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Abstract

The integration between connectionist learning and logic-based reasoning is a long-

standing foundational question in artificial intelligence, cognitive systems, and com-

puter science in general. Research into neural-symbolic integration aims to tackle this

challenge, developing approaches bridging the gap between sub-symbolic and sym-

bolic representation and computation. In this line of work the core method has been

suggested as a way of translating logic programs into a multilayer perceptron comput-

ing least models of the programs. In particular, a variant of the core method for three

valued Łukasiewicz logic has proven to be applicable to cognitive modelling among

others in the context of Byrne’s suppression task. Building on the underlying formal

results and the corresponding computational framework, the present article provides a

modified core method suitable for the supervised learning of Łukasiewicz logic (and

of a closely-related variant thereof), implements and executes the corresponding su-

pervised learning with the backpropagation algorithm and, finally, constructs a rule

extraction method in order to close the neural-symbolic cycle. The resulting system is

then evaluated in several empirical test cases, and recommendations for future devel-

opments are derived.

Keywords: Neural networks, Logic programs, Neural-symbolic integration, Cognitive

modelling, Reasoning

1. Introduction

Neural-symbolic integration attempts to bridge the gap between two prominent

paradigms in artificial intelligence. Symbolic AI, the first of the two, encompasses ex-
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plicit knowledge representation, logic programming and search-based problem solving

techniques which have been responsible for many of the early successes in artificial5

intelligence such as game playing, automated theorem proving and natural language

processing ([1, 2, 3]). While the paradigm is still very much alive in expert systems

managing and reasoning over vast quantities of symbolic data, it is also at times referred

to as “good old-fashioned AI” or GOFAI ([4]), having lost some of its appeal as its lim-

itations have become apparent. Learning from, and finding structure in sets of noisy10

data is something symbolic AI largely fails at. Unfortunately this means that whole

classes of problems which are integral to a common conception of intelligence, such

as image and voice recognition, on a general scale currently can hardly be addressed

using symbolic AI.1 Also, while (mostly non-monotonic) logic-based cognitive mod-

elling is still being pursued with valuable results, the brittleness of the corresponding15

models together with their necessary restriction to high-level cognition (leaving out the

bigger part of the actual representation and processing apparatus of human cognizers),

are clear drawbacks when compared to connectionist or statistical approaches.

The second paradigm is that of machine learning. As the name suggests, it refers

to a variety of methods for learning from data, artificial neural networks (ANN) be-20

ing one prominent group of these methods. Aided by a leap in processing power and

available data, machine learning has been credited with most of the more recent ac-

complishments in AI, from the now commonplace feat of handwriting recognition to

self-driving cars and the fully autonomous learning of computer games ([6, 7, 8]).

Promising as the paradigm may be, there are areas in which, on its own, it performs25

very poorly. While the learning of simple logical dependencies from data is achieved

with relative ease, the process becomes increasingly difficult when higher order con-

cepts are involved ([9]). Examples for the latter impasse are numerous, including con-

nectionist systems’ problems with high-level visual analysis taking into account partial

1Recent logic-based approaches such as, for instance, Meta-Interpretive Learning for Logical Vision [5]

might in the future help to mitigate this problem, but currently have only reached proof of concept state

and still have to confirm their generalizability across tasks and domains, and their scalability to real-world

problem sizes.
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Figure 1: A conceptual overview of the neural-symbolic cycle (as introduced in [11]).

occlusion, light source identification, or shadow prediction, or with higher-level infer-30

ence such as the recognition of intentions of depicted agents. Also, as knowledge is

represented in connectionist systems in a distributed fashion that is hard to interpret

from an outside perspective, it is usually difficult to provide background knowledge in

a format which the machine learning algorithm can use, or to extract learned features

from a network for instance for verification purposes. All of these are problems that35

often become trivial when tackled with a symbolic system.

Much stands to be gained from a unification of the two paradigms that could cancel

out their respective weak spots and highlight their strengths. Neural-symbolic inte-

gration ([10]) offers some ideas in how this may be achieved, centering around the

concept of the neural-symbolic cycle (see Figure 1). The cycle contains two reasoning40

systems. One is symbol-based, utilizing available expert knowledge, and the other is

a connectionist system or ANN, which learns from data. The challenge of interfacing

these systems is twofold. Coming from the symbolic side, the first task is to find a way

of translating the existing symbolic knowledge into the connectionist system, finding a

representation that is appropriate for the network. Secondly, one needs to devise meth-45

ods for extracting the information gained by the connectionist system through learning

and convert it back into a clean symbolic format. Equipped with these processes of

representation and extraction the system as a whole is capable of incorporating both

background knowledge and training data as either become available.

When asked about the feasibility of integrating both paradigms, the human brain50

and mind serve as prime examples and proof of concept. The brain has a neural struc-
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ture which operates on the basis of low-level processing of perceptual signals, but cog-

nition also exhibits the capability to efficiently perform abstract reasoning and symbol

processing; in fact, processes of the latter type are taken to provide the foundations

for thinking, decision-making, and other mental activities ([12]). It is precisely this55

seamless coupling between learning and reasoning which is commonly considered the

basis for intelligence in humans—see also, e.g., [13], p. 163: “While I do not regard

intelligence as a unitary phenomenon, I do believe that the problem of reasoning from

learned data is a central aspect of it.”—and, in close analogy, quite plausibly also for the

(re-)creation of cognitive capacities up to human-level intelligence in artificial systems.60

Returning to the neural-symbolic cycle discussed above, it should be made clear,

that the task of constructing such a cycle rapidly increases in difficulty when raising

the expressive capacities of the involved systems. There are approaches for fragments

of first order logic ([14, 15]), but most results focus on various propositional logics.

Furthermore, extraction algorithms for connectionist systems tend to be intractable. So65

while the general method of the field can be described in a few pages, the underlying

problems are hard and there is still a long way to go before neural-symbolic integration

may be applied to state-of-the-art methods of either paradigm.

As one of the currently most prominent and best understood methods, Hölldobler’s

and Kalinke’s core method ([16]) has since been developed as a neural-symbolic system70

for, among others, propositional modal ([17]) and covered first order logic programs

([15]). It provides a way of translating logic programs into a type of multilayer percep-

tron (MLP) which, embedded in the core architecture, computes least models of these

programs. In [18], a variant of the core method for three valued Łukasiewicz logic is

presented, and it is suggested to apply the resulting approach to cognitive modelling75

tasks (see, e.g., [19] for a subsequent application to Byrne’s suppression task [20]).

In the discussion of their work, the authors make the claim that the architecture they

have used can be modified in such a way, as to allow training via the backpropagation

algorithm ([21]). If this is in fact the case, when additionally equipped with a rule ex-

traction method, the resulting architecture should allow for a basic form of closure of80

the neural symbolic cycle.

Expanding upon work started by Harder and Besold in [22], in the following we put
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these ideas into practice by providing a modified core suitable for supervised learning,

implementing and executing supervised learning with the backpropagation algorithm

and, finally, constructing a rule extraction method. Section 2 gives an overview of the85

theory and methods underlying this work, after which Section 3 is used for an in-depth

documentation of the implemented approch to learning cores and extracting learned

rules. We present the empirical results of the corresponding computational experiments

in Section 4, followed by a closing discussion and look ahead at future work in Section

5. The proofs corresponding to the theoretical results, together with the pseudo codes90

of the extraction algorithm, have been relegated to the appendix.

2. Foundations

As conceptual basis for the work presented in subsequent sections, a number of

methods and terminology have to be clarified. The three following subsections will

respectively give a short introduction to Łukasiewicz logic programs, Hölldobler’s and95

Kalinke’s core method, and the backpropagation algorithm. Some basic familiarity

with classical logic and neural networks is assumed.

2.1. Łukasiewicz logic programs

We first introduce three-valued Łukasiewicz logic as a formalism, giving the main

definitions and a short account of key properties. Then we provide the relevant infor-100

mation about logic programs and weak completion in the Łukasiewicz context, before

finally presenting the Stenning-van-Lambalgen consequence operator.

2.1.1. Three-valued Łukasiewicz logic

Łukasiewicz Logic was proposed in its ternary version in 1917 by Polish philoso-

pher and logician Jan Łukasiewicz ([23]), as a result of his work on modalities in logic.105

The addition of a third value was meant to introduce a notion of possibility and in-

determinism to logical reasoning. Metaphysical import aside, this logic was the first

one to break with the true/false dichotomy of classical logic and thus lay the concep-

tual basis for the development of further many-valued and fuzzy logics thereafter. The
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connective definitions for three-valued Łukasiewicz logic are provided in Figure 2 be-110

low (following the notation used in [18]). A noteworthy property, when compared, for

instance, to Kleene’s strong logic of indeterminancy ([24]) is the definition of u→ u

and u↔ u as true. This allows for the existence of tautologies, i.e. formulas which

are true under all interpretations, and preserves some of those familiar from classical

logic. Conventionally, an interpretation assigns one of the three values >, ⊥ and u to115

each atom in the Universe U . In the given context it makes sense to define an interpre-

tation as a tuple I = 〈I>, I⊥〉, where I> is a set containing all atoms assigned the value

> and I⊥ contains all atoms assigned ⊥. No atom is in both sets and those assigned u

are in neither set. One can speak of an empty interpretation when I> ∪ I⊥ = ∅ and a

partial interpretation when I>∪ I⊥ (U . I is a model of a formula G, iff I(G) =>.120

∧ > u ⊥

> > u ⊥

u u u ⊥

⊥ ⊥ ⊥ ⊥

∨ > u ⊥

> > > >

u > u u

⊥ > u ⊥

¬

> ⊥

u u

⊥ >

→ > u ⊥

> > u ⊥

u > > u

⊥ > > >

↔ > u ⊥

> > u ⊥

u u > u

⊥ ⊥ u >

Figure 2: Definitions of the connectives for three-valued Łukasiewicz logic.

