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Abstract

This paper presents a response model for the aftermath of a Mass-Casualty
Incident (MCI) that can be used to provide operational guidance for regional
emergency planning as well as to evaluate strategic preparedness plans. A
mixed integer programming (MIP) formulation is proposed for the combined
ambulance dispatching, patient-to-hospital assignment, and treatment order-
ing problem. The goal is to allocate effectively the limited resources during
the response so as to improve patient outcomes, while the objectives are to
minimize the overall response time and the total flow time required to treat all
patients, in a hierarchical fashion. The model is solved via exact and MIP-
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based heuristic solution methods. The applicability of the model and the
performance of the new methods are challenged on realistic MCI scenarios.
We consider the hypothetical case of a terror attack at the New York Stock
Exchange in Lower Manhattan with up to 150 trauma patients. We quantify
the impact of capacity-based bottlenecks for both ambulances and available
hospital beds. We also explore the trade-off between accessing remote hospi-
tals for demand smoothing versus reduced ambulance transportation times.

Keywords: Emergency Medical Services; Mass-Casualty Incident; Triage;
Scheduling; Ambulance Dispatching; Local Search; Resource Allocation

1. Introduction

Any medical incident in which casualties actually or potentially over-
whelm local emergency response and hospital treatment capability may be
termed a mass-casualty incident (MCI). These are typically major events,
such as transportation accidents and terrorist bombings, with many casual-
ties, though many jurisdictions define an MCI using a relatively small numer-
ical threshold (e.g., 5 casualties from one incident in New York City while in
South Korea 6 such casualties)(Arnold et al., 2004; Park et al., 2016). MCIs
may overwhelm local treatment capability either due to sheer numbers of in-
jured patients all needing treatment at the same time, or a potentially smaller
number of patients who require advanced care (e.g., neurosurgical care) that
is in relatively short supply locally. The International Institute for Counter-
Terrorism has recorded over 33,000 terrorist incidents in the world since 1975,
while lately the potential for terrorist activity is on the rise. Furthermore, the
increasing frequency and severity of megastorms, such as Hurricane Sandy,
has made natural-origin MCIs more likely. This paper is concerned with
the development of a response model for the aftermath of an MCI that can
be used to optimize resource utilization, to provide operational guidance for
regional emergency planning, and to evaluate strategic preparedness plans.

As described by Mills et al. (2014) an MCI creates a sudden spike in
demand for the emergency response resources within an area, and as a re-
sult, even patients who are in critical condition may not have timely access
to these resources that are essential for their survival. During an MCI, it
sometimes happens that only a limited number of ambulances are available
to transport patients, requiring ambulances to make multiple trips from the
MCI site(s) to the hospitals or forcing reliance on self-transportation (der

2



Heide, 2006). Dispatching software systems typically retrieve the locations
and contact information for the hospitals nearest to the event, but this pri-
oritizes the travel time over other factors required for optimal response, such
as availability of existing medical resources at these facilities. Emergency
medical service (EMS) systems are thus challenged during MCI response to
allocate effectively a set of limited resources to the patients awaiting treat-
ment and transportation to hospitals.

From the operational perspective, we need to determine which of the
available hospitals should be included in the response according to their cat-
egory, trauma level, capacity and proximity to the MCI site(s), how many
ambulances should be utilized, where ambulances should transport each sub-
sequent patient, and how many patients should be transported to each hospi-
tal. The arrival times of patients at the hospitals, the hospitals’ throughput
capability, and the patient treatment times will dictate the treatment or-
der (scheduling) of the transported patients at each hospital and the time
required to treat all patients. During the ambulance dispatching and patient-
to-hospital assignment processes, we also need to follow a triage protocol as
well as to match the specific treatment needs of the patients. On the other
hand, given the potential location and size of an MCI we need to measure
the simulated response efficiency and to identify the bottlenecks.

Ambulance dispatching decisions affect both the patient waiting times
at the site and at the hospitals as well as the availability of ambulances.
In practice, one commonly employed dispatch strategy is called “scoop-and-
run”, whereby patients are sent as quickly as possible to the closest hospital
in order to minimize the dispatching times (this is standard practice in Israel,
for example). However, this strategy ignores the specific needs of the patient,
the triage protocol, and the current available capacity at the hospitals. For
example, sending a large number of patients to the closest hospital may cause
congestion resulting in long waiting times and unnecessary re-dispatching of
patients in the worst case. As described by Carter et al. (1972) dispatching
the closest idle ambulance to an emergency call is not always the optimal
policy, if the objective is to minimize the response times.

Regardless the rich literature on emergency response problems, there re-
main no generally accepted, evidence-based guidelines to advise dispatchers
on fundamental questions, such as which hospitals to include in a specific MCI
response and how many casualties to transport to each. Ambulance dispatch-
ing has been performed mostly on the basis of the reliability and validity of
EMS experts’ cognitive abilities. It is possible, however, that dispatching
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strategies using situational awareness information combined with knowledge
of regional hospital capabilities, including destination facility-specific trans-
portation times and treatment capability, could yield superior outcomes. For
example, it is reasonable to expect that by balancing the load on the hospitals
the level of care will be improved and the delays experienced by the patients
will be reduced (Repoussis et al., 2015). Although divergent modeling ap-
proaches appear in the literature, it is likely that computerized models will
be increasingly important in providing public accountability for the resource
allocation decisions that have to be made in emergency situations.

The contribution of this paper is three-fold. First, we address the com-
bined ambulance dispatching, patient-to-hospital assignment, and treatment
ordering problem. In particular, we propose a rigorous mathematical formu-
lation that captures all critical compatibility issues and prioritization aspects
according to the Simple Triage and Rapid Treatment (START) triage pro-
tocol. Furthermore, we consider the makespan (i.e. the latest completion
time) and the total flow time as hierarchical objectives. Second, we present
a hybrid MIP-based construction heuristic and local search improvement al-
gorithms that allow us to solve and find high quality solutions for otherwise
computationally intractable large scale problem instances. Third, we study
the effectiveness and efficiency of the new algorithms via a comprehensive
study on randomly generated small- and medium-scale instances. We also
try to identify how the availability of resources as well as the spatial and
temporal characteristics affect the response times and the allocation of re-
sources. Additionally, we demonstrate the applicability of the new model
on an example MCI with realistic data. We consider the hypothetical case
of a bombing at the New York Stock Exchange in Lower Manhattan. For
a given number of ambulances we examine 3 scenarios, regarding the size
of the MCI, with up to 150 patients. We lastly examine trade-offs between
increasing the available capacity (e.g., adding hospital beds) of the hospitals
nearby the site and including relatively distant hospitals instead.

The remainder of the paper is structured as follows. Section 2 briefly dis-
cusses the related work regarding models; 3 presents the mathematical model
and discusses the combined ambulance dispatching, patient-to-hospital as-
signment, and treatment ordering problem; and Section 4 introduces the
MIP-based construction heuristic and local search metaheuristic algorithms.
Subsequently, Section 5 reports the computational experiments and results
based on realistic data, and finally the paper concludes in Section 6.
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2. Related Work

In practice, ambulance dispatching decisions are made in a dynamic en-
vironment; however, it is difficult to design and apply real-time dispatching
tools because information is dynamic and often incomplete. Given this state
of affairs, various strategic decisions can be evaluated a priori, such as, given
what is known about regional surge capacity, which hospital should be in-
cluded in regional disaster preparedness planning. Computer- or exercise-
based modeling is therefore becoming increasingly important in providing a
test-bed for the resource allocation decisions that have to be made in emer-
gency situations, without the overt risk of harm to current patients.

