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ABSTRACT 

The correlated exploitation of heterogeneous data sources offering 

very large historical as well as streaming data is important to 

increasing the accuracy of computations when analysing and 

predicting future states of moving entities. This is particularly 

critical in the maritime domain, where online tracking, early 

recognition of events, and real-time forecast of anticipated 

trajectories of vessels are crucial to safety and operations at sea. 

The objective of this paper is to review current research 

challenges and trends tied to the integration, management, 

analysis, and visualization of objects moving at sea as well as a 

few suggestions for a successful development of maritime 

forecasting and decision-support systems.  
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1. INTRODUCTION 
The maritime environment has a huge impact on the global 

economy and our everyday lives. Specifically, Maritime Situation 

Awareness (MSA) and surveillance systems have been attracting 

increasing attention due to their importance for the safety and 

efficiency of maritime operations. Safety and security are constant 

concerns of maritime navigation, especially when considering the 

continuous growth of maritime traffic around the world and 

persistent decrease of crews on-board. For instance, preventing 

ship accidents by monitoring vessel activity represents substantial 

savings in financial cost for shipping companies (e.g., oil spill 

cleanup) and averts irrevocable damages to maritime ecosystems 

(e.g., fishery closure). This has favoured and led to the 

development of automated monitoring systems, such as the 

Automatic Information Systems (AIS) and institutional initiatives 

for maritime data infrastructures [31]. However, the necessary 

correlated exploitation of large data sources offering historical 

and streaming maritime data is still a crucial computational issue. 

For instance, a typical volume of radio and satellite-based 

worldwide maritime data represents an estimated 18 millions 

positions per day [16] (see Figure 1 for an illustration of AIS 

coverage at the global level).  

 

 

 

Figure 1: Worldwide AIS positions acquired by satellites 

(ORBCOMM) 

Beside the indisputable value of information extracted from 

the AIS, the correlated exploitation of additional and 

heterogeneous sources is unavoidable to overcome the lack of 

veracity and incompleteness of the data. Thus, additionally to 

volume, velocity and variety, veracity of maritime data poses 

significant challenges. In particular, AIS messages are vulnerable 

to manipulation and subject to hacking [44], due to the unsecured 

channel of transmission, which weakens the whole system and the 

safety of navigation [35]. AIS data can thus contain deliberate 
falsifications and undergo spoofing [36], such as identity fraud, 

obscured destinations, or GPS manipulations [43]. According to 

[44], approximately 05% of AIS‎ static data transmissions have 

errors of any kind. Vessels involved in illicit activities such as 
illegal fishing, deliberately avoid transmitting their information, 

while others may simply want to keep secret their fishing area to 

others.  

Moreover, despite large available volumes, AIS data at open 

seas or at the border of Exclusive Economic Zones (EEZs) may be 

sparse, or delayed due to either low coverage or to multi-level 

processing issues. The data sparseness, latency, possibly 

manipulated, and the poor quality of movement data in general 

[1], ‎render very challenging the design of information systems to 

support MSA processing AIS data and detecting abnormal 

behaviours. Thus, in addition to the need of real-time processing 

of large volume of data of high velocity, maritime surveillance 

systems should also have the ability to process and correlate many 

data sources, ideally of wide variety to compensate any lack of 

veracity of the data. For instance, Long Range Identification and 

Tracking (LRIT) and Vessel Monitoring Systems (VMS), 

Synthetic aperture radar (SAR) imagery can be used to verify AIS 

emission and detect anomalies [19].  

Indeed, vessel trajectories are quite unique with respect to 

terrestrial trajectories: they are in only a limited way constrained 

by rigid network infrastructures, landmarks (e.g., ports), prefixed 
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waiting / meeting points, and more difficult to observe and 

monitor. The objective of this paper is to review recent 

development and research challenges of methods, operational 

frameworks and systems oriented at large towards moving objects 
at sea. Most of the ideas and proposals developed in this paper are 

generated by the datAcron European funded project, which aims 

to advance the management and integrated exploitation of 

voluminous and maritime data sources, so as to significantly 

advance the capacities of systems to promote safety and 

effectiveness of critical operations for large numbers of moving 

entities in large geographical areas [12].  

