39 3.841929825
Within Groups 2.9E+07 19745 1456.08
Total 2.9E+07 19746

SUMMARY
Groups Count Sum Average Variance

Normal 7997 1135272 141.962 126885.7
 Infect 11750 2518838 214.369 172342
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 2.5E+07 1 2.5E+07 162.0654 5.59522E-37 3.841929825
Within Groups 3E+09 19745 153934
Total 3.1E+09 19746

SUMMARY
Groups Count Sum Average Variance

Normal 7997 358 0.04477 1.258626
 Infect 13846 2757 0.19912 2.606575
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 120.771 1 120.771 57.15394 4.1887E-14 3.841884621
Within Groups 46152 21841 2.11309
Total 46272.8 21842

SUMMARY
Groups Count Sum Average Variance

normal 644 6192.87 9.61626 2216.41
infect 1043 79562.3 76.2822 1972424
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 1769550 1 1769550 1.449752 0.228736818 3.846983477
Within Groups 2.1E+09 1685 1220588
Total 2.1E+09 1686

SUMMARY
Groups Count Sum Average Variance

normal 644 6539185 10154 6.51E+08
infect 1043 2870130 2751.8 47240458
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 2.2E+10 1 2.2E+10 78.52476 1.96272E-18 3.846983477
Within Groups 4.7E+11 1685 2.8E+08
Total 4.9E+11 1686

SUMMARY
Groups Count Sum Average Variance

normal 644 1566 2.43168 90.97666
infect 1043 2761 2.64717 36.63931
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 18.4896 1 18.4896 0.322262 0.570327351 3.846983477
Within Groups 96676.2 1685 57.3746
Total 96694.6 1686

TCP size

Argument number in HTTP request

Packet Dataset
Frame Duration

TCP size

Argument number in HTTP request

Stream Dataset
Frame Duration
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On the basis of the F-test, the TCP packet size was found to be a statistically significant 

differentiator for both the packet and the stream data sets. 

The arguments number of in HTTP requests was found to have a different variance 

between infect and normal for stream dataset. For package dataset, the F-value was larger 

than F-crit (F-value: 57.1 > F-crit: 3.842) which show the statistically significant 

difference. 

On the basis of this analysis, we considered these features to be suitable for machine 

learning analysis. 

4.5.1.2 Validation of training 

To validate the experimental training results, we used three validation schemes. These 

were based on K-fold cross-validation, and 10% split validation. 

K-fold cross validation is a common technique for estimating the performance of an 

ML classifier [355]. According to it, in a learning training involving m training examples, 

the examples are initially arranged in random orders, and then they are divided into k 

folds. A classifier is then trained with examples in all folds but folds i (i = 1 . . . k), and 

its outcomes are tested using the examples in fold i. Following this training-testing 

process, the classification error of a classifier is computed by: 

Equation 4-1 K-fold classification error of a classifier 

 E ൌ ∑ 𝑛௜௜ୀଵ..௄ 𝑚⁄  (4-1) 

where 𝑛௜  is the number of the wrongly classified examples in fold 𝑖  and 𝑚  is the 

number of training examples. 

Based on this scheme, we used 90-10% 10-fold and 50-50% 2-fold cross-validation, 

which are two typical validation approaches in ML. Split validation is simpler as it divides 

the training dataset into two parts, one part containing data used only for training and 
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another part containing data used only for testing. In 90-10% split validation, 90% of the 

data are selected as training dataset and 10% as the test dataset. 

The analysis of the performance of classifiers was also based on two different 

formulations of the training and test data sets. In the first formulation (experiment I), both 

the training and the test datasets could include data from the same malware family, 

although the two data sets were disjoint. Hence, in this experiment, classifiers could have 

been trained with instances of traffic from a malware family that they needed to detect.  

In the second formulation (experiment II), the training and test data sets were restricted 

to include only data from different malware families. Hence, in this experiment, the 

classifiers were tested on totally unknown malware families (i.e., malware families whose 

infected data traffic had not been considered at all in the training phase). 

4.5.2 Experiment I 

4.5.2.1 Purpose 

As discussed in Section 4.5.1.1, all the UDP protocol traffic in the dataset was labelled 

normal and was filtered out in the subsequent analysis. Thus, the attributes that we used 

in the experiment were frame duration, TCP packet size and the number of arguments in 

the URL of HTTP requests. Also, classifications were performed separately for the stream 

and packet data sets using all basic classifier algorithms. Hence, we carried out 30 groups 

of basic algorithm experiments (5 classifier algorithms × 3 validation schemes × 2 data 

sets) and 18 groups of ML-BOX experiments (6 box algorithms × 3 validation schemes 

× 1 dataset). 
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4.5.2.2 Set up 

According to the workflow of the experiments, two sets of the dataset are prepared for 

machine learning analyser: packet dataset and stream dataset. Then we input two sets of 

the dataset into the WEKA toolkit and configure different algorithms to perform the 

machine learning analysis.  

4.5.2.3 Results 

The results of the experiments for the atomic and aggregate classifiers from experiment 

1 are shown in Table F-1 (In Appendix F). The table shows the recall, precision and FPR 

measures for stream and packet data separately and for different validation set ups (90-

10% 10-fold validation, 50-50% 2-fold validation, and 10-90% split validation). The main 

overall observation from Table F-1 was that the results in the case of packet level traffic 

were not encouraging and that the results for stream traffic were considerably better. Base 

on the Table F-1, we generated a group of visualisation charts to demonstrate the result. 

The Figure 4-5 and Figure 4-6 visualise the measures of Recall, FPR and Precision for 

Normal applications and Infect applications separately with stream dataset. For each 

measure, we put the result of different dataset schemes together for comparison. 

According to the charts of Normal Recall and Normal FPR, both of Recall and FPR of 

normal application are relatively low for SVM, MNN and ML-BOX(OR) algorithms. On 

the contrary, the Naïve Bayes and ML-BOX(AND) algorithms have high value for these 

two measures, especially for 2-fold cross-validation dataset scheme. The 10-fold cross-

validation dataset scheme has the best Recall for all ML algorithms except ML-BOX 

(AND which is slightly lower than 2-fold cross-validation dataset scheme. However, FPR 

of 10-fold cross-validation dataset scheme is higher than others except for J48, KNN and 
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ML-BOX(AND). The performance of precision measure is better across the normal and 

infect application. 
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Figure 4-5 - Normal stream result visualisation 
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Figure 4-6 - Infect stream result visualisation 

(Keys) cross: cross-validation, split: split-validation 
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Figure 4-7 - Comparison between packet and stream dataset 
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Figure 4-7 illustrates the comparison between Packet dataset and Stream dataset 

performance of atomic algorithms. The x-axis is the algorithms, and the y-axis is the 

dataset schema with the flag of packet or stream (10-C P means 10-fold cross validation 

packet and 10-C S means 10-fold cross validation stream). In order to observe the result 

of packet and stream obviously, we colour the packet result with green and stream result 

with blue. The figure demonstrates that the performance of packet result in normal 

applications is slightly better than a stream for J48, KNN and NB algorithms. However, 

in the infect application, the performance of packet is significantly lower than stream 

result. The similar observations can be found in normal and infect FPR. The precision of 

stream dataset is better than packet both in normal and infect applications nearly for all 

the algorithms. Therefore, the streams dataset should be chosen as a training dataset for 

learning. 

4.5.2.4 Analysis 

The result could be explained as follows. In TCP communication, the server and client 

should make a connection by a 3-way handshake, then send transfer data (payload 

packets) in fragments to stay below a maximum transmission unit (MTU). Also for each 

data transfer, the receiver sends an acknowledgement signal packet (ACK signal). Finally, 

the initiator sends a FIN signal packet to end the communication. In our experiments, data 

of normal and infected applications were labelled by the source and destination IP address 

of each traffic instance. In the case of the packet dataset, there was a large number of FIN 

and ACK packets labelled as “infected” due to the used IP addresses. The remaining 

features of these packets, however, were similar to FIN and ACK packets labelled as 

“normal”. Thus, the classifiers could not distinguish between them. In the case of the 

stream dataset, however, FIN and ACK packets were grouped into single streams, and 

hence their own characteristics did not feature prominently in the training and testing data 

sets. Hence, the classifiers were not misled by these signal packets in cases where they 
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had the same features as payload packets and, consequently, the performance of the 

stream dataset was better than that of the packet dataset. 

Table 4-5 - Ranking of algorithms for infected stream traffic in experiment I 
 Precision (ave) FPR (ave) Recall (ave) 

Classifier         
Split 90-10 50-50 90-10 50-50 90-10 50-50 

Naïve Bayesian .788 /3 .781/ 3 .028 /1 .043 /1 .064 /5 .096 /5 
J48 Tree .842 /2 .821/ 2 .276 /3 .307 /3 .908 /2 .870 /3 

MNN .654 /5 .650/ 5 .752 /4 .826 /4 .877 /4 .946 /2 
KNN .870 /1 .853 /1 .216 /2 .248 /2 .893 /3 .887 /4 
SVM .626 /4 .625/ 4 .966 /5 .969 /5 .998 /1 .997 /1 

ML-BOX(AND) .887 /2 .884 /3 .011 /1 .008/ 1 .053 /6 .036 /6 

ML-BOX(OR) .625 /6 .627 /6 .969 /6 .958 /6 .996 /1 .996 /1 

ML-BOX(HALF) .813 /4 .817 /4 .349 /3 .340 /4 .941 /3 .936/ 3 

ML-BOX+(AND) .914 /1 .902 /1 .129 /2 .148 /2 .845 /5 .835/ 5 

ML-BOX+(OR) .801 /5 .789 /5 .382 /5 .410 /5 .947/ 2 .945 /2 

ML-BOX+ (HALF) .814 /3 .900 /2 .359 /4 .205 /3 .939 /4 .847 /4 

Focusing on stream traffic only, Table 4-5 shows the average recall, TPR and precision 

across for the two validation schemes with the best outcome (i.e., the 90-10 and 50-50 k-

fold validation) in the case of infected traffic, and the relative ranking of each algorithm 

given the each of the evaluation measures. In the case of KNN, for example, the table 

shows “.870 /1” under precision for the 90-10 validation scheme. This means that the 

precision of KNN was .870 for the 90-10 scheme and that this algorithm was ranked 1st 

amongst the atomic algorithms. The results show a mixed picture. In particular, KNN and 

J48 were the best two atomic algorithms in terms of precision; KNN and J48 were the 

best two atomic algorithms in terms of recall, and Naïve Bayesian and KNN were the best 

two atomic algorithms in terms of FPR. The outcome was the same in the case of precision 

and FPR for the 50-50% scheme, but in this case, the ranking of atomic algorithms 

changed for recall (SVM still turned out as best but was followed by MNN). 

The results of aggregated algorithms were, in general, better than those of atomic 

algorithms in this experiment. In particular, the ML-BOX(OR) and ML-BOX+(OR) 

algorithms produced the best recall for infected traffic (i.e., about 99% and 95%, 
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respectively) for both validation schemes. In terms of precision and FPR, the best two 

algorithms were ML-BOX+(AND) and ML-BOX(AND), albeit the different order of 

their ranking under each of these measures. ML-BOX(OR) and ML-BOX+(OR) yielded 

a higher recall than the individual algorithms because they classified as infected the union 

of the streams classified as such by any of these algorithms (i.e., a superset of all the sets 

of infected streams returned by the individual algorithms). ML-BOX(AND) and ML-

BOX+(AND) yielded a higher precision than individual algorithms as they classified as 

infected the intersection of the streams that were classified as such by these algorithms 

(i.e., a subset of all the sets of infected streams returned by the individual algorithms).     

Comparing the results of different validation schemes, the results in terms of precision 

and FPR in the case of 90-10% 10-fold validation were better than those of the 50-50% 

2-fold validation for most algorithms, although no notable differences amongst these two 

schemes were observed for recall. 

With the purpose to compare the performance of different algorithms intuitively, we 

produce the Figure 4-8 which demonstrate the infect application average measure across 

all ML algorithms. Thought the SVM, MNN and ML-BOX(OR) algorithms have a high 

recall; the corresponding FPR is also very high. Both of NB and ML-BOX(AND) have 

the low merit of recall and FPR. Considering other 6 ML algorithms (J48, KNN, ML-

BOX(HALF), ML-BOX+(AND), ML-BOX+(OR), ML-BOX+(HALF)) that have 

relatively acceptable performance, the ML-BOX+(AND) represent the lowest FPR and 

highest Precision. 
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Figure 4-8 - Comparison of ML algorithms 
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Figure 4-9 - ROC curve of infect stream based on six classifier algorithms 

Another comparison of the performance of different classifier algorithms can be made 

using the receiver operating characteristic (ROC) curve. The ROC curve is generated by 

plotting the true positive rate (TPR) on the vertical axis (x-axis) against the false positive 

rate (FPR) on the horizontal axis (y-axis) at various threshold settings. Getting higher 

TPR and lower FPR is the objective of classification. So the closer the curve gets to the 

left upper corner, the better the performance is it.  Figure 4-9 illustrates the ROC curve 

for six different classifiers for infected traffic in the stream dataset and the 10-fold cross 

validation. As shown in the figure, the performance of the J48 and KNN algorithms was 

better than the performance of the other three basic algorithms, and the aggregated 

algorithm ML- BOX+(HALF) yielded the best result of all algorithms. 

Table 4-6 - The AUC of six classifiers based on stream dataset 

Classifier AUC 
Naïve Bayesian 0.601 

J48 Decision Tree 0.882 
Multi-layer NN 0.573 

K-Nearest Neighbours 0.836 
SVM 0.516 

ML-BOX+(HALF) 0.919 
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The measure of the area under the ROC curve, known as area under the curve (AUC), 

is also widely used for comparison of the performance of different classifications. Table 

4-6 presents the AUC for the 6 ROC curves of Figure 4-9. Based on AUC, the J48 

algorithm has the largest AUC measure across all basic algorithms competitors (0.882) 

and can, therefore, be assumed to be the best basic algorithm for the classification. 

However, the KNN algorithm is close to it with an AUC of 0.836. All the other basic 

algorithms have had low AUC measures. Overall the ML-BOX+(HALF) have had the 

best AUC (i.e., 0.919) across all algorithms. 

 

Figure 4-10 - ROC curves of evaluation of selected botnet detection systems 

The  shows the summary of the selected literatures in Section 2.2.4 which includes the 

evaluation based on the ROC curve. Although the data sets in the experiment are different, 

they have the similar trend for the ROC curve. Moreover, we can find the area under the 

ROC curves of BotHunter and BotTrack on Chord P2P network is larger than others, so 
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they have better performance. Meanwhile, the performance of J48, KNN and ML-

BOX+(HALF) have similar performance with these exiting researches. 

Table 4-7 - Outcome of analysis of variance for experiment I 

(A) ATOMIC  ML CLASSIFIERS  
Measure  Source of Variation  SS  df  MS  F  P‐value  F crit 

TPR  Dataset scheme  0.093  2.000  0.046  0.903  0.443  4.459 

   Algorithm  0.769  4.000  0.192  3.749  0.053  3.838 

FPR  Dataset scheme  0.145  2.000  0.072  1.973  0.201  4.459 

   Algorithm  1.408  4.000  0.352  9.579  0.004  3.838 

Prec  Dataset scheme  0.007  2.000  0.004  3.480  0.082  4.459 

   Algorithm  0.125  4.000  0.031  30.132  0.000  3.838 

(B) BOX ML CLASSIFIERS   
Measure  Source of Variation  SS  df  MS  F  P‐value  F crit 

TPR  Dataset scheme  0.026  2.000  0.013  0.509  0.616  4.103 

   Algorithm  1.131  5.000  0.226  8.894  0.002  3.326 

FPR  Dataset scheme  0.056  2.000  0.028  4.814  0.034  4.103 

   Algorithm  1.508  5.000  0.302  52.046  0.000  3.326 

Prec  Dataset scheme  0.007  2.000  0.003  3.063  0.092  4.103 

   Algorithm  0.143  5.000  0.029  26.848  0.000  3.326 

(C) KEY: SS: sum of squares; df: degrees of freedom, MS: mean square; F: F-value of experimental data; P-val: 

probability of samples of from same population despite difference in variance; F crit: minimum F value for accepting 

null hypothesis at α=0.05; Dataset scheme: the dataset scheme for the experiments; Algorithm: sample groups based 

on ML classifier algorithm. 

To investigate whether the use of different train-test dataset scheme and different ML 

classifiers resulted in a statistically significant difference in the TPR, FPR and PRC 

measures for botnet applications, we carried out a two-way analysis of variance 

(ANOVA). The results of this analysis are summarised in Part (A) of Table 4-7 and 

demonstrate that the statistically significant differences were only the FPR and Prec 

differences across the different atomic ML algorithms (F(1,5)=9.579, p=.0004 for FPR 

and F(1,7)= 30.132, p=.000 for Prec). The two-way analysis of variance (ANOVA) for 

box ML algorithms as shown in Part (B) of Table 4-7: (a) only statistically significant 

differences were the FPR differences across the different dataset scheme (F(1,4)=4.814, 

p=.0034); (b) the algorithms has a significant effect on all measures. 
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4.5.2.5 Summary of main results of the first set of experiments 

The main observations are drawn from an experiment I are: 

1. The algorithms KNN and Naïve Bayesian have had the best performance in terms 

of precision and FPR amongst the atomic algorithms in the 90-10 and 50-50 

scheme. However, recall performance of Naïve Bayesian was bad (0.064 and 0.096 

for two cross-validation dataset scheme). In terms of recall, the best performers 

amongst single algorithms were SVM and MNN. However, both these algorithms 

had low precision and high FRP rates. 

2. ML-BOX (AND) and ML-BOX+(AND) have had the best performance in terms 

of precision and FPR amongst the aggregate (box) algorithms in the 90-10 and 50-

50 schemes. However, performance in terms of recall for ML-BOX+(AND) was 

so poor (0.053and 0.036 in the 90-10 and 50-50 schemes). In terms of recall, the 

best performers amongst box algorithms were ML-BOX(OR) and ML-BOX+(OR). 

However, only ML-BOX+(OR) appeared to have acceptable precision and FPR 

rate. 

3. ML-BOX+(HALF) has the best AUC with 0.919, and the J48 and KNN have 

relatively acceptable AUC. The worst one is SVM which is only 0.516. 

4.5.2.6 Threats to validity 

The main threats to the validity of Experiment I are as follows: 

1. Even though the number of packets is large, the number of the stream is less than 

2000. Therefore the size of the dataset may not be enough to prove the feasibility 

of the system. 

2. The slightly difference normal application operation during the experiment maybe 

infect the analyser result. 
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4.5.3 Experiment II 

4.5.3.1 Purpose 

The second experiment focused on assessing the capability of classifiers to detect 

totally unknown mobile botnet malware.  

4.5.3.2 Set up 

To reach the purpose, we partitioned the infected stream dataset into different subsets 

containing only data from the individual mobile botnet malware families. This produced 

nine sets of infected data coming from all families in Table 4-1 except from family eight 

which did not produce any infected data. The nine sets of infected data were mixed with 

a random selection of 10% of normal stream data to formulate an infected family data set. 

Subsequently, we used ~90-10% 10-fold validation by selecting data streams from 8 

families and testing it on the remaining one family and ~50-50% 2-fold validation by 

selecting data streams from 5 families and testing it on the remaining four families. 

4.5.3.3 Results 

The results of experiment 2 in terms of recall, TPR and precision are shown in Table 

F-2 which shows the results for each of the individual malware families as produced in 

the 90-10 scheme. The corresponding bar charts are presented in Figure 4-11, Figure 4-12 

and Figure 4-13. The different performance among ML algorithms is similar with the 

result of Experiment I which describe in Section 4.5.2. Regarding the performance across 

the different malware family, the recall of malware family 3 is obviously superior to 

others by using NB and ML-BOX(AND) algorithms in Figure 4-11. Meanwhile the 

Precision measure of malware family 3 is higher in these two algorithms than all other 

algorithms that can be found in Figure 4-13. As can be seen from the J48, ML-
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BOX+(AND), ML-BOX+(OR) and ML-BOX+(HALF) algorithms in Figure 4-11, the 

recall of malware family 5 is significantly lower than other families over 50%. In terms 

of FPR, there is no remarkable difference between different malware family especially 

for NB SVM and ML-BOX(OR) algorithms. 
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Figure 4-11 - Infect recall across infect malware family 

 

Figure 4-12 - Infect FPR across infect malware family 

 

Figure 4-13 - Infect Prec across infect malware family
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4.5.3.4 Analysis 

Table 4-8 shows the average recall, TPR and precision across all families for the two 

splits and the relative ranking of each algorithm given the relevant measure (in the case 

of J48 for example the table shows “.665 /1” under precision for the 90-10 scheme 

meaning that the precision of J48 was .665 and that this algorithm was ranked 1st amongst 

the atomic algorithms). 