As already mentioned in the previous section, according to Hölldobler, Łukasiewicz

logic is of interest for modelling empirical observations of human reasoning. Specifi-

cally, [19] seeks to provide a logical model for the suppression task experiment ([20]).

In the corresponding set of experiments, Byrne analysed what conclusions readers will

typically draw from a certain class of natural language statements. As an example,125

when reading the statement “If Marian has an essay to write, she will study late in

the library. She has an essay to write.”, 96% of all subjects concluded that “Marian

will study late in the library.”. When presented with the same item, but with the added

information that “If the library stays open, she will study late in the library.”, only
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38% of participants conclude that Marian will indeed study in the library. It appears130

that the additional information led more than half of the participants to revoke their

previous inferences, even though this information was not contradictory. The non-

monotonicity of this reasoning suggests that it cannot be modelled by classical logic.

Against this backdrop, in [19] it is therefore proposed that three-valued Łukasiewicz

logic interpreted under weak completion (as explained in the following subsection) fits135

the findings best.2

2.1.2. Logic programs

Logic programs are defined as a finite set of clauses of the form A← B1∧B2∧ . . .∧

Bn where the head of the clause, A, is an atom and the Bi, with 1 ≤ i ≤ n, in the body

are either literals, > or ⊥. Clauses of the form A←> and A←⊥ are called positive140

and negative facts respectively.

These logic programs are interpreted under weak completion, which takes a logic

program and transforms it into one single formula, thereby changing how it is evalu-

ated. Firstly, the bodies of all clauses with the same head are concatenated as a disjunc-

tion into one body. After this step, the resulting formulas consist of one implication145

per head. Subsequently, all ← are replaced with ↔. As a result, atoms which are

heads in clauses whose bodies all evaluate as ⊥ are now ⊥ as well. Finally, concate-

nating all clauses into one conjunction creates a single formula representing the weakly

completed program.

Weak completion adds non-monotonicity to Łukasiewicz logic. Atoms which eval-150

uate as ⊥ because all associated bodies evaluated as ⊥, can become > when adding

another clause without contradiction. Also, weakly completed Łukasiewicz logic pro-

grams are never contradictory, always having at least one model ([18]).

2There is an ongoing controversy on whether Łukasiewicz logic under weak completion, or completion

semantics based on the three-valued logic used by Fitting [25], is better suitable for modelling human rea-

soning in general, and the suppression task in particular. While this debate and its eventual solution are

of general interest, in this article we stay agnostic concerning the matter. Instead, as stated at the end of

Section 1, the aim is to equip the system from [18] with a backpropagation-trainable type of core and a rule

extraction mechanism, closing the neural-symbolic cycle.
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2.1.3. Consequence operators

Models for such a logic program P can be computed through a consequence op-155

erator ΦP. Starting from an empty interpretation I, the immediate consequence ΦP(I)

is calculated as a new interpretation and this process is iterated, until I = ΦP(I) and

a fixed point is reached. It can be shown ([18]) that the least models of Łukasiewicz

logic under weak completion are identical to the least fixed points of the Stenning-van-

Lambalgen consequence operator ΦSvL,P from [26], which is defined as follows:160

ΦSvL,P(I) = 〈J>,J⊥〉, where

J> = {A|∃(A← body) ∈ P : I(body) =>} and

J⊥ = {A|∃(A← body) ∈ P ∧ ∀(A← body) ∈ P : I(body) =⊥}

The next section discusses the algorithm introduced by [18], which translates the

ΦSvL,P consequence operator of a given program into a 3-layer feed-forward network,165

that computes the same function. Like the consequence operator, this network may

then be used on multiple iterations until a fixed point is reached.

2.1.4. Example: consequence operator application

In order to illustrate, how the consequence operator ΦSvL,P functions, we provide a

small example. Consider the following four clauses:170

A←⊥

B←¬A

C←¬B

C← B∧¬C

All literals default to u in the beginning. The first application of the consequence

operator adds A to J>1 following the first clause. The bodies of clauses 2,3 and 4

evaluate as u and nothing else happens. The second application, ΦSvL,P(I1), finds clause

two satisfied and maps B to >. On the third iteration, the body of clause 3 evaluates
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as ⊥, but the body of clause 4 is still u, and as a result, a fixed point is reached. The175

sequence of interpretations is given in the table below.

I0 I1 I2 I3

A u ⊥ ⊥ ⊥

B u u > >

C u u u u

2.2. The core method

In the following, a detailed description of how the core architecture is set up will

be provided. This account chooses a somewhat different perspective than that of the

translation algorithm given in [18]. While the algorithmic description is optimal for180

implementation, the angle used here will hopefully provide a better understanding of

the core structure with regard to the modifications that must be made to it, and to the

introduction of sigmoidal activation units in particular.

In both input and output layer of the network, each atom A of the program is repre-

sented by two neurons. Activation in the first one indicates A =>, while activation in185

the second one means A =⊥. If neither neuron is active, then A = u. The core does not

allow for both neurons to be active in the same iteration. The input layer also contains

one neuron each, representing> and⊥, which are always active. Each program clause,

or rather each clause body, is represented by two neurons 〈h>,h⊥〉 in the hidden layer.

Whether a clauses body is mapped to >, ⊥ or u is encoded in the same way as was190

used for the atoms.

All connections between the layers of the core serve the function of logic gates. An

h> neuron is connected to one input layer neuron for each conjunct in the clause body

it represents. If the conjunct is an atom A, it connects to A>, if it is a negated atom ¬A,

it connects to A⊥ and if the conjunct is >, it connects to that unit. Connection weights195

and activation threshold are set to form an ’and’-gate, requiring activation of all input

layer neurons for the clause neuron to fire. In case a conjunct is ⊥, no connection is

formed, but for sake of the logic gate this is treated as a connection to an inactive unit,

preventing the clause neuron from ever firing. Respectively, an h⊥ neuron connects to
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A⊥ neurons, where A is a conjunct and A> neurons, where ¬A is one. If⊥ is a conjunct,200

h⊥ connects to the ⊥ neuron and if > is a conjunct, no connection is formed. Weights

and threshold are set to form an ’or’-gate, such that h⊥ is activated when one or more

input neurons fire. This way, clause bodies are represented as > if and only if all their

conjuncts are mapped to > and represented as ⊥, if and only if one or more conjuncts

are ⊥.205

In the output layer, each neuron has one connection for each clause in which the

associated atom appears as head. A> neurons are connected to the h> neurons of

the associated clauses, forming an ’or’-gate and A⊥ neurons are connected to the h⊥

neurons, forming an ’and’-gate. Thus atoms are>when one or more associated clauses

are >, and ⊥, when all associated clauses are ⊥.210

The logic gates are implemented such that all connection weights in the network

have the same value ω > 0 and ’or’-gate thresholds are at 0.5 ·ω, while ’and’-gate

thresholds equal to (l− 0.5) ·ω, where l is the number of incoming connections. All

neurons use the Heaviside activation function, emitting 1, if the received activation

meets or exceeds the threshold and 0 otherwise. Given this setup, computing a fixed215

point merely involves feeding the network’s output back into the input layer until it

equals the previous output3.

2.2.1. Example: core method computation

For an example of how this core works in practice consider the four clauses used

in the previous example: A←⊥, B←¬A, C←¬B, C← B∧¬C. Application of the220

translation algorithm yields the following multilayer perceptron.

3 The number of iterations necessary for reaching the least fixed point can be shown to be lesser or equal

to the number of atoms. The network has no inhibitory connections, so more input always generates equal

or more output. Starting from an empty interpretation, each subsequent iteration must therefore activate at

least one additional unit, one per atom at maximum, or stop.
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A> A⊥ B> B⊥ C> C⊥> ⊥

A> A⊥ B> B⊥ C> C⊥

h>1 h⊥1 h>2 h⊥2 h>3 h⊥3 h>4 h⊥4

The following figures show how activations propagate through the network on each

iteration, starting in the input layer at the bottom. Red arrows and grey cells indicate

active connections and units. As before, a fixed point is reached after three steps.225

A> A⊥ B> B⊥ C> C⊥> ⊥

A> A⊥ B> B⊥ C> C⊥

h>1 h⊥1 h>2 h⊥2 h>3 h⊥3 h>4 h⊥4

The first iteration starts off with > and ⊥, the latter of which activates the h⊥1

neuron, which, being set as an ’or’-gate, has a threshold of 0.5 and this in turn activates

A⊥ in the output, because the ’and’-gate with a single clause also has a threshold of

0.5.230
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A> A⊥ B> B⊥ C> C⊥> ⊥

A> A⊥ B> B⊥ C> C⊥

h>1 h⊥1 h>2 h⊥2 h>3 h⊥3 h>4 h⊥4

The Second iteration then starts with A⊥ active and this activates h>2 and B> in the

output.