Our perspective towards an integrated maritime information 

infractructure is presented in Figure 2. The different components 

identified cover the integration of in-situ streaming data, 

trajectories detection and forecasting, recognition and 

identification of complex events and the development of visual 

analytics interfaces for maritime experts and decision-makers. 

 

Figure 2: Towards an integrated maritime information 

infrastructure [12] 

The rest of the paper is organised as follows. Section 2 
introduces the main issues and challenges behind the integration 

of very large and heterogeneous maritime data and briefly surveys 

recent progress in information fusion, in-situ processing and 

database integration. Section 3 presents recent progress and 

remaining directions to explore in maritime event pattern and 

abnormal behaviour detection, trajectory analysis and 

visualisation. Section 4 explores issues, challenges and trends in 

maritime decision support and forecasting. Finally, Section 5 

draws the conclusions. 

2. MARITIME DATA INTEGRATION AND 

MANAGEMENT 
The search for successful MSAs implies multiple data sources, 

such as surveillance sensors, automated processors, maritime 

institutional databases (e.g., navigation rules, protected areas), 

ocean and weather data, and “soft” data in unstructured formats 
(e.g., social media, intelligence reports). Nonetheless, advances in 

the spatio-temporal data analytics field with application on the 

urban domain (e.g., the very recent work over NYC Urban 

collection [10]) are not easily applicable in the maritime case. 

Efficient integration and management of maritime data is 

instrumental in effectively exploiting the available data, but it 

nevertheless entails some challenges that will be discussed in this 

section. 

2.1 In-situ data processing 

To face challenges due to the volume, velocity and variety of data 

sources, in-situ processing aims to scale, by shortening the time 

needed for detecting patterns of interest within a single- or cross-

streaming process; addressing this challenge has been the focus of 

a great deal of academic research and industry efforts in recent 

years [11]. For instance, a framework for a distributed stream 

processing architecture supporting in-situ processing has been 

presented in [5]. However, such approaches have to become 

communication efficient and have to learn abilities for automatic 

model adaption for handling concept drift. 

In-situ processing for the detection of patterns can be worthly-

investigated towards cross-streaming data integration, and 

integration of streaming data (e.g., regarding a specific vessel) 

with contextual information (e.g., weather data) given that 

detected patterns may further be joined and aggregated, producing 

output streams that provide semantically and contextually rich 

information, further enabling effectiveness in detection and 

predictive analytics.  
Closely related to the in-situ processing paradigm is the 

computation of data synopses. In particular, the computation of 

trajectories synopses for individual vessels is challenging, given 

that state of the art techniques [29] have achieved a compression 

ratio of 95% over AIS vessel traces. The challenge here is to 

address high levels of data compression without compromising 

the accuracy of the prediction / detection components.  

2.2 Streaming data integration 

In close relation to the computation of data synopses, a major 

objective is to develop appropriate components for integrating and 

summarizing maritime streaming data sources producing a 

scalable framework for cross-streaming data integration. 

Summarized streams can be semantically integrated with archival 

data as well as with detected and forecasted vessel trajectories and 

events.  

The database community has proposed many efficient 

algorithms for link discovery applied to RDF data [32] [39]. 

Major shortcomings of these approaches are (a) the restriction to 

RDF properties of specific (mostly numerical) types, (b) the not-

proved ability to integrate in real-time (cross-) streaming with 

archival data. Viewing the annotation of trajectories with 

contextual data as part of link discovery task, a specific challenge 

is the computation of semantic trajectories, taking advantage of 

trajectory-specific works (e.g., [34]). Distributed paradigms for 

streaming data, such as Storm, Spark Streaming, and Flink 

Streaming provide richer sets of primitive for incremental data 

sources, however, they do not provide full support for the 

integration of heterogeneous and historical data sources as well as 

for semantic enrichment and querying facilities [21] [37]. 