Table 4-8 - Ranking of algorithms for infected stream traffic in experiment II  

 Precision (ave) FPR (ave) Recall (ave) 
Classifier 90-10 50-50 90-10 50-50 90-10 50-50 

Naïve Bayesian .606 /3 .693 /2 .030 /1 .158 /1 .116 /5 .190 /5 
J48 Tree .665 /1 .756 /1 .204 /2 .222 /2 .567 /4 .530 /3 

MNN .544 /4 .544 /5 .783 /4 .680 /4 .886 /2 .727 /2 
KNN .617 /2 .656 /3 .276 /3 .336 /3 .583 /3 .511 /4 
SVM .529 /5 .555 /4 .957 /5 .900 /5 .988 /1 .927 /1 

ML-BOX(AND) .735 /1 .741 /1 .008 /1 .031 /1 .088 /6 .089 /6 
ML-BOX(OR) .529 /6 .582 /6 .957 /6 .935 /5 .988 /1 .976 /1 

ML-BOX(HALF) .637 /5 .674 /5 .345 /4 .398 /4 .718 /3 .613 /3 
ML-BOX+(AND) .662 /2 .735 /2 .119 /2 .148 /2 .396 /5 .388 /5 
ML-BOX+(OR) .640 /3 .691 /4 .360 /5 .410 /6 .753 /2 .704 /2 

ML-BOX+ (HALF) .638 /4 .694 /3 .342 /3 .344 /3 .716 /4 .602 /4 

From the Figure 4-14, the column chart of Table 4-8, we can see clearly that both of 

recall and FPR are higher than others for the SVM, MNN and ML-BOX(OR) algorithms. 

In contrast, recall and FPR of NB and ML-BOX(AND) are lowest among all the 

algorithms. Comparing with Experiment I, the recall of other six algorithms is slightly 

inferior to the corresponding performance data in Figure 4-8. The reason for decrement 

is the unknown malware family data in the testing dataset. 
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Figure 4-14 - Comparison of ML algorithms 
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To explore whether the observed differences were statistically significant, we carried 

a two-way analysis of variance (ANOVA) for atomic and box algorithm separately. Table 

4-9 Part (A) shows that the all measures are statistically significant across different atomic 

ML algorithm (F(1,3)=45.633, p=.000 TPR, F(1,5)=507.734, p=.000 for FPR, 

F(1,3)=45.633, p=.000 for Prec). However, the none of them are statistically significant 

across the data scheme. The box algorithms results are shown in Table 4-9 Part (B) which 

demonstrates statistically significant differences in all measures (i.e., in TPR, FPR, PRC) 

across the different atomic and box ML classifiers, and across the different data scheme 

at α=0.05. 

Table 4-9 - Outcome of analysis of variance for experiment II 

(A) ATOMIC ML CLASSIFIERS 
Measure  Source of Variation  SS  df  MS  F  P‐value  F crit 

TPR  Dataset scheme  0.394  8.000  0.049  2.148  0.060  2.244 
  Algorithm  4.183  4.000  1.046  45.633  0.000  2.668 

FPR  Dataset scheme  0.030  8.000  0.004  1.356  0.253  2.244 
  Algorithm  5.712  4.000  1.428  507.734  0.000  2.668 

Prec  Dataset scheme  0.394  8.000  0.049  2.148  0.060  2.244 
  Algorithm  4.183  4.000  1.046  45.633  0.000  2.668 

(B) BOX ML CLASSIFIERS 
Measure  Source of Variation  SS  df  MS  F  P‐value  F crit 

TPR  Dataset scheme  0.663  8.000  0.083  6.294  0.000  2.180 
  Algorithm  4.540  5.000  0.908  69.011  0.000  2.449 

FPR  Dataset scheme  0.044  8.000  0.005  4.510  0.001  2.180 
  Algorithm  4.842  5.000  0.968  802.994  0.000  2.449 

Prec  Dataset scheme  0.663  8.000  0.083  6.294  0.000  2.180 
  Algorithm  4.540  5.000  0.908  69.011  0.000  2.449 

(C) KEY: as in Table 4-7 

4.5.3.5 Summary of key results of second experiment set 

The main observations drawn from experiment II are: 

1. The precision, recall and FPR of all classifiers (both the atomic and the 

aggregated ones) dropped w.r.t experiment 1, as it can be seen by contrasting 

the recall and precision figures for the 90-10 and 50-50 cross validation column 

for stream data in Table F-1 with the corresponding figures in Table F-2. 
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2. The drop was more significant in the case of a recall. 

3. The cross validation with the 50-50 slit generated better outcomes than the 90-

10 split in terms of precision, recall and FPR for all algorithms. This was 

probably due to overfitting, as in the 90-10 scheme we found recall to correlate 

positively with the training-to-test data set size (TTTS) ratio and precision to 

correlate with TTTS negatively: the correlation coefficients were 0.41 for 

TTTS/Recall, and – 0.90 for TTTS/Precision. 

4. Results were poor for all families with a low number (<50) of infected streams 

(i.e., families 3, 5, 6, 7). 

5. The algorithms J48 and Naïve Bayesian have had the best performance in terms 

of precision and FPR amongst the atomic algorithms in the 90-10 and 50-50 

scheme. However, their performance in terms of recall was not so good (0.567 

and 0.116, respectively). In terms of recall, the best performers amongst single 

algorithms were SVM and MNN. However, both these algorithms had low 

precision and high FRP rates. 

6. ML-BOX (AND) and ML-BOX+(AND) have had the best performance in 

terms of precision and FPR amongst the aggregate (box) algorithms in the 90-

10 and 50-50 schemes. However, their performance in terms of recall was not 

poor (0.088 and 0.396, respectively). In terms of recall, the best performers 

amongst box algorithms were ML-BOX(OR) and ML-BOX+(OR). However, 

only ML-BOX+(OR) appeared to have acceptable precision and FPR rate. 

7. Recall and FPR were found to correlate positively with the size of the infected 

data set of a family and precision was found to correlate negatively with it. 

4.5.3.6 Threats to validity 

1. We divided the network traffic into different malware families based on the feature 

of IP addresses. There is a small set of network traffic that classified wrongly 
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possibly. This error can cause deviations for performance and result of machine 

learning classification. 

2. The number of malware families used in the experiment is not enough to prove the 

system can be used for detection for unknown mobile botnet malware. The 10 

botnet malware families we selected in the experiment could not predict the 

behaviour of other unknown mobile botnet malware behaviour. 

4.5.4 Experiment III 

4.5.4.1 Purpose 

Although the performance of mobile devices has improved significantly in recent 

years, their computing and energy capabilities are still limited. Therefore, a system 

deployed on a mobile device should be designed to minimise the demand for such 

resources. Hence, in our experiments, we should also evaluate the execution time and 

battery consumption of MBotCS. 

4.5.4.2 Set up 

The mobile device used in this evaluation was a GT-I9228 with 1440 MHz CPU clock, 

1 GB of RAM and battery of 2500 mAh. The specification of the mobile device used in 

this evaluation is shown in Table 4-10. MBotCS, tPacketCapture, and Gsam Battery 

Monitor had been installed on it. Then we made a random selection of 10 botnet 

applications and ten normal applications of those indicated in Section 4.5.1.1 and ran the 

evaluation experiment for 12 hours. The set up of the experiment involved the following 

sequence of steps: 

(1) Charged the battery of the mobile device fully and installed all the applications. 

(2) Launched the Gsam Battery Monitor, tPacketCapture and MBotCS applications. 
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(3) Launched the normal and infected applications mentioned above and run 5 

minutes for each application to simulate user behaviours, and the remaining experiment 

time keep the mobile device on standby. 

(4) Gathered and analysed results. 

(5) A comparison experiment was performed for a time period of the same length on 

the following day. The set up was identical to the initial experiment (i.e., we went through 

steps (1) - (4) except that we did not deploy MBotCS. 

Table 4-10 - The specs of GT-I9228 

Parameters Value 

CPU Clock 1400 MHz 

RAM 1 GB 

Battery 2500 mAh 
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4.5.4.3 Results 

 

Figure 4-15 - Battery consumption 

Results - Battery Consumption: The graphs of battery consumption in percentage terms 

and battery temperature during the experiment is shown in Figure 4-15. According to the 

figure, the battery consumption was not affected significantly by the use of MBotCS. In 

particular, the use of MBotCS consumed 0.5% of the total battery usage of the device 

during the period of its deployment. Of this, 0.2% was the battery usage caused by 

tPacketCapture. 

Execution Time: When activated, MBotCS checks the pcap file every 3 seconds, and 

if new traffic is captured, it scans and analyses it. In these scans, the scan sequence 

number (𝑠𝑞) is recorded. Using the J48, KNN and ML-BOX+(HALF) classifiers in the 

ML-Analyser, we recorded the number of streams (𝑁௦௤) in the new traffic and the total 

execution time (𝑇௦௤ ) for analysing the new traffic. Figure 4-16 shows the average 
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execution times for the three classifiers, computed by the formula 𝑇௔௩௘
௦௤ ൌ ∑ 𝑇௦௤௦௤

௜ୀ଴ /

∑ 𝑁௦௤௦௤
௜ୀ଴  (the average for sequence number 100, for instance, is the average of execution 

time of a classifier over all stream instances from 1 to 100). The figure also shows the 

fitted curves for the average execution times of these algorithms. 

 

Figure 4-16 - The ML-analyser execution time 

4.5.4.4 Analysis 

These Figure 4-15 show that MBotCS has had a very low energy effect on the battery 

consumption of the device. 

The results show that the average execution time of J48 across all executions was 1.216 

seconds with a standard deviation of 0.228 and the average of KNN across all executions 

was 11.562 seconds with a standard deviation of 1.779. The average of ML-BOX+ 

(HALF) across all executions was 11.387 seconds with a standard deviation of 1.087. A 

t-test check showed the statistical significance of the observed differences between the 
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average execution times of J48 and KNN at α = 0.05 (p−value = 2.701E−91 << 0.05), 

confirming that J48 have had better performance than KNN. 

Also, the average execution time of different classifiers remained almost constant with 

respect to the processed number of streams performance, as shown by the curves fitted 

on execution times in Figure 4-16. This indicates the capability of MBotCS to produce a 

reasonably fast detection/response once the ML-Analyser has been trained. 

4.5.4.5 Threats to validity 

There are other factors that cannot be controlled for affecting the battery consumption.  

1. The signal of WIFI on the mobile device will affect the battery consumption. A 

weak signal will lead to high battery consumption. 

2. The temperature of the environment will affect the battery consumption. The high 

temperature will lead to high battery consumption. 

4.6 Experiments for system call analysis 

4.6.1 Overview 

Apart from analysing the network traffic to detect botnets on Android device, we also 

performed an experimental study on the use of ML algorithms for the detection of mobile 

botnets, based on the analysis of system (i.e., Android OS) calls. In particular, the main 

contributions of our experimental study with respect to previous work are that it has 

investigated: 

(a) The use of not only atomic but also box ML classifiers using supervised learning. 
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(b) The performance of ML classifiers a wider set of detection scenarios than existing 

work including KBKN scenario, UBKN scenario and UNUB scenario which 

introduced in Section 4.4. 

(c) A comprehensive set of Android mobile botnets, which had not been considered 

previously, without relying on any form of synthetic training data.  

(d) The statistical significance of differences in detection performance measures with 

respect to ML algorithms, system call aggregation periods, normal and botnet 

applications, and different types of botnet families. 

The following paragraph will introduce our approach and the methodological setup of 

the experiments and gives an analysis of the results obtained from them. 

4.6.2 Methodological setup of the experiments 

In the following, we describe the methodological set up for the experimental analysis 

of system logs. Figure 4-17 shows an overview of this set up, which involved three main 

steps: (1) the capture of mobile device system calls to txt file which contains full system 

call sequence in-formation for further analysis (system call capture); (2) the selection of 

feature and generation of the dataset for training and testing the system call analyser 

(dataset generation); and (3) the experimental use of different ML classifier algorithms 

as the basis for training the system call analyser (classifier analysis). 

 
Figure 4-17 - Experimental set up 
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4.6.2.1 System call capture 

The mobile device used in the experiments was the OnePlus One generation (A0001) 

running Android v. 5.2 (Lollipop). To avoid interference with other applications, the 

mobile device used for the experiment was reset to the default Android OS settings before 

the start of the experiments.  

To capture system calls, we deployed 12 normal applications and 10 mobile botnet 

applications. The normal applications that we selected due to their popularity were: 

Chrome, Gmail, Maps, Facebook, YouTube, Messenger, Twitter, PlayNewsstand, 

Flipboard, Feedly, Skype, and Mail-Droid. Also, to be certain about their genuineness, 

all of them were downloaded from Google Play. The botnet applications were selected 

from the MalGenome project [339]. MalGenome has collected more than 1200 Android 

malware applications. The vast majority of these applications (i.e., more than 90%) are 

botnets. From the whole set of MalGenome applications, we selected botnet applications 

from 10 different families, shown in Table 4-1. These families were selected to ensure 

coverage of different types of attacks, namely device control, hidden SMS dispatching, 

stealing and forwarding device information to remote servers (e.g., Botmasters), UI 

control and execution of commands, and hidden unauthorised downloads, contact of 

premium services. 

As the kernel of Android OS is Linux, there are more than 250 Linux system calls that 

could be made by an Android application. To capture system calls, we used strace, i.e., a 

debugging and monitoring Linux utility. strace was used on the Android device (i.e., 

A0001) through the Android Debug Bridge (ADB), i.e., a command line tool providing a 

Unix shell that can be used to run commands on Android connected devices or Android 

device emulators. Although strace can get all the system call for a process with a specific 

id PID, due to the limited resources of mobile devices, when applications are paused or 

put into the background, Android stops the corresponding process. This process is forked 

again with a new PID when the application is resumed. To address this issue, we 
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implemented a Linux Shell Script, called System Call Monitor (SCM) see Appendix B. 

Within it; we used the process name, which doesn’t change in the Android operating 

system to get the corresponding PID dynamically. SCM monitored the output of ps utility 

command continually, and checked whether the PID changed for same process name. If 

the PID had been changed, SCM used strace to capture the system calls of a new process 

for the corresponding application. 

4.6.2.2 Datasets Generation 

In the experiments, we used two data sets: (a) primitive system call data captured 

during the trial operation and (b) derived data aggregating system call profiles of different 

applications into different time periods. These data sets were generated as described 

below. 

Primitive data set: In the first stage, we installed the 12 normal applications and ten 

malware applications and deployed the SCM on the device. Then we launched these 

applications and the capture script over a 24-hour trial period. To simulate the activities 

of the mobile device, a table of frequently used actions of the normal applications, listed 

in Appendix E, was generated and executed. These actions were executed every one hour 

over the trial period. During this period, we collected 12 distinct data sets for the normal 

applications (one data set per application) and ten distinct data sets for the mobile botnet 

applications (one data set per botnet). 

Table 4-11 - Structure of primitive system call data set 

Timestamp Call Name Call Return Time Spent Label 

1.43E+12 clock_gettime 0 0 B 

1.44E+12 epoll_pwait 1 0.01 B 

1.46E+12 recvfrom 104 0 B 

From these raw datasets, we extracted four features that we considered potentially 

useful as indicators of variability between normal and botnet applications (see Table G-2). 

These were: (1) the timestamp of the system call, (2) the system call name, (3) return 
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value of the call, and (4) the time spent on the call (i.e., the call’s total execution time). 

System call instances were also labelled as “normal” and “infect” based on the application 

they were generated from. This process generated a data set of system call records of the 

form shown in Table 4-11. Altogether, we recorded 2,666,619 calls of 61 different system 

operations. 

To establish the potential utility of the descriptive features (1) - (4) in the different 

records we conducted a preliminary statistical analysis. The purpose of this analysis was 

to establish whether botnet and normal applications had any statistically significant 

variability with regards to the features. The outcomes of this analysis are discussed in 

detail in next Section. In summary, however, this analysis indicated that the only 

statistically significant difference between botnets and normal applications was related to 

the frequency of calls of different system functions. Due to this, we decided to aggregate 

the data in the primitive datasets into aggregate call profiles and use them, instead of the 

primitive data, to train the classifier algorithms. The dataset derived from this process is 

described next. 

Table 4-12 - Structure of derived dataset 

App Package 
Name 

Recv 
from 

Futex 
epoll_ 
pwait 

clock_ 
gettime 

write 
Get 
uid32 

… label 

com_android_chro
me 

.0879 .0887 .0980 .4460 .0756 .0766 … N 

flipboard_app .0690 .0169 0.1119 0.4462 .0644 .0945 … N 

com_km_installer .0121 .0032 .0720 .3349 .0263 .0528 … B 

greenrobt .0954 .0031 .0827 .3226 .0277 .0612 … B 

Derived data set: To derive aggregated system call profiles for different normal and 

botnet applications, we sliced the total 24-hour period over time intervals () of 10, 30, 

60, 300, 600 seconds and for each of these intervals, we produced a vector for each of the 

22 applications showing the relative frequency of calls to different system functions (i.e., 

the number of calls made to the specific system function divided by the total number of 

calls made to any system function by the relevant application within the period). This 
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process resulted in the generation of relative system call frequency tuples of the form 

shown in Table 4-12. In total for the intervals of 10, 30, 60, 300 and 600 seconds we 

obtained 19008 (B: 8640), 6336 (B: 2880), 3168 (B: 1440), 630 (B: 288), 315 (B: 144) 

system call vectors, respectively (B call vectors number in parenthesis). 

4.6.2.3 Analysed ML Algorithms 

In the second set of experiments, we used the same atomic ML algorithms and ML-

box algorithms that we used in the first set (see Section 4.1). The use of ML box 

algorithms based on the results of the best two atomic classifiers in each experiment 

according to the AUC measure (see below). In the following, we will refer to the 

outcomes of these box classifiers as “ML-BOX+ (.)” where “ML-BOX (.)” is the 

underpinning basic box algorithm. In the case of ML-BOX+(HALF), if the best two 

algorithms classified an instance of dataset in the same class, ML-BOX+(HALF) 

generated the same common classification but if the best two algorithms were in 

disagreement, ML-BOX+(HALF) generated a classification based on the outcome of the 

3 remaining classifiers by taking a vote over them. 

4.6.3 Basic statistical analysis 

The initial analysis that we performed on the primitive system call log data was 

statistical and was carried out with the aim to identify whether: (a) the frequency of calls 

to different system functions, (b) the size of the return value of calls, or (c) the time spent 

on the call system calls varied significantly, in a statistical sense, across normal and botnet 

applications. The purpose of this analysis was to identify descriptors with a potentially 

high classification effect for the detailed classifier-training phase.  

This analysis showed that only (a) varied in a statistically significant manner across 

botnet and normal applications. More specifically, for each of the sixty-one (61), different 

system calls that were recorded, we measured the relative frequency of the call for normal 
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(FN) and botnet applications (FB). The statistical significance of the observed differences 

between FN and FB ratios was tested using the z-score test [356]. The test showed that in 

42 out of 61 different system calls the FN and FB ratios varied in a statistically significant 

manner at p=.01. Table 4-13 shows the 10 system calls with the highest z-score. This 

analysis also indicated that botnet applications made significantly fewer calls to all system 

operations but two, i.e., epoll_pwait and recvfrom.  The FB of recvfrom was 37.32 

percentage points higher than its FN, and the FB of epoll_pwait was 14.79 percentage 

points higher than its FN. 

Table 4-13 - Statistical significance of system call frequency differences 

Call Name 
 Calls by 

Botnets 
B-RF 

 Calls by 

N apps 
N-RF Z-score 

recvfrom 462576 .445 117073 .072 72.54 

futex 2797 .003 192404 .118 353.24 

epoll_pwait 236368 .227 129500 .080 342.27 

clock_gettime 268049 .258 680662 .418 266.67 

write 3149 .003 81215 .050 213.27 

getuid32 9750 .009 96814 .059 203.72 

gettid 0 .000 44263 .027 169.53 

ioctl 24655 .024 111877 .069 162.66 

mprotect 1151 .001 29329 .018 126.71 

read 4838 .005 35666 .022 112.38 

The functions implemented by these two calls are relevant to network connectivity, 

and hence they can be the reason for the observed differences in their relative call 

frequencies. More specifically, recvfrom is used to receive data (messages) from a socket 

(whether or not it is connection-oriented), and epoll_pwait waits for events of monitoring 

multiple file descriptors to see if I/O operations occurred on them. Thus, both recvfrom 

and epoll_pwait relate to an application’s connection to networks outside the mobile 

device, an activity that is necessary for botnet applications, as such applications need to 

communicate with their botmaster regularly in order to retrieve the commands to execute 



4.6 Experiments for system call analysis 157

 

on the local device and report information obtained from this device back to the 

botmaster. 