Emergency vehicle deployment problems have been widely studied in the
literature and various models and solution frameworks have been developed.
A large part of this literature focuses on reducing dispatching response times
in standard emergency call processes, with an emphasis on how to allocate
emergency service stations and units. Toregas et al. (1971) proposed a loca-
tion set covering model that minimized the number of ambulance required
to cover all demand points with a preset coverage standard. The Hypercube
Queueing model introduced by Larson (1974) was the first model to embed
queueing theory in location problems. A survey on deterministic, stochastic
and/or dynamic ambulance location and allocation models is provided by
Brotcorne et al. (2003). More recent works in dynamic and real-time models
for emergency vehicle dispatching and coverage relocation are those of Gen-
dreau et al. (2006) and Haghani & Yang (2007). Interested readers may also
refer to Boldberg (2004) for an overview on dispatching emergency service
vehicles and to Bektas et al. (2014) for a detailed survey regarding models
and algorithms for dynamic and stochastic vehicle dispatching problems.

Similarly, various models and decision support systems have been pro-
posed for resource management in disaster response. The vast majority fo-
cuses on the location and allocation of emergency response units (Fiedrich
et al., 2000) as well as on the supply and distribution of relief supplies (Bar-
barosoglu & Arda, 2004; Mete & Zabinsky, 2010). Few papers consider the
transportation of casualties and flows of patients between locations (Wil-
son et al., 2013; Salman & Gul, 2014). Notably, many models assume that
the same vehicles are used to distribute emergency supplies and simultane-
ously to transport casualties to treatment facilities (Yi & Kumar, 2007; Yi
& Ozdamar, 2007; Ozdamar, 2011). In these works the main effort is to
determine the flows of commodities and casualties between supply and de-
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mand locations as well as the vehicle routes. On the other hand, Salman &
Gul (2014) proposed a multi-period model to optimize capacity allocation
and casualty transportation with the objective to minimize the traveling and
waiting times as well as the cost of establishing new facilities. Lastly, an
agent-based framework is presented by Bae et al. (2015).

Dynamic and robust multi-objective, multi-commodity, and multi-modal
models for dispatching and routing vehicles in response to earthquakes are
presented by Najafi et al. (2013, 2014). Their goal was to minimize hier-
archically the transit and waiting times for transporting relief commodities
and injured people. Barbarosoglu et al. (2002) presented a helicopter routing
problem for collecting casualties. Chiu & Zheng (2007) addressed the evac-
uation problem in which multiple emergency responses and evacuation flow
groups with different destinations and varying priorities coexist in the same
traffic network. Lastly, Gong & Batta (2007) and Jotshi et al. (2009) consid-
ered the problem of dispatching ambulances to clusters of casualties. Data
fusion was used to provide estimates for the problem entities and for clus-
tering the casualty locations. The objective was to minimize the makespan,
while the effect of allocation and re-allocation decisions was also considered.

Most ambulance dispatching papers described above address the problem
of where and when ambulances should be located with the objective of mini-
mizing response times. Although these response times are important, the ul-
timate clinical goal in MCI management is to have all patients stabilized and
treated as early as possible in order to reduce morbidity and mortality. One
main difference of our modeling framework compared to existing works is that
we take into account both the dispatching response times and the treatment
times–that is, hospital-based patient throughput times and their associated
waiting times at the hospitals. Another difference is that we particularly
keep track of each individual patient, instead of simplistically looking at the
overall flows of patients between locations. Furthermore, in our formulation
we assume that one patient is assigned to an ambulance at a time, rather
than allowing bulk pickups at the same route. Since single-patient transport
is the universal standard for such services, and bulk transport would require
a change to what are now referred to as “crisis standards of care” (Hanfling
et al., 2012), we felt it essential to base our model on actual daily practice
patterns at least to establish a baseline for response parameterization.

Recently, Wilson et al. (2013) modeled the distribution of casualties to
hospitals as a single-period multi-objective flexible job shop scheduling prob-
lem. Each patient is considered as a job and each responder unit as a ma-
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chine. For each job there is a set of tasks, such as transport, pre-transport
treatment, pre-rescue treatment, transportation to hospital and treatment.
Each patient is assigned to a hospital and each responder is assigned a se-
quence of operations. Sequence dependent setup times occur when a respon-
der unit moves between locations. The hospital’s available capacity varies
dynamically, and depends on either scheduled or self-transported patient ar-
rivals. The authors adopted a multi-objective scheme for the evaluation of
solutions, which considers the expected number of fatalities, the weighted
total flow time, the appropriateness of hospital allocation, the responder idle
times and the makespan. Overall, the problem is solved via a construction
heuristic algorithm and a variable neighborhood descent metaheuristic algo-
rithm. To our knowledge, this is the only work that provides a well-defined
task scheduling framework at the level of individual patients; however, our
approach provides a more comprehensive treatment of the entire response
effort, including the scheduling of patients at the level of hospital beds.

Building on the above static model, Wilson et al. (2016) describe a real-
time solution framework with continuous communication between the opti-
mization model and problem environment. This allows key problem parame-
ters (e.g. number of casualties, time required to complete key response tasks)
to be updated dynamically. This new information is used to improve future
predictions as well as to correct past errors. Simulation-based computational
experiments show that the real-time framework improves the static approach
(in terms of expected fatalities and suffering of casualties) and mitigates
against poor communication speed. Earlier, a web-based simulation model
for patient-to-hospital allocation from MCI locations has been proposed by
Amram et al. (2012). The effort is to provide real-time information to the
responders at the scene regarding driving times, trauma service level and the
location of each hospital. Note that the above framework requires real-time
capacity data, which is rarely available (i.e., few hospital bed management
systems automatically feeding local or regional response databases).

Besides the actual allocation of resources, a number of papers, especially
in the field of emergency medicine, are concerned with field triage (i.e., as-
sessment of the health of each casualty and estimation of the extend of their
injuries), patient-to-hospital allocation, and the on-site prioritization of pa-
tients for transportation to hospitals (Hupert et al., 2007). Recently, Mills
et al. (2014) presented a fluid model of patient triage in MCI that consid-
ers resource limitations and the changes in survival probabilities over time.
The proposed policies outperformed the START protocol in all simulated
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scenarios. Note that the START protocol is widely adopted. First, given the
variably injured (critical and non-critical) patients at each site, every patient
is assigned a triage level. The patients are classified into four classes, i.e, mi-
nor, delayed, immediate and expectant. START gives the highest priority to
patients in the intermediate class and the second highest to the delayed class.
Once the MCI site is cleared from patients with time-dependent outcomes,
patients from the minor and expectant classes are considered.

Dean & Nair (2014), Sacco et al. (2005), and Sung & Lee (2016) model
the patient prioritization problem as an ambulance scheduling problem, while
different rule-based triage schemes are evaluated to provide better response
to the maximum number of patients. In particular, the objective function
used by Sung & Lee (2016) aims to maximize the total expected number of
survivors. The decision variable is the order of transportation and destination
hospital for each patient. A set-partitioning formulation is proposed and
solved via a column generation approach. Similar to the work of Mills et al.
(2014) one finding is that the delayed-first rule outperforms the immediate-
first rule in most cases other than low-workload, optimistic scenario cases.

This may be why authors like Zoraster et al. (2007), who reviewed the
START protocol followed after a train crash, have concluded that large EMS
systems must plan a priori the distribution of critically injured patients ac-
cruing at various locations to optimize the care provided. A corollary of this
is that if trauma resources are at risk of being overwhelmed, there should
be pre-established plans to address the risk of patient maldistribution. To
date most MCI research focuses on the management of surge capacity and
the ability to quickly add resources in the time of emergency (Amram et al.,
2012). Notably, little attention is given on how to prevent or delay surges
by better directing the flows of patients (e.g. avoid overtriage) and how to
determine the minimum treatment capability needed to successfully treat the
casualties of an MCI. Our paper seeks to incorporate these complicated is-
sues and gaps into the foundations of a decision-support tool, and therefore
presents an analytical approach and quantitative framework that can be used
to generate and evaluate realistic emergency preparedness plans.

3. Mathematical Model

3.1. Problem Description & Operational Realties

Similar to the events sequence discussed by Fitzsimmons (1973) for stan-
dard EMS calls, Figure 1 depicts the sequence of events associated with an
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Figure 1: Sequence of events during an MCI

MCI. The first phase is related to the dispatching of ambulances and the
transportation of patients to hospital facilities. Besides the travel time com-
ponents, it is also important to consider delays related to ambulance prepa-
ration time for the subsequent patient (either at the hospital after drop-off
or in the field). The second phase is related to the processing and treatment
times within the hospitals.