Moreover, these systems still lack specific spatio-temporal 

primitives necessary to deal with moving object trajectory data 

management [15]. 

2.3 Streaming data management  
Recent works focus on the volume of spatial data to be processed, 

developing systems specifically oriented to the spatial domain and 

particularly moving objects [29] [38]. Other works have been 

extended to process data “on the fly” to handle data velocity and 

provide fast response time in a “moving object context” [34]. 

Nevertheless, these systems are oriented either towards a 

“posteriori analysis” characterized by long processing times or 
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“on the fly processing” which can provide approximate answers to 

queries. 

Provision of integrated views of data for exploring and 

querying streaming and archival data sources in real-time has also 
been addressed in the context of the Internet of Things (IoT): Live 

Knowledge Graphs, backed with scalable and elastic software 

stack can deal with millions of static records and billions of 

streaming triples per hour in real time [22] [26]. However, support 

of spatio-temporal queries and real-time integration of disparate 

data sources enabling scalability for massive amounts of dynamic 

data still remains a challenge. Concerning the representation and 

querying of spatial information, several RDF stores have begun 

integrating spatial query processing and reasoning [27]. Their 

performance still falls largely behind standard spatially-enabled 

DBMS‟s. Parallel and distributed platforms [46], key-value stores 

[33] and main memory systems, such as TriAD [20] and Trinity 

[47] have been developed for RDF data. However, current RDF 

stores with spatial and/or temporal support are not tailored to offer 

efficient trajectory-oriented data management, due to the volatile, 

multi-dimensional, and inherently sequential nature of such data 

(e.g., Strabon [24]).  

2.4 Maritime data fusion 

The information fusion literature addresses extensively the 

integration and combination of information from cooperative and 

non-cooperative maritime data sources. Information (data) fusion 

originally focused on "low-level'' processing mainly from signals 

or images, from which vessel tracks (and trajectories) are built, 

new sensor measurements (contacts) are associated to tracks, 

objects corresponding to tracks are recognised and identified. The 

corresponding challenges include alignment of data in space and 

time, multi-resolution issues, at the same time, handling 

contextual and semantic differences.  

The more recent trend in information fusion is higher-level 

processing with tasks, such as situation and impact assessments, 

closer to the decision maker, where the semantics has a higher 

importance, and involving human sources (hard and soft fusion) 

[13]. The integration and fusion of maritime data and information 

from various sources can overcome some of the single source 

processing issues (e.g., compensating for the lack of coverage and 

increasing accuracy). However, this also requires a suitable 

management of conflicting information, which may be either due 

to unintentional malfunction of sensors or to deliberate deception 

deemed of interest. The cross-fertilisation of database and fusion 

techniques will contribute to MSA just like the InFuse framework 

[14] or, more recently, the architecture proposed in [18].  

2.5 Maritime data semantics and ontologies 
A few semantic approaches, including vocabularies, taxonomies 

and ontologies have been proposed as tentatives to bridge the gap 

between low level data from maritime sensors and maritime 

domain semantics [25], for example to enhance the integration of 

maritime information (6], to model ships‟ behaviour [41], for 

patterns identification [2], abnormal behaviour detection [42], and 

prediction [7].  Indeed, semantics‟ representation and exploitation 
is preferably addressed at the application level, because existing 

semantic approaches and technologies are not adequate to address 

the requirements of multi-mission and multi-task MSAs. In 

particular, approaches for semantic multi-domain interoperability 

able to integrate heterogeneous information sources (e.g., 

surveillance data, weather and ocean data, registers, bulletins) and 

combine multi-representation formalisation of multiple contexts 

need to be developed.  