A> A⊥ B> B⊥ C> C⊥> ⊥

A> A⊥ B> B⊥ C> C⊥

h>1 h⊥1 h>2 h⊥2 h>3 h⊥3 h>4 h⊥4

On the third iteration, the now active B> input unit activates the h⊥3 unit, but does235

not activate h>4 , as the ’and’-gate has a threshold of 1.5 and the second incoming con-

nection from C> is not active. the C⊥ unit in the output also has a threshold of 1.5 and

does not activate. At this point the output equals the input, not taking into account the

auxiliary > and ⊥ units, and a fixed point is reached.

2.3. The backpropagation algorithm240

The backpropagation algorithm, introduced in [21], has become the probably most

widely used training algorithm for feed-forward networks. It offers a computationally

efficient way of deriving the partial derivatives of the cost function for classification

error with respect to each weight of the network. The partial derivatives are then used
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for adjusting the weights, usually through gradient descent, so the cost function is min-245

imized. The name backpropagation derives from the order in which the partial deriva-

tives are calculated. This process begins in the output layer and propagates backward,

layer by layer, as the calculation in each layer requires the results of its successor.

The derivation of the backpropagation algorithm is fairly general and holds for dif-

ferent cost and activation functions. Given the binary nature of the targets, we choose250

the logistic cost function 4 , because it encourages binary output. As activation func-

tion, the standard sigmoid is used. The specific formulas used in the algorithm depend

on the choice of function. A derivation for the algorithm with quadratic loss function,

along with a general introduction to the algorithm, can be found in [27] and an analo-

gous derivation for the backpropagation that was used here is provided in the appendix.255

The implementation uses on-line training, which means that weights are updated ev-

ery time after calculating the error for one randomly selected sample. The advantage

of on-line learning over batch training for our purposes is that the former better ac-

commodates the large variations in sample size that are encountered in different cores.

Aside from this, the choice is of no conceptual importance.260

Additionally, in our experimental implementation the naı̈ve backpropagation algo-

rithm has been enhanced by using a momentum term, saving the weight adjustment

terms in each iteration and adds a fraction of them to the weight adjustment in the next

iteration. This tends to speed up convergence by preventing fluctuation of the weights

to some extent and also leads to some robustness against small local optima. Since265

we focused on qualitative rather than quantitative results, this is the only significant

modification to the original algorithm. Where a consistent, if limited, level of learning

success can be shown with our basic implementation, it is plausible to assume that fur-

ther attempts with more sophisticated versions of the learning algorithm (also includ-

ing, for instance, techniques such as regularization, linear-least-squares initialization,270

or simulated annealing) will yield much better results.

4J(~w) = 1
m ∑

m
i=1[(y

(i) logh~w(x(i))+(1− y(i)) log(1−h~w(x(i)))], with ~w the vector of weights and h~w(x(i))

the output produced by the network with sample input x(i) as compared to sample output y(i).

13



3. Theory and implementation of learning cores

We now document the theoretical groundwork and the actual implementation which

have gone into this project, beginning with modifications made to the core architecture,

followed by some remarks on the learning algorithm and a thorough discussion of the275

proposed rule extraction algorithm. The section closes with a list of control measures

used in the implementation.

Before supervised learning can be attempted in cores, three problems have to be

addressed:

1. The core architecture must reach fixed points to compute results. While the ex-280

istence of these fixed points has been proven for translated programs, this result

does not generalize to cores whose weights have changed over the learning pro-

cess. The first task, therefore, is to ensure the existence of fixed points throughout

the learning process.

2. Following the example given, for instance, in [28], a differentiable activation285

function must be introduced, while preserving the core’s semantics. The back-

propagation algorithm relies on the computation of derivatives of the cost func-

tion which includes the activation functions of the network. The Heaviside func-

tion is not differentiable and must be replaced.

3. One must decide, what kinds of samples will be used for supervised learning.290

The core in its original form is only capable of computing the least fixed point,

when starting from an empty interpretation. If one wants to capture any of the

structure of the program, more than one sample is needed for training.

The following subsections address these issues in turn, before drawing all the indi-

vidual steps and solutions together in a backpropagation algorithm for learning cores.295

The second to last subsection then introduces the rule extraction algorithm, before the

final subsection shortly touches upon two measures introduced in order to assure the

proper functioning of the developed methods.
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3.1. Ensuring a fixed point with unipolar weights

Convergence to a fixed point is essential to the core method. While this prop-300

erty is guaranteed for Hölldobler’s and Kalinke’s discrete cores and will be proven for

their sigmoidal analogs below, it is difficult to ensure it throughout the learning pe-

riod, where the network may change drastically and with little regard for the structure

in which it is embedded. Convergence, therefore, should be guaranteed by something

other than the initial setting of the weights. A possible solution to this issue, and the305

one employed here, is to restrict the network to unipolar weights. When limiting all

non-bias weights to positive values, there are no inhibitory connections and thus the ac-

tivation of the network will monotonically increase on every iteration until it plateaus

at a fixed point. On the downside, the elimination of inhibitory units of course reduces

the modelling capacity of the network. The reason it can nonetheless be done in good310

conscience here, is that the translation of logic programs into cores itself only uses pos-

itive weights and thus ensures that every Łukasiewicz logic program to be learned by

a core can be fully modelled, and therefore also learned, using these simpler unipolar

networks.

A standard activation function used in feed forward networks is the sigmoid func-315

tion sig(z) = 1/(1+ e−z) where z = ~wT~x, the dot product of the weight vector and

the incoming activations. In the implementation of unipolarity is achieved by squaring

all but the bias weight in the activation function. So, while the sigmoid function re-

mains the same, z is now computed as w0 · x0 +∑i>0(
1
2 (wi)

2 · xi). The values stored in

the weight matrix may still be negative, but will effectively be treated as positive. To320

preserve the previous behaviour of cores, all non-bias weights are replaced by their re-

spective square root after the translation algorithm has been applied. With this measure,

the translation algorithm can ignore the modification to the activation function and act

as if it was the standard sigmoid, so long as it only sets positive weights. The subse-

quent argument that semantics are preserved in the sigmoidal core will also assume the325

standard activation function.
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3.2. Preserving core semantics

With the introduction of sigmoidal activation to the network, the range of possi-

ble activations for each neuron changes from 0 and 1 to the interval ]0,1[, and what

it means for a neuron to ’fire’ becomes less clear. To ensure compatibility with the330

core architecture, the network’s output is discretized by rounding it half up to 0 and 1.

A fixed point is reached when this rounded output is equal to the input of the current

iteration. Whithin the network, however, instead of an activation value it makes more

sense to define an interval bounded by a certain value [A+,1] where all activation val-

ues in that interval are considered as firing, and another interval [0,A−] of activations335

regarded as not firing.

As these two intervals should be disjoint, it follows that A− < A+ and because the

classification into firing and non-firing is integral to the way the core is built, it must be

ensured that no activations in the interval ]A−,A+[ are produced. Given these changes,

the approach of using logic gates, which was explained in the previous section, can340

be maintained, but must deal with the following complications. Because the output

of a non-firing neuron is no longer 0, and can take on values up to A−, an ’or’-gate

must ensure that it won’t fire, even if all connected neurons send an activation of A−

each, while at the same time guaranteeing that it will fire if one neuron sends activation

A+ and all others send nothing. Similarly ’and’-gates should fire when all connected345

neurons from the previous layer send A+, but not if all but one send an activation

of 1 and the last one sends A−. It becomes clear that these constraints of maximal

non-activating input and minimal activating input5 can only be satisfied with the right

choice of A− and A+. In the core, both A− and A+ are determined by the value of

ω. If ω is large, A− and A+, approach 0 and 1 respectively. For a small ω, both350

values lie close to 1/2. It can be shown, that semantics of the network are preserved

if ω > 2log(2deg− 1), where deg is the maximum in-degree among neurons in the

output layer. The formal proof for this can be found in the appendix.

5The terms are used here in a different context than later on during rule extraction.
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3.3. Fixed point calculation with initial activation

The original core architecture serves to compute fixed points for a given logic pro-355

gram and no additional input. Evidently, this one sample of (empty) input and cor-

responding output does not contain exhaustive information about the program which

produced it. To train a network which captures the functionality of the program, more

samples are required. Given the context of logic programs, it seems like an obvious

choice to generate additional samples for possible interpretations of the atoms. There360

are 3n possible interpretations for a set of ternary logic formulas P with n atoms. What

additional inferences P allows, based on a partial interpretation, provides information

about P, and having this information for all 3n interpretations specifies P to its semantic

equivalence class.6

3.3.1. C-interpretation365

A naı̈ve approach for using such partial interpretations in a core is to enforce them

as the base activation while running the core, and see what additional inferences are

drawn before reaching a fixed point. This is achieved by adding the interpretation to

every starting activation on the first iteration as well as to the output at the end of

every iteration. This method must be called naı̈ve because the underlying definition of370

interpretations, while applicable to Łukasiewicz logic, actually makes very little sense

for the weakly completed logic programs at hand. Determining the value of an atom

from the outset, while leaving the program as is, takes away both the non-monotonicity

and the property of non-contradiction. On the plus side, only few changes to the core

are necessary to accommodate this interpretation, which will from now on be referred375

to as C-interpretation.