At the MCI site(s) patients await initial assessment (which may involve
acute medical treatment), triage, and transportation to hospital facilities.
Although it depends on the scale of the event, it is reasonable to consider
that the number of ambulances (or responders) available is limited compared
to the demand. Therefore, the ambulances are required to make multiple
trips from the sites to the hospitals. To the other end, the hospitals have
different characteristics with regard to their trauma “level” (best thought of
as capabilities), their emergency department capacity (currently referred to
as part of their “immediate bed availability”), the treatment times that can
be anticipated for traumatically injured or otherwise affected patient (which
can be represented as patient throughput) and the distances from the MCI
site(s) to participating hospitals. In our formulation, the treatment capability
of each hospital is measured based on the number of staffed and available
emergency department (ED) trauma bays with associated operating rooms
(OR) that are recycled according to critical or non-critical processing times.
The treatment times are different for every patient and for every hospital,
and refer to standard evidence-based patient management times.

Regarding decision making processes and specifically triage, a fixed-priority
ordering scheme is adopted among different classes of patients, based on the
standard START protocol mentioned earlier. Regarding treatment order,
the patients are processed sequentially, and all hospital resources (EDs and
ORs) are recycled after each use. Without loss of generality, it is reason-
able to consider that the treatment sequence is dictated by the within-class
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patient arrival times in a first-come first-served (FIFO) basis. Note that in
the special case of a single MCI site, the FIFO treatment order protocol is
consistent with the initial triage assigned at the site.

Other elements that restrict the patient-to-hospital assignments are the
hospital’s capabilities, its trauma level, and its total bed capacity. Particu-
larly, a patient may suffer from a injury type that requires treatment at a
hospital capable of providing the specialized care (e.g., burn care). Another
restriction is that high priority immediate patients can only be transported
to trauma level I and II hospitals. Lastly, the number of beds sets the upper
limit on the number of the patients that can be assigned to a hospital.

All data regarding the hospital’s overall capacity and expected treatment
capability are known in advance; this data can be collected from a variety
of sources. Although different types of ambulances may be involved (e.g.
Basic and Advance Life Support units), we consider only one type and we
assume that each ambulance carries one patient. The number of available
ambulances throughout the response effort is known; however, a maximum
limit on the number of trips is imposed for each ambulance. The traveling
times are known, and they are proportional to the geographical distances
between hospitals and sites. The latter is a reasonable assumption that it is
often made in practice; however, it is also often observed that during disasters
ambulance travel times in urban environments with severe congestion may
have a non-linear relationship with the distances. Readers may refer to Budge
et al. (2010) for an empirical analysis on ambulance travel times.

In keeping with standard views about the urgency of emergency care (i.e.,
the commonsensical “golden hour” concept), long delays with respect to the
completion of treatment for a given patient leads to a higher mortality rate
in our framework. For this reason, we consider the minimization of the latest
completion time (i.e., makespan) and the total flow time for all patients as
hierarchical objectives. The completion time includes the waiting times for
transportation at the site, the dispatching response times (traveling time plus
loading and unloading of the patient at the ambulance), waiting times for
treatment at the hospital, and the treatment times at the hospital.

3.2. Model Formulation

Let an undirected graph G = (V,A) represent the transportation network,
which spans all geographical areas of interest. The set of nodes V refers to the
disaster sites, and the hospital facilities. In particular, let H = {1, . . . , nh}
denote the subset of hospitals, and S = {1, . . . , ns} the subset of MCI sites
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(such that V = S ∪H), where nh is the total number of hospitals and ns is
the total number of sites. Let A = {(s, h) ∈ S ×H : s ̸= h} refer to the set
of arcs. Whenever an ambulance traverses an arc (s, h) ∈ A a travel time
dsh ∈ R+ incurs. Without loss of generality, it is assumed that the travel
time matrix [dsh] is symmetric and satisfies the triangle inequality.

Considering that the patients can be seen as a set of jobs (see Wilson
et al. (2013) for a similar approach), the proposed model formulation follows
the representation of a Flexible Job Shop Scheduling Problem (FJSP)(Rocha
et al., 2008) with unrelated parallel machines and sequence- and machine-
dependent setup times. The FJSP consists of programming several jobs to
be processed by several parallel identical and/or unrelated machines. Each
job should be scheduled to a specific machine and the order in which each
machine will process its jobs should be decided. The processing times of each
job depends on the machine and there is also a sequence dependent setup
time whenever a machine finishes processing a job.

Let P = {1, . . . , np} denote the set of patients (jobs) and R = {1, . . . , nr}
denote the set of ambulances, where np is the total number of patients and
nr is the total number of ambulances. Each job Pu, 1 ≤ u ≤ np, consists of a
sequence of 2 ordered operations/tasks, i.e., ou,1 (transportation to a hospital)
and ou,2 (treatment at the hospital). Assuming that the ambulances and
hospitals represent the set of machines, each operation ou,1 can be processed
by any ambulance r ∈ R, 1 ≤ r ≤ nr, and each operation ou,2 can be
processed by any hospital h ∈ H, 1 ≤ h ≤ nh, unless otherwise stated.

Regarding the first set of operations, the processing time lu,1 is known for
every patient u and all ambulances are identical. The processing time equals
to the loading plus the unloading times of a patient at the ambulance. Also,
the traveling times are incorporated as sequence-dependent setup times, since
they vary according from which site the patient in question needs to be picked
up, and to which hospital has been assigned. A binary indicator Isu is used
to indicate the site s where the patient u is located. In contrast, the patient
treatment times depend on the hospital (which here is an unrelated parallel
machine). In particular, each patient has different treatment (processing)
times lhu,2 at each hospital h. A binary indicator Ihu is used to indicate whether
a hospital h ∈ H can provide the type of care the patient u needs.

Let Ts denote the disaster time at each site s ∈ S. All ambulances are
assumed to be available at the time of disaster; however, we consider that
there is a response delay TD to account for the time needed by the first
responders to arrive and to perform the field triage. An ambulance can
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process at most one operation at a time and preemption is not allowed. Let
Jr = {1, . . . , nr

j} denote the jobs/trips order. Each ambulance r can perform
a limited number of return trips nr

j . The processing characteristics of the
hospitals have a similar setup, in that we let Bh = {1, . . . , nh

b} denote the
treatment order of hospital h, where nh

b is the total number of beds (capacity).
Triage information kp is assumed to be available for each patient p to indi-

cate the triage level. Overall, two priority levels are considered as described
above. The higher the triage level of a patient is, the greater is his/her
priority compared to other patients at the same MCI site.

Based on the above representation, the solution of the examined problem
must include ordered lists of tasks to be allocated to each ambulance and
hospital. Following the formulations that appear in the earlier work of Rocha
et al. (2008) for the FJSP, we define two sets of binary variables with discrete
positions in the processing sequence for each ordered list of tasks as follows

x
(j)
rp =

{
1 if patient p assigned to ambulance r on its j th trip
0 otherwise

(1)

z
(b)
ph =

{
1 if patient p is assigned at the bth bed at hospital h
0 otherwise

(2)

Due to the the sequence-dependent setup times for each ambulance (i.e.,
return trips from the hospitals to the site), we define another set of “flow like”
binary variables to track the sequence of hospitals visited by each ambulance:

y
(j)
rh =

{
1 if ambulance r on its j th trip arrive at hospital h
0 otherwise

(3)

In addition to the above binary variables, a set of continuous and non-
negative decision and auxiliary variables are defined to capture the time
stamps of the model during the transportation and treatment of patients:

- arj: Arrival time of ambulance r at the site for performing the jth job

- at′rj: Transportation time of ambulance r for job j (load, unload and
travel time to a hospital)

- at′′rj: Deadhead travel time of ambulance r for job j (return trip to the
site from a hospital)
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- sthb: Treatment start time of the patient assigned to bed b at hospital
h