Regarding the integrated exploitation of disparate data sources 

in the maritime domain, semantic representation of maritime 

information in multi-scale and at multiple granularity levels 

brings new bussiness opportunities as well as new research 

challenges. For instance, processing maritime data as linked 
stream data requires integration and joint processing of this data 

with quasi-static data from the Linked Data Cloud or other open 

data sources, in soft-real-time, that usually are at different scales 

and granularity levels. As additional examples, data from Earth 

Observation sensors and VMS data are at a lower temporal 

resolution than surveillance data from VTS radar and AIS, which 

have revisit times of few minutes; VTS radar spatial resolution is 

poor compared to GPS position accuracy from AIS, which is 

assumed to be around 10m; freely available meteorologic data 

have spatial resolution of few kilometres, and estimated and 

measured environmental variables are provided with hourly and 

daily means. In addition, using open data sources in the maritime 

domain is a challenge itself because of the different policies of 

European countries regarding the provision of environmental and 

other marine data to the users, that, depending on the data sources, 

can be classified at national level and not freely distributable at 

the necessary resolution.  

2.6 Discussion 
Support to real-time (semantic) integration, storage and spatio-

temporal querying of disparate maritime data sources enabling 

scalability for massive amounts of dynamic data is a challenging 

task. A series of specific challenges are as follows: 

- producing a scalable, fault-tolerant framework for cross-

streaming data integration and processing of maritime data 

from multiple streaming sources, via the real-time 

computation of data synopses, achieving high rates of data 

compression; 

- reconstruction of vessel trajectories and computation of events 

and multi-scale visualizations of data and patterns via 

advanced analytics techniques; 

- incremental integration of maritime data, allowing advanced 

management and query answering of spatio-temporal data; 

- automatic, real-time semantic annotation and linking of 

maritime data towards generating coherent views on 

integrated cross-streaming and archival data; 

- efficient distributed management and querying of integrated 

trajectory and contextual data. 

3. EVENT PATTERN DETECTION AND 

TRAJECTORY ANALYSIS 

3.1 Event detection 
Detection of anomalous vessel movements and analysis of 

suspicious vessel trajectories are crucial assets for improving the 

security of vessel traffic. The range of possible events of interest 

is very large, from detecting vessels in distress and collisions at 

sea to discovering illegal fishing and any other illicit activities 

occurring at sea such as contrabands and smuggling. 

Detecting events and patterns of interest in the maritime 

domain requires, as a first step, correlating vessel trajectories with 

data expressing entities‟ characteristics, geographical information, 
weather data, patterns of mobility in specific areas, regulations, 

intentional data (e.g. planned routes) etc., in a timely manner, 

while addressing the challenges described in the previous section. 
As part of the data integration task, the annotation of trajectories 

with contextual data is expected to provide a more robust solution 

towards the semantic annotation of trajectories [34], the 

interlinking of events with trajectories and with other contextual 
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data that are of particular importance for maritime domain 

awareness and decision-making. These present major challenges 

as they do concern both archival and streaming data, and they do 

require dealing with spatio-temporal features at multiple scales 
and dimensions (e.g., for determining the similarity among 

trajectories, or for relating events to trajectory segments) [4] . 

The specific challenges of event detection and suspicious 

pattern identification in the maritime domain are driven by MSA 

objectives. In particular, the development of early warning 

anomaly detection algorithms supporting maritime operators in 

the identification of the potentially suspicious of dangerous 

activities in the maritime areas under surveillance encompasses 

many challenges, such as: 

- real-time reconstruction of vessel trajectories, supported by 

real-time analysis of multiple and voluminous streams of data 

on possibly conflicting vessel positions;  

- algorithms for the prediction of anticipated vessel trajectories 

at different time scale, which is fundamental to achieve early 

warning maritime monitoring;  

- machine learning methods supporting the identification and 

the formalization of events and patterns that are of interest to 

maritime security operators, able to observe and learn from 

their behaviour;  

- algorithms for complex event (and outlier) recognition and 
prediction in real-time, dealing with heterogeneous, 

fluctuating and noisy voluminous data streams of moving 

entities in large geographic areas, taking advantage of data 

analytics results over archival data.  