4.6.4 First experiment: KBKN scenario 

In the first experiment (Exp 1), we used training sets including both normal and botnet 

application call vectors (of the form shown in Table 4-12) to train the different atomic 

classifiers. We also 90–10 percent cross-validation scheme of WEKA to evaluate the 

dataset. More specifically, we executed a total of 10 training evaluation dataset pairs. In 

each of these pairs, 90% of the full set of call vectors summarised in Table 4-12, 

consisting of both normal (N) and botnet (B) application vectors, was selected as the 

training set and the remaining 10% was used as the evaluation set. The training and test 

sets were selected randomly, but each pair of them used in the experiment was, by virtue 

of its selection, guaranteed to include both normal and botnet application vectors, albeit 

in different proportions. Due to this set up, it was possible for classifiers to have been 

trained with call vectors of a botnet application before being asked to detect whether a 

previously unseen vector of the same application belongs to it. Thus, this experiment 

realised a KBKN scenario. The experiment was repeated using call vectors aggregated 

over five different time periods, i.e., 10, 30, 60, 300 and 600 seconds. Hence, in total the 

set included 500 executions (100 per each aggregation period).  

The results of Exp 1 for different atomic ML classifiers are shown in part (a) of Table 

F-3. The table shows the TPR, FPR, PRC and AUC measures for normal and botnet 

applications separately grouped also by the aggregation period of the underlying data set 

(i.e., the 10, 30, 60, 300 and 600 second periods). The measures in the table were 

generated as an average measure computed across all the ten 90–10% splits of the call 

vector set generated by WEKA. The results in the table have also been coloured according 

to the VR criteria introduced in Section 4.1, using green colour to indicate the cases “very 

good” and red colour to indicate the cases of “weak” performance.  
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As shown in Table F-3, the classifier, which had the best average performance in terms 

of AUC for botnet applications across all the call vector aggregation periods, was the 

multi-layer perceptron (NN) (AUC=.995). SVM, however, have had the best performance 

in terms of average TPR (.975), FPR (.013) and PRC (.966) in botnets. Overall, SVM and 

NN demonstrated “very good” performance in terms of all metrics for botnets based on 

the VR criteria. KNN and J48 also showed “very good” performance in terms of FPR and 

PRC in all cases but missed the top performance range in terms of TPR (J48 in the 30s 

and 300s datasets, and KNN in the case of the 30s dataset). Note, however, that in none 

of these cases the TPR of J48 and KNN fell below .8 (i.e., in the “weak” performance 

range). The NB classifier has had the weakest performance of all the five classifiers with 

regards to FPR and PRC (.037 and .914, respectively), without however its performance 

being “weak” according to the VR criteria. 

The bar charts are corresponding to the Table F-3 is shown in Figure 4-18 and Figure 

4-19 that group the different time interval dataset into ML algorithm series. There are 8 

charts that divided by 2 types of application (normal and botnet) and 4 types of 

performance measurements (TPR, FPR, Prec and AUC). Overall, the performance is good 

with relatively high TPR, Prec, AUC and low FPR in both normal and botnet measures. 

Regarding the comparison between the different time interval dataset, in Figure 4-18 we 

can find that the normal TPR of 300s time interval dataset in the BOX-AND+ algorithm 

has the lowest performance with less than 0.85. The FPR of 300s and 600s time interval 

datasets are higher than others in J48 and NB algorithms respectively with values that are 

greater than 0.15. The difference of Prec and AUC is unapparent among various datasets 

across ML algorithms and all with values more than 0.9. In respect of Botnet measure in 

Figure 4-19, the 300s and 600s time interval dataset have relatively poor TPR (less than 

0.8) in J48 and NB algorithm respectively. The 300s time interval dataset also has high 

FPR (more than 0.15) in the BOX-AND+ algorithm. The FPR of 10s time interval dataset 

is relatively higher than others in NB and BOX-OR algorithms. Meanwhile, in NB and 

BOX-OR algorithms, the Prec of 10s time interval dataset is only around 0.8 that lower 
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than others. Similar to the normal result, the AUC of the botnets still has the balanced 

performance for all type datasets across various ML algorithms. 

The Figure 4-20 reveals the average performance of various type dataset between ML 

algorithms. As can be seen from the first two charts, all the average TPRs are more than 

0.9, and average FPRs are less than 0.1 for both of normal and botnet. Especially, the FPR 

in normal application of BOX-OR is less than 0.005 and the FPR of all algorithms except 

NB, BOX-OR and BOX-AND+ are around 0.01 in botnet application. The performance 

of average Prec and AUC across the ML algorithms are similar to the TPR that higher 

than 90 percent. 
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Figure 4-18 - Performance of normal across different time interval dataset 
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Figure 4-19 - Performance of botnet across different time interval dataset  
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Figure 4-20 - Average performance of time interval dataset
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Table 4-14 - Outcomes of analysis of variance for experiment 1 

(A) ATOMIC ML CLASSIFIERS 

 VarSr SS df MS F P-val F crit 
TPR A.Per 0.004 4 0.001 0.555 0.697 3.006 
  Alg 0.016 4 0.004 1.844 0.169 3.006 
FPR A.Per 0.003 4 0.000 3.070 0.047 3.006 
  Alg 0.002 4 0.000 2.575 0.077 3.006 
PRC A.Per 0.012 4 0.003 2.998 0.050 3.006 
  Alg 0.012 4 0.003 2.954 0.052 3.006 
AUC A.Per 0.000 4 0.000 0.329 0.854 3.006 
  Alg 0.005 4 0.001 2.892 0.056 3.006 

(B) BOX ML CLASSIFIERS 

 VarSr SS df MS F P-val F crit 
TPR A.Per 0.011 4 0.002 5.134 0.005 2.866 
  Alg 0.009 5 0.001 3.453 0.020 2.710 
FPR A.Per 0.001 4 0.000 0.288 0.881 2.866 
  Alg 0.012 5 0.002 2.186 0.096 2.710 
PRC A.Per 0.008 4 0.002 2.282 0.096 2.866 
  Alg 0.021 5 0.004 4.851 0.004 2.710 
AUC A.Per 0.001 4 0.000 2.813 0.053 2.866 
  Alg 0.006 5 0.001 7.689 0.000 2.710 

(C) KEY: VarSr: source of variance; SS: sum of squares; df: degrees of freedom, MS: mean square; F: F-value of 

experimental data; P-val: probability of samples of from same population despite difference in variance; F crit: 

minimum F value for accepting null hypothesis at α=0.05; A.Per: sample groups based on call vectors aggregation 

period; Alg: sample groups based on ML classifier algorithm. 

To explore whether the use of different aggregation periods and different ML 

classifiers resulted in a statistically significant difference in the TPR, FPR and PRC 

measures for botnet applications, we carried out a two-way analysis of variance 

(ANOVA). The results of this analysis are summarised in Part (A) of Table 4-14 and 

demonstrate that the only statistically significant differences were the FPR differences 

across the different aggregation periods (F(1,4)=3.0702, p=.047). It should be noted, 

however, that even this difference was statistically significant at α=.05 but not for lower 

α levels (e.g., for α=.025). 

In Exp 1, we also evaluated the effect of using box ML algorithms. The performance 

of these algorithms with respect to the used evaluation metrics is summarised in Part (B) 
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of Table F-3. As shown in it, BOX-AND has had the best performance for botnet 

applications with regards to the average AUC for botnet applications across all data 

aggregation periods (.995). It was, however, outperformed by BOX-OR with respect to 

the average TPR for botnet applications across all data aggregation periods (.997 vs. 

.965); by BOX-HALF and BOX-HALF+ in terms of average FPR for botnet applications 

across all data aggregation periods; and by BOX-HALF, BOX-AND+ and BOX-HALF+ 

in terms of average PRC for botnet applications across all data aggregation periods. 

However, none of these differences were statistically significant as the two-way ANOVA 

indicated. In particular, as shown in Part (B) of  Table 4-14: (a) the aggregation period 

and the box algorithm had a significant effect on TPR (F(1,4)=5.1340, p=.0052 for 

aggregation period; F(1,5)=3.4536, p=.0207 for algorithms); (b) the algorithms had a 

significant effect on PRC (F(1,5)=4.8513, p=.0046); and (c) the algorithms had a 

significant effect on AUC (F(1,5)=7.6892, p=.0004). 

Overall, the use of box ML classifiers did not improve the average AUC measure with 

respect to the best atomic ML classifier (i.e., NN). Considering TPR, BOX-OR performed 

marginally better than the best atomic ML classifier (i.e., SVM) with respect to TPR (TPR 

of .997 vs. .975) but at the expense of a lower accuracy, i.e. a higher FPR (.045 vs. .013) 

and a lower PRC (.899 vs. .981).  

In summary, the first set of experiments indicated that: 

 It is possible to detect botnet applications by collecting aggregate system call 

vectors of the mobile botnet and normal applications and analysing them 

through atomic and/or box ML classifiers that have been previously trained on 

such applications. 

 The use of box ML classifiers led to better results than atomic classifiers (the 

use of the BOX-AND classifier led to recall and precision as high as 96% and 

an FPR of about 1.5%). However, atomic ML classifier also demonstrated 
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strong performance (recall and precision rates in excess of 90%, FPR of less 

than 3%).  

 The aggregating period did not cause any significant statistical differences in 

the detection TPR and PRC for botnet applications in either atomic or box ML 

classifiers. It did, however, affected FPR in the case of atomic classifiers: the 

600s aggregation period gave the lowest average FPR (.009) and the 10s-

aggregation period gave the highest average FPR (.037) in this case. 

4.6.5 Second experiment: UBKN scenario 

In the second set of experiments (Exp 2) our objective was to investigate the capability 

of ML classifiers to detect new botnet applications, i.e., applications whose system call 

profiles have not been used to train classifiers prior to detection in the presence of known 

normal applications (UBKN scenario). These experiments were based on the call profiles 

that we collected through the process discussed in Section 4.6.2.2, except that the 

classifier training and test sets were formed differently than in the first experiment set. 

More specifically, each pair of test/training datasets was formed as follows: 

Test set: A test set included the full set of system call vectors of one botnet application 

plus a subset of the system call vectors of normal applications, including 10% of them. 

The selected subset of normal application call vectors was one of the 10 subsets of equal 

size of all the N call vectors that were formed through the random partition. 

Training set: The training set paired with a test set included the full set of system call 

vectors of the remaining botnet applications plus the remaining nine subsets of the N 

system call vectors (i.e., 90% of the N call vectors). 

For each botnet application, we formed 10 different test/training set pairs as described 

above and run 10 different experiments. Hence, we used 90 different test/training data set 
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pairs in total, i.e., 10 test/training data sets for each of the 9 botnet applications B1–B9 

(magicshop was excluded from this experiment as it produced only 13 calls during the 

entire data collection period). This design enabled us to test the ML classifiers for each 

of the botnet applications separately. 

Table F-4 summarises the results of this experiment, showing the average TPR, FPR, 

PRC and AUC measures computed for different ML classifiers and botnet applications 

(Part (A) shows the results for atomic ML classifiers and Part (B) shows the results for 

box ML classifiers). Each of the measures in the table is an average measure computed 

from 10 different test/training sets formed for each of the different botnet applications 

(B1 – B9). Also, the performance measures are also shown separately for normal and 

botnet datasets for each of the different botnet applications (B1–B9) and coloured as in 

Exp 1. Based on the AUC for botnet applications, the best atomic ML classifier was J48 

with average AUC for botnet applications of .936.  

The Figure 4-21, Figure 4-22 and Figure 4-23 are visualisation for the Table F-4. The 

performance of NN BOX-AND and BOX-OR algorithms exhibits the obvious difference 

between botnet families, especially for TPR and FPR. The botnet family 1, 4 and 7 has 

higher TPR than other families in normal applications in NN BOX-AND and BOX-OR 

algorithms. Meanwhile, they have lower FPR in botnet applications. In term of the 

comprehensive measure AUC, the botnet family 4 has a very low value that less than 0.6 

in SVM algorithm. 

J48 had an average TPR of .848, a very low FPR of .046 and PRC of.833. J48 was 

outperformed by Naïve Bayes (NB) in terms of TPR (NB: .908), but the latter algorithm 

performed worse than it in terms of FPR (.123 vs. .046) and PRC (.733 vs. .833). Hence, 

although J48 was able to detect a lower percentage of botnet activity, its results were more 

accurate. In terms of accuracy (FPR and PRC) for botnet applications, the best algorithm 
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was KNN with an average FPR of .032 and an average PRC of .836. However, KNN 

showed a lower TPR rate for botnet applications (.694). 

According to the VR criteria introduced in Section 4.1, J48 had a very good TPR in 

four botnets (B4, B5, B8 and B9) and a weak one in three botnets (B2, B6 and B7). Its 

FPR was very good in 6 out of the 9 botnets and weak in no botnets. Finally, its precision 

was very good in two botnets (B4 and B5) and average PRC of .836. However, KNN 

showed a considerably lower recall (TPR) rate for botnet applications (.694).  

NB had a very good TPR in five botnets (B2B5 and B8) and a weak one in two 

botnets (B1 and B9). Its FPR, however, was weak in all but one botnets (B7). Similarly, 

its precision was weak in 6 botnets (B1, B3, B5 and B7B9) and very good in two (B2 

and B4). KNN (i.e., the third best performing algorithm in terms of AUC) had a very good 

TPR in 3 botnets (B4, B5 and B9) and a weak one in 5 botnets (B1, B2 and B6–B8); very 

good FPR in all botnets and very good precision in two botnets (B4 and B6); and weak 

precision in three (B2, B5 and B8). The worst of all the algorithms were NN as it had a 

weak TPR in 6 botnets (B1 and B3–B7), a weak FPR in all botnets except B7 and weak 

precision in 6 botnets (B1, B3, B5, B6, B8 and B9). 
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Figure 4-21 - Performance of normal across different malware family dataset  
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Figure 4-22 - Performance of botnet across different malware family dataset 
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Figure 4-23 - Average performance of malware family dataset 
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Table 4-15 - Outcomes of analysis of variance for experiment 2 

(A) ATOMIC ML CLASSIFIERS 
 VarSr SS df MS F P-val F crit 
TPR Bot  0.442 8 0.055 1.483 0.161 1.961 
  Alg 3.832 4 0.958 25.710 0.000 2.394 
  Int 1.403 32 0.043 1.176 0.237 1.472 
FRP Bot  0.442 8 0.055 1.483 0.161 1.961 
  Alg 3.832 4 0.958 25.710 0.000 2.394 
  Int 1.403 32 0.043 1.176 0.237 1.472 
PRC Bot  8.767 8 1.096 33.353 0.000 1.961 
  Alg 1.037 4 0.259 7.893 0.000 2.394 
  Int 2.516 32 0.078 2.393 0.000 1.472 
AUC Bot  0.516 8 0.064 12.718 0.000 1.961 
  Alg 0.425 4 0.106 20.970 0.000 2.394 
  Int 2.453 32 0.076 15.105 0.000 1.472 

 (B) BOX ML CLASSIFIERS 

VarSr SS df MS F P-val F crit 
TPR Bot 4.093 8 0.511 33.242 0.000 1.957 

Alg 4.504 5 0.900 58.528 0.000 2.232 
Int 5.671 40 0.141 9.211 0.000 1.419 

FRP Bot 1.230 8 0.153 2.899 0.003 1.957 
Alg 7.142 5 1.428 26.926 0.000 2.232 
Int 2.096 40 0.052 0.9881 0.494 1.419 

PRC Bot 14.036 8 1.754 51.539 0.000 1.957 
Alg 3.310 5 0.662 19.449 0.000 2.232  
Int 1.551 40 0.038 1.139 0.262 1.419 

AUC Bot 0.791 8 0.099 10.851 0.000 1.957 
  Alg 0.717 5 0.143 15.727 0.000 2.232 
  Int 0.700 40 0.017 1.920 0.000 1.419 

(C) KEY: VarSr: source of variance; SS: sum of squares; df: degrees of freedom, MS: mean 
square; F: F-value of experimental data; P-val: probability of samples of from same population 
despite difference in variance; F crit: minimum F value for accepting null hypothesis at α=0.05; 
Bot: sample groups based on botnet application; Alg: sample groups based on ML classifier 
algorithm; Int: interaction between Alg and Bot groups. 

As indicated by the performance measures of Table F-4 none of the algorithms 

demonstrated fully consistent performance across all different botnet applications. To 

investigate, further, whether the observed differences were statistically significant, we 

carried a two-way analysis of variance (ANOVA). More specifically, this analysis 

explored whether the differences in the average TPR, FPR, PRC and AUC measures 

computed for the different algorithms and for the different botnet applications (B1-B9) 

were statistically significant. Table 4-15 (Part (A)) summarises the outcomes of this 
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analysis and highlighting (in green) the observed differences that were statistically 

significant. More specifically, as shown in the table, the differences observed in the 

average PRC were statistically significant both across the different botnet applications 

(F(1,8)=33.353, p=.000) and across the different ML algorithms (F(1,4)=7.8935, p=.000). 

Also, the differences observed in the average AUC were statistically significant both 

across the different botnet applications (F(1,8)=12.7187, p=.0000) and across the 

different ML algorithms (F(1,4)=2.9705, p=.0000). The interaction between the ML 

algorithm and the botnet application also led to statistically significant differences in the 

case of PRC (F(1,32)=2.3933, p=.0001) and AUC (F(1,32)=15.1059, p=.0000).  For TPR 

and FPR, whilst the differences observed across the different algorithms for both 

measures were statistically significant (F(1,4)=25.71 and p=.0000 in both cases), their 

differences observed across different botnet families were not (F(1,8)=1.4835 and 

p=.1611 in both cases). The latter finding is of particular importance as it indicates that 

the performance of our approach in terms of TPR and FPR is not affected by specific 

botnet applications in a statistically significant manner. 

In Exp 2, we also evaluated the effect of using box ML algorithms. The performance 

of these algorithms with respect to the used evaluation metrics is summarised in Part (B) 

of Table F-4. As shown in the table, BOX-HALF+ had the best performance for botnet 

applications with regards to AUC (.915). With respect to TPR, however, BOX-HALF+ 

was outperformed by BOX-OR and BOX-OR+ (.902 vs. .972 and .955, respectively). It 

was also outperformed by BOX-AND+ in terms of FPR (.084 vs. .04) and precision (.828 

vs. .872). 

The use of box ML algorithms did not improve AUC over atomic algorithms: the AUC 

of BOX-HALF+ was less than the AUC of the J48 algorithm (.915 vs. .936). In terms of 

TPR, box algorithms showed improved performance over the atomic ones since BOX-

OR and BOX-OR+ have had better average TPR than NB, and very good performance in 
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7 out of the 9 botnet applications according to the VC criterion. However, this came at 

the expense of substantially reduced FPR (BOX-OR’s FPR was .342, and BOX-OR+’s 

FPR was .181). As in the case of atomic algorithms, we also checked whether the 

differences in the TPR, FPR and PRC measure across the different box algorithms and 

botnet applications were statistically significant, using two-way ANOVA. The outcomes 

of this analysis are shown in Part (B) of Table 4-15. As shown in the table, the differences 

observed in the average TPR were statistically significant both across the different botnet 

applications (F(1,8)=33.2426, p=.000), across the different ML algorithms 

(F(1,5)=58.5256, p=.000), and when considering the interaction of these two factors 

(F(1,40)=9.2114, p=.000). 

The differences observed in the average FPR were also statistically significant across 

the different botnet applications (F(1,8)=2.8996, p=.0036) and across the different ML 

algorithms (F(1,5)=26.9284, p=.000), but not when considering the interaction of these 

two factors (F(1,40)=.9881, p=.4943). Similarly, the differences observed in the average 

PRC were statistically significant across the different botnet applications (F(1,8)=51.539, 

p=.0000) and across the different ML algorithms (F(1,5)=19.4495, p=.000), but not when 

considering the interaction of these two factors (F(1,40)=1.1395, p=.2622). Finally, the 

differences observed in the average AUC were statistically significant across the different 

botnet applications (F(1,8)=1.851, p=.0000), across the different ML algorithms 

(F(1,4)=15.7279, p=.0000), and when considering the interaction between the ML 

algorithm and the botnet application (F(1,40)=1.9201, p=.0008). 

In conclusion, the second set of experiments indicated that, 

 Overall, the average TPR, FPR, PRC and AUC for botnet applications of all 

the atomic and box algorithms in this experiment dropped with respect to the 

corresponding measures for the same algorithm in Exp 1. This was expected 

since, in Exp 1, the classifiers had been trained in the botnet applications that 
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were tested on in the test phase, whereas in Exp 2 the classifiers were not 

trained in the botnet applications that they were tested in the test phase. 

 Despite the performance drop, however, we believe that the performance 

shown by both individual and box ML algorithms in Exp 2 indicates the merit 

of our approach in detecting mobile botnets based on device system calls. 

 

4.6.6 Third experiment: UBUN scenario 

In the third experiment (Exp 3), our objective was to test classifiers using totally 

unknown system call profiles of not only botnet applications but also normal applications 

(UBUN scenario). To test this, we formed the classifier training and test datasets as 

follows.  

 Test set: A test set included the full set of system call vectors of one botnet 

application plus the full set of system call vectors of one normal application. 