- wp: Waiting time for transportation at the site for patient p

- awb
ph: Mapping of waiting time wp of patient p ∈ P assigned at hospital

h ∈ H at bed b ∈ Bh

The objective is to minimize the makespan, i.e., the maximum of the
completion time of treatment of all patients, and it is denoted as Cmax.

minimize
x,y,z,a,at,w,aw,st

Cmax (4)

This is subject to the following sets of constraints. The first set of con-
straints is related to the ambulance dispatching and the transportation of
patients from the sites to the hospitals.∑

r∈R

∑
j∈Jr

xjrp = 1 ∀p ∈ P (5)

∑
p∈P

xjrp ≤ 1 ∀r ∈ R, j ∈ Jr (6)

∑
h∈H

yjrh ≤ 1 ∀r ∈ R, j ∈ Jr (7)

∑
h∈H

yjrh =
∑
p∈P

xjrp ∀r ∈ R, j ∈ Jr (8)

∑
p∈P

x(j−1)
rp ≥

∑
p∈P

xjrp ∀r ∈ R, j ∈ Jr \ {1} (9)

Constraint (5) ensures that each patient has been assigned with exactly
one ambulance. Constraints (6) and (7) dictate that the ambulance carries
at most one patient and visits at most one hospital at each trip. This set of
constraints can be easily generalized to capture cases where an ambulance
can carry more than one and at most a maximum number of patients for
each job, limited by its capacity. Constraint (8) links the assignment with
the patient flow binary variables. Constraint (9) dictates that there must be
a patient at position j − 1 if there is another patient assigned at position j
on the same ambulance for j ≥ 2.
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The second set of constraints control the time stamps.

ar(1) ≥

(∑
s∈S

IspTs + TD

)
x(1)rp ∀r ∈ R, p ∈ P (10)

arj ≥ ar(j−1) + at′r(j−1) + at′′r(j−1) ∀r ∈ R, j ∈ Jr \ {1} (11)

at′rj ≥ lp,1x
j
rp +

∑
h∈H

(∑
s∈S

Ispdsh

)
yjrh −M(1− xjrp) ∀r ∈ R, j ∈ Jr, p ∈ P

(12)

at′′rj ≥
∑
h∈H

(∑
s∈S

Ispdsh

)
yjrh−G

(
1− x(j+1)

rp

)
∀r ∈ R, j ∈ Jr \

{
nr
j

}
, p ∈ P

(13)
Constraint (10) initializes the arrival time for every patient at the first

position on each ambulance and sets the time greater or equal to the disaster
time plus the initial response and field triage delay. Constraint 11 determines
the arrival times of ambulances at the site(s) for the jobs. These arrival times
can be seen as the processing start times, which are equal to the processing
start times of the jobs at the previous positions adding the actual processing
time and the setup time between two positions. The former is captured by
Constraint (12) and refers to the loading, unloading and travel time from
site to hospital. The latter is expressed by Constraint (13) and refers to
the travel time from the hospital of the previous job to the site of the next
assigned patient. The big M and G scalars can be calculated as follows:

M = max
s,h∈A

{dsh}+max
p∈P
{lp,1} (14)

G = max
s,h∈A

{dsh} (15)

The third set of constraints is related to the treatment of patients.∑
h∈H

∑
b∈Bh

zbph = 1 ∀p ∈ P (16)

∑
p∈P

zbph ≤ 1 ∀h ∈ H, b ∈ Bh (17)
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∑
p∈P

z
(b−1)
ph ≥

∑
p∈P

zbph ∀h ∈ H, b ∈ Bh \ {1} (18)

∑
b∈Bh

zbph ≤ Ihp ∀h ∈ H, p ∈ P (19)

Constraint (16) denotes that each patient is assigned to exactly one hos-
pital. Constraint (17) dictates that at most one patient can occupy a hospital
bed. Constraint (18) ensures that if a patient is assigned at position b (bed)
there is another patient waiting treatment at the previous position b-1 at the
same hospital (starting from 2nd position). Constraint (19) maintains the
compatibility of the patient-to-hospital assignments according to the patient
priorities, injury types and hospital’s trauma level.

The fourth set links hospital treatment and transportation times.

sth(b+1) ≥ sthb +
∑
p∈P

lhp,2z
b
ph ∀h ∈ H, b ∈ Bh \

{
nh
b

}
(20)

wp ≥ arj −
∑
s∈S

IspTs −Q
(
1− xjrp

)
∀r ∈ R, j ∈ Jr, p ∈ P (21)

awb
ph ≥ wp −K

(
1− zbph

)
∀p ∈ P, h ∈ H, b ∈ Bh (22)

sthb ≥
∑
p∈P

awb
ph +

∑
p∈P

(∑
s∈S

IspTs + lp,1 +
∑
s∈S

Ispdsh

)
zbph ∀h ∈ H, b ∈ Bh

(23)

sth(|Bh|) +
∑
p∈P

lhp,2z
(|Bh|)
ph ≤ Cmax ∀h ∈ H (24)

wp′ ≥ wp ∀p, p′ ∈ P : p ̸= p′, ∃s ∈ S|Isp = Isp′ = 1, kp > kp′ (25)

sthb ≥ 0, wp ≥ TD, aw
b
ph ≥ TD ∀p ∈ P, h ∈ H, b ∈ Bh (26)

arj ≥ 0, at′rj ≥ 0, at′′rj ≥ 0 ∀r ∈ R, j ∈ Jr (27)

xjrp, y
j
rh, z

b
ph ∈ {0, 1} ∀r ∈ R, j ∈ Jr, p ∈ P, h ∈ H, b ∈ Bh (28)

Constraints (20) updates the treatment start times at each position ac-
cording to the treatment time of the patient assigned to the bed of at the
previous position. Constraint (21) is used to determine the waiting time for
transportation at the site for each patient. Note that the patient’s waiting
time at the site should always be greater than or equal to the initial response
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delay TD (see Constraint 26). Similarly, Constraint (22) carries on the infor-
mation regarding the patient’s waiting times at the level of hospital beds via
the set of auxiliary variables aw. Q and K scalars can be calculated as:

Q = (|P | − 1) (M +G) (29)

K = Q+
∑
s∈S

IspTs + TD (30)

Constraint (23) is used to calculate the arrival times of patients at the
hospitals and to determine the earliest start times for treatment. Constraint
(24) dictates that the completion time of treatment at the last position |Bh|
of any hospital h ∈ H should be less than or equal to the Cmax. Note that
the start times of empty hospital beds (if any) are equal to those of the last
treated patient. Constraint (25) ensures that the triage protocol is respected
among the patients at each site. Lastly, Constraints (26) to (28) impose
non-negative bounds and binary restrictions, respectively.

The formulation (4) to (30) best fits our combined ambulance dispatching
and patient treatment ordering problem. This is an NP-hard combinatorial
optimization model that requires substantial computational effort for deter-
mining optimal and/or near optimal feasible solutions even for small prob-
lems. Although this is a strategic and not an operational problem, heuristic
and metaheuristic algorithms can be applied to obtain high quality solutions
in reasonable computational times, assuming practical sizes, while implicit
enumeration schemes can be used mainly to produce lower bounds. It is
practically important that even non-operational (i.e., planning) emergency
response models work towards the ability to produce relatively rapid results,
since they are increasingly used in real-world planning settings such as table-
top exercises that require relative swift feedback cycles.

Finally, it is worth highlighting that the proposed model discretizes the
positions in the processing sequences. This adds more information to the x,
y and z variables. This is not necessary for capturing the operational realties
of the problem. However, as described by Rocha et al. (2008), although
the number of variables increases, this type of discretization is expected to
produce tighter lower bounds during resolution, and to be faster on large
instances, compared to other mathematical formulations.

3.3. Symmetry Breaking Constraints

It should be noted that Formulation (4) to (30) exhibits some degree
of isomorphism. In particular, although the x-variables correctly indicate
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the consistent assignment of ambulances to patients at optimality, they do
so in an arbitrary fashion. Let for notational convenience xpr denote the
assignment of a patient p to an ambulance r without taking into account
the processing position. For any optimal solution Xα = [xp1 xp2 · · · xpr],
there exists another equivalent solution Xβ =

[
xpr xp(r−1) · · · xp1

]
; that is,

a solution where the labels of the –otherwise similar– ambulances have been
reversed. In fact there exist a total of r! such equivalent solutions accounting
for all possible permutations of the r columns (ambulances).