3.3.2. Ł-interpretation

In order to preserve the semantics of weakly completed Łukasiewicz logic, an al-

ternative Ł-interpretation is proposed. Here the process will be handled slightly differ-

ently, as it seems more adequate to model different interpretations in such a way that380

6 If the interpretation leads to no contradictions, it is a model of P, otherwise it is not. Knowing all

possible interpretations of P provides the full extension.
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they represent logic programs in their own right. As such, setting an atom A to > or ⊥

in the interpretation should have the same effect as adding a positive or negative fact

to the program. Doing this preserves the important property, that the Stenning-van-

Lambalgen consequence operator always reaches a model. Note that in this choice of

interpretation setting atoms to false only has an effect, if they do not occur as heads of385

clauses in the program, and that setting atoms to true in the interpretation will prevent

the consequence operator from inferring these atoms to be false even if all other clauses

in the program would lead to this conclusion.

Going with the interpretation as adding clauses to the program, the most intuitive

approach would be adding neurons to the hidden layer of the core which represent these390

rules. Unfortunately this does not seem like a viable option. The addition of neurons

would change the in-degrees of some of the core’s output units which would in turn

necessitate an update of their respective bias weights, in order to maintain Łukasiewicz

semantics. For each interpretation there could be changes to the whole network which

would not only be computationally costly but also pose problems in the context of395

learning, where changes to the core network should likely be limited to the learning

algorithm itself.

Instead it appears more promising to adjust the way in which the inputs to the

network are generated and outputs are interpreted. For negative facts like A←⊥ this

is can be done fairly simply. Given weak completion these clauses only affect the400

program at all, if there is no other clause with head A in the program. In this case A

will be set to ⊥ and keep this value, as there is no other clause to change it. This can

be modelled in the core by checking the in-degree of the atom’s associated output unit

in the network. If the in-degree is 0, A is set to ⊥ in the input to the network on every

iteration as well as on the final output, which in the neural net means the activation405

of the neurons corresponding to A is (0,1). Positive facts of the type A←> have to

be treated differently. If such a clause exists, A will be true independently of the rest

of the program. This means A should be set to > on all inputs as well as the final

output, i.e. the activation is set to (1,0). Because the clause is part of the interpretation

and not translated into the network, the network will still produce activation in the A⊥410

output neuron, whenever all program clauses with A in the head are false. The arising
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contradiction must be resolved and the easiest way of doing this is to set activation of

the A⊥ neuron in the output to 0 on all inputs and the final output.

3.3.3. C*-interpretation

In addition, a form of Ł-interpretation will be tested, which is different only in that415

it leaves out the contradiction resolution step. The resulting new C*-interpretation can

be viewed as using explicit negation, rather than the negation by failure present un-

der Ł-interpretation, with regards to elements of the interpretation. Unfortunately, this

makes the logic monotonic and allows for contradictions. C*-interpretation is nonethe-

less of interest because, as will become obvious from the results reported below, it can420

be trained better than Ł-interpretation but still bears some similarities. Training un-

der C- and C*-interpretations performs so similarly that C-interpretation will not be

discussed separately in the empirical results.

It is clear that all three interpretations generate the same output for empty inter-

pretations. Furthermore it can be shown, that all non-contradictory models under C*-425

interpretation are equivalent to the Ł-interpretation under the same input7. All three

interpretations have been implemented and tested.

3.4. Backpropagation in cores

With the modifications to the core that have been described above it is now possible

to create samples and test the core’s capacity for learning. In the given set-up, two cores430

are used. The first core is generated by translating the complete program into it and is

subsequently run with all possible inputs computing the desired outputs, the pairs of

which will be used as training samples. Core number two is created based on a partial

version of the program, where some clauses have been deleted. The learning task now,

is to train the second core with samples from the first one and see whether it can learn435

the missing parts of the program.

It may take the core multiple iterations to reach a fixed point, but only the last one

is used for training. For a given sample, the core is run on the sample input and when

7A sketch of this proof is provided in the appendix
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reaching a fixed point returns activation values of all the networks layers. Note that

the activation of the output layer is not the final output of the core, which may contain440

modifications from interpretation or contradiction-resolution. The backpropagation al-

gorithm is then applied to the network with that activation. Due to the non-classical

activation function used in the network, the algorithm differs slightly from its more

common form. The derivation of the relevant formulas found in the appendix is done

analogous to the proof of standard backpropagation found in [27].445

3.5. Rule extraction

The algorithm for extracting information from a core discussed in this section fo-

cuses on C- and C*-interpretation. It has been pointed out previously that through

iterations the core’s activation increases monotonically under these interpretations, due

to a lack of inhibitory connections in the network. The same reasoning ensures mono-450

tonicity with regard to interpretations. While the number of possible interpretations

rises exponentially with the number of atoms, diminishing hopes for a tractable rule

extraction algorithm, the property of monotonicity allows for heavy pruning, making a

viable solution at least for small sample sizes possible.

Our algorithm is inspired by the approach for knowledge extraction and the corre-455

sponding algorithm for regular networks from [29]. Still, the method presented here

warrants an independent introduction as well as analysis for soundness and complete-

ness.

3.5.1. The basic extraction algorithm

The algorithm extracts all minimal activating and all maximal non-activating inputs460

for each output neuron of the network, which can then be used to compute the logical

rules generating this activation. In the following, the set of all inputs to the network

will be looked at as a partial order with the input vector of zeros as bottom element

and the vector of ones as top element. Input vectors are ordered in such a way that

v1 ≥ v2⇔∀i : v1[i]≥ v2[i].465

For each output neuron separately, the algorithm traverses the space of all possible

interpretations by advancing alternatingly an upper and a lower boundary of interpre-
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tations starting from top and bottom element. The new boundaries are generated by

computing all direct successors of each element of the existing boundary. For an el-

ement of the lower boundary a direct successor is a copy of the element in which470

exactly one activation is changed from 0 to 1. The direct successor of an element in

the upper boundary, analogously, has one active input less than that element. All in-

puts connected through a series of direct successions will be called successors and the

definition for predecessors follows from this. An input in the lower boundary is said to

be subsumed by an activating input if it is a successor of that input and is subsumed by475

a non-activating input, if it is a predecessor of that input. For subsumption in the upper

boundary, successor and predecessor relations are reversed. In either case, the target-

activation produced by the subsumed input is equal to, and therefore determined by, the

other input. Whenever an activating input is found in the lower boundary, which is not

subsumed by an input already stored in the set of minimal activating inputs, it is added480

to that set. The progression through a lower boundary ensures that all predecessors

have already been checked and the one that has been found is in fact minimal. Also,

if all direct successors of a non-activating input are activating, then that input is added

to the list of maximal non-activating inputs. In the upper boundary, relevant inputs are

found in an analogous manner, where activation is the default. The algorithm termi-485

nates once the two boundaries have passed by one another, which is not implemented

explicitly, but a result of the pruning mechanisms discussed below.

Prior to pruning, the soundness and completeness of the extraction algorithm are

evident, but spelled out here for the sake of completeness. All activating inputs found

in the lower boundary, which are not greater than previously found ones are minimal,490

as all smaller activating inputs would be in that set. Complementary, all non-activating

inputs whose direct successors are activating are maximal, as all their successors are

activating due to monotonicity. The analog holds for the upper bound. Thus the ex-

traction is sound. All minimal activating inputs are found by the algorithm, as they are

activating and not subsumed by any other activating inputs. All maximal non-activating495

inputs are found by the algorithm as the successors of each are activating by definition.

Here, too, the analog is true for the upper bound and so the extraction is complete as

well. Later it will be shown that both properties are preserved under pruning rules.
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3.5.2. Pruning

Due to the monotonic nature of the space of possible inputs, once an activating500

input is found in the lower bound, none of its successors need to be investigated any

more, as all of them will be activating as well. An efficient extraction algorithm must

therefore limit its exploration of the space of possible inputs to the relevant nodes which

may hold new information. The pruning is best explained from the perspective of one

of the boundaries. From the perspective of the lower boundary, minimal activating505

inputs will be called rules and maximal non-activating inputs are called anti-rules (for

lack of a better term). These terms are relative to the boundary, such that rules in the

lower boundary are anti-rules in the upper boundary and vice versa. When a rule is

discovered, all of its successors should be pruned, as their values will hold no new

information. This must be ensured both in the current boundary, where it is a rule,510

and the opposite boundary, where it is an anti-rule and two pruning mechanisms ensure

this.

The pruning mechanisms can not be explained without covering the specifics of the

algorithm in some detail. It may help to have a look at the pseudo code provided in the

appendix for reference.515

To avoid too much confusion, the algorithm refers to inputs as vertex objects, owing

to the graph-like feel of the partial order. Alongside its input value and a number of

other things, each vertex stores a memory array to keep track of the direct successors

it should generate and those that should be pruned. This array has one entry for each

neuron, which is 1, if switching the value of this input from 0 to 1 or vice versa will520

generate a valid successor, 0 if the successor and all subsequent successors are invalid,

and -1 if the direct successor is invalid, but later ones may be valid.

The test function checks whether a vertex is a rule or subsumed by an anti-rule.