 Training set: The training set paired with a test set was formed by including 

the full set of system call vectors of the remaining eight botnet applications 

plus the full set of the system call vectors of the remaining nine normal 

applications. 

According to this scheme, we generated 108 (9 × 12) pairs of test and training sets. 

The results of this experiment for the atomic and box ML algorithms are shown in Part 

(A) and Part (B) of Table F-5, respectively. These results are grouped by the unknown 

botnet application used to form the test set and include the average results computed 

across all the 12 test data sets in which call vectors of the particular botnet were combined 

with each of the 12 normal applications. 
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The corresponding graphs for Table F-5 shown in Figure 4-24, Figure 4-25 and Figure 

4-26. Figure 4-24 and  Figure 4-25 present the performance that is grouped by the botnet 

families for normal and botnet application respectively. Moreover, the Figure 4-26 

illustrates the average performance of different ML algorithms. 

Based on the AUC for botnet applications, the best atomic ML classifier in this 

experiment was J48 with an average AUC for botnet applications of 0.89. J48 had an 

average TPR of 0.75 and a low average FPR of 0.08. Its average PRC for botnets was 

0.78. As in Exp 2, in terms of TPR, J48 was outperformed by Naïve Bayes (NB), which 

had a TPR of 0.92. NB, however, performed substantially worse than J48 in terms of 

average FPR (0.36 vs. 0.08) and precision (0.61 vs. 0.78) for botnet applications. Given 

the VR criteria set in Section 4.1, none of the atomic classifiers showed very good 

performance across all the three performance measures of TPR, FPR and PRC, for either 

botnet or normal applications.  

The use of box ML algorithms in Exp 3 improved the outcomes of atomic algorithms. 

In particular, BOX-HALF and BOX-HALF+ achieved higher average TPR and PRC rates 

for botnet applications than the best atomic classifier (i.e., 0.82 in both cases) and the 

same average best FPR rate as atomic classifiers (i.e., 0.08). The performance of BOX-

HALF and BOX-HALF+ was also better than the performance of all atomic classifiers in 

terms of TPR and PRC for normal applications.
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Figure 4-24 - Performance of normal across different malware family dataset  
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Figure 4-25 - Performance of botnet across different malware family dataset 
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Figure 4-26 - Average performance of malware family dataset 
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The analysis of the variance of the performance measures in Exp 3 indicated 

significant statistical differences in all measures (i.e., in TPR, FPR, PRC and AUC) across 

the different atomic and box ML classifiers, and across the different botnet applications 

at α=0.05 (see Table 4-16). Also, the interaction between the algorithm used and the 

botnet family caused statistically significant differences in TPR and AUC but not in FPR 

and PRC in the case of BOX classifiers. 

Table 4-16 - Outcomes of analysis of variance for experiment 3 

(A) ATOMIC ML CLASSIFIERS 
 VarSr SS df MS F P-val F crit 
TPR Bot 5.357 8 0.670 8934.9 0.000 1.957 
  Alg 14.045 4 3.511 46849.3 0.000 2.390 
  Int 37.654 32 1.177 15699.8 0.000 1.467 
FRP Bot 4.107 8 0.513 22.8 0.000 1.957 
  Alg 7.586 4 1.896 84.4 0.000 2.390 
  Int 14.106 32 0.441 19.6 0.000 1.467 
PRC Bot 15.396 8 1.924 59.2 0.000 1.957 
  Alg 2.280 4 0.570 17.5 0.000 2.390 
  Int 9.629 32 0.301 9.2 0.000 1.467 
AUC Bot 1.856 8 0.232 27.9 0.000 1.957 
  Alg 2.628 4 0.657 79.0 0.000 2.390 
  Int 8.693 32 0.272 32.7 0.000 1.467 

 (B) BOX ML CLASSIFIERS 

VarSr SS df MS F P-val F crit 

TPR Bot 7.291 8 0.911 14424.2 0.000 1.954 
  Alg 20.622 5 4.124 65272.0 0.000 2.229 
  Int 32.269 40 0.807 12767.2 0.000 1.415 
FRP Bot 8.985 8 1.123 62.3 0.000 1.954 
  Alg 16.970 5 3.394 188.4 0.000 2.229 
  Int 14.009 40 0.350 19.4 0.000 1.415 
PRC Bot 21.860 8 2.732 94.9 0.000 1.954 
  Alg 4.340 5 0.868 30.2 0.000 2.229 
  Int 8.790 40 0.220 7.6 0.000 1.415 
AUC Bot 2.244 8 0.280 42.5 0.000 1.954 
  Alg 3.135 5 0.627 95.1 0.000 2.229 
  Int 10.578 40 0.264 40.1 0.000 1.415 

(C) KEY: VarSr: source of variance; SS: sum of squares; df: degrees of freedom, MS: mean 
square; F: F-value of experimental data; P-val: probability of samples of from same population 
despite difference in variance; F crit: minimum F value for accepting null hypothesis at α=0.05; 
Bot: sample groups based on botnet application; Alg: sample groups based on ML classifier 
algorithm; Int: interaction between Alg and Bot groups. 
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4.6.7 Overall discussion & threats to validity 

  
TPR 

 

FPR 

 

PRC 

 

AUC 

Figure 4-27 - Average TPR, FPR, PRC and AUC measures for botnet applications in all three 
experiments.  
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(Note: The measures for the first experiment (Exp 1) are those obtained for the 10-second 

period, as this was the aggregation period used in the other two experiments (Exp 2 and Exp 3). 

Only BOX-AND and BOX-OR are shown for box classifiers the algorithms used for BOX-HALF, 

BOX-AND+, BOX-OR+ and BOX-HALF+ were not the same across the different experiments.) 

The performance of atomic and box ML classifiers varied across the different 

experiments for all performance measures. Figure 4-27 shows these differences 

graphically, plotting the average TPR, FPR, PRC and AUC measures for each the atomic 

ML classifiers in the three experiments. As shown in the figure, the performance of all 

classifiers (atomic and box) deteriorated from Exp 1 to Exp 2 and from Exp 2 to Exp 3. 

This was in line with expectations, as the three experiments increased the amount of 

unknown information: KBKN to UBKN and UBUN. 

Considering AUC, the atomic classifier that was more robust to the increasing extent 

of “unknowns” in the experiments was J48: its AUC dropped by less than 1 percentage 

point across the different experiments. In terms of TPR, NB showed the less deterioration 

(i.e., 7 percentage points from Exp 1 to 2). NN resulted in the worst drop of TPR (51 

percentage points when contrasting Exp 1 and Exp 3). In terms of FPR, SVM showed the 

minimum deterioration between Exp 1 and Exp 3 (only 3 percentage points) and NB 

showed the maximum deterioration (27 percentage points).  In terms of PRC, SVM 

showed the minimum deterioration between Exp 1 and Exp 3 (14 percentage points), and 

NB and NN the maximum (21 percentage points each). Of the BOX classifiers, whilst 

BOX-OR’s performance was robust in terms of TPR (drop of 2 percentage points between 

Exp 1 and Exp 3) the performance of both BOX-AND and BOX-OR dropped 

significantly in terms of FPR (increase of 21 percentage points between Exp 1 and Exp 

3) and PRC (drop of 19 percentage points between Exp 1 and Exp 3). 

Overall, we believe that the most appropriate indicator regarding the merit of the ML-

based analysis of system calls is the outcome of Exp 2. This is because system call profiles 

on new normal applications may be required prior to making such applications available 
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on legitimate marketplaces to enable fast offline re-training of ML classifiers in them. 

With regards to botnets, the set up of Exp 2 was also more realistic than that of Exp 1 as 

new botnets can appear at any time and there will always be some period before they are 

detected and training ML classifiers in their traffic. Based on the outcomes of Exp 2, we 

think that it is fair to say that OS calls based detection has merit since, even with one 

atomic ML classifier (J48), we were able to reach a TPR of .85, and FPR of 0.05 and PRC 

of 0.83. Also, TPR and FPR did not appear to vary across different botnet families in a 

statistically significant way. 

Nevertheless, there are some potential threats to the validity of the outcomes of our 

experiments: 

 In general, there is an active period for every botnet. Some botnets may change 

the botmaster server or go through updates of the malicious code in the infected 

applications. None of these was reflected in the system call dataset that we 

considered. 

 The availability of a botmaster for every botnet malware could not be 

guaranteed in our experiments. Therefore, the considered botnets may have 

further system activity that was not captured. 

 The size of the system call dataset for different applications used in the 

experiments was not same. Some of them were relatively small which was the 

main reason for having low performance in some botnets. 
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4.7 Conclusion of experiments 

1. Experiment I indicated that our system could be used for distinction of normal and 

infected network traffic. The performance of J48 and KNN machine learning 

algorithms is better than other machine learning algorithms which are relatively 

feasible to classify the network traffic. 

2. Experiment II indicated that our system could be used for detecting unknown 

mobile botnets. Though the performance in the case of unknown botnets is worse 

than in the case of known ones (see Experiment I), it still can disclose the 

difference between the malware and benign network traffic. 

3. Experiment III indicated the capability of MBotCS to produce a reasonably fast 

detection/response once the ML-Analyser has been trained. 
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Chapter 5 Conclusion 

In this final chapter, an overview of the main insights will be presented. Meanwhile, 

we will also show advances gained and state how these have addressed the research 

challenges and objectives. It is clear that mobile botnet detection is new research field, 

many unresolved issues are however still apparent, for which we will provide pointers to 

future research. 

5.1 Discussion 

In this section, we revisit the objectives set at the start of this research and discuss the 

extent to which they were achieved. 

1. Objective 1 (To undertake and produce a comprehensive survey of the botnet and 

mobile botnet research) -- Finish: A comprehensive survey of the botnet and the 

mobile botnet is presented in Chapter 2. There are five parts of the survey including 

the basic knowledge, conventional botnet, network traffic based anomaly 

detection, machine learning and mobile botnet. Because mobile botnet is the 

primary target for our research, we introduced the mobile botnet separately. Both 

for the conventional botnet and mobile botnet, four aspects are presented which 

cover the accidents, creation techniques, detection technique and the comparison. 

The detection techniques are the most important part of the survey. According to 
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the Chapter 2, we can get an overall understanding of the current state of the botnet 

and mobile botnet. 

2. Objective 2 (To design a botnet detection system that can operate on mobile 

devices, to detect unknown mobile botnet with network traffic and system call 

based on the use of machine learning techniques.) – Finish: The design of mobile 

botnet detection system MBotCS is presented in Chapter 3. We introduced the 

architecture of MBotCS and explained the meaning and mechanism of every part 

of the system. In order to evaluate the feasibility of the MBotCS system, we 

perform a set of experiments in Section 4.1 to verify the machine learning can be 

used for mobile detection botnet based on the network traffic and system call. 

According to the result of the experiment, we can find that the system not only can 

be used for classification of the normal and abnormal traffic and sequence of the 

system call but also used for the unknown mobile botnet. 

3. Objective 3 (To implement the new mobile botnet detection system on Android 

devices, addressing the open issues identified in Section 1.2) – Finish: The 

implementation of mobile botnet detection system MBotCS is also presented in 

Chapter 3. The implementation of MBotCS system includes the user interface and 

some key programme code for the specific importance functions. The experiment 

in Section 4.5.4 also proves that the usability of the system on the mobile device. 

We also deployed the source code of the MBotCS system the GitHub which is a 

web-based Git repository hosting service. 

4. Objective 4 (To provide an experimental evaluation of the approach.) – Finish: 

There are six experiments described in Section 4.1 that include a very detailed 

evaluation of the result. We use both tables and graphs to illustrate the performance 

of every approach.  

 

The hypotheses in Chapter 1 should also be reviewed: 
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1. Research hypotheses I – Validity: According to the result of experiments in 

Section 4.5.2 and 4.5.3, the features packets/stream frame duration, packets/stream 

packet size, and arguments number in HTTP request of network traffic can be used 

for distinguishing normal and botnet Android application by using machine 

learning. 

2. Research hypotheses II – Invalidity: According to the basic statistical analysis 

of system call dataset in Section 4.6.3, the feature of system call cannot distinguish 

the botnet and normal Android application directly. 

3. Research hypotheses III – Validity: The analysis in Section 4.6.2.2 indicated that 

the only statistically significant difference between the botnets and normal 

applications was related to the frequency of calls of different system functions. 

Moreover, the result of experiments in Section 4.6.4 to 4.6.6 all prove that 

frequency of system calls in different time interval can be used for distinguishing 

normal and botnet Android application by using machine learning. 

4. Research hypotheses IV – Validity:  Based on the result of experiments in 4.1 

which contains a detailed comparison of atomic algorithms and Box algorithms 

present the advantage of aggregated machine learning algorithm. Especially for 

UBUN scenario, BOX-HALF and BOX-HALF+ have better performance.  

5. Research hypotheses V – Validity: According to the result of an experiment in 

Section 4.5.4, the machine learning-based detection system has low energy effect 

on the battery consumption of the device. Meanwhile it has acceptable execute 

time. 

5.2 Summary of contributions  

Base on the comprehensive insight into botnet and survey for the mobile botnet, the 

contributions of this research can be summarised as follows:  
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Contribution 1: A central contribution of this thesis is the design and implementation 

of the mobile botnet detection system MBotCS. This system analyses the traffic data 

passing through the mobile botnet and system call invoked by applications which are 

based on machine learning. We described the architecture of MBotCS in Chapter 3 which 

contains four parts (traffic data pre-processor, machine learning analyser, user interface 

and training dataset). Based on the architecture, we also implement the system on Android 

mobile device. According to the experiment, the system has a very low energy effect on 

the battery consumption of the device with only 0.5% of the total battery during the period 

of the experiment. Moreover,the J48 algorithm has fast average execution time with only 

1.216 seconds. 

Contribution 2: We performs a series of experiments that are superior to existing 

research as follows: (a) The use of not only atomic but also box ML classifiers using 

supervised learning. (b) The investigation of the performance of ML classifiers a wider 

set of detection scenarios than existing work, namely detection of known botnets and 

known normal applications (KBKN scenario), unknown botnets and known normal 

applications (UBKN scenario), and unknown botnets and normal applications (UNUB 

scenario). (c) The use of a comprehensive set of Android mobile botnets, which had not 

been considered previously, without relying on any form of synthetic training data. (d) 

The conduct of a thorough sensitivity analysis in which the statistical significance of 

differences in detection performance measures on ML algorithms, system call 

aggregation periods, normal and botnet applications, and different types of botnet families 

have been explored.  

Our publication also represents the outcomes and contribution to our research. We can 

also collect feedback from other researchers by attending the conference and publish 

papers: 
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MBotCS: A mobile Botnet detection system based on machine learning (Xin Meng and 

George Spanoudakis) 

5.3 Further research 

Currently, we are investigating the possibility of analysing traffic across networks of 

mobile devices (as opposed to single devices) and traffic between botnets and the system 

software of the device to see if we get any performance gains. We are also planning more 

extensive experimental evaluations with larger data sets. Finally, we want to explore the 

use of unsupervised classification and contrast its outcomes with supervised classification 

and investigate the reasons underpinning the differences in the performance of the basic 

ML algorithms. 

5.3.1 Future research directions 

1. Improvement the performance of machine learning: We have used five atomic 

machine learning algorithms and six aggregation algorithms in our experiments. 

The evaluations have performed for these algorithms to find that the performance 

is different from these algorithms. So we can know that it is still possible to 

improve the performance of the detection through improving or changing 

machining learning algorithms. Therefore, one of the future research directions to 

try other machine learning algorithms for the classification and improved current 

machine learning algorithms. More specifically, the unsupervised and deep 

learning machine learning algorithms should be considered in the future research. 

2. Improvement of the training dataset: We have used ten existing mobile botnet 

malware families (nearly 170 applications) as a sample for training dataset. There 

is a part of the MalGenome project of a mobile botnet. So to make sure that the 

method can be used for a general mobile botnet, we need to choose more type of 
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mobile botnet malware application to perform the experiments in the future. The 

other reason to add more types of malware family is to increase the robustness of 

machine learning analysis. As we know that the malicious code on bots could be 

updated by the botmaster periodically. However more types of botnet malware can 

cover more patterns of malicious behaviours. Then the experiments result could be 

more stable even thinking about the scalability of the application.  

3. Improvement of the attributes selection of network traffic for the machine learning: 

According to the Section 4.5.1.1, we select some features for training which 

include Packets/Stream Frame Duration, Packets/Stream Packet Size, and 

Arguments Number in HTTP Request URL. These features are part of attributes 

of the network traffic. In order to improve the performance of the machine learning 

algorithms, we can study the distinction between normal and abnormal traffic to 

dig more features for machine learning.  

4. Further study to investigate detection based on both system calls (internal activity) 

and network traffic (external communications) and explore potential performances 

gains. Meanwhile perform extensive experimental evaluations Android devices in 

order to evaluate the implications of the integrated approach to the CPU, memory 

and battery of the device. 

5.3.2 Planned and related work within MBotCS 

1. Improvement of the system on the Android mobile device. 

The rudimentary implementation of the MBotCS is presented in this thesis. We use 

the tPacketCapture to realise the network traffic monitor and WEKA to realise the 

machine learning algorithms. There are also some improving points for the 

implementation of MBotCS. 
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 Through studying the network traffic capture techniques, implementation for the 

function for the real-time network traffic on a mobile device. Under the current 

knowledge, we can create a connection of VPN on the mobile device and let all 

the traffic pass through this connection to record. 

 Reimplementation the machine learning algorithm by using native programme 

language to accelerate the computational speed which can take full advantage of 

most out the limited resources on the mobile device. 

 Adding the programme configuration system and the warning system, which can 

improve the user experience. 

2. The open standards for mobile botnet detection 

According to analysis about the previous botnet detection, we can find that comparison 

of the different techniques is one challenge. The most important reason is that there is not 

open standards dataset for testing these techniques. Therefore, the extension of the 

MBotCS can make contributions for the open standards for mobile botnet detection. 

These are several points should be paid attention in the future. 

 Development the API to visit the training dataset and create access standard 

for a different programming language. 

 Establishment of a mechanism for collection training dataset to expand the size 

of training dataset and update the training dataset. 

 Thinking about the privacy and confidentiality in the datasets captured from 

the mobile devices.
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 Key Implementation Code of 

Android Application 

We list all the important key implementation code of the MBotCS on the Android devices. 

This code can be compiled by Gradle and run any devices with Android OS version > 4.0. 