Such isomorphism is undesirable, as it retards the rate of node-pruning
during branch-and-bound. It can be eliminated with symmetry-breaking
constraints that impose a lexicographic ordering among the ambulances. We
declare one of the possible permutations as nominal and we prefer this permu-
tation over all its isomorphic ones. In particular, we prefer the permutation
that adheres to the following simple rule: for all r ∈ R, ambulance r is the
one that serves the patient with the smallest index out of those that are not
served by any ambulance r′, such that r′ < r. For example, under the effect
of this rule, patient p = 1 is always served by ambulance r = 1; patient
p = 2 is served either by ambulance r = 1, if it is to be served by the same
ambulance as patient p = 1, or by ambulance r = 2, if it is to be served by
a separate ambulance; for patient p = 3, three cases are possible: (i) it is
served by ambulance r = 1, along with patient p = 1, (ii) it is served by am-
bulance r = 2, along with patient p = 2 and separately from patient p = 1,
or separately from both patients p = 1 and p = 2 that are served together
by ambulance r = 1, (iii) it is served by ambulance r = 3, otherwise.

The following set of constraints allows only solutions that correspond to
nominal ambulance permutations. Note also that they dominate –and thus
should replace– the set of Constraints (5) in Formulation (4) to (30).

p∑
r=1

nr
j∑

j=1

xjrp = 1 ∀ p ∈ P

nr
j∑

j=1

xjrp ≤
p−1∑

p′=r−1

nr
j∑

j=1

xj(k−1)p′ ∀ r ∈ R, r ≥ 3, ∀ p ∈ P, p ≥ r.

(31)

3.4. Valid Inequalities, Lower Bounds and Special Cases

Additional constraints can be also introduced in the model. Their effect
with respect to the LP relaxation is not always strong. Furthermore, their
addition may further delay the overall execution, given that the overall basis
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is also increased. However, they may also improve convergence in some cases
by helping the relaxed problem to find solutions that are close to optimal.

Specifically, in addition to Constraints (19) that ensure the compatibility
of patient-to-hospital assignments, the following set of inequalities are also
valid, and further strengthen the link between x and y binary variables:

xjrp + yjrh ≤ 1 + Ihp ∀t ∈ T, j ∈ Jt, h ∈ H, p ∈ P (32)

Another inequality that links x, y and z binary variables all together in
a rather unique way is the following:

yjrh + 1 ≤
∑
b∈Bh

zbph + xjrp ∀t ∈ T, j ∈ Jt (33)

Similar to Constraints (9) and (18), we contend that it is a valid restriction
that a hospital is visited at position j − 1 only if there is a hospital visited
at position j of the task list on the same ambulance for j ≥ 2.∑

h∈H

y
(j−1)
rh ≥

∑
h∈H

yjrh ∀r ∈ R, j ∈ Jr \ {1} (34)

Lastly, the following set of inequalities can be added into the model to
reduce its inherent degeneracy.

at′rj ≤ lp,1x
j
rp +

∑
h∈H

(∑
s∈S

Ispdsh

)
yjrh +M(1− xjrp) ∀r ∈ R, j ∈ Jr, p ∈ P

(35)

at′′rj ≤
∑
h∈H

(∑
s∈S

Ispdsh

)
yjrh +G

(
1− x(j+1)

rp

)
∀r ∈ R, j ∈ Jr \

{
nr
j

}
, p ∈ P

(36)

wp ≤ arj −
∑
s∈S

IspTs +Q
(
1− xjrp

)
∀r ∈ R, j ∈ Jr, p ∈ P (37)

awb
ph ≤ wp +K

(
1− zbph

)
∀p ∈ P, h ∈ H, b ∈ Bh (38)

A trivial lower bound for the makespan can be computed by adding the
initial waiting time for transportation, the minimum transportation and am-
bulance processing time, and the minimum treatment time at the hospital.

LBtrivial = TD+min
s∈S

{
IspTs

}
+ min

s,h∈A;p∈P
{(dsh + lp,1)}+ min

p∈P ;h∈H

{
Ihp l

h
p,2

}
(39)
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More tight bounds on the makespan can be found by adding the initial
waiting time for transportation at the site, the minimum processing, trans-
portation and waiting times of all patients times the smallest number of
setups necessary for each machine, and the smallest total treatment time for
all patients at the available hospitals.

LBt = LBt1 +max
(
LBt2, LBt3

)
(40)

LBt1 = TD +min
s∈S

{
IspTs

}
+
np

nr

(
min

s,h∈A;p∈P
{(dsh + lp,1)}

)
(41)

LBt2 =
nr

nh

(
min

p∈P ;h∈H

{
Ihp l

h
p,2

})
(42)

LBt3 =
1

nh

∑
p∈P

min
h∈H

lhp,2 (43)

As described earlier, a special case of the proposed model is the single MCI
site. In this case, the mathematical model can be simplified. In particular,
the y variables can be dropped, together with constraints (7) and (8), while
constraints (12) and (13) can be re-written considering only z and x variables.

3.5. Hierarchical Objectives

So far, we have assumed the minimization of makespan as the objective
of the problem (representing the overall response time). However, a key non-
modifiable factor that this objective does not take into account is the time-
dependent mortality of critically injured patients. The survival probability of
critical injured patients it is typically modeled as an exponential (or linear in
the best case scenario) function of the waiting time until treatment (Hupert
et al., 2007). Therefore, a more rigorous way to measure the quality and
efficiency of the overall response is to consider not only the makespan, but
also the impact that this has on the mortality rate of critical patients.

One way to capture the mortality rate is to consider the minimization
of the (weighted) total flow time Fw for all patients (Wilson et al., 2013).
The later can be calculated as the sum of the (weighted) completion times of
treatment of each patient. In the case different weights wp are assumed for
each patient p, then these weights should reflect the prioritization as defined
by the triage level of each patient.
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Fw =
∑
p∈P

∑
h∈H

∑
b∈Bh

wpz
b
phcthb (44)

The bilinear terms in (44) can be easily linearized using standard convexi-
fication techniques, such as big-M, convex hull, and indicator reformulations.

Another alternative is to adopt a hierarchical (a.k.a. lexicographical)
bi-criteria optimization scheme (Hoogeveen, 2005). In our case either the
makespan or the total flow time is considered as the (dominant) primary
minimization objective f , and the other one is considered as the secondary
objective g, respectively. This implies that at the first stage priority is given
to minimize f and to find the optimal value f ∗, whereas at the second stage,
g is minimized subject to the additional constraint that f≤f*.

Finding the optimal solution for the hierarchical bi-criteria optimization
problem via exact MIP approaches it is straightforward; however, it requires
a multi-step solution approach. In particular, one needs to solve sequentially
the corresponding single objective optimization problems, i.e., to find the op-
timum for the first stage, and subsequently to find among the set of optimal
schedules for the primary objective the one that performs best for the sec-
ondary objective. In such hierarchical multi-objective settings, metaheuristic
solution approaches can be more advantageous and more flexible, since they
can regulate heuristically the search directions in multiple dimensions. To
that end, it is worth highlighting that in case no criterion is dominant, then
the above hierarchical optimization scheme may lead to a schedule that is
unbalanced, i.e., the score on the secondary criterion can be greatly improved
by compromising only a little on the first criterion.

In the remainder of the paper, we will use the notation f |g to indicate
the hierarchy of objectives. For example, the Cmax|Fw indicates Cmax is the
primary objective and Fw is the secondary objective added as constraint.

4. Solution Methodology

Flexible job shop scheduling problems with unrelated parallel machines,
sequence and machine-dependent setup times, and/or weighted jobs have
been extensively studied in the literature. These problems are notoriously
hard to optimize using exact MIP solution approaches, such as Branch-and-
Bound or Branch-and-Cut, and the optimality gap of the relaxed problems
is traditionally large for instances involving more than 30 to 50 jobs (Rocha
et al., 2008). For this reason, a significant body of the literature favors
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the development of metaheuristic algorithms (Wilson et al., 2013; Repoussis
et al., 2009; Repoussis & Tarantilis, 2010; Tarantilis et al., 2013).