If the vertex is a rule, the memory array is set to all zeros, so that no successors are

generated and the vertex is added to the set of found rules. If the vertex is subsumed525

by an anti-rule, some, but not necessarily all successors will be subsumed as well. In

all places where switching the input would generate a subsumed direct successor, the

memory array is set from 1 to -1.
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This information is utilized in the successors function. As the name suggests, this

function creates the direct successors of a given vertex, but also uses the step to ex-530

change pruning information among the successors. Firstly, the input vertex is tested

again, in case new anti-rules were discovered while traversing the other boundary.

Then, each valid direct successor of the vertex (as indicated by the memory array) is

looked up and if it does not exist yet, is generated and tested. For each such successor

which is a rule, the preceding vertex’s memory is set to 0 at the index, which was used535

to generate that successor, indicating that this successor should not be investigated fur-

ther. After this has been completed, all the successors are traversed for a second time

and all 0s from the vertex memory are copied into their respective memories as well.

This way, each successor receives information about all vertices, with which it shares

a common direct predecessor. Now, when a rule is discovered, all of its direct prede-540

cessors will set the index in their memory which generated this rule to 0 and pass this

information on to all their successors. If a vertex subsumed by the rule were to be gen-

erated, it would have to have a direct predecessor which is not subsumed by the rule (or

the problem propagates down until this condition occurs). This predecessor, however,

must be a successor of one of the rule’s predecessors. Therefore it would not generate545

that vertex and it follows that no vertices subsumed by rules are generated. Note that

the same does not hold for anti-rules. Finally, the successors function also serves to

determine, whether the given vertex is an anti-rule. This is the case, if the vertex is not

subsumed by an anti-rule (i.e. no entry in the memory is set to −1) and no generated

successor has the same target-activation value as the vertex. As rules trivially share550

these properties by having all their successors pruned, they must be filtered out. This

is done by checking for the right target-activation, given the vertex’s boundary, before

adding it to the set of rules. In the lower bound an anti-rule must be non-activating,

and activating, if in the upper bound. So now, when the rules for target function fi-

nally creates the two boundaries and traverses the partial order, the pruning ensures no555

vertices that are subsumed by known rules are looked at.

The anti-rule related pruning is handled with some care by the algorithm, as it can

lead to problematic cases. In general, it might happen, that all direct successors of a

vertex are subsumed by some anti-rules. In such a case, declaring all direct succes-
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sors invalid could hinder the generation of valid ones down the line. If, for example,560

(1,1,1,1,0,0,0) and (1,0,0,0,1,1,1) were known anti-rules, the lower boundary in-

put (1,0,0,0,0,0,0) would generate no direct successors and unsubsumed successors

like (1,0,0,1,1,0,0) would not be reached. In the algorithm this problem is solved

by looking only at the first anti-rule found, rather than the whole set of subsuming

anti-rules. Apart from the trivial case where the anti-rule is the top or bottom element565

(which ends the search as either all inputs are activating or none are), a single anti-rule,

will not prune all successors of the vertex. The indices at which the anti-rule differs

from its predecessors (of which, barring the trivial cases, it has at least one) can be

changed in the vertex to generate valid successors.

Of course this strategy can, at times, dismiss useful information and generate ver-570

tices which are subsumed by known rules at the point of creation. As a stand-in for

more elaborate methods it will suffice to generate some first results.

In order to ensure that soundness and completeness are maintained, it must be

proven that pruning neither changes the results of examining a particular vertex, nor

prevents any rule vertices from being examined. Addressing part one, the test for rules575

functions in the same way as without pruning and only relies on the vertex’s target

activation value, which is not affected by pruning. With pruning, the test for anti-rules

employs the memory of the given vertex, rather than looking at all successors, but it

does so, only to infer the target-activation values of the invalid immediate successors.

Assuming that rules have been identified correctly, every 0 in the memory is linked to580

a successor which has a different target-activation value than the vertex. Each −1 is

linked to a successor which has the same value as the vertex. Generating each of these

invalid successors would take more time but yield the same result. Therefore all exam-

ined vertices are still classified correctly. The second part follows from the soundness

of the pruning algorithm.585

3.5.3. Example: rule extraction

As an illustration of the extraction algorithm, we consider a network with only two

literals A and B, which encodes the clause A← B. The range of possible inputs forms a

partial order of 16 elements. In the figure below, E denotes the error input, where both
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> and ⊥ unit of a literal are active.590

uA,uB

>A,uB ⊥A,uB uA,>B uA,⊥B

EA,uB >A,>B >A,⊥B ⊥A,>B ⊥A,⊥B uA,EB

EA,>B EA,⊥B >A,EB ⊥A,EB

EA,EB

The extraction algorithm is applied for each of the four units (A>, A⊥, B>, B⊥)

separately. We begin by looking at A>. Memory cells of highlighted elements are

encoded as a 4-tuple, which indicates changes to the units in the same order. So,

for example, element (>A,uB) with memory [0,1,0,1] will generate the successors595

(EA,uB) and (>A,⊥B).

uA,uB

>A,uB ⊥A,uB uA,>B uA,⊥B

EA,uB >A,>B >A,⊥B ⊥A,>B ⊥A,⊥B uA,EB

EA,>B EA,⊥B >A,EB ⊥A,EB

EA,EB

[1,1,0,1]

[0,1,0,1] [1,0,0,1] [0,0,0,0] [1,1,0,0]

Starting at the bottom element, we find that zero activation in the input does not

activate A>. Going through the four immediate successors, (>A,uB) and (⊥A,uB) both

turn out as non-activating inputs and are queued up for the following iteration. Then600

(uA,>B) is tested and turns out to be a minimal activating input, i.e. a rule, and the

memory of the bottom element is adjusted accordingly from [1,1,1,1] to [1,1,0,1].

After testing (uA,⊥B) and adding it to the queue as well, the memory of the three

successors is updated by the bottom element.
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uA,uB

>A,uB ⊥A,uB uA,>B uA,⊥B

EA,uB >A,>B >A,⊥B ⊥A,>B ⊥A,⊥B uA,EB

EA,>B EA,⊥B >A,EB ⊥A,EB

EA,EB

[0,1,0,1] [1,0,0,1] [0,0,0,0] [1,1,0,0]

[−1,−1,0,−1]

[0,0,0,0]

605

The second element in the queue is the top element, which activates A> upon testing

is therefore not a rule of the upper bound. It is, however, subsumed by the newly

discovered anti-rule (uA,>B) and the element’s memory is updated to [−1,−1,1,−1]

to reflect this. As a result, three of the four direct successors are pruned. The fourth

one, (EA,⊥B), is generated, queued and tested. It turns out to be a maximal non-610

activating input and thus an upper boundary rule. The top element’s memory is updated

to [−1,−1,0,−1] and this update is passed to all its successors, which has no effect in

this case.

uA,uB

>A,uB ⊥A,uB uA,>B uA,⊥B

EA,uB >A,>B >A,⊥B ⊥A,>B ⊥A,⊥B uA,EB

EA,>B EA,⊥B >A,EB ⊥A,EB

EA,EB

[0,−1,0,−1] [−1,0,0,−1] [0,0,0,0] [−1,−1,0,0]

[0,0,0,0]

Next, the four queued lower boundary elements are tested. One is the lower bound615

rule and the three others are all subsumed by the anti-rule (EA,⊥B), and after updating

their memories, no new successors are queued. Finally, the upper bound rule is taken as

a last element from the queue, producing no successors, and the algorithm terminates.

In the case of each of the other units (A⊥,B>,B⊥) the upper bound immediately

terminates as a rule, because no input activates these units.620
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3.6. Controls

Verifying the correctness of an implementation as a whole beyond the checking of

test cases is usually associated with an enormous effort and has therefore not been in

the scope of this project. Checks have been installed at two crucial steps in the program

which are worth mentioning:625

1. A function has been implemented which can run a core with discrete activation

units as in the original algorithm (with the one difference that it squares all non-

bias weights to compensate for the fact that they were reduced to their square

roots in the new translation). The function is used to run a core with both kinds

of activation and for all possible inputs under a chosen interpretation, returning630

an error if the activations reach different models for the same input. This way,

it is possible to verify that the implementation of the translation algorithm with

sigmoidal units does preserve the semantics of the cores.

2. As a standard measure to ensure the correctness of the implementation of the

backpropagation algorithm, numerical gradient checking has been implemented.635

As gradient checking is computationally costly, it is only used on a small number

of training samples to verify the correctness of backpropagation and disabled

for the actual training of the network. Given the more complicated nature of

learning in a core as compared to the classical application of backpropagation

there are a number of other errors that may occur which prevent learning and are640

not detected by gradient checking, but the method still serves to eliminate one

common source of errors.

4. Empirical results

Test following test results are based on an implementation in Julia.8 The source

code of our implementation is open source and available for download from GitHub.9As645

already stated before, a thorough quantitative analysis of training results is not within

8julialang.org
9GitHub ID omitted for blind review.
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the scope of this article. Instead, several exemplary cases will be used to highlight

consistently observed features of the learning process.

The first such program is displayed below in the format, in which it is read by the

implementation. To keep things simple and in ASCII-encoding,←, ∧, and ¬ have been650

written as <-, & and - respectively. The partial program, consisting of clauses 1, 5 and

6, is translated into a core and then trained on samples generated from the full program.