A.1 PCAP file parse 

Use readPcapToTemp to read the PCAP file to the temporary file. 

    private void readPcapToTemp() throws Exception { 
        Log.d("readPcapToTemp", "Start to new alarm work"); 
        File testDatasetFile = new File(pcapPathParam); 
        FileInputStream testPcapFile = null; 
        try { 
            testPcapFile = new FileInputStream(testDatasetFile); 
        } catch (IOException e) { 
            e.printStackTrace(); 
        } 
        assert testPcapFile != null; 
        long available = 0; 
        Log.d("readPcapToTemp", "readCounter: "+readCounter); 
        Log.d("readPcapToTemp", "locationByte: "+locationByte); 
        if (locationByte == 0) { 
            int m = testPcapFile.read(pcapHeaderTemp); 
            if (m == 24) { 
                locationByte += 24; 
            }else{ 
                Log.d("ERROR:readPcapToTemp", "Not enough byte in PCAP 
error, there are only: "+m); 
            } 
            available = testPcapFile.available(); 
            Log.d("readPcapToTemp", "available: "+available); 
        } else { 
            long actualSkip = testPcapFile.skip(locationByte); 
            Log.d("readPcapToTemp", "actualSkip: "+actualSkip); 
            available = testPcapFile.available(); 
            Log.d("readPcapToTemp", "available: "+available); 
        } 
        if (available !=0 ){ 
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            Log.d("readPcapToTemp", "locationByte: "+locationByte); 
            String tempPathFull; 
            tempPathFull = pcapTempParam + "/pcap_temp_" + 
String.valueOf(readCounter) + ".pcap"; 
            File tempPcap = new File(tempPathFull); 
            FileOutputStream tempPcapFile = null; 
            MyPcap pcap = null; 
            try { 
                pcap = PcapParser.unpackSimpleWithoutHeader(testPcapFile); 
            } catch (IOException e) { 
                e.printStackTrace(); 
            } 
            tempPcapFile = new FileOutputStream(tempPcap); 
            tempPcapFile.write(pcapHeaderTemp); 
            assert pcap != null; 
            List<PcapData> dataList = pcap.getData(); 
            byte[] bytesHeader; 
            byte[] bytesContent; 
            for (int i = 0; i < dataList.size(); i++) { 
                bytesHeader = dataList.get(i).getInfoHeaderByte(); 
                bytesContent = dataList.get(i).getContent(); 
                locationByte += (bytesHeader.length + bytesContent.length); 
                Log.d("readPcapToTemp", "locationByte: " + locationByte); 
                tempPcapFile.write(bytesHeader); 
                tempPcapFile.write(bytesContent); 
            } 
            tempPcapFile.close(); 
            pcapTcpToArff(tempPathFull); 
            Log.d("readPcapToTemp", "Finish write File: "+locationByte); 
            String arffPathFull; 
            arffPathFull = pcapTempParam + "/arff_temp_" + 
String.valueOf(readCounter) + ".arff"; 
            mlAnalyser(arffPathFull,ML_ALGORITH_BOX_HALF1); 
            mlAnalyser(arffPathFull,ML_ALGORITH_J48); 
            mlAnalyser(arffPathFull,ML_ALGORITH_KNN); 
            readCounter++; 
        } 
    } 

Read the PCAP file repeatedly: 

    private void scanPcapRepeatedly() { 
        scanPcap = new TimerTask() { 
            @Override 
            public void run() { 

                Log.d("alarm", "The task start， location:" + locationByte 
+ "count:" + readCounter); 
                try { 
                    readPcapToTemp(); 
                } catch (IOException e) { 
                    e.printStackTrace(); 
                } catch (Exception e) { 
                    e.printStackTrace(); 
                } 
            } 
        }; 
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        timer.scheduleAtFixedRate(scanPcap,0,UPDATE_INTERVAL); 
    } 

Use pcapTcpToArff to realise the PCAP file parser to convert the format of PCAP to ARFF 

format which can be recognised by the WEKA machine learning system. 

private void pcapTcpToArff(String pcapOnePath) throws IOException { 
        final StringBuilder errbuf = new StringBuilder(); 
        Log.d("pcapTcpToArff","Opening pcapOnePath for reading: 
"+pcapOnePath); 
        Pcap pcap = Pcap.openOffline(pcapOnePath, errbuf); 
        if (pcap == null) { 
            Log.d("pcapTcpToArff","Error while opening device for capture: 
"+errbuf.toString()); 
            return; 
        } 
        JFlowMap superFlowMap = new JFlowMap(); 
        pcap.loop(Pcap.LOOP_INFINITE, superFlowMap, null); 
        Iterator iterator = superFlowMap.entrySet().iterator(); 
        //Write the ARFF file to the disk 
        String arffPathFull; 
        arffPathFull = pcapTempParam + "/arff_temp_" + 
String.valueOf(readCounter) + ".arff"; 
        File tempArff = new File(arffPathFull); 
        FileOutputStream tempArffFile = null; 
        tempArffFile = new FileOutputStream(tempArff); 
        String arffRelation = "@relation monitor_traffic\n\n"; 
        String arffAttribute1 = "@attribute 'Frame duration' numeric\n"; 
        String arffAttribute2 = "@attribute 'TCP size' numeric\n"; 
        String arffAttribute3 = "@attribute 'Argument Count' numeric\n"; 
        String arffAttribute4 = "@attribute Lable {infect,normal}\n\n"; 
        String arffData = "@data\n"; 
        assert tempArffFile != null; 
        tempArffFile.write(arffRelation.getBytes()); 
        tempArffFile.write(arffAttribute1.getBytes()); 
        tempArffFile.write(arffAttribute2.getBytes()); 
        tempArffFile.write(arffAttribute3.getBytes()); 
        tempArffFile.write(arffAttribute4.getBytes()); 
        tempArffFile.write(arffData.getBytes()); 
        double flowDeltaTime = 0.0; 
        long flowLength = 0; 
        long flowArgument = 0; 
        long time_start_seconds; 
        long time_start_nano; 
        long time_end_seconds; 
        long time_end_nano; 
        double time_start = 0; 
        double time_end; 
        double time_delta = 0; 
        String interval = ","; 
        String classType = "normal"; 
        String lineBreak = "\n"; 
        Ip4 ip4 = new Ip4(); // Preallocat IP version 4 header 
        Tcp tcp = new Tcp(); 
        Ethernet eth = new Ethernet(); 



220  Key Implementation Code of Android Application 

 

        Http http = new Http(); 
        while (iterator.hasNext()) { 
            Map.Entry entry = (Map.Entry) iterator.next(); 
            Object key = entry.getKey(); 
            JFlow oneFlow  = (JFlow) entry.getValue(); 
            List<JPacket> allPacket = oneFlow.getAll(); 
            time_start_seconds =0; 
            time_start_nano = 0; 
            time_end_seconds = 0; 
            time_end_nano = 0; 
            time_start = 0.0; 
            time_end =0.0; 
            time_delta = 0.0; 
            for(int i=0; i<allPacket.size() ;i++){ 
                PcapPacket packet = (PcapPacket) allPacket.get(i); 
                flowLength += allPacket.get(i).getTotalSize(); 
                JCaptureHeader captureHeader =packet.getCaptureHeader(); 
                if (allPacket.get(i).hasHeader(tcp) && 
allPacket.get(i).hasHeader(http)) { 
                    allPacket.get(i).getHeader(eth); 
                    allPacket.get(i).getHeader(tcp); 
                    allPacket.get(i).getHeader(ip4); 
                    if(tcp.destination() == 80) { 
                        if(http.hasField(Http.Request.Accept) && 
http.fieldValue(Http.Request.Accept).contains("text/html")) { 
                            String host = 
http.fieldValue(Http.Request.Host); 
                            String url = host + 
http.fieldValue(Http.Request.RequestUrl); 
                            Log.d("packet","url"+url); 
                            int count = url.length() - 
url.replaceAll("\\=","").length(); 
                            flowArgument += (long)count; 
                        } 
                    } 
                } 
                if(i == 0){ 
                    time_start_seconds = captureHeader.seconds(); 
                    time_start_nano = captureHeader.nanos(); 
                    String 
timeStr=String.valueOf(time_start_seconds)+"."+String.valueOf(time_start_na
no); 
                    Log.d("packet","time_start\n"+timeStr); 
                    time_start =Double.parseDouble(timeStr); 
                } 
                if(i == allPacket.size()-1){ 
                    time_end_seconds = captureHeader.seconds(); 
                    time_end_nano = captureHeader.nanos(); 
                    String 
timeStr=String.valueOf(time_end_seconds)+"."+String.valueOf(time_end_nano); 
                    Log.d("packet","time_end\n"+timeStr); 
                    time_end =Double.parseDouble(timeStr); 
                    time_delta = time_end - time_start; 
                } 
            } 
            flowDeltaTime = time_delta; 
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            tempArffFile.write(String.valueOf(flowDeltaTime).getBytes()); 
            tempArffFile.write(interval.getBytes()); 
            tempArffFile.write(String.valueOf(flowLength).getBytes()); 
            tempArffFile.write(interval.getBytes()); 
            tempArffFile.write(String.valueOf(flowArgument).getBytes()); 
            tempArffFile.write(interval.getBytes()); 
            tempArffFile.write(classType.getBytes()); 
            tempArffFile.write(lineBreak.getBytes()); 
            flowDeltaTime = 0.0; 
            flowLength = 0; 
            flowArgument = 0; 
            time_start_seconds = 0; 
            time_start_nano = 0; 
            time_end_seconds = 0; 
            time_end_nano = 0; 
            time_start = 0.0; 
            time_end = 0.0; 
            time_delta = 0.0; 
        } 
        tempArffFile.close(); 
        pcap.close(); 
    } 

A.2 Machine learning analyser 

Use the WEKA java library for Android platform. The component is realised by the class 

ML Analyser: 

public class MLAnalyser { 
    NaiveBayes m_classifier_NB = new NaiveBayes(); 
    J48 m_classifier_j48 = new J48(); 
    MultilayerPerceptron m_classifier_MNN = new MultilayerPerceptron(); 
    IBk m_classifier_KNN = new IBk(); 
    SMO m_classifier_SVM = new SMO(); 
    int[] NB,J48,MNN,KNN,SVM; 
    int[] AND,OR,HALF; 
    int[] AND1,OR1,HALF1; 
    private void counterSingleProcess(Double trainValue, Double testValue, 
int[] counter){ 
        if(trainValue==0.0&&testValue==0.0){ 
            counter[0]++; 
        }else if(trainValue==0.0&&testValue==1.0) { 
            counter[1]++; 
        }else if(trainValue==1.0&&testValue==0.0) { 
            counter[2]++; 
        }else { 
            counter[3]++; 
        } 
    } 
    private void counterAND(Double sumValue, Double testValue){ 
        if(sumValue==0.0&&testValue==0.0){ 
            AND[0]++; 
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        }else if(sumValue==0.0&&testValue==1.0) { 
            AND[1]++; 
        }else if(sumValue>0.0&&testValue==0.0) { 
            AND[2]++; 
        }else if(sumValue>0.0&&testValue==1.0) { 
            AND[3]++; 
        } 
    } 
    private void counterAND1(Double sumValueBetter, Double testValue){ 
        if(sumValueBetter==0.0&&testValue==0.0){ 
            AND1[0]++; 
            HALF1[0]++; 
        }else if(sumValueBetter==0.0&&testValue==1.0) { 
            AND1[1]++; 
            HALF1[1]++; 
        }else if(sumValueBetter>0.0&&testValue==0.0) { 
            AND1[2]++; 
        }else if(sumValueBetter>0.0&&testValue==1.0){ 
            AND1[3]++; 
        } 
    } 
    private void counterOR(Double sumValue, Double testValue){ 
        if(sumValue<5.0&&testValue==0.0){ 
            OR[0]++; 
        }else if(sumValue<5.0&&testValue==1.0) { 
            OR[1]++; 
        }else if(sumValue==5.0&&testValue==0.0) { 
            OR[2]++; 
        }else if(sumValue==5.0&&testValue==1.0) { 
            OR[3]++; 
        } 
    } 
    private void counterOR1(Double sumValueBetter, Double testValue){ 
        if(sumValueBetter<2.0&&testValue==0.0){ 
            OR1[0]++; 
        }else if(sumValueBetter<2.0&&testValue==1.0) { 
            OR1[1]++; 
        }else if(sumValueBetter==2.0&&testValue==0.0) { 
            OR1[2]++; 
            HALF1[2]++; 
        }else if(sumValueBetter==2.0&&testValue==1.0){ 
            OR1[3]++; 
            HALF1[3]++; 
        } 
    } 
    private void counterHALF(Double sumValue, Double testValue){ 
        if(sumValue<3.0&&testValue==0.0){ 
            HALF[0]++; 
        }else if(sumValue<3.0&&testValue==1.0) { 
            HALF[1]++; 
        }else if(sumValue>2.0&&testValue==0.0) { 
            HALF[2]++; 
        }else if(sumValue>2.0&&testValue==1.0) { 
            HALF[3]++; 
        } 
    } 
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    private void counterHALF1(Double sumValueWorse, Double 
sumValueBetter,Double testValue){ 
        if(sumValueBetter==1.0&&sumValueWorse<2.0&&testValue==0.0){ 
            HALF1[0]++; 
        }else if(sumValueBetter==1.0&&sumValueWorse<2.0&&testValue==1.0) { 
            HALF1[1]++; 
        }else if(sumValueBetter==1.0&&sumValueWorse>1.0&&testValue==0.0) { 
            HALF1[2]++; 
        }else if(sumValueBetter==1.0&&sumValueWorse>1.0&&testValue==0.0){ 
            HALF1[3]++; 
        } 
    } 
    private double computeRecall(int TP, int FN) { 
        return (double)TP/(TP+FN); 
    } 
    private double computeFPR(int FP, int TN) { 
        return (double)FP/(FP+TN); 
    } 
    private double computePrecision(int TP, int FP) { 
        return (double)TP/(TP+FP); 
    } 
    public MLAnalyser(){ 
        m_classifier_MNN.setLearningRate(0.9); 
        m_classifier_MNN.setHiddenLayers("t"); 
        m_classifier_MNN.setSeed(5); 
        m_classifier_MNN.setReset(false); 
        m_classifier_MNN.setMomentum(0.2); 
        NB = new int[4]; 
        J48 = new int[4]; 
        MNN = new int[4]; 
        KNN = new int[4]; 
        SVM = new int[4]; 
        AND = new int[4]; 
        OR = new int[4]; 
        HALF = new int[4]; 
        AND1 = new int[4]; 
        OR1 = new int[4]; 
        HALF1 = new int[4]; 
        for (int i=0; i<4; i++){ 
            NB[i] = 0; 
            J48[i] = 0; 
            MNN[i] = 0; 
            KNN[i] = 0; 
            SVM[i] = 0; 
            AND[i] = 0; // all 0 -> 0 sum of the classify value =0 
            OR[i] = 0;  // any 0 -> 0 sum of the classify value <5 
            HALF[i] = 0;// more than half 0-> sum of the classify value<3 
            AND1[i] = 0; // all 0 -> 0 sum of the classify value =0 
            OR1[i] = 0;  // any 0 -> 0 sum of the classify value <5 
            HALF1[i] = 0;// more than half 0-> sum of the classify value<3 
        } 
    } 
    public void trainClassifier(String trainDataset) throws Exception { 
        String datasetFilename = trainDataset; 
        File trainDatasetFile = new File(datasetFilename); 
        ArffLoader datasetArff = new ArffLoader(); 



224  Key Implementation Code of Android Application 

 

        datasetArff.setFile(trainDatasetFile); 
        Instances trainData = datasetArff.getDataSet(); 
        trainData.setClassIndex(3); 
        m_classifier_NB.buildClassifier(trainData); 
        m_classifier_j48.buildClassifier(trainData); 
        m_classifier_KNN.buildClassifier(trainData); 
        m_classifier_SVM.buildClassifier(trainData); 
    } 
    public ArrayList<String> datasetAnalyser(String testDataset, int 
algorithm) throws Exception { 
        File testDatasetFile = new File(testDataset); 
        ArffLoader datasetArff = new ArffLoader(); 
        datasetArff.setFile(testDatasetFile); 
        Instances testData = datasetArff.getDataSet(); 
        testData.setClassIndex(3); 
        double sum = testData.numInstances(); 
        ArrayList<String> result=new ArrayList<String>(); 
        double NBClassValue = 0; 
        double j48ClassValue = 0; 
        double MNNClassValue = 0; 
        double KNNClassValue = 0; 
        double SVMClassValue = 0; 
        double BoxClassValue = 0; 
        for(int i=0; i<sum; i++){ 
            if(algorithm == 0){ 
                NBClassValue = 
m_classifier_NB.classifyInstance(testData.instance(i)); 
result.add(testData.instance(i).toString(0)+","+testData.instance(i).toStri
ng(1)+","+testData.instance(i).toString(2)+","+String.valueOf(NBClassValue)
); 
                Log.d("MLAnalyser","NBClassValue"+NBClassValue); 
            }else if (algorithm == 1){ 
                j48ClassValue = 
m_classifier_j48.classifyInstance(testData.instance(i)); 
                
result.add(testData.instance(i).toString(0)+","+testData.instance(i).toStri
ng(1)+","+testData.instance(i).toString(2)+","+String.valueOf(j48ClassValue
)); 
                Log.d("MLAnalyser","j48ClassValue"+j48ClassValue); 
            }else if (algorithm == 2){ 
                MNNClassValue = 0; 
result.add(testData.instance(i).toString(0)+","+testData.instance(i).toStri
ng(1)+","+testData.instance(i).toString(2)+","+String.valueOf(MNNClassValue
)); 
                Log.d("MLAnalyser","MNNClassValue"+MNNClassValue); 
            }else if (algorithm == 3){ 
                KNNClassValue = 
m_classifier_KNN.classifyInstance(testData.instance(i)); 
result.add(testData.instance(i).toString(0)+","+testData.instance(i).toStri
ng(1)+","+testData.instance(i).toString(2)+","+String.valueOf(KNNClassValue
)); 
                Log.d("MLAnalyser","KNNClassValue"+KNNClassValue); 
            }else if (algorithm == 4){ 
                SVMClassValue = 
m_classifier_SVM.classifyInstance(testData.instance(i)); 
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result.add(testData.instance(i).toString(0)+","+testData.instance(i).toStri
ng(1)+","+testData.instance(i).toString(2)+","+String.valueOf(SVMClassValue
)); 
                Log.d("MLAnalyser","SVMClassValue"+SVMClassValue); 
            }else if (algorithm == 5){ 
                KNNClassValue = 
m_classifier_KNN.classifyInstance(testData.instance(i)); 
                j48ClassValue = 
m_classifier_j48.classifyInstance(testData.instance(i)); 
                if(KNNClassValue == j48ClassValue) { 
                    BoxClassValue = j48ClassValue; 
                }else{ 
                    MNNClassValue = 0; 
                    NBClassValue = 
m_classifier_NB.classifyInstance(testData.instance(i)); 
                    SVMClassValue = 
m_classifier_SVM.classifyInstance(testData.instance(i)); 
                    double sumWorst = 
MNNClassValue+NBClassValue+SVMClassValue; 
                    if(sumWorst > 1.0){ 
                        BoxClassValue = 1.0; 
                    }else{ 
                        BoxClassValue = 0.0; 
                    } 
                } 
result.add(testData.instance(i).toString(0)+","+testData.instance(i).toStri
ng(1)+","+testData.instance(i).toString(2)+","+String.valueOf(BoxClassValue
)); 
            } 
        } 
        return  result; 
    } 
    public String[] datasetAnalyser(String fullDataset,int validationType, 
int[] args ) throws Exception { 
        String[] result = new String[15]; 
        File datasetFile = new File(fullDataset); 
        try{ 
           File file = new File(fullDataset); 
            FileInputStream fis = new FileInputStream(file); 
            byte[] buffer = new byte[fis.available()]; 
            fis.read(buffer); 
            fis.close(); 
            String res = EncodingUtils.getString(buffer, "UTF-8"); 

            Log.i("file"," file read ok：" + res); 
        }catch(Exception ex){ 

            Log.i("file"," file read fail ："); 
        } 
        ArffLoader datasetArff = new ArffLoader(); 
        datasetArff.setFile(datasetFile); 
        Instances fullData = datasetArff.getDataSet(); 
        if(validationType == 0){ 
            int seed = args[0];          
            int folds = args[1];          
            Random rand = new Random(seed);   



226  Key Implementation Code of Android Application 

 