This paper proposes a hybrid multi-start local search framework as shown
in Algorithm (1). Initially, a greedy randomized scheme is employed to find
and fix part of the patient-to-hospital and patient-to-ambulance assignments
(see Line 5). Next, the resulting partially reduced problem is solved to opti-
mality (s̄ denotes the partial solution), and a complete solution s is produced
by determining the patient dispatching sequence and treatment order at the
hospitals (see Line 6). This MIP-based construction heuristic scheme quickly
generates a set of high-quality feasible starting upper bounds. Next, these
initial heuristic solutions serve as the starting points for an Iterated Tabu
Search metaheuristic algorithm, which is mainly applied for further improve-
ment (see Line 7). The oscillations between the MIP-based construction
heuristic and the local search algorithm are repeated for a number of iter-
ations ψmax (termination condition). Input parameters ϑmax, λmax and γ
control the perturbation mechanism, the maximum local search iterations
without observing any improvement, and the randomness of the MIP-based
construction heuristic, respectively. Details of these components of Algo-
rithm (1) are provided in the subsections below.

Algorithm 1 Hybrid Multi-Start Local Search

Input: ψmax, ϑmax, λmax, γ, δ
Output: sbest
1: ψ ← 1, sbest ← ∅
2: while ψ ≤ ψmax do
3: s← ∅

// MIP-based Construction Heuristic

4: s̄← Fix Assignments(γ)
5: s← MIP Solver(s̄)

// Local Search

6: s← Iterated Tabu Search(s, λmax, ϑmax, δ)
7: if {f(s) < f(sbest)} or {g(s) < g(sbest) and f(s) <= f(sbest)} then
8: sbest ← s
9: end if
10: ψ ← ψ + 1
11: end while
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4.1. MIP-based Construction Heuristic Algorithm

A heuristic decomposition scheme is proposed for generating initial upper
bounds. The examined problem involves two sets of decisions, i.e., the assign-
ment of patients to ambulances and hospitals as well as their dispatching and
treatment sequencing. On this basis, the proposed MIP-based construction
heuristic at first determines the patient-to-ambulance and the patient-to-
hospital assignments in a greedy randomized fashion, and subsequently the
reduced problem is solved to optimality to obtain the complete solution.

A two-phase sequential assignment scheme is adopted. During the first
phase, patients are assigned one by one to hospitals such that the expected
completion time of the treatment of each patient is minimized. Based on
this greedy criterion, a restricted candidate list of hospitals is generated
and maintained for each patient p, and one hospital h∗p from this list is
selected randomly at each iteration. Following a similar greedy randomized
assignment scheme, during the second phase the procedure allocates one-
by-one each patient p to an ambulance r∗p, taking into account the previous
patients-to-hospitals assignments. Here the greedy criterion is employed to
minimize the patient’s arrival time at a hospital. The size of the lists in both
phases is regulated by parameter γ.

The above heuristic assignments can be depicted as follows:∑
b∈Bh∗p

zbph∗
p
= 1 ∀p ∈ P (45)

∑
h∈H\{h∗

p}

∑
b∈Bh

zbph ≤ 0 ∀p ∈ P (46)

∑
j∈Jr∗p

xjr∗pp = 1 ∀p ∈ P (47)

∑
r∈R\{r∗p}

∑
j∈Jr

xjrp ≤ 0 ∀p ∈ P (48)

Constraints (45) to (48) are added to the mathematical model that is pre-
sented in Section 3.2, and the resulting reduced problem is solved to opti-
mality by a MIP solver. Additionally, an effort is made at the presolve stage
to further reduce the number of variables. In particular, given that the num-
ber of patients assigned to hospitals and ambulances is fixed, the excessive
(if any) positions (beds and trips) in the three-index binary variables z and
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x are fix to zero. Note also that all of these variable reductions are not
respected during the subsequent local search improvement phase.

4.2. Iterated Tabu Search

The proposed Iterated Tabu Search algorithm has two components; the
local search and the perturbation. The local search involves the exploration
of the solution space by moving at each iteration from a solution s to the
best solution s′ of the neighborhood Nm(s), of the neighborhood structure
m. Equal selection probability is assumed for all neighborhood structures.
The selection of s′ follows the hierarchy of objectives defined in Section 3.5.
To help the search to escape from local optimal solutions, whenever the local
search has performed λmax iterations without observing any improvement,
the current best solution is perturbed and the local search restarts.

The solution neighborhoods are created by applying the relocate and ex-
change operators (Zobolas et al., 2009) on a representation based on the per-
mutation of operations on the machines. A lexicographic scheme is followed
for evaluating all allowable combinations for inter- and intra-machine moves.
Note that relocations and exchanges can take place only within the same
type of the machines, i.e., the ambulances and hospitals separately. Updat-
ing the time stamps of this representation is straightforward, but whenever
an inter-hospital move is applied the sequence-dependent setup times on the
ambulances must be updated accordingly. In our implementation a tabu list
is maintained at constant size δ, while the tabu status is overridden if an
improvement is observed with respect to the best encountered solution.

As noted, a mechanism is employed to perturb the current solution. In
particular, a number of jobs are removed from the schedule and a greedy
reconstruction mechanism is employed to reschedule them as early as pos-
sible. The number of the rescheduled jobs is determined by a self-adapted
“length”. The latter is regulated by parameter ϑ. At first, ϑ is initialized
to one, and then gradually increases as the search does not find a better
solution, until ϑmax is reached. Every time a better solution is found, ϑ is
reinitialized to one. At each iteration, ϑ

ϑmax
% of the solution is perturbed.

The above described local search framework is depicted by Algorithm 2.

5. Computational Experiments

We performed a number of computational experiments to study the effec-
tiveness and efficiency of these proposed optimization methods. For this pur-
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Algorithm 2 Iterated Tabu Search

Input: s, ϑmax, λmax, δ
Output: s∗

1: ϑ← 1, s∗ ← s
2: while ϑ ≤ ϑmax do
3: λ← 1, s′ ← s
4: while λ < λmax do
5: y ← Random Selection()
6: Ny(s)← Neighborhood Evaluation(s, y)
7: s ← mins′′∈Ny(s)⟨f(s′′), g(s′′)⟩
8: Update Tabu List(s,y,i,δ)
9: if {f(s) < f(s′)} or {g(s) < g(s′) and f(s) <= f(s′)} then
10: λ← 1, s′ ← s
11: else
12: λ← λ+ 1
13: end if
14: end while
15: if {f(s′) < f(s∗)} or {g(s′) < g(s∗) and f(s′) <= f(s∗)} then
16: ϑ← 1, s∗ ← s′

17: else
18: ϑ← ϑ+ 1
19: s← Apply Perturbation(s′, ϑ)
20: end if
21: end while

pose, we have randomly generated small- and large-scale problem instances
based on realistic data. Our methods have been implemented in C++ as
sequential programs. All experiments are conducted on a PC equipped with
Intel Core i7-4790 clocked at 3.6GHz, 8GB RAM memory and running Win-
dows 7 Professional 64bit edition. IBM Ilog CPLEX 12.60 64bit edition is
used as our MIP solver. The default settings are adopted and CPLEX is con-
figured to utilize a single core. A single simulation run is performed for each
problem instance, while all computational times reported are in seconds.

This section is structured as follows: In Section 5.1 we describe the data
and the parameter settings. Sections 5.2 and 5.3 validate the mathematical
model on small-scale instances, and examine the applicability of the model as
well as basic problem properties on large scale MCI instances, respectively.
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5.1. Experimental Settings & Data Sets

We assume that a hypothetical terrorist bombing attack at the New York
Stock Exchange located in the lower Manhattan area leaves a number of
critical and non-critical patients in need of emergency medical care. On this
basis, a number of problem instances is generated for different MCI events’
sizes and resources’ availabilities. Table 1 summarizes the main properties
of the randomly generated problem instances.