4.1. Comparison of C*- and Ł-interpretation

a <- b & -d & -e

b <- a

c <- b

d <- FF

e <- c & d

e <- -a & -b

(a) full program

a <- b & -d & -e

e <- c & d

e <- -a & -b

(b) partial program

Figure 3: P1

The first example program illustrates that there are cases in which the method yields

good results under C*-interpretation. Training was done with learning rate and mo-655

mentum of 0.05 under C*-interpretation and 0.02 under Ł-interpretation. During the

learning process a number of parameters are measured and reported for intermediate

results after every 200 training steps (500 in later examples). %corr indicates the per-

centage of correctly classified training samples, while eTotal measures the total number

of errors, i.e. the number of incorrect rounded outputs over all output neurons and all660

samples. In addition, avgIt gives the average number of core iterations over all samples

and costJ is the total value of the error cost function. If the learning algorithm functions

correctly, one would expect a steady decline in the cost function, followed by decrease

of the total number of errors, which, in turn, leads to an overall rise in the amount

of correctly classified samples. Since %corr does not differentiate between samples665

with just one error and samples in which every single neuron is wrongly classified, the

latter correlation can be quite weak. Especially when the overall number of errors is
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still high, %corr may even increase, as eTotal is reduced, but more evenly distributed

across the samples. A similar distribution of errors may also happen in the relationship

between cost function and number of errors.670

For the C- and C*-interpretation samples, training of the first test program tends to

converge after two to three thousand iterations. Depending on the random initializa-

tion, usually one of two optima is reached, the first one being at around 80% correct

classification, the second one at 100%.
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Figure 4: P1 training results under C*-interpretation

Under Łukasiewicz interpretation, the cost function can still be seen to generally675

decrease, though not always monotonically, before it starts to fluctuate. Choosing

smaller learning rates remedies the fluctuation to some extent, but in many cases the

algorithm does not seem to converge even for small learning rates.10 The graphs also

show less correlation between the cost function and the total number of errors. This can

be attributed to the conflict resolution mechanism active under Ł-interpretation, which680

may generate errors on the final output that are not accounted for in the cost function.

10Choosing very small learning rates (in the given example the threshold is at around 0.00003) leads to a

steady increase of the cost function. This has been observed across all examined cases but the source has not

been found.
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Figure 5: P1 training results under Ł-interpretation

4.2. Correlation between error measures

Often times, as displayed by the second example, the learning process quickly gets

stuck in local optima under C*-interpretation. While the cost function converges, the

average number of iterations keeps fluctuating. Still, this does not seem to affect the685

classification performance. Under Ł-interpretation, results are less clear-cut, but the

correlation between costJ, eTotal and %corr is still clearly recognizable.

a <- b & c

b <- d & -e

c <- e

c <- b & -e

d <- a

e <- FF

(a) full program

a <- b & c

b <- d & -e

c <- e

c <- b & -e

(b) partial program

Figure 6: P2
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Figure 7: P2 training results under C*-interpretation
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Figure 8: P2 training results under Ł-interpretation
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4.3. The problem of hidden errors

The third program to be examined contains eight atoms, three more than the pre-

vious programs. This adds six neurons to the network and increases the number of690

training samples from 243 to 6561. The fluctuation in the plots can in part be explained

by this fact. Steps of 500 samples make up less than 10% of the total sample size and

may at times lead the algorithm in different directions.

What is interesting about this example, is how the algorithm can be observed plum-

meting in overall performance in the first 500 training steps. This can be attributed to695

two factors. Under the logistic cost function, which incentivises many smaller errors

over fewer large ones, distributing the error may serve to reduce the overall cost, but

increase the total amount. Secondly, the backpropagation algorithm is based on the

network output. And as the final output is created only after all facts from the in-

put, backpropagation will perceive all misclassifications which are fixed by this final700

step. Correcting for these errors will decrease the cost function, but does not increase

the core’s performance. Under Ł-interpretation, the contradiction resolution step con-

tributes to this problem with an additional layer of error correction invisible to the

learning algorithm. Moreover, this step cannot be modeled without inhibitory connec-

tions, which leaves the algorithm trying—and failing—to correct an error that does705

not actually exist. There may be multiple reasons for the weak performance under

Ł-interpretation, but this is certainly one of them.

In this example, these shortcomings are underlined by the fact that the initial per-

formance from partial background knowledge is much better than the local optimum

reached through training.710

32



a <- TT

b <- a & -c

d <- c

d <- e

f <- e & -b

f <- a & g & -d

h <- FF

(a) full program

a <- TT

b <- a & -c

f <- e & -b

f <- a & g & -d

h <- FF

(b) partial program

Figure 9: P3
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Figure 10: P3 training results under C*-interpretation
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Figure 11: P3 training results under Ł-interpretation

4.4. Core compression

The final program examined here, is simply a long chain of inferences. The training

results are meant to highlight a phenomenon that is less pronounced but observable in

most trained cores. In this extreme case the partial program starts with an average

number of iterations of 4.14, which immediately drops to around 2, changing very715

little thereafter. This number includes the last iteration where input and output must

be equal. Therefore, in all but very few cases, the inference is compressed into one

iteration. In general, trained cores tend to have fewer iterations on average than their

translated counterparts. This can be explained by the fact, that the backpropagation

algorithm does not take multiple iterations into account and optimizes for correct output720

after just one iteration. This property does not decrease the performance of trained

cores, but it does suggest that they do not fully utilize the core-architecture.
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b <- a

c <- b

d <- c

e <- d

f <- e

g <- f

g <- FF

(a) full program

b <- a

c <- b

d <- c

e <- d

f <- e

g <- FF

(b) partial program

Figure 12: P4
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Figure 13: P4 training results under C*-interpretation

4.5. Analysis through rule extraction

The developed rule extraction method is not yet suited to provide a complete picture

of the information contained in a core, but it may be used to take a look at individual725

neurons and their activation rules. This can be done both for translated and trained

cores to see, what differences remain after training.
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out(d>) a> a⊥ b> b⊥ c> c⊥ d> d⊥ e> e⊥ f> f⊥ g> g⊥ h> h⊥

translated 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

translated 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

translated 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

trained 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

trained 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

trained 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Figure 14: Extracted minimal activating inputs of d> in P3

out(f>) a> a⊥ b> b⊥ c> c⊥ d> d⊥ e> e⊥ f> f⊥ g> g⊥ h> h⊥

translated 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

translated 2 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

translated 3 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0

trained 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

trained 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Figure 15: Extracted minimal activating inputs of f> in P3

In the third example above, for instance, in which the core was generated from the

program P3 with two missing clauses d <- c and d <- e and then trained, it turns

out that the d> neuron’s activation rules in the trained core match the full program.730

While learning was successful with regard to d>, d⊥ does not show any activation in

the trained core, whereas the core containing the complete translated program has an

activation in d⊥ when both c⊥ and e⊥ are active.

These findings alone do not explain, why the trained core classifies less than 10%

of samples correctly. Looking further, it can be found that other inference structures735

have largely broken down. For instance, f> has three activation rules in the core con-

taining the complete program. In the trained core, two rules are extracted, one of which

is wrong. This does not mean, that the connections to the f> output neuron are neces-

sarily wrong. Due to the core’s multiple iterations, the activation patterns of different

neurons are highly interdependent and errors are hard to localize.740
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5. Closing discussion and future work

With this project we set out to investigate the applicability of the backpropagation

algorithm to Łukasiewicz logic cores. This goal has been met, be it with mixed re-

sults. In order to train the cores, a number of modifications had to be made. Sigmoidal

activation units were introduced, along with the proposition of unipolar weights, and745

several options for the generation of training data have been discussed. These steps

have been motivated and provided with formal proofs where it was considered nec-

essary, resulting in a trainable core as an intermediate result. Further research on the

topic, for example using other supervised learning methods, can be based on this type

of core as well. The training process itself is more problematic, as training of cores750

under Ł-interpretation clearly does not perform as well as desired. Whether this weak

performance can be sufficiently improved by standard augmentations of the algorithm

or whether the contradiction resolution mechanism used in Ł-interpretation prevents

backpropagation from functioning properly on a more general level, is not clear at the

moment. In addition, a rule extraction algorithm has been proposed for cores trained755

under C- or C*-interpretation. This is very much a work in progress, but should also in

its current state provide a starting off point for other ventures in that direction. In the

following, a number of problems of the project are discussed, whose resolution would

offer ways of tackling the issue of weak performance. They are followed by a list of

more specific objectives for future endeavors to improve the project.760

5.1. Challenges

In this subsection we shortly outline three open questions which we consider the

main challenges for future work continuing from the described stage of development.

5.1.1. Proof for last-iteration backpropagation

At this point our work is lacking a proof for the functioning of backpropagation in765

the way, in which it has been applied. While it is an established fact, that an MLP with

a sufficient number of hidden units will be able to model the behaviour of the types of

logic programs presented here, and it is evident that a unipolar MLP embedded in the

core structure is powerful enough to accomplish this task as well, it is less clear how a
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unipolar core can be trained to reach this performance. The method of training the core770

only on the last iteration, in which the input equals the output, does not take the core’s

capacity for multiple iterations into account. It also means that the algorithm is only

guaranteed to work as intended on those inputs which are themselves fixed points. One

indication that backpropagation may not be the method of choice for training cores is

the empirical result, that the average number of iterations in the core tends to decline775

rapidly over the learning process, before usually settling somewhere around 2, which

is also the minimum possible number for all non-fixpoint inputs. This suggests that

information about the program is compressed in the network, leading to redundancy,

rather than building on itself, as seen in an untrained core.