            Instances randData = new Instances(fullData);    
            randData.randomize(rand);          
            for (int n = 0; n < folds; n++) { 
                Instances train = randData.trainCV(folds, n); 
                Instances test = randData.testCV(folds, n); 
                train.setClassIndex(3); 
                test.setClassIndex(3); 
                double sum = test.numInstances(), 
                        right = 0.0f; 
                m_classifier_NB.buildClassifier(train); 
                m_classifier_j48.buildClassifier(train); 
                m_classifier_KNN.buildClassifier(train); 
                m_classifier_SVM.buildClassifier(train); 
                for(int i=0; i<sum; i++){ 
                    double testClassValue = test.instance(i).classValue(); 
                    double NBClassValue = 
m_classifier_NB.classifyInstance(test.instance(i)); 
                    double j48ClassValue = 
m_classifier_j48.classifyInstance(test.instance(i)); 
                    double KNNClassValue = 
m_classifier_KNN.classifyInstance(test.instance(i)); 
                    double SVMClassValue = 
m_classifier_SVM.classifyInstance(test.instance(i)); 
                    double MNNClassValue = 0.0; 
                    double sumClassValue = 
NBClassValue+j48ClassValue+MNNClassValue+KNNClassValue+SVMClassValue; 
                    double sumClassValueBetter = 
j48ClassValue+KNNClassValue; 
                    double sumClassValueWorse = 
NBClassValue+MNNClassValue+SVMClassValue; 
                    counterSingleProcess(NBClassValue,testClassValue,NB); 
                    counterSingleProcess(j48ClassValue,testClassValue,J48); 
                    counterSingleProcess(MNNClassValue,testClassValue,MNN); 
                    counterSingleProcess(KNNClassValue,testClassValue,KNN); 
                    counterSingleProcess(SVMClassValue,testClassValue,SVM); 
                    counterAND(sumClassValue,testClassValue); 
                    counterOR(sumClassValue, testClassValue); 
                    counterHALF(sumClassValue, testClassValue); 
                    counterAND1(sumClassValueBetter, testClassValue); 
                    counterOR1(sumClassValueBetter, testClassValue); 
                    counterHALF1(sumClassValueBetter, sumClassValueWorse, 
testClassValue); 
                } 
            } 
        } 
        result[0] = "Naive Bayesian 
Recall:"+String.valueOf(computeRecall(NB[0],NB[2])); 
        result[1] = "Naive Bayesian FPR:"+String.valueOf(computeFPR(NB[1], 
NB[3])); 
        result[2] = "Naive Bayesian 
Precision:"+String.valueOf(computePrecision(NB[0], NB[1])); 
        result[3] = "J48 
Recall:"+String.valueOf(computeRecall(J48[0],J48[2])); 
        result[4] = "J48 FPR:"+String.valueOf(computeFPR(J48[1],J48[3])); 
        result[5] = "J48 
Precision:"+String.valueOf(computePrecision(J48[0],J48[1])); 
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        result[6] = "MNN 
Recall:"+String.valueOf(computeRecall(MNN[0],MNN[2])); 
        result[7] = "MNN FPR:"+String.valueOf(computeFPR(MNN[1],MNN[3])); 
        result[8] = "MNN 
Precision:"+String.valueOf(computePrecision(MNN[0],MNN[1])); 
        result[9] = "KNN 
Recall:"+String.valueOf(computeRecall(KNN[0],KNN[2])); 
        result[10] = "KNN FPR:"+String.valueOf(computeFPR(KNN[1],KNN[3])); 
        result[11] = "KNN 
Precision:"+String.valueOf(computePrecision(KNN[0],KNN[1])); 
        result[12] = "SVM 
Recall:"+String.valueOf(computeRecall(SVM[0],SVM[2])); 
        result[13] = "SVM FPR:"+String.valueOf(computeFPR(SVM[1],SVM[3])); 
        result[14] = "SVM 
Precision:"+String.valueOf(computePrecision(SVM[0],SVM[1])); 
        return result; 
    } 
    public ArrayList<String> datasetAnalyser(String trainDataset, String 
testDataset) throws Exception { 
        ArrayList<String> result=new ArrayList<String>(); 
        String trainDatasetFilename; 
        trainDatasetFilename = trainDataset; 
        File trainDatasetFile = new File(trainDatasetFilename); 
        String testDatasetFilename; 
        testDatasetFilename = testDataset; 
        File testDatasetFile = new File(testDatasetFilename); 
        ArffLoader trainDatasetArff = new ArffLoader(); 
        trainDatasetArff.setFile(trainDatasetFile); 
        ArffLoader testDatasetArff = new ArffLoader(); 
        testDatasetArff.setFile(testDatasetFile); 
        Instances trainData = trainDatasetArff.getDataSet(); 
        Instances testData = testDatasetArff.getDataSet(); 
        trainData.setClassIndex(3); 
        testData.setClassIndex(3); 
        m_classifier_NB.buildClassifier(trainData); 
        m_classifier_j48.buildClassifier(trainData); 
        m_classifier_KNN.buildClassifier(trainData); 
        m_classifier_SVM.buildClassifier(trainData); 
        double sum = testData.numInstances(), 
                right = 0.0f; 
        for(int i=0; i<sum; i++){ 
            double testClassValue = testData.instance(i).classValue(); 
            double NBClassValue = 
m_classifier_NB.classifyInstance(testData.instance(i)); 
            double j48ClassValue = 
m_classifier_j48.classifyInstance(testData.instance(i)); 
            double KNNClassValue = 
m_classifier_KNN.classifyInstance(testData.instance(i)); 
            double SVMClassValue = 
m_classifier_SVM.classifyInstance(testData.instance(i)); 
            double MNNClassValue = 0.0; 
            String testClassStr; 
            if(testClassValue==0.0){ 
                testClassStr = "infect"; 
            }else{ 
                testClassStr = "normal"; 
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            } 
            result.add(testData.instance(i).toString()+testClassStr); 
            double sumClassValue = 
NBClassValue+j48ClassValue+MNNClassValue+KNNClassValue+SVMClassValue; 
            double sumClassValueBetter = j48ClassValue+KNNClassValue; 
            double sumClassValueWorse = 
NBClassValue+MNNClassValue+SVMClassValue; 
            counterSingleProcess(NBClassValue,testClassValue,NB); 
            counterSingleProcess(j48ClassValue,testClassValue,J48); 
            counterSingleProcess(MNNClassValue,testClassValue,MNN); 
            counterSingleProcess(KNNClassValue,testClassValue,KNN); 
            counterSingleProcess(SVMClassValue,testClassValue,SVM); 
            counterAND(sumClassValue,testClassValue); 
            counterOR(sumClassValue, testClassValue); 
            counterHALF(sumClassValue, testClassValue); 
            counterAND1(sumClassValueBetter, testClassValue); 
            counterOR1(sumClassValueBetter, testClassValue); 
            counterHALF1(sumClassValueBetter, sumClassValueWorse, 
testClassValue); 
        } 
        return result; 
    } 
} 

A.3 Android intent service 

In order to run the monitor service asynchronously, we make use of the intent service on 

Android platform to keep the user interface separate with the monitor service.   

    public static void startActionScanPcap(Context context, String 
pcapPath, String tempPath, String trainPath) { 
        Intent intent = new Intent(context, 
PcapMonitorIntentService.class); 
        intent.setAction(ACTION_SCAN_PCAP); 
        intent.putExtra(EXTRA_PARAM_PCAP_PATH, pcapPath); 
        intent.putExtra(EXTRA_PARAM_TEMP_PATH, tempPath); 
        intent.putExtra(EXTRA_PARAM_TRAIN_PATH, trainPath); 
        context.startService(intent); 
    } 
    public static void startActionScanStop(Context context) { 
        Intent intent = new Intent(context, 
PcapMonitorIntentService.class); 
        intent.setAction(ACTION_SCAN_STOP); 
        context.startService(intent); 
    } 
 
    @Override 
    protected void onHandleIntent(Intent intent) { 
        if (intent != null) { 
            final String action = intent.getAction(); 
            if (ACTION_SCAN_PCAP.equals(action)) { 
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                final String pcapPath = 
intent.getStringExtra(EXTRA_PARAM_PCAP_PATH); 
                final String tempPath = 
intent.getStringExtra(EXTRA_PARAM_TEMP_PATH); 
                final String trainPath = 
intent.getStringExtra(EXTRA_PARAM_TRAIN_PATH); 
                try { 
                    handleActionScanPcap(pcapPath, tempPath, trainPath); 
                } catch (Exception e) { 
                    e.printStackTrace(); 
                } 
            } else if (ACTION_BAZ.equals(action)) { 
                final String param1 = intent.getStringExtra(EXTRA_PARAM1); 
                final String param2 = intent.getStringExtra(EXTRA_PARAM2); 
                handleActionBaz(param1, param2); 
            } else if (ACTION_SCAN_STOP.equals(action)) { 
                handleActionScanStop(); 
            } 
        } 
    } 
 
    private void handleActionScanStop() { 
        scanPcap.cancel(); 
        stopSelf(); 
    } 
    private void handleActionScanPcap(String pcapPath, String tempPath, 
String trainPath) throws Exception { 
        pcapPathParam = pcapPath; 
        pcapTempParam = tempPath; 
        trainDatasetParam = trainPath; 
 
        mlAnalyser.trainClassifier(trainPath); 
        scanPcapRepeatedly(); 
    } 

A.4 User interface 

The layout of the user interface is show as follows: 

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    xmlns:tools="http://schemas.android.com/tools" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent" 
    android:orientation="vertical" 
    android:weightSum="1"> 
    <TextView 
        android:layout_width="273dp" 
        android:layout_height="wrap_content" 
        android:text="@string/train_title" 
        android:layout_gravity="left" /> 
    <Button 
        android:id="@+id/train_dataset_select_btn" 
        android:layout_width="match_parent" 
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        android:layout_height="wrap_content" 
        android:text="@string/btn_select_file" 
        android:onClick="selectFile"/> 
    <EditText android:id="@+id/train_dataset" 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:hint="@string/train_dataset_hint" 
        android:focusable="false"/> 
 
    <TextView 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:text="@string/test_title" 
        android:layout_gravity="left" /> 
    <Button 
        android:id="@+id/test_dataset_select_btn" 
        android:layout_width="match_parent" 
        android:layout_height="wrap_content" 
        android:text="@string/btn_select_file" 
        android:onClick="selectFile"/> 
    <EditText android:id="@+id/test_dataset" 
        android:layout_width="match_parent" 
        android:layout_height="wrap_content" 
        android:hint="@string/test_dataset_hint" 
        android:focusable="false"/> 
 
    <LinearLayout 
        android:orientation="horizontal" 
        android:layout_width="match_parent" 
        android:layout_height="wrap_content" 
        android:layout_gravity="center_horizontal" 
        android:weightSum="1"> 
 
        <Button 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
            android:text="@string/btn_validation" 
            android:id="@+id/btn_validation" 
            android:layout_weight="0.25" 
            android:enabled="false"/> 
 
        <Button 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
            android:text="@string/btn_simulation" 
            android:id="@+id/btn_simulation" 
            android:layout_weight="0.25" 
            android:enabled="false"/> 
 
        <Button 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
            android:text="@string/btn_monitor" 
            android:id="@+id/btn_monitor" 
            android:layout_weight="0.25" /> 
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        <Button 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
            android:text="@string/btn_monitor_stop" 
            android:id="@+id/btn_monitor_stop" 
            android:layout_weight="0.25" /> 
    </LinearLayout> 
 
    <LinearLayout 
        android:layout_width="match_parent" 
        android:layout_height="match_parent" 
        android:orientation="vertical"> 
 
        <TextView 
            android:layout_width="match_parent" 
            android:layout_height="wrap_content" 
            android:text="@string/output_title" 
            android:id="@+id/textView" 
            android:layout_gravity="left" 
            android:background="#ff66ffd0" /> 
 
        <ScrollView 
            android:layout_width="match_parent" 
            android:layout_height="match_parent" 
            android:fillViewport="false" 
            android:id="@+id/scrollView" 
            android:layout_gravity="center_horizontal" 
            android:background="#ffe8f2ff"> 
            <LinearLayout 
                android:id="@+id/output_layout" 
                android:layout_height="match_parent" 
                android:layout_width="wrap_content" 
                android:orientation="vertical"/> 
        </ScrollView> 

</LinearLayout> 
</LinearLayout>



 

 System Call Monitor Bash Script 

This script can run on the mobile device to capture system calls of specified applications. 

The script is based on the Bash which is supported on the Linux kernel on Android OS. 

#!/bin/bash 
#---------------------------------------------------- 
# Read the packagesName.dat file to the variables 
#---------------------------------------------------- 
TAG_READ="Read PackagesName:" 
#We store the information from the sub index 1 
index=1 
while read line 
do 
    #use two 1-dimention array to present the 2-dimentions array 
    arrPackagesName[$index]="$line" 
    #Intial the pid of the every monitored packages as 0 
    arrPackagesNamePid[$index]=0 
    #LOGGER 
    log="$TAG_READ: arrPackagesName[$index]=${arrPackagesName[$index]} and 
arrPackagesNamePid[$index]=${arrPackagesNamePid[$index]}" 
    echo "$log" >> sh_log.log 
    #LOGGER_END 
    index=`expr $index + 1` 
done < packagesName.dat 
#TODO_FINISH: We need to check whether we read all the lines from the 
files. 
#ANS: We find that this is the problem of the file packagesName.dat add one 
line and delete it, it work well. 
sumPackagesName=`expr $index - 1` 
#LOGGER 
log="$TAG_READ read finish there are $sumPackagesName line in 
packagesName.dat" 
echo "$log" >> sh_log.log 
#LOGGER_END 
#---------------------------------------------------- 
# Start to process the current processes and run strace 
#---------------------------------------------------- 
dirDATE=`date "+%Y-%m-%d_%H-%M-%S"` 
mkdir $dirDATE 
ps_index=1 
TAG_PS="PS in While:" 
index_ps_log=0 
while true; do 
 



 233

 

    ps_index=`expr $ps_index + 1` 
    start_time=`date "+%Y-%m-%d %H-%M-%S"` 
    #echo "$TAG_PS While $ps_index start: $start_time" >> sh_log.log 
 
    #Get the output of the `ps` command 
    #TODO: BUG we need to generate the current process situation with one 
time ps. or the two files will be not consistent. 
    ps | awk '{print $2, $9}' > currentProcessInfo.tmp 
    awk '{print $1}' currentProcessInfo.tmp > pidList.dat 
    awk '{print $2}' currentProcessInfo.tmp > nameList_pre.dat 
 
    # ps | awk '{print $2}' > pidList.dat 
    # ps | awk '{print $9}' > nameList_pre.dat 
    sed 's/[./:]/_/g' nameList_pre.dat > nameList.dat 
 
    #Put the files into the variables 
    #read the pidList.dat -> arrPidList 
    index=0 
    while read line 
    do 
        if [ $index -gt 0 ];then 
            arrPidList[$index]="$line" 
        fi 
        index=`expr $index + 1` 
    done < pidList.dat 
    sumpid=`expr $index - 1` 
    #read the nameList.dat -> arrNameList 
    index=0 
    while read line 
    do 
        if [ $index -gt 0 ];then 
            arrNameList[$index]="$line" 
        fi 
        index=`expr $index + 1` 
    done < nameList.dat 
    sumname=`expr $index - 1` 
    #TODO We need to check 1: all the process information has been stored 
in the variables. 2: whether the sumname is equal to sumpid 
    echo "$TAG_PS sumpid=$sumpid sumname=$sumname" >> sh_log.log 
    #We start to visit all the processes to compare with the process in the 
packagesName.dat 
    index=0 
    null="null" 
    TAG_KEY="KEY:" 
#    index_ps_log=0 
    #think about the current process list is record from index=0 and so we 
need to compare with the sum+1. the index=0 is the header. 
    sumname1=`expr $sumname + 1` 
    while [ $index -le $sumname1 ] 
    do 
        lineNo=$(sed -n -e /^${arrNameList[$index]}$/= packagesName.dat|sed 
-n '1p') 
        #TODO: we neen to make sure that we select right 
#        echo "$TAG_KEY The lineNo is $lineNo" >> sh_log.log 
        if [ ${lineNo:-"null"} = $null ];then 
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            echo "Cannot find this process in the packagesName.dat" > 
useless.log 
        else 
            echo "$TAG_KEY Find the process in line $lineNo and name: 
${arrNameList[$index]}" >> sh_log.log 
            echo "$TAG_KEY previous pid: ${arrPackagesNamePid[$lineNo]} and 
current pid: ${arrPidList[$index]}" >> sh_log.log 
            if [ ${arrPidList[$index]} -ne 
${arrPackagesNamePid[$lineNo]} ];then 
                
filename=$dirDATE"/"${arrNameList[$index]}"_"${arrPidList[$index]}".txt" 
                arrPackagesNamePid[$lineNo]=${arrPidList[$index]} 
                strace_time=`date "+%Y-%m-%d %H-%M-%S"` 
                # echo "CP: cp nameList.dat 
ps/${arrPidList[$index]}_${index_ps_log}_nameList.dat" 
                # echo "CP: cp pidList.dat 
ps/${arrPidList[$index]}_${index_ps_log}_pid_list.dat" 
                cp nameList.dat 
ps/${index_ps_log}_${arrPidList[$index]}_nameList.dat 
                cp pidList.dat 
ps/${index_ps_log}_${arrPidList[$index]}_pid_list.dat 
                index_ps_log=`expr $index_ps_log + 1` 
                echo "$TAG_KEY ${strace_time}:Start to execute strace: 
${arrPidList[$index]}, ${arrNameList[$index]}">> sh_log.log 
                echo "$TAG_KEY strace -tt -T -p ${arrPidList[$index]} -o 
$filename" >> sh_log.log 
                strace -tt -T -p ${arrPidList[$index]} -o $filename & 
            fi 
        fi 
        ###################################################### 
        index=`expr $index + 1` 
    done 
    end_time=`date "+%Y-%m-%d_%H-%M-%S"` 
    echo "$TAG_PS $ps_index\\t$start_time\\t$end_time" >> sh_log.log 
done



 

 Key Implementation Code of 

Broker 

The project is managed by Maven and use command: mvn build to download the 

dependencies and compile.  

The Publisher implementation: 
 
final class PublisherImpl implements Publisher { 
  PublisherImpl(Builder builder) throws IOException { 
    topic = builder.topic; 
 
    maxBatchMessages = builder.maxBatchMessages; 
    maxBatchBytes = builder.maxBatchBytes; 
    maxBatchDuration = builder.maxBatchDuration; 
    hasBatchingBytes = maxBatchBytes > 0; 
 
    maxOutstandingMessages = builder.maxOutstandingMessages; 
    maxOutstandingBytes = builder.maxOutstandingBytes; 
    failOnFlowControlLimits = builder.failOnFlowControlLimits; 
    this.flowController = 
        new FlowController(maxOutstandingMessages, maxOutstandingBytes, 
failOnFlowControlLimits); 
 
    sendBatchDeadline = builder.sendBatchDeadline; 
 
    requestTimeout = builder.requestTimeout; 
 
    messagesBatch = new LinkedList<>(); 
    messagesBatchLock = new ReentrantLock(); 
    activeAlarm = new AtomicBoolean(false); 
    int numCores = Math.max(1, Runtime.getRuntime().availableProcessors()); 
    executor = 
        builder.executor.isPresent() 
            ? builder.executor.get() 
            : Executors.newScheduledThreadPool( 
                numCores * DEFAULT_MIN_THREAD_POOL_SIZE, 
                new ThreadFactoryBuilder() 
                    .setDaemon(true) 
                    .setNameFormat("cloud-pubsub-publisher-thread-%d") 
                    .build()); 
    channels = new Channel[numCores]; 
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    channelIndex = new AtomicLong(0); 
    for (int i = 0; i < numCores; i++) { 
      channels[i] = 
          builder.channelBuilder.isPresent() 
              ? builder.channelBuilder.get().build() 
              : NettyChannelBuilder.forAddress(PUBSUB_API_ADDRESS, 443) 
                  .negotiationType(NegotiationType.TLS) 
                  .sslContext(GrpcSslContexts.forClient().ciphers(null).bui
ld()) 
                  .executor(executor) 
                  .build(); 
    } 
    credentials = 
        MoreCallCredentials.from( 
            builder.userCredentials.isPresent() 
                ? builder.userCredentials.get() 
                : GoogleCredentials.getApplicationDefault() 
                    .createScoped(Collections.singletonList(PUBSUB_API_SCOP
E))); 
    shutdown = new AtomicBoolean(false); 
    messagesWaiter = new MessagesWaiter(); 
  } 
 
  @Override 
  public ListenableFuture<String> publish(PubsubMessage message) { 
    if (shutdown.get()) { 
      throw new IllegalStateException("Cannot publish on a shut-down 
publisher."); 
    } 
 
    final int messageSize = message.getSerializedSize(); 
    try { 
      flowController.reserve(1, messageSize); 
    } catch (CloudPubsubFlowControlException e) { 
      return Futures.immediateFailedFuture(e); 
    } 
    OutstandingBatch batchToSend = null; 
    SettableFuture<String> publishResult = SettableFuture.create(); 
    final OutstandingPublish outstandingPublish = new 
OutstandingPublish(publishResult, message); 
    messagesBatchLock.lock(); 
    try { 
      if (!messagesBatch.isEmpty() 
          && hasBatchingBytes 
          && batchedBytes + messageSize >= getMaxBatchBytes()) { 
        batchToSend = new OutstandingBatch(messagesBatch, batchedBytes); 
        messagesBatch = new LinkedList<>(); 
        batchedBytes = 0; 
      } 
      if (!hasBatchingBytes || messageSize < getMaxBatchBytes()) { 
        batchedBytes += messageSize; 
        messagesBatch.add(outstandingPublish); 
      if (messagesBatch.size() == getMaxBatchMessages()) { 
          batchToSend = new OutstandingBatch(messagesBatch, batchedBytes); 
          messagesBatch = new LinkedList<>(); 
          batchedBytes = 0; 
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        } 
      } 
      if (!messagesBatch.isEmpty()) { 
        setupDurationBasedPublishAlarm(); 
      } else if (currentAlarmFuture != null) { 
        logger.debug("Cancelling alarm"); 
        if (activeAlarm.getAndSet(false)) { 
          currentAlarmFuture.cancel(false); 
        } 
      } 
    } finally { 
      messagesBatchLock.unlock(); 
    } 
 
    messagesWaiter.incrementPendingMessages(1); 
 
    if (batchToSend != null) { 
      logger.debug("Scheduling a batch for immediate sending."); 
      final OutstandingBatch finalBatchToSend = batchToSend; 
      executor.execute( 
          new Runnable() { 
            @Override 
            public void run() { 
              publishOutstandingBatch(finalBatchToSend); 
            } 
          }); 
    } 
    if (hasBatchingBytes && messageSize >= getMaxBatchBytes()) { 
      logger.debug("Message exceeds the max batch bytes, scheduling it for 
immediate send."); 
      executor.execute( 
          new Runnable() { 
            @Override 
            public void run() { 
              publishOutstandingBatch( 
                  new 
OutstandingBatch(ImmutableList.of(outstandingPublish), messageSize)); 
            } 
          }); 
    } 
    return publishResult; 
  } 
          @Override 
          public void onFailure(Throwable t) { 
            long nextBackoffDelay = 
computeNextBackoffDelayMs(outstandingBatch); 
 
            if (!isRetryable(t) 
                || System.currentTimeMillis() + nextBackoffDelay 
                    > outstandingBatch.creationTime 
                        + PublisherImpl.this.sendBatchDeadline.getMillis()) 
{ 
              try { 
                for (OutstandingPublish outstandingPublish : 
                    outstandingBatch.outstandingPublishes) { 
                  outstandingPublish.publishResult.setException(t); 
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                } 
              } finally { 
                messagesWaiter.incrementPendingMessages(-
outstandingBatch.size()); 
              }              return; 
            } 
 
            executor.schedule( 
                new Runnable() { 
                  @Override 
                  public void run() { 
                    publishOutstandingBatch(outstandingBatch); 
                  } 
                }, 
                nextBackoffDelay, 
                TimeUnit.MILLISECONDS); 
          } 
        }); 
  } 
 