Table 1: Problem instance features and parameter value scenarios

Features Scenarios

Mass casualty event size np
Up to 120 patients (large scale)
Up to 20 patients (small-scale)

Proportion critically injured 25% - 50% (Baseline: 35%)
Weight wp for critical patients 10

Treatment time (Non-critical patients) Normal distribution (40, 10) min
Treatment time (Critical patients) Normal distribution (120, 25) min

Number of Ambulances nr from 3 to 50
Max number of trips

np

nr
+ 2

Number of Hospitals nh ≤ 4 (small-scale) & ≤ 10 (large scale)

Patient throughput per hospital 1 - 8 per hour

For an event in lower Manhattan, up to 10 hospitals are available to act
as local treatment facilities for the patients. Table 2 shows the capacities
(in terms of the number of beds), the distance from the disaster site and the
patient throughout rates for each hospital. The distances are expressed in
terms of traveling time in minutes (see also Section 3.1). The number of beds
at each hospital vary from np

nh
to np, while the patient throughput rates vary

from 1-8 patients per hour, based on local knowledge. Note that the hospital
beds used in our experiments are only indicative, and they are scaled based
on the actual hospital size. Lastly, in every problem instance half of the
hospitals are as considered as Trauma Level I and half level II hospitals.

The proposed Hybrid Multi-Start Local Search (HMSLS) uses five param-
eters. For the experimentation, the following parameter settings are used to
perform the experiments. The tabu list size δ is equal to 20. The size of the
restricted candidate list γ is equal to 3. The number of tabu search itera-
tions without observing any improvement λmax is set equal to 500, while the
maximum number of perturbations ϑmax is equal to 3. Lastly, the number of
local search restarts ψmax is equal to 100.
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Table 2: Hospital characteristics in Lower Manhattan

Hospitals Distance Capacity Capacity Throughput
(min) (beds) (max) (p/hour)

New York Downtown Hospital 2 np/nh 48 1
Bellevue Hospital Center 11 np 370 8
Beth Israel Medical Center 10 np 332 6
NY Eye and Ear 9 np/2nh 31 1
Hospital For Joint Diseases 10 np/nh 50 2
NY University Medical Center 11 np/nh 212 4
New York Hospital-New York 15 np/2 644 6
St. Vincents Hospital∗ 8 np/2 45 4
St. Lukes Roosevelt/Roosevelt 16 2np/nh 323 5
Lenox Hill Hospital 18 np/2nh 196 5
∗Shuttered after this research was conducted

5.2. Results on Small-Scale Problem Instances

Tables 3 and 4 summarize the results for the small-scale instances with
up to 20 patients, 4 hospitals and up to 4 ambulances. Table 3 presents the
results derived by running the hierarchical Cmax as the primary objective,
while Table 4 presents the results derived from hierarchical Fw as the pri-
mary objective, respectively. In both cases, the constraints on the secondary
objectives are derived from the initial MIP start heuristic solutions.

The structure of Tables 3 and 4 is the following. The first two columns
report the number of patients and the number of ambulances involved. The
third and forth columns report the Cmax and Fw of the initial upper bounds.
These heuristic solutions are generated via the Hybrid Multi-Start Local
Search (HMSLS) algorithm and they are used as MIP start solutions. The
rest of the columns present the results produced by running CPLEX. A time
limit of 7200 sec is assumed. These columns report the Cmax and Fw as found
by CPLEX, the time used to find the best local optimal solution and the
number nodes opened during the CPLEX iterations. The last two columns
report the optimality % gap between the best upper and lower bound, and
the % gap between the solution produced by CPLEX and the heuristic MIP
start solution (e.g., 100(CCPLEX

max − CHeur.
max )/CCPLEX

max ).
Overall, the following observations can be made. First, it seems very

hard to optimally solve instances of more than 12 patients (within the time
limit of 2hrs). Second, even though there is sufficient availability of hospital
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Table 3: Upper and lower bounds on small-scale instances - Hierarchical Cmax|Fw

Instance
MIP Start

Best Upper Bound (CPLEX)
(HMSLS)

np nr Cmax Fw Cmax Fw
Time

Nodes
Gap % Gap %

(sec) (Opt.) (Heur.)

8 3 94 2951 94 2951 43.9 27445 0.00 0.00

8 4 93 2772 92 2772 2.2 379 0.00 −1.09
10 3 108 3863 108 3863 1514.7 488021 0.00 0.00

10 4 99 3759 99 3759 0.6 0 0.00 0.00

12 3 125 5043 125 5043 7200 1080612 21.40 0.00

12 4 110 4999 104 4999 85.2 15243 0.00 −5.77
14 3 151 7300 151 7300 7200 421152 32.50 0.00

14 4 123 6268 120 6268 7200 163579 5.30 −2.50
16 3 167 8616 167 8616 7200 388369 29.50 0.00

16 4 148 7333 148 7333 7200 1625623 14.70 0.00

18 3 183 11406 183 11406 7200 258717 22.00 0.00

18 4 159 9837 159 9837 7200 565288 6.00 0.00

20 3 203 12218 203 12218 7200 285077 16.70 0.00

20 4 178 11535 178 11535 7200 404533 2.30 0.00

beds, the response times increase significantly with respect to the number of
patients for the same number of ambulances, e.g., the response time doubled
from 99 to 178 when the patients double from 10 to 20. Third, the heuristic
HMSLS seems to perform reasonably well, while in very few cases CPLEX
was able to improve the initial MIP start solutions. Forth, the differences in
the solutions between the two tables were relatively small, regardless of the
hierarchy of objectives followed. Fifth, when the ambulances were increased
from 3 to 4, the optimality gaps were significantly improved. One can lastly
observe that the optimality gaps for the hierarchical Cmax|Fw are better.

5.3. Results on Large Scale Problem Instances

The applicability of the model and the proposed HMSLS has been tested
on large scale problem instances with up to 150 patients. In particular,
various scenarios were examined using different number of ambulances and
hospitals. The goal is to answer the following realistic logistical question for
emergency service providers: is it better to send patients to remotely located
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Table 4: Upper and lower bounds on small-scale instances - Hierarchical Fw|Cmax

Instance
MIP Start

Best Upper Bound (CPLEX)
(HMSLS)

np nr Cmax Fw Cmax Fw
Time

Nodes
Gap % Gap %

(sec) (Opt.) (Heur.)

8 3 98 2823 98 2811 174.4 67126 0 −0.43
8 4 93 2772 93 2748 70.8 31465 0 −0.87
10 3 124 3801 124 3741 7200 1665570 2.7 −1.60
10 4 109 3703 109 3668 3532.4 543242 0 −0.95
12 3 140 4919 140 4919 7200 186839 29.1 0.00

12 4 127 4738 127 4738 7200 131585 26.5 0.00

14 3 156 6095 156 6095 7200 461692 32.9 0.00

14 4 144 5899 144 5766 7200 1179001 21.7 −2.31
16 3 179 7521 179 7521 7200 431088 51.1 0.00

16 4 155 7281 155 7281 7200 82222 32.2 0.00

18 3 200 9513 200 9513 7200 172898 94.7 0.00

18 4 173 9183 173 9183 7200 333900 58.9 0.00

20 3 242 11599 242 11599 7200 144523 115.4 0.00

20 4 190 11157 190 11157 7200 37435 99.4 0.00

hospitals when optimizing response for a large MCI?
Table 5 summarizes the results obtained by applying HMSLS on large

scale problem instances for the hierarchical Cmax|Fw and Fw|Cmax. The
first four columns refer to the problem instance, showing the number of
patients, the number of ambulances, and the number of hospitals, respec-
tively. Columns Cmax and Fw report the makespan and the weighted total
flow time. Columns TD report the total distance traveled by the ambulances
(including so-called deadhead trips, in which an ambulance travels back to
the MCI from drop off without any passengers); the lower bound for this
distance is shown in column LBd. The latter is calculated by dispatching the
ambulances to the closest hospitals, while taking into account the maximum
number of beds per hospital as a constraint. Lastly, column LBt reports the
lower bound of the makespan (see Equation 40).