5.1.2. Missing link between C* and Ł780

Another problem which remains unsolved at the current stage is the disparity be-

tween Ł- and C*-interpretation. As the empirical results indicate, Ł-interpretation is

a lot harder to train and the C- and C*-interpretations have been used, in large part,

as a stand-in, so learning and rule extraction could be explored, in the hope that the

gap to Ł-interpretation could be bridged later on. In case this problem cannot be ad-785

dressed in a satisfying manner also in the future, another route would be to explore,

how much training a network on C*-interpretation samples can improve performance

on Ł-interpretation test sets. While C*-models are not generally equal to Ł-models,

their similarities might be sufficient to motivate learning on one interpretation in order

to improve performance on the other.790

5.1.3. Implausibility of C*-samples

The problem with this last option and learning on C*-samples in general is that,

while it is easy to produce C*-interpretation samples for training in the course of this

project, any actual application scenario for Łukasiewicz cores will naturally provide

Ł-model samples. A method for translating them into their C*-model equivalents has795

not yet been put forward and remains an open question for future work.

38



5.2. Improvements

While the previous subsection focused on open problems, we now want to hint at

three fairly straightforward approaches to improving the performance of the described

system beyond the current status quo.800

5.2.1. Modified backpropagation for better results

As has been outlined in the introductory section, there are a great number of mod-

ifications that may be applied to the backpropagation algorithm in order to boost its

performance. The version of on-line backpropagation with momentum and standard

gradient descent used here is sufficient to provide qualitative results, i.e. whether or805

not the system improves performance through learning at all. A quantitative analysis

of how well a core can be trained would be the consistent next step. Such an analysis

should employ some additions to backpropagation likely including a better initializa-

tion method for the weights of added neurons and running of multiple initializations.

Performance can then be measured by standard means of crossvalidation, partition-810

ing the samples in training, test, and validation set, to compare the results to other

approaches with a sample size that seems plausible for application scenarios.

5.2.2. Exploration of other optimization methods

Since backpropagation is only one of many optimization algorithms for neural net-

works, it is also promising to look at other more general methods. Most problems with815

the current implementation likely stem from the tight focus of backpropagation on the

neural network, which fails to take the rest of the core architecture into account. Ge-

netic algorithms ([30]) are likely a good fit, as they grant more freedom in defining

fitness criteria. These could, for example, incentivise a higher number of iterations,

preventing the network from condensing all information into one iteration.820

5.2.3. Completion of the extraction algorithm

The proposed extraction algorithm is another area where incremental progress may

be achieved. In its current state the method is not finished, because it is missing a trans-

lation of discovered rules into actual logic program clauses. In trained cores with less
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than perfect classification this task bears some challenges, as they may not represent a825

clean logic program. The relative values of completeness and soundness must then be

weighed against each other in constructing translation methods, a task which warrants

its own thoughtful investigation.

A further goal is to adapt the algorithm to proper Łukasiewicz models. However,

doing so may turn out to be so inefficient, due to the loss of monotonicity, that other830

extraction algorithms should be considered instead. A property which may still prove

useful for pruning is the monotonicity of Ł-models with regard to the addition of neg-

ative facts.11

5.3. Closing remarks

Several problems remain to be solved before the neural-symbolic cycle for three-835

valued Łuklasiewicz cores can be fully closed. Still, the exploration performed as

part of our project and described in the present article provide reference points for

future work on this topic. Work which will contribute to our general understanding,

of how symbolic and statistical systems interact and hopefully lead to a point, where

neural-symbolic methods can be employed to tackle those problems, that are difficult840

to address with either paradigm exclusively.
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11This property can be proven as follows: Adding a negative A←⊥ fact either changes the value of A

from u to ⊥ or not at all. For each atom B: If B = >, then there is a clause B← body with body = > and

as body is a conjunction of literals it cannot have contained A with value u. If B = ⊥, then for all clauses

B← body, body =⊥. There is at least one literal L =⊥ in each body and the values of the other conjuncts

do not matter. Therefore each atom which had a value other than u before the addition of A←⊥ will retain

that value.

40



References845

[1] F. Hsu, Behind Deep Blue: Building the Computer that Defeated the World Chess

Champion, Princeton University Press, 2002.

[2] J. A. Robinson, A. Voronkov (Eds.), Handbook of Automated Reasoning, MIT

Press, 2001.

[3] T. Winograd, Understanding Natural Language, Academic Press, 1072.850

[4] J. Haugeland, Artificial Intelligence: The Very Idea, MIT Press, Cambridge, MA,

USA, 1985.

[5] W. Dai, S. H. Muggleton, Z. Zhou, Logical vision: Meta-interpretive learning

for simple geometrical concepts, in: K. Inoue, H. Ohwada, A. Yamamoto (Eds.),

Late Breaking Papers of the 25th International Conference on Inductive Logic855

Programming, Kyoto University, Kyoto, Japan, August 20th to 22nd, 2015., Vol.

1636 of CEUR Workshop Proceedings, CEUR-WS.org, 2016, pp. 1–16.

[6] R. Plamondon, S. N. Srihari, Online and off-line handwriting recognition: a com-

prehensive survey, Pattern Analysis and Machine Intelligence, IEEE Transactions

on 22 (1) (2000) 63–84.860

[7] C. Berger, B. Rumpe, Autonomous driving 5 years after the urban challenge: The

anticipatory vehicle as cyper-physical system, in: 2012 Proceedings of the 27th

IEEE/ACM International Conference on Automated Software Engineering (ASE

2012), 2012, pp. 789–798.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,865

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis,

Human-level control through deep reinforcement learning, Nature 518 (7540)

(2015) 529–533.

[9] A. Garcez, T. R. Besold, L. de Raedt, P. Földiak, P. Hitzler, T. Icard, K.-U.870
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Appendix A: Proofs925

Backpropagation for logistic cost function with unipolar weights

To follow the notation used by[27], a few terms have to be introduced.

Logistic cost function: J(~w) = 1
m ∑

m
i=1[(y

(i) logh~w(x(i))+(1− y(i)) log(1−h~w(x(i)))]

Error for one sample d: Ed(~w) = ∑k∈out puts[(tk logok)+(1− tk) log(1−ok)]

Weight update term: ∆w ji =−η
∂Ed
∂w ji

930

Weighted sum of inputs to j: net j = x0 ·w0 +∑k>0 x jk · 1
2 (w jk)

2

Sigmoid function: σ(x) = 1/(1+ e−x)

Error term delta: δ j =− ∂Ed
∂net j

The objective of the backpropagation algorithm is to produce weight updates ∆w ji

for all weights for connections from i to j in the network. The learning rate η will be set935

independently and therefore the following proof is mostly concerned with a derivation

of ∂Ed
∂w ji

for each weight.

Because the weight w ji always enters into Ed in the context of net j, using the chain

rule, the partial derivative can be rewritten as follows:

∂Ed

∂w ji
=

∂Ed

∂net j

∂net j

∂w ji

The second factor in the right term yields:

∂net j

∂w ji
=

i = 0 : x ji

i > 0 : w ji · x ji

Using above definition, the formula for weight updates follows.

∆w ji =−η
∂Ed
∂w ji

=

i = 0 : η ·δ j · x ji

i > 0 : η ·δ j ·w ji · x ji

The way in which δ j is derived depends on the layer, in which neuron j is located.940
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δ j for output layer units

As net j only affects output o j, another expansion yields

∂Ed
∂net j

=
∂Ed
∂o j

∂o j

∂net j

The two resulting derivatives can be simplified.

∂Ed
∂o j

=
t j−o j

o j · (1−o j)

∂o j

∂net j
=

∂σ(net j)

∂net j
= o j · (1−o j)

This yields the result.

δ j =−
∂Ed

∂net j
=−(t j−o j)

δ j for hidden layer units945

net j affects Ed only through first o j and then the weighted inputs netk of all neurons

that j has outgoing connections to, i.e. that are downstream from j (noted as k ∈DS( j)

below). With this knowledge the following expansions can be made.

∂Ed

∂net j
= ∑

k∈DS( j)

∂Ed

∂netk
· ∂netk

∂net j
= ∑

k∈DS( j)
−δk ·

∂netk
∂o j
·

∂o j

∂net j

Both partial derivatives in the right term can be transformed. It helps to know that the

bias-unit has no incoming connection and thus j > 0.950

∂netk
∂o j

=
∂netk
∂xk j

=
∂

∂xk j
(wk0 · xk0 ·∑

j>0

1
2
(wk j)

2 · xk j)
j>0
=

1
2
(wk j)

2

∂o j

∂net j
=

σ(net j)

∂net j
= σ

′ = o j · (1−o j)

The result follows.