3.2 Visual analytics  

MSA may greatly benefit from the development of Visual 

Analytics (VA) methods oriented to the maritime domain. VA 

methods, being more oriented than traditional analysis approaches 

towards addressing human factors and enhancing user perception, 

may help obtaining better analysis results through a more 

effective integration of unformalized operative knowledge and 

expertise, which are of fundamental importance in surveillance 

activities [30]. Specific VA research challenges are as follows: 

- interactive data exploration of both archival (data-at-rest) and 

streaming (data-in-motion) spatio-temporal data, with varying 

levels of resolution and quality;  

- exploration of real-time maritime moving entities integrating 

contextual and historical information at varying levels of 

resolution, supporting operators in early alerting validation; 

- scalable spatio-temporal analytical querying, such as drill-

down / zoom-in and on user-defined spatio-temporal regions 

of interest for surveillance; 

- interactive pattern extraction (and assessment of data quality) 

considering both data-in-motion and data-at-rest, able to 

visually integrate information on sensor performance to 

validate early alerts obtained by the analysis tools; 

- user-guided model building and validation, aiming at visual 

steering of modelling tools enabling interactive selection of 

model types, tuning model parameters, and analysis of model 

residuals in multiple dimensions, including space and time; 

- building situation overview and situation monitoring, capable 

of computing an overall operational picture of mobility at 

desired scales and levels of detail, both in spatial and temporal 

dimensions. Monitoring needs to provide alarms and 

explanations if observations significantly deviate from 

models. 

4. TOWARDS A MARITIME DECISION 

SUPPORT AND FORECASTING SYSTEM 
The variety of data sources is expected to provide an improved 

MSA to the operator taking advantage of the complementarity and 

redundancy provided. For instance, the knowledge captured in 

databases of records of events like piracy events or incidents at 

sea, the lists of vessels of interest such as blacklisted vessels, may 

provide the relevant context to understand and explain some 

events of interests. If the processing and correlation of data and 

information from different sources and databases can also 

overcome for some incompleteness in databases and compensate 

for sparseness, it however may reveal some inconsistencies that 

need to be managed. For instance, ship information from the 

MarineTraffic1 database may conflict with that from Lloyds‟2 : the 

length may differ slightly, or the flag may be different due to a 

lack of update in one source. In this regards, additional knowledge 

on sources‟ quality may help solving the issue. An example of 
estimating and exploiting the AIS reliability is proposed in [8], 

while for enhancing the reliability of AIS, the vessel identity 

verification method has been used by the US Coast Guard 

(USCG)‟s Maritime Information for Safety and Law Enforcement 
(MISLE) and Vessel Documentation System (VDS) [44]. 

The correlation with social media information [3] can 

furthermore help in establishing links with external events for a 

better global picture. However, most of these sources contain 

natural language information (possibly in different languages), 

which needs to be automatically processed, analysed, interpreted 

and finally correlated with other data from physical sensors. The 

fusion of human generated information (“soft”) with sensor data 
(“hard”), thus named “hard and soft fusion”, has been recently 

widely addressed [28] and brings promising avenue to the MSA 

problem [17], in keeping the human at the core of the processing. 

Hence, the design of an efficient information system for Maritime 

Domain Awareness and decision support should consider the 

maritime data quality issues in their entirety and diversity to 

ideally resolve them or at least to not occult them and rather 

inform the operator of some possible output uncertainty. 