Table 5 clearly demonstrates that the response times are affected by both
the available ambulances and hospitals. As the number of hospitals increases,
the response time is largely reduced. For example, regarding the problem
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Table 5: Upper bounds on large scale instances

Instances HMSLS - Cmax|Fw HMSLS - Fw|Cmax

♯ np nr nh LBt LBd Cmax Fw TD Cmax Fw TD

1 30 20 6 68.67 258 196 19781 688 206 19220 691
2 30 20 8 52.50 245 122 13534 642 128 13524 801
3 30 20 10 42.80 245 107 12359 791 108 11788 844

4 50 30 6 116.00 399 315 48311 1183 326 47875 1202
5 50 30 8 87.12 408 188 31550 1274 196 31062 1373
6 50 30 10 67.00 432 153 26864 1409 149 24541 1491

7 70 30 6 162.00 607 441 91392 1789 445 90194 1694
8 70 30 8 122.12 571 260 58670 1937 274 56639 2019
9 70 30 10 95.30 562 206 47165 2041 208 44091 2163
10 70 40 6 164.00 607 436 93479 1771 452 90391 1900
11 70 40 8 120.12 571 257 57386 1928 274 55274 1947
12 70 40 10 93.30 562 207 48695 1928 197 42419 2084

13 90 40 6 208.50 773 562 147718 2239 567 144520 2195
14 90 40 8 153.00 734 333 92115 2335 343 91445 2494
15 90 40 10 122.30 717 266 75955 2606 272 73481 2785
16 90 50 6 210.50 773 559 149254 2379 549 145657 2317
17 90 50 8 155.00 734 329 92308 2478 361 87641 2510
18 90 50 10 120.30 717 260 74864 2566 249 68068 2713

19 110 30 8 189.60 897 407 134097 3190 410 136205 3210
20 110 30 10 149.00 880 327 110945 3410 330 107199 3437
21 110 40 8 187.60 897 411 136937 3049 404 133716 3047
22 110 40 10 147.00 880 324 109981 3285 316 106925 3352
23 110 50 8 187.60 897 399 132118 2942 410 130286 2963
24 110 50 10 147.50 880 316 108379 3141 298 96529 3421

25 130 30 8 223.25 1060 479 190292 3823 484 183498 3820
26 130 30 10 176.00 1034 390 154140 4136 405 149564 4085
27 130 40 8 221.50 1060 479 185573 3715 459 173303 3800
28 130 40 10 174.00 1034 384 154924 3994 385 148472 4061
29 130 50 8 219.25 1060 470 182563 3558 480 179898 3636
30 130 50 10 172.00 1034 378 149897 3902 381 146326 3840

31 150 30 8 260.37 1223 557 252585 4435 569 247937 4452
32 150 30 10 204.50 1197 445 201296 4801 464 199081 4770
33 150 40 8 256.37 1223 553 246023 4338 540 234263 4404
34 150 40 10 200.50 1197 439 198331 4646 443 194689 4644
35 150 50 8 256.37 1223 536 242509 4223 543 237009 4287
36 150 50 10 200.50 1197 430 196787 4549 432 180210 4702
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instances with 30 patients (see Pr.No 1 and 3) increasing hospitals from 6
to 10 reduced the response time from 196 to 107, while the addition of 2
hospitals for instances Pr.No 31 and Pr.No 32 with 150 patients reduced the
response time from 557 to 445. The figures with respect to the number of
ambulances shows similar improvement, although the effect is smaller. Note
that in several cases, while the improvements in the primary objective are
small, the reductions in the secondary objective are more substantial (see for
example Pr. No 25, 27 and 29). In answer to our question regarding the role
of distant hospitals, we find that adding remotely located facilities increases
the traveled distance but reduces the makespan (see for example Pr.No. 16
to 18). This is an indication that although longer transportation times are
introduced, the allocation of patients to hospitals is more balanced and the
capacity of the hospital system taken as a whole is more effectively utilized.
Lastly, it seems that in most cases the traveled distance by the ambulances
(TD) is lower when the primary objective is to minimize the makespan.

We next examined in more detail the effect of the number of ambulances
on the response time. In particular, we consider an MCI event with 120
patients, high and low bed availability at 10 hospitals, and variation in the
number of ambulances from 10 to 50. Figure 2 illustrates the results obtained
from these experiments. Specifically, Figure 2 (a) refers to the hierarchical
Cmax|Fw and Figure 2 (b) shows the hierarchical Fw|Cmax.
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Figure 2: The effect of the number of ambulances to the response time

Overall, three main observations can be made. First, as the number of
ambulances increase the response times improve; however, this effect quickly
fades out. This is likely due to the fact that the hospitals have become the
bottleneck. Second, the high or low availability of beds at the hospitals has
a relatively small impact on overall outcomes. This is reflected in practice,
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in which inquiries are mostly made regarding the availability of emergency
department beds, and not regarding hospital census on the inpatient wards.
However, this effect tends to be stronger when the hospital beds become the
bottleneck (case with 50 ambulances), a finding that may have important
policy implications regarding current MCI dispatching practices. Lastly, the
hierarchy of objectives has little differential impact on the observed trends.

Figure 3 summarizes our findings graphically by presenting Gantt charts
of two indicative schedules for a response to a large-scale MCI with 150
patients, produced during the execution of the HMSLS. The first solution
(Figure 3 (a)) corresponds to the best solution found by the MIP-based
construction heuristic, while the second (Figure 3 (b)) corresponds to the
overall best solution found, having also applied the Iterated Tabu Search
algorithm. As Figure 3 shows, different colors represent different activities
throughout the schedule of each patient (see also timing of events Figure 1).
One can observe that the Iterated Tabu Search significantly improves the
initial MIP based construction heuristic solution, indicating the effectiveness
of the proposed local search improvement method; this is also consistent
in all computational experiments performed. Second, the waiting times at
hospitals (red color) comprises a major part of the schedule of virtually all
patients; this is a vivid indication of the important influence of treatment
sequencing at the hospitals on overall outcomes, which makes the combined
ambulance dispatching-treatment ordering problem very hard to solve.

6. Conclusions

This paper linked pre-hospital emergency medical services with hospital
treatment activities to advance the science of disaster preparedness planning,
presenting a rigorous MIP model for the combined ambulance dispatching,
patient-to-hospital assignment, and treatment ordering problem. The ob-
jective was to minimize the makespan and the weighted total flow time of
the patients hierarchically. Both exact and hybrid metaheuristic methods
were developed for small- and large-scale problems. Regarding the latter, a
heuristic problem decomposition scheme is adopted that utilizes a MIP-based
construction heuristic combined with an Iterated Tabu Search algorithm.

We performed various experiments to establish the validity of the model
in relation to known features of MCI response and to assess the performance
of the proposed methods. Furthermore, we examined how the spatial and
temporal characteristics of an MCI response–especially the inclusion of re-
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(a) MIP-based construction heuristic solution

(b) Iterated Tabu Search solution

Figure 3: Schedule of an MCI event with 150 patients
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mote hospitals for large events–affect the response times and the system-wide
allocation of resources. Finally, we demonstrated the applicability of the new
model on MCI events, showing how response efficiency is impacted by varying
resource availability at the ambulance and hospital levels.

We believe that the proposed model has practical utility in helping emer-
gency response professionals to explore tactical decision making for disaster
preparedness, specifically for events with many casualties. Astute readers
will be aware of several limitations in our formulation, including the assump-
tion that the patient load does not impact the functioning of near hospitals
(as may be the case in a large-scale explosive or contamination event). This
is related to our assumption that there is considerable information availabil-
ity regarding hospital capacities and capabilities, which may change early on
(“fog of war” effect). It will be of great value to extend the current model
for stochastic environments with incomplete information regarding treatment
capability. Finally, this modeling approach provides a sophisticated platform
to explore advanced topics, such the capacity-limiting impact of overtriage
and of self-transported patients on the overall response effectiveness.
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