δ j = o j · (1−o j) · ∑
k∈DS( j)

δk ·
1
2
(wk j)

2
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Preservation of Łukasiewicz semantics in sigmoidal cores

Let [0,A−] and [A+,1] be two disjoint intervals representing firing and non-firing

activation respectively. Assume sig(z) = 1/(1+ e−(z)), ω > 0 and deg ≥ 1, the last

being the maximum indegree among neurons of the hidden/output layer.955

In the following notation, activations A indicate whether they represent firing or

not firing (+,−), are in hidden or output layer (h,o) and associate with a true or false

neuron (>,⊥), where needed. Note that activations in the input layer are discrete and

therefore written as 0 and 1.

Proper functioning of logic gates in the network is guaranteed, as long as the fol-960

lowing inequalities hold. For each layer and logic gate type there is one formula speci-

fying the minimal input which must lead to activation and one formula for the maximal

possible input that must not activate the gate.

• Logic gates in the hidden layer:

– On > clause neurons (’and’-gate)965

min(A+
h>) = sig(deg ·1 ·ω− (deg ·ω− ω

2 ))≥ A+

max(A−h>) = sig((deg−1) ·1 ·ω+0 ·ω− (deg ·ω− ω

2 ))≤ A−

– On ⊥ clause neurons (’or’-gate)

min(A+
h⊥) = sig(1 ·ω− ω

2 )≥ A+

max(A−h⊥) = sig(0 ·ω− ω

2 )≤ A−970

• Logic gates in the output layer:

– On > clause neurons (’or’-gate)

min(A+
o>) = sig(min(A+

h ) ·ω−
ω

2 )≥ A+

max(A−o>) = sig(deg ·max(A−h )−
ω

2 )≤ A−

– On ⊥ clause neurons (’and’-gate)975

min(A+
o⊥) = sig(deg ·min(A+

h ) ·ω− (deg ·ω− ω

2 ))≥ A+

max(A−o⊥) = sig((deg−1) ·1 ·ω+max(A−h ) ·ω− (deg ·ω− ω

2 ))≤ A−

The hidden layer formulas reduce to:

min(A+
h>) = sig(ω

2 )≥ A+
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max(A−h>) = sig(−ω

2 ))≤ A−980

min(A+
h⊥) = sig(ω

2 )≥ A+

max(A−h⊥) = sig(−ω

2 )≤ A−

The distinction between h> and h⊥ can thus be ignored in the following. Also it is clear

now that A+ > 1
2 > A−. Inequalities regarding the output layer can be transformed into:

1 min(A+
o>) = sig((min(A+

h )−
1
2 ) ·ω)≥ A+

985

2 max(A−o>) = sig((deg ·max(A−h )−
1
2 ) ·ω)≤ A−

3 min(A+
o⊥) = sig((deg ·min(A+

h )−
2deg−1

2 ) ·ω)≥ A+

4 max(A−o⊥) = sig((max(A−h )−
1
2 ) ·ω)≤ A−

It can be seen that formulas 1 and 4 imply the hidden layer inequalities, 2 implies 4

and 3 implies 1.12 Satisfying formulas 2 and 3 therefore satisfies the other inequalities990

as well. Now, as it has been established that:

min(A+
h ) = sig(ω

2 )

max(A−h ) = sig(−ω

2 )

In the 3 layer network it follows:

max(A−o>) = sig((deg · sig(−ω

2 )−
1
2 ) ·ω)995

min(A+
o⊥) = sig((deg · sig(ω

2 )−
2deg−1

2 ) ·ω)

This results in the final inequalities

sig((deg · sig(−ω

2 )−
1
2 ) ·ω)≤ A−

sig((deg · sig(ω

2 )−
2deg−1

2 ) ·ω)≥ A+

Knowing that A+ > 1
2 > A−, these have a solution precisely iff1000

(deg · sig(−ω

2 )−
1
2 )< 0

(deg · sig(ω

2 )−
2deg−1

2 )> 0

Either is true iff ω > 2log(2deg−1).

12 (deg ·min(A+
h )−

2deg−1
2 ) is maximal with deg = 1, then equal to (min(A+

h )−
1
2 )
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Relation of C*-models and Ł-models

Claim: If an initial activation under C*-interpretation leads to a fixed point with1005

no contradiction, the same fixed point will be reached under Ł-interpretation. As-

suming the core architecture implementation itself is correct, this means that all least

C*-models are also least Ł-models.

Proof sketch:1010

(1) By design, the one thing differentiating C*-consequence from Ł-consequence is

that in Ł contradictions are resolved at the end of each iteration.

(2) Due to monotonicity, every output neuron activated while finding a C* fixed point

stays active in further iterations.

(3) It follows from (1), that if the fixed point of C* and Ł on the same input differ, it’s1015

because a contradiction was resolved in Ł.

(4) It follows from (2), that if a contradiction occurs in C during fixed point generation,

it will still be there in the fixed point.

(5) (3) and (4) imply, that if there is no contradiction in the C* fixed point, none was

resolved in the corresponding Ł fixed point and thus, the fixed points are equal.1020
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Appendix B: Extraction algorithm

Type definitions

Type Vertex

lbub /* true if lower boundary, false if upper boundary */

target /* index of target output neuron */

isRule /* true if rule or subsumed by a rule */

isPos /* true if target is active given activation in val */

decID /* decimal ID */

val /* array of input values */

mem /* memorizes, which successors should be generated */

Algorithm 1: Vertex

Type RuleSet

lbRules /* list of found minimal activating inputs */

ubRules /* list of found maximal non-activating inputs */

Algorithm 2: RuleSet

Auxiliary functions

Function get id /* produces key to identify vertices */

Input: val

Output: decimal value of val read as a binary number
Algorithm 3: get id
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Function succ id /* computes decID that differs from vertex at

index */

Input: vertex, index

if vertex.mem[index] = 0 then
newID := -1

else

max := length(vertex.val)

newID := vertex.decID

newID := newID + 2(max−index) if vertex.lbub , newID - 2(max−index)

otherwise

Output: newID
Algorithm 4: succ id

Function make succ /* create successor from copy of vertex */

Input: vertex,index

newV := deepcopy(vertex)

newV.val[index] := 1 if vertex.lbub, 0 otherwise

newV.mem := abs(vertex.mem) /* ’forget’ temporary -1 blockings */

newV.mem[index] := 0

newV.decID = succ id(vertex,index)

Output: newV
Algorithm 5: make succ
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Function in rules lb /* true if vertex subsumed by rule in lower

bound */

Input: vertex, ruleset

for i = 1:length(ruleset.lbRules) do

if minimum(vertex.val - ruleset.lbRules[i]) == 0 then

isSub = true

subRule = ruleset.lbRules[i] /* also returns subsuming rule */

Output: isSub, subRule

Output: false, zeros

Function in rules ub /* analogous function for upper bound */

Algorithm 6: in rules lb, in rules ub

Central algorithm
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Function test /* finds rules and subsumed anti-rules */

Input: core, vertex, ruleset

cOut := run core(core, vertex.val) /* get core output */

vertex.isPos := true if cOut[vertex.target] = 1, false otherwise

if vertex.lbub then

if vertex.isPos then

ruleset.lbRules← vertex.val

vertex.mem := zeros

vertex.isRule := true

/* lower bound rule found */

else

isSub, subRule := in rules ub(vertex, ruleset)

if isSub then set vertex.mem to -1 where subRule = 1 and mem = 1

/* isSub: subsumed by lower bound anti-rule */

else

if vertex.isPos then

isSub, subRule = in rules lb(vertex, ruleset)

if isSub then set vertex.mem to -1 where subRule = 0 and mem = 1

/* isSub: subsumed by upper bound anti-rule */

else

ruleset.ubRules← vertex.val

vertex.mem := zeros

vertex.isRule := true

/* upper bound rule found */

Algorithm 7: test
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Function successors

Input: core,vertex, vvector, queue

test(core, vertex, ruleset)

noMatchSucc := true if minimum(vertex.mem) ≥ 0, false otherwise

for i = 1:length(vertex.mem) do

if vertex.mem[i] = 1 then /* traverse valid successors */

succID := succ id(vertex,i)

if ¬isdefined(vvector, succID) then /* create if necessary */

vvector[succID] := make succ(vertex, i)

test(core, vvector[succID], ruleset)

queue← succID

if vvector[succID].isRule then vertex.mem[i] := 0 /* pool successor

info */

if vvector[succID].isPos = vertex.isPos then noMatchSucc := false

if noMatchSucc then /* test for anti-rules */

if vertex.lbub ∧ ¬vertex.isPos then ruleset.ubRules← vertex.val

if ¬vertex.lbub ∧ vertex.isPos then ruleset.lbRules← vertex.val

for i = 1:length(vertex.mem) do /* distribute info to all successors

*/

if vertex.mem[i] = 1 then

succID := succ id(vertex, i)

set vvector[succID].mem to 0 where vertex.mem is 0

Algorithm 8: successors
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Function rules for target

Input: core, target

⊥ := vertex for bottom element for core

> := vertex for top element for core

queue := Queue(integers) /* stores keys of vertices such that */

queue←⊥.decID,>.decID /* the boundaries alternate by layer */

vvector := vector(vertices) with 3n entries, where n = number of output units in

core

vvector[begin] := ⊥

vvector[end] := >

ruleset := empty RuleSet

while ¬empty(queue) do /* repeat until all vertices pruned or

covered */

index := dequeue(queue)

v := vvector[index]

successors(core, v, ruleset, vvector, queue)

Algorithm 9: rules for target
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