The Subscriber implementation: 
 
public class SubscriberImpl extends AbstractService implements Subscriber { 
  public SubscriberImpl(SubscriberImpl.Builder builder) throws IOException 
{ 
    receiver = builder.receiver; 
    maxOutstandingBytes = builder.maxOutstandingBytes; 
    maxOutstandingMessages = builder.maxOutstandingMessages; 
    subscription = builder.subscription; 
    ackExpirationPadding = builder.ackExpirationPadding; 
    streamAckDeadlineSeconds = 
        Math.max( 
            INITIAL_ACK_DEADLINE_SECONDS, 
            Ints.saturatedCast(ackExpirationPadding.getStandardSeconds())); 
 
    flowController = 
        new FlowController(builder.maxOutstandingBytes, 
builder.maxOutstandingBytes, false); 
 
    numChannels = Math.max(1, Runtime.getRuntime().availableProcessors()) * 
CHANNELS_PER_CORE; 
    executor = 
        builder.executor.isPresent() 
            ? builder.executor.get() 
            : Executors.newScheduledThreadPool( 
                numChannels * THREADS_PER_CHANNEL, 
                new ThreadFactoryBuilder() 
                    .setDaemon(true) 
                    .setNameFormat("cloud-pubsub-subscriber-thread-%d") 
                    .build()); 
 
    channelBuilder = 
        builder.channelBuilder.isPresent() 
            ? builder.channelBuilder.get() 
            : NettyChannelBuilder.forAddress(PUBSUB_API_ADDRESS, 443) 
                .maxMessageSize(MAX_INBOUND_MESSAGE_SIZE) 
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                .flowControlWindow(5000000) // 2.5 MB 
                .negotiationType(NegotiationType.TLS) 
                .sslContext(GrpcSslContexts.forClient().ciphers(null).build
()) 
                .executor(executor); 
 
    credentials = 
        builder.credentials.isPresent() 
            ? builder.credentials.get() 
            : GoogleCredentials.getApplicationDefault() 
                .createScoped(Collections.singletonList(PUBSUB_API_SCOPE)); 
 
    streamingSubscriberConnections = new 
ArrayList<StreamingSubscriberConnection>(numChannels); 
    pollingSubscriberConnections = new 
ArrayList<PollingSubscriberConnection>(numChannels); 
  } 
 
  @Override 
  protected void doStart() { 
    logger.debug("Starting subscriber group."); 
    startStreamingConnections(); 
    notifyStarted(); 
  } 
 
  @Override 
  protected void doStop() { 
    stopAllStreamingConnections(); 
    stopAllPollingConnections(); 
    notifyStopped(); 
  } 
 
  private void startStreamingConnections() { 
    synchronized (streamingSubscriberConnections) { 
      for (int i = 0; i < numChannels; i++) { 
        streamingSubscriberConnections.add( 
            new StreamingSubscriberConnection( 
                subscription, 
                credentials, 
                receiver, 
                ackExpirationPadding, 
                streamAckDeadlineSeconds, 
                ackLatencyDistribution, 
                channelBuilder.build(), 
                flowController, 
                executor)); 
      } 
      startConnections( 
          streamingSubscriberConnections, 
          new Listener() { 
            @Override 
            public void failed(State from, Throwable failure) { 
              stopAllStreamingConnections(); 
              if (failure instanceof StatusRuntimeException 
                  && ((StatusRuntimeException) 
failure).getStatus().getCode() 
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                      == Status.Code.UNIMPLEMENTED) { 
                logger.info("Unable to open streaming connections, falling 
back to polling."); 
                startPollingConnections(); 
                return; 
              } 
              notifyFailed(failure); 
            } 
          }); 
    } 
 
    ackDeadlineUpdater = 
        executor.scheduleAtFixedRate( 
            new Runnable() { 
              @Override 
              public void run() { 
                long ackLatency = 
                    
ackLatencyDistribution.getNthPercentile(PERCENTILE_FOR_ACK_DEADLINE_UPDATES
); 
                if (ackLatency > 0) { 
                  int possibleStreamAckDeadlineSeconds = 
                      Math.max( 
                          MIN_ACK_DEADLINE_SECONDS, 
                          Ints.saturatedCast( 
                              Math.max(ackLatency, 
ackExpirationPadding.getStandardSeconds()))); 
                  if (streamAckDeadlineSeconds != 
possibleStreamAckDeadlineSeconds) { 
                    streamAckDeadlineSeconds = 
possibleStreamAckDeadlineSeconds; 
                    logger.debug( 
                        "Updating stream deadline to {} seconds.", 
streamAckDeadlineSeconds); 
                    for (StreamingSubscriberConnection 
subscriberConnection : 
                        streamingSubscriberConnections) { 
                      
subscriberConnection.updateStreamAckDeadline(streamAckDeadlineSeconds); 
                    } 
                  } 
                } 
              } 
            }, 
            ACK_DEADLINE_UPDATE_PERIOD.getMillis(), 
            ACK_DEADLINE_UPDATE_PERIOD.getMillis(), 
            TimeUnit.MILLISECONDS); 
  } 
 
  private void stopAllStreamingConnections() { 
    stopConnections(streamingSubscriberConnections); 
    ackDeadlineUpdater.cancel(true); 
  } 
 
    stopConnections(pollingSubscriberConnections); 
  } 
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  private void startConnections( 
      List<? extends AbstractSubscriberConnection> connections, 
      final Listener connectionsListener) { 
    final CountDownLatch subscribersStarting = new 
CountDownLatch(numChannels); 
    for (final AbstractSubscriberConnection subscriber : connections) { 
      executor.submit( 
          new Runnable() { 
            @Override 
            public void run() { 
              subscriber.startAsync().awaitRunning(); 
              subscribersStarting.countDown(); 
              subscriber.addListener(connectionsListener, executor); 
            } 
          }); 
    } 
    try { 
      subscribersStarting.await(); 
    } catch (InterruptedException e) { 
      throw new RuntimeException(e); 
    } 
  } 
 
  private void stopConnections(List<? extends AbstractSubscriberConnection> 
connections) { 
    ArrayList<AbstractSubscriberConnection> liveConnections; 
    synchronized (connections) { 
      liveConnections = new 
ArrayList<AbstractSubscriberConnection>(connections); 
      connections.clear(); 
    } 
    final CountDownLatch connectionsStopping = new 
CountDownLatch(liveConnections.size()); 
    for (final AbstractSubscriberConnection subscriberConnection : 
liveConnections) { 
      executor.submit( 
          new Runnable() { 
            @Override 
            public void run() { 
              try { 
                subscriberConnection.stopAsync().awaitTerminated(); 
              } catch (IllegalStateException ignored) { 
              } 
              connectionsStopping.countDown(); 
            } 
          }); 
    } 
    try { 
      connectionsStopping.await(); 
    } catch (InterruptedException e) { 
      throw new RuntimeException(e); 
    } 
  } 
}



 

 Key Implementation Code of Analyser 

The project is managed by Maven and use command: mvn build to download the 

dependencies and compile.  

public class WekaProcess { 
    static Logger logger = Logger.getLogger(WekaProcess.class); 
    public static void  main(String[] args) throws Exception{ 
 
        NaiveBayes classifierNB = new NaiveBayes(); 
        J48 classifierJ48 = new J48(); 
        MultilayerPerceptron classifierMNN = new MultilayerPerceptron(); 
        IBk classifierKNN = new IBk(); 
        SMO classifierSVM = new SMO(); 
        //Configure the classifier, others options is keeping default 
        classifierMNN.setLearningRate(0.9); 
        classifierMNN.setHiddenLayers("t"); 
        classifierMNN.setSeed(5); 
        classifierMNN.setReset(false); 
        classifierMNN.setMomentum(0.2); 
        classifierKNN.setKNN(2); 
        //mix 
        //Load the mix csv file 
        for (int aTimeIntervalInSecond : Config.timeIntervalInSecond) { 
            // get the specific file by the time interval by using the rule 
            CSVLoader mixLoad = new CSVLoader(); 
            try { 
                mixLoad.setSource( 
                        new 
File(FileHelper.FilePathGen("mix",aTimeIntervalInSecond,0))); 
            } catch (IOException e) { 
                e.printStackTrace(); 
            } 
 
            Instances mixData = mixLoad.getDataSet(); 
 
            mixData.setClassIndex(mixData.numAttributes() - 1); 
            EvaluationEnhance eval = new EvaluationEnhance(mixData); 
            List exportData = new ArrayList<Map<String, String>>(); 
            eval.crossValidateModel(classifierJ48, mixData, 10, new 
Random(1)); 
            exportData = eval.exportList("J48", exportData); 
            EvaluationEnhance eval2 = new EvaluationEnhance(mixData); 
            eval2.crossValidateModel(classifierKNN, mixData, 10, new 
Random(1)); 
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            exportData = eval2.exportList("KNN", exportData); 
 
            EvaluationEnhance eval3 = new EvaluationEnhance(mixData); 
            eval3.crossValidateModel(classifierNB, mixData, 10, new 
Random(1)); 
            exportData = eval3.exportList("NB", exportData); 
 
            EvaluationEnhance eval4 = new EvaluationEnhance(mixData); 
            eval4.crossValidateModel(classifierSVM, mixData, 10, new 
Random(1)); 
            exportData = eval4.exportList("SVM", exportData); 
 
            EvaluationEnhance eval5 = new EvaluationEnhance(mixData); 
            eval5.crossValidateModel(classifierMNN, mixData, 10, new 
Random(1)); 
            exportData = eval5.exportList("MNN", exportData); 
            LinkedHashMap map = new LinkedHashMap(); 
            for (int i=1;i<16;i++) { 
                map.put(String.valueOf(i), String.valueOf(i)); 
            } 
            CsvUtil.createCSVFile(exportData, map, 
FileDirectory.WORK_PATH_WIN, 
                    String.valueOf(aTimeIntervalInSecond) + 
"analysis.csv"); 
 
        } 
    } 
} 



 

 Normal Application Actions 

Chrome: Open settings and login/logout with valid credentials; Open new normal tab 

TAB1, type and go to URL; add it to favorites; Open a new normal tab TAB2 and search for 

city by Google; Close TAB1 and TAB2; Open a new incognito tab INTAB1 and type and 

access a URL; Add URL to the Favorites; Open a new incognito tab INTAB2 and search for 

URL by Google; Close INTAB1 and INTAB2; Open favourites and select last added 

favourite; Open history and select the initially visited URL 

Gmail: Open the main interface and refresh; Send an email; Receive email; Open last 

email and Mark it; Move an email to the Social Folder; Delete an email from Primary; 

Receive email with attachment; Download the attachment 

Maps: Get location in the main interface; Open explore around you; Search British 

Museum and find the direction to it from current location; Close application; Open settings 

and open map history; Open British Museum from the list; Switch the setting from 

TrafficPublic TransitBicyclingsatelliteTerrain; Search British Library and open the 

description (photos and reviews), then star it; Save a small offline map and delete it; magnify 

the map and save it 

Facebook: Login and logout with valid account; Search for someone and add her as a 

friend; Open main interface and refresh; Post status; Post Photo; Check in 

YouTube: Search for British Museum and get a list of videos; Open a video and add it to 

watch later; View a full video and minimise it to the right bottom corner; Open history and 

a video; Open best of YouTube, open music to view a video; Upload a video and delete it. 
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Messenger: Search for a user and add her as friend; Send message to friend; Receive 

message from friend; Open main interface and refresh; Open news and the first article in it; 

Add it to the bookmarks and go back  

Twitter: Open my library and add more to select featured; add Wall Street Journal and 

then remove it 

PlayNewStand: Search for a user and add him/her as a friend; Open main interface and 

load a refresh; Post status; Post Photo; Send/Receive message  

Flipboard: Open and refresh; Open a news item and mark it as Liked; Open classification; 

Open news to select an item from it; Add comment to news. 

Feedly: Open main interface and refresh; Add content to search Tech and add Engadget 

to content; Refresh and open news items from Engadget and then mark is as Liked; Remove 

Engadget from content; Open Explore and add news item. 

Skype: Search for contacts; Send message to a contact; Receive message from contact; 

Call a contact; Receive a call from a contact.  

MailDroid: Open the main interface and refresh; Send/receive email; Open/flag/delete 

email; Receive email with attachment; Download attachment.  

 



 

 Tables of Experiments Result 

Table F-1 - Results of experiment I of network traffic  

90%-10% 10-fold cross-validation 50%-50% 2-fold cross-validation 10%-90% split dataset

Recall FPR Precision Recall FPR Precision Recall FPR Precision

Infect 0.031 0.006 0.760 Infect 0.030 0.006 0.750 Infect 0.609 0.006 0.994

Normal 0.994 0.969 0.609 Normal 0.994 0.970 0.608 Normal 0.994 0.391 0.609

Infect 0.064 0.028 0.788 Infect 0.096 0.043 0.781 Infect 0.938 0.827 0.645

Normal 0.972 0.936 0.391 Normal 0.957 0.904 0.395 Normal 0.173 0.062 0.635

Infect 0.335 0.066 0.769 Infect 0.344 0.077 0.746 Infect 0.198 0.041 0.763

Normal 0.934 0.665 0.680 Normal 0.923 0.656 0.681 Normal 0.959 0.802 0.644

Infect 0.908 0.276 0.842 Infect 0.870 0.307 0.821 Infect 0.881 0.398 0.780

Normal 0.724 0.092 0.829 Normal 0.693 0.130 0.766 Normal 0.602 0.119 0.760

Infect 0.183 0.161 0.428 Infect 0.455 0.404 0.426 Infect 0.909 0.807 0.427

Normal 0.839 0.817 0.609 Normal 0.596 0.545 0.624 Normal 0.193 0.091 0.761

Infect 0.877 0.752 0.654 Infect 0.946 0.826 0.650 Infect 0.982 0.913 0.633

Normal 0.248 0.123 0.556 Normal 0.174 0.054 0.667 Normal 0.087 0.018 0.750

Infect 0.455 0.154 0.660 Infect 0.461 0.177 0.632 Infect 0.479 0.210 0.602

Normal 0.846 0.545 0.702 Normal 0.823 0.539 0.698 Normal 0.790 0.521 0.696

Infect 0.893 0.216 0.870 Infect 0.887 0.248 0.853 Infect 0.800 0.230 0.848

Normal 0.784 0.107 0.818 Normal 0.752 0.113 0.804 Normal 0.770 0.200 0.706

Infect 0.012 0.003 0.726 Infect 0.012 0.003 0.726 Infect 0.013 0.003 0.733

Normal 0.997 0.988 0.605 Normal 0.997 0.988 0.605 Normal 0.997 0.987 0.604

Infect 0.998 0.966 0.626 Infect 0.997 0.969 0.625 Infect 0.999 0.983 0.620

Normal 0.034 0.002 0.917 Normal 0.031 0.003 0.870 Normal 0.017 0.001 0.909

Infect 0.053 0.011 0.887 Infect 0.036 0.008 0.884 Infect 0.679 0.150 0.884

Normal 0.946 0.487 0.751 Normal 0.992 0.964 0.389 Normal 0.850 0.321 0.612

Infect 0.996 0.969 0.625 Infect 0.996 0.958 0.627 Infect 0.998 0.954 0.637

Normal 0.053 0.011 0.887 Normal 0.042 0.004 0.871 Normal 0.046 0.002 0.929

Infect 0.941 0.349 0.813 Infect 0.936 0.340 0.817 Infect 0.945 0.670 0.703

Normal 0.941 0.349 0.813 Normal 0.660 0.064 0.864 Normal 0.330 0.055 0.782

Infect 0.845 0.129 0.914 Infect 0.835 0.148 0.902 Infect 0.759 0.173 0.880

Normal 0.947 0.382 0.801 Normal 0.852 0.165 0.761 Normal 0.827 0.241 0.672

Infect 0.947 0.382 0.801 Infect 0.945 0.410 0.789 Infect 0.891 0.460 0.764

Normal 0.845 0.129 0.914 Normal 0.590 0.055 0.870 Normal 0.540 0.109 0.746

Infect 0.939 0.359 0.814 Infect 0.847 0.205 0.900 Infect 0.856 0.426 0.782

Normal 0.939 0.165 0.922 Normal 0.795 0.153 0.704 Normal 0.574 0.144 0.691

          Validation
Algorithms

Naive Bayesian

Packet Packet Packet

Stream Stream Stream

J48 Tree

Packet Packet Packet

Stream Stream Stream

MNN

Packet Packet Packet

Stream Stream Stream

KNN

Packet Packet Packet

Stream Stream Stream

SVM

Packet Packet Packet

Stream Stream Stream

ML-BOX+(HALF)

Stream

Stream

Stream

Stream

Stream

Stream

ML-BOX(AND)

ML-BOX(OR)

ML-BOX(HALF)

ML-BOX+(AND)

ML-BOX+(OR)

Stream

Stream

Stream

Stream

Stream

Stream

Stream

Stream

Stream

Stream

Stream

Stream
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Table F-2 - Results of experiment II of network traffic 

Malware Family

Measures Recall FPR Precision Recall FPR Precision Recall FPR Precision

Naive Bayesian 0.059 0.03 0.846 0.05 0.03 0.818 0.571 0.03 0.667

J48 Tree 0.636 0.152 0.922 0.403 0.182 0.859 0.714 0.242 0.238

MNN 0.695 0.53 0.788 0.994 0.864 0.759 1 0.864 0.109

KNN 0.642 0.288 0.863 0.768 0.242 0.897 0.857 0.303 0.231

SVM 1 0.955 0.748 1 0.955 0.742 1 0.97 0.099

ML-BOX(AND) 0.032 0 1 0.028 0.015 0.833 0.571 0.015 0.8

ML-BOX(OR) 1 0.955 0.748 1 0.955 0.742 1 0.97 0.099

ML-BOX(HALF) 0.658 0.227 0.891 0.796 0.318 0.873 0.857 0.424 0.176

ML-BOX+(AND) 0.556 0.136 0.92 0.376 0.121 0.895 0.714 0.136 0.357

ML-BOX+(OR) 0.722 0.303 0.871 0.796 0.303 0.878 0.857 0.409 0.182

ML-BOX+(HALF) 0.658 0.227 0.891 0.796 0.303 0.878 0.857 0.409 0.182

Malware Family

Measures Recall FPR Precision Recall FPR Precision Recall FPR Precision

Naive Bayesian 0.054 0.03 0.846 0.018 0.03 0.333 0.2 0.03 0.5

J48 Tree 0.639 0.182 0.916 0.145 0.227 0.348 0.6 0.258 0.261

MNN 0.917 0.788 0.783 0.745 0.848 0.423 0.9 0.848 0.138

KNN 0.561 0.227 0.885 0.418 0.212 0.622 0.8 0.303 0.286

SVM 0.995 0.955 0.764 1 0.955 0.466 0.9 0.955 0.125

ML-BOX(AND) 0.01 0 1 0 0.015 0 0.1 0.015 0.5

ML-BOX(OR) 0.995 0.955 0.764 1 0.955 0.466 0.9 0.955 0.125

ML-BOX(HALF) 0.795 0.288 0.896 0.364 0.348 0.465 0.8 0.409 0.229

ML-BOX+(AND) 0.4 0.121 0.911 0.145 0.091 0.571 0.6 0.152 0.375

ML-BOX+(OR) 0.8 0.288 0.896 0.418 0.348 0.5 0.8 0.409 0.229

ML-BOX+(HALF) 0.785 0.288 0.894 0.364 0.348 0.465 0.8 0.409 0.229

Malware Family

Measures Recall FPR Precision Recall FPR Precision Recall FPR Precision

Naive Bayesian 0.026 0.03 0.333 0.06 0.03 0.778 0.004 0.03 0.333

J48 Tree 0.763 0.242 0.644 0.607 0.152 0.877 0.593 0.197 0.917

MNN 0.974 0.727 0.435 0.752 0.727 0.647 1 0.848 0.813

KNN 0.447 0.303 0.459 0.667 0.303 0.796 0.086 0.303 0.512

SVM 1 0.955 0.376 1 0.955 0.65 1 0.955 0.794

ML-BOX(AND) 0.026 0 1 0.026 0.015 0.75 0 0 0

ML-BOX(OR) 1 0.955 0.376 1 0.955 0.65 1 0.955 0.794

ML-BOX(HALF) 0.842 0.394 0.552 0.692 0.333 0.786 0.654 0.364 0.869

ML-BOX+(AND) 0.342 0.136 0.591 0.41 0.045 0.941 0.025 0.136 0.4

ML-BOX+(OR) 0.868 0.409 0.55 0.863 0.409 0.789 0.654 0.364 0.869

ML-BOX+(HALF) 0.842 0.394 0.552 0.692 0.333 0.786 0.654 0.364 0.869

3 (7 infect streams)