Probabilistic databases are certainly a promising avenue for 

the maritime domain [3] [23], which allows to deal for instance 

with empty fields very common in marine data, approximate 

values or uncertain fields. Besides, the consideration of the open-

world assumption is unavoidable if one wants to provide a 

realistic outcome to the user [9]. Indeed, the AIS database clearly 

violates the closed-world assumption since, according to 

Windward [43], 27% of ships do not transmit data at least 10% of 

the time („go dark‟). Consequently, querying for instance rendez-

vous events from an AIS database will return only those events 

reflected by the AIS data. Considering that anything which is not 

in the AIS database remains possible is thus crucial to maritime 

anomaly detection. Moreover, the extension to other uncertainty 

representations such as evidence or possibility theories is certainly 

desirable for maritime anomaly detection and event forecasting in 

order to cope with the different nature of uncertainty 

(probabilistic, subjective, vague, ambiguous, etc) due to the 

variety and poor veracity of the sources. 

Although no clear guidelines exist so far for the selection of 

the appropriate uncertainty framework and aggregation (or fusion) 

rule, it is acknowledged that the choice depends on the nature, 

interpretation or type of uncertainty and information, and on the 

sources quality and independence [45]. Considering second-order 

                                                             
1 http://www.marinetraffic.com 
2 http://www.lloydslistintelligence.com 
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uncertainty seems also unavoidable if one wants to properly 

account for the imperfection of data in the estimation of patterns-

of-life, in developing approximate models of vessels‟ motion or in 
recognition of vessels, but also if one wants to communicate to 
the user faithful information. Interestingly, similar uncertainty 

challenges recently arose within the visualization community. A 

great challenge is to enable reasoning under uncertainty (in all its 

forms) uncertainty throughout the processes of sensemaking, 

decision-making, and action-taking [23]. 

In the aim of developing trustful and useful decision support 

systems, the human must be considered in his/her two main roles 

of (i) source of information and (ii) decision maker. The 

underlying challenges are then, on the one hand, to properly 

capture the human generated information including the associated 

uncertainty assessment so it can be meaningfully aggregated with 

other information from physical sensors or databases, and on the 

other hand, to ensure that the system outputs meaningful, 

interpretable and unambiguous results on which the user can take 

an informed decision. The design of information systems should 

provide a flexible architecture to ensure both the utility of the 

output provided and adaptability to dynamic and unforeseen 

events, and to changing user‟s needs. For instance, an explicit 
consideration of context provides an understanding of normalcy 

as a reference for anomaly detection (i.e., pattern-of-life) [40]. It 
helps detecting, and distinguishing between, spoofed information 

and deception, reducing the set of possible hypotheses (e.g., 

classes) for threat classification; it also provides information 

about sources‟ quality such as reliability or truthfulness. 
Finally, the development of decision support systems for 

maritime event detection and forecasting should provide (1) the 

necessary simplicity to the processes by a judicious filtering of 

information suited to the users‟ needs, (2) the suitable flexibility 
and adaptability for the algorithms implementation by separating 

between the events of interest and their surrounding context, (3) 

the adequate uncertainty representation and processing 

considering the sources‟ quality and uncertainty‟s origin and (4) 
the expected human-system synergy for a better understanding of 

the system‟ outputs with associated explanations and simpler 
queries tuned to specific needs. 

5. CONCLUSION 
While most of current research in spatial databases and 

geographical information systems addresses issues often related to 

phenomena and practices related to the land domain, we believe 

that the maritime environment also provides many application 

opportunities and research challenges that still deserve to be 

addressed. This paper surveys a series of current computational 

issues still opened for a successful integration, manipulation and 

analysis of maritime information, with a specific focus on 

trajectories of moving objects at sea. We explore and suggest 

several research development directions that might contribute to a 

better use of voluminous and disparate sets of maritime data 

available so far. Due to the diversity and complexity of the 

problem, a successful solution should involve an integration of 

complementary contributions from different scientific domains, 

let us mention amongst many research areas ontology and 

conceptual data models at the data integration level, data mining 

and visual analytics for the ability to discover patterns within 

large volume of data, machine learning for streaming data, 

information fusion for the ability to combine information from 

different sources and deal with uncertainty, human factor and 

decision-aided systems. This is why we believe that not only 

many opportunities are still open for the extended database 

community, but also avenues for further experimentations and 

interactions with the maritime world at large. 
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