6 (10 infect streams)

10 (243 infect streams)

1 (187 infect streams) 2 (181 infect streams)

4 (205 infect streams) 5 (55 infect streams)

7 (38 infect streams) 9 (117 infect streams)
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Table F-3 - Performance measures in experiment 1 of system call 

(A) ATOMIC ML CLASSIFIERS 

   J48  KNN  NB  SVM  NN 

I  D  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC 

1
0
s  N  .98  .07  .97  .97  .99  .06  .97  .99  .90  .02  .99  .98  .96  .03  .98  .96  .98  .05  .98  .98 

B  .93  .02  .96  .97  .94  .01  .98  .99  .98  .10  .83  .97  .97  .04  .92  .96  .95  .02  .96  .98 

3
0
s  N  1.0  .10  .97  .97  .99  .11  .97  .98  .96  .03  .99  .98  .99  .08  .98  .95  .99  .07  .98  .99 

B  .90  .00  .98  .97  .89  .01  .96  .98  .97  .04  .87  .98  .92  .01  .96  .95  .93  .01  .96  .99 

6
0
s  N  .99  .08  .98  .97  .99  .04  .99  .99  .98  .01  1.0  .99  .99  .01  1.0  .99  .98  .05  .99  1.0 

B  .92  .01  .94  .97  .96  .01  .95  .99  .99  .02  .94  .98  .99  .01  .95  .99  .95  .02  .93  1.0 

3
0
0
s  N  .99  .16  .95  .92  1.0  .04  .99  .99  1.0  .12  .96  .94  1.0  .00  1.0  1.0  1.0  .00  1.0  1.0 

B  .84  .01  .95  .92  .96  .00  1.0  .99  .88  .00  1.0  .96  1.0  .00  1.0  1.0  1.0  .00  1.0  1.0 

6
0
0
s  N  1.0  .06  .98  .97  1.0  .06  .98  .98  .98  .18  .93  .89  1.0  .00  1.0  1.0  .98  .00  1.0  1.0 

B  .94  .00  1.0  .97  .94  .00  1.0  .98  .82  .02  .93  .91  1.0  .00  1.0  1.0  1.0  .02  .94  1.0 

AV 
N  0.99  0.09  0.97  0.96  0.99  0.06  0.98  0.98  0.96  0.07  0.97  0.96  0.99  0.02  0.99  0.98  0.99  0.03  0.99  0.99 

B  0.91  0.01  0.97  0.96  0.94  0.01  0.98  0.98  0.93  0.04  0.91  0.96  0.98  0.01  0.97  0.98  0.97  0.01  0.96  0.99 

(B) BOX ML CLASSIFIERS 
    BOX‐AND  BOX‐OR  BOX‐HALF  BOX‐AND+  BOX‐OR+  BOX‐HALF+ 

I  D  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC 

1
0
s N  .98  .05  .98  .98  .88  .01  .99  .94  .98  .05  .98  .97  .99  .08  .96  .95  .98  .05  .98  .96  .98  .05  .98  .97 

B  .95  .02  .96  .98  .99  .12  .81  .94  .95  .02  .97  .97  .92  .01  .99  .95  .95  .02  .95  .96  .95  .02  .97  .97 

3
0
s N  .99  .07  .98  .99  .95  .01  1.0  .97  .99  .08  .98  .95  1.0  .14  .96  .93  .99  .08  .98  .95  .99  .08  .98  .95 

B  .93  .01  .96  .99  .99  .05  .87  .97  .92  .01  .96  .95  .86  .00  .99  .93  .92  .01  .95  .95  .92  .01  .96  .95 

6
0
s N  .98  .05  .99  1.0  .97  .00  1.0  .99  .99  .04  .99  .97  .92  .01  .96  .95  .98  .04  .99  .97  .99  .04  .99  .97 

B  .95  .02  .93  1.0  1.0  .03  .91  .99  .96  .01  .95  .97  .99  .08  .98  .95  .96  .02  .93  .97  .96  .01  .95  .97 

3
0
0
s N  1.0  .00  1.0  1.0  .99  .00  1.0  .99  1.0  .04  .99  .98  .84  .00  1.0  .92  .99  .04  .99  .97  1.0  .04  .99  .98 

B  1.0  .00  1.0  1.0  1.0  .01  .96  .99  .96  .00  1.0  .98  1.0  .16  .95  .92  .96  .01  .96  .97  .96  .00  1.0  .98 

6
0
0
s N  .98  .00  1.0  1.0  .98  .00  1.0  .99  1.0  .06  .98  .97  .94  .00  .99  .97  1.0  .06  .98  .97  1.0  .06  .98  .97 

B  1.0  .02  .94  1.0  1.0  .02  .94  .99  .94  .00  1.0  .97  1.0  .06  .98  .97  .94  .00  .99  .97  .94  .00  1.0  .97 

AV 
N  .99  .03  .99  .99  .95  .00  1.0  .98  .99  .05  .98  .97  .94  .05  .97  .95  .99  .05  .98  .97  .99  .05  .98  .97 

B  .97  .01  .96  .99  1.0  .05  .90  .98  .95  .01  .97  .97  .95  .06  .98  .95  .95  .01  .96  .97  .95  .01  .97  .97 
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Table F-4 - Performance measures in experiment 2 of system call 

(A) ATOMIC ML CLASSIFIERS 

   J48  KNN  NB  SVM  NN 

B  D  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC 

B1 
N  .94  .18  .94  .90  .97  .27  .91  .87  .86  .29  .89  .85  .92  .35  .88  .78  .86  .45  .76  .84 

B  .82  .06  .84  .90  .73  .03  .90  .87  .71  .14  .69  .84  .65  .08  .80  .78  .55  .14  .80  .84 

B2 
N  .95  .30  .76  .88  .97  .99  .24  .66  .89  .00  1.0  .95  .91  .00  1.0  .96  .55  .00  .69  .99 

B  .70  .05  .88  .88  .01  .03  .60  .66  1.0  .11  .97  .95  1.0  .09  .97  .96  1.0  .45  .89  .99 

B3 
N  .95  .10  .97  .96  .96  .18  .95  .99  .88  .02  .99  .95  .92  .36  .91  .78  .56  .23  .64  .92 

B  .90  .05  .84  .96  .82  .04  .87  .99  .98  .12  .71  .95  .64  .08  .75  .78  .78  .44  .56  .92 

B4 
N  .96  .02  .94  .97  .96  .04  .90  .99  .89  .02  .95  .97  .96  .79  .38  .59  .88  .79  .29  .91 

B  .98  .04  .99  .97  .96  .04  .99  .99  .98  .11  .97  .97  .21  .04  .90  .59  .21  .12  .92  .91 

B5 
N  .94  .00  1.0  .99  .96  .00  1.0  1.0  .88  .00  1.0  .95  .91  .00  1.0  .96  .73  .30  .79  .91 

B  1.0  .06  .42  .99  1.0  .04  .58  1.0  1.0  .12  .28  .95  1.0  .09  .46  .96  .70  .27  .42  .91 

B6 
N  .98  .37  .78  .91  .99  .37  .78  .97  .87  .08  .94  .93  .91  .10  .93  .91  .59  .43  .39  .85 

B  .63  .02  .96  .91  .63  .01  .98  .97  .92  .13  .85  .94  .90  .09  .90  .91  .57  .41  .75  .85 

B7 
N  .97  .36  .88  .85  .97  .32  .90  .87  .90  .15  .94  .91  .92  .21  .92  .85  .95  .30  .90  .86 

B  .64  .03  .88  .85  .68  .03  .90  .87  .85  .10  .79  .95  .79  .08  .81  .85  .70  .05  .88  .86 

B8 
N  .94  .00  1.0  .99  .96  .53  .88  .91  .87  .00  1.0  .98  .91  .03  .99  .94  .66  .07  .77  .96 

B  1.0  .06  .82  .99  .47  .04  .80  .91  1.0  .13  .70  .98  .97  .09  .78  .94  .93  .34  .67  .96 

B9 
N  .95  .05  .98  .96  .96  .05  .98  .99  .84  .27  .90  .81  .91  .20  .93  .86  .62  .05  .68  .94 

B  .95  .05  .88  .96  .95  .04  .90  .99  .73  .16  .65  .74  .80  .09  .81  .86  .95  .38  .63  .94 

AV 
N  .95  .15  .92  .94  .97  .30  .84  .92  .88  .09  .96  .92  .92  .23  .88  .85  .71  .29  .66  .91 

B  .85  .05  .83  .94  .70  .03  .84  .92  .91  .12  .73  .92  .77  .08  .80  .85  .71  .29  .72  .91 

(B) BOX ML CLASSIFIERS 

BOX‐AND  BOX‐OR  BOX‐HALF  BOX‐AND+  BOX‐OR+  BOX‐HALF+ 

B  D  TPR  FPR  PRC  AU  TPR  FPR  PRC  AU  TPR  FPR  PRC  AU  TPR  FPR  PRC  AU  TPR  FPR  PRC  AU  TPR  FPR  PRC  AU 

B1 
N  .86  .45  .86  .84  .76  .06  .97  .85  .94  .25  .91  .84  .96  .30  .90  .83  .85  .16  .93  .84  .93  .22  .92  .85 

B  .55  .14  .80  .84  .94  .24  .66  .85  .75  .06  .84  .84  .70  .04  .87  .83  .84  .15  .68  .84  .78  .07  .83  .85 

B2 
N  .56  .00  1.0  .99  .53  .00  1.0  .76  .92  .00  1.0  .96  .96  .30  .76  .83  .88  .00  1.0  .94  .92  .00  1.0  .96 

B  1.0  .44  .89  .99  1.0  .47  .88  .76  1.0  .08  .97  .96  .70  .04  .89  .83  1.0  .12  .96  .94  1.0  .08  .97  .96 

B3 
N  .57  .23  .95  .92  .52  .01  1.0  .76  .93  .12  .97  .90  .96  .11  .97  .92  .88  .01  1.0  .94  .92  .09  .97  .92 

B  .78  .43  .56  .92  .99  .48  .49  .76  .88  .07  .81  .90  .89  .04  .86  .92  .99  .12  .70  .94  .91  .08  .80  .92 

B4 
N  .88  .79  .39  .91  .81  .01  .98  .90  .95  .03  .90  .96  .96  .03  .91  .97  .89  .01  .98  .94  .94  .03  .92  .96 

B  .21  .12  .92  .91  .99  .19  .95  .90  .97  .05  .98  .96  .97  .04  .99  .97  .99  .11  .96  .94  .97  .06  .98  .96 

B5 
N  .74  .30  .99  .91  .69  .00  1.0  .84  .92  .00  1.0  .96  .95  .00  1.0  .98  .87  .00  1.0  .94  .91  .00  1.0  .96 

B  .70  .26  .43  .91  1.0  .31  .18  .84  1.0  .08  .46  .96  1.0  .05  .51  .98  1.0  .13  .25  .94  1.0  .09  .45  .96 

B6 
N  .60  .43  .79  .85  .51  .00  1.0  .75  .96  .23  .86  .86  .99  .41  .76  .79  .86  .04  .97  .91  .96  .20  .87  .88 

B  .57  .40  .75  .85  1.0  .49  .67  .75  .77  .04  .95  .86  .59  .01  .97  .79  .96  .14  .85  .91  .80  .04  .95  .88 

B7 
N  .95  .30  .90  .86  .90  .15  .94  .87  .94  .29  .90  .82  .97  .36  .88  .80  .90  .15  .94  .87  .94  .29  .90  .82 

B  .70  .05  .88  .86  .85  .10  .77  .87  .71  .06  .84  .82  .64  .03  .88  .80  .85  .10  .78  .87  .71  .06  .84  .82 

B8 
N  .67  .07  .98  .96  .63  .00  1.0  .81  .92  .00  1.0  .96  .95  .00  1.0  .98  .87  .00  1.0  .93  .92  .00  1.0  .96 

B  .93  .33  .67  .96  1.0  .37  .56  .81  1.0  .08  .80  .96  1.0  .05  .85  .98  1.0  .13  .68  .93  1.0  .08  .79  .96 

B9 
N  .63  .05  .98  .94  .58  .02  .99  .77  .92  .05  .98  .93  .96  .29  .91  .84  .83  .03  .98  .90  .92  .05  .98  .93 

B  .95  .37  .63  .94  .98  .42  .55  .77  .95  .08  .83  .93  .71  .04  .87  .84  .97  .17  .69  .90  .95  .08  .83  .93 

AV 
N  .72  .29  .87  .91  .66  .03  .99  .81  .93  .11  .95  .91  .96  .20  .90  .88  .87  .04  .98  .91  .93  .10  .95  .92 

B  .71  .28  .72  .91  .97  .34  .63  .81  .89  .07  .83  .91  .80  .04  .85  .88  .96  .13  .73  .91  .90  .07  .83  .92 
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Table F-5 - Performance measures in experiment 3 of system call 

(A) ATOMIC ML CLASSIFIERS 

B 
   J48  KNN  NB  SVM  NN 

D  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC  TPR  FPR  PRC  AUC 

B1 
N  .91  .18  .88  .86  .94  .32  .83  .86  .63  .18  .81  .76  .94  .41  .80  .76  1.0  .95  .68  .55 

B  .82  .09  .83  .86  .68  .06  .85  .86  .82  .37  .57  .78  .59  .06  .82  .76  .05  .00  1.0  .55 

B2 
N  .93  .98  .25  .85  .94  .99  .25  .53  .66  .00  1.0  .81  .93  .00  1.0  .96  .96  .00  1.0  .95 

B  .02  .07  .61  .85  .01  .06  .55  .53  1.0  .34  .91  .81  1.0  .07  .98  .96  1.0  .04  .99  .95 

B3 
N  .91  .06  .96  .92  .94  .19  .91  .94  .63  .00  1.0  .85  .93  .44  .83  .74  1.0  .94  .73  .70 

B  .94  .09  .81  .92  .81  .06  .83  .94  1.0  .37  .55  .85  .56  .07  .76  .74  .06  .00  1.0  .70 

B4 
N  .93  .04  .81  .97  .94  .04  .81  .98  .64  .01  .90  .90  .96  .97  .26  .49  .96  .97  .26  .91 

B  .96  .07  .98  .97  .96  .06  .98  .98  .99  .36  .91  .90  .03  .04  .76  .49  .03  .04  .76  .91 

B5 
N  .86  .00  1.0  .89  .94  .50  .96  .94  .61  .00  1.0  .84  .94  .50  .96  .71  .00  .00  .00  .15 

B  1.0  .14  .47  .89  .50  .06  .44  .94  1.0  .39  .18  .84  .50  .06  .38  .71  1.0  1.0  .06  .15 

B6 
N  .92  .33  .72  .89  .94  .41  .68  .91  .64  .11  .79  .82  .94  .35  .71  .79  .95  .57  .63  .65 

B  .67  .08  .90  .89  .59  .06  .91  .91  .89  .36  .73  .83  .65  .06  .91  .79  .43  .05  .90  .65 

B7 
N  .93  .41  .80  .81  .94  .36  .81  .84  .69  .18  .84  .78  .94  .41  .80  .76  .99  .68  .73  .59 

B  .59  .07  .82  .81  .64  .06  .85  .84  .82  .31  .63  .83  .59  .06  .82  .76  .32  .01  .94  .59 

B8 
N  .88  .00  1.0  .98  .89  .52  .81  .84  .68  .00  1.0  .94  .93  .07  .96  .93  .00  .00  .15  .93 

B  1.0  .12  .77  .98  .48  .11  .68  .84  1.0  .32  .59  .94  .93  .07  .83  .93  1.0  1.0  .27  .93 

B9 
N  .93  .19  .88  .87  .91  .33  .82  .81  .53  .24  .74  .70  .90  .29  .84  .80  1.0  .90  .69  .78 

B  .81  .07  .84  .87  .67  .09  .82  .81  .76  .47  .45  .66  .71  .10  .80  .80  .10  .00  1.0  .78 

AV 
N  .91  .24  .81  .89  .93  .40  .76  .85  .63  .08  .89  .82  .93  .38  .79  .77  .76  .55  .54  .69 

B  .75  .08  .78  .89  .59  .06  .76  .80  .92  .36  .61  .82  .61  .06  .78  .77  .44  .23  .76  .69 

 (B) BOX ML CLASSIFIERS 

      BOX‐AND  BOX‐OR  BOX‐HALF  BOX‐AND+  BOX‐OR+  BOX‐HALF+ 

B  D  TPR  FPR  PRC  AU  TPR  FPR  PRC  AU  TPR  FPR  PRC  AU  TPR  FPR  PRC  AU  TPR  FPR  PRC  AU  TPR  FPR  PRC  AU 

B1 
N  1.0  .95  .68  .55  .61  .05  .93  .78  .93  .32  .83  .81  .94  .32  .83  .74  .91  .18  .88  .88  .93  .32  .83  .81 

B  .05  .00  1.0  .55  .95  .39  .59  .78  .68  .07  .84  .81  .68  .06  .86  .74  .82  .09  .82  .85  .68  .07  .84  .81 

B2 
N  .96  .00  1.0  .96  .65  .00  1.0  .83  .94  .00  1.0  .97  .94  .99  .25  .43  .93  .98  .25  .47  .94  .00  1.0  .97 

B  1.0  .04  .99  .96  1.0  .35  .91  .83  1.0  .06  .99  .97  .01  .06  .58  .43  .02  .07  .59  .47  1.0  .06  .99  .97 

B3 
N  1.0  .94  .73  .70  .62  .00  1.0  .81  .94  .13  .93  .91  .94  .25  .88  .77  .91  .00  1.0  .95  .94  .13  .93  .91 

B  .06  .00  1.0  .70  1.0  .38  .54  .81  .88  .06  .84  .91  .75  .06  .84  .77  1.0  .09  .81  .95  .88  .06  .84  .91 

B4 
N  .96  .97  .26  .92  .63  .01  .90  .81  .94  .04  .81  .95  .94  .05  .79  .87  .93  .04  .82  .94  .94  .04  .81  .95 

B  .03  .04  .76  .92  .99  .37  .91  .81  .96  .06  .98  .95  .95  .06  .98  .87  .96  .07  .98  .94  .96  .06  .98  .95 

B5 
N  .04  .00  1.0  .15  .04  .00  1.0  .50  .90  .00  1.0  .95  .94  .50  .96  .66  .86  .00  1.0  .93  .90  .00  1.0  .95 

B  1.0  .96  .07  .15  1.0  .96  .07  .50  1.0  .10  .41  .95  .50  .06  .48  .66  1.0  .14  .44  .93  1.0  .10  .41  .95 

B6 
N  .95  .57  .63  .65  .62  .00  1.0  .81  .94  .37  .70  .78  .94  .45  .66  .68  .92  .28  .74  .82  .94  .37  .70  .78 

B  .43  .05  .90  .65  1.0  .38  .74  .81  .63  .06  .91  .78  .55  .06  .90  .68  .72  .08  .90  .82  .63  .06  .91  .78 

B7 
N  .99  .68  .73  .60  .69  .18  .84  .75  .94  .41  .80  .77  .94  .41  .80  .70  .93  .36  .81  .78  .94  .41  .80  .77 

B  .32  .01  .94  .60  .82  .31  .63  .75  .59  .06  .84  .77  .59  .06  .84  .70  .64  .07  .83  .78  .59  .06  .84  .77 

B8 
N  .04  .00  1.0  .94  .04  .00  1.0  .50  .86  .00  1.0  .93  .89  .52  .81  .62  .88  .00  1.0  .94  .86  .00  1.0  .93 

B  1.0  .96  .27  .94  1.0  .96  .27  .50  1.0  .14  .75  .93  .48  .11  .69  .62  1.0  .12  .77  .94  1.0  .14  .75  .93 

B9 
N  1.0  .90  .69  .79  .53  .00  1.0  .77  .91  .33  .82  .79  .94  .33  .83  .74  .89  .19  .88  .85  .91  .33  .82  .79 

B  .10  .00  1.0  .78  1.0  .47  .50  .77  .67  .09  .82  .79  .67  .06  .85  .74  .81  .11  .81  .85  .67  .09  .82  .79 

AV 
N  .77  .56  .75  .69  .49  .03  .96  .73  .92  .18  .88  .87  .94  .42  .76  .69  .91  .23  .82  .84  .92  .18  .88  .87 

B  .44  .23  .77  .69  .97  .51  .57  .73  .82  .08  .82  .87  .58  .06  .78  .69  .77  .09  .77  .84  .82  .08  .82  .87 

 



 

 Training Dataset Feature Selection 

Table G-1 - Network Traffic Feature Selection 

Packets/Stream Frame Duration 

Packets/Stream Packet Size 

Arguments Number in HTTP Request URL 

 

Table G-2 - System Calls Dataset Feature Selection 

The timestamp of the system call 

The system call name 

Return value of the call 

The time spent on the call 

Frequency of calls over different time intervals (10,30,60,300,600) 

 


